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ABSTRACT 

 

This dissertation contains three essays. The first essay addresses climate impacts 

on agricultural yields. One practical difficulty in estimating climate impacts is the 

presence of regionally correlated but omitted factors such as solar radiation and wind 

speed. Typical panel estimations account for time invariant omitted variables, but do not 

handle time varying ones that are regionally correlated. To overcome this, an estimation 

approach incorporating spatial structure is used. We find that the resultant estimates 

exhibit improved out-of-sample prediction accuracy compared with conventional panel 

model results but still reveal basic findings found elsewhere in the literature on 

relationships between temperature and crop yield. 

The second essay is about projection of biofuel production and practical 

considerations involving expensive biorefineries. Many analyses addressing national 

level expanded biofuel production exhibit unrealistic, time varying locations of facilities. 

Namely, once built biorefineries are fixed in location, technology and general class of 

feedstocks they use but these studies ignore such facts. To examine the implications, we 

do a market penetration analysis with and without that fixity. We find that neglecting 

asset fixity leads to upwardly biased projections of ethanol attractiveness, as well as 

unrealistic production variations over time and space. In particular, when asset fixity is 

considered the price needed to achieve cellulosic market penetration levels comparable 

to those in legislation is significantly increased, reaching $1.06/liter as opposed to 

$0.79/liter without it. 
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The third essay examines renewable electricity and its future market share. 

Investments in renewable electricity have increased recently due to rapid technological 

progress. Questions going forward are: (1) Will such technical achievement stimulating 

market based adoption persist? (2) Are additional developments needed to enhance 

additional adoption? These questions are addressed in this study using a sector modeling 

approach. The results indicate that adoption of renewable electricity under current 

projections of technical progress, will lead to a 25% market share by 2050. If greater 

market shares are desired, we find this can be stimulated by faster technological 

progress, reliability enhancing electricity storage and power system management, or 

direct carbon pricing, with combinations of these supporting as much as a 60% market 

share by 2050. 
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CHAPTER I 

INTRODUCTION 

Food security, affordable and clean energy and actions to combat climate change 

and its impact are among the top goals of the United Nations sustainable development 

initiative (United Nations 2015). Progress towards achieving these goals can be made via 

efforts and increased understanding in three interlinked areas, namely climate change 

mitigation, renewable energy and agricultural vulnerability and production.  

Changes in climate impact human and natural systems in multiple ways. The vast 

majority of crop production, for example, is directly influenced by current weather 

conditions such as precipitation and temperature, and is thus vulnerable to climate 

changes (Adams et al. 1990). Assessing climate change impacts on agriculture helps 

shape policy for food security and provides information on needs for adaptation and 

mitigation investment. On the other hand, agriculture and rural area can help reduce the 

major driver of climate change – greenhouse gas emissions by providing feedstocks or 

lands for renewable biomass based, wind and solar energy production. 

On the feedstock side the agriculture sector is currently providing about 365 

million dry tons for energy generation. This biomass is now used as a feedstock for: a) 

ethanol and biodiesel production replacing petroleum in transportation fuel and b) 

generating electricity using biomass as an energy source. In the US, annual ethanol 

production is around 57 billion liters (15 billion gallons), slightly over 10% of the total 

gasoline consumption in 2016 (US EIA 2017d) and there is talk of substantial increases. 

For example the goals in the Renewable Fuel Standard (RFS2) within the Energy 
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Independence and Security Act (US Congress 2007) mandate a liquid fuel blending level 

of about 32 billion gallons (or 121 billion liters). In terms of biomass based electricity 

today this is an industry largely based on byproducts where pulp and paper byproducts 

are used as are rice hulls and other agricultural byproducts. However, there are prospects 

for expanded use of agricultural feedstocks as electrical generation fuel (McCarl et al. 

2000; Shackley et al. 2015). According to the Billion-Ton Report from Department of 

Energy (Langholtz, Stokes and Eaton 2016), US has the potential to provide 1.2-1.5 

billion dry tons by 2040 at a price level of $60 per dry ton  

In terms of wind and solar based renewable electricity rural lands are generally 

the platform for such generation, particularly wind. In fact, wind and solar generation 

has increased dramatically in recent years due to technological progress and materials 

cost reduction. In the US,  more than 60% of the newly added utility-scale capacity as of 

2016 was from wind and solar (US EIA 2017c) with the wind almost exclusively in rural 

areas and much of the solar located there.  

In expanding agriculture and rural lands based renewable energy several 

challenges remain. On the biofuel side, the majority of current ethanol and biodiesel 

production utilizes first-generation or vegetable oil based feedstocks such as corn, 

sugarcane and soybean oil, which are also important food and feed crops limiting 

expansion prospects. Biofuel production based on second generation feedstocks such as 

agricultural residuals, trees and energy crops is a possible source of expansion but 

commercialized production is currently constrained by high conversion costs, low 
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feedstock energy density and high feedstock water content the last two of which also 

limit bioelectricity production prospects (Jones et al. 2017).  

On the renewable electricity side, rural lands are widely available but 

characteristics of the power and generating costs limit expansion. In terms of the power, 

wind and solar are intermittent generation sources due to variations in wind and sunshine 

conditions. Thus, power from those generation sources varies from day to day and in the 

case of solar between day and night and is thus not as reliable as power from fossil fuel 

sources. As a result, adjustments to existing power system infrastructure and 

management are needed in terms of energy storage, forecasting, backup capacity, timing 

of various generation sources etc., which leads to additional cost (Hand et al. 2012). 

Also, wind and solar costs per unit generated are often higher than are fossil fuel costs 

but have substantially less external costs (e.g. reduced pollution emissions and GHG 

emissions). Such external cost savings may need to be valued or conversely the external 

costs applied to fossil generation to expand solar and wind generation. A detailed 

discussion of the challenges to increasing renewable electricity penetration is available 

in Mai et al. (2014).  

This dissertation addresses aspects of the aforementioned issues through three 

essays addressing items occurring at the intersection of agriculture, renewable energy 

and climate change. Specifically, the following topics will be addressed with a specific 

focus on production in the US: 
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• Essay One reports on a study directed at seeing whether incorporation of 

spatial interrelationships improves identification of the impact of climate 

change. This is done focusing on Midwest US corn yields. 

• Assessing the economics of bioelectricity, wind and solar generation which 

are forms of climate change mitigation. In particular   

o Essay Two reports on an examination of the consequences of 

consideration or omission of biorefinery asset fixity characteristics in 

evaluating liquid fuel market share. 

o Essay Three reports on an analysis of future electricity market share 

of generation by wind, solar and biomass based electricity under 

altered technological progress and increased reliability as manifest in 

lower price discounting for the lower reliability sources. An analysis 

will also be done on the consequences of pricing carbon emissions 

from fossil based generation. 
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CHAPTER II 

THE IMPACT OF CLIMATE CHANGE ON CORN YIELD: INCORPORATING 

SPATIAL INTERRELATIONSHIPS 

Introduction 

Agricultural production is directly influenced by climate and thus is vulnerable to 

climate change. A number of studies have examined this vulnerability using econometric 

approaches (Wallace 1920; Lobell and Asner 2003; Chen, McCarl and Schimmelpfennig 

2004; Schlenker and Roberts 2006; Deschênes and Greenstone 2007; McCarl, 

Villavicencio and Wu 2008; Schlenker and Roberts 2009; Attavanich and McCarl 2014; 

Miao, Khanna and Huang 2016). Most of these studies use a time series, cross section 

dataset to estimate the effect of varying climatic conditions (a so-called spatial analogue 

approach - Adams et al. 1998). However, such approaches may be vulnerable to 

variables omitted due to data availability or lack of treatment. For example, Schlenker et 

al. (2005) indicate that omitting irrigation as has been done in a number of studies biases 

the estimates. Deschênes and Greenstone (2007) suggest that models with irrigation 

considered still could suffer from other omitted variables.  

To deal with the omitted variable issue, a number of studies have used panel data 

approaches (Chen et al. 2004; Schlenker and Roberts 2006; Deschênes and Greenstone 

2007; McCarl et al. 2008; Schlenker and Roberts 2009; Miao et al. 2016). Deschenes 

and Greenstone (2007) argue that panel models help reduce omitted variable issues by 

accounting for systematic regional and/or temporal omitted fixed effects such as soil 

characteristics, socioeconomic factors, and/or major droughts. Blanc and Schlenker 
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(2017) discuss this issue at length and conclude that panel data models are the preferred 

approach. 

However, panel data approaches also have limitations. Fisher et al. (2012) 

suggest that fixed effects tend to absorb a significant amount of data variation, which 

makes the results vulnerable to model misspecification and measurement error. 

Moreover, while regional fixed effects could account for time-invariant omitted 

variables, items that vary over time but commonly influence nearby regions would still 

bias estimates. A similar argument applies to temporal fixed effects. For example, 

studies are not typically done including data on ground level ozone but ozone incidence 

is positively correlated with maximum temperatures and varies with time and could 

commonly impact adjacent regions biasing temperature related estimates (McGrath et al. 

2015).  

One source of omitted variable bias is omitted climate related variables. 

Auffhammer and Schlenker (2014) suggest models should also include weather variables 

like solar radiation, ground level ozone, and wind speed which generally climate 

influences with common effects in nearby regions that are also different across time. 

Omission of such items would likely bias estimates of climate impact for the climate 

variables that are present. In practice, including the universe of such variables is often 

not possible due to a lack of consistent and high-resolution data. Nevertheless, 

estimations based on only temperature and precipitation where those items are correlated 

with omitted climate variables generally provide valuable information as argued by 

D’Agostino and Schlenker (2016). More generally, the estimates are valuable if the 
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omitted variables are correlated with those included, and their joint distribution remains 

unchanged over time.  

This study is motivated by arguments in the literature that omitted variable biases 

can be partially overcome by exploiting spatial effects in the estimation residuals (Mur 

and Angulo 2009). Climate variables tend to be spatially correlated and omitting climate 

associated variables that have common characteristics over nearby region leads to 

spatially correlated error terms. Schlenker et al. (2006) recognize this and use the Spatial 

Error Model (SEM) to handle such issues. Later Ortiz-Bobea (2015) uses a more flexible 

Spatial Durbin Model (SDM) to better manage the omissions in a cross-sectional study 

on farmland value. Here we use a SDM in a panel data study on the relationship between 

climate and crop yield. In that setting SDM is able to aount for temporal and spatial 

variations in the omitted variables.  

This study investigates climate effects on crop yields testing whether 

incorporating spatial dependence changes estimates and alters out-of-sample 

performance. The results show strong support for the use of a spatial model that allows 

for dynamically changing interregional relationships (the SDM model) relative to other 

commonly used approaches. The results also show a non-linear impact of temperature on 

corn yield where initially temperature increases benefit yield but extreme heat (above 

29ºC) brings significant declines, which agrees with previous literature. 
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Literature Review 

Correlated Omitted Climate Variables and Forecasting 

While most climate-yield studies include precipitation and temperature related 

variables, climate variations may impact yields in other, indirect ways. For instance, 

ground level ozone, which is influenced by maximum temperature, strongly influences 

crop yields (Adams, Hamilton and McCarl 1986; Sheffield et al. 2011). Similarly, solar 

radiation, which is strongly correlated with temperature, is an important yield 

determinant (Sheehy, Mitchell and Ferrer 2006). The literature also suggests the 

inclusion of other factors such as the CO2 fertilization effect (Lobell and Field 2008; 

Attavanich and McCarl 2014), humidity, wind speed and evaporation (Zhang, Zhang and 

Chen 2017).  

An obvious way to address such omissions is to use a more comprehensive 

climate dataset. Some recent studies include drought indices, counts of extreme heat 

days, CO2, precipitation intensity, El Niño Southern Oscillation effects and other items 

(Sheehy et al. 2006; Lobell and Field 2008; McCarl et al. 2008; Sheffield et al. 2011; 

Attavanich and McCarl 2014; Zhang et al. 2017). However, including all of these items 

in a consistent and high-resolution manner is often not possible (Auffhammer and 

Schlenker 2014) and to our best knowledge no study has covered all the omitted items 

discussed above.  

On the other hand, if climate variations affect the joint distribution of several 

influential variables, usage of a small set of climate variables could still yield good 

forecasts as long as the climate variables used are well correlated with the omitted items 



 

9 

 

(D’Agostino and Schlenker 2016). Therefore for the purpose of forecasting climate 

change effects on agricultural productivity, which is the key question in many studies 

(Deschênes and Greenstone 2007; Mendelsohn, Nordhaus and Shaw 1994; Burke and 

Emerick 2016), it is acceptable to omit unobserved factors which are highly correlated 

with the observed ones. Nevertheless, improvements might be achieved by handling 

such correlation in a better manner. 

Spatial Models and Omitted Variables 

Several spatial econometric studies have showed that when variables with spatial 

dependence are omitted the estimates would be biased with the residuals being spatially 

correlated (McMillen 2003; Fingleton and López-Bazo 2006; Mur and Angulo 2009). 

Thus, spatial patterns in the residuals generally indicate the presence of spatially 

dependent omitted variables. While both climate and crop yield data show strong spatial 

patterns, only a few crop yield/climate studies have incorporated procedures that handle 

spatially correlated residuals as discussed below.  

Schlenker et al. (2006) conduct a climate yield study using the SEM model to 

handle spatial correlation. That model assumes that error terms are uncorrelated with the 

independent variables. But if the included independent variables are correlated with the 

omitted variables and vary over time, the SEM estimates might be biased. To address 

this issue, one can use a model that accounts for correlation between the error term and 

the independent variables. The SDM model (Anselin 2013) is such a model. The SDM 

model decomposes the error term into two components: 1) a component that is a 

function of the observed independent variables (representing their potential correlation) 
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and 2) an independent and identically distributed random component (LeSage 2008). 

Under SDM, the estimated coefficients convey not only the direct effects of the 

independent variables but also indirect effects from the omitted variables. This approach 

is adopted in this study to explore climate effects on crop yield.   

Ortiz-Bobea (2015) is the only paper we have found in the climate-agricultural 

arena that uses SDM. Ortiz-Bobea (2015) employs SDM in a cross-sectional study of 

climate effects on cropland value, and found the usage of SDM improved estimation 

accuracy compared with OLS or SEM. The current study adopts the SDM approach 

using a panel data spatial and temporal approach. We will also conduct an out-of-sample 

examination of SDM performance relative to other estimation approaches. 

Another factor in our estimation involves functional form specification. There is 

little doubt that extreme cold or heat will reduce yield to close-to-zero as will extreme 

rain or no rain (Deryng et al. 2014). This means estimated effects are expected to be take 

on an inverted U in shape and thus that the functional form should incorporate a 

nonlinear response. To address this issue, squared terms of climate variables have been 

included in many studies (Mendelsohn et al. 1994; Cabas, Weersink and Olale 2010; 

Lobell 2014). However, only including squared terms assumes that the climate impact is 

symmetric, but Schlenker and Roberts (2009) find an asymmetric response where yields 

gradually increase with warmer weather but fell dramatically above a threshold. Thus, 

inclusion of more flexible nonlinear forms appears appropriate. In this study, we use 

spline functions of temperature to accommodate a flexible relationship between yield 

and temperature. 
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Methods and Data 

Model Setup 

A function describing climate impacts on crop yields can be expressed as 

follows: 

 𝐲 = 𝐗β + 𝐮 (1) 

where y is the crop yield, X is a set of independent variables and u is the error term. If 

there exist omitted variables such that 𝐸(𝑿, 𝒖) ≠ 0, an OLS estimate will be biased. 

Moreover, as previously mentioned, the residuals could show strong spatial dependence 

due to omitted spatial dependent variables.  

The SEM model (see Chapter 3 of LeSage (2008))(2006)accounts for spatial 

autocorrelation assuming it is of the form 𝒖 = 𝜆𝑾𝒖 + 𝝐, or equivalently, 𝒖 =

(𝑰𝑛 − 𝜆𝑾)−1𝝐 , where 𝑰𝑛 is an identity matrix, W is a spatial weight matrix (see more 

discussion in last paragraph of section 3.2), and 𝜆 is a spatial dependence factor that 

varies between 0 and 1 with a larger value indicating stronger interdependence and 

𝝐~𝑁(0, 𝜎2𝐼𝑛). This yields the following equation:  

 𝐲 = 𝐗β + (𝑰𝑛 − 𝜆𝑾)−1𝝐 (2) 

The SEM is unbiased when the omitted variables and the independent variables 

are independent, which may not hold. In particular in our case the omitted variables (e.g. 

farming practices, ground level ozone, CO2 and solar radiation) are likely correlated with 

the climate variables included in X. This can be handled using the SDM model which 

allows the error term to be a function of the independent variables X and random noise 𝝂 

such that 𝝐 = 𝑿𝛾 + 𝝂. It follows that equation (2) can be rewritten as follows: 
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𝐲 = 𝐗β + (𝑰𝑛 − 𝜆𝑾)−1(𝑿𝛾 + 𝝂) 

(𝑰𝑛 − 𝜆𝑾)𝐲 = (𝑰𝑛 − 𝜆𝑾)𝐗β + 𝑿𝛾 + 𝝂 

 𝐲 = λ𝐖𝐘 + 𝐗(β + γ) + 𝐖𝐗(−λβ) + 𝝂 (3) 

Alternatively, this model can be expressed in a reduced form as follows 

 𝐲 = ρ𝐖𝐘 + 𝐗𝛽∗ + 𝐖𝐗θ + 𝝂 (4) 

where the right hand side includes the spatial lag of the dependent variable, the 

independent variables and the spatial lag of the independent variables (Mur and Angulo 

2005).  Comparing equations (3) and (4), 𝜌 is a spatial dependence factor that differs 

from that in the SEM model; 𝛽∗ and 𝜃 are coefficients conveying the direct and indirect 

effects of the independent variables. Once the reduced form model in equation (4) is 

estimated one can recover the parameters of in equation (3) as follows 

 

{

𝜆 = 𝜌
𝛽 + 𝛾 = 𝛽∗

−λβ = θ
 

(5) 

While the interpretation of coefficient 𝛽 in equations (1) and (2) is 

straightforward, things are more complicated in the SDM model with the introduction of 

the spatial dependence (𝑾𝑿). Under the SDM, a change in the independent variables in 

one region affects not only that region (direct effect) but also nearby regions (indirect 

effect). Mathematically, the response of y (yield) to changes in X (climate variables) is 

given by: 
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𝑺𝑟 ≡

𝜕𝒚

𝜕𝑥𝑛𝑘
= (𝑰𝑛 − 𝜌𝑾)−1(𝑰𝑛𝛽𝑟

∗ + 𝑾𝜃𝑟)

= (𝑰𝑛 − 𝜌𝑾)−1

[
 
 
 

𝛽𝑘
∗ 𝑤12𝜃𝑘

𝑤21𝜃𝑘 𝛽𝑘
∗ ⋯

𝑤1𝑛𝜃𝑘

𝑤2𝑛𝜃𝑘

⋮ ⋱ ⋮
𝑤𝑛1𝜃𝑘 𝑤𝑛2𝜃𝑘 ⋯ 𝛽𝑘

∗ ]
 
 
 
 

(6) 

where n ∈ [1,… ,𝑁] identifies spatial region, and k ∈ [1,… , 𝐾] the set of independent 

variables. The N×N 𝑺𝑟 matrix contains partial derivatives that capture the impact of the 

independent variable on the dependent variables in and across regions. According to 

LeSage (2008), the average direct impact, which depicts the impact of changes in 𝑥𝑘 in 

region n on the dependent variable in region n, could be measured by averaging the 

diagonal elements of 𝑺𝑟, or 𝑁−1𝑡𝑟(𝑺𝑟). The total impacts could be calculated as 

𝑁−1𝜄𝑛
′ 𝑺𝑟𝜄𝑛, i.e. the summation of 𝑺𝑟 divided by the number of regions where 𝜄𝑛 is a 

vector of 1’s. The indirect impacts are given by the difference between the total and the 

direct impacts. In the context of climate change and yield, the direct effect captures the 

impact of observed independent variables (e.g. temperature and precipitation) while the 

indirect effect captures the impact of the omitted variables across space. 

The SEM model is nested in the SDM model. Namely when 𝛾 in equation (3) is 

zero. Similarly, the standard linear model is nested within the SEM when 𝜆 in equation 

(2) equals zero. We shall use formal statistical tests to test whether this is the case in our 

empirical analyses below. 

Belotti et al. (2013) used the SEM and SDM models in a panel data setting as 

will we. The general formula for yield in region n year t is given in equation (7) and can 

be estimated using the maximum likelihood approach used by Belotti et al. (2013).  
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 𝑦𝑛𝑡 = 𝜌𝑾𝑦𝑛𝑡 + 𝛽𝑥𝑛𝑡 + 𝜃𝑫𝑥𝑛𝑡 + 𝜙𝑛 + 𝜑𝑡 + 𝑢𝑛𝑡

𝑢𝑛𝑡 = 𝜆𝑬𝑢𝑛𝑡 + 𝑣𝑛𝑡
 

(7) 

where 𝜙𝑖 and 𝜑𝑡 are the individual- and time-specific effects, 𝑢𝑛𝑡 is a spatially 

correlated error and 𝑣𝑛𝑡 is a normally distributed error. W, D and E are all N×N spatial 

weight matrices identifying adjacent regions (their formation is discussed in section 3.2) 

that could be identical or differ depending the context (they are identical here). When 

𝜌 = 𝜃 = 𝜆 = 0, equation (7) reduces to the conventional panel model; while  𝜌 = 𝜃 = 0 

gives the SEM model, and 𝜆 = 0 gives the SDM model. 

Methodology 

We will do our estimation on corn yields. The yields we use are calculated from 

data drawn from the United States Department of Agriculture’s National Agricultural 

Statistics Service (USDA NASS) Quick Stats 2 database. Corn yield per harvested acre 

is constructed at county level by dividing the total county corn production by the corn 

acres harvested. We use data from the years 1950-2015. To minimize the influence of 

irrigation we only use data from east of the 100º meridian following (Schlenker and 

Roberts 2009; Burke and Emerick 2016). The consequent data set contains 51,612 

observations from 782 counties (see Fig. 1 for a map of these counties) over 66 years 

and is a balanced panel dataset. 

 

 



 

15 

 

 

Figure 1. Study region in green 

 

 

 

The climate data we use are drawn from Schlenker and Roberts (2006) using 

their updates to 2015 which include county-level precipitation and temperature during 

the growing season (between April 1st and September 30th). Specifically, temperature 

information is measured by a series of Degree Day (DDay) variables that reflect the 

cumulative temperature above certain thresholds during the growing season. For 

example, DDay0c stands for the cumulative degrees above 0ºC. The thresholds range 

from 0ºC to 34ºC. We report the summary statistics on the data in Table 1.  
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Table 1. Summary statistics 

Variable* Obs. Mean Std. Dev. Min Max 

log(cornyield) 51,612 4.49 0.49 -1.20 5.46 

precipitation 51,612 57.10 14.09 13.67 127.22 

DDay0c 51,612 3,413.26 343.86 2,337.50 4,461.68 

DDay5c 51,612 2,528.00 326.37 1,525.35 3,549.87 

DDay10c 51,612 1,701.31 289.36 848.48 2,651.38 

DDay15c 51,612 985.75 227.62 365.41 1,820.20 

DDay20c 51,612 452.90 145.22 84.91 1,100.35 

DDay29c 51,612 35.27 29.57 0.01 291.65 

DDay34c 51,612 2.09 4.51 0.00 91.20 

   782 counties, 1950-2015 

* corn yield (bushel/acre), precipitation (cm) and DDAY (accumulated ºC for all days above threshold). 

 

 

For illustration purpose only Fig. 2 shows the study region distributions of corn 

yield, precipitation and degree days (for thresholds of 10ºC and 29ºC) averaged over 

years 2011-2015. There we see corn yield is highest in the Corn Belt, especially in 

Illinois and Iowa. We also see that precipitation generally decreases from east to west 

and the degree days increase from north to south. It is worth noting that the temporal 

averages as shown in Fig. 2 smooth out substantial variation and we use the individual 

years in our estimation. The large number of observations in the panel dataset also 

allows us to reserve data for examining out-of-sample forecast performance. In this 
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study, we estimate our model using the data from the period 1950-2010 and reserve the 

data from 2011-2015 for out-of-sample validation. 

 

 

 

Figure 2. Spatial distribution of mean county level yield, precipitation and degree 

days over growing season in the study region as depicted in Figure 1, 2011-2015 

 

 

 

There are a few estimation procedure details meriting explanation before we 

report the results. First, we use log corn yield as the dependent variable instead of corn 

yield following Schlenker and Roberts (2009) and Burke and Emerick (2016). Lobell 

and Burke (2010) indicate the use of the log assumes that a level of change in the 

independent variables has the same percent impact on yield regardless of yield level. 

Second, seven degree-day variables are used for temperature allowing for more 
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flexibility depicting the potential non-linear asymmetric impact of temperature on corn 

yield which constitutes a linear spline with 6 knots.  

Lastly, we form the SEM and SDM spatial weight matrices following Fischer 

and Getis (2009). Under that specification if the nth region has z neighboring regions, 

then the nth row of the spatial weight matrix will have zeros for all non-neighboring 

regions and 1/z for each of the z neighboring regions (thus each neighbor is given the 

equal weight). 

Empirical Results 

OLS and Panel Non-spatial Estimation Results 

For the sake of comparison, we first estimate the corn yield effects using 

conventional models namely pooled OLS and fixed effect panel models. Two basic 

model specifications are analyzed using different sets of degree day variables. The first 

specification includes only two degree day variables (i.e. DDay0c and DDay29c), 

following Schlenker and Roberts (2009) and Burke and Emerick (2016).  This assumes 

that growing degree days above 0ºC and hot days (those above 29ºC) have differential 

effects. The second specification includes seven degree-day variables (i.e. linear spline 

with 6 knots with an interval of 5 ºC) and permits more flexible temperature effects. The 

resultant regression results are summarized in Table 2. 
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Table 2. Pooled OLS and panel regression of log corn yield on weather variables 
 OLS_1knots OLS_6knots Panel_1knots Panel_6knots 

dday0C 0.0004*** 0.0043*** 0.0004*** -0.0009*** 

 (0.000) (0.000) (0.000) (0.000) 

dday5C  -0.0056***  0.0030*** 

  (0.000)  (0.000) 

dday10C  0.0033***  -0.0022*** 

  (0.000)  (0.000) 

dday15C  -0.0036***  -0.0012*** 

  (0.000)  (0.000) 

dday20C  0.0026***  0.0026*** 

  (0.000)  (0.000) 

dday29C -0.0078*** -0.0067*** -0.0077*** -0.0083*** 

 (0.000) (0.000) (0.000) (0.000) 

dday34C  -0.0100***  -0.0088*** 

  (0.001)  (0.001) 

prec 0.0261*** 0.0256*** 0.0165*** 0.0165*** 

 (0.000) (0.000) (0.000) (0.000) 

prec2 -0.0002*** -0.0002*** -0.0001*** -0.0001*** 

 (0.000) (0.000) (0.000) (0.000) 

t 0.0183*** 0.0183*** 0.0184*** 0.0185*** 

 (0.000) (0.000) (0.000) (0.000) 

t2 -0.0002*** -0.0002*** -0.0002*** -0.0002*** 

 (0.000) (0.000) (0.000) (0.000) 

Constant 2.6978*** 0.4215*** 2.9795*** 3.3690*** 

 (0.019) (0.101) (0.029) (0.086) 

R2 0.7359 0.7412 0.8190 0.8228 

d.f. 47695 47690 46914 46909 

out-of-

sample 

RMSE 0.257 0.250 0.253 0.244 
* the asterisks denote the probability that the coefficient differs from zero with three levels of significance 

where * p < 0.05, ** p < 0.01, *** p < 0.001 

 

 

 

The estimates from the pooled OLS and fixed effect panel models are similar. 

Although fixed effect panel model estimates exhibit smaller climate effects, it is 

plausibly due to omitted variable effects being picked up in the fixed effects terms. Both 

the R2 and out-of-sample Root Mean Squared Errors (RMSE) suggest that the fixed 
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effect panel estimator with the larger number of degree day independent variables is the 

preferred model.  

Fig. 3 contains a plot of the estimated relationship between the degree day 

variables (which represent temperature effects) and the percent change in log corn yield. 

The figure clearly shows a non-linear and asymmetric impact of higher temperatures on 

corn yields, wherein the yield gradually increases starting from 0ºC as more warm 

weather occurs and then decreases significantly as the temperatures pass the 29ºC 

threshold. The result is comparable to the findings in the literature (e.g. Schlenker and 

Roberts (2009) and Burke and Emerick (2016)). 

 

 

 

Figure 3. Relationship* between temperature and corn yield 
* Estimates represent the change in corn yield due to one additional day of exposure to a given ºC 

temperature relative to a day with temperature 0ºC. Results for model OLS_1Knots is omitted as it is 

almost identical to those from model Panel_1Knots. 
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Spatial Dependence in the Residuals from Non-spatial models 

We next examine whether there is spatial dependence in the residuals using the 

Pesaran test (Pesaran 2004). This test is based on the pair-wise interregional correlation 

coefficients as follows 

 

CD = √
2𝑇

𝑁(𝑁 − 1)
(∑ ∑ 𝜌̂𝑖𝑗

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

) 

 

(8) 

where 𝜌̂𝑖𝑗 is the correlation coefficient in the residuals between regions 𝑖 and 𝑗, T is the 

number of years and N is the number of regions. The test statistic follows the standard 

normal distribution asymptotically.  

We calculated this test statistic for the residuals arising from panel model with 

the seven degree day independent variables. The hypothesis of the no spatial correlation 

is rejected at the 0.01 level of significance. Thus, there is strong evidence for spatial 

correlation in the residuals from the fixed effect panel model. This likely indicates the 

model suffers from omitted, spatially correlated independent variables and we now turn 

to use of the SEM and SDM models. 

Spatial Estimation Results 

Given the preceding finding of spatial dependence in our model, we proceed to 

SEM and SDM estimation. We estimate these models using the full set of seven-degree 

day variables and other variables used in the non-spatial panel model. The estimation 

results are summarized in Table 3 that also includes the panel model results for 

comparison. The degree day effects from the panel, SEM and SDM models are shown in 
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Fig. 4. Note that the SEM results are directly comparable to the panel results while SDM 

results need manipulation to account for both direct and indirect effects as computed via 

equation (6). 

 

 

Table 3. Panel, SEM and SDM estimation results of log corn yield on weather 

variables 
 Panel SEM SDM 

Main    

dday0C -0.0009*** 0.0003 0.0021*** 

 (0.00) (0.00) (0.00) 

dday5C 0.0030*** 0.0002 -0.0028** 

 (0.00) (0.00) (0.00) 

dday10C -0.0022*** 0.0005 0.0011 

 (0.00) (0.00) (0.00) 

dday15C -0.0012*** -0.0021*** -0.0006 

 (0.00) (0.00) (0.00) 

dday20C 0.0026*** 0.0018*** -0.0000 

 (0.00) (0.00) (0.00) 

dday29C -0.0083*** -0.0053*** -0.0026*** 

 (0.00) (0.00) (0.00) 

dday34C -0.0088*** -0.0034** 0.0002 

 (0.00) (0.00) (0.00) 

prec 0.0165*** 0.0144*** 0.0123*** 

 (0.00) (0.00) (0.00) 

prec2 -0.0001*** -0.0001*** -0.0001*** 

 (0.00) (0.00) (0.00) 

t 0.0185*** 0.0190*** 0.0025*** 

 (0.00) (0.00) (0.00) 

t2 -0.0002*** -0.0002*** -0.0000*** 

 (0.00) (0.00) (0.00) 

Constant 3.3690***   

 (0.09)   

Spatial    

𝜆   0.8781***  

  (0.00)  

𝜌    0.8649*** 

   (0.00) 
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Table 3 Continued 
 Panel SEM SDM 

Wx    

dday0C   -0.0023*** 

   (0.00) 

dday5C   0.0033** 

   (0.00) 

dday10C   -0.0014 

   (0.00) 

dday15C   0.0005 

   (0.00) 

dday20C   0.0004 

   (0.00) 

dday29C   0.0015* 

   (0.00) 

dday34C   -0.0020 

   (0.00) 

prec   -0.0098*** 

   (0.00) 

prec2   0.0001*** 

   (0.00) 

R2 0.8228   
 

* the asterisks denote the probability that the coefficient differs from zero with three levels of significance 

where * p < 0.05, ** p < 0.01, *** p < 0.001 

 

 

 

Under the SEM model the spatial parameter, 𝜆, equals 0.88 which is significantly 

different from 0, indicating a strong presence of spatial correlation with a finding that 

88% of the effects in one region times the spatial weights are transmitted to the nearby 

regions. We also note that the SEM estimated effects of climate are generally smaller 

than the panel estimates, as the spatial error structure passes part of that effect to nearby 

regions. Additionally, the climate coefficients broadly agree with the panel model in 

terms of sign and for the most part statistical significance although some of the SEM 

degree day variables are insignificant.  
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Figure 4 Relationship between temperature and corn yield from spatial model 

estimation 

 

 

 

We next turn to the SDM results. As mentioned earlier, the estimated coefficients 

in column 3 of Table 3 include both the direct and indirect, cross-region, effects. As a 

result, we calculate the 𝑺𝑟 matrix in equation (6) and use it to derive the direct and 

indirect impacts, which are in Table 4. 
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Table 4. Direct and indirect effects of climate variables on log of corn yield derived 

from the SDM regression result (with SEM results for comparison) 
 SDM SEM 

 Direct Indirect Total  

dday0C 0.0019*** -0.0032*** -0.0013 0.0003 

 (0.00) (0.00) (0.00) (0.00) 

dday5C -0.0025** 0.0063*** 0.0038* 0.0002 

 (0.00) (0.00) (0.00) (0.00) 

dday10C 0.0009 -0.0035* -0.0026 0.0005 

 (0.00) (0.00) (0.00) (0.00) 

dday15C -0.0007 -0.0005 -0.0012 -0.0021*** 

 (0.00) (0.00) (0.00) (0.00) 

dday20C 0.0002 0.0026** 0.0028** 0.0018*** 

 (0.00) (0.00) (0.00) (0.00) 

dday29C -0.0029*** -0.0054*** -0.0082*** -0.0053*** 

 (0.00) (0.00) (0.00) (0.00) 

dday34C -0.0006 -0.0127*** -0.0133*** -0.0034** 

 (0.00) (0.00) (0.00) (0.00) 

prec 0.0127*** 0.0059** 0.0186*** 0.0144*** 

 (0.00) (0.00) (0.00) (0.00) 

prec2 -0.0001*** -0.0001*** -0.0002*** -0.0001*** 

 (0.00) (0.00) (0.00) (0.00) 

t 0.0034*** 0.0153*** 0.0187*** 0.0190*** 

 (0.00) (0.00) (0.00) (0.00) 

t2 -0.0000*** -0.0002*** -0.0002*** -0.0002*** 

 (0.00) (0.00) (0.00) (0.00) 
* the asterisks denote the probability that the coefficient differs from zero with three levels of significance 

where * p < 0.05, ** p < 0.01, *** p < 0.001 

 

 

 

The decomposition of the total effects is illustrated in Figure 5, wherein the solid 

red line shows their sum and is the same as the SDM line in Fig. 4. The indirect effects 

are from the transmission of effects from other regions as we discussed earlier. Without 

knowing the source and nature of the omitted variables, no definite explanations can be 

given to their causal factors. Nonetheless, separating the direct and indirect effects does 

provide more consistent estimation of temperature impacts (namely the direct 

component) and are graphed in Fig. 5 along with their sum. Here we find the basic 
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nature of the summed effects from the SDM estimates are similar to those found in the 

estimates from the panel and SEM models (Fig. 4). 

 

 

 

Figure 5. Percent change in crop yields as for degree days at given thresholds from 

SDM decomposition 

 

 

 

Model Comparison  

Conventional model selection criteria such as R2 or Akaike information criterion 

cannot be applied directly here as the Panel model is estimated with least squares while 

the SEM/SDM models are estimated through maximum likelihood. Moreover, even the 

likelihood functions of SEM and SDM model are not directly comparable as different 

data transformation procedures are applied. We therefore use out-of-sample RMSE to 

compare these competing models, which also evaluates model forecasting power. As 
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mentioned before, data from 2011-2015 were held out for out-of-sample model 

evaluation. The results are reported in Table 5.  

 

 

Table 5. Out-of-sample root mean squared error 

Data Used Panel SEM SDM 

2011-2015 0.24 0.23 0.22 

Only 2012 0.40 0.39 0.35 

 

 

 

The out-of-sample RMSEs calculated for the extrapolated values calculated from 

the panel, SEM and SDM estimates are 0.24, 0.23, and 0.22, respectively. This indicates 

that SDM improves the prediction accuracy by more than 8% compared with the panel 

model and 4% compared with the SEM model. We also assess the forecasting power 

under extreme weather conditions using only 2012 data, which was a severe drought 

year in the Corn Belt. Again, the RMSE is smallest in the SDM forecast at 0.35, 

followed by SEM at 0.39 and panel at 0.40. In both cases, the SDM model outperforms 

the SEM and panel models. 

Additionally, we use statistical tests on the parameters that differentiate the 

model specifications. The first test addresses whether the spatial dependence factor in 

the SEM estimates is not different from zero (𝜆 = 0 in equation 2), under which the 

SEM model reduces to the conventional fixed effects panel model. This is rejected at 

0.01 confidence level leading to a preference for the SEM model over the panel model.  
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Similarly, when 𝛾 in equation (3) equals zero the SDM model reduces to the 

SEM model. A direct test on 𝛾 is not available as the reduced form does not contain 𝛾. 

However, it is easy to see from equation (5) that when 𝛾 = 0 we have 𝛽∗ = 𝛽 thus the 

last formula in equation (5) becomes 𝜃 + 𝜌𝛽∗ = 0. Estimated values and standard errors 

for all of these parameters are available thus a Wald test is performed on the null 

hypothesis that the SEM model is preferred over the SDM model. P-value of the test is 

nearly zero, strongly favoring the SDM model that controls for correlation between the 

independent and unobserved variables. 

Lastly, we examine the residual distributions across the specifications as 

portrayed in Fig. 6, which depict the estimated densities developed with the Gaussian 

kernel density estimator. The red line shows the residuals distribution from the Panel 

estimation while the green line is from the SDM estimation1. There we see that the 

residuals from the spatial model exhibit a noticeable reduction in dispersion and are 

largely free of skewness. In contrast, the residuals from the panel model are more 

dispersed and are skewed, plausibly due to some omitted variables not accounted in the 

estimation. 

 

 

                                                 

1 Note we do not graph the residual distribution from the SEM model as it is so close to the SDM residual 

distribution that it is virtually indistinguishable and similarly the pooled OLS residuals are omitted as they 

are very close to those from the panel model. 
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Figure 6. Residual distributions from different models  

 

 

 

In sum, incorporating spatial structure improves out of sample forecasting 

performance. Between the two spatial models, we find the SDM model is preferred. This 

shows the data apparently exhibit both spatial dependence and correlation of omitted 

variables with the independent variables.   

Discussion and Conclusion 

This study is motivated by statements in the literature that capturing the influence 

of spatially dependent omitted variables will improve model performance and the 

advancement of models like SEM and SDM to do that. Our estimation results clearly 

show including spatial considerations leads to improved model fit. 

In particular, we find for identifying climate effects on corn yields in the US 

Corn Belt that using a spatial model improves out-of-sample prediction relative to a 

conventional panel approach. We also find including a model that allows for spatial 
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dependence across regions and with the independent variables (SDM) performs better 

than a model that only assumes a fixed spatial dependence between regions (SEM).  

We also find the SDM approach performs substantially better under extreme 

weather conditions – using data from the 2012 extreme corn belt drought year. 

Furthermore, formal statistical tests on the significance of key model parameters that 

address spatial characteristics and interdependence of errors and the independent 

variables support the superiority of the SDM and thereby the existence of spatially 

dependent omitted variables. Also, residual diagnostics find favor the inclusion of the 

spatial structure via SDM reduces error term dispersion and skewness. Moreover, the 

SDM allows improvements in model results interpretation by allowing decomposition of 

effects into direct and indirect spatially transferred effects. All of this considered, we 

recommend the SDM model as an technique that should be strongly considered for use 

in future crop yield/climate studies. 

Finally, we should note that estimation results from both the SDM and SEM 

approaches do not fundamentally change the results on or interpretation of climate 

effects on yields. We reaffirm the finding of a non-linear and asymmetric inverse-U 

shaped relationship between yield and temperature as advanced in Schlenker and 

Roberts (2009). We find temperature impacts peaking around 29ºC and turning negative 

beyond that. We also find an inverse-U shaped effect of precipitation as also found in 

Schlenker and Roberts (2009).  
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CHAPTER III 

ASSET FIXITY AND ECONOMIC COMPETITIVENESS OF US ETHANOL 

PRODUCTION 

Introduction 

A number of studies have been done on ethanol market penetration and the 

effects of alternative portfolio of regulation complying feedstocks. These include several 

used in EPA rulemaking (Beach and McCarl 2010; US EPA 2010).  However, a detailed 

examination of the results in such studies shows the model solutions exhibit and 

unrealistic shift in patterns of feedstocks used and ethanol production locations between 

adjacent five-year periods. In particular, while one feedstock will be used in a place in 

one five-year period the pattern in the next period shows a different feedstock being used 

in a different place without any carryover of the feedstock/place characteristics from the 

earlier period. Such a result occurs because the model (FASOM in the case we examined 

(Beach and McCarl 2010; Adams et al. 2005; Lee et al. 2007)) ignores asset fixity.  

Namely an ethanol processing plants once built is fixed in location and to a substantial 

degree is fixed in technology employed, cost structure and feedstock mix it can accept. 

The general issue is that ignoring such characteristics of asset fixity (AF) and we feel 

ignoring it may leads to unrealistic patterns of biorefinery location and feedstock mix 

likely biasing the potential for and competitiveness of ethanol production. 

The objective of this study is to assess how much of a difference consideration of 

asset fixity makes in terms of model predicted ethanol market penetration, feedstock mix 

and production cost.  



 

32 

 

Literature Review 

Asset fixity has long been a concern of agricultural economists. Gardner (1992) 

summarized the basic concept indicating that once a choice was made to undertake an 

investment in a particular asset, the asset becomes fixed in place and class of feedstocks 

used and would continue to be committed to the use for which it was acquired until the 

expected return falls to the disposal or salvage value.  Johnson (1956) apparently did the 

original agricultural work on AF motivated by the writings of Johnson (Johnson 1950). 

In turn the AF concept was formalized by Edwards (1959) and Johnson and Quance 

(1973).  The concept has been considered in number of agriculturally-related analyses 

(Chambers and Vasavada 1983; Nelson, Braden and Roh 1989; Hsu and Chang 1990).  

A closely-related concept to AF was putty-clay technology which arose out of 

the work of Johansen (1972).  Fuss (1977) indicated that a basic question related to the 

study of technology was the extent to which the flexibility of production possibilities 

was affected by previous technology choices. He went on to illustrate this in terms of 

energy price increases in the early 70s and the incentives they created for substitution of 

other factors production for energy. In that context he indicated that the time path of the 

adjustment depended upon the ex post flexibility of energy intensive techniques that had 

already been adopted.  

In the context of the biofuel based study reported on herein AF means that 

ethanol and biodiesel refineries once built are fixed in location and in the general class of 

feedstocks that can be used. There are certainly reasons to suspect that AF will have 

major effects on model projections. Atkeson and Kehoe (1999) showed that the putty 
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clay or asset fixity approach helped explain the gradual shifts in energy use in response 

to persistent changes in energy prices. Additionally, Rajagopal and Zilberman (2013) 

indicated that asset fixity – putty-clay caused the situation where switching from one 

technology to another required costly capital investment and that consequently producers 

had limited flexibility to adjust. Although AF constrains such as location and feedstock 

types are commonly considered in biorefinery supply chain designs (i.e. determining the 

optimal location, feedstock and supply chain for a case study area) (Yu et al. 2014; You 

et al. 2012), to our best knowledge it is not included in existing national-level modeling 

studies on the biofuel market penetration. 

Another related theory was that of irreversible investment under uncertainty 

(Dixit and Pindyck 1994) which shows that it might be best to delay decisions so as to 

allow one to obtain better information about such things as processing technology, 

feedstock cost and other costs. Furthermore, Skevas et al. (2016) showed the investment 

irreversibility and uncertainty coupled to dampen incentives to invest.  

One can also look at AF implications graphically from the supply side as in Fig. 

7.  Suppose ethanol demand is D and the supply curve from currently operating plants is 

SS in panel a. Note this reaches the inelastic portion at existing plant capacity (Q0) and 

would lead to a high ethanol price (P0). Now suppose we include the possibility of 

building a new plant. In that case suppose we assume that the potential owner believes 

the added plant will operate at a volume of K and the amortized fixed cost is A. Then the 

supply curve would kink at the volume jumping up in price by A/K then proceeding out 

to deliver more supply at the marginal cost curve but with A/K added at all volumes (as 
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in panel b). Note once built the new plant falls into the existing plant category in 

subsequent years where the supply curve is independent of fixed cost as in panel c with 

the new existing supply becomes SS’. 

 

 

 

Figure 7. Visual representation of asset fixity concept.   

 

 

 

Furthermore several aspects of the situation are not shown in the graphical 

framework. First, the existing plants create a fixity not only due to plant capacity but 

also in location and feedstock use flexibility. The new capacity can only operate in the 

region where it is constructed and generally, the available technology limits feedstock 

use to a given class of feedstocks for which the plant was initially constructed. Second, 

the supply curve for new plants is flatter than that for existing plants to reflect the fact 

that larger capacities can be reached by constructing new plants while the existing 

facilities have a steeper cost curve since they can only raise production by employing 
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more expensive forms of operation within the bounds of their existing capacity.  Third, if 

new capacity were constructed in period 1 then there would also be a shift in the existing 

capacity supply curve in period two again making entry for new plants yet harder. 

Furthermore, in a dynamic sense as the situation progresses through time, more plants 

are constructed expanding the existing capacity category in the period of construction 

and subsequent periods up until the point at which the plant becomes functionally 

obsolete. 

Material and Methods 

Modeling of Asset Fixity 

In the modeling, we introduced asset fixity into the agricultural sector component 

of FASOM. FASOM has been extensively used in U.S. agricultural and bioenergy 

related studies including those supporting US rule making under the 2007 EISA act (e.g. 

Beach and McCarl (2010)). Here, we mainly discuss the inclusion of AF in the model. 

Readers wishing to know more details on FASOM should examine the work of Beach 

and McCarl (2010), and Adams et al. (2005).  

In FASOM before including AF, the processing component of the ethanol 

production cost was specified as a feedstock dependent per unit cost based on NREL and 

EPA estimates, which was the sum of both fixed facility construction cost and variable 

operating cost. In turn, the FASOM model decided where to locate processing facilities 

and selected the feedstock type without any consideration of what was used and where it 

was used in earlier times. As a result, unrealistic projections might occur (e.g. 

switchgrass ethanol is produced in one region at specific time and in the next period 
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replaced by corn ethanol). In modeling AF for this study, the per unit processing cost 

was separated into fixed construction cost (which accounts for 35% of the total 

processing cost) and variable cost components (65%). Accordingly, the processing terms 

in the model separated into construction component that supplied capacity for the next 

30 years paying an upfront construction cost and a capacity utilization component that 

required capacity from the capital investments or any pre-existing facilities.  In addition, 

in the pre-asset fixity version cellulosic ethanol production costs declined at the rate 

specified in the projections from NREL. In the asset fixity version, the capital costs were 

incurred in a time period and they declined following the NREL assumptions.   

Empirically 35% of the costs projected per unit by NREL were imposed as 

incurred in the period of construction. These costs were declining over time as the 

capital costs involved as the industry became mature according to the assumptions used 

in NREL. In addition, the operating costs were held at the levels in place at the time the 

facility was constructed.  Further, feedstock utilization possibilities were defined into a 

number of categories allowing plant to process feedstocks with similar characteristics 

(see details in the Appendix).  

Operationally, this was done by augmenting FASOM with a plant construction 

variable, Z𝑡,𝑟𝑒𝑔,𝑐𝑙𝑎𝑠𝑠 representing the amount of newly-build bioenergy capacity 

constructed in period 𝑡 in region 𝑟𝑒𝑔 that uses feedstocks in the group class. In turn 

annual ethanol production, 𝑌𝑡,𝑟𝑒𝑔,𝑝𝑟𝑜𝑐𝑒𝑠𝑠,𝑐𝑙𝑎𝑠𝑠, was constrained by the cumulative 

previously built and any newly built capacity as in equation (1).  
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∑ 𝑌𝑡,𝑟𝑒𝑔,𝑝𝑟𝑜𝑐𝑒𝑠𝑠,𝑐𝑙𝑎𝑠𝑠 ≤
𝑝𝑟𝑜𝑐𝑒𝑠𝑠

∈ 𝑝(𝑐𝑙𝑎𝑠𝑠) 

∑ 𝐶𝐴𝑃𝑐𝑙𝑎𝑠𝑠  𝑍𝑡𝑡,𝑟𝑒𝑔,𝑐𝑙𝑎𝑠𝑠

𝑡

𝑡𝑡=𝑡−𝑘
𝑡𝑡−𝑘>0

+ ∑ 𝐶𝐴𝑃𝑐𝑙𝑎𝑠𝑠𝑍𝑃𝑡𝑡,𝑟𝑒𝑔,𝑐𝑙𝑎𝑠𝑠

𝑡

𝑡𝑡=𝑡−𝑘
𝑡𝑡−𝑘≤≤0

 

(9) 

Where the capacity is summed across all previously constructed plants in the previous 𝑘 

years where k is the economic life of bioenergy plants, 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 is the specific bioenergy 

production process (e.g. grain dry mill or switchgrass based cellulosic) and 𝐶𝐴𝑃𝑐𝑙𝑎𝑠𝑠 is 

the capacity of plants built to handle feedstocks of type class. The capacity also includes 

plants that exist when the model starts up.  

Facility capacity differs by feedstock class. The class index permits a plant to 

process several similar feedstocks. For example, dry mill plants could process corn and 

sorghum (see the feedstock to class assignment in Table A1). 

Finally, cost estimates needed to be separated into fixed and variable 

components. In this study, based on an examination of NREL documents we assumed 

that the fixed capital cost accounted for 35% of the per unit processing cost used in the 

pre-AF model version and multiplied that cost by total plant capacity to get annual fixed 

cost and put that to a single period cost in the period when the plant was constructed. We 

then applied the discount rate to get the net present value.   

Finally, a maximum rate of new construction was also incorporated. In reality, 

the annual amount of ethanol production in U.S. has risen to about 57-billion-liter level 

which is the maximum that falls under the EISA RFS2 and also a volume about equaling 
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10% of existing gasoline use. In particular, annual consumption of gasoline in the U.S. 

was around 545 billion liters by 2017 (US EIA 2018), leading to a maximum domestic 

ethanol consumption of about 53 billion liters if only E10 gasoline was available. In fact, 

this volume serves as a form of the blend wall limiting domestic consumption and the 

U.S. has turned from a net ethanol importer to an exporter ever since that volume was 

reached (Renewable Fuels Association 2017). New investments in blender pumps, 

storage tanks, higher blend using vehicles, drop in fuels and other infrastructure were 

needed to increase ethanol market penetration. In FASOM, this were captured by 

imposing an increasing penetration cost for ethanol production above 57 billion liters 

based on EIA data.  The penetration cost exhibited an upward sloping schedule with 

higher and higher costs incurred as additional quantities of ethanol were entered into the 

marketplace. These were derived by looking at EIA assumptions on the cost of ethanol 

production and consumer price changes as the ethanol penetrated further into the 

marketplace.  
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Scenarios Setup 

Base Scenarios  

Several scenarios were run. First, to examine the impact of AF we ran a no RFS2 

scenario with and without AF. Moreover, in the non-AF scenario we removed existing 

capacities2. 

RFS2 Scenarios  

Second, we examined effects of AF in a setting where the Renewable Fuel 

Standard (RFS2) existed. Scenarios were run with and without AF requiring a maximum 

of 57 billion liters of corn ethanol and a minimum of 49 billion liters of cellulosic 

ethanol3 to be produced by 2022 according to the RFS2 target. 

Price Scenarios  

Finally, we conducted several ethanol price scenarios in order to assess the level 

of price needed to make cellulosic ethanol economically competitive in a mandate-free 

market situation. Specifically, we examine market penetration under a range of ethanol 

prices ($0.48, $0.79, and $1.06 per liter, or $1.8, $3 and $4 per gallon) with the price 

escalating at the rates projected in AEO 2016 (see Fig. 8). The model setup in this case 

did not have RFS2 mandates imposed but did have the NREL projected reductions in 

cellulosic ethanol production costs.  

                                                 

2 Activating the existing capacity in the AF scenario would make ethanol processing cost cheaper than the 

non-AF scenario since the cost for existing capacity was sunk cost and not reflected in the model objective 

function. 

3 RFS2 requires 61 billion liters (16 billion gallons) of cellulosic biofuel by 2022. Here we require 49 

billion liters (13 billion gallons) of cellulosic ethanol assuming the rest is fulfilled by advanced biodiesel 

production. 
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Figure 8. Ethanol price projection scenarios based on AEO 2015 

 

 

 

Results 

Base Scenario Results 

Fig. 9 shows the ethanol production by feedstock in the absence of mandates 

with and without AF. In both scenarios ethanol production is projected to increase over 

time due to two major drivers within the FASOM model. First, ethanol price is projected 

to increase over time as pictured in Fig. 9 according to AEO2015. Besides, continues 

technology progress in agriculture sector is assumed in FASOM (as reflected by the crop 

yields) which benefits feedstock supply for ethanol production.  

Significant difference is observed between the AF and non-AF scenarios. With 

AF present, the total amount of conventional crop ethanol increased to 95 billion liters 

by 2050. No cellulosic ethanol production was projected under AF. When AF was not 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

2015 2020 2025 2030 2035 2040 2045 2050 2055 2060 2065 2070 2075

$
/L

it
er

Base Price_at_$0.79 Price_at_$1.06



 

41 

 

applied, amount of crop ethanol production increased to 114 billion liters by 2050. 

About 1.514 billion liters of cellulosic ethanol were also projected (about 0.83 billion 

from switchgrass, 0.57 billion from bagasse and the rest from agricultural residues) 

between 2020 and 2035. This shows market-driven ethanol production breaks the blend 

wall when neglecting AF, meaning omitting AF biases upwards the market potential of 

cellulosic ethanol. 

 

 

 
Figure 9. Ethanol Production by feedstock in base scenarios with and without AF 

 

  

0

20

40

60

80

100

120

2015 2020 2025 2030 2035 2040 2045 2050

B
ill

io
n

 L
it

er
s

CellEthanol NoAF CropEthanol NoAF CropEthanol YesAF



 

42 

 

The effect of AF stopped the model results from containing some unrealistic 

regional ethanol production (Fig. 10). Without AF (as indicated by the red lines), 

unrealistic spatially varying variations in ethanol production were observed relative to 

the with AF case (as indicated by the blue lines). For example, there were about 23 

million liters of cellulosic ethanol production in Pacific Southwest (PSW) in 2025 but no 

production before or afterwards. Similar short-term variations were also observed for 

other regions such as Pacific Northwest- east of the Cascade Mountain (PNWE), Great 

Plains (GP) and Lake States (LS). Such a production pattern would not be likely in 

reality as it implies building then abandoning expensive facilities. Again ignoring AF 

upwardly biases cellulosic and crop ethanol production, leading to an over-optimistic 

prediction of market penetration. 
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Figure 10. Ethanol production by region and feedstock in base scenarios with and without AF 
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Meeting RFS2 Volumes with and without Asset Fixity 

Fig. 11 shows ethanol production by region and type when producing the 

ultimate volumes contemplated in the RFS2 starting in the year 2020. As in the baseline 

scenarios, unrealistic, unstable production patterns were observed without AF. 

Illustrating this instability, about 8 billion liters of crop ethanol were produced in the 

Northeast (NE) in 2035 but this fell to to 4 billion by 2040 and disappeared completely 

by 2045 (Fig. 11a). Also, there was a more than 15 billion liters reduction in ethanol 

production in  the Great Plains between 2015 and 2020 with it moving to the Corn Belt 

region in 2020. This also happened on the cellulosic side with the Lake States showing a 

high volume of about 10 billion liters in 2020 but then it falling to less than 1 billion is 

the subsequent years. No such dramastic changes were observed once AF was 

incorparted with the exception of Great Plains during 2040-2045. However, note that the 

capacity there remained in production for 30 years then dropped out so it was in line 

with the economic life assumption of 30 years. Similar consistency was also observed in 

the cellulosic ethanol case (see. Fig. 11b).  

As mentioned in the scenario setup, for these runs the RFS2 mandate on 

cellulosic ethanol is incorprated in the model as a lower limit on production for the year 

2020. The shadow price on that lower limit gives the cost estimate of meeting the level 

of the cellulosic ethanol volume contemplated by the RFS2. Such shadow price for the 

maximum level of the RFS2 mandate (the EISA volume targets for 2022) in year 2020 is 

$0.43/liter ($1.62/gallon) in the AF scenario. On the other hand, without AF the shadow 
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price falls to $0.21/liter ($0.81/gallon). This indicates that neglecting the asset fixity 

concerns lead to a substantial underestimate of the cost of RFS2 implementation. 

 

 

 

(a) Crop ethanol 

 

(b) Cellulosic ethanol 

Figure 11. Ethanol production by region and type in RFS2 scenarios with and 

without AF 
Note: CB: Corn Belt; GP: Great Plains; LS: Lake States; NE: Northeast; RM: Rocky Mountains; PSW: 

Pacific Southwest; PNWE: Pacific Northwest - east of the Cascade mountain; SC: Southcentral; SE: 

Southeast; SW: Southwest.AF and cellulosic ethanol competitiveness  
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Fig. 12 shows the national levels of crop and cellulosic ethanol production for 

different price scenarios with and without AF, with the black bold line indicating the 

RFS2 target for cellulosic ethanol by 2022. Here we only see volumes approaching the 

level of the ultimate EISA mandates by 2025 if the price is $0.79 per liter or higher 

when AF presents. On the other hand, without asset fixity constraints the projected 

ethanol production is higher. Especially, an abrupt increase in cellulosic ethanol 

production is observed during 2040-2045 in the $0.79/liter scenario, indicating that once 

cellulosic ethanol production become profitable the production capacity increases by 80 

billion liters in five years. Again, this is due to the lack of asset fixity constraints which 

is not realistic and not observed in the AF scenario.  

A few more details are noteworthy. First, crop ethanol grows beyond today’s 

levels as the price escalates over time in all cases but at low prices, we see no real 

penetration from cellulosic sources.  However, as initial ethanol prices rise above 

$1.06/liter, then cellulosic ethanol becomes cost competitive surpassing the mandated 

49-billion-liter level by 2025. This was consistent with existing pricing situation under 

RFS2. As of June 2017, the market wholesale price for gasoline is $0.41/liter and the 

cellulosic Renewable Identification Number price is $0.7/liter, placing the cellulosic 

ethanol production cost at $1/liter4. 

Second, let us examine the feedstocks used. On the first-generation side corn was 

the dominant feedstock.  For cellulosic, agricultural residues, mainly corn stover, were 

                                                 

4 We used the following approximation formula as suggested by Dr. Wallace E. Tyner: 𝑃𝑐𝑒𝑙𝑙 = 𝑃𝑔𝑎𝑠 ∗

2/3 + 𝑅𝐼𝑁𝑐𝑒𝑙𝑙  where 2/3 adjusts the difference in energy content between gasoline and ethanol. 



 

47 

 

the dominant feedstock for cellulosic ethanol when prices were low. When ethanol price 

increased to $1.06/liter, a considerable amount of switchgrass based ethanol entered (see 

Fig. 13). 

 

 

 

(a) Non-AF model 

 

(b) AF Model 

Figure 12. Ethanol production by price and type with and without AF 
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(a) Cellulosic Ethanol Production with price at $0.79/liter  

 

(b) Cellulosic Ethanol Production with price at $1.06/liter  

Figure 13. Cellulosic ethanol production by feedstock in the AF model 
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Concluding Comments 

When a bioenergy plant is built, the corresponding capacity, processing 

technology and class of feedstock it can use are fixed in place and largely in operating 

characteristics until its retirement, which we call asset fixity herein.  Our results 

unsurprisingly show neglecting asset fixity causes production location and capacity to 

jump around from region to region and feedstock to feedstock in adjacent 5-year periods. 

This permits production to move to whatever technology and feedstock combination 

which is the cheapest in that particular time period ignoring continuity of constructed 

facility location and processing characteristics. Also it allows costs to ratchet down over 

time as technological progress develops without considering the fact that once a facility 

is constructed that a substantial amount of the technology and cost structure is locked in. 

Running with and without such fixity shows a substantial increase in the cost of 

production when the model is not allowed to “cherry pick” without locking in location 

and technology. We also find that ignoring asset fixity could substantially reduce the 

long run estimates of the cost of cellulosic ethanol production. Specifically, ignoring 

asset fixity would nearly halve the estimated cost of RFS2 implementation. 

This paper also examined the future economic competitiveness of cellulosic 

ethanol with different price projections with AF considered. The results showed that the 

minimal ethanol price to have free market ethanol production by 2022 at a volume 

approaching the EISA ethanol blending enabling legislation contemplated levels was 

about $1.06 per liter compared to the current ethanol price of about $0.48 per liter which 



 

50 

 

is well in excess of the highest historical ethanol price was $0.68 per liter in 2006 

(Nebraska Ethanol Board 2018). 
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CHAPTER IV 

WILL THE MARKET LEAD TO A CLEAN ELECTRICITY FUTURE OR DO WE 

NEED POLICY SUPPORT: AN ECONOMIC ANALYSIS 

Introduction 

Electricity generation is the largest single source of carbon emissions in the US 

with estimated CO2 emissions in 2016 amounting to 1.8 billion metric tons (MT) or 

about 35% of the US total (US EIA 2016b). Emissions from electricity generation vary 

by fuel with coal fired generation being the largest. In 2016 coal was used to fuel about 

30% of the electricity generation but was the source of nearly 70% of the CO2 emissions 

(see Fig. 14). On the other hand, renewable sources such as hydro, wind and solar do not 

emit substantial amounts of CO2 during the electricity generation process5.  

External damages from CO2 and other pollutant emissions are substantial and 

could be reduced if the generation mix shifted away from coal and other fossil fuel based 

approaches towards more renewables. The environmental and health benefits of 

replacing high-pollution fossil plants with renewable ones have been estimated to be 

between $14 to $170 per MWh (Buonocore et al. 2016). But, these costs are largely 

external to electric power generators’ operations and as such the electrical generating 

firms have little incentive to do replacements other than those justified by reduced fuel, 

capital and operations costs. 

                                                 

5 Note wind and solar electricity still have life-cycle co2 emission consequences from manufacture, 

transport and installation of wind turbines or solar panels with small amounts involved in maintenance. 

For review, discussion and estimates see https://www.ipcc.ch/pdf/assessment-

report/ar5/wg3/ipcc_wg3_ar5_annex-iii.pdf. 

https://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_annex-iii.pdf
https://www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_annex-iii.pdf
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Figure 14. U.S. electricity generation and associated GHG emission in 2016 
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dramatically in recent times and market share has accelerated, particularly for wind. 

Wiser et al. (2015) estimates wind based generation cost decreased by more than 90% 

between1980 and 2013 - from $0.5/kWh to $0.045/kWh. Lazard (2016a) estimates 

utility-level solar generation cost decreased by more than 85% between 2009 and 2015 - 
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These cost reductions have stimulated expanded deployment. In the US, 27 

gigawatts (GW) of new generation capacity was deployed in 2016 with almost a third 
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3.8% and 9.1% of total US renewable electricity and were the largest sources except for 

conventional hydropower (US EIA 2017b).   

In addition to production costs and GHG considerations, renewable electricity 

generating capacity requires significant upfront investment costs that locks in future 

operating characteristics and locations (again an asset fixity effect as discussed in the 

previous essay). Furthermore, wind and solar generation are not as reliable being 

intermittent depending on weather and sunlight. Furthermore electrical energy is costly 

to store in large quantities making dispatchable electricity sources such as coal and 

natural gas more valuable. As a result, Denholm and Hand (2011) argue that significant 

enhancements in storage or management of intermittent sources are needed to achieve 

high levels of wind/solar market share. 

Important questions going forward are: (1) Will we see a continuing large-scale 

market driven shift to renewable power? and (2) Can yet a larger-scale shift to 

renewables be achieved through policy support? Additionally, (3) if needed what form 

might policy support take among possible actions like direct R&D support to enhance 

technological progress, tax credits that reduce costs of production and investment, and/or 

carbon pricing of GHG net emissions or rewards to emission reductions. In this paper, 

we investigate the increase in market share of renewable generation under several key 

alternative assumptions regarding 

• Differing future technological progress induced generation cost reductions, 

• Increased prices for wind and solar power achieved through reliability 

enhancements via improved electricity storage and power system management, 
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• Possible carbon (GHG) emission pricing or reduction rewards. 

In doing this we will also incorporate asset fixity for renewable installation as 

discussed in the previous essay. Analytically we will employ rural sector modeling 

depicting agriculture and rural electricity generation powered by biomass feedstocks, 

wind and solar. We also examine the resulting environmental consequences, especially 

for CO2 and other greenhouse gas emissions. 

The study results indicate significant continued growth in renewables reaching 

25% market share by 2050 even without policy support. This shift results in a net GHG 

emissions reduction of 72 MT of CO2e annually. We also find that the renewable market 

share could be significantly increased with enhanced technological progress in wind and 

solar generation cost, with the penetration reaching 31% by 2050. We also find an even 

greater market share (67% by 2050) could be achieved under a carbon pricing directed 

toward emission reductions, or via less of a price discount for the intermittent sources 

achieved through improvements in energy storage and/or power system management. On 

the other hand, with low technological progress on wind and solar electricity, a lack of 

improved energy storage or GHG policy, renewables only achieve a 13% share by 2050. 

Background: Renewable Market Projection Literature 

Many studies have projected the future renewable electricity market share from 

an engineering perspective examining cost, system stability and environmental impacts. 

For example, Bloom et al. (2016) and GE Energy (2010) examined the implications of a 

30-35% electricity market share in Eastern and Western US, respectively by 2020. They 

found that at such levels of market share no extensive infrastructure investment was 
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needed, significant fuel cost could be saved and carbon emissions were also reduced. 

However, increasing market share of wind and solar did lead to higher operating cost 

and needs for additional attention in case of sudden supply shortfalls. Also Hand et al. 

(2012) examined an 80% US renewable electricity market share by 2050. The study 

showed that infrastructure investment was needed to achieve this level of renewable 

market share and that a diverse generation portfolio was preferred to reliance on a single 

source. 

Several other studies have examined achieving 100% renewable energy including 

both electricity generation and other sectors such as transportation. Jacobson (2015) 

examined 100% renewable energy in the US while Jacobson et al. (2017), Connolly et 

al. (2016), and Mathiesen et al. (2011) also looked at achieving this globally. These 

studies included the electrification of other energy sectors (especially transportation) to 

achieve carbon reduction targets and suggested using carbon pricing policies to offset 

the increase in production cost from 100% renewable  market share. While these studies 

provided valuable insights on the technical frontier there are significant economic, 

political and other realistic constraints that make made such levels hard to realize. Clack 

et al. (2017) was critical of the Jacobson et al. (2015) and emphasized that a transition 

towards a 100% renewable future would require an large infrastructure investment in 

energy storage/conversion systems, which they claimed was omitted in Jacobson et al. 

(2015) leading to an overly-optimistic cost estimates. 

A few studies have examined the future renewable market share rate allowing the 

rate to be determined by market forces. One example is the Annual Energy Outlook 
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(AEO) by the Energy Information Administration (EIA) which provides a long-term 

forecast using the National Energy Modeling System (NEMS). AEO also provides a 

forecast under scenarios with varying economic, and fossil fuel price and fuel 

availability conditions. Details on the AEO analysis is available at EIA (2017a). 

However, since AEO generally focuses on the entire US energy sector and top-level 

political and/or socioeconomic conditions, its spatial resolution on renewable electricity 

is relatively coarse and the sensitivity analysis within AEO scenarios do not provide 

enough flexibility reflecting variations related to the intermittent nature of wind and 

solar, or alternative technology progress rates as we would here. More specifically the 

analysis herein will forecast market driven increase in share of renewable electricity and 

how it changes under varying production cost, energy storage or carbon price conditions 

for renewable electricity production. 

Methodology 

To carry out this study we use a spatially disaggregated model that gives regional 

potential supplies of agricultural biomass feedstocks along with potential wind and solar 

capacity and cost. The model also has dynamic features depicting evolving demand over 

time, plant obsolescence, facility construction, asset fixity and subsequent operation.   

To undertake this study, we expand upon the multi-period Forestry and 

Agriculture Sector Optimization Model (FASOM) (Adams et al. 2005; Beach and 

McCarl 2010). FASOM is a widely-used sector model that has been applied in studying 

agricultural, climate change, GHG emission and bioenergy issues. In the energy arena it 

has been used to analyze agricultural and forestry products as feedstocks for bio-
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electricity and biofuels looking at market implications, competitiveness and GHG 

emission effects (McCarl et al. 2000; Murray, Sohngen and Ross 2007; Beach and 

McCarl 2010). For this study, we expand FASOM to include wind and solar based 

electricity generation.  

Adding Wind and Solar to FASOM 

We add wind and solar location-specific capacity and cost information to 

FASOM reflecting a cost volume relationship, capacity and functional life of facilities. 

The specification is based largely on two NREL data sources: 1) the Regional Energy 

Deployment System (ReEDS) model and 2) the 2016 Annual Technology Baseline 

(ATB). ReEDS is a long-term, capacity expansion, spatial model for continental US (see 

details in Eurek et al. (2016)). For this study, ReEDS provides the spatially 

heterogeneous capacity data for both wind and solar. Notably, ReEDS categorizes 

renewable sources into different resource classes based on their quality (namely speed 

for wind and radiation for solar). ReEDS also provides the grid interconnection cost for 

potential newly-added capacities since it varies by region depending on location and 

local power system characteristics. ReEDS divides continental US into 356 regions for 

wind data and 154 regions for solar data. 

The ATB is a set of energy technology input assumptions maintained by NREL 

for energy modeling. It also contains a diverse set of potential future scenarios 

depending on the rate of technology progress rates (e.g. high-, mid- and low-cost 

scenarios). See details about ATB from Hand and Kurup (2016). In this study, ATB 
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provides production cost data (covering construction, maintenance and operation cost) 

for wind and solar electricity which is location-free conditional on given resource class. 

Regional generation costs and capacity 

Including the ReEDS data into FASOM requires dealing with the differing 

spatial resolutions. Particularly, FASOM has 11 aggregate market regions along with 

biomass feedstock production in 63 regions6. To include the more spatially disaggregate 

data from ReEDS, we represent a multi-step, escalating cost, supply curve of wind and 

solar possibilities within each FASOM region. This is done by sorting the ReEDS data in 

each FASOM region by generation cost from the cheapest to the most expensive then 

entering this as a series of alternative steps limited by capacity. In turn, the model 

solution will walk up the generation cost curve until the marginal cost matches the cost 

of generation via conventional fossil fuel sources considering fossil operation and 

possibly carbon prices. Detailed discussion on this procedure is in Appendix 1. 

Maximum rate of market share – demand quantity 

Another model feature involves the rate at which renewables can penetrate the 

market. We set the maximum rate of increase in market share for renewable electricity 

equaling to the projected electricity demand growth rate plus retirement in existing 

generation plants reaching the end of their economic life. Specifically, we assume the 

annual electricity demand growth rate is 0.77% based on US EIA (2016a) and that 

                                                 

6 FASOM divides the contiguous U.S. into 63 regions for agricultural production and 11 regions for 

secondary good processing (i.e. making ethanol and diary product). 
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existing coal and natural gas plants are retired once they reach 40 years old based on 

ATB 2016. 

Renewable infrastructure investment 

Based on ATB 2016 estimates, we assume that wind and solar capacity lasts 20 

years and biomass 25 years. The renewable plants once constructed are treated as an 

immobile asset fixed in place for their economic life. We also assign up-front fixed cost 

of deploying the wind and solar all in the year of construction. We then include in 

FASOM a facility operation variable which reflects generation limited by constructed 

capacity incurring variable costs.  

Wind and solar reliability discount 

Intermittent sources like solar and wind power have different reliability 

characteristics relative to power generation fueled by coal and natural gas. To insure 

reliability under current conditions backup power plants (usually based on fossil fuels) 

are needed to ensure power system stability, which results in higher cost (Hirth 2013). 

To reflect this, we follow Hirth (2013) and include price discounts for wind and solar 

generation that grow as market share increases (Fig. 15). For example, when the market 

share of wind electricity reaches 10 percent, a 16% discount is applied to the price of 

wind electricity, suggesting that wind electricity needs to be cheaper to be competitive 

(more details on the price discount specification appears in Appendix 3). 

 

 



 

60 

 

  

Figure 15. Price discount premium as market share increases for wind and solar  

 

 

 

Tax Credits 

In representing costs of facility construction, we consider the Investment Tax 

Credit (ITC) that following DOE documents (US Congress 2011), which is a 30% tax 

rebate for solar investment starting in 2015 phasing down to 10% by 2020 and then 

remaining at 10% from then on. Similarly, the assumed ITC for wind is 10% in 2015 

phasing down to 0% in 2020 and thereafter. 

GHG emissions 

We also compute GHG emission reductions with a shift in electricity generation 

towards renewable energy. This is done assuming that renewables displace construction 

of new natural gas based generation. Currently, new generation plants are mostly natural 

gas or renewable plants (US EIA 2017c). Thus, when a new renewable plant is 

constructed we credit GHG savings as the amount estimated by life-cycle GHG 
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accounting over natural gas minus that for the renewable source chosen. For wind and 

solar we use the average offset computed across the studies by IPCC (Bruckner et al. 

2014) and NREL (Lifset 2012) as in Fig. 16. The resultant GHG emission offset from an 

additional kWh of wind and solar electricity production is 457 and 422 grams CO2e, 

respectively. Emission accounting for biomass electricity follows the procedures in 

McCarl et. al (2000) where the GHG offset is still calculated from the amount of natural 

gas electricity replaced but the emissions vary by feedstock accounting for different farm 

management practices, feedstock heating value, etc. and is endogenously computed in 

FASOM. 

 

 

 

Figure 16. Comparing life-cycle GHG emissions from wind, solar and natural gas 

electricity estimated by the IPCC and NREL 

 

 

 

  

0

100

200

300

400

500

600

Wind Solar NG

gr
am

 C
O

2
e 

p
er

 K
W

h

IPCC NREL



 

62 

 

Prices for Electricity  

We assume that new renewable electricity producers are price-takers in the 

market and face a price for generated electricity that equals the levelized cost of 

electricity (LCOE) generated from natural gas fired generation as the backstop price less 

any price discount for intermittency. This backstop price is increased by the external 

social cost when carbon pricing is simulated. This results in new investment in 

renewable electricity capacity only when the cost is at or below the backstop price (less 

any discounts). The LCOE of natural gas electricity we used was drawn from ATB 2016 

($67/MWh).  

Technology Progress Production Cost Assumptions 

Technological progress has been crucial to the recent increase in market share 

and relative cost of wind and solar electricity. This will undoubtedly remain so for the 

near future as the ATB 2016 projects further cost declines and efficiency gains. In this 

study, we will adopt the mid-cost scenario from ATB 2016 for wind and solar cost 

projection over time. For biomass based generation we do not assume progress in 

combustion efficiency but do assume gains in yield per acre which in turn lowers 

hauling and farm production cost. More details on the technical progress assumptions are 

given in Table 6 and Fig. A4. 
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Table 6.  Assumptions on technical progress over time 

Resource Type Technical Progress Assumptions 

Wind (1) Capacity factor* of wind farms increases by 9-13% from 2015 by 2050 

depending on regional characteristics. 

(2) Capital cost decreases in most regions (by $48-$212/kW depending on 

region). Increases in capital and or operating cost is observed in regions 

with less desirable conditions (i.e. projected capacity factor less than 

30%). 

Solar (1) Capital cost of installing capacity decreases from $1898/kW in 2015 to 

$823/kW in 2050 for all regions (56%). 

Biomass (1) No progress in electrical generation per ton of feedstock. 

(2) Assumes biomass yield increases over time based on historical 

observed rate of increase in sorghum yields by region.  This reduces 

hauling and feedstock production cost per ton. 

* The capacity factor is the unitless ratio of an actual electrical energy output over a given period of time 

to the maximum possible electrical energy output over the same amount of time. Nuclear plants generally 

have the highest capacity factor (around 90%) while wind farms are much lower (average 36.1% for 

existing wind farms) and is increasing with more efficient wind turbine design. 

 

 

 

FASOM Baseline Results 

The initial analysis involved runs under the base technology assumptions above. 

Fig. 17 shows the consequent increase of renewable electricity market share by source. 

Here we see substantial market share by renewables with market share rising from 6% in 

2015 to 25% in 2050 (1.25 billion MWh). Wind generation is the leading renewable 

source deployed and rises from a 4% share in 2015 to 14% by 2050. Solar starts at about 

0.5% in 2015 and rises to about 6% by 2030 and stays relatively constant thereafter. 
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Biomass electricity starts at 1% then rises to about 5% by 2050. The growth in 

renewables projected here is a result of continued technological progress projections 

which would involve continuing tax credits and current publicly supported wind and 

solar R&D such as the ITC. These results show that significant expansion is likely to 

occur even without additional policy support. 

 

 

 

Figure 17. Projected renewable generation by source in baseline 

 

 

 

The pattern of renewable deployment varies spatially (Fig. 18). Wind generation 

first appears in the Great Plains and Northern Texas where the cheapest wind power is 

available. Then wind deployment gradually spreads throughout the central US, (mainly 

in the Great Plains. Solar deployment is more concentrated, with almost all solar plants 

in the Southwest and California. The amount of biomass capacity built is by far the 

smallest with it mainly occurring in the Southeast in areas suitable for switchgrass. 
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Figure 18. Renewable generation distribution in baseline scenario 

 

 

 

Model Validation 

We can partially validate the model by comparing baseline results with observed 

market share of renewable electricity. Fig. 19 shows the FASOM projected renewable 

generation during 2015-2019 versus real-world data for 2013-2016 available from US 

EIA (US EIA 2017b). The predictions of the model are close to the reported data in 
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magnitude but generally smaller and it is likely due to our omission of local policy 

incentives (such as the State Renewable Portfolios).  

 

 

 

Figure 19. Projected generation for FASOM baseline 2015-2019 versus real-world 

production  
Note: The solid bars are real-world data and dash bars are from FASOM projection 
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behind the high biomass prediction is the wind and solar price discounting with 
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worrisome considering AEO tends to be conservative in its renewable electricity 

forecasting (US EIA 2016c). 

 

 

 

Figure 20. Projected renewables generation in FASOM baseline versus AEO case, 

2015-2050  

 

 

 

Overall, we feel the model projections appropriately show comparable trends 

with real-world data and AEO projections and is thus suitable for use in studying the 

issue of policy support. 
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intended to increase market share such as 1) enhancing technical progress in wind and 

solar cost reduction, and 2) enhancing technical progress in wind and solar reliability via 

improved storage or operations, 3) mandating increased deployment, and 4) rewarding 

lower GHG emission rates. Here we examine changes in renewable market share relative 

to such possible directions. 

Technological Progress on Production Cost 

A key factor in past and future market share of renewable electricity involves the 

degree to which solar and wind costs will drop. In the baseline, we used the mid-cost 

projection from ATB 2016 for wind and solar along with an assumption about growth in 

biomass feedstock yield per acre (see section 3.3 for details). For the sensitivity analysis 

here we included two additional scenarios (High-Tech and Low-Tech) based on the low- 

and high-cost ATB 2016 scenarios reflecting greater or lesser policy based incentives for 

direct investments in technological progress. Specifically, we have the following 

mapping: 

• Baseline: Mid-cost, ATB 2016 

• High-Tech: Low-cost, ATB 2016 

• Low-Tech: High-cost, ATB 2016 

Details on the high- and low-cost ATB scenarios and how they are different from the 

mid-cost scenario is given in Appendix 2.  

Fig. 21 presents the results under these three scenarios. Under high technological 

progress, market share of renewables is larger than under the base with 2050 with the 

wind generation market share increasing from 14% to 18% and solar market share 
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increasing from 6% to 10%. On the other hand, under the low technological progress 

future the market share falls substantially with renewable electricity only having a 13% 

share in 2050 total as compared to 24% in the baseline. We also see a minimal role for 

solar. Thus, if a policy goal is to have larger shares of renewables the incentives for 

technological progress on wind and solar generation R&D may need to be maintained or 

enhanced. 

 

 

 

Figure 21. Projected renewables market share under alternative cost reduction 

scenarios 

 

 

 

Renewable Price Discounts Results 

Next, we examined the impact of reducing the renewable price discount arising 

from potential improvement in electronic energy storage or power system management. 

Policy could reduce such price discounts in two ways. First, there could be accelerated 

investment in or direct development of cheap, large-scale energy storage methods 
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(Beaudin et al. 2010).  This could also involve development of a vehicle-to-grid storage 

system (Hodge et al. 2010).  Second, improved wind/solar power forecasting (Martinez-

Anido et al. 2016) or improved scheduling and inter-connection could lower the cost of 

managing intermittent generation.  

To represent these technological perspectives, we considered two alternative 

scenarios: 

• No Discount: 0% price discount for wind and solar based electricity assuming 

extreme storage improvement  

• Half Discount: 50% of the discount assuming moderate storage improvement.  

The results are shown in Fig. 22. Reduction in the price discounts has a major 

influence on renewable market share when the price discounts are cut in half, especially 

for wind. Under the case with no price discount, there is a substantial increase in 2050 

projected wind and solar market share with the total share rising above 60%. On the 

other hand, biomass electricity is almost eliminated by 2050. This indicates that 

improvement in energy storage or related improvement in power system management 

will greatly increase wind and solar competitiveness as also argued by Hirth (2013), 

suggesting policy incentives or direct R&D efforts in that area would likely have a major 

influence on market share. 
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Figure 22. Projected renewables market share under alternative energy storage 

scenarios 

 

 

 

Effects of Carbon Pricing 

Another possible policy direction involves valuation of the environmental benefit 

of GHG emission reductions when employing renewable electricity (Baker III et al. 

2017; McCarl and Schneider 2000). This could involve imposition of some sort of a 

limit on emissions with an associated trading market like might have happened under the 

now inactive Clean Power Plan or imposition of a form of a carbon tax. Via either 

mechanism carbon emission reductions would have some value and we simulate this 

through the use of a carbon price. In forming these scenarios we used Low CO2 and 

high CO2 price scenarios based on those developed by the US Federal Government 

Interagency Working Group on the Social Cost of Greenhouse Gases (2016) as 

reproduced in Table 7.  
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Table 7. Social cost of CO2, 2015-2050 ($/MT) adopted from US Federal 

Government Interagency Working Group 
Year Low High 

2015 $11  $36  

2020 $12  $42  

2025 $14  $46  

2030 $16  $50  

2035 $18  $55  

2040 $21  $60  

2045 $23  $64  

2050 $26  $69  

Discount rate 5% 3% 

 

 

 

The market share results for alternative carbon prices are in Fig. 23. Not 

surprisingly, the results show carbon prices bring about significant increases in 

renewable market share compared to the baseline case. Generally, across the scenarios 

we see wind exhibits the largest gains while at low carbon prices biomass generated 

electricity is second and solar third. However, as the carbon prices rise then solar 

becomes the second most favored and biomass share becomes smaller. Across these 

assumptions, the market share of total renewables increases to roughly 40% under the 

lower carbon price scenarios and 62% under the higher carbon price.  
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Figure 23. Projected renewables market share under alternative CO2 price 

scenarios 

 

 

 

Joint Scenarios 

Additional scenarios were also run jointly reflecting altered technological 

progress along with carbon prices. These results indicate show that carbon price can help 

overcome slower technological progress (see Appendix 4). 
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baseline scenario while the Low-tech scenario leads to extra 28 million CO2e MT of 

emissions. The incorporation CO2 price at $11 and $36 per MT would lead to an 

additional GHG emission offset of 26 and 78 million MT respectively. Wind is the 

largest contributor due to its better life-cycle emission performance. We also note that, in 

two scenarios with reduced price discounts, there is increase in GHG benefit from wind 

and solar electricity but slight decrease from biomass. No significant changes are 

observed in the agricultural sector or from biofuel production.  

 

 

 

Figure 24. Annualized benefit in GHG emission reductions compared with baseline, 

2015-2050 
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Discussion and Conclusion 

Our study examines how changes in the technology and possible policy forces 

increase the share of renewable electricity in the power system and accompanying 

reductions in GHG emissions. Several findings emerge. 

First if currently observed rates of technical progress persist then we project wind 

and solar will achieve a 25% share by 2050 with an accompanying emission reduction of 

72 million MT of CO2e annually or about 4% of today’s GHG emission from US 

electricity sector. The magnitude of this market share basically matches the projection in 

the EIA Annual Energy Outlook.  

Second, if additional penetration is desired several developments would push 

beyond a 25% share for renewable electricity generation. One development involves 

accelerated technical progress. In particular, on average a 20% reduction in wind and 

45% reduction in solar electricity production cost led to a projected renewable market 

share of 31%. We also note a reduction in technical progress rate could render an almost 

stagnant share compared to today so a continued R&D role would appear to be 

beneficial and perhaps essential. Another direction involves enhanced development of 

storage or operating means to improve solar and wind reliability in turn reducing price 

discounts. Such a development in the form of a halving of the price discount pushes 

market share up to 42%. Finally, rewarding greenhouse gas emission reductions also 

increased market share substantially with it rising to nearly 37% with CO2 at $11/MT 

and 62% at $36/MT.  
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Overall we find a substantial increase in market share if technological 

development proceeds at anticipated pace but that the share can be more than doubled 

under reliability increasing (battery storage) technological developments or the 

rewarding of GHG emission reductions.  
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CHAPTER V 

CONCLUSIONS 

Society faces major interrelated challenges in maintaining food and energy 

security as well as in addressing climate change. This dissertation reports the results of 

analyses pertaining to issues involving agriculture, renewable energy and climate 

change. Specifically, in a US setting, the following items are addressed: 

• The effects of climate change on crop productivity; 

• The economic competitiveness of cellulosic ethanol; 

• Electricity market penetration and how it changes under alternative 

potential technology, reliability and carbon pricing developments. 

 Chapter II (the first essay) deals with econometric estimation of climate impacts 

on corn yields in the US Corn Belt. Specifically, we address ways of reducing problems 

raised by omitted, regionally correlated variables via application of a model that 

considers regional correlation in omitted variables.  In particular, the Spatial Durbin 

Model is applied to a corn yield panel data set in the geographic region of the Corn Belt 

states. This model specification, which has not been previously used in such a setting, 

assumes the model residuals contain spatial patterns rather than being idiosyncratic, and 

also allows the residuals to be correlated with the independent variables. After 

estimation out-of-sample goodness of fit statistics indicate that the spatial model 

outperforms non-spatial, conventional panel models, especially in extreme drought years 

although the difference in the coefficient estimates is fairly small. Also, the study results 

show an inverse-U shaped relationship between temperature and yield with low and high 
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temperatures causing substantial declines as has been found in a number of previous 

studies. 

Chapter III (the second essay) reports on an investigation of the projected market 

penetration of cellulosic ethanol with and without consideration of asset fixity. Namely, 

whether or not a market share analysis considers or neglects the fact that bio-refineries 

once built become fixed assets in a particular location, requiring particular types of 

feedstock and contain a fixed, somewhat inflexible technology. In doing the study 

optional asset fixity characteristics for biorefineries are added into the FASOM model 

which is run with and without those features.  Results show that omission of asset fixity 

overstates market penetration substantially yielding unrealistic production patterns with 

biorefineries jumping around from region to region and feedstock to feedstock in 

adjacent 5-year periods as the model exploits low cost situations. In terms of market 

penetration, the model with and without asset fixity is used to investigate cellulosic 

ethanol market penetration under alternative ethanol prices in the absence of mandates. 

The results show that with asset fixity cellulosic ethanol production does not rise to the 

levels contemplated in the Energy Independence and Security Act until the ethanol price 

is at or above $1.06 per liter ($4 per gallon) which considering energy equivalence 

corresponds to $1.59 per liter ($6 per gallon) of gasoline. To put this into context, this is 

56% higher than the highest observed ethanol price in history ($0.68 per liter in 2006).  

Chapter IV (the third essay) presents results from an examination of the US 

renewable electricity future. Specifically, the market penetration of wind, solar and 

biomass based electrical generation is investigated under current projections of 
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technological progress and alternative market conditions. To do this the FASOM model 

is augmented to include wind and solar based electricity generation. The results indicate 

that if currently observed rates of technical progress persist, that renewable electricity 

will achieve about a 25% share of the electricity by 2050, which is consistent with AEO 

projections. We then investigate market penetration sensitivity to (1) future reductions in 

wind and solar generation costs, (2) reductions in price discounts facing renewable 

electricity due to increases in reliability, and (3) carbon pricing of greenhouse gas 

offsets.  We find each of these developments significantly increase future market share, 

with developments in reliability (through perhaps cheaper, more capable batteries) and 

carbon pricing showing potential of achieving more than a 60% market share by 2050. 

Naturally, this work is subject to a number of limitations some of which raise 

possible future research directions. In Chapter II, the use of spatial models mitigates but 

does not eliminate omitted variable bias and a Monte Carlo study might be done to see 

how successful it is. Also, our model assumes a stationary relationship between the 

included and omitted variables, and stationary spatial correlations between regions.  

Such an assumption might not hold in the long-term as climate change might change 

joint distributions and correlations. In the other words, climate change might not only 

change crop yields but also their spatial correlation over time. More flexibility could be 

added to the model using perhaps hierarchical modeling (Gelman 2006) and allowing the 

spatial correlations to vary over time. Perhaps a Bayesian approach such as Hamiltonian 

Monte Carlo could be used (Hoffman and Gelman 2011). Finally, the evidence of spatial 

model improvement may not be universally true as it is only tested in our specific US 
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corn yield case but cases elsewhere may find stnger or weaker reults. Thus extension to 

other crops in other regions would be valuable. 

In Chapter III, an analysis was presented regarding the effects of alternative 

ethanol prices, ceteris paribus.  In particular the production and input supply costs were 

held constant nor were there any shifts in commodity demands. However in the real 

world, ethanol price is related to oil prices which influences the costs of inputs, 

production, transportation and levels of consumer expenditures. Such considerations 

would likely increase market penetration costs. Thus, this work could be extended by 

incorporating the effects of altered energy and associated ethanol prices on input supply 

and output demand. The essay also ignored possible retrofits allowing existing plants to 

use alternative feedstocks or lower cost technologies. Future research could include such 

a possibility. 

For Chapter IV, the analysis has several limitations. First, electricity demand and 

fossil fuel supply are treated as exogenous with supply at a fixed price. Given the large 

potential market share of renewable electricity price effects would happen and those 

could affect both the prices of fossil fuel based generation and the demand for electricity. 

Future extensions could be done by adding endogenous electricity demand as well as 

supply curves for fossil inputs. Second, for solar the data used were based on utility-

scale implementations and more distributed solar could be included. Third, policy affects 

technology adoption and in this analysis only one national level renewable electricity 

policy – an Investment Tax Credit - is included in the model whereas regional and other 

incentives or renewable requirements could be included. Similarly, the electricity price is 
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assumed to be the same country-wide and this could be relaxed including geographically 

differing prices and markets could be relaxed in future study. Fourth, relaxing the price 

discount for intermittent sources would require investments in either electricity storage 

or a more advanced power management system, which are not reflected in this study. 

Future extensions could be added based on the literature on energy storage utilizing  

procedures like those in Lazard (2016b). 
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APPENDIX 

Appendix 1. Wind and solar supply and cost from ReEDS to FASOM 

The FASOM processing regions which divides Continental US into 11 

processing regions (Fig. A1) are much larger than spatial resolution of ReEDS, which 

divides Continental US into 154 regions for solar and 356 regions for wind. We assign 

each ReEDS region to a FASOM region. As a result, we can generate the supply curve 

for a FASOM region by horizontally aggregating all the supply curves of those ReEDS 

regions that are contained in that FASOM region. This is done for both wind and solar.  

For each one of the 356 wind regions, ReEDS gives a stepwise supply curve for 

wind electricity production. Moving along the supply curve from low to high gives us 

the quantities of wind electricity that could be generated in that ReEDS wind region 

from cheapest to most expensive. Solar electricity in ReEDS is defined in the similar 

way. 

One key factor that drives up the production cost along the stepwise supply curve 

within a ReEDS region is that ReEDS categories the resources (namely wind and solar) 

by their quality and quantifies the capacity for each category. For example, ReEDS 

divides wind resource into ten categories by wind speed from low to high (the so-called 

Tech-Resource Group (TRG) from TRG1 to TRG10). As a result, the production cost of 

wind electricity for a given region goes up as the good-quality resources are exploited 

and the inferior ones enter production. Solar follows the similar way except it is divided 

into three categories (PV14, PV20, PV28 by quality from low to high). More 

explanation is available in the ReEDS documentation by Eurek et al. (2016). 
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Figure A1.  FASOM processing regions  
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Appendix 2. ATB cost scenarios 

The three scenarios in the Annual Technology Baseline 2016 (namely high-cost, 

mid-cost, and low-cost) are important cost assumption in this study as we mentioned in 

section 5.1. Detailed assumptions used in the three ATB cost scenarios are available at 

Hand and Kurup (2016). Here we introduce briefly how the production cost projections 

for wind and solar vary among different cost scenarios. 

According to ATB 2016, resources of different quality classes response 

differently towards technology progress, which is represented in Fig A2. The solid lines 

in Fig A2a represents the change of levelized wind electricity production cost over time 

in baseline scenario due to projected technology progress (only TRG1 and TRG10 are 

showed due to limited space but the rest classes show similar patterns). Comparing the 

Baseline and the High-Tech scenarios (as represented by the dotted lines), TRG10 wind 

has larger reduction in production cost than TRG1 wind. On the contrary, TGR10 wind 

has larger increase in production cost than TRG1 wind when comparing the baseline and 

Low-Tech scenarios (as represented by the dashed lines). Interpretation for solar is very 

similar as showed in Fig. A2b. 
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(a) Production cost of wind electricity in $/MWh by scenario  

 

(b) Production cost of solar electricity in $/MWh by scenario  

Figure A2. Wind and solar electricity cost projection with alternative technology 

scenarios  
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Appendix 3. Price discounts for wind and solar with high market penetration 

The price discount is a key assumption used in this study to address the 

intermittency nature of wind/solar electricity. This assumption is based on both 

empirical data and electricity model results. Empirical price discounts for wind and solar 

with increasing market share could be calculated as the ratio of the hourly wind/solar-

weighted average wholesale electricity price and time-weighted average wholesale price 

for the entire electricity market. Hirth (2013) showed that the empirical discounts for 

wind and solar in Germany was decreasing with increasing market share. Specifically, at 

close-to-zero market share, price discount for solar was greater than one. The reason was 

that, at this stage the non-dispatchable effect was minor and solar electricity generation 

is positively correlated to high demand, i.e. for cooling purpose. 

Hirth also (2013) estimated through an electricity sector model the discounts for 

wind electricity ranged from 1.08 with zero market penetration to 0.65 with 30% 

penetration. Similarly, the he estimated the discount rates for solar ranged from 0.9 with 

zero MP to 0.55 with 15% penetration. These estimates were used in this study with two 

changes: (1) discount rates outside the range of estimation (i.e., market share greater 

than 30% for wind and 15% for solar) was extrapolated with arbitrary small value when 

market share equaled 100% (0.2 for both wind and solar in this case), and (2) discount 

rates for solar with small market share was tuned upwards based on empirical data. The 

final price discounts are illustrated as in Fig. 15. 
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Appendix 4. Additional scenarios 

Since projected renewable electricity market penetration is slow (zero for solar) 

under the low technology progress scenario, we explore whether policy support can 

enhance penetration. Consequently, two more scenarios with CO2 prices are ran and are 

summarized in Fig. A3. The 2050 total market penetration for renewable electricity even 

with low technological progress increases to 29% and 42% with the low and high CO2 

prices, respectively. Moreover, wind seems to benefit more from CO2 pricing, probably 

because its production cost is already at a low level. On the other hand, solar electricity 

remains low even with high CO2 prices. This indicates that solar technology 

progress/cost reduction is still a prerequisite for widespread commercialization. 

 

 

Figure A3. Projected renewables penetration with low technology progress and 

CO2 pricing  
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