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ABSTRACT

This thesis solves the following question posed by Etingof, Rowell, and Witherspoon: Are the

images of mapping class group representations associated to the the modular category Mod−Dω(G)

always finite? We answer this question in the affirmative, generalizing their work in the braid group

case.

Our approach is to translate the problem into manipulation of colored graphs embedded in the

given surface as defined by Kirillov. To do this translation, we use the fact that any such repre-

sentation associated to a finite group G and 3-cocycle ω is isomorphic to a Turaev-Viro-Barrett-

Westbury (TVBW) representation associated to the spherical fusion category Vecω
G of twisted G-

graded vector spaces. As shown by Kirillov, the representation space for this TVBW representation

is canonically isomorphic to a vector space spanned by Vecω
G-colored graphs embedded in the sur-

face. By analyzing the action of the Birman generators on a finite spanning set of colored graphs,

we find that the mapping class group acts by permutations on a slightly larger finite spanning set.

This implies that the representation has finite image.

ii



ACKNOWLEDGMENTS

This thesis would not have been written without the guidance of my advisor, Eric Rowell. I am

also grateful to Zhenghan Wang and my father Robert Gustafson for their advice.

I would also like to thank the Texas A&M University Office of Graduate and Professional

Studies and Sean Roberson for the LATEX thesis template used to construct this document.

iii



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professors Eric Rowell,

Paulo Lima-Filho, and Sarah Witherspoon of the Department of Mathematics and Professor An-

dreas Klappenecker of the Department of Computer Science and Engineering.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by a fellowship from Texas A&M University and partially sup-

ported by NSF grant DMS-1410144.

iv



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Topological quantum computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Topological quantum field theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Spherical fusion categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 The Property F conjecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Twisted Dijkgraaf-Witten theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1 The spherical fusion category Vecω

G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Colored graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Strictification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2. RELATED WORK.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3. RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 No Boundary Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Boundary Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4. SUMMARY AND OUTLOOK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

v



LIST OF FIGURES

FIGURE Page

1.1 String diagram notation for the image of the morphism ϕ under the functorial iso-
morphism z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Local relations for colored graphs. Reprinted from [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Linearity of ⟨Γ⟩. Here φ1,φ2 are compositions of φ with projector X1 ⊕X2 → X1
(respectively, X1 ⊕X2 → X2), and similarly for ψ1,ψ2. Reprinted from [1]. . . . . . . . . . . 9

3.1 Element of the spanning set S for a genus 2 surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Simple closed curves for the Dehn twists in the Lickorish generating set for the
mapping class group of a genus 3 closed surface. Reprinted from [2].. . . . . . . . . . . . . . . . . 17

3.3 Using local moves to calculate the action of the first type of Dehn twist on an
arbitrary element of the spanning set S. Read from left to right, then top to bottom.
Unlabeled interior edges are colored by the group identity element. The Dehn twist
is performed along the dashed simple closed curve. The first two subfigures show
the action of the Dehn twist. The last three show the local moves relating the image
of the Dehn twist to another element of S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Using local moves to calculate the action of the second type of Dehn twist on an
arbitrary element of the spanning set S. Read from left to right, then top to bottom.
The Dehn twist is performed along the dashed simple closed curve. The first two
subfigures show application of local moves prior to the Dehn twist action. The
third shows the action of the twist. The last three show the local moves relating the
image of the Dehn twist to another element of S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Using local moves to calculate the action of a braid generator on an arbitrary ele-
ment of the spanning set S. Read from left to right, then top to bottom. Unlabeled
interior edges are colored by the group identity element. The first two subfigures
show application of the braid generator, which interchanges the univalent vertices.
The last four show the local moves relating the image to another element of S. . . . . . . . 22

vi



3.6 Using local moves to calculate the action of the last Birman generator on an ar-
bitrary element of the spanning set S. This generator corresponds to pulling a
boundary component of the surface Σ along a generator for the fundamental group
of the closed surface given by filling in all boundary components of Σ. Read from
left to right, then top to bottom. Unlabeled interior edges are colored by the group
identity element. The first two figures show application of the Birman generator.
The last eight show the local moves relating the image to another element of S. . . . . . . 23

vii



1. INTRODUCTION*

1.1 Topological quantum computation

Topological quantum computation refers to a variety of proposals for building a quantum com-

puter using topological phases of matter. In the usual setup, one creates n quasiparticle excitations

(anyons) in a 2-dimensional disk. Physically braiding quasiparticle excitations corresponds to a

projective unitary action of the braid group Bn on the Hilbert space of possible states of the system.

These braid group representations are completely determined by the anyon types of the n quasi-

particles. The images of the standard braid group generators in such a representation form the gate

set for a quantum computer.

More generally, we consider a system of quasiparticle excitations on a closed surface of arbi-

trary genus. In this case, there may be nontrivial self-homeomorphisms of the underlying surface

in addition to motions of the quasiparticle excitions on the surface. Both types of actions corre-

spond to elements of the mapping class group of a compact surface with boundary, where a labeled

boundary component replaces each quasiparticle excitation. The aforementioned braid group ex-

ample corresponds to the mapping class group of a disk with n open disks removed, holding the

outer, vacuum-labeled boundary fixed.

1.1.1 Topological quantum field theories

The relevant dynamics of proposed topological phases of matter are governed by topological

quantum field theories (TQFTs). The theories we consider in this paper are (2+ 1)-dimensional

(two spatial dimensions and one time dimension). A (2+1)-dimensional topological quantum field

theory assigns a vector space to every oriented closed surface and a (possibly projective) linear

map to every 3-manifold with boundary in a compatible way. In particular, if a 3-manifold M has

* Part of this chapter is reprinted with permission from “Finiteness for mapping class group representations from
twisted dijkgraaf–witten theory,” P. P. Gustafson, Journal of Knot Theory and Its Ramifications, vol. 27, no. 06, p.
1850043, Copyright 2018 by World Scientific Publishing Company.
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boundary ∂M = N1 ⊔N2, then a TQFT F defines a (projective) operator F(M) : F(N1)→ F(N2).

Specializing to the case where N :=N1 =N2, a TQFT defines a representation of the mapping class

group of N. We will consider TQFTs extending to 1-manifolds, so we get mapping class group

representations of oriented compact surfaces with boundary.

A common way of constructing TQFTs is by labelling geometric data (e.g. simplices of a trian-

gulation, or framed links) by data from a sufficiently nice tensor category. Two such constructions

are the Reshitikhin-Turaev [3] and the Turaev-Viro-Barrett-Westbury [4, 5] constructions.

More concretely, given a spherical fusion category A (to be defined in the next subsection)

and an oriented compact surface Σ, possibly with boundary, the Turaev-Viro-Barrett-Westbury

(TVBW) construction gives a projective representation of the mapping class group MCG(Σ) [4, 5].

A natural problem motivated by topological quantum computation is to determine the images of

such representations. In particular, we would like to know when such a representation has a finite

image.

1.1.2 Spherical fusion categories

The theory of fusion categories captures much of the algebraic structure of topological phases

of matter. A fusion category is a rigid semisimple linear monoidal category with only finitely

many isomorphism classes of simple objects such that the monoidal unit is simple [6]. Each iso-

morphism class of simple objects corresponds to an anyon type. A spherical fusion category is a

fusion category equipped with a pivotal structure satisfying the spherical property [6], a technical

requirement guaranteeing the uniqueness of the categorical trace.

1.1.3 The Property F conjecture

A fusion category is said to be weakly integral if the square of its Frobenius-Perron dimension

is an integer. It is conjectured that any TVBW mapping class group representation associated to a

spherical fusion category A has finite image if and only if A is weakly integral. This conjecture

is a modification of the Property F conjecture [7, 8], which states that braid group representations

2



coming from a braided fusion category C should have finite image if and only if C is weakly

integral. Instead of only considering braid group representations, one can consider mapping class

groups of arbitrary orientable surfaces. In this case, the input categories to construct the represen-

tations must be more specialized than just braided fusion. One can either apply the Reshitikhin-

Turaev construction to a modular tensor category, or apply the TVBW construction to a spherical

fusion category. The former is more general than the latter since the Reshitikhin-Turaev construc-

tion for the Drinfeld center Z(A ) of a spherical fusion category A yields the same representation

as the TVBW construction for A . However, for the case considered in this paper, the simpler

TVBW construction suffices.

1.2 Twisted Dijkgraaf-Witten theory

In this paper, our input category is A = Vecω
G , the spherical fusion category of G-graded vector

spaces with associativity modified by a cocycle ω ∈ Z3(G,k×). In this case, the TVBW construc-

tion corresponds to both twisted Dijkgraaf-Witten theory [9] and the Reshitikhin-Turaev construc-

tion [3] applied to Mod−Dω(G)∼= Z(Vecω
G). The category Vecω

G is integral, so the one expects its

associated mapping class group representations to have finite image. The main contribution of this

paper is to verify this for arbitrary G and ω .

1.2.1 The spherical fusion category Vecω
G

The following definitions are well-known and can be found in, e.g., [6]. Let k be an alge-

braically closed field of characteristic 0, G a finite group, and ω ∈ Z3(G,k×) a 3-cocycle. The

spherical fusion category of G-graded k-vector spaces with associativity defined by ω is denoted

Vecω
G . The objects of this category are vector spaces with a decomposition V =

⊕
g∈GVg. Mor-

phisms are linear maps preserving the grading. The tensor product is defined by

(V ⊗W )g =
⊕

x,y∈G,xy=g

Vx ⊗Wy.

3



For each g ∈ G, pick a 1-dimensional vector space δg ∈ Obj(Vecω
G) concentrated in degree

g. The set {δg : g ∈ G} is a complete set of pairwise non-isomorphic representatives for the iso-

morphism classes of simple objects of Vecω
G . We will sometimes abuse notation by referring to

an object δg by the group element g. We have 1 ∼= δ1, and δ ∗
g := δg−1 with the coevaluation and

evaluation maps defined below.

For the structural morphisms, we follow [10]. We will treat the canonical isomorphisms δg ⊗

δh
∼= δgh as identities. The associator αg,h,k : (δg ⊗δh)⊗δk → δg ⊗ (δh ⊗δk) is defined by

αg,h,k = ω(g,h,k) idghk .

The evaluation evg : δ ∗
g ⊗δg → 1 is

evg = ω(g−1,g,g−1) id1 .

The coevaluation coevg : 1 → δg ⊗δ ∗
g is

coevg = id1 .

The pivotal structure jg : δg → δ ∗∗
g is

jg = ω(g−1,g,g−1) idg .

If ω and ω ′ are cohomologous cocycles, then Vecω
G is monoidally equivalent to Vecω ′

G [6]. This

equivalence respects the pivotal structure, so extends to an equivalence of spherical fusion cate-

gories. It is a basic result in group cohomology that any cocycle ω ∈ Z3(G,k×) is cohomologous

to a cocycle taking values in µ|G|, the roots of unity of order |G|. Thus, by replacing Vecω
G with an

equivalent spherical fusion category, we assume without loss of generality that Im(ω) ⊂ µ|G| (as

4



in [7]).

1.2.2 Colored graphs

The following definitions and theorem are due to Kirillov [1], and recorded here for conve-

nience. For any strict pivotal spherical fusion category A and surface Σ, Kirillov gives the fol-

lowing presentation of the Levin-Wen model as a vector space of colored graphs modulo local

relations. He also proves that this space is canonically isomorphic to the TVBW vector space as-

sociated to Σ. It is straightforward to check that this isomorphism, which amounts to replacing a

triangulation with its dual graph, commutes with the mapping class group action.

We define the functor ⟨·⟩ : A ⊠n → Vec from the n-fold Deligne product A ⊠n by

⟨V1, . . . ,Vn⟩= HomA (1,V1 ⊗·· ·⊗Vn) (1.1)

for any collection V1, . . . ,Vn of objects of A . Note that pivotal structure gives functorial isomor-

phisms (see Figure 1.1)

z : ⟨V1, . . . ,Vn⟩ ∼= ⟨Vn,V1, . . . ,Vn−1⟩ (1.2)

where, given ϕ ∈ HomA (1,V1 ⊗·· ·⊗Vn),

z(ϕ) = (idVn⊗V1⊗···⊗Vn−1 ⊗evV ∗
n )◦ (idVn ⊗ϕ ⊗ idV ∗

n )◦ coevV ∗
n

and zn = id (see [11, Section 5.3]).

Thus, up to a canonical isomorphism, the space ⟨V1, . . . ,Vn⟩ only depends on the cyclic order

of V1, . . . ,Vn.

We have a natural composition map

⟨V1, . . . ,Vn,X⟩⊗⟨X∗,W1, . . . ,Wm⟩ → ⟨V1, . . . ,Vn,W1, . . . ,Wm⟩

φ ⊗ψ 7→ φ ◦
X

ψ = (idV1⊗···⊗Vn ⊗evX∗⊗ idW1⊗···⊗Wm)◦ (φ ⊗ψ).
(1.3)
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Figure 1.1: String diagram notation for the image of the morphism ϕ under the functorial isomor-
phism z

We will consider finite graphs embedded in an oriented surface Σ (which may have boundary);

for such a graph Γ, let E(Γ) be the set of edges. Note that edges are not oriented. Let Eor be the

set of oriented edges, i.e. pairs e = (e,orientation of e); for such an oriented edge e, we denote by

ē the edge with opposite orientation.

If Σ has a boundary, the graph is allowed to have uncolored one-valent vertices on ∂Σ but no

other common points with ∂Σ; all other vertices will be called interior. We will call the edges of Γ

terminating at these one-valent vertices legs.

Definition 1.1. Let Σ be an oriented surface (possibly with boundary) and Γ ⊂ Σ — an embedded

graph as defined above. A coloring of Γ is the following data:

• Choice of an object V (e) ∈ ObjA for every oriented edge e ∈ Eor(Γ) so that V (e) =V (e)∗,

where e is the edge with opposite orientation.

• Choice of a vector φ(v) ∈ ⟨V (e1), . . . ,V (en)⟩ (see (1.1)) for every interior vertex v, where

6



e1, . . . ,en are edges incident to v, taken in counterclockwise order and with outward orienta-

tion.

An isomorphism f of two colorings {V (e),φ(v)}, {V ′(e),φ ′(v)} is a collection of isomor-

phisms fe : V (e) ∼= V ′(e) which agree with the identifications V (e) = V (e)∗ and which identify

φ ′,φ: φ ′(v) = f ◦φ(v).

We will denote the set of all colored graphs on a surface Σ by Graph(Σ).

Note that if Σ has a boundary, then every colored graph Γ defines a collection of points B =

{b1, . . . ,bn} ⊂ ∂Σ (the endpoints of the legs of Γ) and a collection of objects Vb ∈ Obj A for every

b ∈ B: the colors of the legs of Γ taken with outgoing orientation. We will denote the pair (B,{Vb})

by V = Γ∩∂Σ and call it boundary value. We will denote

Graph(Σ,V) = set of all colored graphs in Σ with boundary value V.

We can also consider formal linear combinations of colored graphs. Namely, for fixed boundary

value V as above, we will denote

VGraph(Σ,V) = {formal linear combinations of graphs Γ ∈ Graph(Σ,V)}

In particular, if ∂Σ =∅, then the only possible boundary condition is trivial (B =∅); in this case,

we will just write VGraph(Σ).

The following theorem is a variation of result of Reshitikhin and Turaev.

Theorem 1.1. There is a unique way to assign to every colored planar graph Γ in a disk D ⊂ R2

a vector

⟨Γ⟩D ∈ ⟨V (e1), . . . ,V (en)⟩

where e1, . . . ,en are the edges of Γ meeting the boundary of D (legs), taken in counterclockwise

order and with outgoing orientation, so that that following conditions are satisfied:

7



1. ⟨Γ⟩ only depends on the isotopy class of Γ.

2. If Γ is a single vertex colored by φ ∈ ⟨V (e1), . . . ,V (en)⟩, then ⟨Γ⟩= φ .

3. Local relations shown in Figure 1.2 hold.

ψ φ...
...

Vn

V1 Wm

W1

X
= ψ ◦

X
φ...

...

Vn

V1 Wm

W1

...
...

An

A1 Bm

B1

Vk

V1

=
...

...

An

A1 Bm

B1

V1 ⊗·· ·⊗Vk k ≥ 0

coev
V V ∗

=
V

Figure 1.2: Local relations for colored graphs. Reprinted from [1].

Local relations should be understood as follows: for any pair Γ,Γ′ of colored graphs which

are identical outside a subdisk D′ ⊂ D, and in this disk are homeomorphic to the graphs

shown in Figure 1.2, we must have ⟨Γ⟩= ⟨Γ′⟩.

Moreover, so defined ⟨Γ⟩ satisfies the following properties:

1. ⟨Γ⟩ is linear in color of each vertex v (for fixed colors of edges and other vertices).

2. ⟨Γ⟩ is additive in colors of edges as shown in Figure 1.3.

3. If Γ,Γ′ are two isomorphic colorings of the same graph, then ⟨Γ⟩= ⟨Γ′⟩.
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φ ψ...
...

Vn

V1 Wm

W1

X1 ⊕X2
= φ1 ψ1

...
...

Vn

V1 Wm

W1

X1
+ φ2 ψ2

...
...

Vn

V1 Wm

W1

X2

Figure 1.3: Linearity of ⟨Γ⟩. Here φ1,φ2 are compositions of φ with projector X1 ⊕X2 → X1
(respectively, X1 ⊕X2 → X2), and similarly for ψ1,ψ2. Reprinted from [1].

4. Composition property: if D′ ⊂ D is a subdisk such that ∂D′ does not contain vertices of Γ

and meets edges of Γ transversally, then ⟨Γ⟩D will not change if we replace subgraph Γ∩D′

by a single vertex colored by ⟨Γ∩D′⟩D′ .

The vector ⟨Γ⟩ is called the evaluation of Γ.

To define local relations between embedded graphs, Kirillov defines the space of null graphs as

follows. Let Γ = c1Γ1 + · · ·+ cnΓn be a formal linear combination of colored graphs in Σ. If there

exists an embedded disk D ⊂ M such that

1. Γ is transversal to ∂D (i.e., no vertices of Γi are on the boundary of D and edges of each Γi

meet ∂D transversally),

2. all Γi coincide outside of D,

3. and ⟨Γ⟩D = ∑ci⟨Γi ∩D⟩D = 0;

then Γ is called a null graph.

Definition 1.2. The vector space H := H(Σ,V) associated to an oriented surface Σ with boundary

condition V by the spherical fusion category A is the quotient space

H(Σ,V) = VGraph(Σ,V)/N(Σ,V)

where N(Σ,V) is the subspace spanned by null graphs (for all possible embedded disks D ⊂ Σ).
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1.2.3 Strictification

The colored graph construction takes a strict pivotal category as input, so we must strictify

Vecω
G to get an equivalent strict pivotal monoidal V̂ecω

G . Every pivotal category is equivalent to

a strict pivotal monoidal category by first strictifying with respect to the monoidal structure, and

then strictifying with respect to the pivotal structure as follows [12].

Given a monoidal category C , there exists a monoidally equivalent strict monoidal category C ′

with objects consisting of all finite lists of objects of C and morphisms defined by

HomC ′([A1, . . . ,An], [B1, . . . ,Bm]) =

HomC (((· · ·((A1 ⊗A2)⊗A3)⊗·· ·⊗An,((· · ·((B1 ⊗B2)⊗B3)⊗·· ·⊗Bm).

The tensor product in C ′ is concatenation of lists. The strictification functor applies the obvious

unique composition of associators to both objects and morphisms of C , and the coherence map

does the same. If C is pivotal, this monoidal equivalence extends to an equivalence of pivotal

monoidal categories (where the pivotal structure on C ′ is given by applying the strictification

functor to the pivotal structure of C ).

Given a pivotal strict monoidal category C ′, there is a strict pivotal monoidal category Ĉ equiv-

alent, as a pivotal monoidal category, to C ′. The objects of Ĉ are pairs (X ,ε) for which there exists

r ∈ N0 such that X ∈ C r and ε ∈ Zr
2. The morphisms are

Hom
Ĉ
((X ,ε),(Y,ε)) = HomC ′(Xε1

1 ⊗·· ·⊗Xεr
r ,Y ε1

1 ⊗·· ·⊗Y εs
s ),

where Xε is defined by X0 = X and X1 = X∗. The tensor product is given by concatenation. The

duality functor on Ĉ is given by

(X ,ε)∗ = ((Xr, . . . ,X1),(εr +1, . . . ,ε1 +1)).

10



The evaluation function ev(X ,ε) on Ĉ is inductively defined using tensor products of identities,

jXi’s, and evaluation maps evXi in C ′, and similarly for coevaluation. This strictification functor

maps X ∈C ′ to (X ,0) and acts on morphisms as the identity. The coherence maps are also identity

maps.

Slightly abusing notation, we will sometimes use the same symbol for both X ∈ C and its

images in C ′ and Ĉ under the strictification functors.
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2. RELATED WORK*

The closest related work is a result of Etingof, Rowell, and Witherspoon who showed purely

algebraically that the braid group representations associated to the modular category Mod(Dω(G))

have finite images [7]. The braid group Bn is the mapping class group of a disk with n marked

points relative to its boundary, so they asked whether their result generalizes to arbitrary map-

ping class group representations associated to Mod(Dω(G)). This paper answers their question

affirmatively, using a different, more geometric approach.

Prior to the current work, certain specific cases had already been solved. In the case of the torus,

Ng and Schauenburg’s Congruence Subgroup Theorem implies the much stronger result that any

Reshitikhin-Turaev representation of the mapping class group of the torus has finite image [13].

Another related result is due to Fjelstad and Fuchs [14]. They showed that, given a surface with

at most one boundary component, the mapping class group representations corresponding to the

untwisted (i.e. ω = 1) Dijkgraaf-Witten theory have finite image. Their paper uses an algebraic

method of Lyubashenko [15] that gives a projective mapping class group representation to any

factorizable ribbon Hopf algebra, in their case, the double D(G). In our case, we instead consider

the mapping class group action on a vector space of Vecω
G-colored embedded graphs defined by

Kirillov [1], yielding a simpler, geometric proof of the more general twisted case.

Bantay also calculated the images of certain representations of mapping class groups on the

Hilbert space of an orbifold model associated to Dω(G) [16]. These representations appear to

coincide with the twisted Dijkgraaf-Witten representations. However, due to lack of proof, the

precise connection is unclear.

* Reprinted with permission from “Finiteness for mapping class group representations from twisted dijkgraaf–
witten theory,” P. P. Gustafson, Journal of Knot Theory and Its Ramifications, vol. 27, no. 06, p. 1850043, Copyright
2018 by World Scientific Publishing Company.
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3. RESULTS*

To show that the image of any Vecω
G mapping class group representation is finite, we will

analyze the action of the mapping class group on a finite collection of colored graphs that span

the representation space H. To define this spanning set, we will need the following definitions of

simple morphisms and colored graphs.

Definition 3.1. Let g1, . . . ,gn ∈ G and ε1, . . . ,εn ∈ {±1}= Z2. A morphism

ϕ ∈ ⟨(δg1,ε1), . . . ,(δgn,εn)⟩= Hom
V̂ecω

G
(1,(δg1,ε1)⊗·· ·⊗ (δgn,εn))

= HomVecω
G
(1,((· · ·((δgε1

1
⊗δgε2

2
)⊗·· ·⊗δgεn

n
)

will be called simple if it is the composition of the isomorphism 1 ∼= δ1 and tensor product isomor-

phisms of the form δgh
∼= δg ⊗δh in Vecω

G .

By MacLane’s coherence theorem applied to the Vecω
G Hom-space, there is a unique simple

morphism in ⟨(δg1,ε1), . . . ,(δgn,εn)⟩ whenever ∏n
i=1 gi = 1. This simple morphism is a canonical

basis element for the 1-dimensional space ⟨(δg1,ε1), . . . ,(δgn,εn)⟩. We will describe a map between

such spaces as multiplication by a scalar, where the scalar is the matrix coefficient of the map with

respect to these canonical bases.

Definition 3.2. Let Γ be a graph embedded in a surface Σ. A V̂ecω
G-coloring (V,ϕ) of Γ will be

called simple if the following conditions both hold:

1. For every oriented edge e∈Eor(Γ), there exists a group element g(e)∈G and ε(e)∈{±1}=

Z2 such that the coloring V (e) = (δg(e),ε(e)).

* Reprinted with permission from “Finiteness for mapping class group representations from twisted dijkgraaf–
witten theory,” P. P. Gustafson, Journal of Knot Theory and Its Ramifications, vol. 27, no. 06, p. 1850043, Copyright
2018 by World Scientific Publishing Company.
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2. If v is an interior vertex of Γ, then there exists an enumeration e1, . . . ,en of the edges incident

to v, taken in counterclockwise order and with outward orientation, such that ∏n
i=1 g(ei)

ε(ei)=

1 and the vertex label ϕ(v) ∈ ⟨g(e1), . . . ,g(en)⟩ is a simple morphism.

Lemma 3.1. Let ϕ ∈ ⟨(g1,ε1), . . . ,(gn,εn)⟩ and ψ ∈ ⟨(gn,εn),(g1,ε1), . . . ,(gn−1,εn−1)⟩ be simple

morphisms. Then z(ϕ) = αψ , where α ∈ µ|G|.

Proof. The definition of the z-morphism in Equation 1.2 only involves tensors and compositions

of structural morphisms of V̂ecω
G , which are equal to tensors and compositions of identities, asso-

ciators, unitors, the pivotal j-morphism, evaluation, and coevaluation morphisms in Vecω
G on the

corresponding objects. Since all the tensor factors in the codomain of ϕ are of the form (δg,ε)

for some g ∈ G and ε ∈ Z2, the definition of Vecω
G implies that each of the structural morphisms

simply consist of multiplication by elements of the form ω(g,h,k) for some g,h,k ∈ G. Thus,

z(ϕ) = αψ for some α which is a product of elements in Im(ω). Since Im(ω) ⊂ µ|G|, it follows

that α ∈ µ|G|.

Proposition 3.1. Let Γ be a simple colored graph embedded in a surface Σ. Let ∆ be the colored

graph given by applying one of the three local moves in Figure 1.2 to Γ. Then there exists α ∈ µ|G|

such that

∆−α∆′ ∈ N(Σ,V),

where ∆′ is a simple colored graph given by replacing each vertex label in ∆ with a simple mor-

phism and each edge label by a object of the form (δg,ε) for some g ∈ G and ε ∈ Z2.

Proof. We’ll consider each local move separately. In each case, we need to show that ∆ is equiva-

lent to α∆′ in H.

For the first (edge contraction) local move in Figure 1.2, using the same notation as in the figure,

the vertex label ψ ◦
X

ϕ in ∆ is given by the following composition in Vecω
G (recall that every V̂ecω

G

Hom-space is equal to a Vecω
G Hom-space). Since Γ is simple, there exist integers l,k and simple

14



morphisms ϕ ′,ψ ′ such that ψ = zl(ψ ′) and ϕ = zk(ϕ ′). Then we repeatedly apply associators and

the cyclic z-morphism of Equation 1.2 to ϕ and ψ until the tensor factors of the codomain are

rearranged in the order of the left hand side of Equation 1.3 and that X and X∗ are isolated (not

contained in any parentheses). After applying the evX morphism, we reassociate until the new

label φ ◦
X

ψ has the left-associated parenthesization. Since every edge is labeled by a (δg,ε) for

some g ∈ G and ε ∈ Z2), each associator morphism consists of multiplication by ω(g,h,k) for

some g,h,k ∈ G. Similarly, by Lemma 3.1, every z-morphism consists of multiplication by some

β ∈ µ|G|. Thus, the overall composition consists of multiplication by an element α ∈ µ|G|.

For the second local move (tensoring parallel edges), there are two cases: k = 0 and k > 0. In

the k = 0 case, we apply inverse unitors to each vertex label to introduce an edge labeled by the

unit object, followed by reassocation. In the k > 0 case, tensoring in V̂ecω
G corresponds to applying

associators and tensor product isomorphisms in Vecω
G Hom-spaces. Since every edge is labeled by

a simple object, it follows that the result of this local move is also of the desired form.

For the third local move (adding a coev-labeled vertex), the colored graph given by direct

application of the local move to a simple graph has an extra vertex labeled by coevδg in V̂ecω
G for

some g ∈ G, which is a simple morphism by definition.

3.1 No Boundary Case

We first prove our theorem in the easier case where the surface Σ is closed.

Theorem 3.1. The image of any twisted Dijkgraaf-Witten representation of a mapping class group

of an orientable, closed surface Σ is finite.

Proof. Let Γ be a V̂ecω
G-colored graph embedded in Σ, and let g ≥ 1 be the genus of Σ (if g = 0, the

mapping class group is trivial). Thinking of Σ as a quotient of its fundamental 4g-gon, by isotopy

we may assume that the vertices of Γ lie in the interior of the polygon, none of the edges of Γ

intersect the corners of the polygon, and that the edges of Γ only meet the sides of the polygon

transversally. Applying the evaluation map of Theorem 1.1 on the interior of the polygon shows
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that Γ is equivalent to a graph with a single vertex whose edges are simple closed curves, each

of which intersect the boundary of the polygon precisely once. By using the local relations, we

can replace all the edges intersecting a side with a single edge labeled by the tensor product of

their labels. If there are no edges intersecting a side, we can insert a single edge labeled by the

group identity into Γ that intersects only that side. Thus, Γ is equivalent to a colored graph with

one vertex v and edges e1, . . . ,e2g corresponding to the standard generators of π1(M,v) as shown

in Figure 3.1.

By Theorem 1.1 and the definition of the quotient map identifying the sides of the funda-

mental polygon, the vertex v is colored by an element ϕ(v) ∈ Hom(1,
⊗g

i=1V (e2i−1)⊗V (e2i)⊗

V (e2i−1)
∗⊗V (e2i)

∗), where V (ei) ∈ ObjV̂ecω
G is the coloring of the edge ei.

We claim that the representation space H is spanned by the set of such colored graphs Γ such

that each V (ei) is simple. This follows from the additivity of the evaluation map of Theorem 1.1 in

the direct sum. Strictly speaking, we can only take advantage of the additivity on a disk, not on an

edge ei, which is a v-based loop. However, we can easily add a coev-labeled vertex to any edge ei,

apply the additivity on one of the two resulting edges (which lies in an embedded disk), and then

contract on the other edge to get the decomposition we want.

Since isomorphic colorings give the same evaluation, it follows that H is spanned by colored

graphs Γ such that each V (ei) = δgi for some gi ∈ G. For such Γ, the space of possible v-colors

Hom(1,
⊗g

i=1V (e2i−1)⊗V (e2i)⊗V (e2i−1)
∗⊗V (e2i)

∗) is one-dimensional if ∏g
i=1[g2i−1,g2i] = 1,

and zero-dimensional otherwise.

By using the linearity with respect to the vertex label, we can further restrict to simple col-

ored graphs Γ. Thus, the representation space H has a spanning set S consisting of all simple

colored graphs Γ with one vertex v and edges e1, . . . ,e2g corresponding to the standard generators

of π1(M,v). Since there are only |G| simple objects in Vecω
G and at most 4g choices of simple

morphisms labeling the vertex for a fixed edge labelling, the spanning set S is finite.

The mapping class group of Σ is generated by the Lickorish generating set consisting of Dehn

16
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Figure 3.1: Element of the spanning set S for a genus 2 surface

Figure 3.2: Simple closed curves for the Dehn twists in the Lickorish generating set for the map-
ping class group of a genus 3 closed surface. Reprinted from [2].

twists around 3g−1 simple closed curves. These can be divided into two types of twists: the ones

around a single hole (the blue and green curves in Figure 3.2), and the ones connecting two holes

(the red curves). The action of a Dehn twist around a simple closed curve corresponds to cutting

the manifold along the curve, holding one piece in place and twisting the other piece by 2π radians

in a clockwise direction, then gluing the two pieces back together.

To understand the action of each type of Dehn twist on the representation space H, we will

consider the action on the spanning set S. First, we claim that we can apply local moves to any

element of S to get a colored graph of the form shown in the first subfigure of Figure 3.3, where

the unshown part of the fundamental polygon looks the same as in the definition of S. Indeed, to

pass from an arbitrary element of S, to a colored graph of the form shown in the first subfigure of

3.3, we first add coevalution-labeled vertices to each edge intersecting the three shown sides of the
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fundamental polygon. Then connect the new vertices using edges labeled by the trivial object (this

corresponds to applying the second local move in Figure 1.2 with k = 0), contract the connections

to get one new vertex, and tensor together the edges connecting the old vertex to the new vertex.

The action of the first type of Dehn twist on an arbitrary element of S is shown in the first two

subfigures of Figure 3.3. After applying the Dehn twist, we have the simple colored graph shown

in the second subfigure of Figure 3.3. We then apply local moves in the remaining subfigures.

For example, to go from the second subfigure to the third, we first apply the third local move of

Figure 1.2 to add a coev-labeled vertex to the top left g-labeled edge. We then apply the second

local move (tensoring edges) with the number of parallel edges k = 0 to add an edge labeled by

the trivial object between the new vertex and the old one. To go from the third to the fourth

subfigure, we apply the edge contraction local move on the new edge. Lastly, we get to the fifth

subfigure by applying the tensoring edges local move again (strictly speaking, this is not a valid

move since it does not take place on a disk, but one can easily add a coev-labeled vertex to each

of the two parallel edges, connect them, contract the connection, tensor together each of the two

pairs of parallel edges, and contract one of the resulting edges to get the same result). By repeated

application of Proposition 3.1, the resulting colored graph is equivalent to β∆, for some β ∈ µ|G|

and ∆ ∈ S. Thus, the first type of Dehn twist maps S to µ|G|S.

An analogous proof works for the second type of Dehn twist shown in Figure 3.4. Thus, the

image of any such mapping class group representation is a quotient of the group of permutations

of the finite set µ|G|S, hence finite.

Remark 3.1. When ω = 1 and Σ is closed, this representation is a permutation representation.

Proof. Under the assumption that the representation in [14] coincides with ours, this fact follows

from Theorem 2.6 in [14], but we can also prove it directly. We first note that G acts on S by

simultaneous conjugation of all edge labels by a single element g ∈ G. If s ∈ S and g ∈ G, then

we can retrieve s from gs by separating two oppositely oriented, g-labeled edges from each edge

in the embedded graph gs. This results in a loop labeled by g, whose evaluation is 1. Thus gs is
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Figure 3.3: Using local moves to calculate the action of the first type of Dehn twist on an arbitrary
element of the spanning set S. Read from left to right, then top to bottom. Unlabeled interior edges
are colored by the group identity element. The Dehn twist is performed along the dashed simple
closed curve. The first two subfigures show the action of the Dehn twist. The last three show the
local moves relating the image of the Dehn twist to another element of S.

equivalent to s. Moreover, the cardinality |S/G|= |Hom(π1(M),G)|/|G| is equal to the dimension

of the untwisted Dijkgraaf-Witten representation space H [9]. Hence, S/G is a basis for H. The

mapping class group action on S commutes with the G-action, so the mapping class group permutes

S/G, i.e. H is a permutation representation.

3.2 Boundary Case

When Σ has boundary, we denote by MCG(Σ) the group of isotopy classes of homeomor-

phisms fixing the boundary of Σ setwise. Given any labelling of the boundary by objects in the

Drinfeld center, l : π0(∂M)→ Obj(Z(Vecω
G)), we get a mapping class group representation. The

representation space is H(Σ,V) with boundary condition V= F ◦ l, where F is the forgetful functor

F : Z(Vecω
G)→ Vecω

G . The same local relations are valid in this representation space [1].
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Figure 3.4: Using local moves to calculate the action of the second type of Dehn twist on an
arbitrary element of the spanning set S. Read from left to right, then top to bottom. The Dehn twist
is performed along the dashed simple closed curve. The first two subfigures show application of
local moves prior to the Dehn twist action. The third shows the action of the twist. The last three
show the local moves relating the image of the Dehn twist to another element of S.
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By a similar argument as in the proof of the Theorem 3.1, any such representation space has

a finite spanning set S consisting of all simple colored graphs with a single vertex, loops for each

of the usual generators of the fundamental group of Σ, and a leg from the vertex to each of the

boundary components.

Let N denote the closed surface obtained by filling in all the boundary components of Σ with

disks. The mapping class group MCG(Σ) is generated by the same Dehn twists as MCG(N), as

well as braids interchanging boundary components and mapping classes corresponding to dragging

a boundary component along a representative of a standard generator of π1(N) [17]. As in the

proof of Theorem 3.1, applying any of these generators of MCG(Σ) to a colored graph in S yields

an element in µ|G|S (see Figures 3.5 and 3.6). Since the braid group is also generated by such

braids, we have the following theorem.

Theorem 3.2. The image of any twisted Dijkgraaf-Witten representation of a mapping class group

of an orientable, compact surface with boundary is finite. In particular, the image of any such

braid group representation is finite.
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Figure 3.5: Using local moves to calculate the action of a braid generator on an arbitrary element
of the spanning set S. Read from left to right, then top to bottom. Unlabeled interior edges are
colored by the group identity element. The first two subfigures show application of the braid
generator, which interchanges the univalent vertices. The last four show the local moves relating
the image to another element of S.
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Figure 3.6: Using local moves to calculate the action of the last Birman generator on an arbitrary
element of the spanning set S. This generator corresponds to pulling a boundary component of the
surface Σ along a generator for the fundamental group of the closed surface given by filling in all
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are colored by the group identity element. The first two figures show application of the Birman
generator. The last eight show the local moves relating the image to another element of S.
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4. SUMMARY AND OUTLOOK

We have proved that every twisted Dijkgraaf-Witten representation of a mapping class group

of a compact, orientable surface has finite image. This is a generalization of the results of [7] and

[14], as well as another step towards the (modified) Property F conjecture. A potential next step

would be to consider more complicated spherical categories than Vecω
G . One candidate is the class

of Tambara-Yamagami categories [18]. The main additional complication here is the appearance of

multifusion channels, i.e. the tensor product of two simple objects can be a direct sum of multiple

simple objects.
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