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ABSTRACT 

 

 The oil and gas industry has a long history of underperformance relative to 

forecasts. Underperformance in the industry has been directly linked to poor assessment 

of uncertainty. Uncertainty is large in the context of unconventional reservoir 

development. Therefore, reliable assessment of uncertainty is necessary for the 

optimization of decision making in unconventional reservoir development. Once 

uncertainty has been reliably assessed, the financial benefit of reducing each uncertainty 

should be estimated. Not all uncertainties are worth reducing; in fact, the value driven by 

the reduction of some uncertainties may be less than the cost of acquiring the relevant 

data – meaning that the data acquisition hurts financial performance. Yet, a well-

established method of quantifying financial support for data-acquisition decisions in a 

multiple-variable context is largely absent from the literature related to unconventional 

reservoir development. Value-of-information analysis quantifies the financial benefit of 

reducing the uncertainty of variables within specific decision contexts. In this work, 

multi-variable value-of-perfect-information analysis was applied to a well-spacing 

decision model in the context of unconventional reservoir development. 

 The application of multi-variable value-of-perfect-information analysis to an 

Eagle Ford well-spacing decision context indicated that the parameters for which 

uncertainty reduction would provide the most value are commodity price, created-

fracture propagation, and matrix porosity. This analysis also indicated that reducing the 
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uncertainty related to matrix permeability and natural fracture density would provide 

little value in the analyzed well-spacing decision context. 

The effect of biases in uncertainty quantification on multi-variable value-of-

information calculations was investigated, and it was demonstrated that biased 

uncertainty assessment for one variable can skew value-of-perfect-information 

calculations for all uncertain variables and can change value-of-perfect-information 

rankings.  

A rational approach for data-acquisition decisions is achievable through creation 

of a reliable decision model and multi-variable value-of-information analysis. 

Widespread awareness of the power of multiple-variable value-of-information analysis 

to justify data acquisition and focus research efforts could lead to increased application 

of value-of-information analysis. Increased application should lead to improved decision 

making and financial performance in unconventional reservoir development. 
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NOMENCLATURE 

 

bbl Barrel, a unit of volume equivalent to 5.615 cubic feet 

bbl/day Barrels per day of oil production 

CAPEX Capital expenditure 

DB Directional bias 

E&P Exploration and Production 

EIA Energy Information Administration 

EOL Expected opportunity loss 

EDFM Embedded-discrete-fracture-model 

EV Expected value 

EVWPI Expected value with perfect information 

ft feet 

IntSpacing Interference spacing 

Mcf Thousand cubic feet 

mD millidarcy 

mm millimeter 

nD nanodarcy 

NPV Net present value 

Oil Pr. Oil Price 

OL Opportunity loss 

OPEX Operational expenditures 



 

vii 

 

P10 10th percentile 

P50 50th percentile 

P90 90th percentile 

qi Initial rate of oil production (bbl/day) 

SD Standard deviation 

VOI Value of information 

VOII Value of imperfect information 

VOPI Value of perfect information 
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1.  INTRODUCTION  

 

1.1  Background 

Though the petroleum industry has existed for well over a century, development 

of unconventional (shale oil/gas, tight oil/gas, and coal-bed methane) reservoirs is a 

relatively new practice. It was not until the 2000’s that the practices of horizontal drilling 

and hydraulic fracturing were paired together, with the result of commercial oil and gas 

production from unconventional reservoirs. Since unconventional-reservoir development 

is such a new practice, the physics of fluid flow in unconventional reservoirs is not well 

understood in comparison to conventional reservoirs. For this reason, reliable 

deterministic predictive models have not yet been developed for unconventional 

reservoirs. Until reliable deterministic models are developed, probabilistic models can be 

very helpful in making sound decisions under large uncertainty.  

The petroleum industry has a long history of poor performance relative to 

forecasts (Capen 1976, Brashear 2001). This poor performance was largely due to poor 

uncertainty assessment in the development of conventional reservoirs. The introduction 

of unconventional-reservoir development, which involves a larger amount of 

uncertainty, calls for a focus on improved quantification of uncertainty. If quantification 

of uncertainty is improved, forecasts of project financial performance and, thus, decision 

making will generally be improved (McVay and Dossary 2012). To truly optimize the 

decision-making process in the context of exploration and production (E&P), it is 

important to not only accurately assess each uncertainty but also to assess the financial 
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benefit of reducing each uncertainty through measurement. Value-of-information (VOI) 

concepts can be used to prioritize uncertainties that would benefit from reduction and, 

thus, guide data acquisition and research recommendations. For the purposes of my 

research, information is defined as data acquired or research efforts undertaken 

pertaining to a particular variable by an uncertainty assessor that lead to a decrease in the 

standard deviation of the assessed probability mass function for that variable. 

 

1.2  Status of the Question 

It is well established in the oil and gas literature that poor uncertainty assessment 

leads directly to poor decision making (Capen 1976, Brashear et al. 2001). In the context 

of petroleum-reservoir development, improved decision making leads to improved 

financial performance. McVay and Dossary (2012) quantified the impact that biased 

uncertainty assessment has on oil and gas portfolio performance. They assumed that all 

human biases present in the assessment of the value of individual petroleum projects can 

be summarized in two overall biases: overconfidence bias and directional bias. 

Overconfidence bias is associated with the range of possible outcomes while directional 

bias is associated with the central tendency of the assessed uncertainty. They created a 

model that quantified the relationship between unbiased and biased distributions in terms 

of numerical overconfidence and directional-bias values. These biases were then applied 

to a portfolio of projects with pre-defined distributions of true project value so that 

project selection under biased uncertainty assessment could be compared to project 

selection under unbiased uncertainty assessment. This study showed that even a 
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moderate amount of overconfidence and directional bias can lead to an expected 

portfolio disappointment (estimated value minus realized value) of over 30%. These 

results show that accurate uncertainty assessment leads to significantly improved 

financial performance in the context of oil and gas projects. This should be especially 

true in the context of unconventional reservoir development, which generally has more 

uncertainty than conventional reservoirs. 

Although McVay and Dossary provided a thorough assessment of the cost of 

biased uncertainty assessment, they only minimally addressed how to improve 

uncertainty assessment. It has been suggested by Capen (1976) and other authors that the 

best way to improve uncertainty assessment is through look-backs and calibration. Look-

backs refers to comparing actual results to previous probabilistic predictions and 

calibration is the measure of how well the probabilistic predictions compared to actual 

results. Fondren et al. (2013) developed a relational database application demonstrating 

that use of look-backs and subsequent calibration of probabilistic predictions improves 

uncertainty assessment significantly. They presented three experiments, each showing 

that calibrating probabilistic forecasts based on the degree to which historical 

probabilistic forecasts have been incorrect significantly improves uncertainty 

assessment. The point is that assessing your uncertainty about a given quantity is an 

entirely different skill than assessing the quantity itself, and this skill is sharpened 

through look-backs and calibration. Assessing uncertainty is a foundational element of 

VOI calculations. Therefore, uncertainty assessment must be calibrated and reliable for 

VOI calculations to be meaningful.  
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There is a wealth of research establishing value-of-information analysis as a 

useful tool for creating value in the oil and gas industry. Koninx (2001) gives a thorough 

review of VOI methodology. He explains that VOI analysis involves identifying 

uncertain variables for which data is gatherable, assessing the impact that the data could 

have, and valuing the impact that the data could have. Koninx then gives two example 

scenarios. The first example involves a case of proposed 3D-seismic acquisition where 

the increase in expected value is greater than the cost of the data acquisition, and the 

second example involves a proposed appraisal well where the increase in expected value 

is less than the expected cost of drilling the appraisal well. In the first example, the VOI 

analysis shows that the data acquisition is justified, but in the second example the VOI 

analysis shows that the data acquisition is not justified. This shows that “VOI analysis is 

a powerful tool for short-term rationalization of data-acquisition costs.” Koninx then 

connects rationalization of data acquisition in the short term to value creation in the long 

term. That is, a focused approach to data acquisition leads to an effective use of data. 

With very little data being gathered and unused, data-acquisition costs drop significantly. 

Other authors have shown the power of VOI analysis in similar fashion. Leach, Brown, 

and Haskett (2007) demonstrate the power of VOI analysis to guide data-acquisition 

decisions in a similar manner to Koninx’s paper, but in the context of unconventional 

resource development. 

Bratvold (2007) has written on the history and future of the use of VOI analysis 

in the oil and gas industry in hopes of making VOI analysis more accessible and widely 

used. He explains the power of VOI analysis and shows how it has been underutilized 
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since Grayson (1960) introduced the concept to the industry. Bratvold’s paper concludes 

that VOI analysis has not become an integral part of the decision-making process in 

industry due to a lack of decision-analysis skills among petroleum engineers and 

geoscientists, inexperience applying VOI methodology, and misconceptions about 

information value. However, Bratvold remains optimistic about the future of the use of 

VOI methodology in the industry due to its power as a decision-analysis tool. A key 

takeaway from his research of the history of VOI analysis in the oil and gas industry is 

that almost all of the applications of VOI in an oil and gas context published from 1960-

2006 focus on valuing a single information source. In fact, only two papers published in 

that time frame consider multiple sources of information (Dougherty 1971; Wills and 

Graves 2004). Dougherty’s 1971 paper is a review of statistical decision theory in an 

exploration context that gives an example of VOI analysis considering two data sources. 

Wills and Graves (2004) present a true multi-variable VOI analysis. The decision 

context of their multi-variable VOI model is conventional reservoir development and 

production volumes are calculated volumetrically. The variables considered in their 

analysis were the inputs to the volumetric reserves equation (reservoir area, reservoir 

thickness, porosity, water saturation, formation volume factor, and recovery factor). 

VOIs calculated by Wills and Graves were based on data quality, quantified as the 

probability that the acquired data related to each variable represents perfect information. 

Because horizontal drilling and hydraulic fracturing are necessary for 

economically feasible unconventional-reservoir development, but not for conventional-

reservoir development, key uncertainties affecting development decisions for 
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unconventional reservoirs and conventional reservoirs are quite different. Also, the 

uncertainty facing decision makers is likely much greater in unconventional than 

conventional reservoir development, because development of unconventional reservoirs 

is relatively new and these reservoirs are less well understood. For these reasons, multi-

variable VOI analysis in the context of conventional reservoir development is not 

necessarily translatable to unconventional reservoir development decisions. Also, Wills 

and Graves consider subsurface uncertainty but not economic uncertainty. 

In the years since Bratvold’s 2007 paper, there have been more papers published 

addressing use of VOI analysis in the oil and gas industry. However, there has not, as far 

as I know, been a serious attempt to apply multi-variable VOI analysis in the decision 

context of unconventional reservoir development in order to guide data acquisition. 

  Though multi-variable VOI analysis has not been applied to unconventional 

reservoir development in a way that considers the value of information for all uncertain 

variables within a particular decision context, such an approach to decision analysis can 

be found outside of the oil and gas industry. Hubbard (2014) gives a review of an 

approach he has used to determine the information value of as many as 90 uncertain 

variables within a single decision context in industries such as information technology 

security, water management, and healthcare. In Hubbard’s approach there is no upper 

limit to the number of uncertain variables for which the information value can be found 

within a particular decision context. His approach involves building a model that 

connects all uncertain variables to expected project value, then running a series of Monte 

Carlo simulations where it is successively assumed that each one of the uncertain 
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variables is known exactly. At the end of the series of simulations, the degree to which 

perfect information for each individual variable increases the expected value of the 

project is known. The value-of-perfect-information (VOPI) values can be ranked to 

determine which variables should be targeted for uncertainty reduction through 

measurement. Though perfect information is usually unattainable in the real world, this 

process still provides valuable insight to guide data-acquisition decisions. If the value of 

perfect information (VOPI) for an uncertain variable is high, it may indicate that the 

value of imperfect information (VOII) for that uncertain variable is large enough to merit 

further data acquisition. Hubbard suggests that VOII is approximately 10% of VOPI as a 

general rule of thumb. Also, VOPI gives an indication of relative information values, 

which may be more important to a decision maker than absolute information values 

because relative information values indicate the variables for which the most value is 

associated with uncertainty reduction through data acquisition. Hubbard’s multi-variable 

VOI approach can be applied to key decision contexts within unconventional reservoir 

development to provide insight on the variables for which value is driven by uncertainty 

reduction through data acquisition. 

 It has been established that accurate uncertainty quantification is a crucial 

component of the decision-making process in unconventional-reservoir development. 

Biases that creep into probabilistic estimations can be systematically reduced through 

look-backs and calibration. It has also been well established is that VOI analysis can be a 

powerful tool when applied to data-acquisition decisions for oil and gas projects. 

However, almost every VOI application in the current petroleum literature is limited to 
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analysis of the value created by reducing the uncertainty of one variable. There are no 

applications of multiple-variable VOI analysis to unconventional-reservoir development. 

In addition, the effect that biases in uncertainty quantification have on VOI calculations 

has not been established. Thus, there is a need for further research in these areas.  

 

1.3  Research Objectives 

1. Create a generalized multiple-variable VOPI model that can be applied to 

unconventional reservoir development. 

2. Determine the parameters for which additional information can provide the most 

value in the context of a typical well-spacing decision in the Eagle Ford shale. 

3. Assess the impact of biases on VOI calculations. 

 

1.4  Research Methodology 

1. Single-variable VOI methodology was reviewed. 

2. Crisman/Berg-Hughes Center members were surveyed about the relative 

importance of different decisions and uncertainties in unconventional reservoir 

development. 

3. A VOPI workflow was developed based on Hubbard’s (2014) description of 

multiple-variable VOPI models. A generalized multiple-variable VOPI model 

that can be applied to different decision contexts was created. 

4. The VOPI model was applied to an Eagle Ford gas reservoir well-spacing 

decision. 
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a. Uncertainties relevant to the decision context were identified. 

b. Key uncertainties were quantified for an example scenario. 

c. A model that relates the decision context, relevant uncertain parameters, 

and expected value of the project was created.  

d. The VOPI model was used to determine the parameters for which 

additional information can provide the most value. 

5. Overconfidence and directional biases were applied to a simple, theoretical VOPI 

problem to determine the effect of biases on VOPI. The impact of uncertainty 

quantification biases on the well-spacing VOPI analysis was assessed.  
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2.  SINGLE-VARIABLE VOPI OVERVIEW 

 

 E&P companies operating in unconventional plays face large uncertainty when 

making development decisions. Because uncertainty is large, they acquire and analyze 

large amounts of data for improved understanding of their development areas. If 

understanding of the development area is improved, more informed and better decisions 

can be made. Thus, the ultimate aim of data acquisition is improved decision making. 

However, there is almost always a cost associated with data acquisition. The prudent 

decision maker should investigate the anticipated benefit of acquiring any particular data 

relative to the data-acquisition cost. The goal of VOI analysis is to quantify the 

anticipated financial benefit of acquiring a particular set of new information.  

 VOPI analysis is a type of VOI analysis in which it is assumed that the 

information acquired reduces the uncertainty of the associated parameter to zero. 

Though the perfect information assumption is unrealistic in real-world data-acquisition 

scenarios, VOPI analysis sheds light on the impact that an uncertain variable has on the 

optimal decision alternative within a particular decision context. Consider the following 

example scenario: An E&P company is considering an infill program in a section of 

previously developed unconventional reservoir. If the infill program is a success, the 

expected value (EV) of the project is $100 million. However, if the program is a failure 

it is anticipated that the E&P company will lose $10 million. Data currently available to 

the decision maker indicate that the probability of a successful project is 25%. For the 

purposes of this example, it is assumed the possible outcomes of this project are 
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binary—success or failure, and no possible outcomes in between. The following steps 

can be followed to calculate the value of perfect information regarding the outcome of 

the project. 

1. Define the decision context. In this example, the decision maker is faced with a 

binary decision: proceed with the infill development project or do not. 

a. It is helpful to use a decision tree to chart the decision alternatives and 

their possible consequences (Fig. 1). Typical decision trees contain 

decision nodes, chance nodes, and end nodes. Decision nodes represent 

points at which the decision maker must make a decision and are 

typically represented with a square (Fig. 1). Chance nodes represent 

points at which the consequences of a particular decision are uncertain 

and are typically represented with a circle (Fig. 1). End nodes represent 

payoffs and are typically represented with a triangle (Fig. 1). 

2. Calculate the EV of the decision alternatives at the current level of uncertainty. 

This step is shown in the top decision tree in Fig. 1. The optimal decision is to 

proceed with the infill project and the EV of the project is $17.5 million without 

perfect information.  

3. Calculate the EV of the infill project if perfect information regarding the project 

outcome is acquired prior to making a development decision. This step is shown 

in the bottom decision tree in Fig. 1. Because the decision to acquire perfect 

information is made before the perfect information is obtained, a new chance 

node (representing the nature of the perfect information) is introduced in the 
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“acquire perfect information” part of the decision tree (Fig. 1). The calculation of 

EV with perfect information is accomplished in the following manner: 

a. Calculate the EV of the infill project if the perfect information indicates 

that the project will be a success. This step is shown in the top branch of 

the bottom decision tree in Fig. 1. The EV of the project is $100 million if 

success is indicated 

b. Calculate the EV of the infill project if the perfect information indicates 

that the project will be a failure. This step is shown in the bottom branch 

of the bottom decision tree in Fig. 1. The EV of the project is $0 if failure 

is indicated 

c. Multiply both EVs by their respective probabilities and sum the results. 

This calculation is shown in the bottom decision tree in Fig. 1. The EV of 

the project is $25 million with perfect information. 

4. The VOPI is calculated as the difference between the EV of the infill project if 

perfect information is acquired and the EV of the project if perfect information is 

not acquired (Fig. 1). 
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Fig. 1—Single-variable VOPI calculation scenario. 

 

 

 In this example scenario, the VOPI is $7.5 million. This means that a prudent 

decision maker should not pay more than $7.5 million for information regarding the 

development outcome. It should be noted that the VOI in this scenario would be less, 

possibly much less, than the VOPI because no information is truly perfect. VOI/VOPI 

calculations are functions of both decisions and uncertainties. Key decisions and 
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uncertainties in the context of unconventional reservoir development are addressed in the 

Section 3. 
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3.  CRISMAN INSTITUTE/BERG-HUGHES MEMBER SURVEY 

 

3.1  Survey Background and Format 

 The power of value-of-information analysis lies in its ability to quantify the 

amount of money that one should be willing to spend to reduce specific uncertainties 

within a particular decision context. To apply VOI analysis to decisions in 

unconventional reservoir development, it was important that steps be taken to identify 

the key uncertainties and decisions in that context. Also, my research is one part of 

uncertainty quantification/decision analysis research being conducted in unconventional 

reservoir development by the joint venture between the Crisman Institute for Petroleum 

Research and the Berg-Hughes Center for Petroleum and Sedimentary Systems. For 

these reasons, Crisman/Berg-Hughes industry members were surveyed at the October 

2016 Crisman/Berg-Hughes meeting at Texas A&M University to determine what they 

consider the key decisions and uncertainties to be in the context of unconventional 

reservoir development. For both decisions and uncertainties, survey takers were 

presented with a list of approximately 15 decisions/uncertainties that are widely 

acknowledged to be present during unconventional reservoir development. They also 

were given the opportunity to write in other decisions/uncertainties if so desired. Survey 

takers were asked to rank the five decisions/uncertainties that they believe to be the most 

important, in order of decreasing importance. When the survey was complete, each 

participant had ranked what they believed to be the five most important decisions and 

five most important uncertainties. To compile the results of the survey, each decision 
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and uncertainty was given a score. The scoring system was as follows: five points for 

each “1” ranking (most important), four points for each “2” ranking, three points for 

each “3” ranking, two points for each “4” ranking, and one point for each “5” ranking. 

Each survey had a total of 15 points to be distributed to different decisions and 15 points 

to be distributed to each uncertainty. When survey takers ranked their answers in a way 

that was inconsistent with the instructions, the 15 points were distributed across their 

responses consistent with the survey response, thus ensuring that all participants were 

weighted equally. Scores from all participants were combined to yield an aggregate 

score for each decision and uncertainty.  

 

3.2  Survey Results 

They key uncertainties are summarized below in Fig. 2, and the key decisions are 

summarized below in Fig. 3.  
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Fig. 2—10 most important uncertainties in unconventional reservoir development according to 

survey of Crisman/Berg-Hughes industry members. 
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Fig. 3—10 most important decisions in unconventional reservoir development according to survey of 

Crisman/Berg-Hughes industry members. 

 

Crisman/Berg-Hughes industry members most commonly considered the well-

spacing decision to be the most important decision in unconventional reservoir 

development (Fig. 3). Its aggregate score was about 55% higher than the decision voted 

second-most important. For this reason, the well-spacing decision was chosen as the 

decision context for the application of multi-variable VOPI methodology later in this 

thesis. The key uncertainties (Fig. 2) were helpful in deciding which uncertainties to 

model in the application of VOPI methodology. A full list of responses to the 

Crisman/Berg-Hughes survey and their aggregate scores are shown in Tables A-1 and 

A-2. 
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4.  MULTI-VARIABLE VOPI CALCULATION WORKFLOW 

 

4.1  Multi-Variable VOPI Calculation Methodology 

 The method of calculating VOPI in a multi-variable context—considering the 

value of reducing the uncertainty of certain parameters relative to the value of reducing 

the uncertainty of certain other parameters—was inspired by Hubbard (2014). A 

synthetic decision with two discrete uncertain variables was first considered. Because 

there are only two uncertain variables, it is easy to visualize manual calculations of the 

overall EOL and the change in overall EOL if either variable is known perfectly. This 

manual calculation served as both an establishment of the multi-parameter VOPI 

calculation methodology and a quality check when the methodology was automated with 

the generalized multi-parameter VOPI model discussed later.  

The synthetic decision context used for the development of a two-variable VOPI 

calculation was a well-spacing decision for a 640-acre oil reservoir. A simple model was 

created that calculates the expected net present value of a discrete set of decision 

alternatives under every possible combination of the two discrete uncertain variables. In 

this model, economic parameters were held constant and it was assumed that each well 

in the field can be represented by the field’s average decline-curve parameters. Table 1 

presents the set of physical and economic input parameters held constant in the synthetic 

two-variable model. 
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Table 1—Economic and physical parameters held constant in the synthetic well-spacing model. 
 

Parameter Value Units 

Oil Price 54 $/STB 

Oil Marginal Production Cost 12 $/STB 

CAPEX per Well 1,250,000 $ 

OPEX 2,100 $/well/month 

Di 35 /year 

b 2 Unitless 

Minimum Decline Rate 0.2 /year 

 

 

This synthetic model assumes that there is a well spacing, known as the 

interference spacing, at or under which production interference occurs. The purpose of 

the interference spacing is to penalize the decision maker for placing wells too close 

together and it is one of the two uncertain variables in this decision scenario. It is 

assumed to be constant throughout the 640-acre section. The fraction of production for a 

well experiencing interference is assumed to be directly proportional to the ratio of the 

chosen well spacing and the field interference spacing. For example, if the interference 

spacing for the field is 40 acres and the decision maker chooses to develop the field at 

20-acre well spacing, then each well produces 50% in each month of what it would have 

had there been no interference. Production decline curves representing the assumed 

production of a well in this field, if the chosen well spacing is 20 acres, under various 

values of interference spacing are shown in Fig. A-1. This model is not meant to forecast 

production from an actual oil reservoir, but rather to approximate interference effects for 

the synthetic well-spacing decision context. The methodology could have been 

established with equal legitimacy within any decision context, but a synthetic well-

spacing context was used for the sake of consistency with the well-spacing decision 

context presented in the next section of this research. The purpose of the model is to tie 
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combinations of uncertain parameters to expected project value in a consistent manner. 

Because this model was used only for the purposes of establishing the method of multi-

variable VOPI calculations and validating the accuracy of the calculations made by the 

generalized model, the scientific legitimacy of the synthetic model is irrelevant.  

The successive pages show the multi-variable VOPI calculation methodology 

step-by-step. The first step is to use probability distributions to describe uncertain input 

parameters.  The two variables that were considered uncertain in this application of the 

synthetic model were the average initial production rate of the field (qi) and the 

interference spacing (IntSpacing). qi was assigned a normal distribution with a mean of 

490 bbl/day and standard deviation of 150 bbl/day. IntSpacing was arbitrarily assigned a 

normal distribution with a mean of 40 acres and a standard deviation of 10 acres. 

Because it is commonly used in the oil & gas industry, Swanson’s mean was used to find 

discrete approximations to these normal probability distributions (Bickel 2011; Table 2). 

 
 

Table 2—Probability distributions for qi and IntSpacing, the two uncertain variables in the 

synthetic model. 
 

Parameter 1: qi (bbl/day)  Parameter 2: IntSpacing (acres) 

Percentile Value Probability  Percentile Value Probability 

P10 298 30%  P10 27 30% 

P50 490 40%  P50 40 40% 

P90 682 30%  P90 53 30% 
 

 

 

The joint probability space contains nine possible states. Correlation between 

uncertain variables should be considered in the development of a joint-probability 

matrix. For this example, qi and IntSpacing are assumed to be independent of each other. 
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The probability that each combination of qi and IntSpacing will be realized upon 

development of this synthetic field is shown in Table 3. 

 

 

Table 3—Joint-probability matrix for the two-variable synthetic model. 
 

 qi (bbl/day) 

IntSpacing (acres) 298 490 682 

27 9% 12% 9% 

40 12% 16% 12% 

53 9% 12% 9% 
 

 
 

The considered decision alternatives were as follows: development at 20-acre 

spacing, development at 40-acre spacing, development at 80-acre spacing, and rejecting 

the project resulting in a project value of $0. The expected value, defined as the 10-year 

discounted net present value (NPV), of the development project, for all 9 possible states 

was calculated for each decision alternative (Table 4). 

 

Table 4—NPV for each possible realization of qi and IntSpacing under each decision alternative. 
 

 Decision =  20 Acre Spacing 
 qi  (bbl/day) 

IntSpacing (acres) 298 490 682 

27 ($22,223,005) ($10,291,524) $1,639,957  

40 ($28,144,346) ($20,035,567) ($11,926,788) 

53 ($31,192,098) ($25,050,888) ($18,909,678) 

   

 
 

 Decision = 40 Acre Spacing 
 qi  (bbl/day) 

IntSpacing (acres) 298 490 682 

27 ($7,791,950) $316,829  $8,425,608  

40 ($7,791,950) $316,829  $8,425,608  

53 ($10,839,702) ($4,698,492) $1,442,718  
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Table 4—Continued 
 

 Decision = 80 Acre Spacing 
 qi  (bbl/day) 

IntSpacing (acres) 298 490 682 

27 ($3,895,975) $158,415  $4,212,804  

40 ($3,895,975) $158,415  $4,212,804  

53 ($3,895,975) $158,415  $4,212,804  

    
 Decision = Reject Project 

 qi  (bbl/day) 

IntSpacing (acres) 298 490 682 

27 $0  $0  $0  

40 $0  $0  $0  

53 $0  $0  $0  

 

 

 For each of the 9 possible states, a particular decision would have been the best 

choice (maximum NPV of the four choices). However, the optimal decision changes 

depending on which state is realized (Table 5). In this example, the only decision 

alternative that cannot possibly be the best choice is 20-acre spacing.  

 

Table 5—Optimal decision matrix for the two-variable synthetic model. 

  qi (bbl/day) 

IntSpacing (acres) 298 490 682 

27 Reject Project 40 Acre Spacing 40 Acre Spacing 

40 Reject Project 40 Acre Spacing 40 Acre Spacing 

53 Reject Project 80 Acre Spacing 80 Acre Spacing 
 

 

 

If the decision maker has perfect information for both qi and IntSpacing, Table 5 

shows the decision that they would make for each possible realized state within the 

probability space. Correspondingly, the value of the project if the decision maker has 
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perfect information for both uncertain variables is shown for the entire probability space 

in Table 6. 

 

Table 6—Project value matrix under perfect information for the two-variable synthetic model.  
 

  qi (bbl/day) 

IntSpacing (acres) 298 490 682 

27 $ 0 $ 316,829 $ 8,425,608 

40 $ 0 $ 316,829 $ 8,425,608 

53 $ 0 $ 158,415 $ 4,212,804 

 

 
 Now that the maximum value of the project has been determined for the entire 

probability space, the next step is to calculate the opportunity loss (OL) across the entire 

probability space for each decision alternative. Opportunity loss is the difference 

between project value under the optimal decision and project value under the actual 

decision. So the OL will be zero for the optimal decision alternative at each state in the 

probability space. In this example, the OL matrix is calculated by subtracting the values 

in Table 4 from the values in Table 6 for each point in the probability space (Table 7). 

 

Table 7—Opportunity loss for each possible realization of qi and IntSpacing under each decision 

alternative. 
 

 Decision =  20 Acre Spacing 

 qi  (bbl/day) 

IntSpacing (acres) 298 490 682 

27 $22,223,005  $10,608,353  $6,785,651  

40 $28,144,346  $20,352,396  $20,352,396  

53 $31,192,098  $25,209,303  $23,122,482  
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Table 7—Continued 
 

 Decision =  40 Acre Spacing 
 qi  (bbl/day) 

IntSpacing (acres) 298 490 682 

27 $7,791,950  $0  $0  

40 $7,791,950  $0  $0  

53 $10,839,702  $4,856,907  $2,770,086  

    

 Decision =  80 Acre Spacing 
 qi  (bbl/day) 

IntSpacing (acres) 298 490 682 

27 $3,895,975  $158,415  $4,212,804  

40 $3,895,975  $158,415  $4,212,804  

53 $3,895,975  $0  $0  

    
 Decision =  Reject Project 

 qi  (bbl/day) 

IntSpacing (acres) 298 490 682 

27 $0  $316,829  $8,425,608  

40 $0  $316,829  $8,425,608  

53 $0  $158,415  $4,212,804  

 

 

 The next step is to determine the expected opportunity loss (EOL) associated 

with each decision alternative at the current level of uncertainty. Since the joint-

probability matrix has already been defined in Table 3, this is a simple calculation. The 

EOL of each decision alternative is calculated by performing an element-by-element 

multiplication of the OL matrix for each decision defined in Table 7 by the probability 

matrix defined in Table 3. The EOL for a particular decision is the sum of all elements in 

the resulting matrix. The EV of each decision alternative is calculated using the same 

methodology, but using the NPV matrix (Table 4) and the joint-probability matrix (Table 

3). The EOL and EV at the current level of uncertainty for each decision alternative in 

this example are shown in Table 8. 
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Table 8—EOL for each decision alternative at current level of uncertainty. 
 

Decision 20-acre Spacing 40-acre Spacing 80-acre Spacing Reject Project 

EOL $ 20,873,202 $ 3,444,019 $ 2,097,838 $ 2,256,252 

EV ($18,616,950) ($1,187,767) $158,415 $0 
 

 
 

 The 80-Acre Spacing decision alternative is highlighted because it has the 

smallest EOL ($2,097,837) and largest EV ($158,415). At the current level of 

uncertainty, a risk-neutral decision maker would develop the field at 80-acre well 

spacing if they must make a decision with no additional information. This is because the 

decision alternative with the lowest EOL is always the decision alternative with the 

highest expected NPV. EOL and EV are two sides of the same coin. In other words, in 

any single-discrete-decision context, the approaches of minimizing expected opportunity 

loss and maximizing expected value lead to the same decision.  

At this point in the multi-variable VOPI workflow, the initial analysis of the 

subject decision is complete. The decision that should be made at the current level of 

uncertainty and its associated EOL have been determined. The minimum EOL prior to 

uncertainty reduction is the overall VOPI, or in other terms, the value of knowing all 

uncertain variables perfectly. The next step is to re-analyze the decision context as many 

times as there are uncertain variables. In each re-analysis, perfect information for a 

different uncertain variable is assumed. The VOPI for a particular variable is the 

reduction in EOL from the original EOL that occurs when that variable is assumed to be 

known perfectly, and the decision maker is privy to no other new information. To 

calculate EOL under an assumption of perfect information for any particular variable, 

EOL must be separately calculated for every combination of decision alternatives and 
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possible values of the perfectly known variable. EOLs specific to possible values of the 

known variable for particular decision alternatives are calculated by applying 

probabilities conditional on the known variable to the OL matrix (Table 9). Conditional 

probabilities are derived from the joint-probability matrix (Table 3). For the assumption 

that qi is perfectly known in the two-variable example decision context, inputs and 

outputs of this calculation are found in Table 9.  

 

Table 9—Opportunity loss and conditional probability for each possible realization of qi and 

IntSpacing under each decision alternative if qi is known perfectly. The EOL values are associated 

with each potential value qi and each decision alternative. 

 

  

 Decision = 20 Acre Spacing 

 Known Variable:  qi (bbl/day) 

Unknown 

Variable 
298 490 682 

IntSpacing 

(acres) 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 

27 $22,223,005  30% $10,608,353  30% $6,785,651  30% 

40 $28,144,346  40% $20,352,396  40% $20,352,396  40% 

53 $31,192,098  30% $25,209,303  30% $23,122,482  30% 

EOL $27,282,269  $18,886,255  $17,113,398  
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Table 9—Continued 
 

 

 

 

 

 

 

 Decision = 40 Acre Spacing 

 Known Variable:  qi (bbl/day) 

Unknown 

Variable 
298 490 682 

IntSpacing 

(acres) 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 

27 $7,791,950 30% $0 30% $0 30% 

40 $7,791,950 40% $0 40% $0 40% 

53 $10,839,702 30% $4,856,907 30% $2,770,086 30% 

EOL $8,706,275 $1,457,072 $831,026 

 Decision = 80 Acre Spacing 

 Known Variable:   qi (bbl/day) 

Unknown 

Variable 
298 490 682 

IntSpacing 

(acres) 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 

27 $3,895,975 30% $158,415 30% $4,212,804 30% 

40 $3,895,975 40% $158,415 40% $4,212,804 40% 

53 $3,895,975 30% $0 30% $0 30% 

EOL $3,895,975 $110,890 $2,948,963 

 Decision = Reject Project 

 Known Variable:  qi (bbl/day) 

Unknown 

Variable 
298 490 682 

IntSpacing 

(acres) 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 

27 $0 30% $316,829 30% $8,425,608  30% 

40 $0 40% $316,829 40% $8,425,608  40% 

53 $0 30% $158,415 30% $4,212,804  30% 

EOL $0 $269,305 $7,161,767  
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 Minimum EOLs for each potential qi value and their associated decisions are 

shown below in Table 10. In this discrete two-variable decision context,  qi must have a 

value of either 298 bbl/day, 490 bbl/day, or 682 bbl/day. An assumption of perfect 

information for qi is an assumption that, after the perfect information is obtained, the 

decision maker knows which of these three values will be realized before the section is 

developed. Thus, the decision maker will know the optimal spacing decision to make for 

each potential value of the qi. 

 

Table 10—EOL for each decision alternative if qi is known perfectly. Minimum EOL for each 

potential value of qi highlighted. 
 

  Known Variable: qi (bbl/day) 

Decision Alternative 298 490 682 

20 Acre Spacing $27,282,269 $18,886,255 $17,113,398 

40 Acre Spacing $8,706,275 $1,457,072 $831,026 

80 Acre Spacing $3,895,975 $110,890 $2,948,963 

Reject Project $0 $269,305 $7,161,767 

 
 

 If qi is 298 bbl/day then rejecting the project is the decision that minimizes EOL; 

if qi is 490 bbl/day then developing the field with 80-acre spacing is the decision that 

minimizes EOL; and if qi is 682 bbl/day then developing the field with 40-acre spacing 

is the decision that minimizes EOL (Table 10). In two of the three cases, the optimal 

decision changes—from the best decision of 80-acre spacing without information—

because qi is known perfectly. In this scenario, the probability that the optimal decision 

changes based on knowing qi perfectly is 60%. Perfect knowledge of qi adds value 

(reduces EOL) because, and only because, it can potentially change the decision to be 

made.  
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 However, the calculation of VOPI is made before the information is obtained 

and, thus, before the value of qi is known. Thus, all possible values of qi must be 

considered to calculate the overall project EOL with perfect knowledge of qi (Table 11). 

Each minimum EOL value is multiplied by the marginal probability of its associated qi 

value, then the results are summed. In this example, the overall project EOL if qi is 

known perfectly is $293,664. The VOPI for qi can then be calculated by subtracting the 

overall project EOL if qi is known perfectly from the overall project EOL with no new 

information ($2,097,838; Table 10). In this case, the VOPI for qi is $1,804,174. 

 

Table 11—Overall EOL calculation if qi is known perfectly. 

qi (bbl/day) 298 490 682 

Optimal Decision Reject Project 80 Acre Spacing 40 Acre Spacing 

Min EOL $ 0 $ 110,890 $ 831,026 

Marginal Probability 30% 40% 30% 

EOL $293,664 
 

 
 

 The calculations shown above and tabulated in Tables 9, 10, and 11 must be 

repeated for each unknown variable, just one more time for this two-variable example. 

Tables 12-14 below show the results of employing the same methodology used to 

determine overall EOL if qi is known to determine overall EOL if IntSpacing is known. 
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Table 12—Opportunity loss and conditional probability for each possible realization of qi and 

IntSpacing under each decision alternative if IntSpacing is known perfectly. The EOL are values 

associated with each potential value of IntSpacing and each decision alternative. 

 

 

 

 

 Decision = 20 Acre Spacing 

 Known Variable: IntSpacing (acres) 

Unknown 

Variable 
27 40 53 

qi 

(bbl/day) 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 

298 $ 22,223,005 30% $ 28,144,346 30% $ 31,192,098 30% 

490 $ 10,608,353 40% $ 20,352,396 40% $ 25,209,303 40% 

682 $ 6,785,651 30% $ 20,352,396 30% $ 23,122,482 30% 

EOL $ 12,945,938 $ 22,689,981 $ 26,378,095 

 Decision = 40 Acre Spacing 

 Known Variable: IntSpacing (acres) 

Unknown 

Variable 
27 40 53 

qi 

(bbl/day) 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 

298 $ 7,791,950 30% $ 7,791,950 30% $ 10,839,702 30% 

490 $ 0 40% $ 0 40% $ 4,856,907 40% 

682 $ 0 30% $ 0 30% $ 2,770,086 30% 

EOL $ 2,337,585 $ 2,337,585 $ 6,025,699 

 Decision = 80 Acre Spacing 

 Known Variable: IntSpacing (acres) 

Unknown 

Variable 
27 40 53 

qi 

(bbl/day) 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 

298 $ 3,895,975 30% $ 3,895,975 30% $ 3,895,975 30% 

490 $ 158,415 40% $ 158,415 40% $ 0 40% 

682 $ 4,212,804 30% $ 4,212,804 30% $ 0 30% 

EOL $ 2,496,000 $ 2,496,000 $ 1,168,792 
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Table 12—Continued 

 

 

Table 13—EOL for each decision alternative if IntSpacing is known perfectly. Minimum EOL for 

each potential value of IntSpacing is highlighted. 
 

  Known Variable: IntSpacing (acres) 

Decision Alternative 27 40 53 

20 Acre Spacing $12,945,938  $22,689,981  $26,378,095  

40 Acre Spacing $2,337,585  $2,337,585  $6,025,699  

80 Acre Spacing $2,496,000  $2,496,000  $1,168,792  

Reject Project $2,654,414  $2,654,414  $1,327,207  
 

 

 

Table 14—Overall EOL calculation if IntSpacing is known perfectly. 
 

IntSpacing (acres) 27 40 53 

Optimal Decision 40 Acre Spacing 40 Acre Spacing 80 Acre Spacing 

Min EOL $ 2,337,585 $ 2,337,585 $ 1,168,792 

Marginal Probability 30% 40% 30% 

EOL $1,986,947 
 

 

 For this two-variable example, the overall project EOL if IntSpacing is known 

perfectly is $1,986,947. The VOPI can then be calculated by subtracting the overall 

project EOL if IntSpacing is known perfectly from the overall project EOL with no new 

information ($2,097,837; Table 10). In this case, the VOPI for qi is $110,890. A 

summary of key results from the multi-variable VOPI calculation shown in the 

preceding pages is found in Table 15. These results tell the decision maker that (a) 

 Decision = Reject Project 

 Known Variable: IntSpacing (acres) 

Unknown 

Variable 
27 40 53 

qi 

(bbl/day) 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 

298 $ 0 30% $ 0 30% $ 0 30% 

490 $ 316,829 40% $ 316,829 40% $ 158,415 40% 

682 $ 8,425,608 30% $ 8,425,608 30% $ 4,212,804 30% 

EOL $ 2,654,414 $ 2,654,414 $ 1,327,207 
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information about qi is much more valuable than information about IntSpacing, and (b) 

information about each unknown variable has value. However, before deciding whether 

to acquire information the decision maker must estimate the VOII from the VOPI for 

each variable and compare to the cost of acquiring the information. If the cost of 

information for any variable exceeds the value of information for that variable, then data 

acquisition is not justified. 

 
Table 15—Overall EOL if each unknown variable is perfectly known and associated VOPI. 

 

EOL: Current level of uncertainty $2,097,838 

Known Variable EOL VOPI 

qi $ 293,664 $ 1,804,174 

IntSpacing $ 1,986,947 $ 110,891 
 

 

 

The preceding pages show the step-by-step methodology of the multi-variable 

VOPI calculation for a simple, two-parameter discrete scenario. Before creating a model 

that generalizes this process in a way that can be applied to decision with any number of 

decision alternatives and uncertain parameters, the VOPI output for a three-variable 

discrete decision scenario was calculated manually. The purpose was to (a) highlight the 

intricacies of applying this methodology to a higher-dimensional problem and (b) have a 

second manual calculation to validate the output of the generalized model. The same 

synthetic model used for the two-variable problem was used to generate NPV values for 

a three-variable problem. The difference was that in the three-parameter problem, oil 

price was also considered to be an uncertain variable. The methodology was exactly the 

same as the two-parameter problem, but extended to three dimensions. Independence 

between the three parameters was assumed. The intermediate results and outputs from 
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the three-parameter example are tabulated in Tables A-3 to A-18. See the commentary 

on the two-parameter model to understand the calculations applied. 

 Analysis of the three-parameter multi-variable VOPI model shown in Appendix A 

reveals that (a) information related to qi is by far more valuable than information related 

to oil price and interference spacing and (b) perfect information about each of the three 

unknown variables has value. The two multi-variable VOPI manual calculation models 

serve multiple purposes, even though the cases analyzed were synthetic. These purposes 

are to: 

 establish the methodology used to solve multi-parameter VOPI problems, 

 provide a framework that was followed during construction of the generalized 

multi-parameter VOPI model, and 

 validate the output of the generalized multi-parameter VOPI model. 

 4.2  Generalized Multi-Variable VOPI Model 

 A major deliverable of this research was the development of a generalized model 

to solve multi-variable VOPI problems. The model was developed in Microsoft Excel® 

utilizing Visual Basic®. It can be used to analyze any Excel-based decision model that 

calculates present value for a set of decision alternatives based on the given input 

parameters. Both the number of uncertain parameters to be considered and the number of 

decision alternatives to be considered are variable with no upper limit (other than 

practical memory storage and computational time limits). The generalized model is built 

to handle discrete uncertain-parameter distributions and decision alternatives. Any 

continuous uncertain-parameter or decision distribution has to be discretized to be 
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compatible with the generalized multi-variable VOPI model. There is no upper limit to 

the discretization granularity that the model can handle (again, other than practical 

limits).  

 A flowchart describing the logic of the model is shown in Fig. 4. Each step 

shown in the flowchart is displayed with a manual calculation example in the preceding 

section. The model indexes all possible combinations of uncertain variables, interacts 

with an NPV model to fill an NPV array, applies joint-probabilities to calculate overall 

EOL, applies conditional probabilities to calculate EOL under perfect information for 

each particular variable if all other variables retain their original level of uncertainty, and 

finally calculates the VOPI for each uncertain variable (Fig. 4). A display of the 

generalized model interface without input or output data is shown in Fig. 5. 
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Fig. 4—Logic followed by the generalized multi-variable VOPI model. 
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Fig. 5—Generalized multi-variable VOPI calculation model display without input or output data. 

 

 Each input required by the generalized multi-variable VOPI model is shaded in 

gray (Fig. 5). The user must define the number of uncertain variables, the names of each 

variable, the number of discretization points used to describe the distribution of 

uncertainty for each variable, the cumulative probabilities on the input distribution for 

each variable, the marginal probabilities of each point on the input distribution for each 

variable, and the name of each decision alternative. The display in Fig. 5 is configured 

for 3-point discretizations; however, the program can handle discretizations of variable 

granularity. There is no upper limit to how many point values can be used to describe an 

uncertain input distribution. The cumulative probabilities on the input distributions must 

be input to the generalized model in ascending order, and an equal number of marginal 

probabilities summing to 1 must be input to the right of the cumulative probability 

values on the same row. 

 The generalized multi-variable VOPI model requires a link to an NPV model for 

a set of uncertain parameters. The generalized model is compatible with NPV models 
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that output the NPV of a discrete set of decision alternatives based on a set of defined 

inputs. In Fig. 5, cells that must be linked to the NPV model are highlighted in blue. The 

generalized multi-variable VOPI model and the NPV model it is being applied to must 

be linked manually by the user. Once the user has input the uncertain variable names 

under “Uncertain Variable Properties,” the list of variables under “Spreadsheet Inputs” 

automatically populates. The user must then link the uncertain variable input cells within 

the NPV model spreadsheet to the proper cell in the “Input” column underneath 

“Spreadsheet Inputs.” This allows the generalized model to calculate NPV outputs for 

the entire probability space. The user of the generalized model must also link the NPV 

values calculated in the NPV model for each decision alternative to the generalized 

model. The cells in the “NPV” column under “Decision Alternatives” must be linked to 

the proper calculated NPV values in the NPV model. 

 The EOL and VOPI calculations from the generalized multi-variable VOPI 

model are also displayed in the interface (Fig. 5). Under “Current Uncertainty,” the 

generalized model outputs the decision that a risk-neutral decision maker should make at 

the current level of uncertainty and the EOL of that decision. Under “VOPI Results” the 

generalized model lists each defined uncertain variable, the overall EOL if the variable is 

known perfectly (and the decision maker has no other new information), and the VOPI 

for the variable. The list is configured to rank itself in order of descending VOPI. 

 Both the two-variable and three-variable VOPI scenarios discussed in the 

methodology section and solved manually were also solved using the generalized model 

to establish the validity of the generalized model. The solution to the two-variable 
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synthetic model scenario from the previous section is shown in Fig. 6. Individual VOPIs 

listed represent VOPI if only the corresponding variable is known perfectly and the 

decision maker is privy to no additional new information. The list of VOPI for each 

unknown variable does not show incremental VOPI as each variable becomes known 

perfectly in sequence. 

 

 
 

Fig. 6—Generalized multi-variable VOPI model input and calculations for the two-variable 

synthetic model scenario. 

 

 

 The VOPI scenario that the generalized model solved with the inputs and 

calculations displayed in Fig. 6 is the same that is solved manually in Tables 1-15. The 

generalized model output under “Current Uncertainty” matches the manual solution in 

Table 8 and the generalized model output under “VOPI Results” matches the manual 

solution in Table 15 within $1 for each VOPI (error is due to rounding within the VOPI 

model). To further validate the accuracy of the generalized model, intermediate results 

were compared to the manual calculation. Since the generalized model stores values of 

NPV and OL in two-dimensional arrays, the output format is different than the manual 
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calculation. However, comparison of the generalized model intermediate results 

displayed below in Tables 16 and 17 with the values calculated manually in Tables 4 

and 7 confirms the accuracy of the generalized multi-variable VOPI model. 

 

Table 16—NPV array from generalized model solution to the synthetic two-variable scenario. 

Results match the manual solution in Table 4. 
 

Potential 

Outcome Num. 

Reject 

Project 

20 Acre 

Spacing 

40 Acre 

Spacing 

80 Acre 

Spacing 

1 $ 0 $ (22,223,004) $ (7,791,949) $ (3,895,975) 

2 $ 0 $ (10,291,524) $ 316,829 $ 158,415 

3 $ 0 $ 1,639,957 $ 8,425,608 $ 4,212,804 

4 $ 0 $ (28,144,345) $ (7,791,949) $ (3,895,975) 

5 $ 0 $ (20,035,567) $ 316,829 $ 158,415 

6 $ 0 $ (11,926,788) $ 8,425,608 $ 4,212,804 

7 $ 0 $ (31,192,098) $ (10,839,702) $ (3,895,975) 

8 $ 0 $ (25,050,888) $ (4,698,492) $ 158,415 

9 $ 0 $ (18,909,679) $ 1,442,717 $ 4,212,804 

 
 

 

Table 17—OL array from generalized model solution to the synthetic two-variable scenario. Results 

match the manual solution in Table 7. 
 

Potential 

Outcome Num. 

Reject  

Project 

20 Acre 

Spacing 

40 Acre 

Spacing 

80 Acre 

Spacing 

1 $ 0 $ 22,223,004 $ 7,791,950 $ 3,895,975 

2 $ 316,829 $ 10,608,353 $ 0 $ 158,415 

3 $ 8,425,608 $ 6,785,652 $ 0 $ 4,212,804 

4 $ 0 $ 28,144,346 $ 7,791,950 $ 3,895,975 

5 $ 316,829 $ 20,352,396 $ 0 $ 158,415 

6 $ 8,425,608 $ 20,352,396 $ 0 $ 4,212,804 

7 $ 0 $ 31,192,098 $ 10,839,702 $ 3,895,975 

8 $ 158,415 $ 25,209,304 $ 4,856,907 $ 0 

9 $ 4,212,804 $ 23,122,484 $ 2,770,087 $ 0 

 
 

 The generalized model match of the manual solution to the two-variable 

synthetic VOPI model establishes that the generalized multi-variable VOPI model 

generates valid results in a two-dimensional scenario. To validate the model’s ability to 

extend the VOPI calculation methodology into higher dimensions, the manual 

calculations for the three-variable synthetic VOPI scenario were matched with the 
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generalized model as well. The generalized model output can be found in Fig. A-2. 

Intermediate results were also verified. Tables A-16 and A-17 contain the intermediate 

results generated by the generalized VOPI model for the three-variable synthetic VOPI 

scenario. 

 The generalized model match of the manual solution to the three-variable VOPI 

model establishes that the generalized multi-variable VOPI model soundly applies multi-

variable VOPI methodology to higher-dimensional scenarios. Now that the generalized 

multi-variable VOPI model had been built and its soundness had been established, the 

next step was to apply the generalized model to a decision scenario representing the 

unconventional-reservoir well-spacing decision. 
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5.  APPLICATION OF VOPI MODEL TO UNCONVENTIONAL-RESERVOIR 

WELL-SPACING DECISION 

 

5.1  Decision Context 

 In the preceding section, a multi-variable VOPI workflow was established and a 

generalized model for the application of the workflow to higher-dimensional problems 

was developed. While in the previous section the generalized multi-variable VOPI 

model was applied to a synthetic decision context to establish its mathematical accuracy, 

in this section it is applied to a more realistic well-spacing decision in the context of 

unconventional reservoir development. A reservoir simulation model was developed 

based on data found in the industry literature describing the Eagle Ford Shale. 

Development of the Eagle Ford was chosen as the decision context due to the 

availability of data describing its properties found in the petroleum industry literature. 

The specific unconventional reservoir development decision scenario that was analyzed 

utilizing the reservoir simulation model was the choice of proximity for a series of 

parallel horizontal wells. Well length and completion/stimulation strategy were 

considered to be fixed decisions. The goal of the decision maker in this context was to 

space the parallel horizontal wells optimally for maximization of the expected net 

present value of the development project. Performing multi-variable VOPI analysis with 

consideration of certain variables deemed to be of particular interest in the described 

decision context reveals the power of value-of-information analysis to provide a rational 

approach for data-acquisition decisions in unconventional reservoir development.  
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5.2  Quantification of Uncertainty 

 The first step towards creating a meaningful well-spacing decision model in the 

context of unconventional reservoir development was deciding which variables to 

consider in the VOPI calculation. It is recognized that almost all input variables to an 

unconventional reservoir model have some amount of inherent uncertainty. Although for 

some variables the inherent uncertainty is small, for other variables the inherent 

uncertainty is large and is believed to have a significant impact on development 

decisions. Ideally, all variables with inherent uncertainty would be tested with VOPI 

analysis. However, due to constraints on time and computational power this is not 

feasible. The decision maker must choose which variables to consider uncertain and 

which variables to consider fixed when performing multi-variable VOPI analysis.  

Considering the VOPI analysis presented in this section, the primary source of 

information utilized in the determination of variables to model as uncertain was the 

survey of Crisman-Berg Hughes members reviewed in Section 3. Opinions of Dr. Duane 

McVay and Dr. Steven Holditch of the Texas A&M Department of Petroleum 

Engineering were also taken into account. It is assumed that the only information the 

decision maker had access to regarding the choice of variables to consider uncertain are 

the Crisman/Berg Hughes survey presented in Section 3 and the opportunity to discuss 

the uncertainties with Drs. McVay and Holditch. Synthesizing information from these 

sources, it was decided to consider gas price, created-fracture propagation, matrix 

porosity, matrix permeability, and natural-fracture density as uncertain variables in the 

multi-variable VOPI analysis. 
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 Accuracy in uncertainty assessment is of the utmost importance in the context of 

VOPI calculations. It is well established in the petroleum literature that accurate 

uncertainty assessment leads directly to improved decision making (Capen 1976, 

Brashear 2001). The driving force behind the connection between accurate uncertainty 

assessment and improved decision making is that accurate output calculations, in any 

context, are dependent on the accuracy of the input variables. In the context of multi-

variable VOPI calculations, the calculated VOPI for each variable could be skewed if the 

uncertainty of one or more variables is quantified in an inaccurate or biased way. To 

ensure reliability in the output of VOPI calculations, it is of paramount importance to 

invest significant effort into the reliable assessment of uncertainty in inputs. The 

consequences of unreliable uncertainty quantification for VOPI calculation accuracy are 

addressed in further detail in Section 6. 

The price of gas is a significant consideration for decision makers in 

unconventional-gas-reservoir development. Though a measurement to reduce the 

uncertainty of the gas price cannot be devised in the same way that a measurement to 

reduce the uncertainty of the reservoir variables can, a high information value for gas 

price may provide a financial justification for the hedging of gas sales price. To quantify 

gas price uncertainty, price data between November 2014 and November 2017 were 

obtained from the United States Energy Information Administration (EIA) website. The 

lowest average monthly gas price (1.73 $/Mcf) was considered to be the P10 value, the 

highest average monthly gas price (4.12 $/Mcf) was considered to be the P90 value, and 
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the average gas price from November 2017 (2.88 $/Mcf) was considered to be the P50 

value (Table 18). 

 

Table 18—Estimated distributions for uncertain variables in Eagle Ford reservoir development 

decision model. 
 

Variable P10 P50 P90 

Gas Price 1.73 $/Mcf 2.88 $/Mcf 4.12 $/Mcf 

Matrix Porosity 5.7% 8.7% 11.7% 

Matrix Permeability 50 nD 180 nD 480 nD 

    

 Case 1 Case 2  

Natural-Fracture Density No natural fractures 

20 natural fractures 

per 2,500 square ft 

of reservoir area 

 

Created-Fracture 

Propagation 

18 cases considered. See Figs. 7 to 12, A-3 

to A-8. 
 

 

 

 Industry literature was surveyed for the purpose of estimating probability 

distributions to describe the uncertainty of the reservoir-property and fracture-property 

variables. A geological study, two reservoir models, and a case study pertaining to the 

Eagle Ford found in the petroleum literature were considered in the estimation of a 

representative distribution of uncertainty for matrix porosity. The case study estimated 

Eagle Ford porosity at 8% (Mullen 2010), the geological study estimated porosity to 

range from 3% to 10% with an average of 6% (Arguijo 2012), a reservoir model 

estimated porosity at 8% or 9% (Lalehrokh 2014), and another reservoir model consisted 

of 13 cases with porosity ranging from 6% to 12% (Gong 2013). P10, P50, and P90 

values from the aggregate population made up of porosity data points from all listed 

sources were calculated to yield a P10 porosity of 5.7%, a P90 porosity of 11.7%, and a 

P50 value of 8.7% (Table 18).  
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A geological study and a reservoir model pertaining to the Eagle Ford found in 

the petroleum literature were considered in the estimation of a representative distribution 

for uncertainty in matrix permeability. The geological study estimated that the maximum 

permeability found in the Eagle Ford is 480 nD and the average is 180 nD (Arguijo 

2012). The Eagle Ford reservoir model considers permeability to normally be in the tens 

or hundreds of nanodarcies (Gong 2013). Synthesizing these data, matrix permeability in 

the decision model was considered to have a P10 value of 50 nD, a P90 value of 480 nD, 

and a P50 value of 180 nD (Table 18).  

The uncertainty in propagation of created fractures was modelled with a set of 

discrete cases. Three uncertain attributes of the created hydraulic-fracture network were 

considered: variability in created-fracture half-length, distribution of fracture lateral 

locations, and interconnectivity of hydraulic fractures from adjacent wells. Three 

discrete possibilities were considered to model variability in created-fracture half-length, 

three discrete possibilities were considered to model the distribution of created-fracture 

lateral locations, and two discrete possibilities were considered to model the 

interconnectivity of fractures from adjacent wells. The modelling approaches applied for 

each of these three attributes of created-fracture propagation is presented in the 

following subsection, “Application of Generalized VOPI Model to Unconventional 

Reservoir Well-Spacing Decision.” These parameters related to created-fracture 

propagation were combined into one uncertain variable with 18 equally-likely discrete 

cases (Table 18). This approach was chosen due to the inseparability of obtainable 

information to describe created-fracture propagation. It is likely not feasible to acquire 
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data that provides information on created-fracture lengths, spacing, or interconnectivity 

independently.  

The petroleum industry literature is sparse on data pertaining to density of natural 

fractures in the Eagle Ford. This indicates that the uncertainty of the distribution and 

density of the natural fracture system is large. The Eagle Ford has regions in which 

natural fractures are present and regions in which they are largely absent (Kahn 2016). 

To measure the impact of natural fractures being either present or absent in the 

development area, two cases were considered in the decision model. In Case 1, no 

natural fractures are present. In Case 2, I assumed 20 natural fractures are present per 

2,500 square ft of reservoir area (Table 20). In the absence of information in the industry 

literature describing the typical distribution and density of natural fractures in the Eagle 

Ford, these two cases serve to provide insight on the value of knowing whether or not 

the natural-fracture system will have a significant impact on reservoir performance. 

  The discretized probability distributions displayed in Table 20 were assigned 

marginal probabilities based on a 25-50-25 convention (Bickel 2011). Bickel contends 

that assigning a probability of 25% to the 10th percentile, 50% to the 50th percentile, and 

25% to the 90th percentile is the most accurate method to discretize a continuous normal 

probability distribution using three discretization points. Marginal probabilities for each 

uncertain variable or case are displayed in Table 19. 
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Table 19—Marginal probabilities for uncertain variables in Eagle Ford reservoir development 

decision model. 
 

Variable P10 P50 P90 

Gas Price 25% 50% 25% 

Matrix Porosity 25% 50% 25% 

Matrix Permeability 25% 50% 25% 

    

 Case 1 Case 2  

Natural-Fracture Density 50% 50%  

Create-Fracture Propagation 
Each of the 18 cases are equally likely 

(5.5% marginal probabilities) 
 

 

5.3  Application of Generalized VOPI Model to Unconventional-Reservoir Well-

Spacing Decision 

 

 A model to describe the above scenario and calculate the NPV array across the 

total probability space was built using reservoir simulation. Because the natures of the 

created and natural-fracture networks were key uncertainties to be considered in the 

VOPI analysis, a reservoir simulation package with a robust ability to model fracture 

networks found in collaboration with Chai Zhi, a PhD candidate in the Texas A&M 

Department of Petroleum Engineering, was used. Chai has developed an embedded-

discrete-fracture-model (EDFM) reservoir simulator (Chai et al. 2016). In this simulation 

package, a discrete fracture network is defined by the user. This discrete fracture 

network is embedded within a traditional grid-block-based reservoir description. 

Because of its robustness in modelling fracture networks, this EDFM reservoir simulator 

was used to model the unconventional well-spacing decision. NPV was determined by 

calculating the present value of discounted cash flow based on gas production forecasted 

by the EDFM simulator. 
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 The context for the modelled decision scenario is the development of a 

rectangular section of unconventional dry gas reservoir that is 2,500 ft in width and 

4,000 ft in length. Horizontal well length was fixed at 4,000 ft for each well, or the entire 

length of the modelled section. Well completion decisions were also considered to be 

fixed. Each horizontal well is designed to have bi-wing hydraulic fractures with half-

lengths of 150 ft. Stage spacing was assumed to be 100 ft along the lateral length of the 

well. All other development decisions, other than the distance between parallel 

horizontal wells, were considered to be fixed decisions. Specific, discrete well-spacing 

alternatives were then defined as the decision context for the multi-variable VOPI 

analysis. Based on review of literature pertaining to well-spacing decisions that oil and 

gas operating companies are making in the Eagle Ford, 300–600 ft was found to 

encompass the majority of well-spacing decisions (Lalehrokh 2014). Through testing of 

different well-spacing alternatives within this range by application of the EDFM 

reservoir simulator and NPV analysis, it was discovered that the optimal well-spacing 

decision in the defined decision context is typically between 300 and 500 ft. Therefore, 

discrete well-spacing decision alternatives of 300, 400, and 500 ft were considered.  

 In this decision model, certain reservoir simulation and NPV calculation inputs 

were considered to be fixed, including reservoir thickness, initial reservoir pressure, 

reservoir depth, particular natural-fracture properties, particular created-fracture 

properties, and CAPEX per well (Tables 20 and 21). Reservoir thickness of 250 ft is 

typical in the Eagle Ford (Kahn 2016). Depth and pressure gradient maps, along with 

well production maps, were analyzed to determine reasonable reservoir depth and initial 
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pressure assumptions for a heavily gas-bearing region of the Eagle Ford (Tian 2014). 

Discrete natural fractures with lengths of approximately 50-100 ft, permeability of 500 

mD, and width of 0.1 mm were used to simulate the effects of Eagle Ford natural 

fractures (Wang 2015). Created-fracture permeability of 10,000 mD is typical in other 

Eagle Ford reservoir models, with a created fracture-width assumption of 0.01 ft (Gong 

2013). Cost data from the United States Energy Information Administration (2017) was 

analyzed to estimate CAPEX per well. Other economic parameters were assumptions 

made by the author. 

 
Table 20—Fixed reservoir simulation input assumptions applied to the model used to describe the 

unconventional well-spacing decision scenario. 
 

Variable Fixed Assumed Value 

Reservoir thickness 250 ft 

Initial reservoir pressure 10,000 psi 

Depth of reservoir top 12,500 ft 

Reference depth 12,500 ft 

Created-fracture dip angle 90° 

Created-fracture width 0.01 ft 

Created-fracture porosity 100% 

Natural-fracture width 0.1 mm 

Natural-fracture permeability 500 mD 

Natural-fracture porosity 100% 

 
 

 

Table 21—Fixed economic assumptions applied in the unconventional well-spacing decision 

scenario. 
 

Variable Fixed Assumed Value 

Water disposal cost 5 $/bbl 

Gas transportation cost 0.25 $/Mcf 

CAPEX per well $3,922,500 

OPEX per well $2000 per month 

Discount rate 10% 
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To set up a multi-variable VOPI calculation in the described decision scenario, 

the EDFM reservoir simulator was used to calculate a gas-production stream for each 

possible combination of discrete uncertain reservoir and fracture variables defined in 

Table 18. NPV was then calculated for each of the three potential gas prices defined in 

Table 18 for each calculated gas-production stream. Microsoft® Excel’s Visual Basic 

code was written to automate interaction with the EDFM reservoir simulator. 

To simulate unconventional reservoir performance in the context of the decision 

scenario described above using the EDFM reservoir simulation package, certain 

assumptions were made. Reservoir symmetry was assumed to reduce the modelled 

reservoir simulation area to the area between two parallel horizontal wells, reducing 

computational needs. Another assumption made to limit computational needs was that 

the performance of 1/8 of a well can be scaled by a factor of eight to represent the 

performance of the entire well. Under this assumption, the well length of both wells in 

each simulation was 1/8 of the true well length described in the decision scenario. 

Calculated NPV based on simulation output for each discrete point in the probability 

space of uncertain inputs was then normalized to the entire 4,000-ft by 2,500-ft area to 

ensure like-to-like comparison between cases. Fig. 7 displays simulated areas and 

normalization formulas for each of the considered well-spacing alternatives. 
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Fig. 7—Simulated areas and normalization formulas for each of the considered well-spacing 

alternatives. 

 

 

Discrete cases were used to model the uncertainties related to propagation of 

created fractures and density of natural fractures. Eighteen cases were considered to 

represent the uncertainty related to propagation of created fractures (Figs. 8 to 13, A-3 

to A-8). These eighteen cases represent all possible combinations of three sub-cases for 

variability in created-fracture half-length, three sub-cases for distribution of fracture 

lateral locations, and two sub-cases for interconnectivity of fractures in adjacent wells. 
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Variability in created-fracture half-length was modelled by sampling from distributions 

with different standard deviations and mean equal to the fixed designed fracture half-

length. Microseismic measurements in the Eagle Ford have indicated that it is typical for 

fracture half-lengths to vary considerably from the designed length, up to 100 ft longer 

or shorter than the target (Centurion 2014). Another Eagle Ford model has indicated 

variability in created-fracture half-lengths of roughly 30–50 ft (Lalehrokh 2014). A 

qualitative synthesis of this information led to the creation of the following three sub-

cases: standard deviation of 20 ft, standard deviation of 40 ft, and standard deviation of 

80 ft (Figs. 8 to 13, A-3 to A-8).  

To model the uncertainty in lateral distribution of created fractures, three sub-

cases were considered in the decision model (Figs. 8 to 13, A-3 to A-8). In the first sub-

case, the created fractures were uniformly distributed. In the second sub-case, the 

distribution of created fractures was partially uniform and partially random. In the third 

sub-case, the distribution of created fractures was fully random. The inspiration for 

modelling uncertainty related to the distribution of fracture lateral locations in this 

manner was an Eagle Ford case study in which a well core taken from a section of 

reservoir previously stimulated by hydraulic fracturing was analyzed (Raterman 2017). 

In this study, created fractures were found to be unevenly spaced in the lateral direction 

and not necessarily forming near perforation clusters. Also, the number of discrete 

created fractures identified was much greater than the number of fracture stages.  Ten 

discrete created fractures were defined for the simulated length of both wells in each 

case to incorporate this observation (Figs. 8 to 13, A-3 to A-8). 
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Interconnectivity between fractures in adjacent wells was modelled by 

considering two sub-cases. In the first sub-case, specific lateral locations of the 

randomly located created fractures are the same in both wells (Figs. 8 to 13). This results 

in a simulation in which the created fractures of the two simulated wells mirror each 

other exactly. In the second sub-case, specific lateral locations of the randomly located 

created fractures are different between the two wells (Figs. A-3 to A-8). This results in a 

simulation in which the created-fracture networks of the two simulated wells do not 

mirror each other. Since parallel planes were used to represent created fractures, 

mirroring the created-fracture networks of the two simulated wells results in a model in 

which created fractures are more likely to intersect (Figs. 8 to 13). In the non-mirrored 

fracture network sub-case, parallel planar created fractures are much less likely to 

intersect (Figs. A-3 to A-8).  

Two discrete natural-fracture-density cases were considered to represent the 

uncertainty associated with the natural-fracture system (Figs. 8 to 13, A-3 to A-8). The 

first case assumes that natural fractures do not have a significant effect on reservoir 

performance. Therefore, no natural fractures were included in EDFM reservoir 

simulations in which Case 1 was considered (Figs. 8, 10, 12, A-3, A-5, and A-7). Three 

separate discrete natural-fracture systems were generated to be utilized for natural-

fracture-density Case 2 simulations (Figs. 9, 11, 13, A-4, A-6, and A-8). Each of the 

generated natural-fracture systems were designed to be utilized in simulations pertaining 

to one of the three well-spacing alternatives. The natural-fracture density was kept 

consistent, but a different realization was needed for each well-spacing alternative 
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because of variance in the reservoir area being simulated. For each of the three natural-

fracture systems generated, random variables were utilized to determine the length, 

orientation, and location of each natural fracture. All locations and orientations were 

considered equally likely, within the constraints of the defined density. In the absence of 

information about the length of natural fractures in the Eagle Ford available in the 

petroleum literature, natural fractures were assumed to vary from 50 to 150 ft on a 

uniform distribution (Wang 2015). Natural-fracture length, orientation, and location 

were kept constant across each simulation of each well-spacing alternative to ensure 

consistency (Figs. 9, 11, 13, A-4, A-6, and A-8). The three well-spacing alternatives, 18 

created fracture-propagation cases, and two natural-fracture-density cases add up to 108 

different possible combinations of reservoir area and discrete created/natural-fracture 

locations to be simulated using the EDFM reservoir simulator.  
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Fig. 8—Discrete fracture network cases considered under the no natural fractures case  

when the well-spacing decision is 300 ft: Mirror image wells. 
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Fig. 9—Discrete fracture network cases considered under the natural fractures present case 

when the well-spacing decision is 300 ft: Mirror image wells. 
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Fig. 10—Discrete fracture network cases considered under the no natural fractures case  

when the well-spacing decision is 400 ft: Mirror image wells. 
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Fig. 11—Discrete fracture network cases considered under the natural fractures present case when 

the well-spacing decision is 400 ft: Mirror image wells. 
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Fig. 12—Discrete fracture network cases considered under the no natural fractures case  

when the well-spacing decision is 500 ft: Mirror image wells. 
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Fig. 13—Discrete fracture network cases considered under the natural fractures present case when 

the well-spacing decision is 500 ft: Mirror image wells. 

 

To sample the total probability space, each of the 108 possible combinations of 

well spacing and created/natural-fracture locations were simulated with every 

combination of the three considered matrix porosities and three considered matrix 

permeabilities. In total, gas-production streams for 972 different, discrete scenarios were 

simulated. Including the three possible gas prices considered in this decision scenario, 

the total number of discrete outcomes was 2,916. Each of the three possible well-spacing 

alternatives have 972 potential discrete outcomes in their probability space. Rejecting 
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the development project, resulting in an NPV of $0, was also considered as a decision 

alternative. 

An indexing system was created so that the generalized multi-variable VOPI 

model could interact with the Eagle Ford well-spacing NPV model. Given any possible 

combination of discrete uncertain parameters, the indexing system returns the NPV of 

the development project under each considered decision alternative. The generalized 

multi-variable VOPI model then used the indexing system to build the NPV array for the 

total probability space. The generalized VOPI model calculated EOL for each decision 

alternative considered in the unconventional well-spacing decision scenario and found 

that 400-ft spacing is the optimal decision at the original level of uncertainty (Table 22). 

 

Table 22—EOL values under the original level of uncertainty for each considered decision 

in the unconventional well-spacing decision scenario. 
 

Decision Alternative EOL 

300 ft Spacing $7,850,037 

400 ft Spacing $3,457,590 

500 ft Spacing $6,384,307 

Reject Project $48,198,140 
 

 

 

The multi-variable VOPI model calculated VOPI for each uncertain variable, 

assuming in each case that the decision maker has no other new information and that 

each variable is independent of every other variable (Table 23).  
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Table 23—Multi-variable VOPI calculation outputs for unconventional well-spacing decision 

scenario. 
 

Decision at current uncertainty 400 ft spacing   

EOL at current uncertainty $3,457,590   

      

VOPI Results 

Known Variable EOL VOPI 

Gas Price $2,494,165 $963,425 

Created-fracture propagation $2,911,388 $546,202 

Matrix porosity $2,927,996 $529,594 

Matrix permeability $3,457,592 $(2) 

Natural-fracture density $3,457,593 $(2) 

 
 

The VOPI calculation results indicate that the uncertain variable for which 

perfect information has the most value, approximately $960,000, is the gas price (Table 

23). This is unsurprising, given that gas prices ranged from 1.73 $/Mcf to 4.12 $/Mcf 

over the period of November 2014—November 2017 and commodity prices have an 

impact on the health of the oil and gas industry. There was a large step down in value 

between the VOPI of gas price and the variable with the second highest VOPI, which 

was created-fracture propagation (Table 23). The VOPI of the propagation of the created 

fractures was calculated to be approximately $550,000. This indicates that the 

uncertainty related to the propagation of the created-fracture network (fracture lengths, 

fracture spacing, and fracture interconnectivity) has significant information value. 

Matrix porosity was found to have a VOPI of near $530,000 (Table 23). This indicates 

that the porosity in an unconventional gas reservoir has a significant effect on the 

information value. The calculated VOPIs for matrix permeability and natural-fracture 

density are both zero. This indicates that further reduction of uncertainty related to these 

two parameters may not be necessary for optimization of the well-spacing decision 
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presented in this research. This does not mean that information regarding matrix 

permeability or natural-fracture density has no value in any decision context within 

unconventional reservoir development. High matrix permeability and dense natural 

fractures have positive impacts on the EV of unconventional reservoir development 

projects. For decision contexts such as choice of resource play to develop or choice of 

lease locations, these variables may have high VOPI. They also may have high VOPIs in 

well-spacing decision contexts for which the probability that the development project 

will result in an economic loss is higher than the chance of economic loss in the decision 

context presented in this example. What is indicated by these results is that gas price, 

matrix porosity, and propagation of created fractures may be much more relevant 

considerations in the well-spacing development decision presented in this research than 

matrix permeability and natural-fracture density.  

According to Hubbard (2014), VOII is closely tied with VOPI. Also, VOPI gives 

an indication of relative information values, which may be more important to a decision 

maker than absolute information values. Hubbard suggests estimating VOII as 10% of 

VOPI as a rule-of-thumb. However, one must be cautious when using this rule-of-thumb. 

It is not a scientifically rigorous calculation, but simply an indication of the likely order 

of magnitude of VOII. A rigorous VOII calculation would produce more accurate VOII 

calculation results. However, a multi-variable VOII calculation would be quite difficult 

due to the added dimension of assessing the uncertainty regarding the accuracy of 

acquired information. The data regarding the accuracy of the information acquired 

would be difficult, if not impossible, to obtain. Using Hubbard’s rule of thumb, 
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estimation of VOII based on calculated VOPI was determined for each uncertain 

variable (Table 24). Note that all value estimations represent value per development area 

under consideration in the NPV model. In this scenario, estimated VOIIs are indicative 

of VOII per 2,500 ft by 4,000 ft (approximately 230 acres) of reservoir area. 

 

Table 24—Indication of VOII for each uncertain variable. 
 

Variable VOPI VOII Estimation 
Gas price $ 963,425 ~$ 96,000 

Created-fracture propagation $ 546,202 ~$ 55,000 

Matrix porosity $ 529,594 ~$ 53,000 

Matrix permeability $ 0 $ 0 

Natural-fracture density $ 0 $ 0 

 

 
 

The variable with the highest information value is gas price. Though uncertainty 

regarding the future price of gas cannot be reduced through data acquisition, E&P 

companies developing unconventional reservoirs can reduce the uncertainty of the future 

price their gas will sell at through hedging. Since hedging guarantees the future sales 

price of gas for a period of time, the information that it provides is more precise than 

information typically obtained through data acquisition. Therefore, the value of reducing 

the uncertainty of gas price through hedging is likely closer to VOPI than indicated by 

Hubbard’s rule-of-thumb. The VOII (in this case, the value of hedging) should always be 

considered in comparison with the cost of information. In this scenario, hedging is 

recommended if the cost of the hedging contract is significantly less than approximately 

$963,000. 

The VOII indications for created-fracture propagation and matrix porosity are, 

respectively, $55,000 and $53,000 (Table 24). Certain types of data could potentially be 
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acquired by the decision maker to reduce the uncertainty in these variables. For example, 

microseismic data or radioactive-proppant completion diagnostic data could be acquired 

to reduce the uncertainty regarding the propagation of the created hydraulic fractures. 

Core data could be acquired to reduce the uncertainty regarding the matrix porosity. In 

this decision context, the justified spending level for acquiring microseismic data and/or 

radioactive-proppant completion diagnostic data is approximately $55,000 per 230 acres. 

Similarly, the justified spending level for acquiring core data in the described decision 

context is approximately $53,000 per 230 acres. 

The VOPI analysis indicates that gas price dwarfs other uncertain variables with 

regard to the impact on the optimal development decision. Considering the gas price to 

be fixed at 2.88 $/Mcf, the November 2017 price, the VOPI for the other four uncertain 

variables was re-calculated to test their sensitivity to the inclusion of gas price in the 

VOPI calculation (Table 25).  

 

Table 25—Multi-variable VOPI calculation outputs for unconventional well-spacing 

decision scenario excluding consideration of gas price. 
 

Decision at current uncertainty 400 ft spacing  

EOL at current uncertainty $1,711,026  

   

VOPI Results 

Known Variable EOL VOPI 

Created-fracture propagation $1,146,215 $564,811 

Matrix porosity $1,204,499 $506,527 

Matrix permeability $1,711,026 $ - 

Natural-fracture density $1,711,026 $ - 

 

The calculated VOPI for each of the four uncertain variables considered in the 

VOPI analysis that excludes the gas price is reasonably similar to their calculated VOPI 
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when gas price is also considered. This is likely because reservoir and fracture properties 

are independent of the gas price. However, if the gas price is low enough, information on 

reservoir and fracture properties would lose its value because the development would not 

be economically feasible no matter what the reservoir and fracture properties were.  

The results of the VOPI analysis for the Eagle Ford unconventional-reservoir 

well-spacing decision indicate that a rational approach for data-acquisition decisions is 

achievable through creation of a reliable decision model and multi-variable VOPI 

analysis. Application of similar VOPI analysis to unconventional reservoir development 

decision models could lead to improved data-acquisition decisions. If data-acquisition 

decisions were improved, financial performance would be improved because of better 

informed decision making and less capital spent on insignificant data. Research 

institutions could also benefit from utilizing similar VOPI analysis with the goal of 

focusing research efforts on reducing uncertainties that have high information values. 

However, it is critical that uncertainty be reliably quantified in the decision models used 

for multi-variable VOPI analysis. Consequences of biased uncertainty quantification on 

VOPI calculations are addressed in Section 6.  
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6.  EFFECT OF OVERCONFIDENCE AND DIRECTIONAL BIAS ON VOPI 

ANALYSIS 

 

6.1  Effect of Biases on VOPI in a Simple-Context Experiment 

McVay and Dossary (2012) showed that biases in the quantification of 

uncertainty can lead to sub-optimal project selection and a negative impact on financial 

performance in the oil and gas industry. While McVay and Dossary’s 2012 research 

focused on the negative effects that biases in uncertainty quantification have on project 

selection, the focus of the research presented in this thesis is VOPI calculations. For this 

reason, the effect that biases in uncertainty quantification have on VOPI calculations was 

investigated. By understanding how biases affect VOPI studies, we can quantify the 

extent to which information is overvalued or undervalued due to biases. Overvaluing or 

undervaluing information can, in some circumstances, lead to sub-optimal data 

acquisition decisions. 

The methodology that McVay and Dossary used to assign biases to continuous 

distributions was applied in this research to analyze the effect that biased uncertainty 

quantification has on VOPI studies. McVay and Dossary’s bias assignment model is 

based on the premise that human biases affecting decision making in the oil and gas 

industry can be summarized by two primary bias types: overconfidence bias and 

directional bias. These biases are in reference to what may be considered the “true” 

distribution of possible outcomes. What is meant by a “true” outcome distribution is that 

the assessed range of uncertainty is the exact same as it would have been if the assessor 

was perfectly calibrated (completely unbiased).  
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Overconfidence bias is concerned with the variance of the estimate. The bias-

assignment model involves a quantity ranging between 0 and 1 given to specify the 

fraction of the “true” distribution of an uncertain parameter that is not considered in the 

biased assessment of uncertainty (Fig. 14). In this model, an overconfidence bias of 0 

means that the entire “true” distribution is considered by the estimated distribution. At 

the other end of the spectrum, an overconfidence parameter of 1 represents a 

deterministic estimate. The overconfident assessment of uncertainty is generated by 

truncating the “true” distribution at its tails according to the overconfidence parameter 

(Fig. 14). For example, assuming no directional bias, an overconfidence parameter of 0.5 

means that the estimated distribution is only considering the most likely 50% of possible 

outcomes. In this case, 25% of the total “true” probability is truncated from each end of 

the “true” distribution. 

Directional bias is concerned with the central tendency of the estimate. The bias 

model involves a quantity ranging between -1 and 1 given to represent the extent to 

which the central tendency of an estimate is optimistic or pessimistic (Fig. 14). A 

directional bias parameter of -1 corresponds to complete pessimism, meaning that the 

estimated distribution considers only the most pessimistic outcomes. This means that the 

percent of the “true” outcome distribution that is not considered (specified by the 

overconfidence parameter) is truncated entirely from the high end of the distribution. If 

the directional bias parameter is 1, this corresponds to complete optimism and means 

that only the low end of the “true” distribution is truncated to generate the biased 

distribution (Fig. 14). These definitions of optimism and pessimism apply to value-based 
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parameters; they would be reversed for cost-based parameters. A directional bias of 0 

means that the high end and low end of the “true” distribution are truncated equally to 

generate the biased distribution. For other values of the directional bias parameter, linear 

interpolation is used to determine how much to truncate each end of the distribution (Fig. 

14). In this model, there can be directional bias only if the overconfidence parameter is 

greater than 0. This is because if the entire “true” range of possible outcomes is being 

considered (no overconfidence), the location of the assessed distribution within the 

“true” distribution cannot be changed. Therefore, the directional bias parameter has no 

meaning when the overconfidence parameter = 0 (Fig. 14).  

 
 

Fig. 14—Relationship between the estimated distribution (shaded) and the “true” distribution 

(unshaded) for a sample of overconfidence/directional bias combinations for a normally distributed, 

value-based parameter. Reprinted with permission (McVay and Dossary 2012). 
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The goal of this portion of the research was to compare the VOPI that would be 

calculated using the “true” distribution for an uncertain variable with the VOPIs that 

would be calculated using a series of biased distributions. For the sake of simplicity, an 

experiment in which the uncertain variable was the NPV of the project was designed. 

The scenario was a simple go/no-go decision where the threshold for expected NPV was 

$0 and the uncertainty about whether the project would meet that threshold was large 

(Fig. 15). 

  

 

Fig. 15—Decision scenario for the simple-context effect-of-biases-on-VOPI-calculations experiment. 
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It is recognized that, in reality, there is no information that can predict the value 

of an oil and gas project with 100% accuracy. However, this simple scenario is helpful to 

understand the effects that uncertainty quantification biases have on value-of-

information studies in general. The “true” distribution of project NPV was defined to be 

a normal distribution with a mean of $3 and a standard deviation of $15 (Fig. 16).  

 

 
 

Fig. 16—“True” project value probability distribution for the simple-context effect-of-

biases-on-VOPI-calculations experiment. 

 

 

The expected value of the project was calculated by evaluating the following 

integral, where f(x) is the “true” project probability distribution (Fig. 16) and x is the 

project NPV: 

𝐸𝑉 =  ∫ 𝑥 𝑓(𝑥) 𝑑𝑥
∞

−∞

= $3 

 The above equation calculates the EV of the upper decision tree in Fig. 15. The 

expected value with perfect information (EVWPI), the lower decision tree in Fig. 15, 

was calculated by evaluating the integral below: 
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𝐸𝑉𝑊𝑃𝐼 =  ∫ max (0, 𝑥) 𝑓(𝑥) 𝑑𝑥
∞

−∞

 

𝐸𝑉𝑊𝑃𝐼 =  ∫ 0 𝑓(𝑥) 𝑑𝑥
0

−∞

 +  ∫ x 𝑓(𝑥) 𝑑𝑥
∞

0

 

𝐸𝑉𝑊𝑃𝐼 =  ∫ x 𝑓(𝑥) 𝑑𝑥
∞

0

= $7.6 

 The above integral was evaluated numerically to calculate EVWPI of the project 

under consideration. The VOPI regarding the uncertain variable, project value, was 

calculated by subtracting EV from EVWPI. 

𝑉𝑂𝑃𝐼 =  𝐸𝑉𝑊𝑃𝐼 − 𝐸𝑉 = $7.6 − $3 = $4.6 

Next, numerous combinations of overconfidence bias and directional bias (Fig. 

14) were applied to the “true” project value distribution (Fig. 16) to obtain an array of 

truncated, biased uncertainty assessments regarding project value. Truncation parameters 

were determined based on the overconfidence bias and directional bias for each biased 

uncertainty assessment. EV and EVWPI based on the biased uncertainty assessments 

were calculated by numerically integrating the following integrals, where a and b are 

truncation parameters: 

𝐸𝑉 =  max (0, ∫ 𝑥 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎

) 

𝐸𝑉𝑊𝑃𝐼 =  ∫ max (0, 𝑥) 𝑓(𝑥) 𝑑𝑥
𝑏

𝑎

 

The VOPI for project value was calculated under each combination of bias 

parameters based on the results of the above truncated integrals. The results indicate that 

overconfidence bias in a parameter’s uncertainty assessment leads to underestimation of 
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VOPI for that parameter (Fig. 17), and the greater the overconfidence, the greater the 

underestimation of VOPI. This is because overconfidence yields narrower distributions 

(lower uncertainty), so there is less potential for uncertainty reduction through 

information acquisition.  

 

 
 

Fig. 17—Results from the simple-context go/no-go experiment investigating the effect of 

overconfidence and directional biases on VOPI. 

 

These calculations also indicate that, in general, at low to moderate values of 

overconfidence, moving from pessimism (negative directional bias (DB)) towards 

optimism (positive DB) reduces VOPI in the decision context considered. This is 

because increasing DB moves the truncated estimated distribution in the positive 

direction, where there is less overlap of the zero-NPV value, which results in less chance 

of a decision change due to new information. At moderate to high values of 

overconfidence, there is a peak in VOPI and increasing pessimism (decreasing DB) from 
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the peak reduces VOPI. At the peak, the estimated distribution straddles the zero-NPV 

value and, thus, there is the greatest opportunity for a decision change due to 

information. Decreasing DB from this point moves the truncated estimated distribution 

into negative values with less overlap of the zero-NPV value, thus reducing the 

opportunity for decision change. The results from this simple experiment are not 

necessarily representative of the impact that biases will have on VOPI for all scenarios. 

However, these results establish that, in general, overconfidence bias in uncertainty 

quantification (which is common in the industry) will reduce calculated VOPI values. 

This could have significant impacts on data acquisition practices in the industry.  

 

6.2  Effect of Biases on VOPI Analysis for Well-Spacing Decision 

To demonstrate the effects of biases in uncertainty quantification on VOPI 

calculations in a more meaningful context, the effect of overconfident and optimistic 

quantification of uncertainty on the VOPI calculation presented in Section 5 was 

investigated. This was accomplished by introducing bias in the quantification of 

uncertainty regarding the gas price, the variable previously calculated to have the highest 

VOPI. The expected NPV associated with 300, 400, and 500-ft well-spacing decisions 

was calculated for an array of discrete cases making up the probability space was 

calculated previously in the research presented in Section 5. In the assessment of 

uncertainty presented in Section 5, gas price uncertainty was considered discretely with a 

P10 value of 1.73 $/Mcf, a P90 value of 4.12 $/Mcf, and a P50 case value of 2.88 $/Mcf 

(Table 18). A probability of 25% was assigned to the P10 case, a probability of 50% was 
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assigned to the P50 case, and a probability of 25% was assigned to the P90 for 

calculation of VOPI (Table 19). This original quantification of uncertainty regarding gas 

price is summarized below in Table 26. 

 

Table 26—Original assessment of uncertainty regarding the gas price. 
 

Value Probability 

1.73 $/Mcf 25% 

2.88 $/Mcf 50% 

4.12 $/Mcf 25% 

 

 

To assess the impact of bias in uncertainty assessment on multi-parameter VOPI 

calculations, the above gas price probability distribution was perturbed and the results 

were observed. Probability weightings of each considered discrete gas price were 

adjusted to reflect characteristics of overconfidence and optimism bias. In the biased 

uncertainty assessment, 1.73 $/Mcf gas price was assigned a probability of 10%, 2.88 

$/Mcf gas price was assigned a probability of 65%, and 4.12 $/Mcf gas price was 

assigned a probability of 25% (Table 27). Assigning a higher probability to the 2.88 

$/Mcf gas price mimics overconfidence bias by placing a considerably increased weight 

on this value. Skewing the probability assessment in the direction of the high case 

mimics optimism bias (Fig. 18). 

 

Table 27—Biased assessment of uncertainty regarding the gas price. 
 

Value Probability 

1.73 $/Mcf 10% 

2.88 $/Mcf 65% 

4.12 $/Mcf 25% 
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Fig. 18—Original assessment of uncertainty vs. biased assessment of uncertainty regarding gas 

price. 

 

 Using the probability weights displayed above (Table 27) for gas price and 

original probability weights for the other variables, the generalized multi-variable model 

calculated VOPI for each uncertain variable considered in the unconventional well-

spacing decision context presented in Section 5. VOPI outputs are displayed below in 

Table 28.  

 

Table 28—Multi-variable VOPI calculation outputs for unconventional well-spacing 

decision scenario under biased uncertainty assessment of gas price. 

 

Decision at current uncertainty 400 ft spacing  

EOL at current uncertainty $2,750,215  

   

VOPI Results 

Known Variable EOL VOPI 

Matrix porosity $2,043,689 $706,525 

Gas Price $2,195,409 $554,806 

Created-fracture propagation $2,263,679 $486,535 

Natural-fracture density $2,750,213 1 

Matrix permeability $2,750,214 1 
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 Comparison of VOPI calculated under biased uncertainty assessment to the 

VOPI calculation under the original assessment of uncertainty (Table 23) reveals that the 

overconfident and optimistic assessment of uncertainty resulted in an undervaluation of 

the gas price VOPI by approximately 42%, or $400,000. The overall VOPI and the 

VOPI regarding created-fracture propagation were also significantly underestimated 

with biased assessment of gas price uncertainty, while VOPI for matrix porosity was 

significantly overvalued (Table 29).  

 

Table 29—Effect of biased assessment of uncertainty regarding the gas price on each VOPI 

calculation. 
 

Variable 
Original 

VOPI 

VOPI: biased 

uncertainty 

assessment 

VOPI 

Over/under 

Estimation (%) 

VOPI 

Over/under 

Estimation ($) 

Overall VOPI $3,457,590 $2,750,215 -20% ($707,375) 

Gas Price  $963,425  $554,806 -42% ($408,619) 

Created-fracture 

propagation 
$546,202  $486,535 -11% 

($59,667) 

Matrix Porosity 529,594  $706,525 +33% $176,931  

Matrix Permeability $0 $0 0% $0 

Natural-Fracture 

Density 
$0 $0 0% $0 

 

 

 

 The VOPI for gas price is underestimated because the assessment of uncertainty 

regarding gas price is overconfident. As shown in the previous section, if information 

that reduces uncertainty in an unknown variable has value, overconfident uncertainty 

assessment (lower uncertainty) necessarily leads to a decrease in calculated VOPI. The 

VOPI calculations were skewed for created-fracture propagation and matrix porosity as 

well. Information value for created-fracture propagation was underestimated, while 

information value for matrix porosity was overestimated. The biased uncertainty 
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assessment also led to a distortion in the ranking of VOPI (Table 29). This is of 

particular interest, because one of the primary advantages of multi-variable VOPI 

analysis is that it indicates relative information values. 

Though barely scratching the surface in characterizing all the negative effects 

that biases in the quantification uncertainty can have on VOPI analysis, the results 

presented in this section establish that introducing bias in the assessment of a key 

uncertainty can have a significant effect on VOPI analysis. It was shown that biased 

uncertainty assessment for a key variable can cause VOPI for some variables to be 

overestimated and VOPI for other variables to be underestimated. Furthermore, biased 

uncertainty assessment for a key variable can change the calculated VOPI ranking, 

which skews relative information values. This further enforces the importance of reliable 

uncertainty assessment for decision makers in unconventional reservoir development.  
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7.  DISCUSSION 

 

 Reliable assessment of uncertainty is vital for optimization of the decision-

making process in the context of unconventional reservoir development. However, to 

truly optimize the decision-making process it is important to go further than assessing 

uncertainty accurately. The decision maker must also assess which uncertainties are 

worth reduction through data acquisition. Hubbard presents the following process for 

application of VOI analysis to optimize data-acquisition decisions (Hubbard 2014): 

1)  Frame the decision context. The decision maker must understand what the key 

uncertainties are and what decision alternatives will be considered. A decision model 

must be built to connect possible values of uncertain variables to the EV of the 

project under each considered decision alternative. 

2)  Quantify the uncertainty related to key variables. Uncertainty of each variable 

that is treated as uncertain in the decision model must be quantified accurately. 

Otherwise, outputs of VOI calculations can be skewed. 

3)  Calculate overall VOPI and the VOPI for each uncertain variable. Using the 

probability distributions previously assigned to each uncertain variable as inputs to 

the decision model, calculate project EV under each considered decision alternative 

for all possible combinations of uncertain input variables. Then, calculate VOI for 

each uncertain variable. 
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4)  Compare data-acquisition costs with calculated VOI for each uncertain variable. 

For variables with VOI higher than costs of acquiring related data, acquire the 

related data.  

5)  Repeat steps 2-4 until data-acquisition costs exceed VOI for all uncertain 

variables. 

6)  Proceed with the decision alternative with the lowest calculated EOL. 

 The work presented in this research established that Steps 1-3 of Hubbard’s 

methodology for optimizing the data-acquisition decision process are translatable to an 

unconventional reservoir development context. Application of multi-variable VOPI 

methodology to an unconventional reservoir well-spacing decision showed that 

commodity price, created-fracture propagation, and matrix porosity may be the 

parameters for which further uncertainty reduction creates the most value. However, 

decision makers searching for a rational approach to data-acquisition decisions should 

apply multi-variable VOPI analysis to their specific decision contexts, rather than 

relying on the results of this research. VOPI calculations are dependent on the specific 

decision context faced by the decision maker and the specific information available to 

the decision maker. Therefore, the VOPI for key uncertain variables in unconventional 

reservoir development is specific to each decision scenario and operator (because 

uncertainty can vary by operator).  

 In the context of unconventional reservoir development, some uncertain 

parameters for which measurement reliability is low may be identified as having high 

VOPI. For example, microseismic data provides information that reduces the uncertainty 
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related to created-fracture propagation to a certain extent. However, the uncertainty 

related to the propagation of the created fractures likely remains large after acquisition of 

microseismic data. The uncertainty related to created-fracture propagation has high 

VOPI in the decision context presented in this research, but it may have low VOI due to 

low measurement accuracy. If multi-variable VOPI analysis reveals high information 

value for an uncertain parameter, yet this uncertain parameter is not easily measured 

through data acquisition, then research efforts focused on advancing understanding of 

this uncertain parameter or developing more accurate measurement methods may have 

high value potential.  Application of multi-variable VOPI analysis in an academic setting 

allows for researchers to identify high-value future research topics without incurring 

steep data-acquisition costs. 

 Results and conclusions from this research should be considered in the context of 

limiting assumptions that were made. First, the uncertain variables considered in the 

multi-variable VOPI analysis applied to the unconventional reservoir well-spacing 

decision were assumed to be independent. Second, uncertainties of the variables 

considered in the well-spacing VOPI analysis were quantified based on data available in 

the industry literature. Quantification of uncertainty based on data from an E&P 

company would provide more tangible results.  

The application of the generalized multi-variable VOPI model presented in this 

thesis considers once decision variable. However, it could easily be used for VOPI 

calculations in decision contexts which consider multiple decision variables by decision 

variable combination. For example, a two-decision variable context consisting of three 
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well-spacing alternatives and three well lateral length decision alternatives can be 

considered a single-decision variable context with nine variables.  

The generalized multi-variable VOPI model could also be used for investigating 

the sensitivity of VOPI calculations to dependence between uncertain variables. If VOPI 

calculation outputs are highly sensitive to the correlation assumptions between particular 

uncertain variables, then effort to accurately quantify the correlation is necessary to 

ensure accurate VOPI calculations. However, if VOPI calculation outputs are not highly 

sensitive to the correlation assumptions between particular uncertain variables, then 

further effort to quantify the correlation may not be justified. 

The major benefit of this research is that it provides a rational approach for 

determining the value of uncertainty reduction through data acquisition in 

unconventional reservoir development. Highlighting this approach should lead to 

increased industry and academic awareness of the power of multiple-variable VOPI 

analysis to justify data acquisition and focus research efforts. Increased awareness, if 

translated to increased application, should lead to improved decision making and 

financial performance in unconventional reservoir development. 
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8.  CONCLUSIONS 

 

 A generalized multi-variable VOPI model with the ability to accommodate a 

variable number of discrete uncertain variables and discrete decision alternatives 

was successfully developed. 

 In the context of an unconventional well-spacing decision using Eagle Ford shale 

data obtained from the industry literature, gas price is the uncertain variable with 

the highest VOPI. 

 In the context of an unconventional well-spacing decision using Eagle Ford shale 

data obtained from the industry literature, information related to created-fracture 

propagation and matrix porosity have significant VOPI. 

 In the context of an unconventional well-spacing decision using Eagle Ford shale 

data obtained from the industry literature, information related to matrix 

permeability and natural fracture density do not have significant VOPI. 

 Biased assessment of uncertainty for key uncertain variables can lead to 

significantly skewed VOPI calculations for all uncertain variables with 

information value and can change the VOPI rankings, leading to skewed 

estimation of relative information values. 
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APPENDIX A 

FIGURES AND TABLES NOT EMBEDDED IN TEXT 

 

 

Fig. A-1—Graphical visualization of effect of “Interference Spacing” from the synthetic model (Well 

spacing = 20). 

 

 
 

Fig. A-2—Generalized multi-variable VOPI model input and calculations for the three-variable 

synthetic model scenario. 
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Fig. A-3—Discrete fracture network cases considered under the no natural fractures case when the 

well-spacing decision is 300 ft: Non-mirror image wells. 
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Fig. A-4—Discrete fracture network cases considered under the natural fractures present case when 

the well-spacing decision is 300 ft: Non-mirror image wells. 
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Fig. A-5—Discrete fracture network cases considered under the no natural fractures case when the 

well-spacing decision is 400 ft: Non-mirror image wells. 
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Fig. A-6—Discrete fracture network cases considered under the natural fractures present case when 

the well-spacing decision is 400 ft: Non-mirror image wells. 
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Fig. A-7—Discrete fracture network cases considered under the no natural fractures case when the 

well-spacing decision is 500 ft: Non-mirror image wells. 
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Fig. A-8—Discrete fracture network cases considered under the natural fractures present case when 

the well-spacing decision is 500 ft: Non-mirror image wells. 
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Table A-1—Rank and aggregate score of each “uncertainty” response in the Crisman/Berg-

Hughes industry member survey. 
 

Uncertainty Rank Score 

Direction/nature of hydraulic fracture propagation 1 44 

Oil and gas prices 2 42 

Individual well productivities 3 33 

Natural-fracture system: orientation 4 30 

Permeability distribution 5 27 

Mechanical Stratigraphy 6 26 

Natural-fracture system: fracture fill and conductivity 7 24 

Lateral variations in lithology 8 21 

Reservoir Pressure 9 15 

Stress state 10 13 

Pressure-volume-temperature behavior in nano-pores 11 13 

Effective fracture height 12 9 

Effective fracture length 12 9 

Natural-fracture system: density & distribution 14 7 

Minerology 15 5 

Dynamic models of perm and porosity associated with organic 

matter 
15 5 

Total organic content distribution 17 5 

Borehole measurements responses 18 4 

Correlation between commodity price & rig schedule 18 4 

Proppant transport 18 4 

Drilling hazards 21 3 

Hydraulic fracture system: change over time 21 3 

Cementing (Well Integrity) in horizontal Wells 21 3 

Cluster Efficiency 21 3 

Permeability through time & geomechanical effects in the 

stimulated reservoir volume 
25 3 

Natural-fracture interaction with hydraulic fractures 25 3 

Drilling time 27 2 

Volume calibrated fracture measurement 27 2 

Reservoir quality & characterization 29 2 

Fluid properties 29 2 

Migration in non-source rock plays 29 2 

Petrophysical log calibration & modeling 29 2 

Organic geochemistry/organofacies of source rocks 29 2 

Mobile water saturation 34 2 

Critical gas saturation 34 2 

Residual condensate/oil saturation 34 2 

Seismicity 37 1 
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Table A-2—Rank and aggregate score of each “decision” response in the Crisman/Berg-Hughes 

industry member survey. 
 

Decision Rank Score 

Well spacing 1 73 

How to complete well 2 47 

Should we be in play/basin? 3 34 

Lateral landing zone 4 32 

Stimulation number of stages 5 30 

How much do we pay for leases? 6 17 

Where do we buy leases? 7 17 

Stimulation fluid volume 8 15 

Production - how to flow back well 9 14 

Appraisal program - number and locations of test wells 10 11 

Type and amount of proppant 11 11 

Stimulation fluid type 12 10 

Well lateral length 13 9 

Coring program - number of wells, cored interval, types 

of analyses 
14 7 

Logging program - types of logs 15 6 

Cluster spacing 16 5 

Acquire scanning electron microscopy data-polished 17 4 

Enhanced oil recovery for unconventional reservoirs 18 3 

Optimize fracture size to avoid over-stimulation when 

well spacing too close 
19 3 

Water disposal/management 20 2 

Stimulated reservoir volume optimization for stacked 

play (through space & time) 
20 2 

Well azimuth 22 2 

Well spacing - Horizontally 22 2 

Acquire microseismic data? 24 2 

Facilities design & optimization in early stages 25 1 

Artificial Lift Type, Timing, Efficiency 27 1 
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Table A-3—Probability distributions for qi, IntSpacing, and Oil Pr. 
 

 

Parameter 1: qi (bbl/day) 

Percentile Value Probability 

P10 298 30% 

P50 490 40% 

P90 682 30% 

   

Parameter 2: IntSpacing (acres) 

Percentile Value Probability 

P10 27 30% 

P50 40 40% 

P90 53 30% 

 
  

Parameter 3: Oil Pr. ($/bbl) 

Percentile Value Probability 

P10 51 30% 

P50 54 40% 

P90 57 30% 

 

 

Table A-4—Joint-probability matrix for the three-variable synthetic model. 
 

   qi (bbl/day)   

Oil Pr. 

($/bbl) 

IntSpacing 

(acres) 
298 490 682 

IntSpacing 

(marginal) 

Oil Pr. 

(marginal) 

51 

27 2.70% 3.60% 2.70% 30% 

30% 40 3.60% 4.80% 3.60% 40% 

53 2.70% 3.60% 2.70% 30% 

54 

27 3.60% 4.80% 3.60% 30% 

40% 40 4.80% 6.40% 4.80% 40% 

53 3.60% 4.80% 3.60% 30% 

57 

27 2.70% 3.60% 2.70% 30% 

30% 40 3.60% 4.80% 3.60% 40% 

53 2.70% 3.60% 2.70% 30% 

  
qi 

(marginal) 
30% 40% 30%   
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Table A-5—NPV for each possible realization of qi, IntSpacing, and Oil Pr. under each decision 

alternative. 
 

  Decision = 20 Acre Spacing 

  qi (bbl/day) 

Oil Pr. ($/bbl) 
IntSpacing 

(acres) 
298 490 682 

51 

27 ($23,543,132) ($12,463,900) ($1,384,668) 

40 ($29,041,520) ($21,511,940) ($13,982,359) 

53 ($31,871,576) ($26,169,024) ($20,466,472) 

54 

27 ($22,223,005) ($10,291,524) $1,639,957  

40 ($28,144,346) ($20,035,567) ($11,926,788) 

53 ($31,192,098) ($25,050,888) ($18,909,678) 

57 

27 ($20,902,877) ($8,119,147) $4,664,582  

40 ($27,247,171) ($18,559,193) ($9,871,216) 

53 ($30,512,620) ($23,932,752) ($17,352,884) 

        

  Decision = 40 Acre Spacing 

  qi (bbl/day) 

Oil Pr. ($/bbl) 
IntSpacing 

(acres) 
298 490 682 

51 

27 ($8,689,124) ($1,159,544) $6,370,037  

40 ($8,689,124) ($1,159,544) $6,370,037  

53 ($11,519,180) ($5,816,628) ($114,076) 

54 

27 ($7,791,950) $316,829  $8,425,608  

40 ($7,791,950) $316,829  $8,425,608  

53 ($10,839,702) ($4,698,492) $1,442,718  

57 

27 ($6,894,775) $1,793,203  $10,481,180  

40 ($6,894,775) $1,793,203  $10,481,180  

53 ($10,160,224) ($3,580,356) $2,999,512  
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Table A-5—Continued 
 

  Decision = 80 Acre Spacing 

  qi (bbl/day) 

Oil Pr. ($/bbl) 
IntSpacing 

(acres) 
298 490 682 

51 

27 ($4,344,562) ($579,772) $3,185,018  

40 ($4,344,562) ($579,772) $3,185,018  

53 ($4,344,562) ($579,772) $3,185,018  

54 

27 ($3,895,975) $158,415  $4,212,804  

40 ($3,895,975) $158,415  $4,212,804  

53 ($3,895,975) $158,415  $4,212,804  

57 

27 ($3,447,387) $896,601  $5,240,590  

40 ($3,447,387) $896,601  $5,240,590  

53 ($3,447,387) $896,601  $5,240,590  

 
 

  Decision = Reject Project 

  qi (bbl/day) 

Oil Pr. ($/bbl) 
IntSpacing 

(acres) 
298 490 682 

51 

27 $0  $0  $0  

40 $0  $0  $0  

53 $0  $0  $0  

54 

27 $0  $0  $0  

40 $0  $0  $0  

53 $0  $0  $0  

57 

27 $0  $0  $0  

40 $0  $0  $0  

53 $0  $0  $0  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

99 

 

 

Table A-6—Optimal decision matrix for three-variable synthetic model. 
 

  qi (bbl/day) 

Oil Pr. 

($/bbl) 

IntSpacing 

(acres) 
298 490 682 

51 

27 Reject Project Reject Project 40 Acre Spacing 

40 Reject Project Reject Project 40 Acre Spacing 

53 Reject Project Reject Project 80 Acre Spacing 

54 

27 Reject Project 40 Acre Spacing 40 Acre Spacing 

40 Reject Project 40 Acre Spacing 40 Acre Spacing 

53 Reject Project 80 Acre Spacing 80 Acre Spacing 

57 

27 Reject Project 40 Acre Spacing 40 Acre Spacing 

40 Reject Project 40 Acre Spacing 40 Acre Spacing 

53 Reject Project 80 Acre Spacing 80 Acre Spacing 

 

 

 

Table A-7—Project value matrix with perfect information for three-variable synthetic model. 
 

  qi (bbl/day) 

Oil Pr. 

($/bbl) 

IntSpacing 

(acres) 
298 490 682 

51 

27 $ 0 $ 0  $ 6,370,037  

40 $ 0 $ 0  $  6,370,037  

53 $ 0 $ 0  $ 3,185,018  

54 

27 $ 0  $ 316,829   $ 8,425,608  

40 $ 0  $ 316,829   $ 8,425,608  

53 $ 0  $ 158,415   $ 4,212,804  

57 

27 $ 0  $ 1,793,203   $ 10,481,180  

40 $ 0  $ 1,793,203   $ 10,481,180  

53 $ 0  $ 896,601   $ 5,240,590  
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Table A-8—Opportunity loss for each possible realization of qi, IntSpacing, and Oil Pr. under each 

decision alternative. 
 

  Decision = 20 Acre Spacing 

  qi  (bbl/day) 

Oil Pr. 

($/bbl) 

IntSpacing 

(acres) 
298 490 682 

51 

27 $23,543,132  $12,463,900  $7,754,704  

40 $29,041,520  $21,511,940  $20,352,396  

53 $31,871,576  $26,169,024  $23,651,490  

54 

27 $22,223,005  $10,608,353  $6,785,651  

40 $28,144,346  $20,352,396  $20,352,396  

53 $31,192,098  $25,209,303  $23,122,482  

57 

27 $20,902,877  $9,912,350  $5,816,598  

40 $27,247,171  $20,352,396  $20,352,396  

53 $30,512,620  $24,829,353  $22,593,474  

 

 

  Decision = 40 Acre Spacing 

  qi  (bbl/day) 

Oil Pr. 

($/bbl) 

IntSpacing 

(acres) 
298 490 682 

51 

27 $8,689,124  $1,159,544  $0  

40 $8,689,124  $1,159,544  $0  

53 $11,519,180  $5,816,628  $3,299,094  

54 

27 $7,791,950  $0  $0  

40 $7,791,950  $0  $0  

53 $10,839,702  $4,856,907  $2,770,086  

57 

27 $6,894,775  $0  $0  

40 $6,894,775  $0  $0  

53 $10,160,224  $4,476,957  $2,241,078  
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Table A-8—Continued 
 

  Decision = 80 Acre Spacing 

  qi  (bbl/day) 

Oil Pr. 

($/bbl) 

IntSpacing 

(acres) 
298 490 682 

51 

27 $4,344,562  $579,772  $3,185,018  

40 $4,344,562  $579,772  $3,185,018  

53 $4,344,562  $579,772  $0  

54 

27 $3,895,975  $158,415  $4,212,804  

40 $3,895,975  $158,415  $4,212,804  

53 $3,895,975  $0  $0  

57 

27 $3,447,387  $896,601  $5,240,590  

40 $3,447,387  $896,601  $5,240,590  

53 $3,447,387  $0  $0  

 
  Decision = Reject Project 

  qi  (bbl/day) 

Oil Pr. 

($/bbl) 

IntSpacing 

(acres) 
298 490 682 

51 

27 $0  $0  $6,370,037  

40 $0  $0  $6,370,037  

53 $0  $0  $3,185,018  

54 

27 $0  $316,829  $8,425,608  

40 $0  $316,829  $8,425,608  

53 $0  $158,415  $4,212,804  

57 

27 $0  $1,793,203  $10,481,180  

40 $0  $1,793,203  $10,481,180  

53 $0  $896,601  $5,240,590  

 

 
Table A-9—EOL for each decision alternative at current level of uncertainty. 

 

Decision 20 Acre Spacing 40 Acre Spacing 80 Acre Spacing Reject Project 

EOL $ 20,991,476 $ 3,562,293 $ 2,216,111 $ 2,374,526 
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Table A-10—Opportunity loss for each possible realization of qi, IntSpacing, and Oil Pr. under each 

decision alternative if qi is known perfectly. EOL values associated with each potential value of qi 

and each decision alternative. 
 

 
 

 

 

  Decision = 20 Acre Spacing 

  Known Variable:  qi (bbl/day) 

Unknown 

Variable 
298 490 682 

Oil 

Price 

($/bbl) 

Int 

Spacing 

(acres) 

OL 
Conditional 

Probability 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 

50 

27 $23,543,132  9% $12,463,900  9% $7,754,704  9% 

40 $29,041,520  12% $21,511,940  12% $20,352,396  12% 

53 $31,871,576  9% $26,169,024  9% $23,651,490  9% 

54 

27 $22,223,005  12% $10,608,353  12% $6,785,651  12% 

40 $28,144,346  16% $20,352,396  16% $20,352,396  16% 

53 $31,192,098  12% $25,209,303  12% $23,122,482  12% 

57 

27 $20,902,877  9% $9,912,350  9% $5,816,598  9% 

40 $27,247,171  12% $20,352,396  12% $20,352,396  12% 

53 $30,512,620  9% $24,829,353  9% $22,593,474  9% 

EOL $27,282,269 $19,181,939 $17,113,398   

  Decision = 40 Acre Spacing 

  Known Variable:  qi (bbl/day) 

Unknown 

Variable 
298 490 682 

Oil 

Price 

($/bbl) 

Int 

Spacing 

(acres) 

OL 
Conditional 

Probability 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 

50 

27 $8,689,124  9% $1,159,544  9% $0  9% 

40 $8,689,124  12% $1,159,544  12% $0  12% 

53 $11,519,180  9% $5,816,628  9% $3,299,094  9% 

54 

27 $7,791,950  12% $0  12% $0  12% 

40 $7,791,950  16% $0  16% $0  16% 

53 $10,839,702  12% $4,856,907  12% $2,770,086  12% 

57 

27 $6,894,775  9% $0  9% $0  9% 

40 $6,894,775  12% $0  12% $0  12% 

53 $10,160,224  9% $4,476,957  9% $2,241,078  9% 

EOL $8,706,275  $1,752,756  $831,026  
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Table A-10—Continued 
 

 
 

  

  Decision = 80 Acre Spacing 

  Known Variable:  qi (bbl/day) 

Unknown 

Variable 
298 490 682 

Oil 

Price 

($/bbl) 

Int 

Spacing 

(acres) 

OL 
Conditional 

Probability 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 

50 

27 $4,344,562  9% $579,772  9% $3,185,018  9% 

40 $4,344,562  12% $579,772  12% $3,185,018  12% 

53 $4,344,562  9% $579,772  9% $0  9% 

54 

27 $3,895,975  12% $158,415  12% $4,212,804  12% 

40 $3,895,975  16% $158,415  16% $4,212,804  16% 

53 $3,895,975  12% $0  12% $0  12% 

57 

27 $3,447,387  9% $896,601  9% $5,240,590  9% 

40 $3,447,387  12% $896,601  12% $5,240,590  12% 

53 $3,447,387  9% $0  9% $0  9% 

EOL $3,895,975  $406,574  $2,948,963  

  Decision = Reject Project 

  Known Variable:  qi (bbl/day) 

Unknown 

Variable 
298 490 682 

Oil 

Price 

($/bbl) 

Int 

Spacing 

(acres) 

OL 
Conditional 

Probability 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 

50 

27 $0  9% $0  9% $6,370,037  9% 

40 $0  12% $0  12% $6,370,037  12% 

53 $0  9% $0  9% $3,185,018  9% 

54 

27 $0  12% $316,829  12% $8,425,608  12% 

40 $0  16% $316,829  16% $8,425,608  16% 

53 $0  12% $158,415  12% $4,212,804  12% 

57 

27 $0  9% $1,793,203  9% $10,481,180  9% 

40 $0  12% $1,793,203  12% $10,481,180  12% 

53 $0  9% $896,601  9% $5,240,590  9% 

EOL $0  $564,989  $7,161,767  
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Table A-11—Min EOL and associated decision for each potential qi information value for three-

variable model. 
 

qi (bbl/day) 298 490 682 

Min EOL  $ 0  $ 406,574   $ 831,026  

Optimal Decision Reject Project 80 Acre Spacing 40 Acre Spacing 

 

 

Table A-12—Opportunity loss for each possible realization of qi, IntSpacing, and Oil Pr. under each 

decision alternative if IntSpacing is known perfectly. EOL values associated with each potential 

value of IntSpacing and each decision alternative. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Decision = 20 Acre Spacing 

  Known Variable: IntSpacing (acres) 

Unknown 

Variable 
27 40 53 

Oil 

Price 

($/bbl) 

qi 

(bbl/day) 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 

51 

298 $ 23,543,132 9% $ 29,041,520 9% $ 31,871,576 9% 

490 $ 12,463,900 12% $ 21,511,940 12% $ 26,169,024 12% 

682 $ 7,754,704 9% $ 20,352,396 9% $ 23,651,490 9% 

54 

298 $ 22,223,005 12% $ 28,144,346 12% $ 31,192,098 12% 

490 $ 10,608,353 16% $ 20,352,396 16% $ 25,209,303 16% 

682 $ 6,785,651 12% $ 20,352,396 12% $ 23,122,482 12% 

57 

298 $ 20,902,877 9% $ 27,247,171 9% $ 30,512,620 9% 

490 $ 9,912,350 12% $ 20,352,396 12% $ 24,829,353 12% 

682 $ 5,816,598 9% $ 20,352,396 9% $ 22,593,474 9% 

EOL $ 13,085,083 $ 22,829,126 $ 26,447,668 
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Table A-12—Continued 
 

 
 

 

 

 
  

  Decision = 40 Acre Spacing 

  Known Variable: IntSpacing (acres) 

Unknown 

Variable 
27 40 53 

Oil 

Price 

($/bbl) 

qi 

(bbl/day) 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 

51 

298 $ 8,689,124 9% $ 8,689,124 9% $ 11,519,180 9% 

490 $ 1,159,544 12% $ 1,159,544 12% $ 5,816,628 12% 

682 $ 0 9% $ 0 9% $ 3,299,094 9% 

54 

298 $ 7,791,950 12% $ 7,791,950 12% $ 10,839,702 12% 

490 $ 0 16% $ 0 16% $ 4,856,907 16% 

682 $ 0 12% $ 0 12% $ 2,770,086 12% 

57 

298 $ 6,894,775 9% $ 6,894,775 9% $ 10,160,224 9% 

490 $ 0 12% $ 0 12% $ 4,476,957 12% 

682 $ 0 9% $ 0 9% $ 2,241,078 9% 

EOL $ 2,476,730 $ 2,476,730 $ 6,095,272 

  Decision = 80 Acre Spacing 

  Known Variable: IntSpacing (acres) 

Unknown 

Variable 
27 40 53 

Oil 

Price 

($/bbl) 

qi 

(bbl/day) 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 
OL 

Conditional 

Probability 

51 

298 $ 4,344,562 9% $ 4,344,562 9% $ 4,344,562 9% 

490 $ 579,772 12% $ 579,772 12% $ 579,772 12% 

682 $ 3,185,018 9% $ 3,185,018 9% $ 0 9% 

54 

298 $ 3,895,975 12% $ 3,895,975 12% $ 3,895,975 12% 

490 $ 158,415 16% $ 158,415 16% $ 0 16% 

682 $ 4,212,804 12% $ 4,212,804 12% $ 0 12% 

57 

298 $ 3,447,387 9% $ 3,447,387 9% $ 3,447,387 9% 

490 $ 896,601 12% $ 896,601 12% $ 0 12% 

682 $ 5,240,590 9% $ 5,240,590 9% $ 0 9% 

EOL $ 2,635,145 $ 2,635,145 $ 1,238,365 
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Table A-12—Continued 
 

 
 

 
Table A-13—Min EOL and associated decision for each potential IntSpacing information value for 

three-variable model. 
 

IntSpacing (acres) 27 40 53 

Min EOL $ 2,476,730 $ 2,476,730 $ 1,238,365 

Optimal Decision 40 Acre Spacing 40 Acre Spacing 80 Acre Spacing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Decision = Reject Project 

  Known Variable: IntSpacing (acres) 

Unknown 

Variable 
27 40 53 

Oil 

Price 

($/bbl) 

qi 

(bbl/day) 
OL 

Conditiona

l 

Probability 

OL 

Conditiona

l 

Probability 

OL 

Conditiona

l 

Probability 

51 

298 $ 0 9% $ 0 9% $ 0 9% 

490 $ 0 12% $ 0 12% $ 0 12% 

682 $ 6,370,037 9% $ 6,370,037 9% $ 3,185,018 9% 

54 

298 $ 0 12% $ 0 12% $ 0 12% 

490 $ 316,829 16% $ 316,829 16% $ 158,415 16% 

682 $ 8,425,608 12% $ 8,425,608 12% $ 4,212,804 12% 

57 

298 $ 0 9% $ 0 9% $ 0 9% 

490 $ 1,793,203 12% $ 1,793,203 12% $ 896,601 12% 

682 $ 10,481,180 9% $ 10,481,180 9% $ 5,240,590 9% 

EOL $ 2,793,560 $ 2,793,560 $ 1,396,780 
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Table A-14—Opportunity loss for each possible realization of qi, IntSpacing, and Oil Pr. under each 

decision alternative if Oil Pr. is known perfectly. EOL values associated with each potential value of 

Oil Pr. and each decision alternative. 

 
 

 

 

 

  Decision = 20 Acre Spacing 

  Known Variable: Oil Price ($/bbl) 

Unknown 

Variable 
51 54 57 

qi 

(bbl/day) 

Int 

Spacing 

(acres) 

OL 

Conditiona

l 

Probability 

OL 

Conditiona

l 

Probability 

OL 

Conditiona

l 

Probability 

298 

27 $ 23,543,132 9% $ 22,223,005 9% $ 20,902,877 9% 

40 $ 29,041,520 12% $ 28,144,346 12% $ 27,247,171 12% 

53 $ 31,871,576 9% $ 31,192,098 9% $ 30,512,620 9% 

490 

27 $ 12,463,900 12% $ 10,608,353 12% $ 9,912,350 12% 

40 $ 21,511,940 16% $ 20,352,396 16% $ 20,352,396 16% 

53 $ 26,169,024 12% $ 25,209,303 12% $ 24,829,353 12% 

682 

27 $ 7,754,704 9% $ 6,785,651 9% $ 5,816,598 9% 

40 $ 20,352,396 12% $ 20,352,396 12% $ 20,352,396 12% 

53 $ 23,651,490 9% $ 23,122,482 9% $ 22,593,474 9% 

EOL $ 21,819,012 $ 20,873,202 $ 20,321,637 

  Decision = 40 Acre Spacing 

  Known Variable: Oil Price ($/bbl) 

Unknown 

Variable 
51 54 57 

qi 

(bbl/day) 

Int 

Spacing 

(acres) 

OL 

Conditiona

l 

Probability 

OL 

Conditiona

l 

Probability 

OL 

Conditiona

l 

Probability 

298 

27 $ 8,689,124 9% $ 7,791,950 9% $ 6,894,775 9% 

40 $ 8,689,124 12% $ 7,791,950 12% $ 6,894,775 12% 

53 $ 11,519,180 9% $ 10,839,702 9% $ 10,160,224 9% 

490 

27 $ 1,159,544 12% $ 0 12% $ 0 12% 

40 $ 1,159,544 16% $ 0 16% $ 0 16% 

53 $ 5,816,628 12% $ 4,856,907 12% $ 4,476,957 12% 

682 

27 $ 0 9% $ 0 9% $ 0 9% 

40 $ 0 12% $ 0 12% $ 0 12% 

53 $ 3,299,094 9% $ 2,770,086 9% $ 2,241,078 9% 

EOL $ 4,181,028 $ 3,444,019 $ 3,101,255 
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Table A-14—Continued 
 

 

 

 

  

  Decision = 80 Acre Spacing 

  Known Variable: Oil Price ($/bbl) 

Unknown 

Variable 
51 54 57 

qi 

(bbl/day) 

Int 

Spacing 

(acres) 

OL 

Conditiona

l 

Probability 

OL 

Conditiona

l 

Probability 

OL 

Conditiona

l 

Probability 

298 

27 $ 4,344,562 9% $ 3,895,975 9% $ 3,447,387 9% 

40 $ 4,344,562 12% $ 3,895,975 12% $ 3,447,387 12% 

53 $ 4,344,562 9% $ 3,895,975 9% $ 3,447,387 9% 

490 

27 $ 579,772 12% $ 158,415 12% $ 896,601 12% 

40 $ 579,772 16% $ 158,415 16% $ 896,601 16% 

53 $ 579,772 12% $ 0 12% $ 0 12% 

682 

27 $ 3,185,018 9% $ 4,212,804 9% $ 5,240,590 9% 

40 $ 3,185,018 12% $ 4,212,804 12% $ 5,240,590 12% 

53 $ 0 9% $ 0 9% $ 0 9% 

EOL $ 2,204,131 $ 2,097,837 $ 2,385,789 

  Decision = Reject Project 

  Known Variable: Oil Price ($/bbl) 

Unknown 

Variable 
51 54 57 

qi 

(bbl/day) 

Int 

Spacing 

(acres) 

OL 

Conditiona

l 

Probability 

OL 

Conditiona

l 

Probability 

OL 

Conditiona

l 

Probability 

298 

27 $ 0 9% $ 0 9% $ 0 9% 

40 $ 0 12% $ 0 12% $ 0 12% 

53 $ 0 9% $ 0 9% $ 0 9% 

490 

27 $ 0 12% $ 316,829 12% $ 1,793,203 12% 

40 $ 0 16% $ 316,829 16% $ 1,793,203 16% 

53 $ 0 12% $ 158,415 12% $ 896,601 12% 

682 

27 $ 6,370,037 9% $ 8,425,608 9% $ 10,481,180 9% 

40 $ 6,370,037 12% $ 8,425,608 12% $ 10,481,180 12% 

53 $ 3,185,018 9% $ 4,212,804 9% $ 5,240,590 9% 

EOL $ 1,624,359 $ 2,256,252 $ 3,282,390 
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Table A-15—Min EOL and associated decision for each potential Oil Pr. information value for 

three-variable model. 
 

Oil Pr. ($/bbl) 51 54 57 

Min EOL $ 1,624,359 $ 2,097,837 $ 2,385,789 

Optimal Decision Reject Project 80 Acre Spacing 80 Acre Spacing 

 

 
Table A-16—Overall EOL if each unknown variable is perfectly known and associated VOPI for 

three-variable model. 
 

Known Variable EOL VOPI 

qi  $ 411,937 $ 1,804,174 

Oil Pr. $ 2,042,179 $ 173,932 

IntSpacing $ 2,105,221 $ 110,890 

 

 

Table A-17—NPV array from generalized model solution to the synthetic three-variable scenario. 

Results match the manual solution in Table A-5. 
 

Potential 

Outcome 

Num. 

Reject Project 
20 Acre 

Spacing 

40 Acre 

Spacing 

80 Acre 

Spacing 

1 $ 0 $ (23,543,132) $ (8,689,124) $ (4,344,562) 

2 $ 0 $ (12,463,900) $ (1,159,544) $ (579,772) 

3 $ 0 $ (1,384,668) $ 6,370,036 $ 3,185,018 

4 $ 0 $ (29,041,520) $ (8,689,124) $ (4,344,562) 

5 $ 0 $ (21,511,940) $ (1,159,544) $ (579,772) 

6 $ 0 $ (13,982,360) $ 6,370,036 $ 3,185,018 

7 $ 0 $ (31,871,576) $ (11,519,180) $ (4,344,562) 

8 $ 0 $ (26,169,024) $ (5,816,628) $ (579,772) 

9 $ 0 $ (20,466,473) $ (114,077) $ 3,185,018 

10 $ 0 $ (22,223,004) $ (7,791,949) $ (3,895,975) 

11 $ 0 $ (10,291,524) $ 316,829 $ 158,415 

12 $ 0 $ 1,639,957 $ 8,425,608 $ 4,212,804 

13 $ 0 $ (28,144,345) $ (7,791,949) $ (3,895,975) 

14 $ 0 $ (20,035,567) $ 316,829 $ 158,415 

15 $ 0 $ (11,926,788) $ 8,425,608 $ 4,212,804 

16 $ 0 $ (31,192,098) $ (10,839,702) $ (3,895,975) 

17 $ 0 $ (25,050,888) $ (4,698,492) $ 158,415 

18 $ 0 $ (18,909,679) $ 1,442,717 $ 4,212,804 

19 $ 0 $ (20,902,877) $ (6,894,775) $ (3,447,387) 

20 $ 0 $ (8,119,148) $ 1,793,203 $ 896,601 

21 $ 0 $ 4,664,581 $ 10,481,180 $ 5,240,590 

22 $ 0 $ (27,247,171) $ (6,894,775) $ (3,447,387) 

23 $ 0 $ (18,559,193) $ 1,793,203 $ 896,601 

24 $ 0 $ (9,871,216) $ 10,481,180 $ 5,240,590 

25 $ 0 $ (30,512,620) $ (10,160,224) $ (3,447,387) 

26 $ 0 $ (23,932,752) $ (3,580,357) $ 896,601 

27 $ 0 $ (17,352,885) $ 2,999,511 $ 5,240,590 
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Table A-18—OL array from generalized model solution to the synthetic three-variable scenario. 

Results match the manual solution in Table A-8. 
 

Potential 

Outcome 

Num. 

Reject Project 
20 Acre 

Spacing 

40 Acre 

Spacing 

80 Acre 

Spacing 

1 $ 0 $ 23,543,132 $ 8,689,124 $ 4,344,562 

2 $ 0 $ 12,463,900 $ 1,159,544 $ 579,772 

3 $ 6,370,037 $ 7,754,705 $ 0 $ 3,185,018 

4 $ 0 $ 29,041,520 $ 8,689,124 $ 4,344,562 

5 $ 0 $ 21,511,940 $ 1,159,544 $ 579,772 

6 $ 6,370,037 $ 20,352,396 $ 0 $ 3,185,018 

7 $ 0 $ 31,871,576 $ 11,519,180 $ 4,344,562 

8 $ 0 $ 26,169,024 $ 5,816,629 $ 579,772 

9 $ 3,185,018 $ 23,651,492 $ 3,299,095 $ 0 

10 $ 0 $ 22,223,004 $ 7,791,950 $ 3,895,975 

11 $ 316,829 $ 10,608,353 $ 0 $ 158,415 

12 $ 8,425,608 $ 6,785,652 $ 0 $ 4,212,804 

13 $ 0 $ 28,144,346 $ 7,791,950 $ 3,895,975 

14 $ 316,829 $ 20,352,396 $ 0 $ 158,415 

15 $ 8,425,608 $ 20,352,396 $ 0 $ 4,212,804 

16 $ 0 $ 31,192,098 $ 10,839,702 $ 3,895,975 

17 $ 158,415 $ 25,209,304 $ 4,856,907 $ 0 

18 $ 4,212,804 $ 23,122,484 $ 2,770,087 $ 0 

19 $ 0 $ 20,902,876 $ 6,894,775 $ 3,447,387 

20 $ 1,793,203 $ 9,912,350 $ 0 $ 896,601 

21 $ 10,481,180 $ 5,816,598 $ 0 $ 5,240,590 

22 $ 0 $ 27,247,170 $ 6,894,775 $ 3,447,387 

23 $ 1,793,203 $ 20,352,396 $ 0 $ 896,601 

24 $ 10,481,180 $ 20,352,396 $ 0 $ 5,240,590 

25 $ 0 $ 30,512,620 $ 10,160,224 $ 3,447,387 

26 $ 896,601 $ 24,829,354 $ 4,476,958 $ 0 

27 $ 5,240,590 $ 22,593,476 $ 2,241,079 $ 0 

 


