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ABSTRACT

We focus on a free triangular array of random variables {XN,r}16r6N , N ∈ N, in some non-

commutative probability space (A, φ) such that the random variables are freely independent and

identically distributed in each row. For each k ∈ N, our aim is to find some conditions to ensure the

convergence of the sum of the k-th power of each row in the triangular array. We also want to know

the expression of the limit random variable (the k-th variation), denoted by X(k). The motivation

of this study comes from the relation between the free stochastic measure of a free Lévy process

and higher variations.

First, when (A, φ) is a plain non-commutative probability space, we find out an equivalent

condition for the joint convergence in distribution of all powers of the free triangular array. This

condition requires the decay of all moments of the random variables in each row. Moreover,

after defining the free stochastic measure of a free triangular array in terms of the convergence in

distribution, we prove a free Kailath-Segall formula for centered stationary stochastic processes in

our settings to describe the relationship between a stochastic measure and the higher variations.

Second, when (A, φ) is a W ∗−probability space, considering all self-adjoint (possibly un-

bounded) operators affiliated with A, we prove that if the convergence in distribution of a free

triangular array to a free Lévy process holds, then we have the convergence in distribution of all

powers of the original triangular array towards all higher variations, which are also free Lévy pro-

cesses. Moreover, the free Lévy-Itô decomposition of each higher variation can be simplified by

the Lévy-Itô decomposition of the original Lévy process.
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1. PRELIMINARIES

1.1 Non-commutative Probability Spaces

Since our main results are stated in a free probability setting, we would like to first review some

background material on free probability for readers. The notations in the following definitions will

appear again later. For more details on free probability theory, readers can refer to A. Nica and R.

Speicher’s textbook [10].

Definition 1 (Non-commutative Probability Spaces). A non-commutative probability space is a

pair (A, φ), consisting of a unital algebra A over C and a state φ : A → C, which is a linear

functional such that φ(1A) = 1. The elements ofA are called non-commutative random variables.

For simplicity, we often call a non-commutative random variable a ∈ A a random variable

in (A, φ). Notice that Definition 1 requires few structures on the probability space. Although

this plain non-commutative probability space is useful in some cases, we sometimes need more

structures on this space for understanding or analyzing some problems. Thus, we introduce two

more concrete non-commutative probability spaces. The unital algebra A is replaced by some

concrete algebra. For instance, a unital C∗−algebra acting on a Hilbert space H is a subalgebra

of B(H) (all bounded operators), which contains the multiplicative unit 1 of B(H), and which

is closed under the adjoint ∗-operation and topologically closed w.r.t. the operator norm. A von

Neumann algebra is a unital C∗−algebra acting on a Hilbert space H , which is closed in the weak

operator topology onB(H), namely, the weak topology onB(H) induced by the linear functionals:

T 7→ 〈Tx, y〉, for any x, y ∈ H .

Definition 2 (C∗−probability Spaces). A C∗−probability space is a pair (A, φ), where A is a

unital C∗−algebra and φ is a state on A such that φ(a∗a) ≥ 0 (positive) and φ(a∗) = φ(a), for

any a ∈ A.

Definition 3 (W ∗−probability Spaces). A W ∗−probability space is a pair (A, φ), where A is a

von Neumann algebra acting on a Hilbert space and φ is a faithful normal tracial state on A i.e.
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1. φ(ab) = φ(ba), for any a, b ∈ A (tracial);

2. φ is continuous with respect to the weak operator topology on the unit ball of A (normal);

3. φ(a∗a) > 0, for any nonzero a ∈ A (faithful).

In this project, we will mostly deal with self-adjoint operators on a plain non-commutative

probability space or a W ∗−probability space. Suppose that (A, φ) is a W ∗−probability space and

that b is a self-adjoint operator (i.e. b∗ = b) in A. Then, the spectrum of operator b is a compact

set on the real line. Moreover, we can associate a distribution to b: there exists a unique compactly

supported probability measure µb on (R,B(R)), satisfying

∫
R
tnµb(dt) = φ(bn),

for any n ∈ N. Intuitively, φ(bn) can be viewed as the n−th moment of random variable b or the

probability measure µb. So φ(b) is the expectation of random variable b. All the moments can

uniquely determine a compactly supported probability measure on the real line. Conversely, any

compactly supported probability measure on R is a distribution of some self-adjoint operator in

the non-commutative probability space. In this case, all random variables in the non-commutative

probability space have all finite moments.

1.2 Unbounded Operators and Affiliated Operators

In some cases, we want to study unbounded operators instead of bounded operators because a

bounded operator has all finite moments and compactly supported spectrum, but in many situations,

our probability measure (the distribution of some operator) may not have compact support or all

finite moments. Therefore, we want to first introduce some unbounded operators which can also

have distributions on R. In other words, we shall enlarge our non-commutative probability space

to include some unbounded operators such that most of the definitions in a plain non-commutative

probability space still make sense in a larger space.

Since we only consider probability measures on the real line, which are the distributions of

2



self-adjoint operators, we need to first define the unbounded self-adjoint operators acting on a

Hilbert space H. Let T : D(T )→ H be a densely defined linear operator. We say T is symmetric

if 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ D(T ).

Definition 4. The densely defined linear operator T is self-adjoint if T is symmetric and D(T ) =

D(T ∗).

Definition 5 (Affiliated Operators). Let (A, φ) be a W ∗−probability space acting on a Hilbert

space H. Let a : D(a) → H be a (possibly unbounded) self-adjoint linear operator defined on a

dense subspace D(a) ⊂ H. We say that a is affiliated with A, if f(a) ∈ A for any bounded Borel

function f on R (f(a) is defined in terms of functional calculus).

For a self-adjoint operator a affiliated with (A, φ), its spectrum is a set on R (possibly un-

bounded). So, in this case, there exists a unique probability measure µa on (R,B(R)) such that

∫
R
f(t)dµa(t) = φ(f(a)),

for any bounded Borel function on R. Thus, µa is the distribution of the affiliated operator a. How-

ever, the operator a probably does not have finite moments because we are only able to compute the

expectation of f(a), for any bounded Borel function f on R. In fact, Definition 5 is not a general

definition of affiliated operators, although it is enough for our research. For a general definition,

we refer to section 2.5 of [8].

We denote by Ā the set of all closed, densely defined operators, which are affiliated with A. It

turns out that Ā is a ∗−algebra equipped with adjoint operation, strong sum and product (cf. [8]).

And if the operator a is bounded, then a is affiliated with A if and only if a ∈ A.

1.3 Free Independence

Free independence is a basic concept in free probability and is an analog of independence

from classical probability theory. Meanwhile, one can check that free independence is a genuine

non-commutative concept in terms of the following definitions.
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Definition 6. Let (A, φ) be a non-commutative probability space. We say that a1, a2, ..., ar ∈ A

are freely independent with respect to φ, if

φ
[
(f1(ai1)− φ(f1(ai1))) · (f2(ai2)− φ(f2(ai2)))...(fp(aip)− φ(fp(aip)))

]
= 0,

for any p ∈ N, any polynomials f1, f2, ..., fp in C[X] and any indices i1, i2, ..., ip in {1, 2, ..., r}

satisfying i1 6= i2, i2 6= i3, ..., ip−1 6= ip.

In general, we can define the free independence of several unital subalgebras in a non-commutative

probability space. Moreover, one can define the ∗−free independence in aC∗−probability space or

a W ∗−probability space, but we are usually dealing with self-adjoint operators, which means that

∗−free independence is equivalent to free independence for self-adjoint operators. For unbounded

operators, we can also define the free independence among self-adjoint operators affiliated with a

W ∗−probability space.

Definition 7. Let (A, φ) be a W ∗−probability space. Let a1, a2, ..., ar ∈ A be self-adjoint opera-

tors affiliated with A. We say that they are freely independent with respect to φ, if

φ
[
(f1(ai1)− φ(f1(ai1))) · (f2(ai2)− φ(f2(ai2)))...(fp(aip)− φ(fp(aip)))

]
= 0,

for any p ∈ N, any bounded Borel functions f1, f2, ..., fp on R and any indices i1, i2, ..., ip in

{1, 2, ..., r} satisfying i1 6= i2, i2 6= i3, ..., ip−1 6= ip.

Given the independence, we can consider the sum of two independent random variables and try

to find the distribution of this new random variable. In classical probability, it is the convolution

of two distributions (probability measures on R). Analogously, we can define a free convolution in

free sense. It turns out that the distribution of the sum of two freely independent random variables

is uniquely determined by the distributions of these two random variables.

Definition 8 (Free Convolution). Let a and b be two freely independent and self-adjoint operators

in Ā with distributions µa and µb. Then the distribution µa+b of a+ b is uniquely determined by µa

4



and µb and is denoted by µb � µa. We say µb � µa is the free (additive) convolution of µa and µb.

Free convolution is actually an operation on probability measures defined on R, since any self-

adjoint (possibly unbounded) random variable has a probability measure on R as its distribution

and, for any probability measure µ, one can find a self-adjoint operator such that µ is its distri-

bution. There are several transforms of probability measures on R introduced to study the free

convolutions. We mainly use the Voiculescu transform Φµ(z) of a probability measure µ on R. For

the definition and properties of Voiculescu transform, see [9, 10]. The most important property of

this transform is that

Φµ�ν = Φµ + Φν , (1.1)

on their common domain. This property shows that the free convolution of probability measure µ

and probability measure ν is uniquely determined by the ’marginal’ distributions µ and ν. Also,

we need the fact that a probability measure on R is determined by its Voiculescu transform.

1.4 Convergences in a Free Probability Setting

There are different types of convergence in free probability, so, in this section, we briefly intro-

duce two kinds of convergence in free sense. We shall recall the weak convergence of probability

measures at first.

Definition 9. The probability measure µN defined on R converges weakly to the probability mea-

sure µ when

lim
N→∞

∫
R
f(t)dµN(t) =

∫
R
f(t)dµ(t),

for all bounded continuous function f(x) on the real line. We denote this convergence as µN
w.→ µ.

Definition 10. Let (AN , φN) (N ∈ N) and (A, φ) be non-commutative probability spaces. Con-

sider random variables aN ∈ AN , for any N ∈ N and a ∈ A. We say that aN converges in

distribution to a as N →∞, denoted by aN
d.→ a, if we have that

lim
N→∞

φN(anN) = φ(an),

5



for all n ∈ N.

Particularly, if aN and a are self-adjoint and have distributions µN and µ respectively, which

are compactly supported on R, then Definition 10 will imply the weak convergence of probability

measure µN on R towards the probability measure µ. Conversely, µN converging weakly to µ also

implies the convergence in distribution of aN towards a thanks to the compact supports of µN and

µ.

Above, we discuss the convergence in distribution for a single random variable, but we some-

times need the joint convergence in distribution for a family of random variables. Thus, next, we

introduce the joint convergence in distribution in free sense.

Definition 11. Let (AN , φN) (N ∈ N) and (A, φ) be non-commutative probability spaces. Let I

be an index set, a(i)
N ∈ AN and ai ∈ A, for each i ∈ I. We say that

(
a

(i)
N

)
i∈I

converges jointly in

distribution to (ai)i∈I and denote it by

(
a

(i)
N

)
i∈I

d.→ (ai)i∈I ,

if for all n ∈ N and i(1), ..., i(n) ∈ I ,

lim
N→∞

φN(a
(i(1))
N · · · a(i(n))

N ) = φ(ai(1) · · · ai(n)).

The weak convergence of probability measures is defined for all probability measure on R.

Thus, we can employ the weak convergence of probability measures to define the convergence in

distribution of self-adjoint operators affiliated with a W ∗−probability space even if the probability

measure is not compactly supported on R.

Definition 12. In a W ∗−probability space (A, φ), we say that self-adjoint operator an affiliated

with A converges in distribution towards a self-adjoint operator a affiliated with A as n → ∞, if

the distribution µn of an converges weakly to the distribution µ of a.

Definition 12 define the convergence in distribution in terms of weak convergence of probabil-
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ity measures. In free probability, the joint distribution of several random variables does not make

sense. Therefore, we can not define the joint convergence in distribution according to Definition

12. However, for self-adjoint operators affiliated with a W ∗−probability space, we can introduce

the convergence in probability besides the convergence in distribution.

Definition 13. ([8]) Let (A, φ) be aW ∗−probability space and (an)n∈N be a sequence of operators

affiliated with A. We say that an → a in probability if |an − a| → 0 in distribution as n→∞.

Here, |a| :=
√
a∗a, which is self-adjoint. When an and a are self-adjoint operators affiliated

with A, an → a in probability if and only if an − a converges to zero in distribution, i.e. the

distribution of an − a as a probability measure on R converges weakly to probability measure δ0.

For more details, see [7, 8].

7



2. MOTIVATION AND LITERATURE REVIEWS

2.1 Multiple Stochastic Integrals

Our primary motivation comes from the reference [5], where Florin Avram and Murad Taqqu

defined the iterated integrals of a Lévy process X(t). Let At = {(s1, s2, .., sk) : 0 6 s1 < s2 <

... < sk 6 t}. Denote the disjoint increments ofX(t) byX
(
i
N

)
−X

(
i−1
N

)
= XN,i, for 1 6 i 6 N

and N ∈ N. The k-th order iterated integral over domain At is defined by

∫
At

dXs1dXs2 ...dXsk = w − lim
n→∞

∑
16i1<i2<...<ik6[Nt]

XN,i1XN,i2 ...XN,ik . (2.1)

There is a corollary in [5] stating that

∫
At

dXs1dXs2 ...dXsk = Pk(X(t), X(2)(t), ..., X(k)(t)), (2.2)

where X(k)(t) is the k-th variation of the Lévy process X(t) defined by

X(k)(t) = w − lim
N→∞

∑
16i6[Nt]

Xk
N,i

and Pk is a polynomial with an explicit formula in [5]. This result gives a method to compute

or approximate the multiple stochastic integral by the variations of the Lévy process and helps

us understand the multiple stochastic measures. For more properties and motivations of multiple

stochastic integrals, we recommend the reference [11]. We focus on exploring an analogous con-

cept in free sense and construct a polynomial to describe the relation between multiple stochastic

integrals (stochastic measures) and higher variations of a free stochastic process.

2.2 The Variations of a Lévy Process in Classical Probability

In the following two sections, we summarize the results and methods that Florin Avram and

Murad Taqqu showed in the paper [5]. They introduced the variations X(k)(t) of a Lévy process
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X(t) and proved that the limit random variables related to the triangular array of the k−th power of

some random variables are equal to the k−th variation of a Lévy process, for any k ∈ N. Consider

a Lévy process X(t). By the Lévy-Khintchine representations (cf. [4]), there is a Lévy measure ρ

on the real line associated with X(1) s.t. ρ({0}) = 0 and
∫
R min{1, x2}ρ(dx) <∞.

Definition 14. Let (Θ,B, ν) be a σ−finite measure space and (Ω,F , P ) be a probability space.

Let N : Ω × Θ → Z+ ∪ {∞} be such that {N(·, A) : A ∈ B} are random variables defined on

(Ω,F , P ). Then, N is called a Poisson random measure on (Θ,B, ν) with intensity measure ν if

1. for any mutually disjoint setsA1, ..., An in Θ, the random variablesN(A1), N(A2), ..., N(An)

are independent,

2. for each A ∈ B, N(A) is a Poisson distributed random variable with parameter ν(A) and

3. N(ω, ·) is a measure on Θ almost surely.

Consider the measure space Θ = [0,+∞) × (R \ {0}) with intensity measure ν = Leb ⊗ ρ,

i.e. dν = dt× dρ, which describes the discontinuity of the paths of Lévy processes. Here, ρ is the

Lévy measure defined above. Consider the jump process ∆X = {∆X(t)}t≥0 associated with a

Lévy process and defined by ∆X(t) = X(t)−X(t−). Then, for 0 ≤ t <∞ and A ∈ B(R\{0}),

we define

N(t, A) := #{0 6 s 6 t; ∆X(s) ∈ A} =
∑

06s6t

χA(∆X(s)).

One can check that the intensity measure ν([0, t] × A) = E(N(t, A)) and N(t, A) is a Poisson

random measure. To introduce the Lévy-Itô decomposition, we define the compensated Poisson

random measure by

Ñ(t, A) := N(t, A)− tρ(A),

for each t ≥ 0, A ∈ B(R \ {0}) and 0 /∈ Ā. Meanwhile, given any ω ∈ Ω, N(dt, dx) is almost

surely a measure on [0,+∞)× (R \ {0}). Thus, we define the Poisson integral of a Borel function

f by ∫
[0,t)×A

f(x)N(dt, dx)(ω) :=

∫
A

f(x)N(t, dx)(ω) =
∑
x∈A

f(x)N(t, {x})(ω).

9



Here, N(t, A) counts the number of jumps of X(t) and N(t, {x}) 6= 0 ⇔ ∃ 0 6 s 6 t, such that

∆X(s) = x. Consequently,

∫
[0,t)×A

f(x)N(dt, dx)(ω) =
∑

06s6t

f(∆X(s))χA(∆X(s)).

Theorem 2.2.1 (The Lévy-Itô Decomposition, see [4]). If X(t) is a Lévy process and ρ is the Lévy

measure associated with X(1), then X(t) has a representation

X(t) = at+ σW (t) +M (ρ)(t), (2.3)

where a ∈ R, σ ≥ 0 and W (t) is a Brownian motion. The last term of the right hand side in (2.3)

is defined by

M (ρ)(t) := lim
δ↘0

[∫
]0,t]×([−1,1]\[−δ,δ])

xÑ(ds, dx)

]
+

∫
]0,t]×(R\[−1,1])

xN(ds, dx). (2.4)

If the Lévy measure satisfies ∫ 1

−1

|x|ρ(dx) <∞, (2.5)

then equation (2.4) can be replaced by

M (ρ)(t) = lim
δ↘0

∫
]0,t]×(R\[−δ,δ])

xN(ds, dx). (2.6)

M (ρ)(t) is actually the compensated sum of the jumps of a Poisson process. By the definition

of Poisson integral mentioned above, the equation (2.3) and equation (2.4) can be represented by

M (ρ)(t) = lim
δ↘0

 ∑
06u6t

|∆X(u)|>δ

∆X(u)− t
∫
δ6|x|61

xρ(dx)

 (2.7)
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and

M (ρ)(t) = lim
δ↘0

∑
06u6t

|∆X(u)|>δ

∆X(u) (2.8)

respectively.

In order to show the meanings of equation (2.7) and equation (2.8), we first explain the term

∫
]0,t]×(−1,1)

xÑ(ds, dx) := lim
δ↘0

[∫
]0,t]×((−1,1)\[−δ,δ])

xN(ds, dx)− t
∫

((−1,1)\[−δ,δ])
xρ(dx)

]
(2.9)

in equation (2.4). Let {εn}n∈N be a sequence that decreases monotonically to zero and ε1 = 1. For

each m ∈ N, let Bm = {x ∈ R : εm+1 6 |x| 6 εm} and An = ∪nm=1Bm. Our task is to show the

convergence of (2.9). We define the random process as

M(t, An) =

∫
]0,t]×An

xÑ(ds, dx). (2.10)

One can prove that
∫

]0,t]×(−1,1)
xÑ(du, dx) = limn→∞M(t, An) in L2 sense and the limit random

process lives in a martingale space (see [4]). When condition (2.5) holds,

lim
δ↘0

t

∫
((−1,1)\[−δ,δ])

xρ(dx) = t

∫
(−1,1)

xρ(dx)

is finite. Therefore, we can remove this term and combine it into the drift part of (2.3). Then, the

compensated sum of jumps in (2.3) can be represented by equation (2.6) or equation (2.8).

The definition of variationsX(2)(t), X(3)(t), ..., X(k)(t) of a Lévy processX(t) in the reference

[5] is given by the following formula:

X(k)(t) := lim
δ↘0

∑
06u6t

|∆X(u)|>δ

[∆X(u)]k = lim
δ↘0

∫
]0,t]×(R\[−δ,δ])

xkN(du, dx). (2.11)

For any k > 1, the measure ρk, defined by ρk(B) = ρ(B1/k), for any B ∈ B(R), satisfies the

11



condition (2.5), i.e.

∫ 1

−1

|x|ρk(dx) =

∫ 1

−1

|x|kρ(dx) 6
∫ 1

−1

x2ρ(dx) <∞.

Thus, the variation of a Lévy process is well-defined. By definition, X(n)(t) is the n-th power of

the jumps of the Lévy process, so it is also called the power jump process. Meanwhile, Y (n)(t) :=

X(n)(t) − E(X(n)(t)) is a martingale, which is called Teugels martingale in literature (cf. [4]).

One can prove that all the power jump processes of a Poisson process are the same and equal to the

original Poisson process. However, all the power jump processes of a Brownian motion are zero

when the orders are strictly greater than one.

2.3 A Brief Summary of the Proof and Methods in Classical Probability

Consider the triangular array of random variables {Xn,i} with identical and independent dis-

tribution Fn in the n-th row (∀ n ∈ N). We restate the main result, Theorem 1.1 in [5], in the

following Theorem 2.3.1 and give a sketch of the proof in this theorem.

Theorem 2.3.1. Suppose that triangular array {Xn,i}16i6n are i.i.d with distribution Fn, (n ∈ N),

which satisfies

nFn(·)→ ρ(·), (2.12)

vaguely over [−∞,+∞] \ {0}, as n→∞. Also, suppose that

lim
δ→0

lim
n→∞

n

[∫ δ

−δ
x2dFn

]
= lim

δ→0
lim
n→∞

n

[∫ δ

−δ
x2dFn

]
=: σ2. (2.13)

Finally, let τ be a point of continuity of ρ (WLOG, we assume τ = 1) and suppose that

lim
n→∞

n

∫ τ

−τ
xdFn =: a. (2.14)

Then,
[nt]∑
i=1

(
Xn,i, X

2
n,i, ..., X

k
n,i

) d.→
(
X(t), tσ2 +X(2)(t), X(3)(t), ..., X(k)(t)

)
, (2.15)

12



where X(t) is a Lévy process and X(m)(t) is the m-th variation of X(t), for 1 6 m 6 k.

A Sketch of the Proof: Consider the function f(x) = (x, x2, ..., xk). Set the random vectors

Zn,i = f(Xn,i) with a joint distribution f(Fn). Fix δ ∈ (0, 1). When i, j = 1, ..., k, we define

σi,j(δ, n) := n

[∫
|x(m)|<δm
m=1,...,k

x(i)x(j)df(Fn)−

(∫
|x(m)|<δm
m=1,...,k

x(i)df(Fn)

)(∫
|x(m)|<δm
m=1,...,k

x(j)df(Fn)

)]
.

For vector ~x = (x(1), ..., x(k)), we define ~an :=
∫
|x(m)|<τm
m=1,...,k

~xdf(Fn). To prove the theorem, we need

to verify the following three results via the assumptions (2.12), (2.13) and (2.14):

1.

nf(Fn)(·) v.→ f(ν)(·); (2.16)

2.

σij := lim
δ→0

lim
n→∞

= lim
δ→0

lim
n→∞

=


σ2, i = j = 1,

0, otherwise;

(2.17)

3.

lim
n→∞

[nt]~an = t

(
a, σ2 +

∫ τ

−τ
x2dν(x),

∫ τ

−τ
x3dν(x), ...,

∫ τ

−τ
xkdν(x)

)
. (2.18)

First, (2.16) follows by the assumption (2.12) because, for any bounded Borel set A ⊂ Rk \ {0},

f(Fn)(A) = Fn(f−1(A)) and f(ν)(A) = ν(f−1(A)). Second, we prove the relation (2.17). When

i = j = 1, by (2.13) and (2.14), we know that

∫ δ

−δ
xdFn = O(

1

n
).

13



Therefore, by changing variables in the integral, we can get

σ11 = lim
δ→0

lim
n→∞

n

∫
|x(m)|<δm
m=1,...,k

(x(1))2df(Fn)−

(∫
|x(m)|<δm
m=1,...,k

x(1)df(Fn)

)2


= lim
δ→0

lim
n→∞

n

∫
|x(m)|<δm
m=1,...,k

(x(1))2dFn(f−1(~x))−

(∫
|x(m)|<δm
m=1,...,k

x(1)dFn(f−1(~x))

)2


= lim
δ→0

lim
n→∞

n

[∫
|x|<δ

x2dFn(x)−
(∫
|x|<δ

xdFn(x)

)2
]

=σ2.

When (i, j) 6= (1, 1) and 0 < δ < 1, without loss of generality, we assume i 6= 1. Then, similarly,

|σi,j(δ, n)| =
∣∣∣∣n∫

|x|<δ
xi+jdFn(x)− n

∫
|x|<δ

xidFn

∫
|x|<δ

xjdFn

∣∣∣∣
6

∣∣∣∣n∫
|x|<δ

δxidFn(x)

∣∣∣∣+ n

∣∣∣∣∫
|x|<δ

xdFn(x)

∣∣∣∣ · ∣∣∣∣∫
|x|<δ

xidFn(x)

∣∣∣∣
6n

[
δ +

∣∣∣∣∫
|x|<δ

xdFn(x)

∣∣∣∣] · ∫
|x|<δ

x2dFn(x)→ 0,

as δ → 0 and n→∞. Finally, we show the relation (2.18) via the following observation. Assump-

tion (2.13) can imply that

∣∣∣∣n∫ δ

−δ
xmdFn(x)

∣∣∣∣ 6 n

∫ δ

−δ
|x|mdFn(x) 6 nδm−2

∫ δ

−δ
x2dFn(x)→ 0,

for m > 2, as δ → 0 and n→∞. So,

lim
δ→0

lim
n→∞

n

∣∣∣∣∫ δ

−δ
xmdFn(x)

∣∣∣∣ = 0, (2.19)

when m > 3. This explains why the limit random process of higher order in (2.15) only has

compensated jump sum parts among its Lévy-Itô decomposition.
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Suppose ~an = (a
(1)
n , a

(2)
n , ..., a

(k)
n ). Then, by (2.14), we know that limn→∞[nt]a

(1)
n = at. Let

a(m)
n = n

∫ δ

−δ
xmdFn(x) + n

∫
δ6|x|6τ

xmdFn(x).

Then, for the second part,

lim
δ→0

lim
n→∞

n

∫
δ6|x|6τ

xmdFn(x)

= lim
δ→0

lim
n→∞

∫
δ6|x|6τ

xmdnFn(x)

= lim
δ→0

∫
δ6|x|6τ

xmdρ(x)

=

∫
|x|6τ

xmdρ(x).

According to (2.13), limn→∞[nt]a
(2)
n = σ2t + t

∫
|x|6τ x

2dρ(x). Based on (2.19), we conclude that

limn→∞[nt]a
(m)
n = t

∫
|x|6τ x

mdρ(x),whenm > 2. So we get the relations (2.16), (2.17) and (2.18).

Then, in the reference [5], the authors claim that relations (2.16), (2.17) and (2.18) allow us to apply

the multidimensional central limit theorem of E. Rvaceva in [12] to get the joint convergence in

distribution:

lim
n→∞

[nt]∑
i=1

(Zn,i − ~an) = σB(t) +M (f(ρ))(t).

Furthermore, there is a corollary in [5] claiming that if X(t) is a Lévy process, the triangular

array Xn,i is i.i.d. and, as n→∞,
n∑
i=1

Xn,i
d.→ X(1), (2.20)

then the assumptions (2.12), (2.13) and (2.14) will hold automatically. Thus, (2.15) holds. For

simplicity, we denote the variation of order two X(2)(t) by tσ2 + X(2)(t). Thus, the result is

expressed by

 [nt]∑
i=1

Xn,i,

[nt]∑
i=1

X2
n,i, ...,

[nt]∑
i=1

Xk
n,i

 d.→
(
X(t), X(2)(t), ..., X(k)(t)

)
,
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as n→∞. Meanwhile, this result implies that, for any polynomial P (x1, ..., xk),

P

 [nt]∑
i=1

Xn,i,

[nt]∑
i=1

X2
n,i, ...,

[nt]∑
i=1

Xk
n,i

 d.→ P
(
X(t), X(2)(t), ..., X(k)(t)

)
.

The last thing left is to use a combinatorial method to find an appropriate polynomial P such that

P

(
N∑
i=1

XN,i,

N∑
i=1

X2
N,i, ...,

N∑
i=1

Xk
N,i

)
=

∑
16i1<i2<...<ik6[Nt]

XN,i1XN,i2 ...XN,ik .

Then, comparing with the definition (2.1), we can get the final result (2.2) of [5].

In free sense, we aim at imitating the proof and methods we mentioned above to get the joint

convergence in distribution of a free triangular array of the powers of some non-commutative

random variables. In short, we want to get the last three formulas we showed above in a free

probability setting.

2.4 Free Stochastic Measures

Another motivation comes from free probability itself. In the reference [1], Michael Anshele-

vich defined the free multiple stochastic measures. Let XI be a stationary stochastic process with

freely independent increments, which are bounded operators. For any N ∈ N, let {XN,i}16i6N be

freely independent and identically distributed increments of XI that add up to XI . The stochastic

measure of degree k is defined by

ψk := lim
N→∞

∑
i1 6=i2 6=... 6=ik

XN,i1XN,i2 ...XN,ik , (2.21)

where the limit is taken in the operator norm and i1 6= i2 6= ... 6= ik means that all the indices are

distinct. The k-th diagonal measure (variation) of the process is defined by

∆k := lim
N→∞

N∑
i=1

Xk
N,i.
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Usually, we use the k-th variation X(k) instead of the k-th diagonal measure ∆k, but they are

actually the same things. Heuristically, if I = [0, t), then ψk(t) =
∫
Bt
dXs1dXs2 ...dXsk , where

Bt = {0 6 s1 6= s2 6= ... 6= sk 6 t}. This means that all the definitions are analogs of the classical

definitions. For more details, see [2].

Moreover, there is a free Kailath-Segall formula in [1],

ψn = Xψn−1 +
n∑
j=2

(−1)j−1

n−j∑
q=0

(
n− q − 2

j − 2

)
tn−j−q∆jψq, (2.22)

where X = ∆1 is the stochastic process XI and t = φ(X). This shows that the stochastic measure

is determined by a polynomial of diagonal measures (variations of the stochastic process).

However, all these definitions are in terms of operator norm. This requires that the norms of

all random variables should be finite. Thus, we want to consider a more general case and define

the stochastic measure ψk and the diagonal measure ∆k (or the variation X(k)) in a weaker sense

or a more general sense. For example, we can modify these definitions for self-adjoint (possibly

unbounded) affiliated operators and verify an analogous free Kailath-Segall formula in our new

definitions and settings.
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3. RESULTS FOR FINITE-MOMENT NON-COMMUTATIVE RANDOM VARIABLES

In this chapter, we derive some limit theorems of free triangular arrays in a plain non-commutative

probability space. As mentioned above, the moments of all orders in a plain non-commutative

probability space are finite. In classical probability, the cumulants κn of a probability distribution

are a sequence of quantities that provide an alternative to its moments. In free sense, we can define

the free cumulant based on moments. In a non-commutative probability space (A, φ), denote the

n-th mixed moment of a1, a2, ..., an by Mn(a1, a2, ..., an) := φ(a1 · a2 · · · an).

Definition 15. In a non-commutative probability space (A, φ), define the n-th free cumulant func-

tional Rn implicitly by

Mn(a1, a2, ..., an) =
∑

π∈NC(n)

Rπ(a1, a2, ..., an),

for any random variables a1, a2, ..., an ∈ A. The symbol NC(n) represents the collection of all

non-crossing partitions in the set {1, 2, ..., n}. The notation Rπ is denoted by

Rπ(a1, a2, ..., an) =
∏
V ∈π

R|V |(ai : i ∈ V ).

The n-th free cumulant of a single element a is defined by κn(a) := Rn(a, a, ..., a). For more

properties of the free cumulant κn, see Lecture 11 in [10].

3.1 Free Limit Theorems for Triangular Arrays of Non-commutative Random Variables

For each N ∈ N, let (AN , φN) be a non-commutative probability space and I be an index set.

Consider a free triangular array of random variables, namely, for any i ∈ I,N ∈ N and 1 ≤ r ≤ N ,

each entry of the array is formed by some random variables a(i)
N,r ∈ AN , and for each fixed N ∈ N,

the sets {a(i)
N,1}i∈I , {a

(i)
N,2}i∈I , ..., {a

(i)
N,N}i∈I are freely independent and identically distributed in the

N -th row.
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Lemma 3.1.1. ([10]) The following two statements are equivalent.

(1) For each n ≥ 1, any i(1), ..., i(n) ∈ I and any 1 6 r 6 N, the following limit of joint free

moments exists:

lim
N→∞

N · φN
(
a

(i(1))
N,r ...a

(i(n))
N,r

)
.

(2) For each n ≥ 1, any i(1), ..., i(n) ∈ I and any 1 6 r 6 N, the the following limit of joint free

cumulants exists:

lim
N→∞

N · κNn
(
a

(i(1))
N,r , ..., a

(i(n))
N,r

)
.

Furthermore, the corresponding limits are the same.

Proof. (2)⇒ (1): by the free cumulant-moment formula (see Lecture 11 in [10]), we have that

lim
N→∞

N · φN
(
a

(i(1))
N,r ...a

(i(n))
N,r

)
= lim

N→∞

∑
π∈NC(n)

N · κNπ [a
(i(1))
N,r ...a

(i(n))
N,r ].

So, for any partition π ∈ NC(n) with more than one block, N · κNπ [a
(i(1))
N,r ...a

(i(n))
N,r ] tends to zero as

N →∞, by the assumption (2). Therefore,

lim
N→∞

N · φN
(
a

(i(1))
N,r ...a

(i(n))
N,r

)
= lim

N→∞
N · κNn

(
a

(i(1))
N,r , ..., a

(i(n))
N,r

)
.

For the other direction, the proof is analogous by the free moment-cumulant formula.

Lemma 3.1.2. Suppose that a family of random variables {cN,i}i∈I in a non-commutative prob-

ability space (AN , φN) satisfies the joint convergence in distribution towards a family {ci}i∈I in

(A, φ), i.e. as N →∞,

{cN,i}i∈I
d.→ {ci}i∈I .

The following two statements are equivalent.

1. For any n ∈ N and any i(1), i(2), ..., i(n) ∈ I , limN→∞ φ(cN,i(1), ..., cN,i(n)) = φ(ci(1), ..., ci(n)).

2. For any n ∈ N and any i(1), i(2), ..., i(n) ∈ I , limN→∞ κn(cN,i(1), ..., cN,i(n)) = κn(ci(1), ..., ci(n)).
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The proof of the above Lemma 3.1.2 is straightforward by the free cumulant-moment formula

and its inverse formula (cf. [10]). Combining two lemmas stated above, we can easily prove the

following theorem, which is presented and proved in the Lecture 13 of [10].

Theorem 3.1.3. ([10]) Suppose that the free triangular array {aN,i} satisfies the free independence

and identical distribution in each row. Then, the following are equivalent.

1. The sums over the rows of our triangular array converge in distribution, i.e. there is a family

of random variables (bi)i∈I in some non-commutative probability space such that

(a
(i)
N,1 + ...+ a

(i)
N,N)i∈I

d.→ (bi)i∈I .

2. For all n ≥ 1 and all i(1), ..., i(n) ∈ I , the limits

lim
N→∞

N · φN
(
a

(i(1))
N,r ...a

(i(n))
N,r

)

exist (which are independent of r).

Moreover, if these conditions are satisfied, then the joint distribution of the limit family (bi)i∈I is

determined by their free cumulants

κn(bi(1), ..., bi(n)) = lim
N→∞

N · φN
(
a

(i(1))
N ...a

(i(n))
N

)
.

Proof. For all n ≥ 1 and all i(1), ..., i(n) ∈ I , consider

AN := κn

(
N∑
r=1

a
i(1)
N,r, ...,

N∑
r=1

a
i(n)
N,r

)

=
N∑

r(1)=1

...
N∑

r(N)=1

κ(a
i(1)
N,r(1), ..., a

i(n)
N,r(n)).

When r(k) 6= r(j), ai(k)
N,r(k) and a

i(j)
N,r(j) are freely independent. So the joint free cumulant that
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includes ai(k)
N,r(k) and ai(j)N,r(j) must be zero. Then,

AN =
N∑
r=1

κn(a
i(1)
N,r, ..., a

i(n)
N,r ) = N · κn(a

i(1)
N,r, ..., a

i(n)
N,r ),

because the distributions of ai(j)N,r and ai(j)N,s are the same for any 1 6 r, s 6 N. Then, by the two

previous lemmas, it is easy to check the equivalence of the condition 1 and condition 2.

In our case, the family of random variables in each entry of the free triangular array is {Xk
N,r}k∈Z+ ,

for 1 ≤ r ≤ N , i.e. all the powers of the free triangular array of our original random variables

{XN,r}16r6N . Therefore, we can get the following corollary.

Corollary 3.1.3.1. For a free triangular array {XN,r : 1 ≤ r ≤ N,N ∈ N} in (A, φ), we

assume that in each row of the array, the random variables are freely independent and identically

distributed. We denote that in the N -th row, XN,r has the same distribution as a random variable

XN , for any 1 ≤ r ≤ N . Then, there exists a family of random variables {X(k)}k∈Z+ in A such

that (
Xk
N,1 + ...+Xk

N,N

)
k∈Z+

d.→
(
X(k)

)
k∈Z+

if and only if ∀n ∈ Z+ and ∀i1, ..., in ∈ Z+, the limit of moments limN→∞N · φ(X i1+...+in
N ) is

finite. Moreover, the joint free cumulant of {X(k)}k∈Z+ is determined by

κn
(
X(i1), ..., X(in)

)
= lim

N→∞
N · φ(X i1+...+in

N ).

The above corollary shows that, for any m ∈ N, the m-th moments of XN must decay at least

as fast as 1
N

, so that the free cumulants of limit random variables X(i) exists. Besides, the free joint

cumulants of limit random variables X(i) are obtained by the moments of random variables XN,r

in the triangular array.
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Lemma 3.1.4. Suppose that we have the joint convergence in distribution

(
a

(i)
N

)
1≤i≤k

d.→
(
b(i)
)

1≤i≤k ,

as N →∞. Then, for any polynomial Pk(x1, x2, ..., xk) fixed, as N →∞, we can conclude that

Pk(a
(1)
N , a

(2)
N , ..., a

(k)
N )

d.→ Pk(b
(1), b(2), ..., b(k)).

Proof. By Definition 10, it suffices to show that, for any n ∈ N, as N →∞,

φ
(

(Pk(a
(1)
N , a

(2)
N , ..., a

(k)
N ))n

)
→ φ

(
(Pk(b

(1), b(2), ..., b(k)))n
)
.

Since (Pk(x1, x2, ..., xk))
n is still a polynomial with x1, x2, ..., xk variables, we can get the result

above via the joint convergence in distribution of
(
a

(i)
N

)
(recall Definition 11).

Corollary 3.1.4.1. For a triangular array {XN,r : 1 ≤ r ≤ N,N ∈ N} in a non-commutative

probability space (A, φ), assume that in each row of the array, the random variables are freely

independent and identically distributed. We denote that, in the N -th row, XN,r has the same

distribution as a random variable XN , for any 1 ≤ r ≤ N . If we have that

XN,1 + ...+XN,N
d.→ X =: X(1),

then there is a sequence of random variables {X(k)}k∈Z+ such that

(
Xk
N,1 + ...+Xk

N,N

)
k∈Z+

d→
(
X(k)

)
k∈Z+

.

And for any fixed polynomial Pk,

Pk(
N∑
r=1

XN,r,

N∑
r=1

X2
N,r, ...,

N∑
r=1

Xk
N,r)

d.→ Pk(X
(1), X(2), ..., X(k)).
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Moreover, the n−th order cumulant of X(k) is equal to the kn−th order cumulant of X(1), for any

n, k ∈ N.

Proof. By Corollary 3.1.3.1, we know that the convergence in distribution, XN,1 + ... + XN,N
d→

X(1), is equivalent to the condition

κn(X(1)) = lim
N→∞

N · φ(Xn
N,r),

for any 1 6 r 6 N and any n ∈ N. Then, given ∀n ∈ Z+ and ∀i1, ..., in ∈ Z+, limN→∞N ·

φ(X i1+...+in
N,r ) is finite, which, by Corollary 3.1.3.1, implies the joint convergence in distribution,(

Xk
N,1 + ...+Xk

N,N

)
k∈Z+

d→
(
X(k)

)
k∈Z+

, and κn(X(k)) = κkn(X(1)). For the convergence of

polynomials of the triangular array, the proof is based on Lemma 3.1.4.

This corollary states that if we have the convergence of the sum of each row in the free trian-

gular array XN,r, we can conclude the joint convergence of all powers of the triangular array XN,r.

Moreover, by the Corollary 3.1.4.1, the limit random variables are determined by the moments of

XN,r.

We now give an improvement of Theorem 3.1.3 considering non-identically distributed free

random variables in the same triangular arrays. To make this modification, we consider the weak

free central limit theorem, where the identical distribution is replaced by supi∈N |φ(ani )| < ∞, for

any n ∈ N.

Theorem 3.1.5. For a free triangular arrays of non-commutative random variables {XN,r}N∈N(1 6

r 6 N), we assume that XN,r are freely independent in each row and there exists constant Ck such

that

lim
N→∞

sup
16r6N

∣∣N · φ(Xk
N,r)− Ck

∣∣ = 0, (3.1)

for any k ∈ N. Then, there exist random variables {bi}i∈N such that

(
N∑
r=1

X i
N,r

)
i∈N

d.→ (bi)i∈N.
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Proof. For any n ∈ N and i(1), ...i(n) ∈ N, computing the n-th joint free cumulant, we can get

κn

(
N∑
r=1

X
i(1)
N,r , ...,

N∑
r=1

X
i(n)
N,r

)

=
N∑

r(1)=1

...

N∑
r(n)=1

κn(X
i(1)
N,r(1), ..., X

i(n)
N,r(n))

=
N∑
r=1

κn(X
i(1)
N,r , ..., X

i(n)
N,r ).

Here, we use the properties of free cumulants and free independence. Then, by free cumulant-

moment formula,

∣∣∣∣∣
N∑
r=1

κn(X
i(1)
N,r , ..., X

i(n)
N,r )− Ci(1)+...+i(n)

∣∣∣∣∣
=

∣∣∣∣∣∣
N∑
r=1

∑
σ∈NC(n)

∏
V ∈σ

φ(V )[X
i(1)
N,r , ..., X

i(n)
N,r ]µ(σ, 1n)− Ci(1)+...+i(n)

∣∣∣∣∣∣
6

∣∣∣∣∣
N∑
r=1

φ(X
i(1)+...+i(n)
N,r )− Ci(1)+...+i(n)

∣∣∣∣∣+
∑
σ 6=1n

σ∈NC(n)

sup
16r6N

N

∣∣∣∣∣∏
V ∈σ

φ(V )[X
i(1)
N,r , ..., X

i(n)
N,r ]

∣∣∣∣∣ .
By the assumption, when N goes to infinity,

∣∣∣∣∣
N∑
r=1

φ(X
i(1)+...+i(n)
N,r )− Ci(1)+...+i(n)

∣∣∣∣∣
6 lim

N→∞
sup

16r6N

∣∣∣Nφ(X
i(1)+...+i(n)
N,r )− Ci(1)+...+i(n)

∣∣∣ = 0.

Meanwhile, by condition (3.1), we know that limN→∞ sup16r6N

∣∣Nφ(Xk
N,r)
∣∣ is finite. Therefore,

when the non-crossing partition σ is not 1n, there exists at least two blocks in this partition, which

implies

lim
N→∞

N

∣∣∣∣∣∏
V ∈σ

φ(V )[X
i(1)
N,r , ..., X

i(n)
N,r ]

∣∣∣∣∣ = 0.

So the joint free cumulant κn
(∑N

r=1X
i(1)
N,r , ...,

∑N
r=1 X

i(n)
N,r

)
= Ci(1)+...+i(n), which concludes the
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joint convergence in distribution.

3.2 Free Kailath-Segall Formula

One of our aims is to use some specific polynomial of free random variables to approximate the

free stochastic measure. So, in this section, we want to show an explicit formula of the polynomials

for the approximation. We have known the free Kailath-Segall formula in [1], which is a recursion

formula for stochastic measures, i.e.

ψn = Xψn−1 +
n∑
j=2

(−1)j−1

n−j∑
q=0

(
n− q − 2

j − 2

)
tn−j−q∆jψq. (3.2)

Here, we consider an infinitely divisible random variable X = X[0,1], i.e. for each N ∈ N, there is

a sequence of freely independent and identically distributed random variables {XN,r}16r6N s.t.

N∑
r=1

XN,r = X.

Moreover, the k-th diagonal measure of the process X is defined by ∆k = limN→∞
∑N

r=1X
k
N,r.

Then, X = ∆1. We assume that the expectation t = φ(X) is finite. If the expectation is not finite,

the recursion formula (3.2) does not make sense.

Theorem 3.2.1. By the recursion formula (3.2), we can get a general formula for free stochastic

measure:

ψn =
∑
k∈An

∞∏
i=1

Cki (3.3)

Here, the product is non-commutative and An = {k :
∑∞

i=1 ki = n, ki ≥ 0, ki ∈ Z} is a set of in-

finite sequences of nonnegative integers with finitely many nonzero elements at the their beginning

part of the entries. In addition,

Ck :=


X = ∆1 , k = 1

k∑
j=2

(
k − 2

j − 2

)
tk−j∆j(−1)j−1 , k > 1.

25



Proof. We can simplify (9) via the following steps.

ψn =Xψn−1 +
n∑
j=2

(−1)j−1

n−j∑
q=0

(
n− q − 2

j − 2

)
tn−j−q∆jψq

=Xψn−1 +
n−2∑
q=0

n−q∑
j=2

(
n− q − 2

j − 2

)
tn−j−q∆jψq

=Xψn−1 +
n−2∑
q=0

(

n−q∑
j=2

(
n− q − 2

j − 2

)
tn−j−q∆j)ψq

=
n−1∑
q=0

Cn−qψq

Therefore, considering ψ0 = 1, we can get the final result (3.3) by induction.

This theorem tells us that the n-th stochastic measure ψn is a polynomial of ∆1,∆2, ...,∆n

and t. However, notice that the free stochastic measure in (3.2) is defined by the operator norm

rather than the convergence in distribution. We want to consider a general case when elements in a

non-commutative probability space have finite moments but possibly no finite norms. In this case,

we can redefine the stochastic measure and the diagonal measure (the higher variation).

Definition 16. Given a triangular array {XN,i}16i6N with freely independent and identically dis-

tributed entries in each row in a non-commutative probability space (A, φ) (usually we call it a

free triangular array), we define the k-th variation of the triangular array by

X(k) := w − lim
N→∞

N∑
i=1

Xk
N,i

and the k-th stochastic measure of the triangular array by

ψk := w − lim
N→∞

∑
i1 6=i2,i2 6=i3,...,ik−1 6=ik

XN,i1XN,i2 ...XN,ik ,

where i1 6= i2, i2 6= i3, ..., ik−1 6= ik means all neighbors are distinct.

In Definition 16, the weak limit represents the convergence in distribution in the non-commutative
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probability space (A, φ). The definition of free stochastic measure is slightly different from the

definition in terms of the operator norm in the formula (2.21). Next, we show the existence of free

stochastic measures and higher variations in Definition 16.

Theorem 3.2.2. Given any free triangular array {XN,r} in a non-commutative probability space

(A, φ), i.e. {XN,r}16r6N are freely independent and identically distributed in each row, we assume

that there exists a random variable X(1) ∈ A such that

X(1) = w − lim
N→∞

N∑
i=1

XN,i. (3.4)

Then, we claim that there exist {X(k)}k∈N and {ψk}k∈N in A such that

(
N∑
i=1

Xk
N,i

)
k∈N

d.→
(
X(k)

)
k∈N (3.5)

and ∑
i1 6=i2,i2 6=i3,...,ik−1 6=ik

XN,i1XN,i2 ...XN,ik

d.→ ψk, (3.6)

for each k ∈ N. Moreover, we can conclude the following relationship between X(k) and ψk:

ψn =
n∑
k=1

(−1)n−k
∑

j1,...,jk≥1

j1+...+jk=n

X(j1)...X(jk), (∀n ∈ N). (3.7)

Proof. The first result (3.5), the joint convergence in distribution, follows directly from the as-

sumption (3.4) and Corollary 3.1.4.1. To prove (3.6) and (3.7), we shall show

∑
i1 6=i2,i2 6=i3,...,ik−1 6=ik

XN,i1XN,i2 ...XN,ik

d.→
n∑
k=1

(−1)n−k
∑

j1,...,jk≥1

j1+...+jk=n

X(j1)...X(jk), (∀n ∈ N).
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For a fixed n ∈ N, we define a non-commutative polynomial Qn by

Qn(x1, ..., xN) :=
∑

i1 6=i2,i2 6=i3,...,in−1 6=in

xi1xi2 ...xin .

Meanwhile, denote by Pn a non-commutative polynomial

Pn(x1, ..., xn) :=
n∑
k=1

(−1)n−k
∑

j1,...,jk≥1

j1+...+jk=n

xj1 ...xjk .

Let ∆N
k :=

∑N
r=1X

k
N,r, (k ∈ N). According to Corollary 3.1.4.1, we have that

Pn(∆N
1 , ...,∆

N
n )

d.→ Pn(X(1), ..., X(n)),

as N →∞. Thus, it suffices to prove that, for each N ∈ N,

Qn(XN,1, ..., XN,N) = Pn(∆N
1 , ...,∆

N
n ).

At first, we expand the polynomial Pn:

Pn(∆N
1 , ...,∆

N
n ) =(∆N

1 )n +
n−1∑
k=1

(−1)n−k
∑

j1,...,jk≥1

j1+...+jk=n

∆N
j1
...∆N

jk

=Qn(XN,1, ..., XN,N) +
n−1∑
k=1

∑
j1+...+jk=n

∑
1≤i1 6=... 6=ik≤N

Xj1
i1
...Xjk

ik

+
n−1∑
k=1

(−1)n−k
∑

j1,...,jk≥1

j1+...+jk=n

(
N∑
i=1

Xj1
i )(

N∑
i=1

Xj2
i )...(

N∑
i=1

Xjk
i ).

So, we shall show that

n−1∑
k=1

∑
j1+...+jk=n

∑
1≤i1 6=... 6=ik≤N

Xj1
i1
...Xjk

ik
+
n−1∑
k=1

(−1)n−k
∑

j1,...,jk≥1

j1+...+jk=n

(
N∑
i=1

Xj1
i )(

N∑
i=1

Xj2
i )...(

N∑
i=1

Xjk
i ) = 0.
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For any fixed 1 ≤ k ≤ n− 1 and vector (j1, ..., jk) such that ji ≥ 1 and
∑k

i=1 ji = n, we need to

compute the coefficient of ∑
1≤i1 6=... 6=ik≤N

Xj1
i1
...Xjk

ik
(3.8)

in the term
n−1∑
l=1

(−1)n−l
∑

j1,...,jl≥1

j1+...+jl=n

(
N∑
i=1

Xj1
i )(

N∑
i=1

Xj2
i )...(

N∑
i=1

Xjl
i ).

Obviously, when l < k, there is no term (3.8) in the term

(−1)n−l
∑

j1,...,jl≥1

j1+...+jl=n

(
N∑
i=1

Xj1
i )(

N∑
i=1

Xj2
i )...(

N∑
i=1

Xjl
i ).

When n − 1 ≥ l ≥ k, by combinatorics, we know that the coefficient is (−1)n−l
(
n−k
l−k

)
. Then,

considering the formula
n−1∑
l=k

(−1)n−l
(
n− k
l − k

)
= −1,

we can conclude that

Qn(XN,1, ..., XN,N) = Pn(∆N
1 , ...,∆

N
n ).

Theorem 3.2.2 provides a condition to ensure the existence of higher variations and stochastic

measures of a free triangular array. In particularly, given a centered and stationary stochastic

process X with freely independent increments in a non-commutative probability space (A, φ), for

any N ∈ N, we take into account the freely independent and identically distributed increments

{XN,i}16i6N that add up to X as a free triangular array. Theorem 3.2.2 makes sure the existence

of the k-th variation (diagonal measure) of this centered stochastic process, i.e.

X(k) = w − lim
N→∞

N∑
i=1

Xk
N,i.
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Also, we have the k-th stochastic measure of this centered stochastic process

ψk = w − lim
N→∞

∑
i1 6=i2,i2 6=i3,...,ik−1 6=ik

XN,i1XN,i2 ...XN,ik ,

which follows from Definition 16. Meanwhile, equation (3.7) gives us a Free Kailath-Segall

formula for centered stochastic processes in a plain non-commutative probability space. In the

Free Kailath-Segall formula (3.2) proved in [1], if the process is centered, i.e. t = 0, we can get

the same formula as (3.7) in the above theorem. This shows that our result is consistent with the

previous results in the reference [1], though the definitions are slightly different.

We shall mention that Definition 16 is a generalized concept for any free triangular arrays in a

plain non-commutative probability space, while the reference [1] only defined the stochastic mea-

sure and higher variations when the triangular array is formed by the freely independent increments

of a stationary stochastic process. Formula (3.7) can be viewed as a general Free Kailath-Segall

formula in the sense of Definition 16 because this formula describe how higher variations decide a

stochastic measure via a polynomial.
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4. BACKGROUND ON FREE INFINITE DIVISIBILITY AND LÉVY-ITÔ

DECOMPOSITION

4.1 Free Infinite Divisibility and Free Lévy-Khinchine Representation

Definition 17 (Free Infinite Divisibility). A probability measure µ on R is called �-infinitely di-

visible if there exists, for any n ∈ N, a probability measure µn on R such that

µ = µn � µn � ...� µn︸ ︷︷ ︸
n terms

=: µ�nn .

There is an analogous Lévy-Khinchine formula to describe the infinitely divisible random vari-

ables with respect to �-convolution. For the classical results, we refer to [4].

Theorem 4.1.1. ([7]) Let µ be a probability measure on R. µ is �-infinitely divisible if and only

if there exist a finite positive Borel measure σ and γ ∈ R such that its Voiculescu transform is

Φµ(z) = γ +

∫
R

1 + tz

z − t
dσ(t). (4.1)

Theorem 4.1.2. ([6]) Let µ be a probability measure on R. µ is �-infinitely divisible if and only

if there exist a Lévy measure ρ, constant a ∈ R+ and η ∈ R such that its Voiculescu transform is

Φµ(z) = η +
a

z
+

∫
R

[
z2

z − t
− z − t1[−1,1](t)

]
dρ(t). (4.2)

The Lévy measure ρ satisfies ρ({0}) = 0 and
∫
R min{1, x2}dρ(x) <∞.

These two theorems describe what a �-infinitely divisible measure looks like from different

point of views. In general, both the triplet (a, η, ρ) and pair (γ, σ) is uniquely determined by

the measure and uniquely generate the �-infinitely divisible measure. In fact, the Bercovici-Pata

bijection is defined by the bijection between free generating triplet (a, η, ρ) of any �-infinitely

divisible measure and generating triplet (a, η, ρ) in the classical Lévy-Khinchine Representation
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for the corresponding ∗-infinitely divisible measure (see [8]). Besides, the relationship between

the triple and the pair is given in the following equations:


σ(dt) = aδ0(dt) +

t2

1 + t2
ρ(dt)

γ = η −
∫
R
t

[
1[−1,1](t)−

1

1 + t2

]
dρ(t)

(4.3)

and, conversely, 

a = σ({0})

η = γ +

∫
R\{0}

1 + t2

t

[
1[−1,1](t)−

1

1 + t2

]
dσ(t)

ρ(dt) =
1 + t2

t2
1R\{0}(t)σ(dt).

(4.4)

The following theorem, proved by H. Bercovici and V. Pata in [9], will become our most important

tool to prove our own results because this theorem provides an equivalent statement of the weak

convergence of self-adjoint (possibly unbounded) random variables in a free triangular array. We

can employ this theorem to check the weak convergence of the powers of a free triangular array.

Theorem 4.1.3. ([3, 9]) For a sequence of probability measure µn and a strictly increasing se-

quence of positive integers kn, the following assertions are equivalent:

1. the sequence of kn-th free convolution µ�knn converges weakly to a probability measure µ;

2. there exist a finite positive Borel measure σ on R and a real number γ such that

kn
x2

x2 + 1
dµn(x)

w.→ dσ(x) (4.5)

and

lim
n→∞

kn

∫
R

x

1 + x2
dµn(x) = γ. (4.6)

The pair of parameters (γ, σ) comes form the Voiculescu transform (4.1) of µ. This also implies

the �-infinite divisibility of µ.
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So far, we have two types of limit theorems about free triangular array of random variables,

namely Theorem 3.1.3 and Theorem 4.1.3. These two theorems view the problem from different

angles with different settings. Theorem 3.1.3 gives an equivalent condition for the joint conver-

gence in distribution of the sum of random variables in each row. The condition of Theorem 3.1.3

describes the asymptotic behaviors of joint moments of each row. It is worthwhile to notice that

Theorem 3.1.3 makes sense for all random variables in any non-commutative probability space,

but it requires all finite moments for each random variable. For Theorem 4.1.3, it only deals with

the random variables with distributions on the real line, which means this theorem only considers

the self-adjoint elements in a non-commutative probability space. In addition, although Theorem

4.1.3 is unable to deal with the joint convergence in distributions for triangular arrays of random

variables, it could handle with unbounded self-adjoint operators, which do not have finite moments

in general. Meanwhile, it turns out that the equivalent statement of weak convergence in Theorem

4.1.3 can be successfully employed to address the higher variations of free Lévy processes, which

we will define and discuss later.

4.2 Free Poisson Random Measures and their Integrations

Similarly with our review of classical theory in Chapter 2, we also need to study the free Lévy

processes and their decomposition. So, we first introduce the free Poisson random measures.

Definition 18 (Free Poisson Random Measures). Let (Θ, E , ν) be a measure space and put E0 =

{E ∈ E : ν(E) <∞}. Let further (A, φ) be a W ∗−probability space and let A+ denote the cone

of positive operators in A. A free Poisson random measure on (Θ, E , ν) with values in (A, φ), is a

mapping M : E0 → A+, with following properties:

1. the distribution of M(E) is a free Poisson distribution Poiss�(ν(E));

2. for any mutually disjoint setsA1, ..., An in E0, the random variablesM(A1),M(A2), ...,M(An)

are freely independent and M(∪nj=1Aj) =
∑n

j=1 M(Aj).
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Here, the free Poisson distribution Poiss�(λ) is obtained by the limit in distribution of

(
(1− λ

N
)δ0 +

λ

N
δ1

)�N
,

as N → ∞ (see Lecture 12 in [10]). The measure ν is called the intensity measure for the free

Poisson random measure. In general, the free random measure is a measure on a measure space

with values on a non-commutative space. For the free Poisson random measure, there are more

restrictions on this measure, namely, M(E) is a bounded positive operator with a free Poisson

distribution, for all E ∈ E0. The existence of free Poisson random measures is proved by O.E.

Barndorff-Nielsen and Steen Thorbjørnsen in [7]. Given a measure, it is natural to consider the

integration with respect to this measure like the integration theory with respect to the classical

Poisson random measures.

Definition 19. Let s be a real-valued simple function in L1(Θ, E , ν) in the form s =
∑r

j=1 aj1Ej ,

where aj ∈ R \ {0} and Ej are disjoint sets from E0. Then, we define the integral of s with respect

to M as follows: ∫
Θ

sdM =
r∑
j=1

ajM(Ej) ∈ A.

Because M(E) are positive in A, the element
∫

Θ
sdM is self-adjoint in A, for any real-valued

simple function in L1(Θ, E , ν). Next, we can extend this integration for general functions in

L1(Θ, E , ν).

Lemma 4.2.1. ([7]) Let f be a real-valued function in L1(Θ, E , ν) such that there exists a sequence

of real-valued simple functions (sn) in L1(Θ, E , ν), such that sn(θ) → f(θ), for all θ ∈ Θ. Then,∫
Θ
sdM converges in probability to a self-adjoint (possibly unbounded) operator affiliated with

A. Besides this operator is independent of the choice of approximating sequence (sn). Thus, we

denote this operator as
∫

Θ
fdM .

Since the concept of convergence in probability is a measure topology in Ā rather than A, the

limit operator
∫

Θ
fdM may not be in A. This is the reason why we need to define the affiliated
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operators.

In fact, we only use a special measure space with a concrete intensity measure in our situa-

tion. Let D = R+ × R and B(D) be the set of all Borel subsets of D. In our case, (Θ, E , ν) =

(D,B(D), Leb⊗ρ), where ρ is a Lévy measure. The free Poisson random measure M that we will

use is defined on (D,B(D), Leb⊗ ρ) with values in a W ∗−probability space (A, φ). Besides, the

integration with respect to this free Poisson measure M we will use is also a special case.

Lemma 4.2.2. Let ρ be a Lévy measure on the real line, and let M be a free Poisson random

measure on (D,B(D), Leb ⊗ ρ) with values in the W ∗−probability space (A, φ). Suppose that

p(x) is a polynomial without constant term.

1. For any ε, s, t in ]0,∞[, such that s < t, the integral

∫
]s,t]×{ε<|x|≤n}

p(x)M(dt, dx)

converges in probability, as n → ∞, to some self-adjoint operator affiliated with A, which

is denoted by ∫
]s,t]×{ε<|x|<∞}

p(x)M(dt, dx).

2. If
∫

[−1,1]
|p(x)|ρ(dx) <∞, then for any ε, s, t in ]0,∞[, such that s < t, the integral

∫
]s,t]×{|x|≤n}

p(x)M(dt, dx)

converges in probability to some self-adjoint operator affiliated with A, as n → ∞. We

denote it by ∫
]s,t]×R

p(x)M(dt, dx)

.

The statement of Lemma 4.2.2 is quite similar with Lemma 6.3 of [7]. In the paper [7], the

authors only proved the situation when p(x) = x but their methods in Lemma 6.1 and Lemma 6.2
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of [7] still work well for Lemma 4.2.2. According to Lemma 6.3 of [7], there are only two things

for us to check. Since ρ is a Lévy measure, we have that

∫
]s,t]×{ε<|x|≤n}

|p(x)|Leb⊗ ρ(du, dx) = (t− s)
∫
{ε<|x|≤n}

|p(x)|ρ(dx) <∞.

If
∫

[−1,1]
|p(x)|ρ(dx) <∞, we have that

∫
]s,t]×{|x|≤n}

|p(x)|Leb⊗ρ(du, dx) = (t−s)
[∫
{|x|≤1}

|p(x)|ρ(dx) +

∫
{1<|x|≤n}

|p(x)|ρ(dx)

]
<∞.

Then, we can copy the proof of Lemma 6.3 of [7] and replace the function f(x) = x by the

polynomial p(x) directly to prove Lemma 4.2.2. The idea for proving Lemma 6.3 is employing the

Bercovici-Pata bijection to transform the statement into classical sense and then using Lebesgue’s

dominated convergence theorem.

4.3 Lévy-Itô Decomposition in Free Probability

Definition 20. Let (A, φ) be aW ∗−probability space. A free Lévy process affiliated with (A, φ) is

a family (Xt)t≥0 of self-adjoint operators affiliated with (A, φ), such that the following conditions

are satisfied:

1. any increments Xt0 , Xt1−Xt0 , ..., Xtn−Xtn−1 are freely independent self-adjoint operators

affiliated with A, for any 0 ≤ t0 < t1... < tn;

2. X0 = 0;

3. Xt is a stationary stochastic process, i.e. the distribution of Xs+t −Xt does not depend on

t,for any s, t > 0;

4. for any s ∈ [0,+∞[, Xs+t −Xs converges in distribution to δ0 as t→ 0.

The reference [8] shows that there exists a bijection between free Lévy processes and classical

Lévy processes. The classical Lévy process is determined by its moment generating function, i.e.

the Lévy-Khintchine formula, whereas the non-commutative random variable is determined by its
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Voiculescu transform. Thus, to prove that a process is a free Lévy process, we need to verify the

free Lévy-Khintchine formula of this process. Besides, in classical theory, we are able to prove a

Lévy-Itô decomposition formula via the Lévy-Khintchine formula. The following theorem reveals

an analogous result in free probability.

Theorem 4.3.1 (Free Lévy-Itô Decompositions in [7]). Let X(t) := Xt be a free Lévy process

affiliated with a W ∗−probability space (A, φ). Let (a, η, ρ) be the triplet appearing in the Lévy-

Khintchine formula of X(1). Then, X(t) can be decomposed into three freely independent parts.

1. If
∫

[−1,1]
|x|ρ(dx) <∞, then

X(t)
d
= ηt1A0 +

√
aWt +

∫
]0,t]×R

xdM(t, x). (4.7)

2. In general, we have that

X(t)
d
= ηt1A0 +

√
aWt + lim

ε↘0
[

∫
]0,t]×[|x|>ε]

xdM(t, x) (4.8)

−
∫

]0,t]×[ε<|x|61]

xLeb⊗ ρ(dt, dx)1A0 ]. (4.9)

Here, η ∈ R, a ≥ 0, Wt is a free Brownian motion in some W ∗-probability space (A0, φ0) and

M is a free Poisson random measure determined by the Lévy measure ρ on the measure space

(D,B(D), Leb⊗ ρ) with values in the W ∗-probability space (A0, φ0).

Notice that the symbol d
= means that the right-hand side and the left-hand side have the same

distribution but it does not mean they are same or in the same non-commutative probability space

A. The free Lévy-Itô decomposition will become a good representation for us to express the

relationship between two free Lévy processes in the next chapter.
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5. CONCLUSIONS FOR SELF-ADJOINT UNBOUNDED OPERATORS

We now focus on studying the free triangular array of self-adjoint non-commutative random

variables {XN,r}16r6N affiliated with a W∗−probability space (A, φ), which are identically dis-

tributed and freely independent in each row. Assume that the distribution of each random variable

XN,r is a probability measure µN on R and the distribution of Xk
N,r is a probability measure µ(k)

N ,

for any k ∈ N. Throughout this chapter, we will use these notations defined above all the time.

5.1 The Higher Variations of Free Lévy Processes

Theorem 5.1.1. If there exist a finite Borel measure σ and a constant γ such that

N
x2

x2 + 1
dµN(x)

w.→ dσ(x) (5.1)

and

lim
N→∞

N

∫
R

x

1 + x2
dµN(x) = γ, (5.2)

then there exists a family {µt}t>0 of probability measures on R such that µ�[Nt]
N

w.→ µt, for any

t ∈ [0,∞). Each µt is �-infinitely divisible and its Voiculescu transform is Φµt(z) = tγ +

t
∫
R

1+xz
z−x dσ(x) = tΦµ(z), where µ := µ1 is the distribution of X(1).

Moreover, there exists a free Lévy process {X(t)}t>0 such that the distribution of each X(t) is

µt, for all t > 0.

Proof. By Theorem 4.1.3, we know that if there exist a finite Borel measure σ and a constant γ

such that (5.1) and (5.2) hold, then µ�NN
w.→ µ1. For any t ∈ [0,∞), we have that

[Nt]
x2

x2 + 1
dµN(x)

w.→ tdσ(x) =: dσt(x)

and

lim
N→∞

[Nt]

∫
R

x

1 + x2
dµN(x) = t lim

N→∞
N

∫
R

x

1 + x2
dµN(x) = tγ =: γt.
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Therefore, for any t ∈ [0,∞), there exists a probability measure µt such that µ�[Nt]
N

w.→ µt. Accord-

ing to Theorem 4.1.3, for any t ∈ [0,∞), µt is�-infinitely divisible since the Voiculescu transform

of µt is

Φµt(z) = γt +

∫
R

1 + xz

z − x
dσt(x) = tΦµ(z),

where µ := µ1. Therefore, Φµt = Φµt−s + Φµs , when t > s > 0. In other words, µt = µt−s � µs.

Meanwhile, Φµt → 0 when t → 0, which means µt
w.→ δ0, as t → 0. Then, by Remark 6.7 in [7],

we can conclude that there exists a free Lévy process {X(t)}t>0, which is a family of self-adjoint

operators affiliated with some W∗−probability space (A0, φ0), such that the distribution of each

X(t) is µt, for all t > 0.

Theorem 5.1.1 claims that if (5.1) and (5.2) hold, then there exists a free Lévy process X(t)

with free generating pair (γt, νt) such that

[Nt]∑
r=1

XN,r
d.→ X(t),

for each t > 0. Our aim is to find some reasonable conditions of {XN,r}16r6N that imply the

convergence of the sum of the k-th power of every entry over each row towards some random

variable X(k)(t), i.e.
[Nt]∑
r=1

Xk
N,r

d.→ X(k)(t), (t > 0, k > 2).

Also, we want to make sure that each X(k)(t) is a free Lévy process. For the sake of simplicity,

we continue to use the notation ’variations’ to denote X(k)(t). Meanwhile, we want to know how

X(t) determines higher variations X(k)(t).

Let D = R+ × R and B(D) be the set of all Borel subsets of D. According to Chapter 2 and

4, it is natural to ask whether there is an analogous result associated with Theorem 2.3.1 in free

sense. The Lévy-Itô decompositions in free probability states that if X(t) is a free Lévy process

affiliated with a W ∗−probability space and the Lévy measure ρ, appearing in the free generating
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triplet of X(1) satisfies
∫ 1

−1
|x|dρ(x) <∞, then

X(t)
d
= ηt1A +

√
aWt +

∫
]0,t]×R

xM(dt, dx),

where η ∈ R, a ≥ 0, Wt is a free Brownian motion and M is a free Poisson random measure

determined by Lévy measure ρ on a Borel measure space (D,B(D), Leb⊗ ρ) with values in some

W ∗−probability space A. We aim at knowing the Lévy-Itô decomposition of higher variations in

terms of the relationship between free generating pair of X(t) and X(k)(t). Our goal is to prove

the following formulas for higher variations:

X(2)(t)
d
= at1A +

∫
]0,t]×R

x2M(dt, dx) (5.3)

and

X(k)(t)
d
=

∫
]0,t]×R

xkM(dt, dx), (k > 2). (5.4)

Lemma 5.1.2. Let (A, φ) be a W ∗−probability space with operators in A acting on the Hilbert

space H. If the self-adjoint operator a is affiliated with A and has a distribution µ, which is a

probability measure on R, then the distribution µ(k) of operator ak, the k−th power of operator a,

can be obtained by the following formula:

∫
R
f(tk)dµ(t) =

∫
R
f(t)dµ(k)(t),

for any bounded Borel function f : R→ R and k ∈ N.

Proof. By Definition 5, we know that, for any bounded Borel function f : R→ R,

φ(f(a)) =

∫
R
f(t)dµ(t).
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Consider g(x) = xk. Then, f ◦ g(x) is still a bounded Borel function. Thus,

∫
R
f(tk)dµ(t) = φ

(
f(ak)

)
=

∫
R
f(t)dµ(k)(t).

Lemma 5.1.2 shows how to change variables in a free probability setting. In classical case,

one can easily prove the formula of changing variables under different probability measures. For

simplicity, we would like to denote
∫
R f(y)dµ(y1/k) :=

∫
R f(tk)dµ(t) to represent the change of

variables. In fact, we can get a more general formula for changing variables in the integration with

respect to a free Poisson random measure.

Lemma 5.1.3. Let p(x) be any real-valued polynomial without constant term. Suppose that M

is a free Poisson random measure determined by a Lévy measure ρ on the Borel measure space

(D,B(D), Leb ⊗ ρ) with values in some W ∗−probability space A. If ρp is a another measure

defined by ∫
R
f(x)dρp(x) =

∫
R
f(p(x))1R\{0}(p(x))dρ(x), (5.5)

for any bounded Borel function f(x) on R, then ρp is a Lévy measure. The free Poisson random

measure M (p) defined by ρp on (D,B(D), Leb⊗ ρp) has the following relation with M :

∫
]0,t]×R

xdMp(t, x)
d
=

∫
]0,t]×R

p(x)dM(t, x), (∀t > 0), (5.6)

provided that
∫

[−1,1]
|p(x)|dρ(x) <∞.

Proof. Notice that p(0) = 0. So there exists an interval [a, b] ⊂ [−1, 1] containing 0 such that

|p(x)| 6 1 when x ∈ [a, b]. Since p(x) does not have constant term, p(x) = xq(x), where q(x) is

another polynomial. So there exists a constant C > 0 such that (p(x))2 6 Cx2 when x ∈ [a, b].

First, we show that ρp is a Lévy measure. If f(x) = 1{0}(x), then ρp({0}) =
∫
R 1{0}(x)dρp(x) is
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zero by the definition (5.5). Next, if f(x) = min{1, x2}, then we can get the following conclusion:

∫
R

min{1, x2}dρp(x) =

∫
R
1[−1,1](x)x2dρp(x) +

∫
R
1R\[−1,1](x)ρp(x)

=

∫
R
1[−1,1]\{0}(p(x))(p(x))2dρ(x) +

∫
R
1R\[−1,1](p(x))dρ(x)

6
∫
{x∈R:0<|p(x)|61}\[a,b]

(p(x))2dρ(x) +

∫
[a,b]

(p(x))2dρ(x) +

∫
R\[a,b]

1dρ(x)

6
∫
R\[a,b]

1dρ(x) +

∫
[−1,1]

Cx2dρ(x) +

∫
R\[a,b]

1dρ(x) <∞.

Therefore, ρp is a Lévy measure.

Second, we show that the relation (5.6) holds. If
∫

[−1,1]
|p(x)|dρ(x) is finite, then the right-hand

side of (5.6) makes sense by Lemma 4.2.2. Similarly,

∫ 1

−1

|x|dρp(x) =

∫
R
1[−1,1]\{0}(p(x)) · |p(x)|dρ(x) <∞,

because p(x) = xq(x) and
∫

[−1,1]
|p(x)|dρ(x) < ∞. In other words, the left-hand side of (5.6)

makes sense as well. Thus, according to Lemma 4.2.2, we only need to show that

∫
]0,t]×{x:−n6x<n}

xdMp(t, x)
d
=

∫
]0,t]×{x:−n6|p(x)|<n}

p(x)dM(t, x),

for all t > 0 and n ∈ N. For any N ∈ N, consider mutually disjoint intervals EN
m = [−n +

2n(m−1)
N

,−n + 2nm
N

), where 1 6 m 6 N and m ∈ N. Then, the simple function sN(x) =∑N
m=1(−n + 2n(m−1)

N
)1ENm(x) converges to f(x) = x, for any x ∈ [−n, n) as N → ∞. Thus,∫

]0,t]×{x:−n6x<n} sN(x)dMp(t, x) converges in probability to
∫

]0,t]×{x:−n6x<n} xdM
p(t, x). Let

JNm = {x : p(x) ∈ EN
m}, (1 6 m 6 N,m ∈ N).

Then, ∪Nm=1J
N
m = {x : −n 6 |p(x)| < n} and {JNm} are mutually disjoint. Consider the simple

function hN(x) =
∑N

m=1(−n+ 2n(m−1)
N

)1JNm (x). which converges to p(x), for any x ∈ {x : −n 6
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|p(x)| < n}, as N → ∞. Also, the integration
∫

]0,t]×{x:−n6|p(x)|<n} hN(x)dM(t, x) converges in

probability to
∫

]0,t]×{x:−n6|p(x)|<n} p(x)dM(t, x). Therefore, it suffices to show that the distribution

of
∫

]0,t]×{x:−n6|p(x)|<n} hN(x)dM(t, x) is equal to the distribution of
∫

]0,t]×{−n6x<n} sN(x)dMp(t, x).

Let FN
m = [0, t]× EN

m and KN
m = [0, t]× JNm . By Definition 19, we know that

∫
]0,t]×{x:−n6x<n}

sN(x)dMp(t, x) =
N∑
m=1

(−n+
2n(m− 1)

N
)Mp(FN

m ),

and ∫
]0,t]×{x:−n6|p(x)|<n}

hN(x)dM(t, x) =
N∑
m=1

(−n+
2n(m− 1)

N
)M(KN

m ).

By Definition 18, the distribution of M(KN
m ) is Poiss�(tρ(JNm )) and the distribution of Mp(FN

m )

is Poiss�(tρp(EN
m)). According to (5.5), we conclude that

ρp(EN
m) =

∫
R
1ENm(x)dρp(x)

=

∫
R
1ENm\{0}(p(x))dρ(x)

=

∫
R
1{x:p(x)∈ENm}(x)dρ(x) = ρ(JNm ).

So, Poiss�(tρ(JNm ))=Poiss�(tρp(EN
m)). Then, we get the final result (5.6).

Lemma 5.1.3 provides an approach to changing variables in integrals with respect to a free

Poisson random measure.

5.2 Main Results

In this section, we show our main results. We derive the representation of the higher variations

related to the Lévy-Itô decomposition of the free Lévy process. All the following results are based

on the theory we established in the former section and Theorem 4.1.3.

Theorem 5.2.1. Let µN be the distribution of the self-adjoint random variable XN,r affiliated with

some W ∗−probability space. {kn}n∈N is any strictly increasing sequence of positive integers.
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Suppose that there exists a probability measure µ such that the distribution µN satisfies

µ� kN
N

w.→ µ.

Let probability measure µ(k)
N be the distribution of Xk

N,r (k > 2). Then,

(µ
(k)
N )�kN

w.→ µ(k), (5.7)

where µ(k) is a �−infinitely divisible probability measure on R. In other words, the sum of Xk
N,r

(k > 2) with distribution µ(k)
N converges in distribution to some random variable X(k) with distri-

bution µ(k), i.e.
kN∑
r=1

Xk
N,r

d→ X(k). (5.8)

Proof. In order to prove (5.7), we apply Theorem 4.1.3 to verify there exist constants γ(k) and

finite Borel measures σ(k), for any k > 2, such that the following holds:


kn

x2

x2 + 1
dµ(k)

n (x)
w.→ dσ(k)(x),

lim
n→∞

kn

∫
R

x

1 + x2
dµ(k)

n (x) = γ(k).

By our assumption, there exists a pair (γ, σ) generating the distribution µ satisfying (4.5) and (4.6).

Lemma 5.1.2 shows that
∫
R f(x)dµ

(k)
n (x) = φ(f(Xk

n,r)) =
∫
R f(xk)dµn(x), for any f ∈ Cb(R).

Denote that gk(x) = xk−2(1+x2)
1+x2k

, which is a continuous bounded function on the whole real line

when k > 2. Then, by (4.5), we have that

lim
n→∞

kn

∫
R

x

1 + x2
dµ(k)

n (x) = lim
n→∞

kn

∫
R

xk

1 + x2k
dµn(x)

= lim
n→∞

kn

∫
R
gk(x)

x2

1 + x2
dµn(x)

=

∫
R
gk(x)dσ(x) =: γ(k).
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Meanwhile, for any f(x) ∈ Cb(R), the function f(xk) is a continuous bounded function defined

on R, too. And

kn

∫
R
f(x)

x2

x2 + 1
dµ(k)

n (x) = kn

∫
R
f(xk)

x2k

x2k + 1
dµn(x)

= kn

∫
R
f(xk)

x2k

x2k + 1

x2

x2 + 1

x2 + 1

x2
dµn(x)

n→∞−→
∫
R
f(xk)

x2k + x2k−2

x2k + 1
dσ(x),

since f(xk) = x2k+x2k−2

x2k+1
∈ Cb(R) and (4.5) holds. Thus, we proved the existence of dσ(k)(x)

and dσ(k)(x) := x2−
2
k +x2

1+x2
dσ(x1/k). Here, the notation σ(x1/k) means that

∫
f(x)dσ(x1/k) :=∫

f(xk)dσ(x) for any bounded Borel function f(x). So applying Theorem 4.1.3, we get the con-

clusions (5.8) and (5.7). Moreover, we derive the following relations between two generating pairs

for µ and µ(k), (γ, σ) and (γ(k), σ(k)), namely,


γ(k) =

∫
R

xk−2

1 + x2k
(1 + x2)dσ(x),

dσ(k)(x) =
x2− 2

k (1 + x
2
k )

1 + x2
dσ(x1/k).

(5.9)

Next, we employ the Lévy-Itô decomposition formula in free probability, introduced in Chapter

4 and the reference [7], to find a concrete relationship between (free) Lévy processes X(t) and

higher variations X(k)(t). To use the Lévy-Itô decomposition, we need to consider the (free)

generating triplet (a, η, ρ) rather than the pair (γ, σ), so we should at first compute the triplet

(a(k), η(k), ρ(k)) of the variation X(k)(t) via (4.4) and (5.9). Define that the function δk,2 = 1 when

k = 2, otherwise δk,2 = 0.

Theorem 5.2.2. Assume that
∑[Nt]

r=1 XN,r converges in distribution to a free Lévy process X(t) and

X(1) is generated by the triplet (a, η, ρ). Then, for k > 2, there exists a Lévy process X(k)(t) such
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that
[Nt]∑
r=1

Xk
N,r

d→ X(k)(t), (∀t > 0).

As usual, we call X(k)(t) the k−th variation of the Lévy process X(t). Moreover, X(k)(t) has a

representation in the form:

X(k)(t)
d
= atδk,21A +

∫
]0,t]×R

xkdM(t, x), (5.10)

where M is a free Poisson random measure on (D,B(D), Leb ⊗ ρ) coming from the Lévy-Itô

decomposition of the Lévy process X(t) with values in a W ∗−probability space A.

Proof. For simplicity, denote X(1)(t) := X(t) and (a, η, ρ) =: (a(1), η(1), ρ(1)). By Theorem 5.2.1,

we get the convergence of
∑[Nt]

r=1 X
k
N,r in distribution considering kN = [Nt]. Next, by Theorem

5.1.1, we conclude that there exists a Lévy process X(k)(t) (∀k ∈ N) such that
∑[Nt]

r=1 X
k
N,r

d→

X(k)(t), (∀t > 0). So we have the Lévy-Itô decomposition of the Lévy process X(k)(t):

X(t)(k) d
=η(k)t1A +

√
a(k)Wt

+ lim
ε↘0

[∫
]0,t]×[|x|>ε]

xdM (k)(t, x)−
∫

]0,t]×[ε<|x|61]

xLeb⊗ ρ(k)(dt, dx)1A

]
,

where (a(k), η(k), ρ(k)) is the free generating triplet of X(k)(1) and M (k) is the free Poisson ran-

dom measure associated with the Lévy measure ρ(k). To prove (5.10), we need to compute

(a(k), η(k), ρ(k)) via the free generating pair (γ, σ). Considering (4.4) and (5.9), we claim the fol-
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lowing results. First, when k > 2, a(k) = σ(k)({0}) = 0. As for η(k), it is easy to check that

η(k) =γ(k) +

∫
R\{0}

1 + x2

x

(
1[−1,1](x)− 1

1 + x2

)
dσ(k)(x)

=

∫
{0}

xk−2

1 + x2k
(1 + x2)dσ(x) +

∫
R\{0}

xk−2

1 + x2k
(1 + x2)dσ(x)

+

∫
R\{0}

xk−2(1 + x2)

(
1[−1,1](x)− 1

1 + x2k

)
dσ(x)

=δk,2σ({0}) +

∫
R\{0}

xk−2(1 + x2)

x2
1[−1,1]dσ(x)

=aδk,2 +

∫ 1

−1

xkdρ(x).

Thirdly, dρ(k)(x) = 1+x2

x2
1R\{0}dσ

(k)(x) = dρ(x1/k). The free Poisson random measure M (k) is

defined on (D,B(D), Leb ⊗ ρ(k)) with values in a W∗−probability space (A, φ). Lemma 5.1.3

guarantees (5.5) and (5.6), when p(x) = xk. In short,



a(k) = 0

η(k) = δk,2 +

∫ 1

−1

xkdρ(x)

dρ(k)(x) = dρ(x1/k).

(5.11)

By the definition of Lévy measures, the Lévy measures of higher variations have the following

property: ∫ 1

−1

|x|dρ(k)(x) =

∫ 1

−1

|x|kdρ(x) 6
∫ 1

−1

|x|2dρ(x) <∞, (k > 2). (5.12)

According to the Theorem 6.4 in [7] and property (5.12), when k > 1, the third part of the Lévy-

Itô decomposition of X(k)(t), which represents the integration with respect to the Poisson random
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measure M (k), can be expressed without the limit, i.e.

lim
ε↘0

[∫
]0,t]×[|x|>ε]

xdM (k)(t, x)−
∫

]0,t]×[ε<|x|61]

xLeb⊗ ρ(k)(t, x)1A

]
=

∫
]0,t]×[|x|>0]

xdM (k)(t, x)−
∫

]0,t]×[0<|x|61]

xLeb⊗ ρ(k)(dt, dx)1A

=

∫
]0,t]×[|x|>0]

xdM (k)(t, x)− t
∫ 1

−1

xρ(k)(dx)1A

=

∫
]0,t]×[|x|>0]

xdM (k)(t, x)− t
∫ 1

−1

xkρ(dx)1A

=

∫
]0,t]×[|x|>0]

xkdM(t, x)− t
∫ 1

−1

xkρ(dx)1A.

Here, we employ Lemma 5.1.3 when p(x) = xk. Then, by the formulas in (5.11) and the above

calculations, we obtain (5.10) for the representation of higher variations X(k)(t).

So far, we proved the limit properties of a free triangular array of the powers of random vari-

ables. Naturally, we want to check whether the limit result holds even for a free triangular array of

polynomials of some given random variables. The following theorem gives the answer, although

we need some restriction on the polynomials.

Theorem 5.2.3. Assume that
[Nt]∑
r=1

XN,r
d.→ X(t), (∀t > 0),

where X(t) is a free Lévy process. X(1) is generated by the triplet (a, η, ρ). Let p(x) be a real-

valued polynomial such that p(x) = x2q(x), where q(x) is also a polynomial. Then, there exists a

Lévy process Xp(t) such that

[Nt]∑
r=1

p (XN,r)
d.→ Xp(t), (∀t > 0). (5.13)

In addition, if X(t) has the Lévy-Itô decomposition (4.8), then Xp(t) has a representation in the

form:

Xp(t)
d
= aq(0)t1A +

∫
]0,t]×R

p(x)dM(t, x), (5.14)
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where M is a free Poisson random measure on (D,B(D), Leb ⊗ ρ) coming from the Lévy-Itô

decomposition of X(t) with values in a W ∗−probability space A.

Proof. The proof is straightforward since we can continue to use the approaches in Theorem 5.2.1

and Theorem 5.2.2. Let µN and µpN be the distributions of XN,r and p(XN,r) respectively. We

can repeat the argument in Lemma 5.1.2 to get
∫
R f(x)dµpN(x) =

∫
R f(p(x))dµN(x), for any

real-valued and bounded Borel function f(x). Therefore,

lim
N→∞

[Nt]

∫
R

x

1 + x2
dµpN(x) = t lim

N→∞
N

∫
R

p(x)

1 + p(x)2
dµN(x)

= t lim
N→∞

N

∫
R
gp(x)

x2

1 + x2
dµN(x)

= t

∫
R
gp(x)dσ(x) =: tγp,

where gp(x) = p(x)(1+x2)
x2(1+(p(x))2)

= p(x)+q(x)
1+(p(x))2

∈ Cb(R). This is because p(x) does not have linear term

and constant term. Also, for any f(x) ∈ Cb(R)

[Nt]

∫
R
f(x)

x2

x2 + 1
dµpN(x) = [Nt]

∫
R
f(p(x))

p(x)2

p(x)2 + 1
dµN(x)

= [Nt]

∫
R
f(p(x))

p(x)2

p(x)2 + 1

x2

x2 + 1

x2 + 1

x2
dµN(x)

N→∞−→ t

∫
R
f(p(x))

p(x) (p(x) + q(x))

p(x)2 + 1
dσ(x),

where the measure dσ(x) is defined by (4.5). Let hp(x) := p(x)(p(x)+q(x))
p(x)2+1

, which is a positive

bounded Borel function on R. We denote hp(x)dσ(x) by the measure dσ̃(x). The measure dσp(x)

is defined by
∫
R f(x)dσp(x) =

∫
R f(p(x))dσ̃(x), for any bounded Borel function f(x). Then,

[Nt] x2

x2+1
dµpN(x)

w.→ dσp(x), as N → ∞. Since σ is a finite positive Borel measure on R, we

know that σp is also a finite positive Borel measure. Thus, the conclusion (5.13) follows imme-

diately from Theorem 4.1.3. By Theorem 5.1.1, we know that {Xp(t)}t>0 can be a free Lévy

process affiliated with some W ∗−probability space. Denote the free generating triplet of Xp(1) by

(ap, ηp, ρp).
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Next, to prove the representation of Xp(t), it is necessary to compute the free generating triplet

(ap, ηp, ρp) in terms of free generating pair (γ, σ) or free generating triplet (a, η, ρ) ofX(t). Firstly,

ap = σp({0}) =
∫
R 1{0}(x)dσp(x) =

∫
R 1{p(x)=0}(x)p(x)(p(x)+q(x))

p(x)2+1
dσ(x) = 0. Secondly, for Lévy

measure ρp and any bounded Borel function f(x), we have that

∫
R
f(x)dρp(x) =

∫
R
f(x)

1 + x2

x2
1R\{0}(x)dσp(x)

=

∫
R
f(p(x))

1 + (p(x))2

p(x)2
1R\{0}(p(x))

p(x)(p(x) + q(x))

1 + p(x)2
dσ(x)

=

∫
R
f(p(x))1R\{0}(p(x))

p(x) + q(x)

p(x)
dσ(x)

=

∫
R
f(p(x))1R\{0}(p(x))

1 + x2

x2
1R\{0}(x)dσ(x)

=

∫
R
f(p(x))1R\{0}(p(x))dρ(x).

Therefore, ρp is a Lévy measure and satisfies the conclusion in Lemma 5.1.3. Meanwhile, we can

check the following fact:

∫ 1

−1

|x|dρp(x) =

∫
R
1[−1,1](x)|x|dρp(x)

=

∫
R
1[−1,1]\{0}(p(x))|p(x)|dρ(x)

=

∫ 1

−1

1[−1,1]\{0}(p(x))|p(x)|dρ(x) +

∫
R\[−1,1]

1[−1,1]\{0}(p(x))|p(x)|dρ(x)

6 ‖q‖C([−1,1])

∫ 1

−1

x2dρ(x) +

∫
R\[−1,1]

1{x:p(x)∈[−1,1]\{0}}(x)|p(x)|dρ(x)

6 C

∫
R

min{1, x2}dρ(x) <∞.

In other words,
∫ 1

−1
|p(x)|dρ(x) is finite, which means that

∫
]s,t]×R p(x)dM(t, x) is a self-adjoint

operator affiliated with A. This property implies that the Lévy-Itô decomposition of Xp(t) has the

form (4.7) rather than the form (4.8). Thirdly, by the relation ηp = γp +
∫
R\{0}

1+x2

x
(1[−1,1](x) −
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1
1+x2

)dσp(x), we can deduce that

ηp =

∫
R
1{p(x)6=0}(x)

p(x) + q(x)

1 + (p(x))2
dσ(x) +

∫
R
1{p(x)=0}(x)

p(x) + q(x)

1 + (p(x))2
dσ(x)

+

∫
R
1{p(x)6=0}(x)(p(x) + q(x))

(
1{−16p(x)61}(x)− 1

1 + (p(x))2

)
dσ(x)

=

∫
R
1{p(x)=0}(x)

p(x) + q(x)

1 + (p(x))2
dσ(x) +

∫
R
1{p(x)6=0}(p(x) + q(x))1{−16p(x)61}(x)dσ(x)

=

∫
R
1{p(x)=0}(x)

p(x) + q(x)

1 + (p(x))2
dσ(x) +

∫
R
1{p(x)6=0}(p(x) + q(x))1{−16p(x)61}(x)dσ(x)

= aq(0) +

∫
R
(p(x) + q(x))1{[−1,1]\{0}}(p(x))dσ(x)

Here, we use the fact that a = σ({0}). Finally, let us combine the three results we got above.

Recall the Lévy-Itô decomposition of Xp(t) with the free generating triplet (ap, ηp, ρp). Let Mp

be the free Poisson random measure on (D,B(D), Leb ⊗ ρp). Notice that p(x) = x2q(x), i.e.

1+x2

x2
= p+q

p
. Notice that

∫ 1

−1
|p(x)|dρ(x) <∞. Therefore, the last part of Lévy-Itô decomposition

of Xp(t) with respect to the free Poisson random measure Mp can be simplified by the following

computation.

lim
ε↘0

[∫
]0,t]×[|x|>ε]

xdMp(t, x)−
∫

]0,t]×[ε<|x|61]

xLeb⊗ ρp(t, x)1A

]
=

∫
]0,t]×[|x|>0]

xdMp(t, x)−
∫

]0,t]×[0<|x|61]

xLeb⊗ ρp(dt, dx)1A

=

∫
]0,t]×R

p(x)dM(t, x)− t
∫
R
x1[−1,1](x)dρp(x)1A

=

∫
]0,t]×R

p(x)dM(t, x)− t
∫
R
p(x)1[−1,1](p(x))dρ(x)1A

=

∫
]0,t]×R

p(x)dM(t, x)− t
∫
R
p(x)1[−1,1](p(x))

1 + x2

x2
1R\{0}(x)dσ(x)1A

=

∫
]0,t]×R

p(x)dM(t, x)− t
∫
R
(p(x) + q(x))1[−1,1]\{0}(p(x))dσ(x)1A.

Here, we employ the integration by substitution with respect to free Poisson random measures,

which we proved in Lemma 5.1.3. Then, the final result of this theorem, the representation of

51



Xp(t) in terms of the Lévy-Itô decomposition of X(t), follows from the above computation and

the formula of ηp.
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