
REAL-TIME DETECTION OF FOREGROUND IN VIDEO SURVEILLANCE

CAMERAS USING CUDA

A Thesis

by

LAKSHMI VENUGOPAL

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Tie Liu
Committee Members, Xiaoning Qian

Jean-Francois Chamberland-Tremblay
Anxiao Jiang

Head of Department, Miroslav Begovic

May 2018

Major Subject: Electrical Engineering

Copyright 2018 Lakshmi Venugopal

ABSTRACT

The rapid growth of video processing techniques has led to remarkable contributions

in several applications such as compression, filtering, segmentation and object tracking.

A fundamental task of video surveillance cameras is to detect and capture major moving

objects (foreground).

Processing video frame by frame is complex and difficult for real time applications.

GPUs have led to significant advancements in the field of image/video processing espe-

cially in real time applications. In this work, we make use of the parallel computing

capacity of GPUs to speed up the runtime of foreground detection algorithm.

The focus of the thesis is to accelerate the runtime of the algorithm by parallelizing the

time consuming portions. The final goal would then be to analyze and come up with the

optimal parallelization technique(s) that give(s) the best performance.

ii

ACKNOWLEDGMENTS

I would like to thank Texas A&M University for giving me an opportunity to present

my thesis work. I express my sincere gratitude towards my advisor Dr. Tie Liu for helping

me in completing the thesis. Without his constant support and guidance this thesis would

not have been successful. Also I would like to thank other committee members who have

supported me in my defense. I would like to thank my family who helped me in providing

an atmosphere to complete my thesis. I would like to specially thank my brother for

providing constant inputs and feedbacks in my thesis. I would like to thank all my friends

and colleagues at Texas A&M University for their moral support. I thank God Almighty

for helping me finish my thesis work.

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a thesis committee consisting of Dr. Tie Liu, Dr. Xi-

aoning Qian and Dr. Jean-Francois Chamberland-Tremblay [advisor - Dr. Tie Liu] of

Electrical Engineering Department and Dr. Anxiao Jiang of Computer Science and Engi-

neering department.

The algorithm described in Chapter 2 was studied by Han Guo, Chenlu Qiu and Nam-

rata Vaswani of Department of Electrical and Computer Engineering, Iowa State Univer-

sity and were published in 2014 in IEEE Transactions on Signal Processing

All other work conducted for the thesis was completed by the student independently.

Funding Sources

Graduate study was supported by Texas A&M University.

iv

NOMENCLATURE

CPU Central Processing Unit

GPU Graphics Processing Unit

BLAS Basic Linear Algebra Subroutines

GEMM General Matrix-matrix multiplication

CUDA Compute Unified Device Architecture

OpenCV Open Source Computer Vision

PracReProCS Practical Recursive Projected Compressive Sensing

RTSP Real Time Streaming Protocol

IP Internet Protocol

fps frames per second

PCIe Peripheral Component Interconnect Express

SVD Singular Value Decomposition

PCA Principal Component Analysis

HDMI High-Definition Multimedia Interface

USB Universal Serial Bus

MPI Message Passing Interface

OpenMP Open Multi-Processing

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

CONTRIBUTORS AND FUNDING SOURCES . iv

NOMENCLATURE . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES. ix

1. INTRODUCTION. 1

1.1 Modern challenges faced by digital media . 1
1.2 PracReproCS algorithm overcoming a major challenge in foreground de-

tection . 1
1.3 CPU Vs GPU . 2
1.4 Problem statement. 3
1.5 Jetson TK1 development board. 4

2. PRACREPROCS ALGORITHM .. 5

2.1 Training . 5
2.2 Testing . 6
2.3 Background subspace updation. 7

3. REAL-TIME PRACREPROCS . 8

3.1 Configuring the board and preprocessing . 8
3.2 Determining training and testing data . 10

4. PERFORMANCE TUNING AND PARALLELIZATION . 12

vi

4.1 Conversion of code to C++ . 12
4.2 Fine tuning of parameters . 13
4.3 Code profiling . 13
4.4 SVD parallelization . 14
4.5 l1 parallelization. 17

5. CONCLUSION & FUTURE WORK . 18

5.1 Conclusion. 18
5.2 Future Work . 19

REFERENCES . 21

vii

LIST OF FIGURES

FIGURE Page

3.1 Jetson TK1 development board. 9

3.2 Streaming video using RTSP . 10

4.1 cusolverDnSgesvd() function . 15

viii

LIST OF TABLES

TABLE Page

3.1 Distribution of computational time . 8

4.1 API of gesvd. 16

4.2 SVD flags in OpenCV . 16

5.1 Distribution of computational time in testing . 18

5.2 Distribution of computational time for l1 minimizer . 19

ix

1. INTRODUCTION

1.1 Modern challenges faced by digital media

As a consequence of rapid growth of digitalization, the current generation digital me-

dia poses formidable challenges in storage, processing and access. With the enormous

competition among digital providers and rapidly advancing research, the digital media has

shown significant growth in various domains. In today′s world, the visual media has sur-

passed any others in the field of media entertainment. The integration of digital media

along with the internet has enabled the world to connect with each other more feasibly.

However, massive real-time transfer and processing of extremely-dense videos become

technically challenging even with generous amounts of computational resources.

The challenges that evolved with the digital media revolution has led to research in

the areas of image and video processing. While most of the video processing techniques

like filtering, color enhancement, noise reduction are already in practice, advancements

are still going in the field of compressive sensing [1] for applications like face recognition,

magnetic resonance imaging and photography.

1.2 PracReproCS algorithm overcoming a major challenge in foreground detection

Modern video surveillance cameras are equipped with video processing features like

auto-focus adjustment, motion sensors, internal hard drive and infrared lights, the most

important one being the detection of moving target. Currently, most video cameras are able

to capture moving objects with reasonable accuracy, but the challenge lies in identifying

the moving target even in the presence of background noise (such as moving tree or playing

television).

One of the latest algorithm developments in the detection of a moving target is the

Practical Recursive Projected Compressive Sensing algorithm (Prac-ReProCS) of Guo et.

1

al. [2]. The algorithm has shown promising results even in the presence of background

noise (such as a moving tree or a playing television). However, the parent program is

coded to work on a single core CPU and is compatible only with Matlab [3]. This restricts

its integration with real-world high resolution video cameras. The implementation then

becomes computationally intensive and ends up consuming generous amounts of compu-

tational resources. In this work, we try to enhance the performance of the Pra-ReProCS

algorithm through parallel computing. One particular application is to provide optimal

lighting only to the area of interest (foreground). Parallelization of intensive computations

in the foreground detection procedures of the algorithm will help in real time lighting

optimization.

1.3 CPU Vs GPU

In the earlier days, speedup in single-core CPUs was achieved by increasing the clock

rates and by providing instruction-level parallelism. Eventually, multi-core CPUs were

designed for running processes simultaneously in different cores, thereby utilizing the full

hardware to achieve much scalable speedups. Thread level parallelization like OpenMP

is much faster than distributed memory parallelization approach like MPI [4]. This is

because that thread level parallelism is performed on a shared memory architecture that

results in lesser time for data communication between processes. However, thread level

parallelism in CPU based programs are limited by the number of threads available. On the

other hand, a GPU based supercomputer outperforms CPU architecture for highly paral-

lelizable selective problems as they have larger number of threads for parallel computing.

However, explicit communication (but less frequent, depending on the problem of interest)

is required when tranferring data between GPU and CPU in case of GPU parallelization.

CPU parallelization is better when it comes to performing different tasks at the same

time whereas GPU parallelization is superior when same task needs to be performed in all

2

the pixels of an image or in all the elements of the matrix. In the susequent sections, we

will see that the kind of problem we are interested is worth trying to parallelize on a GPU

platform.

1.4 Problem statement

Recently, GPUs have gained attention in accelerating the runtime through its parallel

architecture. GPUs are used in several applications like computers, mobile phones, and

gaming consoles that involve intensive computations. GPUs have proven to obtain faster

results than CPUs for several time consuming algorithms by parallelizing large blocks of

code [5],[6].

The focus of the thesis is to accelerate the runtime of the Prac-ReProCS algorithm by

parallelizing the time consuming portions of the parent serial program. In order to enable

multiple kinds of parallelization techniques such as OpenMP, MPI or GPU-based CUDA

[7], our first objective is to implement the Prac-ReProCS algorithm in C++. We also make

use of pre-written OpenCV [8] library functions that are easily parallelizable. The next

step is to detect and parallelize the time consuming parts of the code by launching CUDA

kernel and dividing the task among different GPU threads. The final goal would then be

to analyze and come up with the optimal parallelization technique(s) that give(s) the best

performance.

In this work, we focus on two major objectives: (a) implementation in C++ and (b)

parallelization of the code on a GPU platform. Jetson TK1 development board is used to

parallelize PracReProCS algorithm using CUDA C++. CUDA is a parallel programming

platform developed by NVIDIA to facilitate the use of GPUs. Its compatibility to work

with C++ makes it easier to parallelize the code. The board specifications are discussed in

the next section. The PracReProCS algorithm is briefly discussed in the next chapter.

3

1.5 Jetson TK1 development board

In this work, we exploit the computing power of GPUs using NVIDIAs Jetson TK1

development board [9]. The board has Kepler GPU with 192 CUDA cores and 4-Plus-1

quad-core ARM Cortex-A15 CPU. The board was chosen to perform different paralleliza-

tion techniques, the major one being the CUDA parallel programming. OpenMP is an API

that helps in parallelization of multiple cores in CPU. Therefore, the four CPU cores in

this board provide more resources for CPU parallelization techniques like OpenMP and

MPI. This further improves the efficiency without the difficulty of copying data to and

from device memory.

The OS was flashed into the Jeston board using Jetpack software development kit [10].

The Jetpack installer required Ubuntu 14.04 in the host device for flashing the OS. The

important features in NVIDIA Jetpack SDK like Cuda 8.0, Linux for Tegra driver package

(32bit Ubuntu 14.04), OpenCV library [8] makes it more easier to improve the efficiency

of the algorithm using GPUs.

4

2. PRACREPROCS ALGORITHM

PracReProCS algorithm is developed by Guo.et.al [2] and is intented to capture a mov-

ing target in a video. The difference of this algorithm from other algorithms in this field

[11],[12] lies in the fact that PracReProCS algorithm considers the presence of background

noise, which makes the real target detection in the foreground more meaningful. The algo-

rithm has demonstrated the detection of a moving object (foreground) even in the presence

of slowly moving background or small disturbances in the background.

Here, the foreground is represented as sparse vectors (S) and the background is con-

sidered as dense vectors (L). Given a measurement vector, M, the ultimate goal of the

algorithm is to separate the sparse signal from M, where M = S + L.

2.1 Training

Let It be the image at time t, Ft and Bt be the foreground (moving target) and the

background at time t respectively. During training stage, since the video only contains

background frames, the mean of the training set is represented as µ. Let,

Lt = Bt − µ,Mt = It − µ (2.1)

Measurement vector at time t is given by Mt = St + Lt. For training period, i.e, for t

= 1 to ttrain, Mtrain = Lt. This means that a set of background only frames are fed as the

training data, thereby obtaining an initial estimate of subspace of Lt. For testing purposes,

the data from the previous frame is used to get the information of the current frame, i.e, Lt

is found using Lt−1 and St using St−1.

Let Tt = supp(St) represent the support set of St, i.e, indices where St is non-zero. An

approximate initial basis for background denoted as, P̂0 is same as initial basis for Mtrain

5

as only background frames constitutes Mtrain.

P̂0 = approx− basis(Mtrain, b%) (2.2)

The initial basis is found by computing singular value decomposition of M (M SVD
=

UΣV ′) and considering only b% of the left singular values (U). b represents the percentage

of how low rank the matrix is.

2.2 Testing

Training is mainly done to calculate the initial basis of Lt. After getting initial estimate

for basis, we start the testing phase and the remaining steps are calculated for each testing

frame. Firstly we find the space orthogonal to Pt−1 at time t, which is given by,

φt = I − P̂t−1 ∗ P̂t−1 (2.3)

Projected measurement vector, yt is obtained by projecting Mt onto φt.

yt = φt ∗Mt = φt ∗ (St + Lt) (2.4)

yt = φt ∗ St + βt, whereβt = φt ∗ Lt (2.5)

Since the background is slowly moving and we do not have any information of Lt, we

approximate Lt to Lt−1. φt and Lt−1 are almost perpandicular and projecting φt to Lt−1 is

approximately 0 as most of the components nullify. Therefore, βt can be considered as a

small noise.

Sparse vector, St is recovered from projection yt, using l1 minimizaton.

6

minx||x||1s.t.||yt − φt ∗ x||2 <= ζ (2.6)

Here the noise term is ζ and we assign the value of ζ as ||βt||2 = ||φt ∗ Lt−1||2. Once

we find St, we calculate Lt as L̂t = Mt − Ŝt.

2.3 Background subspace updation

The final step is to update the subspace of background Pt. We need to update Pt only if

there is a change in the subspace. To detect the change in subspace, we set a noise thresh-

old, σ̂min which is the r̂th largest singular value of the training dataset. Let us represent

the basis matrix for the previously computed subspace as P̂j−1. We find the projection of

the last αL̂ts frames perpendicular to P̂j−1 for every α frames. Then, we calculate the

SVD of the projection. The subspace has changed if there are any singular values above

σ̂min in the SVD computation. If there is a change in subspace, we calculate Projection

PCA (p-PCA). This is done by estimating cj,new top singular values of the projection that

are greater than σ̂min. The new projected matrix, P̂(j),new is then appended to the previous

basis, P̂j−1 to get the final basis P̂t.

P̂t = [P̂j−1, P̂(j),new] (2.7)

Thus the final basis, P̂t will contain the updated information (new directions) of the

backgound if the background has slightly changed.

7

3. REAL-TIME PRACREPROCS

Being able to execute PracReProCS algorithm in real-time will benefit a multitude

of applications in the field of image processing. In this work, the aim is to develop and

study the benefits of a real-time PracReProCS that is integrated with a survillience camera

equipped with variable LED lighting technology. This chapter describes the steps that

were performed to develop a PracReProCS that can work in realtime with low latency.

3.1 Configuring the board and preprocessing

The PracReProCS algorithm was tested in videos having a resolution of 100X100.

Three hundred frames were used to train the dataset, while testing was performed on a

database with 200 frames. The datasets contain the grayscale pixel intensity values of

the frames. The computational time of the whole algorithm was about 80 seconds. The

distribution of the computational time in main parts of the code is shown in Table 3.1.

After further profiling of the code, it was observed that the testing took approximately

half a second per frame. Though this seems to be a reasonably good execution speed, in

real time scenario (where there are 15 or more frames per second), half a second becomes

a significant amout of delay. In addition, the algorithm takes much more time for high

resolution videos.

Part of code Execution time
Training 0.4 seconds
Testing 10 seconds
Miscellanious part and writing video to file 70

Table 3.1: Distribution of computational time

8

Figure 3.1: Jetson TK1 development board

To study the real-time performance of the PracReProCS algorithm, we experiment the

code on a video surveillance IP camera. The IP camera has a frame rate of 15 fps and has a

resolution of 1920x1080. It is connected to the PCIe Ethernet port (shown in Figure 3.1) of

Jetson TK1 development board to feed the video input. Due to memory constraints of the

development board [13], each frame of the video is downsized by a factor of 8. Details of

the Jetson TK1 board is briefly discussed in section 1.5. Further the monitor is connected

to the HDMI port and the keyboard and mouse are connected to the USB port via USB

hub. After connecting the adapter to power, the soft power button is pressed to switch on

Jetson TK1.

The IPV4 settings of the computer is then changed to the settings of the IP camera (IP

address, netmask, gateway, DNS servers). The live video is streamed using RTSP protocol

by accessing the IP address and port number of the camera as shown in the above figure.

9

Figure 3.2: Streaming video using RTSP

3.2 Determining training and testing data

The training dataset for the origianal algorithm of Guo.et.al [2] was considered as

background only frames. For all the videos that were tested, the training dataset was read-

ily available. But for practical cases, it is difficult to go with this assumption as we do not

have perfect information about the background subspace in most cases. Therefore, deter-

mining the relevant training data is an important study since the accuracy of the algorithm

is highly dependent on the characteristics of the training dataset.

The initial thought was to train the video periodically. For instance, the training frames

are taken from camera for 20 seconds and the next available frames are tested for 5 min-

utes. This approach gives high accuracy as training repeatedly would account for major

changes in the background within the next training period. But when we consider a case

where the foreground is present during the training, the algorithm gives significant er-

rors during testing. This is because the algorithm assumes that the training contains only

background frames.

One solution to the above mentioned problem would be to give a sufficiently large

training dataset. This ensures that the training data contains all possibe background infor-

mation. The computational time for finding the initial basis of the background increases

with an increase in the number of training datapoints. But we do not need to take the train-

ing time into account mainly due to two reasons. Firstly, the training needs to be done only

once, after installing the camera. Secondly, since the initial basis for background contains

10

most of the background information, small changes in the background gets updated to the

basis in the testing period.

Another solution to the problem would be to start the training whenever the foreground

is not present. In this case, we find the largest connected component in the detected fore-

ground. If the number of pixels in the largest connected component is greater than a preset

threshold, then the testing should be continued. This is because the presence of foreground

will constitute of a large connected component in the output of the algorithm. If the pixel

count of the connected component is lesser than the threshold, there is no moving object in

the video thus entering the training period. But in practice, we cannot consider the largest

connected component alone. For instance, if a car enters into the camera’s field of inter-

est and then parks within the field, the algorithm identifies the moving target as the car

and still continues to detect it as the foreground even when the car is parked. Hence, the

algorithm will not enter into the training phase. For such applications, in practical cases,

after the car has stopped, the algorithm should not further identify the car as foreground.

Therefore, in addition to finding the largest connected component we also need to take into

account the change in the position of the foreground. This can be done by comparing the

location of the detected target in the current frame with a set of previous frames to check

if the identified foreground is still moving. In the present work, we move forward with the

first solution.

11

4. PERFORMANCE TUNING AND PARALLELIZATION

This chapter mainly describes the implementation of PracReProCS algorithm in C++,

fine tuning of parameters in the code and parallelization of the algorithm using GPUs. The

first section discusses about the conversion of code from Matlab to C++ and the advantages

of writing the code in C++. The second section describes the fine tuning of parameters.

The third section includes profiling of the code. The fourth and fifth part explains the

parallelization of SVD and l1 minimization respectively.

4.1 Conversion of code to C++

The PracReProCS algorithm was implemented and published only in Matlab [3]. The

code was converted to C++ to provide efficient ways to parallelize the code and for perfor-

mance improvement. Parallel processing in Matlab is multi-processor based whereas it is

multi-thread based in C++ [14]. Therefore, performing many tasks in parallel will give a

linear gain upto the number of threads in C++ whereas no significant gain will be observed

in Matlab. Also, C++ provides easy use of pointers when passing large amount of memory

to functions.

Another advantage of conversion of code to C++ is to make use of OpenCV library as

OpenCV has C++ interface. OpenCV is used for the easiness of dealing with image/video

processing operations. Further, OpenCV library includes GPU modules that helps in accel-

erating Matrix operations (multiplication, transpose) and mathematical/bitwise operations

(sqrt, min, bitwise_or).

The original algorithm uses Yall1 package [15] for solving the l1 minimization prob-

lem in eqn. (2.1). As the type of input parameters for the l1 minimizer was not matching

with any of the existing packages in CUDA, the function for l1 minimzation was written

separately in C++ by following the same logic in Yall1 package.

12

4.2 Fine tuning of parameters

During the testing period, some amount of noise was observed when the true fore-

ground was not present. It was observed that two parameters in the algorithm played an

important role in the behaviour of noise.

The first parameter was the size of the training dataset. When sufficiently large training

set was given, the noise reduced significantly for a slightly moving background. However,

increasing the number of samples for training did not remove the noise completely. Also,

no improvements were shown when the algorithm was tested on a video that has stationary

background.

The second parameter was the threshold that was set after l1 minimization (eqn 2.6).

In the original algorithm upon computing l1 minimzation, we get an approximation of

the foreground. The threshold was set to remove the sparse signals other than the fore-

ground. This is because of the low threshold value. Even in the testing of parent algorithm

some noise was observed when the true foreground was absent. When the threshold was

increased to a relatively high value the noise decreased significantly.

4.3 Code profiling

The C++ version of PracReProCS algorithm was tested on the video streamed from

the IP camera. After setting up the camera, the initial 60 frames are given for training. In

this work, we are training only once after installing the camera. The subsequent incoming

frames are given for testing. The computation time for training is 3.6 seconds and that for

testing is around 0.7 seconds per frame.

Here, we use clock() function under time.h headerfile to retreive the execution time

of a piece of code. The clock() function is called before and after the part of code where

we need to find the computation time. Finally, the returned values of the function are

subtracted and divided by the number of clock ticks per second to get the computation

13

time of the code part of interest.

After profiling, the portion of code that consumed most of the time was in SVD. SVD

was computed to find the initial basis for the background in training period in eqn. (2.2).

The computation time of SVD depends on the size of the training dataset. It took about

3.6 seconds to compute the SVD for 60 training points. However, if we decide to do the

training only once after the installation of the camera, the delay in estimating the initial

basis need not be taken into consideration.

The next step is to find the time consuming parts in the testing phase. SVD computation

in the background updation step is one of the major computationally intensive step in

testing. For every α frames we compute the SVD of the projection of the last αL̂ts frames

perpendicular to the previous basis P̂j−1. Here, the SVD computation time depends on the

value of α as the size of matrix in SVD depends on α . The time for SVD computation for

α = 20 is approximately 0.2 seconds per frame.

Another part of code which took higher execution time in testing is l1 minimization in

eqn. (2.6). for finding an estimate of foreground. The l1 minimizaton took an approximate

computation time of 0.5 seconds per frame which also constitutes majority of the time in

testing. Further detailed profiling showed that the convergence step in the l1 minimzation

took most of the time in l1 minimizer.

4.4 SVD parallelization

The SVD parallelization was done using cuSolver library [16], which is a high-level

package based on the cuBLAS[17] and cuSPARSE libraries. In this work, we use cuSolver

package in conjunction with cuBLAS library, which is a part of CUDA. The program

needs to allocate memory in GPU for the storage of data. Next step is to call a sequence

of CUBLAS functions required for the specific application. Then we need to copy back

the output from GPU to CPU.

14

All CUBLAS library function calls return the error status cublasStatus_t. The handle

should be initialized by calling cublasCreate() function. The handle is then passed to all

the following function calls. Finally, after the usage of the library cublasDestroy() function

is called to release the resources associated with the library.

Figure 4.1: cusolverDnSgesvd() function

cuSolverDn API provides a subset of dense LAPACK functions. cuSolverDn<t>gesvd()

function in the eigen value solver API of cuSolverDn was used to compute SVD. <t> can

be either S,D,C or Z which denotes single precision, double precision, complex valued

single and double precision datatypes respectively. In this work, we use single precision

data and hence use cuSolverSgesvd() function (see Figure 4.1).

The two input parameters jobu and jobvt (Table 4.1) helps in computing all or part of

the matrix. But currently, only input ’A’ is supported as inputs to both the parameters.

Hence, we find the SVD of the full matrix.

The matrix, Mt on which we need to compute the SVD is not square in this work.

By default, if the matrix is not square, the full-size square matrices U and Vt will not be

calculated (Table 4.2).

Here, we could clearly observe that OpenCV do not find full-sized orthogonal matrices,

while cuSolver finds the full-sized matrices.However, we could save some time by copying

only the part of the result that we need from GPU to CPU.

15

Parameter Meaning
handle handle to cuSolverDN library
jobu specifies options for computing all or part of the matrix U =

’A’: all m columns of U are returned in U
’S’: the first min(m,n) columns of U are returned in U
’O’: the first min(m,n) columns of U are overwritten on the array A
’N’: no columns of U are computed

jobvt same function as jobu but applies to vector VT
m number of rows of matrix A
n number of columns of matrix A
A array of dimension lda * n with lda not less than max(1,m)
lda leading dimension of A
S singular values of A
U contains mxm unitary matrix U
ldu leading dimension of U
VT nxn unitary matrix VT
ldvt leading dimension of Vt
work working space, array of size lwork
lwork size of work
rwork unconverged superdiagonal elements of an upper bidiagonal matrix

if devInfo > 0
devInfo devInfo = 0, operation is successful; devInfo = -i, i-th parameter is wrong;

devInfo > 0, indicates how many superdiagonals of an intermediate
bidiagonal form did not converge to zero

Table 4.1: API of gesvd

MODIFY_A modifies decomposed matrix to save space and speed up processing
NO_UV a vector of singular values w are processed; u and vt are empty matrices
FULL_UV if FULL_UV fag is specified, u and vt will be full-sized orthogonal

matrices ; otherwise when matrix is not square, by default algorithm
gives u and vt matrices of large size for further A reconstructor

Table 4.2: SVD flags in OpenCV

The SVD computed using cuSolver took 10 seconds to run. The CPU performed SVD

computation in 0.25 seconds. One reason could be because of the computation of the

16

full-sized orthogonal square matrices in SVD in cuSolver. Another reason could be that

SVD parallelization is highly dependent on serial factorization iteration. GPU cores have

low performance than CPU cores as CPU has higher per core performance. Hence, GPUs

would require very large parallelization. Therefore, a better idea would be to write our

own SVD algorithm by rethinking about the algebra behind SVD parallelization and avoid

computing complete factorization.

4.5 l1 parallelization

l1 took approximately 0.5 seconds per frame to run. Further profiling, we could see

that the convergence of l1 minimization consumes 95% most of the time. The convergence

took 0.007 seconds per iteration. It was noted that l1 minimization converges in about 70

iterations in most cases, though the maximum number of iterations was 9999.

Most part of the portion of the l1 code used OpenCV GPU module for computation.

Further, matrix multiplication needs clBLAS library as OpenCV library version does not

support multiplication in gpu. One of the most used matrix multiplication implementa-

tion is GEMM in BLAS-3 functions, which contains functions that perform matrix-matrix

operations.

After parallelizing the l1 convergence portion in l1 minimization took 0.01 seconds to

Careful profiling showed that without tranferring memory between GPU and CPU, 0.004

seconds was taken per iteration. Time taken for 70 iterations in normal case 0.007*70 =

0.49 and that in GPU 0.004*70 = 0.28. Therefore, if the memory transfer was fast, the

GPU doubles the performance of the CPU.

17

5. CONCLUSION & FUTURE WORK

5.1 Conclusion

One of the major challenges in digital media was the moving target detection in the

presence of slwoly moving background/noise. PracReProCS algorithm overcome that

challenge and showed promising results. This work mainly concentrates on the imple-

mentation of PracReProCS algorithm for real time implementations.

Firstly, the original Matlab code was converted to C++ to make it flexible for any

kind of parallelzation. After careful profiling of C++ code, it was noted that most of the

time was consumed in SVD for training. SVD is computed to find an initial background

subspace. However, we do not need to consider the training time as we only train the

background once after installing the camera.

Part of code in testing Execution time
Total 0.7 seconds
SVD 0.2 seconds
l1 0.5 seconds

Table 5.1: Distribution of computational time in testing

Next we profiled the testing part of the code. It was observed that SVD computation

in background updation step and the l1 minimizer took most of the time in testing.

Parallelization of SVD in CPU is better than GPU due to computation of full sized or-

thogonal matrices as opposed to OpenCV SVD computation. Also, SVD depends on serial

factorization iteration and requires large parallelization. GPU core have low performance

than CPU core. Hence, parallelization in GPU will be more time consuming. Further,

18

GPU/CPU Execution time per iteration Total execution time
CPU 0.007 seconds 0.49
GPU (without memory tranfer) 0.004 seconds 0.28
GPU (with memory transfer) 0.008 seconds 0.56

Table 5.2: Distribution of computational time for l1 minimizer

we parallelized convergence part of l1 minimizer. It was observed that the computation

speed was twice faster in GPU than CPU. But considering the overhead in memory for

gpu transfer, CPU performs better than CPU.

5.2 Future Work

The frame rate of video surveillance camera that we used was 15fps, i.e, in every 0.06

seconds a frame is captured and passed as input to the algorithm. Hence, to implement the

algorithm in real time we need to really careful in optimizing the possible steps in the code.

Though the computation of l1 minimization was computationally faster in GPU, due to

milliseconds delay in the tranfer of data between GPU and CPU, CPU outperformed GPU.

Hence, for such real-time applications, it is highly important to consider the overhead in

memory for GPU data transfer.

A better architecture would be to model the algorithm such that GPUs does most of the

work. The video is streamed and the training is done in CPU. After finding the initial basis

for background subspace, the basis vector is passed onto GPU. Further incoming frames

are passed to GPU and the GPU does all the remaining steps including l1 minimization.

When the background space updation is reached, the results of testing is passed to CPU.

This is because background space updation requires SVD computatuion and is faster in

CPU.

Further time can be reduced if we make the CPU and GPU run at the same time.

Suppose we gave the first tesing frame to CPU. If the second frame arrives before the

19

whole computation of the algorithm, we can take the second frame and start processing in

CPU though the first computation is not over.

Also, we could implement parallelization techinique in CPU like OpenMP, MPI since

the board has four cores. This will provide more room for parallelization.

20

REFERENCES

[1] R. G. Baraniuk, T. Goldstein, A. C. Sankaranarayanan, C. Studer, A. Veeraragha-

van, and M. B. Wakin, “Compressive video sensing: algorithms, architectures, and

applications,” IEEE Signal Processing Magazine, vol. 34, no. 1, pp. 52–66, 2017.

[2] H. Guo, C. Qiu, and N. Vaswani, “An online algorithm for separating sparse and

low-dimensional signal sequences from their sum,” IEEE Transactions on Signal

Processing, vol. 62, no. 16, pp. 4284–4297, 2014.

[3] http://www.ece.iastate.edu/ hanguo/PracReProCS.html#Code_.

[4] E. Lusk and A. Chan, “Early experiments with the openmp/mpi hybrid programming

model,” Lecture Notes in Computer Science, vol. 5004, p. 36, 2008.

[5] C. Harris, K. Haines, and L. Staveley-Smith, “Gpu accelerated radio astronomy sig-

nal convolution,” Experimental Astronomy, vol. 22, no. 1-2, pp. 129–141, 2008.

[6] J. Kruger and R. Westermann, “Acceleration techniques for gpu-based volume ren-

dering,” in Proceedings of the 14th IEEE Visualization 2003 (VIS’03), p. 38, IEEE

Computer Society, 2003.

[7] C. Nvidia, “Compute unified device architecture programming guide,” 2007.

[8] R. Laganière, OpenCV 3 Computer Vision Application Programming Cookbook.

Packt Publishing Ltd, 2017.

[9] J. Moreno, G. Ortega, E. Filatovas, J. Martínez, and E. M. Garzón, “Using low-power

platforms for evolutionary multi-objective optimization algorithms,” The Journal of

Supercomputing, vol. 73, no. 1, pp. 302–315, 2017.

[10] J. Feeley, NVIDIA: A Pinmux Configuration Tool for Tegra. PhD thesis, Worcester

Polytechnic Institute, 2017.

21

[11] A. J. Lipton, H. Fujiyoshi, and R. S. Patil, “Moving target classification and tracking

from real-time video,” in Applications of Computer Vision, 1998. WACV’98. Pro-

ceedings., Fourth IEEE Workshop on, pp. 8–14, IEEE, 1998.

[12] C. Zhan, X. Duan, S. Xu, Z. Song, and M. Luo, “An improved moving object detec-

tion algorithm based on frame difference and edge detection,” in Image and Graph-

ics, 2007. ICIG 2007. Fourth International Conference on, pp. 519–523, IEEE, 2007.

[13] http://developer.download.nvidia.com/embedded/jetson/TK1/docs/3_HWDesignDev

/JTK1_DevKit_Specification.pdf.

[14] https://stackoverflow.com/questions/20513071/performance-tradeoff-when-is-

matlab-better-slower-than-c-c.

[15] Y. Zhang, “User′s guide for yall1: Your algorithms for l1 optimization,” Technique

report, pp. 09–17, 2009.

[16] http://docs.nvidia.com/cuda/cusolver/index.html.

[17] http://docs.nvidia.com/cuda/cublas/index.html.

22

