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ABSTRACT 

 

Electric power systems have changed rapidly these years with the integration of smart 

grid technologies as well as the development of control and computing techniques. After the 

deregulation of modern power systems, operation and control over a large-scale power system 

are distributed to regional transmission organizations (RTOs). However, under the cyber-

physical environment, power systems undertake a lot of challenges and may also be vulnerable 

to malicious cyber attacks. These changes and challenges in the wide-area monitoring systems 

(WAMSs) suggest the need for the development on distributed multi-area monitoring, control 

and computing algorithms. 

Power system state estimation (SE) is a data processing algorithm that converts meter 

readings and other information into an estimate of a static state. SE serves as central function of 

Energy Management System (EMS) which communicates with Supervisory Control and Data 

Acquisition (SCADA) front end after data is obtained from remote terminal units (RTUs) and 

intelligent electronic devices (IEDs). The performance of downstream applications such as 

contingency analysis and economic dispatch will heavily depend on SE. 

In terms of system monitoring, we propose a class of false analog data injection attack 

that can misguide the system as if topology errors had occurred. Since calculating measurements 

given the state value is an underdetermined problem, an optimization method is proposed to 

conduct a reverse estimation based on the target topology and state to achieve the topology 

attack. Then we investigate the bad data detection algorithm in a multi-area environment and a 

detection algorithm based on area sensitivity is proposed to help locate bad data and possible 

false date injection attacks. In order to improve the computing efficiency of SE so that the 
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computing time can catch up with SCADA rate, we propose a graph-based parallel computing 

algorithm for static SE. The proposed algorithm can help control center to achieve SCADA-rate 

SE and further help with the computing time of downstream applications. 
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CHAPTER I  

INTRODUCTION 

 

1.1 Power System State Estimation 

Power system state estimation (SE) is defined as a data processing algorithm that 

converts meter readings and other available information into an estimate of the static state of an 

electric power system. The idea of SE was brought into power system by Fred Schweppe [1], [2]. 

State estimation utilizes the real-time data provided by Supervisory Control and Data Acquisition 

(SCADA) to give an estimate of the status of the power system. Weighted Least Squares (WLS) 

method is preferred and widely used in the existing state estimators. The performance of 

downstream EMS applications such as contingency analysis (CA), automatic generation control 

(AGC) and economic dispatch (ED) will heavily depend on the computing time and the results of 

SE. State estimators which serves as the central function of Energy Management Systems (EMS) 

usually include functions such as topology processing, bad data detection, observability analysis, 

etc.  

As one of the most important computing algorithms in EMS, it processes the raw 

measurements from meters and converts it into reliable state for the system and its downstream 

applications. SE is widely used in power system monitoring. Since cyber side and physical side 

of the modern power systems may not consistent with each other all the time, SE also serves as a 

key part in between that can filter incorrect data and information generated by either side. 

State estimation has been investigated broadly since last century. The framework of SE 

has been firmly established and its key applications such as topology processing, bad data 

detection, parameter estimation, observability analysis have been widely investigated by 
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researchers after the introduction of SE. Relevant research has also been conducted when SE is 

associated with its applications, electricity market and cyber attacks. Over the next few decades, 

research topics and focuses on SE may include but not limited to: distributed multi-area state 

estimation, high performance computing of state estimation, distribution state estimation, robust 

state estimation, cyber intrusion and its detection, big data application on state estimation, etc. 

 

1.2 Bad Data Detection 

In power system state estimation, bad data usually exists due to meter biases, 

telecommunication failure, false data injection, etc. Failure to detect bad data may cause 

unsatisfactory estimation results. Furthermore, a state estimation may also be deceived by 

erroneous topology information. 

In WLS SE, bad data detection and identification are usually conducted after the 

estimation with processing of measurement residuals. Detection refers to the procedure where a 

system is analyzed to determine whether the measurements contain bad data while identification 

involves figuring out which measurements contain bad data. The analysis of bad data is usually 

finished with residual sensitivity matrix that is obtained through linearization [3]. In practice 

Chi-squared Test of bad data is commonly used for bad data detection. 

 

1.3 Cyber Security in Power Grid 

Power grid is a large, interconnected and complex system made up of numerous 

components. In terms of physical side, power system is usually designed to withstand some 

problems such as contingency. However, as data technology improves nowadays people rely 

more on cyber side of the system, and also since the data is accessible through the internet 
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(although there are firewalls among different layers in power system control), cyber security is 

becoming more and more important and needs more attention in the design of smart grid to 

reduce the risk of possible cyber intrusion.  

In 2015, a well-known cyber attack in Ukraine penetrated the control center with 

malware and the power was shut off for several hours before it was recovered. To improve the 

security of the grid and prevent it from potential cyber intrusions, both theoretical research and 

hardware update will contribute. Since the existing standards and protections aim mainly at large 

element of the system, distribution systems with lower voltage are more vulnerable to cyber 

attacks and therefore calls for more attention in the future cyber security research. Also, for 

future research work, both pre-analysis research on cyber attacks and countermeasures after the 

attack should be focused and investigated. 

 

1.4 Contributions 

The thesis is mainly made up of three parts: high performance parallel computing of SE, 

false data injection attacks towards topology error and bad data detection algorithm in multi-area 

SE. The main contributions of the thesis can be summarized as: 

1. A graph based parallel computing algorithm is developed for WLS state estimation. 

The measurements obtained before the SE are partitioned based on nodes in the graph 

and then SE algorithm is split accordingly. During the graph-based parallel 

computing, not only the load is split to provide parallelism for computing but at the 

same time the meaningless computations on zero elements are abandoned.  In the 

proposed algorithm, matrices are stored in compact form so that the computing 

efficiency is maximized while giving an accurate result. The graph-based parallel 



 

4 

 

algorithm can help control centers achieve sub-second real state estimation for large 

scale power systems. 

2. A class of false analog data injection attack that can misguide the system as if 

topology errors had occurred is proposed. By utilizing the measurement redundancy 

with respect to the state variables, the adversary who knows the system configuration 

is shown to be capable of computing the corresponding measurement value with the 

intentionally misguided topology. The attack is designed such that the state as well as 

residue distribution after state estimation will converge to those in the system with a 

topology error. It is shown that the attack can be launched even if the attacker is 

constrained to some specific meters. The attack is detrimental to the system since 

manipulation of analog data will lead to a forged digital topology status, and the state 

after the error is identified and modified will be significantly biased with the intended 

wrong topology. This work investigates the cyber and physical sides of a system and 

an optimization model based on DC SE is used to connect analog measurement data 

with digital status in the system topology. The idea is feasible because calculating 

measurement value when given state value is an underdetermined system. The 

parallelism in determining measurements provides possibilities of false data injection 

attacks in state estimation 

3. A bad data detection algorithm that can help quickly detect whether a sub-area 

contains a bad data in multi-area state estimation is proposed [4]. The detection 

algorithm utilizes area sensitivity to help locate the bad data in a multi-area system 

and can also prevent the system from potential false data injection attacks. The 

proposed method focuses on the changes and sensitivity of each area instead of 
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dealing with bad data from statistical point of view. The algorithm can help detect 

false data injection attacks which sometimes cannot be detected by traditional chi-

squared test. 
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CHAPTER II  

FALSE ANALOG DATA INJECTION ATTACK TOWARDS TOPOLOGY ERRORS 

 

2.1 Introduction  

In modern power systems, topology processor (TP) performs analysis on the status of 

circuit breakers (CBs) to determine the system model, which can be further used in state 

estimation (SE). The statuses of CBs are correct and known most of the time, but in some cases 

the assumed statuses may turned out to be erroneous [24]. This happens when isolation switches 

are not telemetered or operated, other reasons may include unreported breaker manipulation, 

communication failure, cyber attacks, etc. In these cases, the topology model given by TP will be 

an incorrect one, which will entail a topology error. Topology errors usually cause the state 

estimation result to be significantly biased, mainly because of the mismatch between 

measurements and system nodal admittance matrix. Apart from inaccurate results and 

convergence problems in state estimation, this type of error may also cause bad data detection 

process to malfunction. 

False data injection attack (FDIA) was first introduced in [25] and this class of cyber 

attack can mislead state estimation process by adding false data to measurement. Related work 

on FDIA can be roughly classified into the following categories. Unmitigated FDIA against SE 

[26]-[29], economic attacks on electricity market [30]-[32], detection and protection methods 

against FDIA [33],[34]. 

In this chapter, we propose an attack strategy against system topology. Without having to 

compromise the circuit breaker status, the adversary is able to forge a topology error by 

manipulating analog measurements in the system. The attack is designed such that measurement 
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residues will comply with the distribution of residues in the system with target topology error. 

Meanwhile, the difference between actual state values and theoretical state values is also 

minimized to match with topology error and avoid further detection based on state variables. The 

attack can mislead the system operators if the status of compromised branch is unknown or 

hacked. And after detection and identification of the designed topology error, adjusting system 

topology accordingly will lead the system to a biased SE result. 

 

2.2 Topology Errors 

In this section we start with the formulation of DC state estimation, although the 

proposed approach is generalizable towards AC state estimation as well. In DC state estimation, 

the relationship between measurements and state variables is linearized. Measurement model can 

be written as: 

 𝒛 = 𝑯𝒙 + 𝒆 (1) 

where 𝒛 is real measurements, 𝒙 is vector of bus angles and 𝒆 is measurement error vector. 𝑯 is 

the measurement Jacobian matrix. 

The estimated state can be derived using Weighted Least Square (WLS) method: 

 𝒙̂ = (𝑯𝑻𝑹−𝟏𝑯)−𝟏𝑯𝑻𝑹−𝟏𝒛 (2) 

where 𝑹−𝟏 is diagonal weighting matrix. 

And the residue can be given: 

 𝒓 = 𝒛 − 𝑯𝒙̂ (3) 

Based on (1) - (3), the following equations can be derived: 

 𝑴 = 𝑯(𝑯𝑻𝑹−𝟏𝑯)−𝟏𝑯𝑻𝑹−𝟏 (4) 
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 𝒓 = (𝑰 − 𝑴)𝒆 (5) 

Expected value of the residue after WLS state estimation: 

 𝐸(𝒓) = 𝟎 (6) 

Errors in the status of breakers and switches will lead to incorrect information about 

network topology [35]. Topology errors are known to have more influence on measurement 

residues and the accuracy of state estimation result than parameter errors mainly because of the 

mismatch on 𝑯 matrix [36]. Let 𝑯𝒕 be the system true measurement Jacobian matrix and 𝑯𝒆 be 

the erroneous Jacobian matrix, then the error of the above Jacobian matrices which is caused by 

topology errors can be given as: 

 𝑫 = 𝑯𝒕 − 𝑯𝒆 (7) 

For a single branch status error, the non-zero elements in error Jacobian matrix 𝑫 are the 

first derivative of related measurements (injections on both buses and power flows on the 

branch) with respect to state variables (phase angles) of both buses. With known topology errors 

in the system, the measurement residue then becomes: 

 𝒓 = (𝑰 − 𝑴𝒆)(𝑫𝒙 + 𝒆) (8) 

 𝑴𝒆 = 𝑯𝒆(𝑯𝒆
𝑻𝑹−𝟏𝑯𝒆)

−𝟏𝑯𝒆
𝑻𝑹−𝟏 (9) 

And the expected value of the residue with topology error: 

 (𝒓) = (𝑰 − 𝑴𝒆)𝑫𝒙 (10) 

There exist certain types of topology errors that are non-detectable. Existing detection 

algorithms [4], [35], [37] commonly use measurement residue to detect and identify topology 

errors. A topology error is assumed to be detectable if (𝑰 − 𝑴𝒆)𝑫𝒙 ≠ 𝟎 for any state 𝒙. When a 

detectable topology error is present in the system, the bias vector can be represented as: 
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 𝑫𝒙 = 𝑳𝒇 (11) 

where 𝑳 is measurement to branch incidence matrix and 𝒇 is branch flow error vector. 

The detection for a detectable topology error in the system can be dealt with using 

normalized residues [35]. From (11), it can be seen that the distribution of measurement residue 

of a system with topology error is related to both system topology and branch flow errors. 

 

2.3 Attack Model 

2.3.1 Preliminary 

State estimation is usually solved as an overdetermined system, where there are more 

measurements than state variables and WLS method is commonly used to estimate the system 

state. Given a set of measurements 𝒛, the overdetermined system is able to obtain a unique 

estimated state 𝒙. Inversely, if given a fixed state 𝒙, the following linear system can be derived: 

 𝑯𝑻𝑹−𝟏𝒛 = (𝑯𝑻𝑹−𝟏𝑯)𝒙̂ = 𝒃 (12) 

During state estimation, once 𝒙̂ is determined and system topology is known then the 

right-hand side of the above equation can be calculated. Consider z as unknown variables, then 

the coefficient matrix for the system is 𝑯𝑻𝑹−𝟏, which normally has more columns than rows. 

Furthermore, since the row vectors of system Jacobian matrix are linearly independent, 𝑯𝑻𝑹−𝟏 is 

a full rank matrix. Suppose we have 𝑚 measurements and 𝑛 state variables, then for the above 

system: 

 𝑟𝑎𝑛𝑘(𝑯𝑻𝑹−𝟏) = 𝑟𝑎𝑛𝑘(𝑯𝑻𝑹−𝟏|𝒃) = 𝑛 < 𝑚 (13) 

The system becomes underdetermined and according to Rouché-Capelli theorem, there 

will be infinite number of solutions. 
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Figure 2.1: Overdetermined and underdetermined systems 

The underdetermined system as well as the parallelism in determining measurements 

provides possibilities of false data injection attacks in state estimation. The overdetermined and 

underdetermined systems are described in Fig. 2.1. 

 

2.3.2 False Data Injection Attacks 

The goal of the proposed attack is to generate a topology error in the system by adding 

false data to system measurements. The attack will not compromise topology processor or circuit 

breakers, instead the attacker will utilize the redundancy in state estimation and manipulate 

measurement data to compensate the influence caused by the mismatch of Jacobian matrix 

through the topology error so that the system will appear to have a topology error. 

Suppose the attacker knows the measurement data as well as system topology 

information a short time before the false data injection attack. Measurement data and Jacobian 

matrix at this stage can be denoted as 𝒛 and 𝑯𝒕. The real time measurement data taken right 

on/before the attack can be denoted as 𝒛𝒕. If the attacker is able to get the information about 
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system right before the attack or can manipulate measurement data before it is obtained from the 

SCADA system, then 𝒛 can be treated as real time measurement data. 

With measurement data 𝒛𝒕 and the topology information. The attacker is able to conduct 

state estimation based on the wrong topology. Given an intended topology, the measurement 

Jacobian matrix 𝑯𝒆 = 𝑯𝒕 − 𝑫 will be used in the state estimation: 

 𝒙̃ = (𝑯𝒆
𝑻𝑹−𝟏𝑯𝒆)

−𝟏𝑯𝒆
𝑻𝑹−𝟏𝒛𝒕 (14) 

The state above is the one when the system actually has a topology error and the attacker 

will expect that the state after the attack can be as close as possible to this state. 

Assume the system topology does not change during the short time before the attack, the 

real time measurement Jacobian matrix can be known instantly since the non-zero elements in 𝐻 

matrix are the line susceptance in the system. During real time state estimation, 𝑯𝒕 will be used 

as Jacobian matrix because the attacker only manipulates analog data but does not actually attack 

topology processor. 

Therefore, for the real time state estimation the only unknown parameters are 

measurements since we already know 𝐻 matrix based on system topology and estimated state 

based on (14). The real time measurement data, which is the attacked one, can be represented as: 

 𝒛𝒂 = 𝒛𝒕 + 𝒂 (15) 

where 𝒂 is the false data vector on the measurements. 

In most ideal situation, the adversary would expect the following equation to hold after 

the attack: 

 (𝑯𝒕
𝑻𝑹−𝟏𝑯𝒕)𝒙̃ = 𝑯𝒕

𝑻𝑹−𝟏𝒛𝒂 (16) 
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After the false data injection, the attacker would want the system to identify it as a 

topology error rather than a malicious attack. The measurement residue distribution will change 

when the power flow values are compromised, but the attacker can easily find a legitimate 

measurement residue that is close to the residue in the ideal situation: 

 ‖(𝒛𝒂 − 𝑯𝒕𝒙̃) − (𝑰 − 𝑴𝒆)𝑫𝒙̃‖∞ < 𝜀 (17) 

where 𝑴𝒆 = 𝑯𝒆(𝑯𝒆
𝑻𝑹−𝟏𝑯𝒆)

−𝟏𝑯𝒆
𝑻𝑹−𝟏, 𝑫 = 𝑯𝒕 − 𝑯𝒆 and 𝜀 is the threshold. 

The state in (17) should be (𝑯𝒕
𝑻𝑹−𝟏𝑯𝒕)

−𝟏𝑯𝒕
𝑻𝑹−𝟏𝒛𝒂 if (16) does not hold. Under the 

assumption that (16) holds or the difference between both sides is small enough, 𝒙̃ can be used as 

state vector in (17). The threshold can be adjusted and allow some violations for large systems. 

The attacked measurement as well as the false data vector is bounded due to the 

constraint in (17). The determination of the entire set of measurement data not only needs to 

approach the estimated state in (14) after the state estimation but also needs to comply with the 

restrictions on the residue. 

Suppose the system is free of attacks, then the real time state can be forecasted. State 

forecasting has been discussed in [33], [38], [39]. Autoregressive (AR) model can be used to 

forecast the state. The 𝑖th state variable on time 𝑡 can be expressed as: 

 

𝑥𝑡
𝑖 = ∑(𝜑𝑗

𝑖𝑥𝑡−𝑗
𝑖) + 𝑣𝑡

𝑖

𝑝

𝑗=1

 (18) 

where 𝑝 is AR process order, 𝜑 is AR parameters and 𝑣𝑡 is modeling uncertainties. 

Parameter 𝜑 can be represented with autocorrelations and solved using Yule-Walker 

equations. For each state variable, its AR parameter: 
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[

𝜑1

𝜑2

⋮
𝜑𝑝

] =

[
 
 
 

1 𝜌1 ⋯ 𝜌𝑝−1

𝜌1 1 ⋯ 𝜌𝑝−2

⋮ ⋮ ⋱ ⋮
𝜌𝑝−1 𝜌𝑝−2 ⋯ 1 ]

 
 
 
−1

[

𝜌1

𝜌2

⋮
𝜌𝑝

] (19) 

where 𝜌𝑘 is the 𝑘th lag autocorrelation. 

During the state forecasting, the dynamic model of system state is usually given as: 

 𝒙𝒕 = 𝑭𝒕𝒙𝒕−𝟏 + 𝒗𝒕 (20) 

where 𝑭𝒕 is the state transition matrix. 

Note that 𝒙𝒕 above is different from the estimated state in (14) which is the state with 

topology error in the system. After the attack with system topology errors, the attacker would 

also want to see an obvious difference between the state after attack and the forecasted state, 

otherwise the attack itself is meaningless. The restriction on target state and the forecasted state 

is provided below, where 𝛿 is the threshold set before the attack: 

 ‖𝒙̃ − 𝒙𝒕‖𝟐 > 𝛿 (21) 

Additionally, in real attack the adversary may only have access to limited number of 

measurements and the attack on each measurement may be restrained as well: 

 𝒛𝒂𝒎𝒊𝒏
≤ 𝒛𝒂 ≤ 𝒛𝒂𝒎𝒂𝒙

 (22) 

Therefore, based on all the discussion above, the attack can be formulated as an 

optimization problem: 

minimize
𝒛𝒂

    ‖(𝑯𝒕
𝑻𝑹−𝟏𝑯𝒕)𝒙̃ − 𝑯𝒕

𝑻𝑹−𝟏𝒛𝒂‖𝟐
 

                                                subject to     𝒛𝒂𝒎𝒊𝒏
≤ 𝒛𝒂 ≤ 𝒛𝒂𝒎𝒂𝒙

 

                                                                       ‖(𝒛𝒂 − 𝑯𝒕𝒙̃) − (𝑰 − 𝑴𝒆)𝑫𝒙̃‖∞ < 𝜀 

                                                                       ‖𝒙̃ − 𝒙𝒕‖𝟐 > 𝛿 
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where 𝒛𝒂𝒎𝒊𝒏
 and 𝒛𝒂𝒎𝒂𝒙

 are lower and upper bound of attacked measurements, the setup of which 

can be determined before the attack. For the measurement that the attacker is unable to 

compromise, fix the value of 𝒛𝒂𝒎𝒊𝒏
 and 𝒛𝒂𝒎𝒂𝒙

, after which the constraint of that measurement 

will turn into an equality constraint. 

The attacker is able to obtain an optimal measurement data set for the intended attack on 

system topology with the above formulation. After the above optimization problem is solved, 

one can also easily get the attack vector 𝒂 = 𝒛𝒂 − 𝒛𝒕, which is also the false data to be injected to 

the measurement data. 

 

2.4 Illustrative Example 

In this section, we illustrate the attack on the IEEE-14 bus system. A false data injection 

attack is performed with a forged topology error and an inclusion error is considered on branch 

3-4. The branch is believed to be in service when it is actually open. The attacked 14-bus system 

is shown in Fig. 2.2. 

 

Figure 2.2: IEEE 14-bus system 
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Suppose the attacker is only able to compromise limited number of meters in the system 

during the attack. The measurements that cannot be attacked including injections and power 

flows are also labelled. 

Assume the attacker can manage to obtain the measurement data a short time before the 

attack, the threshold 𝜀 in (17) is set to be 0.8 in this example. Measurements considered are real 

injection and real power flows (including reverse power flows), and measurement set can be 

denoted as 𝑧 = [𝑃𝑖 , 𝑃𝑖𝑗 , 𝑃𝑗𝑖]
𝑇. There are 54 measurement data in the system and after solving the 

proposed optimization problem, the attacker is able to get an optimal solution for 𝒛𝒂. The 

measurements before and after the attack are shown in Fig. 2.3. 

 

Figure 2.3: Measurements before and after the attack 

The measurements before and after the attack are shown. The measurements that cannot 

be hacked include power injections 𝑃𝑖(𝑧𝑘, 𝑘 ∈ {1,2,5,6,11,12,13}), real power flows 𝑃𝑖𝑗 (𝑧𝑘, 𝑘 ∈

{15,16,19,21,24,25,26,27,33}) and power flows 𝑃𝑗𝑖 (𝑧𝑘, 𝑘 ∈ {35,36,39,41,44,45,46,47,53}). 
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These measurements are treated as inaccessible to the attacker, thus the value cannot be changed 

during the attack. The attack vector 𝒂 = 𝒛𝒂 − 𝒛𝒕 is shown in Fig. 2.4. 

 

Figure 2.4: Measurement attack vector 

Since some measurements are inaccessible to the attacker, the corresponding value of the 

attack vector should be zero, as shown above.  

 

Figure 2.5: Measurement residue after the attack 
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After introducing the attack bias above, the system will have a residue that corresponds to 

a topology error on branch 3-4 as shown in Fig. 2.5, where the incident measurement residues of 

branch 3-4 are usually evident. 

The objective function value of the attack model at solution is 0.0212. Basically the 

system state after the attack is equivalent to the theoretical state value 𝒙̃ in (14). The comparison 

of the state after attack and the theoretical one is shown in Fig. 2.6. 

 

Figure 2.6: Theoretical state and state after the attack 

The difference of theoretical state value and actual state value at each bus (apart from 

slack bus) is small, as indicated in Fig. 2.7. In this attack example, the absolute value of 

difference at each bus is below 0.01 degree.  
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Figure. 2.7: Difference of state value at each bus 

After the attack, it can be seen that the state values match perfectly with the theoretical 

values. Even with limited number of compromised measurements, the attacker is still able to 

forge a topology error in the system with a target state. 

 

2.5 Conclusion 

In this chapter, we propose a type of false analog data injection attack that can forge a 

topology error in the system. The attacker only needs to falsify analog measurement data to 

attack the system topology. Calculating measurement value given state values is an 

underdetermined problem, therefore the adversary is able to generate multiple attack bias as a 

result of system redundancy.  

The work is different from existing topology attack research where most assume that the 

attacker is able to manipulate the topology processor. The attack vector can be obtained by 

solving an optimization problem, after which the state value should converge to the theoretical 

state value. Even with limited number of target measurements, the attacker is still able to finish 

an attack towards system topology errors. 
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CHAPTER III 

BAD DATA DETECTION IN MULTI-AREA STATE ESTIMATION* 

 

3.1 Introduction  

In power system state estimation, bad data usually exists due to meter biases, topology 

errors, communication failure, false data injection, etc. Failure to detect bad data may cause 

unsatisfactory estimation results. With large-scale deployment of new sensors in the smart grid, 

this challenge is further compounded by potential cyber intrusion such as false data injection 

attacks (FDIA) [30]. 

In practice Chi-squared 𝜒2 Test of bad data is commonly used. In multi-area state 

estimation, [40] introduces a bad data detection method for subsystem using chi-squared test 

where the local threshold is determined by local degrees of freedom. However, given the 

connectivity of the system, the error as well as the residual 𝑟 = 𝑧𝑖 − ℎ𝑖(𝑥̂) does not necessarily 

follow normal distribution. What’s more, the commonly used chi-squared test has its 

vulnerability against false data injection attacks in multi-area state estimation if the attacker can 

manipulate the data such that they fall under the null space of the measurement mapping matrix. 

Therefore, it is desirable to come up with an efficient algorithm that can quickly pinpoint which 

area contains bad data. 

For centralized bad data identification and elimination, there are two common 

approaches: (1) Post-processing of measurement residuals after the state estimation. (2) 

                                                 

* © 2017 IEEE. Reprinted, with permission, from Yuqi Zhou, Detection of bad data in multi-area state estimation, 

Power and Energy Conference (TPEC), IEEE Texas, Feb. 2017 
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Adjusting measurements weights 
1

𝜎𝑖
2 during iteration in Weighted Least Square (WLS) state 

estimation and update the weights before next iteration. It has been tested that a change in part of 

the system will normally cause big changes to nearby nodes and small changes to remote nodes. 

Therefore, we propose a method which is based on a sensitivity index called area sensitivity. The 

weighted overall change of measurement residual is calculated and used to identify the area in 

which the bad data exists. It offers a possible way to detect bad data and can also be extendable 

to detect false data injection attacks in multi-area state estimation. Given the assumption that the 

entire system is observable, our approach will detect which area contains a single bad data. 

 

3.2 AC State Estimation 

In AC state estimation, the relationship between measurements and state variables is 

nonlinear. The nonlinear measurement model is: 

 𝑧 = ℎ(𝑥) + 𝑒 (1) 

where 𝑧 is vector of measurements, 𝑥 is vector of state variables and e is measurement error 

vector. ℎ(𝑥) is the nonlinear function that relates measurements to state variables. 

In nonlinear WLS state estimation, we can formulate the problem as the following 

optimization problem: 

minimize:      𝐽(𝑥) = [𝑧 − ℎ(𝑥)]𝑇𝑅−1[𝑧 − ℎ(𝑥)] 

                           subject to:     𝑧 = ℎ(𝑥) + 𝑒 

𝐽(𝑥) = ∑
(𝑧𝑖−ℎ𝑖(𝑥))2

𝑅𝑖𝑖

𝑚
𝑖=1  is the objective function, where 𝑚 is the number of measurements 

and 𝑅𝑖𝑖 = 𝜎𝑖
2 is the variance of the error in measurement 𝑖. 
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According to first-order optimality, we have the following equations at the minimum: 

 𝜕𝐽(𝑥)

𝜕𝑥
= −𝐻𝑇(𝑥)𝑅−1[𝑧 − ℎ(𝑥)] = 0 (2) 

where 𝐻(𝑥) =
𝜕ℎ(𝑥)

𝜕𝑥
 is the Jacobian matrix of ℎ(𝑥). Iterative method can be used to solve this 

nonlinear problem [24]. 

The proposed algorithm on bad data detection as well as the illustrative example on the 

IEEE 14-bus system is based on AC state estimation. 

 

3.3 Chi-squared Test 

One of the common methods used for bad data detection is the Chi-squared 𝜒2 Test. Chi-

squared distribution is a special case of gamma distribution. When 𝛼 =
𝑚−𝑛

2
, where 𝑚 and 𝑛 are 

integers and 𝑚 > 𝑛 and 𝛽 = 2, the gamma probability density function (pdf) becomes: 

 
𝑓(𝑥) =

1

Г(
𝑚 − 𝑛

2 )2
𝑚−𝑛

2

𝑥
(
𝑚−𝑛

2
)−1

𝑒−
𝑥
2 (3) 

Which is the chi-squared pdf with (𝑚 − 𝑛) degrees of freedom. Chi-squared distribution 

plays an important part in statistical inference, especially when sampling from a normal 

distribution [41]. 

If 𝜒𝑝
2 is denoted as a chi-squared random variable with 𝑝 degrees of freedom, then we 

can easily prove the following two facts: 

(1) If 𝑌 is a 𝑁(0,1) random variable, then 𝑌2~𝜒1
2. 

(2) If 𝑋1, ⋯ , 𝑋𝑛 are independent and 𝑋𝑖~𝜒𝑝𝑖

2, then 𝑋1 + ⋯+ 𝑋𝑛~𝜒𝑝1+⋯+𝑝𝑛
2. 

Based on these two facts. Suppose we have a set of 𝑛 independent random variables 

𝑋1,⋯ , 𝑋𝑛, where 𝑋𝑖~𝑁(0,1), Then 𝑌 = ∑ 𝑋𝑖
2𝑛

𝑖=1 ~𝜒𝑛
2, where degrees of freedom equal 𝑛. 
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When Chi-squared 𝜒2 Test is used for detecting bad data in WLS state estimation, we 

compute the objective function 𝐽(𝑥̂) = ∑
(𝒛𝒊−𝒉𝒊(𝒙̂))𝟐

𝝈𝒊
𝟐

𝒎
𝒊=𝟏  after the state estimation, where 𝑚 is 

number of measurement, 𝑧𝑖 is measured value of measurement 𝑖, ℎ𝑖(𝑥̂) is estimated value of 

measurement 𝑖 and 𝜎𝑖
2 is variance of the error in measurement 𝑖. 𝐽(𝑥̂) is then compared with 

𝜒2
(𝑚−𝑛),𝑝

, where degrees of freedom is (𝑚 − 𝑛) and detection confidence probability is 𝑝. If 

𝐽(𝑥̂) ≥ 𝜒2
(𝑚−𝑛),𝑝

, then it is assumed that there is bad data in the measurements under the 

confidence of 𝑝. Otherwise, the measurements can be assumed to have no bad data. 

 

3.4 Bad Data Detection Based on Area Sensitivity 

3.4.1 Area Sensitivity 

In a multi-area state estimation, wide-area monitoring systems (WAMS) are involved in 

information gathering and processing [11]. Due to the large size of the power system, the 

determination of the states over the whole system becomes challenging. A good way is to let the 

ISO (Independent System Operators) keep their state estimators and also have a central entity to 

coordinate their results to determine the system-wide state [10]. For a multi-area state estimation, 

the basic structure of the system is composed of a central control center and several sub-areas 

which can be regarded as local control centers in the system. Fig. 3.1 shows the typical 

architecture of multi-area state estimation. 

The system has 𝑘 interconnected areas and each sub-area is considered to be connected 

with Central Control Center. Information is exchanged between Central Center and each area. 
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Figure 3.1: Multi-area state estimation 

Suppose a state estimation is running in the control center every 5 minutes (actual 

frequency may be higher). Then states as well as measurement residuals for each area can be 

derived after every state estimation. In reality, the operation of security monitoring and control in 

a control center is based on wide-area measurements every 2 seconds or so from the Supervisory 

Control and Data Acquisition (SCADA) system [42]. 

We denote 𝑚𝑖 as the number of measurements in area 𝑖 and 𝑟𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   as the vector of 

residuals of area 𝑖 at time 𝑡. 𝑟𝑖(𝑡 − 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ represents the vector of residuals of area 𝑖 at time 𝑡 − 1, or 

our benchmark for residue vector (residues when the system is free of bad data). The area 

sensitivity in area 𝑖 is defined as: 

 

𝜉𝑖(𝑡) =  
‖[𝑟𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑟𝑖(𝑡 − 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]‖

2

𝑚𝑖
 (4) 

Therefore, suppose a state estimation is finished on the system in above, 𝑘 area 

sensitivity 𝜉1, 𝜉2,…, 𝜉𝑘 will also be obtained for each area in the system. Area sensitivity shows 

the overall changes within each area between two consecutive time snapshots. 
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3.4.2 Bad Data Detection Algorithm 

We presume that the branches among areas are trustworthy and there is no bad data 

between every two areas. If there is a bad data occurring in a sub-area, then normally it will also 

affect the nearby nodes. The measurement residuals of each area will then change accordingly 

due to the existence of bad data. The area where the bad data exists is usually more sensitive and 

responsive to such changes. In WLS state estimation, after the bad data occurs, the bad data area 

will usually have a larger change in measurement residuals than remote areas. We then use a 

sensitivity index called area sensitivity 𝜉𝑖 to reflect such changes for each separate area 𝑖. 

After a bad data is introduced into the system, based on our formulation above, we can 

generate 𝑘 area sensitivity values for these areas after state estimation. The compromised area 

normally would have a larger 𝜉 than other areas in the system. On the other hand, if there is no 

bad data between two consecutive state estimation, each 𝜉𝑖 should be small and close to 0. 

Area 𝑗 is suspected to have a bad data if: 

 
𝑝 =

𝜉𝑗

∑ 𝜉𝑖
𝑘
𝑖=1

> 𝑓(𝑘) (5) 

If 𝜉𝑗 is much larger than any other 𝜉𝑖, then the above problem can also be simplified to: 

 𝑗 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝜉𝑖) (6) 

The above assumption holds if after computing the area sensitivity there is only one 𝜉𝑗 

that satisfies (5). However, if the bad data exists in a measurement which is close to the 

boundary of the area. Then the bad data in such measurement may also cause changes in the 

connected area because of the structure of the system. The bad data may also cause significant 

changes in the residues in nearby areas too. In this possible situation, there may be more than one 
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area sensitivity value 𝜉𝑖 that satisfies (5). Then a good way to solve this problem is that: we run 

state estimation again but with different sets of variance 𝜎𝑖
2 on different areas accordingly. 

In order to make the results more precise in the state estimation, we put more weight on 

the better meters and trust more on these measurements. For good device, we assign small 𝜎𝑖
2 

while for bad device we assign large 𝜎𝑖
2. In WLS state estimation problem, if there is a bad data 

shows up in a high-variance area, then there will be small changes in the estimated results, thus 

leads to a smaller area sensitivity. If it is in a low-variance area, then it will cause a larger area 

sensitivity. In our case, however, small 𝜎𝑖
2 should be assigned and all the measurements in the 

suspected areas are treated as good measurements. In this way the existence of bad data in the 

suspected areas will lead to larger residues than usual. By applying this method, the effect of bad 

data on the area is amplified. After following the procedures above, we will have 𝑘′ new updated 

area sensitivity 𝜉𝑖
′
 for  𝑘′ suspected areas. Then the area with the largest 𝜉𝑖

′
 is candidate for 

locating the bad data. This method will be explained in the illustrative example on the IEEE 14-

bus system. 

Based on the algorithm above, the detailed steps to do the multi-area state estimation bad 

data detection can be stated as follows: 

(1) Compute area sensitivity 

(a) On time (𝑡 − 1), get residue vector 𝑟𝑖(𝑡 − 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ for each area after the state estimation. 

(b) On time 𝑡, get residue vector 𝑟𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   for each area after the state estimation. 

(c) Compute area sensitivity for each area: 

𝜉𝑖 = 
‖[𝑟𝑖(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑟𝑖(𝑡 − 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗]‖

2

𝑚𝑖
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(2) Bad data detection 

(a) Compare area sensitivity value 𝜉𝑖. 

(b) If 𝜉1 ≈ 𝜉2 ≈ ⋯ ≈ 𝜉𝑘 ≈ 0, then the system is said to be free of bad data for each sub-

area. 

(c) If 𝜉𝑖 ≠ 0, and there is only one area that satisfies: 

𝑝 =
𝜉𝑗

∑ 𝜉𝑖
𝑘
𝑖=1

> 𝑓(𝑘) 

then the bad data comes from area 𝑗. If ξi ≠ 0, and there is more than one area (𝑘′ areas) 

that satisfies the above constraint, then go to step 𝑑. 

(d) For 𝑘′ areas, run state estimation again. During state estimation, we assign smaller 

𝜎𝑖
2 uniformly and respectively for each measurement within each suspected area as 

well as the power flow measurement between the suspected areas. Then return to step 

1. The corresponding area with the largest updated area sensitivity 𝜉𝑖
′
 is said to have 

bad data. 

 

3.5 Illustrative Example 

The bad data algorithm is tested on the IEEE 14-bus system in this section. Suppose we 

have control over the central control center. In Fig. 3.2, the 14-bus system is divided into 4 sub-

areas which represent local control centers. 
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Figure 3.2: IEEE 14-bus system 

The measurements that are considered are those within each area, including internal 

injections and internal power flows, which are labelled above. In the example, measurements 

between areas are assumed to be trustworthy and there is only bad data within each area. The 

algorithm will be tested on both measurement error and topology error. 

 

3.5.1 Measurement Error 

For the traditional chi-squared test, it focuses on the whole system. So even if there is a 

truly suspicious data for a specific measurement, the detection may still indicate no bad data. 

WLS state estimation is an unbiased estimator if and only if the measurement error is statistically 

distributed and the model is accurate, both of which may not exist in a practical power system 
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[43]. In the proposed algorithm, however, it focuses on the sub-areas as well as the 

measurements within each area rather than dealing with the whole system statistically. 

Suppose there is a data of certain value to be injected to a measurement in the system, 

there is no guarantee that it will be detected. To simplify the problem and also focus more on 

each area and internal measurements, we double each measurement respectively in the test to 

serve as the new measurement after the error is introduced. In this way, we can think of the 

problem as a false data injection problem where the injected value of the measurement is equal to 

the measurement value itself. The test results of bad data on injection measurements are in Table 

3.1 and Table 3.2 and bad data on power flow measurements are in Table 3.3 and Table 3.4. 

Table 3.1. Test Results for Real Injection Bad Data 

 𝝃𝑨 𝝃𝑩 𝝃𝑪 𝝃𝑫 Predicted Area Actual 
Result 

1 0.0047 0.0041 0.1297 0.0141 C C 

2 0.0005 0.0005 0.0074 0.0023 C C 

3 0.0028 0.0032 0.0120 0.0411 D D 

4 0.0015 0.0038 0.0056 0.0150 D D 

5 0.0006 0.0003 0.0029 0.0007 C C 

6 0.0035 0.0006 0.0009 0.0003 A A 

9 0.0011 0.0145 0.0008 0.0033 B B 

10 0.0010 0.0055 0.0001 0.0004 B B 

11 0.0013 0.0006 0.0001 0.0001 A A 

12 0.0026 0.0003 0.0002 0.0001 A A 

13 0.0050 0.0018 0.0004 0.0002 A A 

14 0.0014 0.0091 0.0002 0.0005 B B 
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Table 3.2. Test Results for Reactive Injection Bad Data 

 𝝃𝑨 𝝃𝑩 𝝃𝑪 𝝃𝑫 Predicted Area Actual 
Result 

1 0.0001 0.0001 0.0092 0.0008 C C 

2 0.0013 0.0006 0.0103 0.0024 C C 

3 0.0003 0.0001 0.0005 0.0023 D D 

4 0.0001 0.0002 0.0004 0.0012 D D 

5 0.0001 0.0001 0.0006 0.0001 C C 

6 0.0013 0.0002 0.0004 0.0003 A A 

8 0.0003 0.0007 0.0003 0.0093 D D 

9 0.0006 0.0080 0.0004 0.0016 B B 

10 0.0006 0.0035 0.0001 0.0002 B B 

11 0.0007 0.0003 0.0000 0.0000 A A 

12 0.0007 0.0001 0.0001 0.0000 A A 

13 0.0021 0.0007 0.0002 0.0001 A A 

14 0.0005 0.0030 0.0001 0.0001 B B 

 

 

Table 3.3. Test Results for Real Power Flow Bad Data 

 𝝃𝑨 𝝃𝑩 𝝃𝑪 𝝃𝑫 Predicted Area Actual 
Result 

1-2 0.0011 0.0011 0.1109 0.0108 C C 

1-5 0.0019 0.0016 0.0598 0.0049 C C 

2-5 0.0012 0.0011 0.0326 0.0035 C C 

3-4 0.0005 0.0009 0.0023 0.0146 D D 

4-7 0.0020 0.0040 0.0038 0.0157 D D 

6-11 0.0038 0.0012 0.0002 0.0006 A A 

6-12 0.0044 0.0003 0.0003 0.0001 A A 

6-13 0.0095 0.0027 0.0009 0.0007 A A 
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Table 3.3. Continued 

 𝝃𝑨 𝝃𝑩 𝝃𝑪 𝝃𝑫 Predicted Area Actual 
Result 

9-10 0.0006 0.0040 0.0002 0.0004 B B 

9-14 0.0009 0.0079 0.0003 0.0005 B B 

12-13 0.0009 0.0001 0.0000 0.0000 A A 

 

 

Table 3.4. Test Results for Reactive Power Flow Bad Data 

 𝝃𝑨 𝝃𝑩 𝝃𝑪 𝝃𝑫 Predicted Area Actual 
Result 

1-2 0.0005 0.0003 0.0143 0.0011 C C 

1-5 0.0001 0.0001 0.0031 0.0003 C C 

2-5 0.0001 0.0001 0.0009 0.0001 C C 

3-4 0.0002 0.0002 0.0005 0.0028 D D 

4-7 0.0007 0.0013 0.0014 0.0054 D D 

6-11 0.0018 0.0006 0.0001 0.0003 A A 

6-12 0.0014 0.0001 0.0001 0.0001 A A 

6-13 0.0037 0.0012 0.0004 0.0003 A A 

7-8 0.0003 0.0010 0.0003 0.0096 D D 

9-10 0.0005 0.0032 0.0001 0.0003 B B 

9-14 0.0004 0.0030 0.0001 0.0002 B B 

12-13 0.0004 0.0000 0.0000 0.0000 A A 

 

 

Predicted area stands for the candidate area for locating the bad data after applying the 

proposed algorithm and actual result represents the area which the bad data actually originates 

from. Real injections at bus 7 and bus 8 as well as reactive injection at bus 7 are missing in the 
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table because the values of these measurements are 0. Real power flow of branch 7-8 is missing 

due to the similar reason. 

From the results, it can be concluded that the algorithm is working perfectly in detecting 

measurement error or false data injection in the test and every prediction based on area 

sensitivity is in accordance with the actual result. 

 

3.5.2 Topology Error 

Errors in the status data of breaker will result in erroneous assertion of network topology 

in terms of branch outage, bus split or shunt capacitor/reactor switching [35]. Such error in the 

power system is called topology error. In our test, we only focus on the branch outage in 

topology error. If there is a branch outage in the system, usually there will be more than one 

measurement that is affected as well due to the features of power system. We can also think of it 

as a special case where there are multiple measurement errors in the system. 

The purpose of the proposed algorithm is to find where the bad data possibly comes from 

rather than detect the specific position of the bad data. If there is no branch outage in the system, 

then we would expect the area sensitivity 𝜉𝑖 of each area to be small and close to 0. However, if 

there is a branch outage in the system, each area sensitivity value will change accordingly. The 

results are shown in Table 3.5. 

The result for branch 7-8 is not shown here because there is only one branch between bus 

7 and bus 8. The state estimation will not converge if this branch is open. In the topology error 

part, the step 𝑑 of bad data detection is not implemented during the test because branch outage 

will cause multiple changes in the system. 

 



 

32 

 

Table 3.5. Test Results for Topology Error 

 𝝃𝑨 𝝃𝑩 𝝃𝑪 𝝃𝑫 Predicted Area Actual Result 

1-2 0.0119 0.0067 0.2201 0.0278 C C 

1-5 0.0035 0.0014 0.0940 0.0107 C C 

2-5 0.0011 0.0013 0.0394 0.0079 C C 

3-4 0.0009 0.0006 0.0100 0.0173 D D 

4-7 0.0088 0.0124 0.0057 0.0180 D D 

6-11 0.0053 0.0066 0.0014 0.0027 A,B A 

6-12 0.0084 0.0009 0.0002 0.0002 A A 

6-13 0.0156 0.0091 0.0005 0.0018 A A 

9-10 0.0043 0.0053 0.0011 0.0022 A,B B 

9-14 0.0056 0.0111 0.0009 0.0023 B B 

12-13 0.0019 0.0002 0.0001 0.0000 A A 

 

Adjusting the value of weight in different areas does not apply in this case. Therefore, we 

simply list all the areas with 𝑝𝑗 =
𝜉𝑗

∑ 𝜉𝑖𝑘
𝑖=1

 that is larger than the threshold and consider them 

equally as the candidate areas. It can be seen that the average value of area sensitivity is greater 

than the one in the measurement error test. 

Since the topology error may cause more noticeable changes to the system than a single 

bad data, we can only roughly locate an area where the outage may happen during the test. For 

example, if there is an outage in branch 9-10, by applying the algorithm we can only tell that the 

outage may take place within A or B or between A and B. The results imply that the accuracy is 

not as good as the one in the measurement error part but the algorithm is still efficient enough 

against topology error caused by branch outages.  
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3.5.3 Analysis 

Normally, if the injected data on a certain measurement is increased, it should be easier to 

detect it. Therefore, we change the value of the data that is added to a measurement and observe 

the change of 𝑝𝑗 =
𝜉𝑗

∑ 𝜉𝑖𝑘
𝑖=1

. The results for a false data injection attack on real power flow of 

branch 1-2 is shown in Fig. 3.3. 

The x-axis represents the data injected to the measurement (unit: kW), the y-axis 

represents parameter 𝑝𝑗 =
𝜉𝑗

∑ 𝜉𝑖𝑘
𝑖=1

. For a fixed injected data, larger 𝑝 means that we have more 

confidence to say that the bad data exists in the predicted area. 

 

Figure 3.3: False data injection on branch 1-2 

As the figure shows, the proposed algorithm itself is responsive to the changes on the 

system. When the system is free of bad data or the injected data is really small, 𝑝 of different 
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areas remain at the same level. As the bad data becomes more and more obvious, 𝑝 of the 

compromised area will become larger and larger. Meanwhile 𝑝 of the other areas becomes 

smaller as the injected data increases. 

Compared with chi-squared test, bad data detection based on area sensitivity can detect 

bad data in a wider range. Suppose it is certain that there is a bad data in the system, even if it 

cannot be detected by traditional detection algorithm, we can give a prediction on where the bad 

data comes from by adjusting the threshold lower. Also, for the chi-squared test, its objective 

function 𝐽(𝑥̂) = ∑
(𝒛𝒊−𝒉𝒊(𝒙̂))𝟐

𝝈𝒊
𝟐

𝒎
𝒊=𝟏  has a wide range but without a certain upper bound. In our 

method, 𝑝𝑗 =
𝜉𝑗

∑ 𝜉𝑖𝑘
𝑖=1

 will converge to a limit after the data injection is increased to a certain level. 

Chi-squared test tells us whether a data belongs to bad data from view of statistics. A 

limit 𝜒2
(𝑚−𝑛),𝑝

 is given based on degrees of freedom and possibility. It focuses on a given set of 

measurements and detect the bad data using statistics. In a false data injection attack on the 

system, an attacker could easily avoid such detection by manipulating the data. In DC state 

estimator, suppose 𝑧 = 𝐻𝑥 + 𝑒. In a potential false data injection attack [1], 𝑧𝑎 is the bias 

introduced by the attacker. Then it can be proved that as long as we adjust 𝑧𝑎 to make 

(𝐼 − 𝐻(𝐻𝑇𝑅−1𝐻)−1𝐻𝑇𝑅−1)𝑧𝑎 = 0, it can pass the detector. Suppose 𝐻 is an 𝑚 × 𝑛 matrix, it 

was also stated in [25] that if an attacker can compromise 𝑘 meters, where 𝑘 ≥ 𝑚 − 𝑛 + 1, then 

there always exists an attack vector that can bypass the detection. 

In multi-area state estimation, central control center has control over each sub-area. If an 

attacker can manipulate the data within one of the areas, the proposed method can detect such 

attacks in the area even if it can pass the traditional chi-squared bad data detection. Suppose the 

attacker can manipulate some of the data in one local control center and adjust 𝑧𝑎 so that the chi-
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squared test cannot detect it. But after the measurements in the area are hacked, even if 

‖(𝐼 − 𝐻(𝐻𝑇𝑅−1𝐻)−1𝐻𝑇𝑅−1)𝑧𝑎‖2 is guaranteed to be small enough to remain undetected by the 

chi-squared test, it can be detected by the proposed algorithm because such attacks would cause 

the area sensitivity to change evidently. 

 

3.6 Conclusion 

In this chapter, we proposed a bad data detection algorithm based on area sensitivity in 

multi-area state estimation. The algorithm considers residue from two consecutive time 

snapshots, and can detect whether bad data exists in any particular area. Area sensitivity reflects 

the residual changes of each area that are caused by the existence of bad data. 

The validity and efficacy of the algorithm are tested on the IEEE 14-bus system. Both 

measurement errors and topology errors are considered in the numerical simulation. The results 

indicate that the algorithm works better on measurement errors than topology errors. We also 

compared the proposed algorithm with the traditional chi-squared test. The proposed method 

based on area sensitivity focuses on the changes and sensitivity of each area instead of dealing 

with the bad data from statistical point of view. The algorithm can be further used to detect false 

data injection attacks which sometimes cannot be detected by traditional chi-squared test. 

Since the area sensitivity takes into consideration the residue of two consecutive time 

snapshots, the noise will also be eliminated after calculating the area sensitivity 𝜉𝑖. If the central 

control center can have a higher frequency to run such algorithm on bad data detection, it can 

also serve as a possible early detection method for the system. 
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CHAPTER IV  

GRAPH-BASED PARALLEL STATE ESTIMATION 

 

4.1 Introduction  

With the development of multi-core processors and parallel computing in recent years, 

investigation of faster state estimation becomes possible and is called for in the smart grid. An 

accurate and SCADA-rate SE will allow operators to monitor the system state and take actions in 

time to secure the system operation. 

 

4.1.1 Background and Motivation 

Power system state estimation (SE) is defined as a data processing algorithm that 

converts redundant meter readings and other available information into an estimate of the static 

state of an electric power system. Supervisory Control and Data Acquisition (SCADA) obtains 

data from remote terminal units (RTU) and intelligent electronic devices (IED). State estimators 

which serves as the central function of Energy Management Systems (EMS) will then collect 

data from the SCADA system and perform state estimation on the whole system. Weighted least 

squares (WLS) method is preferred and most commonly used in the existing state estimators. 

The performance of downstream applications such as contingency analysis, automatic generation 

control and economic dispatch will depend on the computing time and the results of SE to a great 

extent. U.S. Department of Energy (DOE) presented computational needs for next generation 

electric grid in [5], the future direction for state estimation is to achieve real-time state estimation 

by reducing solution time from minutes to seconds to even milliseconds to keep up with the 

SCADA measurement cycles. An accurate and much faster SE will allow operators to know the 
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states of the system and apply relevant applications with a higher frequency, which also provides 

opportunities to continuous monitoring of the system and bring on better power system 

reliability. Also, faster SE can also lead to faster bad data detection as well as other relevant 

analysis tools. High-performance computing makes the faster processing of state estimation 

possible. Parallel computing is effective especially when the data set to process is big enough 

which holds in modern power systems and the parallel algorithm itself should also be designed 

and implemented efficiently. Highly parallelized state estimation algorithm will allow real time 

update of grid status and provides more reliability in the grid control. 

 

4.1.2 Literature Review 

Many methods and algorithms have been proposed to address the problem to accelerate 

SE. The idea of multiprocessor state estimation was proposed in [6], [7]. Previous work in [8]-

[11] discussed distributed state estimation. The system network is partitioned into several areas 

and, in each area, there is a local control center. Then the local SE results are obtained before 

they are coordinated to get the optimal result. Because of the independence of the local 

computation, it is conducted in parallel to improve the distributed SE performance on time 

consumption. It doesn’t sacrifice the results accuracy. Parallel state estimation based on fast 

decoupled method was illustrated in [12], [13]. A decentralized robust state estimator was 

proposed in [14]. The matrix inversion lemma was used for parallel static state estimation in [15] 

and the block-partitioning algorithm was also presented. The algorithm is able to find the correct 

solution, but the partitioning approach has a vital effect on the success of the parallel algorithm. 

Approach in [16], [17] mainly uses matrix factorization to carry out the computation in parallel. 

The work was conducted by Pacific Northwest National Laboratory (PNNL). It employed high 
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performance computing and adapted algorithm to speed up state estimation computation. 

However, the focus is mainly on the problem-solving part, which is after the data processing and 

gain matrix formulation and decomposition. A matrix-splitting strategy for Gauss-Newton 

iteration was presented in [18], in which neighboring areas communicate with each other during 

each iteration. A computationally efficient linear model-based estimator was proposed in [19] to 

serve as an alternative for Gauss-Newton approach. A nonlinear state estimation using 

distributed semidefinite programming was proposed in [20]. High-performance computing 

(HPC) with GPUs were used in [21], in which a parallel relaxation-based joint state estimation 

algorithm was proposed for dynamic state estimation.  

 

4.1.3 Contribution 

A graph computing based high-performance parallel approach is proposed and applied to 

obtain a SCADA-rate power system state estimation by increasing the computation efficiency. 

The graph database is briefly introduced and then the feasibility of its applications into power 

system modeling is investigated. Then a graph computing based parallel state estimation is 

elaborated, including efficient node-based matrices formulation, and dense matrices processing. 

Based on system topology analysis and decomposition of the state estimation problem, the node-

based matrices develop locally. For each node-based matrix, it only needs to acquire information 

from its 1-step neighbors, at most 2-step neighbors, and their connections. Compressed sparse 

row (CSR) is employed to store computation matrices for further improving calculation 

efficiency and relieving the burden introduced by matrix sparsity. After that, the gain matrix 

factorization is implemented by hierarchical parallel computing, and the whole SE problem is 

then solved with forward/backward substitution. Since the employed core algorithm is still the 
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commonly used one, the solution accuracy is not sacrificed, which can be supported by testing 

results, but the computation time is largely reduced when compared with conventional 

computing algorithm. 

 

4.2 Graph Computing  

4.2.1 Graph Database 

Graph is usually used to model relations between objects. It is a collection of vertices, 

representing objects in a system, and edges, standing for relations between objects. In 

mathematics, a graph is expressed as 𝐺 = (𝑉, 𝐸), in which 𝑉 represents a set of vertices in the 

graph and the set of edges is denoted as 𝐸, indicating how these vertices relate to each other. 

Each edge is denoted by 𝑒 = (𝑖, 𝑗) in 𝐸, where 𝑖 and 𝑗 are referred as head and tail of the edge 

respectively. 

Graph database uses graph structures for semantic queries with vertices, edges and 

attributes to represent and store data in vertices and edges. Such database allows data to be 

linked together directly and retrieved with graph operation, also called graph traversal. The 

definition of the neighboring distance [22] in a graph is given below. 

Definition 1: The distance 𝑑(𝑢, 𝑣) between vertices 𝑢 and 𝑣 in a graph is the shortest path 

between 𝑢 and 𝑣. 

Definition 2: Vertex 𝑣 is called 𝑘-step neighbor of vertex 𝑢 if 𝑑(𝑢, 𝑣) = 𝑘. 

Graphs are useful and intuitive in understanding and processing numerous diverse data 

and they have already been applied to model relations and processes in physical, biological, 

social and information systems. 
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4.2.2 Power System Modeling with Graph Database 

Generally, a traditional power system is comprised of power generation, power delivery, 

power distribution, power conversion and power consumption. The five components are 

categorized into two types: (1) bus-attached, and (2) line-attached [44]. For example, generators 

and loads are considered as being directly connected to buses in the bus-branch model. Fig. 4.1 

demonstrates a large-scale power system in the graph database. Each node represents a bus and 

the edges are with attributes which include measurements such as power flows. 

 

 

Figure 4.1: Graph database 

In node-based parallel computing, computation at each node is independent from others, 

meaning local computations are performed simultaneously. In a graph, the connections between 
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nodes represent non-zeros in off-diagonal elements, and each node denotes a diagonal element in 

the corresponding matrix. Hierarchical parallel computing performs computation for nodes at the 

same level in parallel. The level next to it is performed after. The hierarchical parallel computing 

is applied to matrix factorization, using the Cholesky elimination algorithm. Three steps are 

involved: 1) fill-ins determination, 2) elimination tree formulation, and 3) elimination tree 

partition for hierarchical parallel computing. 

 

4.3 Graph Computing Based Parallel State Estimation 

4.3.1 Preliminary for Parallel State Estimation 

For an n-bus power system with 𝑚 measurements, its nonlinear WLS state estimation is 

formulated as: 

  min   𝐽(𝑥) = [𝑧 − ℎ(𝑥)]𝑇𝑅−1[𝑧 − ℎ(𝑥)] (1) 

where 𝑧 is the measurement vector of dimension 𝑚, 𝑥 is the system state vector of dimension 

2𝑛 − 1, ℎ is the nonlinear function of 𝑥, which relates the states to the error free measurements, 

and 𝑅−1 is the diagonal matrix consisting of the weight, 
1

𝜎𝑗
2, for each measurement 𝑗. To obtain 

the minimum of 𝐽(𝑥), the equation below is derived: 

  
𝑔(𝑥) =

𝜕𝐽(𝑥)

𝜕𝑥
= −𝐻𝑇(𝑥)𝑅−1𝑟(𝑥) = 0 (2) 

where 𝐻(𝑥) =
𝜕ℎ(𝑥)

𝜕𝑥
 is the Jacobian matrix, 𝑟(𝑥) = 𝑧 − ℎ(𝑥). 

Substituting the first-order Taylor’s expansion of 𝑔(𝑥) in (2), the solution of the 

objective function can be found by iteratively solving (3). 

  𝐺(𝑥𝑘)∆𝑥𝑘 = 𝐻𝑇(𝑥𝑘)𝑅−1𝑟(𝑥𝑘) (3) 
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where 𝐺(𝑥𝑘) =
𝜕𝑔(𝑥𝑘)

𝜕𝑥
= 𝐻𝑇(𝑥𝑘)𝑅−1𝐻(𝑥𝑘), 𝑥𝑘+1 = 𝑥𝑘 + ∆𝑥𝑘, k is the iteration index, and 𝑥𝑘 

is a vector of system states at iteration 𝑘.  

When the fast-decoupled model is applied, the measurement Jacobian matrix and gain 

matrix are constant. Subscripts 𝐴 and 𝑅 below denote the corresponding active and reactive 

components respectively. 

  
𝐻 = [

𝐻𝐴𝐴

𝐻𝑅𝐴

𝐻𝐴𝑅

𝐻𝑅𝑅
] = [

𝐻𝐴𝐴

  0 

 0  
𝐻𝑅𝑅

] (4) 

  
𝐺 = [

𝐺𝐴𝐴 𝐺𝐴𝑅

𝐺𝑅𝐴 𝐺𝑅𝑅
] = [

 𝐻𝐴𝐴
𝑇 𝑅𝐴

−1𝐻𝐴𝐴 0 

 0 𝐻𝑅𝑅
𝑇𝑅𝑅

−1𝐻𝑅𝑅

] (5) 

where, 𝑅−1 = 𝑑𝑖𝑎𝑔(𝑅𝐴
−1, 𝑅𝑅

−1). In (5), 𝐺𝐴𝐴 ∈ ℳ(𝑛 − 1, 𝑛 − 1), while 𝐺𝑅𝑅 ∈ ℳ(𝑛, 𝑛). 

This is because the voltage angle at slack bus is the reference, so derivatives of measurements to 

the slack bus angle are not included in (4). And the equation (3) can be rewritten as: 

  
{
𝐺𝐴𝐴∆𝜃𝑘 = 𝐻𝐴𝐴

𝑇𝑅𝐴
−1𝑟𝐴(𝑥𝑘)    

𝐺𝑅𝑅∆|𝑉|𝑘 = 𝐻𝑅𝑅
𝑇𝑅𝑅

−1𝑟𝑅(𝑥𝑘)
 (6) 

In the fast-decoupled state estimation, estimations of voltage angles and magnitudes are 

decoupled and the approach to solve the two equations in (6) is the same, e.g. LU decomposition 

and forward/backward substitution. Therefore, the rest of this paper only elaborates how to 

efficiently estimate voltage angles using graph computing technology, including matrices 

formulation and equation solving. The estimation of voltage magnitudes can be implemented in 

the similar way. 

In conventional SE computation, measurements are usually random organized and the 

corresponding measurement Jacobian matrix will be a sparse matrix with a lot of zero elements. 

The sparsity of H matrix and G matrix in IEEE 118-bus system is shown in Fig. 4.2. 
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Figure 4.2: Sparsity of H matrix and G matrix 

Graph computing technology is employed to first formulate the problem. The system 

measurements are reordered and partitioned into 𝑛 parts based on the nodes they belong to. The 

partition standard of measurement model and the weight matrix are presented below. 𝑃𝑖 is the 

power injection at bus 𝑖 and 𝑃𝑖𝑗 is the vector of branch power flows from node 𝑖. 

  𝑧𝐴,𝑖 = [𝑃𝑖   𝑃𝑖𝑗]
𝑇

= ℎ𝐴,𝑖(𝑥) + 𝑒𝐴,𝑖, 𝑖 = 1,⋯ , 𝑛 (7) 

  𝑧𝐴 = [𝑧𝐴,1
𝑇   𝑧𝐴,2

𝑇    ⋯   𝑧𝐴,𝑛
𝑇]

𝑇
 (8) 

  ℎ𝐴(𝑥) = [ℎ𝐴,1(𝑥)𝑇   ℎ𝐴,2(𝑥)𝑇    ⋯   ℎ𝐴,𝑛(𝑥)𝑇]
𝑇
 (9) 

The corresponding 𝐻 matrix and 𝐺 matrix of node i is: 

  
𝐻𝐴𝐴,𝑖 =

𝜕ℎ𝐴,𝑖(𝑥)

𝜕𝜃
 (10) 

  𝐺𝐴𝐴,𝑖 = 𝐻𝐴𝐴,𝑖
𝑇𝑅𝐴,𝑖

−1𝐻𝐴𝐴,𝑖 (11) 

Where 𝑅𝐴,𝑖
−1 is the weight matrix for node 𝑖’s measurements. Then 𝐻𝐴𝐴,𝑖 and 𝐺𝐴𝐴,𝑖 can be 

locally calculated with (10) and (11) in one-step graph traversal. 
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System level H matrix, 𝐻𝐴𝐴, is formulated with aggregation of all node-based H matrices, 

𝐻𝐴𝐴,𝑖, and the system-level gain matrix, 𝐺𝐴𝐴, is obtained by summing up these node-based gain 

matrices, 𝐺𝐴𝐴,𝑖. The detailed derivations are presented in (12) and (13). 

  
𝐻𝐴𝐴 =

𝜕ℎ𝐴(𝑥)

𝜕𝜃
= [𝐻𝐴𝐴,1

𝑇   𝐻𝐴𝐴,2
𝑇    ⋯   𝐻𝐴𝐴,𝑛−1

𝑇]
𝑇
 (12) 

  
𝐺𝐴𝐴 = 𝐻𝐴𝐴

𝑇𝑅𝐴
−1𝐻𝐴𝐴 = ∑𝐻𝐴𝐴,𝑖

𝑇 ∙ 𝑅𝐴,𝑖
−1 ∙ 𝐻𝐴𝐴,𝑖

𝑛

𝑖=1

= ∑𝐺𝐴𝐴,𝑖

𝑛

𝑖=1

 (13) 

Where 𝑅𝐴
−1 = 𝑑𝑖𝑎𝑔(𝑅𝐴,1

−1, 𝑅𝐴,2
−1, ⋯ , 𝑅𝐴,𝑛

−1) 

The RHS update of the active equation/part in (6) can be also implemented by adding 

each node’s RHS update. Each node’s RHS update is simply implemented within its 1-step 

neighboring nodes by local graph traversal. 

  
𝐻𝐴𝐴

𝑇𝑅𝐴
−1𝑟𝐴(𝑥𝑘) = ∑𝐻𝐴𝐴,𝑖

𝑇𝑅𝐴,𝑖
−1𝑟𝐴,𝑖(𝑥

𝑘)

𝑛

𝑖=1

 (14) 

The equations (7)-(14) indicate the feasibility of parallel state estimation. We derive these 

equations in hope of letting each node compute its own 𝐻 matrix and 𝐺 matrix in a parallel way 

before the results are coordinated to finish the centralized computation. The gain matrix is no 

longer calculated based on the whole system. Instead, since the gain matrix is proved to be 

additive, each node will compute its own 𝐻 matrix and 𝐺 matrix before they are coordinated to 

obtain the final gain matrix. Without further dealing with the matrix sparsity, the proposed graph 

computing method already divides each matrix/vector into 𝑛 parts so that the computing time 

complexity is largely reduced. 
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4.3.2 Graph-Based Parallel State Estimation 

With graph computing, non-zero elements in each node’s RHS vector are updated 

independently and directly saved as attributes of corresponding nodes. Then the system-level 

RHS vector is updated in parallel with superposition of nodes’ RHS attributes. This is because 

elements in  𝐻𝐴𝐴,𝑖, 𝑅𝐴,𝑖
−1 and 𝑟𝐴,𝑖(𝑥

𝑘) are saved attributes of node i, node i’s 1-step neighboring 

nodes and connecting edges between them. With one-step graph traversal, all required 

information can be collected in the system graph. 

Regarding the formulation of system-level gain matrix, 𝐺𝐴𝐴, system topology analysis 

and theoretical derivation are first conducted to investigate locations and values of the non-zero 

entries. Then, a graph-based approach is developed to efficiently formulate and store system-

level gain matrix. The system topology can be described with adjacency matrix in graph theory. 

Adjacency matrix 𝐴 is an 𝑛 × 𝑛 matrix, the entries of which indicate whether vertices are 

adjacent in the graph. 

  
𝐴𝑖𝑗 = {

1, 𝑖𝑓 𝑑(𝑖, 𝑗) = 1  

0, 𝑖𝑓 𝑑(𝑖, 𝑗) ≠ 1  
 (15) 

The system topology matrix is defined as: 

  𝑇 = 𝐴 + 𝐼𝑛 (16) 

The topology matrix has the same structure with the system nodal admittance matrix 𝑌. 

  
𝑇𝑖𝑗 = {

1, 𝑖𝑓 𝑌𝑖𝑗 ≠ 0  

0, 𝑖𝑓 𝑌𝑖𝑗 = 0  
 (17) 

Both the topology matrix and nodal admittance matrix have the same structure as 

Laplacian matrix, which is the matrix representation of the graph. For the convenience of 

following topology analysis, the node 𝑖 and its 1-step neighbors are collected into a set, 𝛼𝑖. 
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  𝛼𝑖 ∶= {𝑗:  𝑇𝑖𝑗 ≠ 0},     𝑗 = 1,2,⋯ , 𝑛 (18) 

𝛽𝑖 is a set that includes node 𝑖, its 1-step neighbors and its 2-step neighbors. 

  𝛽𝑖 ∶= {𝑗:  𝑇𝑖𝑗 ≠ 0} ∪ {𝑗: 𝑑(𝑖, 𝑗) = 2} = 𝛼𝑖 ∪ {𝑗: 𝑑(𝑖, 𝑗) = 2} (19) 

The 1-step neighbors and 2-step neighbors of node 𝑖 is: 

  𝜑1(𝑖) = 𝛼𝑖 − {𝑖} = {𝑗: 𝑑(𝑖, 𝑗) = 1} (20) 

  𝜑2(𝑖) = 𝛽𝑖 − 𝛼𝑖 = {𝑗: 𝑑(𝑖, 𝑗) = 2} (21) 

For the 𝐻 matrix of node 𝑖, 𝐻𝐴𝐴,𝑖, based on (12), column indices of its non-zero entries 

are the elements in the set of 𝛼𝑖. Besides, the non-zero elements in 𝐺𝐴𝐴,𝑖 are {𝐺𝐴𝐴,𝑖(𝑖, 𝑗)}, 𝑖, 𝑗 ∈ 𝛽𝑖. 

In previous mentioned node-based 𝐻 matrix and gain matrix formulation, the matrix sparsity is 

inevitably introduced because the derivatives of one node’s measurements to its indirectly 

connected nodes’ states are zeros. So, the proposed graph computing approach densifies these 

node-based matrices and efficiently stores them in graph database. Compared with 𝐻𝐴𝐴,𝑖, the 

dimension of the densified matrix 𝐻𝐴𝐴,𝑖
𝐷 , is 𝑀𝐴,𝑖 × 𝑛𝑖, eliminating columns of indirectly 

connected nodes. 𝑛𝑖 is the size of  𝛼𝑖. Then there is no column with all zero elements existing in 

𝐻𝐴𝐴,𝑖. Regarding the dense node-based gain matrix, take node 𝑖 as an example, its size reduces 

from 𝑛 × 𝑛 to 𝑛𝑖 × 𝑛𝑖, based on (11). 

The IEEE 5-bus system is shown in Fig. 4.3, the node-based 𝐻 matrix for node 1, 

presented in (22), is a dense matrix with non-zero column vectors. Its size is 3 × 3,  which is 

reduced from 3 × 5. Besides, node 1’s dense gain matrix’s size is also 3 × 3, as displayed in 

(23), much smaller than the conventional one’s 5 × 5. 
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Figure 4.3: IEEE 5-bus system 

IEEE 5-bus system is a small-scale system, whose system-level gain matrix and H matrix 

are very small and dense when compared with large systems. The reduction in matrix dimension 

would be more evident for large-scale systems. 

  

𝐻𝐴𝐴,1
𝐷 =

[
 
 
 
 
 
 
𝜕𝑃1

𝜕𝜃1

𝜕𝑃12

𝜕𝜃1

𝜕𝑃13

𝜕𝜃1

𝜕𝑃1

𝜕𝜃2

𝜕𝑃12

𝜕𝜃2

𝜕𝑃13

𝜕𝜃2

𝜕𝑃1

𝜕𝜃3

𝜕𝑃12

𝜕𝜃3

𝜕𝑃13

𝜕𝜃3 ]
 
 
 
 
 
 

∈ ℳ(3,3) (22) 

  𝐺𝐴𝐴,1
𝐷 = 𝐻𝐴𝐴,1

𝐷 𝑇
∙ 𝑅𝐴,1

−1 ∙ 𝐻𝐴𝐴,1
𝐷 ∈ ℳ(3,3) (23) 

However, there are still zero entries in 𝐻𝐴𝐴,𝑖
𝐷  if saving the whole matrix. For example, 

𝜕𝑃12

𝜕𝜃3
 

is 0. Then the storage efficiency of 𝐻𝐴𝐴,𝑖
𝐷  is further improved by using graph database 

characteristics. This is because a graph only represents objects and their relations, meaning only 

non-zero entries in 𝐻𝐴𝐴,𝑖
𝐷  are stored as attributes of nodes/edges in the graph. Take 𝑃12 as an 

example, since 𝑃12 is the active power flow from node 1 to node 2, its derivation to node 3’s 

state is 0, while its derivation to node 1 and node 2 are saved as H attributes in 𝐿12. The node-

based gain matrix is a dense matrix with all non-zero entries, which is mainly because the node-
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based H matrix is full rank. In addition, since the gain matrix is a symmetric matrix, only 

upper/lower triangular elements need to be calculated and stored. 

Regarding the dense node-based gain matrix, although the size is reduced, the system-

level gain matrix formulation still has a high time complexity. To further store system gain 

matrix conveniently and efficiently in graph database, this paper divides the system gain matrix 

into row vectors, as shown in (24). 𝐺𝐴𝐴(𝑖) represents the 𝑖th row vector in the system gain matrix 

𝐺𝐴𝐴, and it is stored in node 𝑖 as an attribute. The column indices of its non-zero elements belong 

to 𝛽𝑖. In addition, for each row vector, it is stored in CSR format. 

 

 

Figure 4.4: IEEE 14-bus system 



 

49 

 

For an IEEE 14-bus system shown in Fig. 4.4, applying the node-based measurement 

partition method will lead to a measurement Jacobian matrix with patterns rather than 

disorganized. The node H matrix of bus 6 as can be seen in Fig. 4.5. 

 

Figure 4.5: Node H matrix of bus 6 

After the proposed partition, the node-based measurement Jacobian matrix looks 

organized as it consists of several column vectors which corresponding to the nodes that it 

connects with. With the measurement Jacobian matrices with the proposed partition method, the 

H matrix can be compress horizontally to eliminate irrelevant columns with all zero elements. 

Suppose the matrix can be compressed, a denser form of the node H matrix can be depicted in 

Fig. 4.6 below. 
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Figure 4.6: Dense node H matrix of bus 6 

For the same 14 bus system, its H matrix before the partition and after the node-based 

partition can be illustrated with Fig. 4.7 below. Compared with the H matrix before the partition, 

which is disorganized, the H matrix after the node-based partition has certain patterns based on 

the nodes since the measurements are rearranged based on the nodes that they belong to. The 

non-zero columns in each small section in the right-hand matrix correspond to the states of the 

bus(node) that is geographically related to the specified node in the graph. Intuitively, the H 

matrix after the partition is easier to compress horizontally, which could help deal with the 

matrix sparsity afterwards. 
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Figure 4.7: H matrix before and after the partition 

In the following paragraphs, the location and calculation of the non-zero elements in each 

row vector are presented. Furthermore, fast decoupled state estimation can be used to further 

eliminate the zero elements in the dense node H matrix above during SE computation. 

  𝐺𝐴𝐴 = [𝐺𝐴𝐴(1) 𝑇   𝐺𝐴𝐴(2)𝑇    ⋯   𝐺𝐴𝐴(𝑛)𝑇]𝑇 (24) 

Node 𝑖 is centered in this figure for the convenience of illustration. Its 1-step neighboring 

nodes are represented as {𝑎1, 𝑏1, ⋯ }, and its 2-step neighboring nodes are named as {𝑎2, 𝑏2, ⋯ }. 

The superscripts indicate the shortest distance, i.e. fewest steps, from the centered node to the 

corresponding node. 
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Figure 4.8: Generalized structure of node 𝑖 centered graph 

A generalized structure of one node in a graph is given in Fig. 4.8 above. According to 

the previous discussion, since node 𝑖 is only directly connected to its 1-step neighboring nodes, 

the active power part of its dense 𝐻 matrix is presented in (25), where 𝐻𝐴𝐴,𝑖𝑖 =
𝜕ℎ𝐴,𝑖(𝑥)

𝜕𝜃𝑖
, 𝐻𝐴𝐴,𝑖𝑎1 =

𝜕ℎ𝐴,𝑖(𝑥)

𝜕𝜃𝑎1
, 𝐻𝐴𝐴,𝑖𝑏1 =

𝜕ℎ𝐴,𝑖(𝑥)

𝜕𝜃𝑏1
 are column vectors. To simplify the notation, 𝐻𝐴𝐴,𝑖𝑖, 𝐻𝐴𝐴,𝑖𝑎1, and 

𝐻𝐴𝐴,𝑖𝑏1 are denoted as ℋ𝑖𝑖, ℋ𝑖𝑎1, and ℋ𝑖𝑏1, respectively. 

  𝐻𝐴𝐴,𝑖
𝐷 = [𝐻𝐴𝐴,𝑖𝑖 𝐻𝐴𝐴,𝑖𝑎1 𝐻𝐴𝐴,𝑖𝑏1] = [ℋ𝑖𝑖 ℋ𝑖𝑎1 ℋ𝑖𝑏1] (25) 

The corresponding dense node-based gain matrix will then become: 

𝑖

𝑎1

2-neighbor

1-neighbor

𝑎2

𝑎3

𝑏2𝑏1

𝑏3
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𝐺𝐴𝐴,𝑖
𝐷 =

𝑖                         𝑎1                          𝑏1       

[

ℋ𝑖𝑖
𝑇ℛ𝑖

−1ℋ𝑖𝑖 ℋ𝑖𝑖
𝑇ℛ𝑖

−1ℋ𝑖𝑎1 ℋ𝑖𝑖
𝑇ℛ𝑖

−1ℋ𝑖𝑏1

ℋ𝑖𝑎1
𝑇ℛ𝑖

−1ℋ𝑖𝑖 ℋ𝑖𝑎1
𝑇ℛ𝑖

−1ℋ𝑖𝑎1 ℋ𝑖𝑎1
𝑇ℛ𝑖

−1ℋ𝑖𝑏1

ℋ𝑖𝑏1
𝑇ℛ𝑖

−1ℋ𝑖𝑖 ℋ𝑖𝑏1
𝑇ℛ𝑖

−1ℋ𝑖𝑎1 ℋ𝑖𝑏1
𝑇ℛ𝑖

−1ℋ𝑖𝑏1

]

𝑖

𝑎1

𝑏1

 (26) 

In (26), ℛ𝑖
−1 is a simplified notation for 𝑅𝐴,𝑖

−1. The right-most column outside the matrix 

indicate the row indices in system-level gain matrix, and the row above the matrix denote the 

column indices in system-level gain matrix. For example, the first row of the matrix 𝐺𝐴𝐴,𝑖
𝐷  is a 

part of the 𝑖th row vector in the system-level gain matrix, 𝐺𝐴𝐴, and it only contributes non-zero 

elements to columns 𝑖, 𝑎1
, 𝑏

1 in the 𝑖th row vector. 

In the system-level gain matrix, however, the 𝑖th row vector 𝐺𝐴𝐴(𝑖) not only includes 

non-zero entries in the columns of node 𝑖 and its 1-step neighbors, but also has non-zero 

elements contributed by node 𝑖’s 2-step neighbors, as indicated in (27) below. 

  

𝐺𝐴𝐴(𝑖) =

[
 
 
 
 
 
 

ℋ𝑖𝑖
𝑇ℛ𝑖

−1ℋ𝑖𝑖 + ℋ𝑎1𝑖
𝑇ℛ𝑎1

−1ℋ𝑎1𝑖 + ℋ𝑏1𝑖
𝑇ℛ𝑏1

−1ℋ𝑏1𝑖

ℋ𝑖𝑖
𝑇ℛ𝑖

−1ℋ𝑖𝑎1 + ℋ𝑎1𝑖
𝑇ℛ𝑎1

−1ℋ𝑎1𝑎1 + ℋ𝑏1𝑖
𝑇ℛ𝑏1

−1ℋ𝑏1𝑎1

ℋ𝑖𝑖
𝑇ℛ𝑖

−1ℋ𝑖𝑏1 + ℋ𝑎1𝑖
𝑇ℛ𝑎1

−1ℋ𝑎1𝑏1 + ℋ𝑏1𝑖
𝑇ℛ𝑏1

−1ℋ𝑏1𝑏1

ℋ𝑎1𝑖
𝑇ℛ𝑎1

−1ℋ𝑎1𝑎2 + ℋ𝑏1𝑖
𝑇ℛ𝑏1

−1ℋ𝑏1𝑎2

ℋ𝑎1𝑖
𝑇ℛ𝑎1

−1ℋ𝑎1𝑏2 + ℋ𝑏1𝑖
𝑇ℛ𝑏1

−1ℋ𝑏1𝑏2 ]
 
 
 
 
 
 
𝑇

𝑖

𝑎1

𝑏1

𝑎2

𝑏2

 

 

(27) 

The following lemmas are derived for entries in node H and node G matrices: 

Lemma 1: For node 𝑖, only the node itself and its 1-step neighboring nodes provide non-

zero entries in column i of the system 𝐻 matrix. 

Lemma 2: For node 𝑖, the node itself, its 1-step neighboring nodes and its 2-step 

neighboring nodes contribute to the non-zero entries in row i of the system gain matrix, 𝐺𝐴𝐴. 

The non-zero entries in 𝐺𝐴𝐴(𝑖) can be categorized into three sets: diagonal entry=

{𝐺𝐴𝐴(𝑖, 𝑖)}, 1-step entry= {𝐺𝐴𝐴(𝑖, 𝑎1), 𝐺𝐴𝐴(𝑖, 𝑏1),⋯ }, 2-step entry= {𝐺𝐴𝐴(𝑖, 𝑎2), 𝐺𝐴𝐴(𝑖, 𝑏2),⋯ }. 
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The detailed illustrations on the diagonal entry, 1-step entry and 2-step entry using graph theory 

are presented in Fig. 4.9  ̶  Fig. 4.11 below.  

The value of the diagonal entry, e.g. 𝐺𝐴𝐴(𝑖, 𝑖), is determined by node itself, its 1-step 

neighbors and connections between them. 

 

Figure 4.9: Diagonal entry 

ℋ𝑖𝑖, ℋ𝑎1𝑖, ℋ𝑏1𝑖 and corresponding weights at nodes i, 𝑎1 and 𝑏1 determine 𝐺𝐴𝐴(𝑖, 𝑖). In 

addition, it can be found that all paths from the node i to its 1-step neighboring nodes have 

contributions to the corresponding elements in the 1-step entry. 

Node 𝑎1 is node i’s 1-step neighbor. The highlight lines are paths between node i and 𝑎1 

and all of them make contributions to 𝐺𝐴𝐴(𝑖, 𝑎1). Similarly, elements in 2-step entry are 

determined by the paths between node i and the corresponding 2-step neighbors. 𝑎2 is the 2-step 

neighbor of node i. Node i can travel through the highlight lines to 𝑎2.  

𝑖

𝑎1

2-neighbor

1-neighbor

𝑯𝑖𝑖

𝑯𝒂𝟏𝑖

𝑯𝒃𝟏𝑖

𝑎2

𝑏1
𝑏2
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Figure 4.10: 1-step entry (node 𝑎1 as an example) 

 

Figure 4.11: 2-step entry (node 𝑎2 as an example) 

𝑖

𝑎1

2-neighbor

1-neighbor

𝑯𝑖𝑖

𝑯𝑎1𝑖

𝑯𝒃𝟏𝑖

𝑯𝑖𝑎1

𝑯𝒂𝟏𝒂𝟏

𝑯𝒃𝟏𝒂𝟏

𝑏1
𝑏2

𝑎2

𝑖

𝑎1

2-neighbor

1-neighbor

𝑯𝒃𝟏𝒂𝟐

𝑯𝒂𝟏𝑖

𝑯𝒃𝟏𝑖

𝑯𝒂𝟏𝒂𝟐

𝑏1
𝑏2

𝑎2
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Based on the above derivations and illustrations, when graph database is utilized for the 

computation, only 2-step graph traversal is needed. Each row vector in the system-level gain 

matrix is formulated and stored locally as an attribute for each node. Then the system-level gain 

matrix is built in parallel by obtaining these row vectors independently from nodes. Based on 

(27), the 𝑖th row of system-level gain matrix are sourced from the 𝑖th rows of node gain matrices 

of 𝑖, 𝑎1 and 𝑏1. 

  

𝐺𝐴𝐴,𝑖
𝐷 (𝑖) =

[
 
 
 
 
 (∑ 𝐵(𝑖))

2

𝑅𝑃𝑖

−1 + 𝐵𝑖𝑎1
2𝑅𝑃

𝑖𝑎1

−1 + 𝐵𝑖𝑏1
2𝑅𝑃

𝑖𝑏1

−1

−𝐵𝑖𝑎1(∑ 𝐵(𝑖)𝑅𝑃𝑖

−1 + 𝐵𝑖𝑎1𝑅𝑃
𝑖𝑎1

−1)

−𝐵𝑖𝑏1(∑ 𝐵(𝑖)𝑅𝑃𝑖

−1 + 𝐵𝑖𝑏1𝑅𝑃
𝑖𝑏1

−1) ]
 
 
 
 
 
𝑇

𝑖

𝑎1

𝑏1

 (28) 

  

𝐺𝐴𝐴,𝑎1
𝐷 (𝑖) =

[
 
 
 
 
 
 

𝐵𝑎1𝑖
2(𝑅𝑃

𝑎1

−1 + 𝑅𝑃
𝑎1𝑖

−1)

−𝐵𝑎1𝑖(∑ 𝐵(𝑎1)𝑅𝑃
𝑎1

−1 + 𝐵𝑎1𝑖𝑅𝑃
𝑎1𝑖

−1)

𝐵𝑎1𝑖𝐵𝑎1𝑏1𝑅𝑃
𝑎1

−1

𝐵𝑎1𝑖𝐵𝑎1𝑎2𝑅𝑃
𝑎1

−1

𝐵𝑎1𝑖𝐵𝑎1𝑏1𝑅𝑃
𝑎1

−1
]
 
 
 
 
 
 
𝑇

𝑖

𝑎1

𝑏1

𝑎2

𝑏2

 (29) 

  

𝐺𝐴𝐴,𝑏1
𝐷 (𝑖) =

[
 
 
 
 
 
 

𝐵𝑏1𝑖
2(𝑅𝑃

𝑏1

−1 + 𝑅𝑃
𝑏1𝑖

−1)

𝐵𝑏1𝑖𝐵𝑏1𝑎1𝑅𝑃
𝑏1

−1

−𝐵𝑏1𝑖(∑ 𝐵(𝑏1) 𝑅𝑃
𝑏1

−1 + 𝐵𝑏1𝑖𝑅𝑃
𝑏1𝑖

−1)

𝐵𝑏1𝑖𝐵𝑏1𝑎2𝑅𝑃
𝑏1

−1

𝐵𝑏1𝑖𝐵𝑏1𝑏2𝑅𝑃
𝑏1

−1
]
 
 
 
 
 
 
𝑇

𝑖

𝑎1

𝑏1

𝑎2

𝑏2

 (30) 

Where ∑𝐵(𝑖) =∑𝐵𝑖𝑎1 , 𝑎1 ∈ 𝜑1(𝑖) is the sum of branch susceptance that is connected to node 𝑖. 

Similarly, the RHS matrix which can be denoted as 𝐾. The formulation of node 𝐾 matrix 

can be derived as: 
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𝐾𝑖 =

[
 
 
 
 −(∑𝐵(𝑖))𝑅𝑃𝑖

−1𝑟𝑃𝑖
+ ∑𝐵𝑖𝑎1𝑅𝑃

𝑖𝑎1

−1𝑟𝑃
𝑖𝑎1

−𝐵𝑖𝑎1(𝑅𝑃𝑖

−1𝑟𝑃𝑖
+ 𝑅𝑃

𝑖𝑎1

−1𝑟𝑃
𝑖𝑎1)

−𝐵𝑖𝑏1(𝑅𝑃𝑖

−1𝑟𝑃𝑖
+ 𝑅𝑃

𝑖𝑏1

−1𝑟𝑃
𝑖𝑏1) ]

 
 
 
 𝑖

𝑎1

𝑏1

 (31) 

The procedures of the proposed graph-based state estimation approach can be 

summarized as: 

Graph Computing based WLS Fast-Decoupled State Estimation Procedure: 

1. Start Iterations, set iteration index 𝑘 = 0; 

2. Initialize the system state vector 𝑥𝑘, including 𝜃𝑘 and |𝑉|𝑘 (flat start or not); 

3. Formulate gain matrices, 𝐺𝐴𝐴 and 𝐺𝑅𝑅, based on graph computing; 

4. Decompose 𝐺𝐴𝐴 and 𝐺𝑅𝑅 using parallel LU solver; 

5. Update right-hand-side vector 𝐻𝐴𝐴
𝑇𝑅𝐴

−1(𝑧𝐴 − ℎ𝐴(𝑥𝑘)) based on graph computing, solve ∆𝜃𝑘, and update 

𝜃𝑘+1 = 𝜃𝑘 + ∆𝜃𝑘; 

6. Check convergence: max |∆𝑥𝑘| ≤ 𝜖 ? If yes, output 𝜃𝑘+1 and |𝑉|𝑘; If no, go to step 7; 

7. Update right-hand-side vector 𝐻𝑅𝑅
𝑇𝑅𝑅

−1(𝑧𝑅 − ℎ𝑅(𝑥𝑘)) based on graph computing, solve ∆|𝑉|𝑘, and 

update|𝑉|𝑘+1 = |𝑉|𝑘 + ∆|𝑉|𝑘; 

8. Check convergence: max |∆𝑥𝑘| ≤ 𝜖 ? If yes, output 𝜃𝑘+1 and |𝑉|𝑘+1; If no, 𝑘 = 𝑘 + 1, go to step 5. 

 

4.4 Illustrative Example 

The proposed algorithm will be illustrated with IEEE-14 bus system as shown in Fig. 

4.12. We assume that different types of measurements have different standard deviation, and 

𝜎𝑉𝑖

2 = 1 × 10−5, 𝜎𝑃𝑖

2 = 𝜎𝑄𝑖

2 = 1 × 10−4, 𝜎𝑃𝑖𝑗

2 = 𝜎𝑄𝑖𝑗

2 = 6.4 × 10−5. Instead of using fast 

decoupled SE, the example will use Gauss-Newton method which can help understand the graph-

base algorithm better and the iteration stops when |∆𝑥𝑘| ≤ 𝜀 = 1 × 10−5. 
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Figure 4.12: IEEE 14-bus system 

The graph is partitioned into fourteen parts based on nodes. Bus 9 is chosen as our 

investigated node in the example. Its 1-neighbor nodes are 𝜑1(9) = {4,7,10,14} and its 2-

neighbor nodes are 𝜑2(9) = {2,3,5,8,11,13}. Node H matrix and node G matrix evaluated in the 

last iteration of bus 9 can be given by: 

𝐻9 =

𝜃4         𝜃7         𝜃9         𝜃10      𝜃14

[
 
 
 
 
 
 
 
 
 

0 0 0 0 0
−2.001 −10.049 26.628 −11.299 −3.279
0.160 0.280 −6.110 4.212 1.459

0 0 11.299 −11.299 0
0 0 3.279 0 −3.279

−2.001 0 2.001 0 0
0 −10.049 10.049 0 0
0 0 −4.212 4.212 0
0 0 −1.459 0 1.459

−0.160 0 −0.160 0 0
0 0.280 −0.280 0 0 ]

 
 
 
 
 
 
 
 
 

 

𝐺9 = 104 ×

𝜃4          𝜃7          𝜃9          𝜃10         𝜃14

[
 
 
 

10.329 20.156 −60.566 23.286 6.795
20.156 258.95 −427.18 114.72 33.356

−𝟔𝟎. 𝟓𝟔𝟔 −𝟒𝟐𝟕. 𝟏𝟖 𝟏𝟏𝟓𝟕. 𝟗 −𝟓𝟓𝟑. 𝟖𝟎 −𝟏𝟏𝟔. 𝟑𝟓
23.286 114.72 −553.80 372.60 43.193
6.7950 33.356 −116.35 43.193 33.006 ]

 
 
 
 

 

2 3

5 4

7

8

9

14

106 11

12 13

1

: 1-neighbor nodes

: 2-neighbor nodes
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The 𝐻 matrix and corresponding 𝐺 matrix of its 1-neighbor nodes are as follow: 

𝐻4 =

𝜃2         𝜃3         𝜃4         𝜃5         𝜃7         𝜃9

[
 
 
 
 
 
 
 
 
 
 

0 0 0 0 0 0
−5.452 −5.490 41.241 −22.954 −5.344 −2.001
2.348 1.889 −11.737 7.936 −0.277 −0.160

0 0 22.954 −22.954 0 0
0 0 5.344 0 −5.344 0
0 0 2.001 0 0 −2.001

−5.452 0 5.452 0 0 0
0 −5.490 5.490 0 0 0
0 0 −7.936 7.936 0 0
0 0 0.277 0 −0.277 0
0 0 0.160 0 0 −0.160

2.348 0 −2.348 0 0 0
0 1.889 1.889 0 0 0 ]

 
 
 
 
 
 
 
 
 
 

 

𝐺4 = 104 ×

𝜃2           𝜃3          𝜃4          𝜃5          𝜃7         𝜃9

[
 
 
 
 

90.276 34.363 −307.42 143.76 28.484 10.536
34.363 86.374 −301.24 141.01 28.815 10.686

−307.42 −301.24 2919.0 −1961.4 −261.89 −86.965
143.76 141.01 −1961.4 1511.5 120.47 44.674
28.484 28.815 −261.89 120.47 73.378 10.740
𝟏𝟎. 𝟓𝟑𝟔 𝟏𝟎. 𝟔𝟖𝟔 −𝟖𝟔. 𝟗𝟔𝟓 𝟒𝟒. 𝟔𝟕𝟒 𝟏𝟎. 𝟕𝟒𝟎 𝟏𝟎. 𝟑𝟐𝟗 ]

 
 
 
 
 

 

𝐻7 =

𝜃4        𝜃7        𝜃8        𝜃9

[
 
 
 
 
 
 
 

0 0 0 0
−5.344 21.907 −6.514 −10.049
0.277 0.003 0.001 −0.280

0 6.514 −6.514 0
0 10.049 0 −10.049

−5.344 5.344 0 0
0 0.001 0.001 0
0 0.280 0 −0.280

0.277 −0.277 0 0 ]
 
 
 
 
 
 
 

   𝐺7 = 104 ×

𝜃4        𝜃7        𝜃8        𝜃9

[

73.378 −161.81 34.812 53.623
−161.81 748.85 −209.01 −378.03
34.812 −209.01 108.74 65.458
𝟓𝟑. 𝟔𝟐𝟑 −𝟑𝟕𝟖. 𝟎𝟑 𝟔𝟓. 𝟒𝟓𝟖 𝟐𝟓𝟖. 𝟗𝟓

]
 

 

𝐻10 =

𝜃9         𝜃10       𝜃11

[
 
 
 
 
 

0 0 0
−11.271 16.042 −4.770
4.285 −6.353 2.067

0 4.770 −4.770
−11.271 11.271 0

0 −2.067 2.067
4.285 −4.285 0 ]

 
 
 
 
 

      𝐺10 = 104 ×

𝜃9         𝜃10         𝜃11

[
𝟑𝟕𝟐. 𝟔𝟎 −𝟒𝟑𝟓. 𝟐𝟑 𝟔𝟐. 𝟔𝟐𝟓
−435.23 567.11 −131.89
62.625 −131.89 69.261

]
 

 

 

𝐻14 =

𝜃9         𝜃13       𝜃14

[
 
 
 
 
 

0 0 0
−3.216 −2.432 5.647
1.594 1.242 −2.836

−3.216 0 3.216
0 −2.432 2.432

1.594 0 −1.594
0 1.242 −1.242]

 
 
 
 
 

    𝐺14 = 104 ×

𝜃9         𝜃13         𝜃14

[
𝟑𝟑. 𝟎𝟎𝟔 𝟗. 𝟕𝟗𝟗 −𝟒𝟐. 𝟖𝟎𝟓
9.799 19.107 −28.906

−42.805 −28.906 71.711
]
 

 

Based on all the discussions we have above, the corresponding row in the system gain 

matrix can be derived for bus 9: 
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𝐺(9) = 104 ×

[
 
 
 
 
 
 
 
 
 
 

10.536
10.686

−60.566 − 86.965 + 53.623
44.674

−427.18 + 10.740 − 378.03
65.458

1157.9 + 10.329 + 258.95 + 372.60 + 33.006
−553.80 − 435.23

62.625
9.799

−116.35 − 42.805 ]
 
 
 
 
 
 
 
 
 
 
𝑇 𝜃2

𝜃3

𝜃4

𝜃5

𝜃7

𝜃8

𝜃9

𝜃10

𝜃11

𝜃13

𝜃14

= 104 ×

[
 
 
 
 
 
 
 
 
 
 

10.536
10.686

−93.908
44.674

−794.47
65.458
1832.8

−989.03
62.625
9.799

−159.16]
 
 
 
 
 
 
 
 
 
 
𝑇 𝜃2

𝜃3

𝜃4

𝜃5

𝜃7

𝜃8

𝜃9

𝜃10

𝜃11

𝜃13

𝜃14

 

And for bus 9, node 𝐾 matrix can be given: 

𝐾9 = 103 ×

[
 
 
 
 

0.041
1.010
1.492

−1.771
−0.771]

 
 
 
 
𝑇 𝜃4

𝜃7

𝜃9

𝜃10

𝜃14

 

Each node in the system will carry out the above graph-based algorithm in parallel until 

the system gain matrix and 𝐾 matrix are formed. Then LU decomposition can be applied and 

obtain system state. 

 

4.5 Case Study 

To explore the feasibility of graph computing in power system state estimation, the 

proposed graph computing methodology is implemented in a Linux server. The testing 

environment is listed in Table 4.1.  

 

Table 4.1. Test Environment 

Hardware Environment 

CPU 2 CPUs × 6 Cores × 2 Threads @ 2.10 GHz 

Memory 64 GB 

Software Environment 

OS CentOS 6.8 

Graph Database TigerGraph v0.8.1 
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The flat-start testing results, including number of iterations and estimation accuracy, are 

displayed in Table 4.2. IEEE standard systems, a real provincial system in China and a large 

system with 10790 buses, are tested. As shown in Table 4.2, the estimation results are very close 

to the system measurements with negligible mean squared errors. The convergence tolerances for 

voltage magnitude and phase angle are 1.0E-4. 

 

Table 4.2. Number of Iterations and Computing Accuracy 

                  Results 

 

Systems 

 

 

Number of Iterations 

Mean Squared Error 

Voltage Magnitude 

(p.u.) 

Voltage Angle 

(degree) 

IEEE 14-Bus 5 0 7.03E-8 

IEEE 118-Bus 5 6.78E-14 3.75E-9 

Sichuan-2433 7 1.42E-12 5.97E-10 

MP-10790 8 1.55E-7 4.79E-7 

 

 

The computation speed and parallelism of the graph-based state estimation is analyzed 

and presented as follows. In the PNNL technical report [23], the commercial EMS SE function 

was used as the benchmark, whose CPU frequency is 2.67 GHz. It costs ~5.70 seconds in 

average for the BPA system model, which has approximately 7500 buses, 9300 branches and 

27000 measurements. The convergence tolerance for voltage magnitude and phase angle were 

1.0E-2 and 2.0E-2, respectively. The SE function in Sichuan Grid EMS takes ~1.64 s at 2.30 

GHz CPU frequency, which is around 1.30 s when normalized at 2.67 GHz. The Sichuan grid 

model is a 2433-bus system, having 2902 branches and 8786 measurements. In addition, its SE 

convergence thresholds are set at 1.0E-4 for both voltage magnitude and phase angle. Based on 
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the two commercial SE cases, it can be approximately estimated that, if using commercial EMS, 

the MP-10790 case SE function would consume 6~7 s at 2.67 GHz CPU frequency. With the 

proposed graph computing based parallel SE, the computation time of Sichuan-2433 and MP-

10790 cases, if using 8 running threads, are respectively 93.96 ms and 401.30 ms at 2.10 GHz 

CPU frequency. Their normalized time are 73.90 ms and 315.63 ms at 2.67 GHz CPU frequency. 

The convergence tolerance is 1.0E-4 for both voltage magnitude and phase angle.  

 

 

Figure 4.13: Computation time of MP-10790 cases with 1, 2, 4, 8, 12, 16 threads 

The time consumption of SE equation solving part changes little, same as the results in 

[23], while the computation time spent on SE problem formulation and update almost decreases 

linearly as the number of running threads increases. Therefore, the total time cost changes in the 

same trend as the problem formulation and update part.  Limited by the server’s CPU 

configuration, the computation time changes little when the number of running threads exceeds 

12.  

Table 4.3 and Table 4.4 decompose the total computation time into detailed procedures 

for the two cases. These items include gain matrix formulation, gain matrix factorization, RHS 

vector update, forward/backward substitution (F/B substitution), and system states update. It can 



 

63 

 

be seen that the time costs of gain matrix formulation, RHS vector update, and system states 

update reduce with the increase of running threads, while the time consumption of gain matrix 

factorization and F/B substitution is stable with few variations. They are categorized into two 

components: 1) SE problem formulation and update component, including gain matrix 

formulation, RHS vector update, and system state update, 2) SE equation solving component, 

including gain matrix factorization and F/B substitution. Fig. 4.13 plots the trends of the 

computation time changes with the increase of running threads in MP-10790 case.  

 

 

Table 4.3. MP-10790 Case Computation Time with 1, 4, 8, 12, 16 Threads 

 

Threads 

 

Gain Matrix 

Formulation 

 

Gain Matrix 

Factorization 

Per Iteration 

RHS Vector 

Update 

F/B 

Substitution 

System State 

Update 

1 349.88 101.95 113.06 1.83 11.37 

2 211.24 100.99 63.72 1.83 6.89 

4 112.72 103.27 37.03 1.81 4.39 

8 72.06 105.77 22.44 1.77 2.51 

12 70.84 102.68 19.87 1.73 2.58 

16 71.50 101.59 18.42 1.75 2.54 

 

 

Table 4.4. Sichuan-2433 Case Computation Time with 1, 4, 8, 12, 16 Threads 

 

Threads 

 

Gain Matrix 

Formulation 

 

Gain Matrix 

Factorization 

Per Iteration 

RHS Vector 

Update 

F/B 

Substitution 

System State 

Update 

1 70.89 13.57 23.48 0.34 2.77 

2 39.94 13.21 14.12 0.33 1.87 

4 28.13 13.12 8.92 0.31 1.36 

8 18.83 13.38 6.10 0.31 0.94 

12 15.88 13.64 6.10 0.34 0.96 

16 15.66 13.36 6.05 0.31 1.03 
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4.6 Conclusion 

In this work, a graph-computing based high-performance parallel state estimation 

algorithm is presented. With the graph database, system measurements are first partitioned and 

stored at corresponding nodes. Then node-based gain matrices, H matrices, and RHS vectors are 

derived and formulated using node-based parallel computing. To further save storage space and 

reduce the matrix sparsity, node-based dense matrices are presented. In addition, to improve the 

computation complexity of system-level gain matrix, system topology analysis is conducted to 

demonstrate that each row vector of system gain matrix can be obtained within 2-step graph 

traversal and stored as an attribute of the corresponding node. Then each row vector of system-

level gain matrix is obtained locally and the whole system gain matrix is formulated in parallel. 

From the testing results, the computation time of gain matrix formulation, RHS vector update 

and system states update reduce in company with the increase of running threads. The proposed 

graph-based parallel computing algorithm can speed up the WLS SE to SCADA- rate and can 

help achieve real time monitoring of power systems. 
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