ON THE PROPERTY F CONJECTURE

A Dissertation
by
PAUL PREM GUSTAFSON

Submitted to the Office of Graduate and Professional Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY

Chair of Committee, Eric Rowell
Committee Members, Paulo Lima-Filho
Sarah Witherspoon
Andreas Klappenecker
Head of Department, Emil Straube

August 2018

Major Subject: Mathematics

Abstract

This thesis solves the following question posed by Etingof, Rowell, and Witherspoon: Are the images of mapping class group representations associated to the the modular category $\operatorname{Mod}-D^{\omega}(G)$ always finite? We answer this question in the affirmative, generalizing their work in the braid group case.

Our approach is to translate the problem into manipulation of colored graphs embedded in the given surface as defined by Kirillov. To do this translation, we use the fact that any such representation associated to a finite group G and 3-cocycle ω is isomorphic to a Turaev-Viro-BarrettWestbury (TVBW) representation associated to the spherical fusion category $\operatorname{Vec}_{G}^{\omega}$ of twisted G graded vector spaces. As shown by Kirillov, the representation space for this TVBW representation is canonically isomorphic to a vector space spanned by $\operatorname{Vec}_{G}^{\omega}$-colored graphs embedded in the surface. By analyzing the action of the Birman generators on a finite spanning set of colored graphs, we find that the mapping class group acts by permutations on a slightly larger finite spanning set. This implies that the representation has finite image.

ACKNOWLEDGMENTS

This thesis would not have been written without the guidance of my advisor, Eric Rowell. I am also grateful to Zhenghan Wang and my father Robert Gustafson for their advice.

I would also like to thank the Texas A\&M University Office of Graduate and Professional Studies and Sean Roberson for the $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ thesis template used to construct this document.

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professors Eric Rowell, Paulo Lima-Filho, and Sarah Witherspoon of the Department of Mathematics and Professor Andreas Klappenecker of the Department of Computer Science and Engineering.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by a fellowship from Texas A\&M University and partially supported by NSF grant DMS-1410144.

TABLE OF CONTENTS

Page

ABSTRACT ii
ACKNOWLEDGMENTS iii
CONTRIBUTORS AND FUNDING SOURCES iv
TABLE OF CONTENTS v
LIST OF FIGURES vi

1. INTRODUCTION 1
1.1 Topological quantum computation 1
1.1.1 Topological quantum field theories 1
1.1.2 Spherical fusion categories 2
1.1.3 The Property F conjecture 2
1.2 Twisted Dijkgraaf-Witten theory 3
1.2.1 The spherical fusion category $\operatorname{Vec}_{G}^{\omega}$ 3
1.2.2 Colored graphs 5
1.2.3 Strictification 10
2. RELATED WORK 12
3. RESULTS 13
3.1 No Boundary Case 15
3.2 Boundary Case 19
4. SUMMARY AND OUTLOOK 24
REFERENCES 25

LIST OF FIGURES

FIGURE Page
1.1 String diagram notation for the image of the morphism ϕ under the functorial iso- morphism z 6
1.2 Local relations for colored graphs. Reprinted from [1]. 8
1.3 Linearity of $\langle\Gamma\rangle$. Here φ_{1}, φ_{2} are compositions of φ with projector $X_{1} \oplus X_{2} \rightarrow X_{1}$ (respectively, $X_{1} \oplus X_{2} \rightarrow X_{2}$), and similarly for ψ_{1}, ψ_{2}. Reprinted from [1]. 9
3.1 Element of the spanning set S for a genus 2 surface 17
3.2 Simple closed curves for the Dehn twists in the Lickorish generating set for the mapping class group of a genus 3 closed surface. Reprinted from [2] 17
3.3 Using local moves to calculate the action of the first type of Dehn twist on an arbitrary element of the spanning set S. Read from left to right, then top to bottom. Unlabeled interior edges are colored by the group identity element. The Dehn twist is performed along the dashed simple closed curve. The first two subfigures show the action of the Dehn twist. The last three show the local moves relating the image of the Dehn twist to another element of S.19
3.4 Using local moves to calculate the action of the second type of Dehn twist on an arbitrary element of the spanning set S. Read from left to right, then top to bottom. The Dehn twist is performed along the dashed simple closed curve. The first two subfigures show application of local moves prior to the Dehn twist action. The third shows the action of the twist. The last three show the local moves relating the image of the Dehn twist to another element of S.20
3.5 Using local moves to calculate the action of a braid generator on an arbitrary element of the spanning set S. Read from left to right, then top to bottom. Unlabeled interior edges are colored by the group identity element. The first two subfigures show application of the braid generator, which interchanges the univalent vertices. The last four show the local moves relating the image to another element of S.22
3.6 Using local moves to calculate the action of the last Birman generator on an arbitrary element of the spanning set S. This generator corresponds to pulling a boundary component of the surface Σ along a generator for the fundamental group of the closed surface given by filling in all boundary components of Σ. Read from left to right, then top to bottom. Unlabeled interior edges are colored by the group identity element. The first two figures show application of the Birman generator. The last eight show the local moves relating the image to another element of $S \ldots \ldots .23$

1. INTRODUCTION*

1.1 Topological quantum computation

Topological quantum computation refers to a variety of proposals for building a quantum computer using topological phases of matter. In the usual setup, one creates n quasiparticle excitations (anyons) in a 2-dimensional disk. Physically braiding quasiparticle excitations corresponds to a projective unitary action of the braid group B_{n} on the Hilbert space of possible states of the system. These braid group representations are completely determined by the anyon types of the n quasiparticles. The images of the standard braid group generators in such a representation form the gate set for a quantum computer.

More generally, we consider a system of quasiparticle excitations on a closed surface of arbitrary genus. In this case, there may be nontrivial self-homeomorphisms of the underlying surface in addition to motions of the quasiparticle excitions on the surface. Both types of actions correspond to elements of the mapping class group of a compact surface with boundary, where a labeled boundary component replaces each quasiparticle excitation. The aforementioned braid group example corresponds to the mapping class group of a disk with n open disks removed, holding the outer, vacuum-labeled boundary fixed.

1.1.1 Topological quantum field theories

The relevant dynamics of proposed topological phases of matter are governed by topological quantum field theories (TQFTs). The theories we consider in this paper are $(2+1)$-dimensional (two spatial dimensions and one time dimension). A $(2+1)$-dimensional topological quantum field theory assigns a vector space to every oriented closed surface and a (possibly projective) linear map to every 3-manifold with boundary in a compatible way. In particular, if a 3-manifold M has

[^0]boundary $\partial M=N_{1} \sqcup \overline{N_{2}}$, then a TQFT F defines a (projective) operator $F(M): F\left(N_{1}\right) \rightarrow F\left(N_{2}\right)$. Specializing to the case where $N:=N_{1}=N_{2}$, a TQFT defines a representation of the mapping class group of N. We will consider TQFTs extending to 1-manifolds, so we get mapping class group representations of oriented compact surfaces with boundary.

A common way of constructing TQFTs is by labelling geometric data (e.g. simplices of a triangulation, or framed links) by data from a sufficiently nice tensor category. Two such constructions are the Reshitikhin-Turaev [3] and the Turaev-Viro-Barrett-Westbury [4, 5] constructions.

More concretely, given a spherical fusion category \mathscr{A} (to be defined in the next subsection) and an oriented compact surface Σ, possibly with boundary, the Turaev-Viro-Barrett-Westbury (TVBW) construction gives a projective representation of the mapping class group $\operatorname{MCG}(\Sigma)[4,5]$. A natural problem motivated by topological quantum computation is to determine the images of such representations. In particular, we would like to know when such a representation has a finite image.

1.1.2 Spherical fusion categories

The theory of fusion categories captures much of the algebraic structure of topological phases of matter. A fusion category is a rigid semisimple linear monoidal category with only finitely many isomorphism classes of simple objects such that the monoidal unit is simple [6]. Each isomorphism class of simple objects corresponds to an anyon type. A spherical fusion category is a fusion category equipped with a pivotal structure satisfying the spherical property [6], a technical requirement guaranteeing the uniqueness of the categorical trace.

1.1.3 The Property F conjecture

A fusion category is said to be weakly integral if the square of its Frobenius-Perron dimension is an integer. It is conjectured that any TVBW mapping class group representation associated to a spherical fusion category \mathscr{A} has finite image if and only if \mathscr{A} is weakly integral. This conjecture is a modification of the Property F conjecture [7, 8], which states that braid group representations
coming from a braided fusion category \mathscr{C} should have finite image if and only if \mathscr{C} is weakly integral. Instead of only considering braid group representations, one can consider mapping class groups of arbitrary orientable surfaces. In this case, the input categories to construct the representations must be more specialized than just braided fusion. One can either apply the ReshitikhinTuraev construction to a modular tensor category, or apply the TVBW construction to a spherical fusion category. The former is more general than the latter since the Reshitikhin-Turaev construction for the Drinfeld center $Z(\mathscr{A})$ of a spherical fusion category \mathscr{A} yields the same representation as the TVBW construction for \mathscr{A}. However, for the case considered in this paper, the simpler TVBW construction suffices.

1.2 Twisted Dijkgraaf-Witten theory

In this paper, our input category is $\mathscr{A}=\operatorname{Vec}_{G}^{\omega}$, the spherical fusion category of G-graded vector spaces with associativity modified by a cocycle $\omega \in Z^{3}\left(G, k^{\times}\right)$. In this case, the TVBW construction corresponds to both twisted Dijkgraaf-Witten theory [9] and the Reshitikhin-Turaev construction [3] applied to $\operatorname{Mod}-D^{\omega}(G) \cong Z\left(\operatorname{Vec}_{G}^{\omega}\right)$. The category $\operatorname{Vec}_{G}^{\omega}$ is integral, so the one expects its associated mapping class group representations to have finite image. The main contribution of this paper is to verify this for arbitrary G and ω.

1.2.1 The spherical fusion category $\operatorname{Vec}_{G}^{\omega}$

The following definitions are well-known and can be found in, e.g., [6]. Let k be an algebraically closed field of characteristic $0, G$ a finite group, and $\omega \in Z^{3}\left(G, k^{\times}\right)$a 3-cocycle. The spherical fusion category of G-graded k-vector spaces with associativity defined by ω is denoted $\operatorname{Vec}_{G}^{\omega}$. The objects of this category are vector spaces with a decomposition $V=\bigoplus_{g \in G} V_{g}$. Morphisms are linear maps preserving the grading. The tensor product is defined by

$$
(V \otimes W)_{g}=\bigoplus_{x, y \in G, x y=g} V_{x} \otimes W_{y} .
$$

For each $g \in G$, pick a 1 -dimensional vector space $\delta_{g} \in \operatorname{Obj}\left(\operatorname{Vec}_{G}^{\omega}\right)$ concentrated in degree g. The set $\left\{\delta_{g}: g \in G\right\}$ is a complete set of pairwise non-isomorphic representatives for the isomorphism classes of simple objects of $\operatorname{Vec}_{G}^{\omega}$. We will sometimes abuse notation by referring to an object δ_{g} by the group element g. We have $1 \cong \delta_{1}$, and $\delta_{g}^{*}:=\delta_{g^{-1}}$ with the coevaluation and evaluation maps defined below.

For the structural morphisms, we follow [10]. We will treat the canonical isomorphisms $\delta_{g} \otimes$ $\delta_{h} \cong \delta_{g h}$ as identities. The associator $\alpha_{g, h, k}:\left(\delta_{g} \otimes \delta_{h}\right) \otimes \delta_{k} \rightarrow \delta_{g} \otimes\left(\delta_{h} \otimes \delta_{k}\right)$ is defined by

$$
\alpha_{g, h, k}=\omega(g, h, k) \mathrm{id}_{g h k}
$$

The evaluation $\mathrm{ev}_{g}: \delta_{g}^{*} \otimes \delta_{g} \rightarrow 1$ is

$$
\mathrm{ev}_{g}=\omega\left(g^{-1}, g, g^{-1}\right) \mathrm{id}_{1}
$$

The coevaluation $\operatorname{coev}_{g}: 1 \rightarrow \delta_{g} \otimes \delta_{g}^{*}$ is

$$
\operatorname{coev}_{g}=\mathrm{id}_{1} .
$$

The pivotal structure $j_{g}: \delta_{g} \rightarrow \delta_{g}^{* *}$ is

$$
j_{g}=\omega\left(g^{-1}, g, g^{-1}\right) \operatorname{id}_{g}
$$

If ω and ω^{\prime} are cohomologous cocycles, then $\operatorname{Vec}_{G}^{\omega}$ is monoidally equivalent to $\operatorname{Vec}_{G}^{\omega^{\prime}}$ [6]. This equivalence respects the pivotal structure, so extends to an equivalence of spherical fusion categories. It is a basic result in group cohomology that any cocycle $\omega \in Z^{3}\left(G, k^{\times}\right)$is cohomologous to a cocycle taking values in $\mu_{|G|}$, the roots of unity of order $|G|$. Thus, by replacing $\operatorname{Vec}_{G}^{\omega}$ with an equivalent spherical fusion category, we assume without loss of generality that $\operatorname{Im}(\omega) \subset \mu_{|G|}$ (as
in [7]).

1.2.2 Colored graphs

The following definitions and theorem are due to Kirillov [1], and recorded here for convenience. For any strict pivotal spherical fusion category \mathscr{A} and surface Σ, Kirillov gives the following presentation of the Levin-Wen model as a vector space of colored graphs modulo local relations. He also proves that this space is canonically isomorphic to the TVBW vector space associated to Σ. It is straightforward to check that this isomorphism, which amounts to replacing a triangulation with its dual graph, commutes with the mapping class group action.

We define the functor $\langle\cdot\rangle: \mathscr{A}^{\boxtimes n} \rightarrow$ Vec from the n-fold Deligne product $\mathscr{A}^{\boxtimes n}$ by

$$
\begin{equation*}
\left\langle V_{1}, \ldots, V_{n}\right\rangle=\operatorname{Hom}_{\mathscr{A}}\left(1, V_{1} \otimes \cdots \otimes V_{n}\right) \tag{1.1}
\end{equation*}
$$

for any collection V_{1}, \ldots, V_{n} of objects of \mathscr{A}. Note that pivotal structure gives functorial isomorphisms (see Figure 1.1)

$$
\begin{equation*}
z:\left\langle V_{1}, \ldots, V_{n}\right\rangle \cong\left\langle V_{n}, V_{1}, \ldots, V_{n-1}\right\rangle \tag{1.2}
\end{equation*}
$$

where, given $\phi \in \operatorname{Hom}_{\mathscr{A}}\left(1, V_{1} \otimes \cdots \otimes V_{n}\right)$,

$$
z(\phi)=\left(\operatorname{id}_{V_{n} \otimes V_{1} \otimes \cdots \otimes V_{n-1}} \otimes \operatorname{ev}_{V_{n}^{*}}\right) \circ\left(\operatorname{id}_{V_{n}} \otimes \phi \otimes \operatorname{id}_{V_{n}^{*}}\right) \circ \operatorname{coev}_{V_{n}^{*}}
$$

and $z^{n}=\operatorname{id}($ see [11, Section 5.3]).
Thus, up to a canonical isomorphism, the space $\left\langle V_{1}, \ldots, V_{n}\right\rangle$ only depends on the cyclic order of V_{1}, \ldots, V_{n}.

We have a natural composition map

$$
\begin{align*}
\left\langle V_{1}, \ldots, V_{n}, X\right\rangle \otimes\left\langle X^{*}, W_{1}, \ldots, W_{m}\right\rangle & \rightarrow\left\langle V_{1}, \ldots, V_{n}, W_{1}, \ldots, W_{m}\right\rangle \tag{1.3}\\
\varphi \otimes \psi & \mapsto \varphi_{X}^{\circ} \psi=\left(\operatorname{id}_{V_{1} \otimes \cdots \otimes V_{n}} \otimes \operatorname{ev}_{X^{*}} \otimes \operatorname{id}_{W_{1} \otimes \cdots \otimes W_{m}}\right) \circ(\varphi \otimes \psi)
\end{align*}
$$

Figure 1.1: String diagram notation for the image of the morphism ϕ under the functorial isomorphism z

We will consider finite graphs embedded in an oriented surface Σ (which may have boundary); for such a graph Γ, let $E(\Gamma)$ be the set of edges. Note that edges are not oriented. Let $E^{o r}$ be the set of oriented edges, i.e. pairs $\mathbf{e}=(e$, orientation of $e)$; for such an oriented edge \mathbf{e}, we denote by $\overline{\mathbf{e}}$ the edge with opposite orientation.

If Σ has a boundary, the graph is allowed to have uncolored one-valent vertices on $\partial \Sigma$ but no other common points with $\partial \Sigma$; all other vertices will be called interior. We will call the edges of Γ terminating at these one-valent vertices legs.

Definition 1.1. Let Σ be an oriented surface (possibly with boundary) and $\Gamma \subset \Sigma$ - an embedded graph as defined above. A coloring of Γ is the following data:

- Choice of an object $V(\mathbf{e}) \in \operatorname{Obj} \mathscr{A}$ for every oriented edge $\mathbf{e} \in E^{\text {or }}(\Gamma)$ so that $V(\overline{\mathbf{e}})=V(\mathbf{e})^{*}$, where \bar{e} is the edge with opposite orientation.
- Choice of a vector $\varphi(v) \in\left\langle V\left(\mathbf{e}_{1}\right), \ldots, V\left(\mathbf{e}_{n}\right)\right\rangle$ (see (1.1)) for every interior vertex v, where
$\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are edges incident to v, taken in counterclockwise order and with outward orientation.

An isomorphism f of two colorings $\{V(\mathbf{e}), \varphi(v)\},\left\{V^{\prime}(\mathbf{e}), \varphi^{\prime}(v)\right\}$ is a collection of isomorphisms $f_{\mathbf{e}}: V(\mathbf{e}) \cong V^{\prime}(\mathbf{e})$ which agree with the identifications $V(\overline{\mathbf{e}})=V(\mathbf{e})^{*}$ and which identify $\varphi^{\prime}, \varphi: \varphi^{\prime}(v)=f \circ \varphi(v)$.

We will denote the set of all colored graphs on a surface Σ by $\operatorname{Graph}(\Sigma)$.
Note that if Σ has a boundary, then every colored graph Γ defines a collection of points $B=$ $\left\{b_{1}, \ldots, b_{n}\right\} \subset \partial \Sigma$ (the endpoints of the legs of Γ) and a collection of objects $V_{b} \in \mathrm{Obj} \mathscr{A}$ for every $b \in B$: the colors of the legs of Γ taken with outgoing orientation. We will denote the pair $\left(B,\left\{V_{b}\right\}\right)$ by $\mathbf{V}=\Gamma \cap \partial \Sigma$ and call it boundary value. We will denote

$$
\operatorname{Graph}(\Sigma, \mathbf{V})=\text { set of all colored graphs in } \Sigma \text { with boundary value } \mathbf{V} .
$$

We can also consider formal linear combinations of colored graphs. Namely, for fixed boundary value \mathbf{V} as above, we will denote

$$
\operatorname{VGraph}(\Sigma, \mathbf{V})=\{\text { formal linear combinations of graphs } \Gamma \in \operatorname{Graph}(\Sigma, \mathbf{V})\}
$$

In particular, if $\partial \Sigma=\varnothing$, then the only possible boundary condition is trivial $(B=\varnothing)$; in this case, we will just write $\operatorname{VGraph}(\Sigma)$.

The following theorem is a variation of result of Reshitikhin and Turaev.
Theorem 1.1. There is a unique way to assign to every colored planar graph Γ in a disk $D \subset \mathbb{R}^{2}$ a vector

$$
\langle\Gamma\rangle_{D} \in\left\langle V\left(\mathbf{e}_{1}\right), \ldots, V\left(\mathbf{e}_{n}\right)\right\rangle
$$

where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ are the edges of Γ meeting the boundary of D (legs), taken in counterclockwise order and with outgoing orientation, so that that following conditions are satisfied:

1. $\langle\Gamma\rangle$ only depends on the isotopy class of Γ.
2. If Γ is a single vertex colored by $\varphi \in\left\langle V\left(\mathbf{e}_{1}\right), \ldots, V\left(\mathbf{e}_{n}\right)\right\rangle$, then $\langle\Gamma\rangle=\varphi$.
3. Local relations shown in Figure 1.2 hold.

Figure 1.2: Local relations for colored graphs. Reprinted from [1].

Local relations should be understood as follows: for any pair Γ, Γ^{\prime} of colored graphs which are identical outside a subdisk $D^{\prime} \subset D$, and in this disk are homeomorphic to the graphs shown in Figure 1.2, we must have $\langle\Gamma\rangle=\left\langle\Gamma^{\prime}\right\rangle$.

Moreover, so defined $\langle\Gamma\rangle$ satisfies the following properties:

1. $\langle\Gamma\rangle$ is linear in color of each vertex v (for fixed colors of edges and other vertices).
2. $\langle\Gamma\rangle$ is additive in colors of edges as shown in Figure 1.3.
3. If Γ, Γ^{\prime} are two isomorphic colorings of the same graph, then $\langle\Gamma\rangle=\left\langle\Gamma^{\prime}\right\rangle$.

Figure 1.3: Linearity of $\langle\Gamma\rangle$. Here φ_{1}, φ_{2} are compositions of φ with projector $X_{1} \oplus X_{2} \rightarrow X_{1}$ (respectively, $X_{1} \oplus X_{2} \rightarrow X_{2}$), and similarly for ψ_{1}, ψ_{2}. Reprinted from [1].
4. Composition property: if $D^{\prime} \subset D$ is a subdisk such that ∂D^{\prime} does not contain vertices of Γ and meets edges of Γ transversally, then $\langle\Gamma\rangle_{D}$ will not change if we replace subgraph $\Gamma \cap D^{\prime}$ by a single vertex colored by $\left\langle\Gamma \cap D^{\prime}\right\rangle_{D^{\prime}}$.

The vector $\langle\Gamma\rangle$ is called the evaluation of Γ.

To define local relations between embedded graphs, Kirillov defines the space of null graphs as follows. Let $\Gamma=c_{1} \Gamma_{1}+\cdots+c_{n} \Gamma_{n}$ be a formal linear combination of colored graphs in Σ. If there exists an embedded disk $D \subset M$ such that

1. Γ is transversal to ∂D (i.e., no vertices of Γ_{i} are on the boundary of D and edges of each Γ_{i} meet ∂D transversally),
2. all Γ_{i} coincide outside of D,
3. and $\langle\Gamma\rangle_{D}=\sum c_{i}\left\langle\Gamma_{i} \cap D\right\rangle_{D}=0$;
then Γ is called a null graph.

Definition 1.2. The vector space $H:=H(\Sigma, \mathbf{V})$ associated to an oriented surface Σ with boundary condition \mathbf{V} by the spherical fusion category \mathscr{A} is the quotient space

$$
H(\Sigma, \mathbf{V})=\operatorname{VGraph}(\Sigma, \mathbf{V}) / N(\Sigma, \mathbf{V})
$$

where $N(\Sigma, \mathbf{V})$ is the subspace spanned by null graphs (for all possible embedded disks $D \subset \Sigma$).

1.2.3 Strictification

The colored graph construction takes a strict pivotal category as input, so we must strictify $\operatorname{Vec}_{G}^{\omega}$ to get an equivalent strict pivotal monoidal $\widehat{\operatorname{Vec}_{G}^{\omega}}$. Every pivotal category is equivalent to a strict pivotal monoidal category by first strictifying with respect to the monoidal structure, and then strictifying with respect to the pivotal structure as follows [12].

Given a monoidal category \mathscr{C}, there exists a monoidally equivalent strict monoidal category \mathscr{C}^{\prime} with objects consisting of all finite lists of objects of \mathscr{C} and morphisms defined by

$$
\begin{aligned}
& \operatorname{Hom}_{\mathscr{C}^{\prime}}\left(\left[A_{1}, \ldots, A_{n}\right],\left[B_{1}, \ldots, B_{m}\right]\right)= \\
& \qquad \operatorname{Hom}_{\mathscr{C}}\left(\left(\left(\cdots\left(\left(A_{1} \otimes A_{2}\right) \otimes A_{3}\right) \otimes \cdots \otimes A_{n},\left(\left(\cdots\left(\left(B_{1} \otimes B_{2}\right) \otimes B_{3}\right) \otimes \cdots \otimes B_{m}\right) .\right.\right.\right.\right.
\end{aligned}
$$

The tensor product in \mathscr{C}^{\prime} is concatenation of lists. The strictification functor applies the obvious unique composition of associators to both objects and morphisms of \mathscr{C}, and the coherence map does the same. If \mathscr{C} is pivotal, this monoidal equivalence extends to an equivalence of pivotal monoidal categories (where the pivotal structure on \mathscr{C}^{\prime} is given by applying the strictification functor to the pivotal structure of \mathscr{C}).

Given a pivotal strict monoidal category \mathscr{C}^{\prime}, there is a strict pivotal monoidal category $\widehat{\mathscr{C}}$ equivalent, as a pivotal monoidal category, to \mathscr{C}^{\prime}. The objects of $\widehat{\mathscr{C}}$ are pairs (X, ε) for which there exists $r \in \mathbb{N}_{0}$ such that $X \in \mathscr{C}^{r}$ and $\varepsilon \in \mathbb{Z}_{2}^{r}$. The morphisms are

$$
\operatorname{Hom}_{\mathscr{C}}((X, \varepsilon),(Y, \varepsilon))=\operatorname{Hom}_{\mathscr{C}^{\prime}}\left(X_{1}^{\varepsilon_{1}} \otimes \cdots \otimes X_{r}^{\varepsilon_{r}}, Y_{1}^{\varepsilon_{1}} \otimes \cdots \otimes Y_{s}^{\varepsilon_{s}}\right)
$$

where X^{ε} is defined by $X^{0}=X$ and $X^{1}=X^{*}$. The tensor product is given by concatenation. The duality functor on $\widehat{\mathscr{C}}$ is given by

$$
(X, \varepsilon)^{*}=\left(\left(X_{r}, \ldots, X_{1}\right),\left(\varepsilon_{r}+1, \ldots, \varepsilon_{1}+1\right)\right) .
$$

The evaluation function $\operatorname{ev}_{(X, \varepsilon)}$ on $\hat{\mathscr{C}}$ is inductively defined using tensor products of identities, $j_{X_{i}}$'s, and evaluation maps $\operatorname{ev}_{X_{i}}$ in \mathscr{C}^{\prime}, and similarly for coevaluation. This strictification functor maps $X \in \mathscr{C}^{\prime}$ to $(X, 0)$ and acts on morphisms as the identity. The coherence maps are also identity maps.

Slightly abusing notation, we will sometimes use the same symbol for both $X \in \mathscr{C}$ and its images in \mathscr{C}^{\prime} and $\hat{\mathscr{C}}$ under the strictification functors.

2. RELATED WORK*

The closest related work is a result of Etingof, Rowell, and Witherspoon who showed purely algebraically that the braid group representations associated to the modular category $\operatorname{Mod}\left(D^{\omega}(G)\right)$ have finite images [7]. The braid group B_{n} is the mapping class group of a disk with n marked points relative to its boundary, so they asked whether their result generalizes to arbitrary mapping class group representations associated to $\operatorname{Mod}\left(D^{\omega}(G)\right)$. This paper answers their question affirmatively, using a different, more geometric approach.

Prior to the current work, certain specific cases had already been solved. In the case of the torus, Ng and Schauenburg's Congruence Subgroup Theorem implies the much stronger result that any Reshitikhin-Turaev representation of the mapping class group of the torus has finite image [13]. Another related result is due to Fjelstad and Fuchs [14]. They showed that, given a surface with at most one boundary component, the mapping class group representations corresponding to the untwisted (i.e. $\omega=1$) Dijkgraaf-Witten theory have finite image. Their paper uses an algebraic method of Lyubashenko [15] that gives a projective mapping class group representation to any factorizable ribbon Hopf algebra, in their case, the double $D(G)$. In our case, we instead consider the mapping class group action on a vector space of $\operatorname{Vec}_{G}^{\omega}$-colored embedded graphs defined by Kirillov [1], yielding a simpler, geometric proof of the more general twisted case.

Bantay also calculated the images of certain representations of mapping class groups on the Hilbert space of an orbifold model associated to $D^{\omega}(G)$ [16]. These representations appear to coincide with the twisted Dijkgraaf-Witten representations. However, due to lack of proof, the precise connection is unclear.

[^1]
3. RESULTS*

To show that the image of any $\operatorname{Vec}_{G}^{\omega}$ mapping class group representation is finite, we will analyze the action of the mapping class group on a finite collection of colored graphs that span the representation space H. To define this spanning set, we will need the following definitions of simple morphisms and colored graphs.

Definition 3.1. Let $g_{1}, \ldots, g_{n} \in G$ and $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{ \pm 1\}=\mathbb{Z}_{2}$. A morphism

$$
\begin{aligned}
\phi \in\left\langle\left(\delta_{g_{1}}, \varepsilon_{1}\right), \ldots,\left(\delta_{g_{n}}, \varepsilon_{n}\right)\right\rangle & =\operatorname{Hom}_{\widehat{\operatorname{Vec}_{G}^{\omega}}}\left(1,\left(\delta_{g_{1}}, \varepsilon_{1}\right) \otimes \cdots \otimes\left(\delta_{g_{n}}, \varepsilon_{n}\right)\right) \\
& =\operatorname{Hom}_{\operatorname{Vec}_{G}^{\omega}}\left(1,\left(\left(\cdots\left(\left(\delta_{g_{1}} \otimes \delta_{g_{2}}\right) \otimes \cdots \otimes \delta_{g_{n}}\right)\right.\right.\right.
\end{aligned}
$$

will be called simple if it is the composition of the isomorphism $1 \cong \delta_{1}$ and tensor product isomorphisms of the form $\delta_{g h} \cong \delta_{g} \otimes \delta_{h}$ in $\operatorname{Vec}_{G}^{\omega}$.

By MacLane's coherence theorem applied to the $\operatorname{Vec}_{G}^{\omega}$ Hom-space, there is a unique simple morphism in $\left\langle\left(\delta_{g_{1}}, \varepsilon_{1}\right), \ldots,\left(\delta_{g_{n}}, \varepsilon_{n}\right)\right\rangle$ whenever $\prod_{i=1}^{n} g_{i}=1$. This simple morphism is a canonical basis element for the 1-dimensional space $\left\langle\left(\delta_{g_{1}}, \varepsilon_{1}\right), \ldots,\left(\delta_{g_{n}}, \varepsilon_{n}\right)\right\rangle$. We will describe a map between such spaces as multiplication by a scalar, where the scalar is the matrix coefficient of the map with respect to these canonical bases.

Definition 3.2. Let Γ be a graph embedded in a surface Σ. A $\widehat{\operatorname{Vec}_{G}^{\omega}}$-coloring (V, ϕ) of Γ will be called simple if the following conditions both hold:

1. For every oriented edge $\mathbf{e} \in E^{o r}(\Gamma)$, there exists a group element $g(\mathbf{e}) \in G$ and $\varepsilon(\mathbf{e}) \in\{ \pm 1\}=$ \mathbb{Z}_{2} such that the coloring $V(\mathbf{e})=\left(\delta_{g(\mathbf{e})}, \varepsilon(\mathbf{e})\right)$.

[^2]2. If v is an interior vertex of Γ, then there exists an enumeration $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ of the edges incident to v, taken in counterclockwise order and with outward orientation, such that $\prod_{i=1}^{n} g\left(\mathbf{e}_{i}\right)^{\varepsilon\left(\mathbf{e}_{i}\right)}=$ 1 and the vertex label $\phi(v) \in\left\langle g\left(\mathbf{e}_{1}\right), \ldots, g\left(\mathbf{e}_{n}\right)\right\rangle$ is a simple morphism.

Lemma 3.1. Let $\phi \in\left\langle\left(g_{1}, \varepsilon_{1}\right), \ldots,\left(g_{n}, \varepsilon_{n}\right)\right\rangle$ and $\psi \in\left\langle\left(g_{n}, \varepsilon_{n}\right),\left(g_{1}, \varepsilon_{1}\right), \ldots,\left(g_{n-1}, \varepsilon_{n-1}\right)\right\rangle$ be simple morphisms. Then $z(\phi)=\alpha \psi$, where $\alpha \in \mu_{|G|}$.

Proof. The definition of the z-morphism in Equation 1.2 only involves tensors and compositions of structural morphisms of $\widehat{\mathrm{Vec}_{G}^{\omega}}$, which are equal to tensors and compositions of identities, associators, unitors, the pivotal j-morphism, evaluation, and coevaluation morphisms in $\operatorname{Vec}_{G}^{\omega}$ on the corresponding objects. Since all the tensor factors in the codomain of ϕ are of the form $\left(\delta_{g}, \varepsilon\right)$ for some $g \in G$ and $\varepsilon \in \mathbb{Z}_{2}$, the definition of $\operatorname{Vec}_{G}^{\omega}$ implies that each of the structural morphisms simply consist of multiplication by elements of the form $\omega(g, h, k)$ for some $g, h, k \in G$. Thus, $z(\phi)=\alpha \psi$ for some α which is a product of elements in $\operatorname{Im}(\omega)$. Since $\operatorname{Im}(\omega) \subset \mu_{|G|}$, it follows that $\alpha \in \mu_{|G|}$.

Proposition 3.1. Let Γ be a simple colored graph embedded in a surface Σ. Let Δ be the colored graph given by applying one of the three local moves in Figure 1.2 to Γ. Then there exists $\alpha \in \mu_{|G|}$ such that

$$
\Delta-\alpha \Delta^{\prime} \in N(\Sigma, \mathbf{V})
$$

where Δ^{\prime} is a simple colored graph given by replacing each vertex label in Δ with a simple morphism and each edge label by a object of the form $\left(\delta_{g}, \varepsilon\right)$ for some $g \in G$ and $\varepsilon \in \mathbb{Z}_{2}$.

Proof. We'll consider each local move separately. In each case, we need to show that Δ is equivalent to $\alpha \Delta^{\prime}$ in H.

For the first (edge contraction) local move in Figure 1.2, using the same notation as in the figure, the vertex label $\psi \underset{X}{\circ} \phi$ in Δ is given by the following composition in $\operatorname{Vec}_{G}^{\omega}$ (recall that every $\widehat{\operatorname{Vec}_{G}^{\omega}}$ Hom-space is equal to a $\operatorname{Vec}_{G}^{\omega}$ Hom-space). Since Γ is simple, there exist integers l, k and simple
morphisms $\phi^{\prime}, \psi^{\prime}$ such that $\psi=z^{l}\left(\psi^{\prime}\right)$ and $\phi=z^{k}\left(\phi^{\prime}\right)$. Then we repeatedly apply associators and the cyclic z-morphism of Equation 1.2 to ϕ and ψ until the tensor factors of the codomain are rearranged in the order of the left hand side of Equation 1.3 and that X and X^{*} are isolated (not contained in any parentheses). After applying the ev_{X} morphism, we reassociate until the new label $\varphi \underset{X}{\circ} \psi$ has the left-associated parenthesization. Since every edge is labeled by a $\left(\delta_{g}, \varepsilon\right)$ for some $g \in G$ and $\left.\varepsilon \in \mathbb{Z}_{2}\right)$, each associator morphism consists of multiplication by $\omega(g, h, k)$ for some $g, h, k \in G$. Similarly, by Lemma 3.1, every z-morphism consists of multiplication by some $\beta \in \mu_{|G|}$. Thus, the overall composition consists of multiplication by an element $\alpha \in \mu_{|G|}$.

For the second local move (tensoring parallel edges), there are two cases: $k=0$ and $k>0$. In the $k=0$ case, we apply inverse unitors to each vertex label to introduce an edge labeled by the unit object, followed by reassocation. In the $k>0$ case, tensoring in $\widehat{\operatorname{Vec}_{G}^{\omega}}$ corresponds to applying associators and tensor product isomorphisms in $\operatorname{Vec}_{G}^{\omega}$ Hom-spaces. Since every edge is labeled by a simple object, it follows that the result of this local move is also of the desired form.

For the third local move (adding a coev-labeled vertex), the colored graph given by direct application of the local move to a simple graph has an extra vertex labeled by $\operatorname{coev}_{\delta_{g}}$ in $\widehat{\operatorname{Vec}_{G}^{\omega}}$ for some $g \in G$, which is a simple morphism by definition.

3.1 No Boundary Case

We first prove our theorem in the easier case where the surface Σ is closed.

Theorem 3.1. The image of any twisted Dijkgraaf-Witten representation of a mapping class group of an orientable, closed surface Σ is finite.

Proof. Let Γ be a $\widehat{\operatorname{Vec}_{G}^{\omega}}$-colored graph embedded in Σ, and let $g \geq 1$ be the genus of Σ (if $g=0$, the mapping class group is trivial). Thinking of Σ as a quotient of its fundamental $4 g$-gon, by isotopy we may assume that the vertices of Γ lie in the interior of the polygon, none of the edges of Γ intersect the corners of the polygon, and that the edges of Γ only meet the sides of the polygon transversally. Applying the evaluation map of Theorem 1.1 on the interior of the polygon shows
that Γ is equivalent to a graph with a single vertex whose edges are simple closed curves, each of which intersect the boundary of the polygon precisely once. By using the local relations, we can replace all the edges intersecting a side with a single edge labeled by the tensor product of their labels. If there are no edges intersecting a side, we can insert a single edge labeled by the group identity into Γ that intersects only that side. Thus, Γ is equivalent to a colored graph with one vertex v and edges $e_{1}, \ldots, e_{2 g}$ corresponding to the standard generators of $\pi_{1}(M, v)$ as shown in Figure 3.1.

By Theorem 1.1 and the definition of the quotient map identifying the sides of the fundamental polygon, the vertex v is colored by an element $\phi(v) \in \operatorname{Hom}\left(1, \otimes_{i=1}^{g} V\left(e_{2 i-1}\right) \otimes V\left(e_{2 i}\right) \otimes\right.$ $\left.V\left(e_{2 i-1}\right)^{*} \otimes V\left(e_{2 i}\right)^{*}\right)$, where $V\left(e_{i}\right) \in \mathrm{Obj}_{\widehat{\operatorname{Vec}_{G}^{\omega}}}$ is the coloring of the edge e_{i}.

We claim that the representation space H is spanned by the set of such colored graphs Γ such that each $V\left(e_{i}\right)$ is simple. This follows from the additivity of the evaluation map of Theorem 1.1 in the direct sum. Strictly speaking, we can only take advantage of the additivity on a disk, not on an edge e_{i}, which is a v-based loop. However, we can easily add a coev-labeled vertex to any edge e_{i}, apply the additivity on one of the two resulting edges (which lies in an embedded disk), and then contract on the other edge to get the decomposition we want.

Since isomorphic colorings give the same evaluation, it follows that H is spanned by colored graphs Γ such that each $V\left(e_{i}\right)=\delta_{g_{i}}$ for some $g_{i} \in G$. For such Γ, the space of possible v-colors $\operatorname{Hom}\left(1, \otimes_{i=1}^{g} V\left(e_{2 i-1}\right) \otimes V\left(e_{2 i}\right) \otimes V\left(e_{2 i-1}\right)^{*} \otimes V\left(e_{2 i}\right)^{*}\right)$ is one-dimensional if $\prod_{i=1}^{g}\left[g_{2 i-1}, g_{2 i}\right]=1$, and zero-dimensional otherwise.

By using the linearity with respect to the vertex label, we can further restrict to simple colored graphs Γ. Thus, the representation space H has a spanning set S consisting of all simple colored graphs Γ with one vertex v and edges $e_{1}, \ldots, e_{2 g}$ corresponding to the standard generators of $\pi_{1}(M, v)$. Since there are only $|G|$ simple objects in $\operatorname{Vec}_{G}^{\omega}$ and at most $4 g$ choices of simple morphisms labeling the vertex for a fixed edge labelling, the spanning set S is finite.

The mapping class group of Σ is generated by the Lickorish generating set consisting of Dehn

Figure 3.1: Element of the spanning set S for a genus 2 surface

Figure 3.2: Simple closed curves for the Dehn twists in the Lickorish generating set for the mapping class group of a genus 3 closed surface. Reprinted from [2].
twists around $3 g-1$ simple closed curves. These can be divided into two types of twists: the ones around a single hole (the blue and green curves in Figure 3.2), and the ones connecting two holes (the red curves). The action of a Dehn twist around a simple closed curve corresponds to cutting the manifold along the curve, holding one piece in place and twisting the other piece by 2π radians in a clockwise direction, then gluing the two pieces back together.

To understand the action of each type of Dehn twist on the representation space H, we will consider the action on the spanning set S. First, we claim that we can apply local moves to any element of S to get a colored graph of the form shown in the first subfigure of Figure 3.3, where the unshown part of the fundamental polygon looks the same as in the definition of S. Indeed, to pass from an arbitrary element of S, to a colored graph of the form shown in the first subfigure of 3.3, we first add coevalution-labeled vertices to each edge intersecting the three shown sides of the
fundamental polygon. Then connect the new vertices using edges labeled by the trivial object (this corresponds to applying the second local move in Figure 1.2 with $k=0$), contract the connections to get one new vertex, and tensor together the edges connecting the old vertex to the new vertex.

The action of the first type of Dehn twist on an arbitrary element of S is shown in the first two subfigures of Figure 3.3. After applying the Dehn twist, we have the simple colored graph shown in the second subfigure of Figure 3.3. We then apply local moves in the remaining subfigures. For example, to go from the second subfigure to the third, we first apply the third local move of Figure 1.2 to add a coev-labeled vertex to the top left g-labeled edge. We then apply the second local move (tensoring edges) with the number of parallel edges $k=0$ to add an edge labeled by the trivial object between the new vertex and the old one. To go from the third to the fourth subfigure, we apply the edge contraction local move on the new edge. Lastly, we get to the fifth subfigure by applying the tensoring edges local move again (strictly speaking, this is not a valid move since it does not take place on a disk, but one can easily add a coev-labeled vertex to each of the two parallel edges, connect them, contract the connection, tensor together each of the two pairs of parallel edges, and contract one of the resulting edges to get the same result). By repeated application of Proposition 3.1, the resulting colored graph is equivalent to $\beta \Delta$, for some $\beta \in \mu_{|G|}$ and $\Delta \in S$. Thus, the first type of Dehn twist maps S to $\mu_{|G|} S$.

An analogous proof works for the second type of Dehn twist shown in Figure 3.4. Thus, the image of any such mapping class group representation is a quotient of the group of permutations of the finite set $\mu_{|G|} S$, hence finite.

Remark 3.1. When $\omega=1$ and Σ is closed, this representation is a permutation representation.
Proof. Under the assumption that the representation in [14] coincides with ours, this fact follows from Theorem 2.6 in [14], but we can also prove it directly. We first note that G acts on S by simultaneous conjugation of all edge labels by a single element $g \in G$. If $s \in S$ and $g \in G$, then we can retrieve s from $g s$ by separating two oppositely oriented, g-labeled edges from each edge in the embedded graph $g s$. This results in a loop labeled by g, whose evaluation is 1 . Thus $g s$ is

Figure 3.3: Using local moves to calculate the action of the first type of Dehn twist on an arbitrary element of the spanning set S. Read from left to right, then top to bottom. Unlabeled interior edges are colored by the group identity element. The Dehn twist is performed along the dashed simple closed curve. The first two subfigures show the action of the Dehn twist. The last three show the local moves relating the image of the Dehn twist to another element of S.
equivalent to s. Moreover, the cardinality $|S / G|=\left|\operatorname{Hom}\left(\pi_{1}(M), G\right)\right| /|G|$ is equal to the dimension of the untwisted Dijkgraaf-Witten representation space H [9]. Hence, S / G is a basis for H. The mapping class group action on S commutes with the G-action, so the mapping class group permutes S / G, i.e. H is a permutation representation.

3.2 Boundary Case

When Σ has boundary, we denote by $\operatorname{MCG}(\Sigma)$ the group of isotopy classes of homeomorphisms fixing the boundary of Σ setwise. Given any labelling of the boundary by objects in the Drinfeld center, $l: \pi_{0}(\partial M) \rightarrow \operatorname{Obj}\left(Z\left(\operatorname{Vec}_{G}^{\omega}\right)\right)$, we get a mapping class group representation. The representation space is $H(\Sigma, \mathbf{V})$ with boundary condition $\mathbf{V}=F \circ l$, where F is the forgetful functor $F: Z\left(\operatorname{Vec}_{G}^{\omega}\right) \rightarrow \operatorname{Vec}_{G}^{\omega}$. The same local relations are valid in this representation space [1].

Figure 3.4: Using local moves to calculate the action of the second type of Dehn twist on an arbitrary element of the spanning set S. Read from left to right, then top to bottom. The Dehn twist is performed along the dashed simple closed curve. The first two subfigures show application of local moves prior to the Dehn twist action. The third shows the action of the twist. The last three show the local moves relating the image of the Dehn twist to another element of S.

By a similar argument as in the proof of the Theorem 3.1, any such representation space has a finite spanning set S consisting of all simple colored graphs with a single vertex, loops for each of the usual generators of the fundamental group of Σ, and a leg from the vertex to each of the boundary components.

Let N denote the closed surface obtained by filling in all the boundary components of Σ with disks. The mapping class group $\operatorname{MCG}(\Sigma)$ is generated by the same Dehn twists as $\operatorname{MCG}(N)$, as well as braids interchanging boundary components and mapping classes corresponding to dragging a boundary component along a representative of a standard generator of $\pi_{1}(N)$ [17]. As in the proof of Theorem 3.1, applying any of these generators of $\operatorname{MCG}(\Sigma)$ to a colored graph in S yields an element in $\mu_{|G|} S$ (see Figures 3.5 and 3.6). Since the braid group is also generated by such braids, we have the following theorem.

Theorem 3.2. The image of any twisted Dijkgraaf-Witten representation of a mapping class group of an orientable, compact surface with boundary is finite. In particular, the image of any such braid group representation is finite.

Figure 3.5: Using local moves to calculate the action of a braid generator on an arbitrary element of the spanning set S. Read from left to right, then top to bottom. Unlabeled interior edges are colored by the group identity element. The first two subfigures show application of the braid generator, which interchanges the univalent vertices. The last four show the local moves relating the image to another element of S.

Figure 3.6: Using local moves to calculate the action of the last Birman generator on an arbitrary element of the spanning set S. This generator corresponds to pulling a boundary component of the surface Σ along a generator for the fundamental group of the closed surface given by filling in all boundary components of Σ. Read from left to right, then top to bottom. Unlabeled interior edges are colored by the group identity element. The first two figures show application of the Birman generator. The last eight show the local moves relating the image to another element of S.

4. SUMMARY AND OUTLOOK

We have proved that every twisted Dijkgraaf-Witten representation of a mapping class group of a compact, orientable surface has finite image. This is a generalization of the results of [7] and [14], as well as another step towards the (modified) Property F conjecture. A potential next step would be to consider more complicated spherical categories than $\operatorname{Vec}_{G}^{\omega}$. One candidate is the class of Tambara-Yamagami categories [18]. The main additional complication here is the appearance of multifusion channels, i.e. the tensor product of two simple objects can be a direct sum of multiple simple objects.

REFERENCES

[1] A. Kirillov Jr, "String-net model of turaev-viro invariants," arXiv preprint arXiv:1106.6033, 2011.
[2] Wikipedia contributors, "Dehn twist — Wikipedia, the free encyclopedia," 2018. [Online; accessed 11-July-2018].
[3] N. Reshetikhin and V. G. Turaev, "Invariants of 3-manifolds via link polynomials and quantum groups," Inventiones mathematicae, vol. 103, no. 1, pp. 547-597, 1991.
[4] J. Barrett and B. Westbury, "Invariants of piecewise-linear 3-manifolds," Transactions of the American Mathematical Society, vol. 348, no. 10, pp. 3997-4022, 1996.
[5] V. G. Turaev and O. Y. Viro, "State sum invariants of 3-manifolds and quantum 6j-symbols," Topology, vol. 31, no. 4, pp. 865-902, 1992.
[6] P. I. Etingof, S. Gelaki, D. Nikshych, and V. Ostrik, Tensor categories, vol. 205. American Mathematical Society Providence, RI, 2015.
[7] P. Etingof, E. Rowell, and S. Witherspoon, "Braid group representations from twisted quantum doubles of finite groups," Pacific journal of mathematics, vol. 234, no. 1, pp. 33-41, 2008.
[8] D. Naidu and E. C. Rowell, "A finiteness property for braided fusion categories," Algebras and representation theory, vol. 14, no. 5, pp. 837-855, 2011.
[9] R. Dijkgraaf and E. Witten, "Topological gauge theories and group cohomology," Communications in Mathematical Physics, vol. 129, no. 2, pp. 393-429, 1990.
[10] S.-H. Ng and P. Schauenburg, "Frobenius-schur indicators and exponents of spherical categories," Advances in Mathematics, vol. 211, no. 1, pp. 34-71, 2007.
[11] B. Bakalov and A. A. Kirillov, Lectures on tensor categories and modular functors, vol. 21. American Mathematical Soc., 2001.
[12] S.-H. Ng and P. Schauenburg, "Higher frobenius-schur indicators for pivotal categories," Hopf algebras and generalizations, vol. 441, pp. 63-90, 2007.
[13] S.-H. Ng and P. Schauenburg, "Congruence subgroups and generalized frobenius-schur indicators," Communications in Mathematical Physics, vol. 300, no. 1, pp. 1-46, 2010.
[14] J. Fjelstad and J. Fuchs, "Mapping class group representations from drinfeld doubles of finite groups," arXiv preprint arXiv:1506.03263, 2015.
[15] V. Lyubashenko, "Ribbon abelian categories as modular categories," Journal of Knot Theory and Its Ramifications, vol. 5, no. 03, pp. 311-403, 1996.
[16] P. Bantay, "Algebraic aspects of orbifold models," International Journal of Modern Physics A, vol. 9, no. 09, pp. 1443-1456, 1994.
[17] J. S. Birman, "Mapping class groups and their relationship to braid groups," Communications on Pure and Applied Mathematics, vol. 22, no. 2, pp. 213-238, 1969.
[18] D. Tambara and S. Yamagami, "Tensor categories with fusion rules of self-duality for finite abelian groups," Journal of Algebra, vol. 209, no. 2, pp. 692-707, 1998.
[19] P. P. Gustafson, "Finiteness for mapping class group representations from twisted dijkgraafwitten theory," Journal of Knot Theory and Its Ramifications, vol. 27, no. 06, p. 1850043, 2018.

[^0]: * Part of this chapter is reprinted with permission from "Finiteness for mapping class group representations from twisted dijkgraaf-witten theory," P. P. Gustafson, Journal of Knot Theory and Its Ramifications, vol. 27, no. 06, p. 1850043, Copyright 2018 by World Scientific Publishing Company.

[^1]: * Reprinted with permission from "Finiteness for mapping class group representations from twisted dijkgraafwitten theory," P. P. Gustafson, Journal of Knot Theory and Its Ramifications, vol. 27, no. 06, p. 1850043, Copyright 2018 by World Scientific Publishing Company.

[^2]: * Reprinted with permission from "Finiteness for mapping class group representations from twisted dijkgraafwitten theory," P. P. Gustafson, Journal of Knot Theory and Its Ramifications, vol. 27, no. 06, p. 1850043, Copyright 2018 by World Scientific Publishing Company.

