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ABSTRACT 

The development of flexible and foldable structures is a game-changing technology 

in many engineering, architecture, and design fields. This technology allows for 

structures and devices that are reusable, adaptable, portable and deployable while 

performing their desired functions. One classical example is deployable antennas for 

space applications. Recent applications are in biomedicine, architectural facades, 

transformable- and portable shelters, among others. This study presents parametric 

studies on understanding deformations of two types of flexible structures activated by 

thermal and mechanical stimuli. The first type of flexible structures consists of bilayer 

materials, which have significant differences in their thermo-mechanical properties. 

The second type is made of relatively stiff flat panels with relief cutting or kerfing 

patterns. The kerfing patterns increase the flexibilities of the plates. Parametric studies 

are conducted on these flexible structures in order to examine the effects of the mate rial 

and geometrical parameters on the overall deformations of the structures. Several 

applications are illustrated in order to show how to form the desired shapes by designing 

the flexible structures with certain microstructural characteristics. 
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CHAPTER I 

INTRODUCTION 

1.1 Literature review 

Flexible and lightweight structures are gaining popularity in recent engineering 

applications. For example, in space applications, lightweight and flexible structures can 

dramatically reduce the cost of deployable systems, while in automotive industries, 

these structures can significantly increase the efficiency of vehicles. It is becoming 

necessary to understand the characteristics of these flexible and foldable structures in 

order to design structures for various applications . 

Some of flexible structures are integrated with smart materials, like thermo -electric 

materials, piezoelectric materials,  shape memory alloys etc. so that these structures have 

the ability of sensing and adapting in response to the external stimuli (thermal field, 

electrical field, optical field and so on). Significant efforts have been made on the 

development of smart materials. Otsuka and Wayman found that SMPs (shape memory 

polymers) possessing dual-shape ability can undergo relatively large deformations 

under external stimuli [1], which found many applications as sensors and actuators, e.g.,  

Liu [2], Li [3], Suo [4], etc. In order to increase the stiffness and strength of the SMPs, 

Gunes and Jana [5] and Meng and Hu [6] have considered adding hybrid fillers to the SMPs. 

It is shown that the reinforced SMP composites have better performance like easy 

processing, lightweight, low cost, corrosion resistance, compared to the original ones. 

For example Gall presented bending analysis to test two groups of samples, resin 

transfer molded (RTM) specimens and pre-impregnated (pre-preg) pressed samples to 
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find that such composites can recover approximately 100% back to the original states 

after undergoing large deformations [7], while Tendon’s experiments focused on the 

durability of these materials exposed to harsh environmental like UV radiation, 

moisture and so on [8]. EAPs (electroactive polymers) are also another type of 

compliant materials, which have electro-mechanical coupling stimuli. The non-contact 

actuation characteristics makes it suitable for soft robotics applications. Bar-Cohen and 

Stewart [9], Samatham [10], Kornbluh [11] have shown that some EAP have the 

potential to mimic movements of muscles. Several analytical and numerical models 

have been presented in order to investigate the deformation in smart compliant systems 

exposed to non-mechanical stimuli. Tajeddini et al. presented a numerical study of 

flexible composite structures using piezoelectric actuators  [12]. They investigated the 

effect of nonlinear electro-mechanical coupling behaviors of piezoelectric materials on 

the deformations of active compliant structures. Ask et al. presented a coupled electro-

viscoelastic model for electrostrictive PU based on the experiment data. The model is 

implemented in a finite element formulation for analyzing response of electro-active 

structures, e.g., [13][14][15]. 

A number of flexible structures are often subjected to severe environmental 

conditions like high temperatures and/or high temperature gradients. These thermal 

effects will have a huge impact on the performance of these structures , and these thermal 

behaviors can actually be utilized to achieve certain functions and/or desired 

deformations. Boley and Weiner discussed basic linear theory of thermal stress in beams 

under thermal variation [16]. Boley also extended the elementary beam theory when 

considering the temperature effects on composite beams of rectangular cross section 
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[17]. Many researches (Horvay and Born [18], Durelli and Tsao [19]) have focused on 

the stress and displacement formulations under a uniform temperature change, while 

Eischen has presented a thermal stress analysis on a composite strip under temperature 

gradients [20]. Recently, there are several other approaches in incorporating the thermal 

effects on the deformations of composites and structures . Khan [21] and Jeon [22] both 

considered thermal effects in determining the overall deformations of viscoelastic 

materials and composites.  Khan included coupled heat conduction and deformation in 

analyzing response of polymers and composites, due to the energy dissipation effect . It 

is known that the thermal stimulus can have a detrimental effect to structures, such as 

reduction in mechanical properties at elevated temperature or accelerated aging in 

materials. However, one can also utilize the thermal effect in materials and structures 

in order to achieve desired functions. One of the classic examples is the applications of 

bimetallic strips, e.g., thermostats, thermometers, circuit breakers . Due to its potential 

applications, there have been many analytical and numerical studies on determ ining the 

deformations in composite systems under thermal stimulus. Zhang conducted 

theoretical analysis combined with finite element analysis in order to determine the 

bistable behaviors of the anti-symmetrical composite shells under uniform temperature 

field and thermal gradient through the thickness [23]. Bartels et al. presented a reduced 

non-linear model of bilayer plates including diffusion under thermal actuation and a 

new finite element method was formulated for determining the 3D large deformations 

of the thin layer structures [24]. They showed that various folding and shape 

reconfigurations can be achieved by prescribing a thermal stimulus to the bilayer 

systems. 
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The most common type of flexible structures is of slender beams or plates, in which 

the planar dimension of these structures is much higher than their thickness, so that they 

have low second moment of an area with respect to the planar axes .  There has been 

another method to create flexible structures instead of relying mainly on the slender 

structures. Relief cutting is one of architecture practical techniques to create  a flexible 

planar surface from relatively stiff materials like MDF (Medium density fiberboard). 

The mechanisms are based on reducing the second moment of an area of the pl ates 

through several cutting patterns, in order to induce large out of plane deformations. 

There are a great variety of relief cutting patterns created by designers. Hoffer, taking 

the advantage of wooden properties, used the kerfing of wood to finish the design of a 

pavilion [25]. Bending of the corners is achieved due to the compliant characteristics 

in these regions, which were achived through kerfing.  

Dujam Ivanis̆ević first invented an interlocked Archimedean spirals pattern, which 

can obtain double-curvature panels [26]. Based on the 2D meander pattern, Zarrinmehr 

et al. used a remeshing method to provide an algorithm to obtain more general results, 

in which local properties of these patterns can be controlled to acquire the desired 

stiffness [27]. Instead of studying on design and fabrication process, Guzelci set up a 

basic three-step experimentation to present the affordance of the bending behavior of 

the planar surface [28]. Greenberg and Korner also investigated a subtractive material 

technique in architectural systems but he focused more on shapes found in the nature 

systems like biological creatures which may have great applications in architecture 

designs. [29]. 



5 

1.2 Motivations and Research Objectives 

Non- mechanical stimuli are attractive for inducing various shape changes in 

structures owing to its non-contact characteristics. This allows for remotely controlling 

the deformations in structures which find many applications  in engineering field, e.g., 

biomedicine, aerospace structures, and architectures. Temperature is one of the widely 

used and controllable sources of non-mechanical stimulus. The intelligent structures 

can be designed this way in response to the environment temperature to achieve its 

configuration for certain purposes. In order to properly design thermally activated 

flexible and compliant structures, there is a need to understand several material and 

geometrical parameters that influence the deformations in such flexible and compliant 

structures. The ultimate goal is to be able to design flexible structures with desired 

deformed shapes by prescribing thermal stimulus. 

Also, in architecture world, laser cutting has a great variety of applications to create 

fantastic flexible and compliant structures. In addition to the expression of art and 

beauty, they may have great potential in engineering areas. By controlling the stiffness 

of these structures, one can achieve many desired configurations with relatively small 

mechanical stimulus. Various shapes and patterns on architectural walls have a great 

advantage for acoustic purposes. To guide the design of flexible and compliant 

structures through wood cutting methods, there is a need for understanding of the 

mechanism of the deformations of the cut patterns. In the future, it is also possible to 

integrate active materials to the panels of different cut patterns so that the deformed 

shapes of these structures can be remotely controlled and adaptable to various 

environmental conditions. 
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The research objective of this study is to conduct parametric studies on 

understanding deformations in flexible structures actuated by mechanical and thermal 

stimuli. The first flexible system is comprised of bilayer composites which significant 

differences in the ratio of the thermal expansion between these two materials. An 

analytical solution is presented on a rather simple bilayer beam subjected to temperature 

changes and the result is compared to numerical solution from finite element (FE) 

analysis. Next, numerical simulation is performed on bilayer composite plates under a 

uniform temperature change. The effect of several parameters related to the geometry 

and material for the patches and substrates are analyzed in order to understand their 

effects on the overall plate deformations. Upon this understanding, a smart star-shaped 

plate and a saddle shape are created as examples of self-folding structures under thermal 

loadings. 

The second flexible system is on utilizing the architecture kerfing patterns in order 

to generate flexible structures under mechanical loadings. Although many works have 

been done to make use of cuttings to create flexible structures in architecture and 

construction field, limited works related to the mechanics of these structures are 

conducted to give the full understanding of the compliant characteristics of these 

kerfing structures. In this work, we will carry out some analysis on the unit sections of 

the relief cutting pattern to present some results of the affordance of the stretching, 

bending and twisting behaviors. After that, we can utilize these unit sections for some 

practical applications. Numerical simulations using FE are used for this purpose.  The 

effects of different cutting density and mesh size on the deformation are also studied. 

Uniaxial extension experiments are conducted on these different cutting density unit 
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cells to test their stretching behaviors. These unit-cells have great difference in 

flexibilities. By arranging the unit-cells with different density, various deformed 

configurations can be achieved. 
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CHAPTER II

BILAYER COMPOSITE STRUCTURES UNDER THERMAL 

LOADINGS 

2.1 Two-layered beam under thermal loadings 

For our study on large deformation behaviors of composite beams under uniform 

temperature loadings, a bonded two-layered beam is considered first shown in the 

Figure II.1. The analytical solution obtained from the beam theory is compared to the 

one from finite element (FE) analysis. The purpose is to examine the validity in using 

an approximate solution for analyzing thermal deformations of flexible structures under 

more complex boundary conditions. The origin of the beam is located on the left end of 

the bonded surface of the beam. The x-axis and y-axis are longitudinal and wide axes, 

respectively, while the z axis is in the out-of-plane direction. The i-th layer is denoted 

by subscript i (i=1, 2) and b i and hi  refer to the width and thickness of each layer. αi  

and Ei denote the thermal expansion ratio, thermal stress and elastic modulus of each 

layer respectively, while T is the uniform temperature change.  

Figure II.1 Two-layered beam from two perspectives 
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The strains ϵxi after the deformation are expressed by equation (II.1) 

ϵxi = αiT +
σxi

Ei
= ϵ0 +

y

ρ
     (i = 1,2) (II.1) 

where ϵ0 and 
1

ρ
denote the strain and the curvature at y=0, respectively. 

Since there are no external forces applied on the beam, then 

∫ σdA = 0
A

 ;  ∫ σydA = 0
A

 
(II.2) 

Due to the constant width of the beam, the equations (II.2) can be simplified by 

∫ σx1b1dy
0

−h1

+ ∫ σx2b2dy = 0
h2

0

 
(II.3) 

∫ σx1b1ydy
0

−h1

+ ∫ σx2b2ydy = 0
h2

0

 
(II.4) 

Combining the equation (II.3) and (II.4) to eliminate σxi, we can get 

2(E2h2b2 + E1h1b1)𝜖0 + (E2h2
2b2 − E1h1

2b1)
1

ρ

= 2 ∫ α1E1T1(y)b1dy
0

−h1

+ 2 ∫ α2E2T2(y)b2dy
h2

0

 
(II.5) 

3(E2h2
2b2 + E1h1

2b1)𝜖0 + 2(E2h2
3b2 − E1h1

3b1)
1

ρ

= 6 ∫ α1E1T1(y)b1ydy
0

−h1

+ 6 ∫ α2E2T2(y)b2ydy
h2

0

 
(II.6) 

With the equations (II.5) and (II.6), ϵ0 and 
1

ρ
can be denoted by 

ε0 =
2

D
{2 [∫ α1E1T1(y)b1dy

0

−h1

+ ∫ α2E2T2(y)b2dy
h2

0

] (E2h2
3b2

+ E1h1
3b1)

− 3 [∫ α1E1T1(y)b1dy
0

−h1

+ ∫ α2E2T2(y)b2dy
h2

0

] (E2h2
2b2

− E1h1
2b1)}

(II.7) 
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With equation (II.7), (II.8) and (II.9), the curvature can be determined, considered 

here as a parameter (C*). We adopt the relation between the curvatures and the 

deflections for large displacement of an elastic beam, see Muliana [30], which gives the 

displacements along the longitudinal axis of the beam:  

where the 𝑢𝑥0  and 𝑢𝑦0  are components of the displacement in x and y directions , 

respectively. 

In order to examine the analytical model and FE analysis for the bilayer beam under 

different temperature changes, we consider a specific two-layered beam case and the 

parameters for each layer are given in Table II.1. 

Table II.1 Parameters for each layer of the beam 

Layer_1 Layer_2 

Young’s modulus 2.9E5 psi 7.3E6 psi 

Poisson’s ratio 0.2 0.38 

Thermal expansion ratio 150x10-6 5x10-6 

Length 0.79 inch 0.79 inch 

Height 0.06 inch 0.04 inch 

1

ρ
=

6

D
{2 [∫ α1E1T1(y)b1ydy

0

−h1

+ ∫ α2E2T2(y)b2ydy
h2

0

] (E2ℎ2b2

+ E1ℎ1b1)

− [∫ α1E1T1(y)b1dy
0

−h1

+ ∫ α2E2T2(y)b2dy
h2

0

] (E2h2
2b2

− E1h1
2b1)}

(II.8) 

where D = (E2h2
2b2 − E1h1

2b1)2 + 4𝐸1𝐸2ℎ1ℎ2(ℎ1 + ℎ2)2𝑏1𝑏2 (II.9) 

𝑢𝑥0 =
𝜀0

𝐶∗
sin(𝐶∗𝑥) − 𝑥 (II.10) 

𝑢𝑦0 =
ε0

𝐶∗
cos(𝐶∗𝑥) −

ε0

𝐶∗
(II.11) 
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In the contrast with the analytical solutions, a 2D shell FE (Finite Element) model 

is created. The linear elastic shell element S4R is used in the model and the element 

size is 0.02 inch, after conducting a parametric study. The results of the tip deflections 

under different uniform temperature changes are summarized in Table II.2 and Figure 

II.2. 

Table II.2 The relation between temperature change and displacement  from analytical and 

numerical results 

Temperature 

change (oC) 

The maximum displacement(inch) 

Analytical 

solution 

Simulation 

result 

Error 

value 

0 0.0000 0.0000 

10 0.0168 0.0169 1.0% 

20 0.0335 0.0339 1.0% 

30 0.0503 0.0508 1.0% 

40 0.0670 0.0677 1.0% 

50 0.0838 0.0846 1.0% 

60 0.1004 0.1015 1.0% 

70 0.1171 0.1183 1.0% 

80 0.1337 0.1351 1.0% 

90 0.1503 0.1519 1.0% 

100 0.1669 0.1686 1.0% 
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Figure II.2 Displacement in a composite beam under uniform temperature change  

According to the Table II.2 and Figure II.2, the simulation matches the analytical 

solution quite well and the error values are below 2%. Thus, for the rest of parametric 

studies on bilayer plates under uniform temperature changes, numerical analyses will 

be considered.  

2.2 Composite plates under thermal loadings 

After the discussion about the composite beams under thermal loadings, we extend 

our work to 2D (two dimensional) planar models that can undergo various 3D (three 

dimensional) complex shapes. For 2D cases, we consider two- layered plates shown in 

Figure II.3, one as the substrate and another one as the patch. The size of the plate is 

2.36 inch x 2.36 inch. We will vary the thickness of the plate and also the size of the 

patch, which will be discussed later.  The two layer plates are tied together and they are 
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modeled as 2D shell models. The linear shell  elements S4R are used for all the cases. 

After conducting the convergence study, we choose 0.02 inch as the element size for all 

the bilayer plate models. They can undergo deformation differently under uniform 

temperature change due to various factors like the thickness of the sub strate, the 

stiffness of the substrate as well as the size of the patch in comparison to the substrate.  

In this section, parametric studies are conducted in order to examine several material 

and geometrical parameters that influence the deformed shapes of the bilayer plates.  

Figure II.3 The two-layered plates 

2.2.1 Thickness 

Thickness is an important factor that affects the bending stiffness of the structure. 

For a simple beam, the thicker the beam is, the harder it is to bend the beam in the 

thickness direction due to the increasing second moment of an area. When extended to 

a 2D planar cases, more variables are included in the problem, so models with different 



14 

thickness of the substrates are created to assess the effect of the thickness on the 

deformation of the structures under same thermal loadings.  

The 2.36 inch x 2.36 inch square plates are introduced as the substrates and the 

thickness of the plates varies from 0.04 inch to 0.4 inch, while they are all tied to the 

center of a 0.79 inch x 0.79 inch square plate with 0.02 inch in thickness. The material 

property are shown in Table II.3. The uniform temperature change is 100°C and the 

boundary condition is to constrain three points as orange regions shown in Figure II.3 

of the substrate to eliminate the rigid body motion of the model.  The left bottom point 

is constrained in the displacement of all three directions, while the right bottom point 

and the left top point are constrained in the displacement of y and z direction and z 

direction, respectively. The displacement contours for substrates in different thickness 

are shown in Figure II.4. 

The relationship between the maximum displacement and thickness are shown in 

Figure II.5. Based on the results, the relationship is not linear but following a third-

order function of the thickness. Decreasing the thickness of the substrate can 

tremendously increase the flexibility of the composite plates, which is expected due to 

the decrease in the second moment of an area with regards to the bending axes . It is also 

seen that with thin substrates, smaller temperature changes are needed in order to induce 

deformations. 

Table II.3 Properties for the material of the substrates and patches in different thickness 

Young’s modulus Poisson’s ratio Thermal expansion 

Substrate 0.29x106 psi 0.2 150x10-6 

Patch 0.29x106 psi 0.2 5x10-6 
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  0.01 inch       0.02 inch 

   0.04 inch                    0.08 inch 
Figure II.4 Displacement contour for bilayer plates with different thickness in the sbustrates 
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Figure II.5 The relation between the maximum displacement and the substrates thickness  

 

2.2.2 Young’s modulus 

Young’s modulus, also known as elastic modulus can measure the substrate’s 

resistance to being deformed elastically under certain stress. It is also a significant 

parameter to determine the deformation of the structure. Thus, we use the same patch 

as before and a 2.36 inch x 2.36 inch square plate with 0.02 inch in thickness as the 

substrates, while the substrates have a wide range of Young’s modulus (0.15e6 to 7.3e6 

psi). The material property are shown in Table II.4. The uniform temperature change is 

100°C and the boundary condition is the same as previous work to constrain three points 

in the bottom surface of the substrate to eliminate the rigid body motion of the model . 

The displacement contours for substrates in different Young’s modulus are shown in  

Figure II.6. 
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II.7. The Figure II.7 is a semi-log plot and the Young’s modulus is plotted on 

logarithmic scale. In this semi-log graph, the maximum displacement is approximately 

linear related to the Young’s modulus.  Higher elastic modulus leads to less compliant 

structures, as expected. 

Table II.4 Properties for the material of the substrates and patches in different Young’s 

modulus 

Young’s modulus Poisson’s ratio Thermal expansion 

Substrate varied 0.2 150x10-6 

Patch 0.29x106 psi 0.2 5x10-6 

  1.45x105psi                  2.90x105psi 
Figure II.6 Displacement contour for bilayer plates with the substrates in different Young’s 

modules 
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 7.25x105 psi  1.45 x106psi 

 2.90 x106psi     7.25 x106psi 
Figure II.6 Continued 
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Figure II.7 The relation between displacement and the substrates young’s modulus  

2.2.3 Patch size 

The size of the patch can also affect the deformations of the structures. The patch 

size is not an absolute value, but a relative one with regards to the size of the substrates. 

In order to examine the effect of ratios of the patch size to the substrate size on the 

overall deformations of the bilayer plates, we fix the substrate model following the 

previous examples, while we consider different sizes of the patch that is placed in the 

middle of the substrate. We use the length of the square patches as the factors. The 

material properties are shown in Table II.5. The uniform temperature change is 100°C 

and the boundary condition is to constrain three points in the bottom surface of the 

substrate to eliminate the rigid body motion of the model , as discussed previously. The 

displacement contours for different patch seizes are shown in Figure II.8. According to 
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the patch size. The larger area with high displacement gradients due to a thermal 

stimulus leads to higher bending deformations. 

Table II.5 Properties for the material of the substrates and patches in different patch sizes 

Young’s modulus Poisson’s ratio Thermal expansion 

Substrate 0.29x106 psi 0.2 150x10-6 

Patch 0.29x106 psi 0.2 5x10-6 

1.18 inch 0.94 inch 

0.71 inch 0.47 inch 0.24 inch 

Figure II.8 Displacement contour for bilayer plates with the different patch size 
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Figure II.9 The relation between displacement and the patch size  

2.2.4 Patch shapes and patch locations 

In the previous works, we have all plates in square and all patches placed in the 

center of the substrates, so all deformations have four symmetric planes. If we want to 

get the unsymmetrical geometrical configurations, changing patch shapes and patch 

locations are two ways to achieve the goal.  

Patch shape 

There are various shapes which can be applied in the patches. For the square 

substrates, instead of having four sides deformed equally, we can change the square 
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of the patch shape on the deformation. 

A same substrate plate (2.36 inch x 2.36 inch x 0.02 inch) is used and all patches 

are of same volume (3.1x10-3 in3). We have five kinds of patches and the parameters 

are shown in Table II.6. 

Table II.6 The dimensions of the patches 

Length/inch Width/inch Thickness/inch 

1 1.97 0.0789 0.020 

2 0.984 0.157 0.020 

3 0.787 0.197 0.020 

4 0.492 0.315 0.020 

5 0.394 0.394 0.020 

All the patches are still tied to the center of the substrates and the material propert ies 

are shown in Table II.7. The uniform temperature change is 100°C and the boundary 

condition is to constrain three points in the bottom surface of the substrate to eliminate 

the rigid body motion of the model, as discussed previously. The displacement contours 

for different patch shapes are shown in Figure II.10. Based on Figure II.10, we can see 

the plates with patch with the smallest length and width aspect ratio have smallest 

deformation. Instead, the patch with higher length and width aspect ratio can not only 

account for largest bending in the length direction, but also eliminate the  bending in the 

width direction because there are large area with high displacement g radient along the 

length direction. It is beneficial for the plates bending in one direction.  



23 

Table II.7 Properties for the material of the substrates and patches in different patch shape 

Young’s modulus Poisson’s ratio Thermal expansion 

Substrate 0.29x106 psi 0.2 150x10-6 

Patch 0.29x106 psi 0.2 5x10-6 

Shape_1 Shape_2 

Shape_3 Shape_4 Shape_5 

Figure II.10 Displacement contour for bilayer plates with patches in different shapes 

Patch locations 

Instead of placing all the patches in the center of the substrates, patches in other 

locations can cause distinct unsymmetrical deformations. A 2.63 inch  x 2.63 inch x 0.02 
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inch substrate can be divided to 3x3 grid like in Figure II.11. 

c 

b a 

Figure II.11 The divided substrate model  

Each grid is a 0.79 inch x 0.79 inch square, so the patch size we use is 0.79 inch x 

0.79 inch x 0.02 inch. For the nine grids, there are only three independent grids shown 

in the red because the square is symmetrical. Thus, we take these three grids as th e 

patch locations. As is shown in Figure II.12, the center-located patch can deformed the 

largest. Also, the locations further from the patches will deform much less than the 

patch areas do. Because the patch is still square shape, the displacement contours are 

all symmetrical but with the respect of different axis. 
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                                   Location a 

 

Location b                       Location c 

Figure II.12 Displacement contour for bilayer plates with different patch locations  

 

2.3 Application 

Based on above parametric studies, we have gained some basic understanding on 

how the deformation of the bilayers changes with various material and geometrical 
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parameters. The key component in achieving large out of plane deformation by having 

large displacement gradients through the thickness of the bilayers . The results from the 

present analyses can be applied to smart structures that can respond to the variations of 

the environment. 

A smart plate as an example is illustrated in the following work. A star  shape plate 

is created in Figure II.13. The final purpose is that the star plate can fold itself like a 

flower under uniform temperature change. According to the previous works, slender 

beams in 2.36 inch x 0.394 inch x 0.020 inch are designed and they are placed close to 

the vertexes of the star shown in Figure II.13. 

Figure II.13 The star-shaped smart plate model  

The model is created in shell element S4R and the element size is 0.02 inch.  The 

material property are shown in Table II.8. The uniform temperature change is 50°C and 

the boundary condition is to constrain three points as the orange region shown in Figure 

II.13 in the bottom surface of the substrate to eliminate the rigid body motion of the

model, as discussed previously. According to Figure II.14, the star shape plate with 
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these patches fold dramatically under uniform temperature changes and basically 

achieve the original desired shape.  

Table II.8 Properties for the material of the substrates and patches in the star application 

Young’s modulus Poisson’s ratio Thermal expansion 

Substrate 0.29x106 psi 0.2 150x10-5 

Patch 0.29x106 psi 0.2 5x10-6 

Figure II.14 The displacement contour for the deformed star shape plates  

We take a saddle shape in Figure II.15 as another example to see how the smart plate 

can deform into the desired configurations. As the hyperbolic paraboloid, the saddle 

shape is doubly ruled surface with the opposing two sides bending in the one direction 

and other two sides in another direction. Let us consider a same thin plates as before 

with the size of 2.37 inch x 2.37 inch x 0.02 inch. The opposing side of the plates should 

bend symmetrically in terms of the origin point, so we can have a slender beam tied on 

the top surface along the diagonal to achieve the symmetrical bending in this direction 

like Figure II.16. 
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Figure II.15 The saddle shape example 

Figure II.16 The designed bilayer plate model  

A shell FE model is created with element S4R and the element size is 0.02 inch. The 

property for the materials are shown in Table II.9.The uniform temperature change is 
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50°C and the boundary condition is to constrain three points in the center of the 

substrate shown as orange region in Figure II.16 to eliminate the rigid body motion of 

the model, as described before. 

Table II.9 Properties for the material of the substrates and patches in saddle shape 

Young’s modulus Poisson’s ratio Thermal expansion 

Substrate 0.29x106 psi 0.2 150x10-5 

Patch 0.29x106 psi 0.2 5x10-6 

Figure II.17 Displacement contour for the saddle shape 

According to Figure II.17, the plate with the patches can achieve almost the sadlle 

shape under thermal loadings. Bilayer plates under thermal loadings have great 

potiential to achieve complicated shapes. 

Instead of designing each patch for every application example, we could have same 

patch arranged in a certain sequence to achieve the desired configurations. A 15 inch 

x15 inch substrate is still used as before and has been divided into 15x15 grids  shown 

in the Figure II.18. For the Model_1 shown in Figure II.19, we use the square patches 

placed in a certain sequence. The red region is the patch placed on the top surface and 
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the green region is the patch placed on the bottom surface.  In Model_2, square patches 

have been changed into the patch style used in the saddle shape example, which have 

one slender beam placed on the diagonal on the top surface and another on the bottom 

surface. Rather than having discrete patch locations shown in the Model_1 and Model_2, 

we can place continous patches in the substrate shown in Model_3. The element type 

for each model is S4R and the element size is 0.02 inch. The property for the materials 

are shown in Table II.10. The uniform temperature change is 100°C. The boundary 

conditions for Model_1 and Model_3 are both to constrain the three points illustrated 

before to eliminate the rigid body motion. For Model_2, we constrain the center part of 

the substrate in all directional displacements. 

Figure II.18 The divided substrate 
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Model_1   Model_2     Model_3 
Figure II.19 Application models 

Table II.10 Properties for the material of the substrates and patches in continous patches 

Young’s modulus Poisson’s ratio Thermal expansion 

Substrate 0.29x106 psi 0.2 150x10-5 

Patch 0.29x106 psi 0.2 5x10-6 

Figure II.20 Model_1 displacement contour (inch)  
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Figure II.21 Model_2 displacement contour (inch) 

Figure II.22 Model_3 displacement contour (inch) 

According to the Figure II.20, the Model_1 deformed like waves with concaves and 

convexities on the patch locations as predicted. In Figure II.21, the overall deformed 

shape for the Model_2 is still a saddles shape but with some slight deformation occurred  

on the patch locations. From Figure II.22, the plate folds itself dramatically due to the 

out layer patches, while there is a convex shown in the center of the plate for the inner 

layer patches. 

According to all examples shown above, the bilayer composite plates have great 

potentials in achieving the desired complicate configurations. 
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CHAPTER III

ARCHITECTURE KERFING PATTERNS UNDER MECHANICAL 

LOADINGS 

Relief cutting is a new technique in order to transform a relatively stiff plate to a 

more flexible and compliant plate, which can be accomplished by a wide variety of 

cutting patterns. It is quite interesting to see that the rigid planar surface can have such 

great flexibility with theses cuttings, so further study is conducted in order to 

understand the mechanisms underlying mechanical deformations on these kerf 

structures. In this study, we choose one of the most common square patterns 

(Interlocked Archimedean Spirals) as the kerfing pattern. The advantage of this pattern 

is that it is relative easy to arrange them to achieve desired deformations.  

ABAUQS finite element (FE) analyses are used in order to study the deformation of 

the kerfing patterns. We start with a unit-cell model and study several deformations, 

i.e., axial, equibiaxial, bending, and twisting, of the unit cell. First we compared the

responses from using three-dimensional (3D) continuum element and beam element in 

generating the unit-cell model. The 3D continuum element allows for generating the 

unit-cell with precise shapes and sizes, including detailed model of the patterns. 

However, it can be computationally expensive when one want to generate large scale 

panel with complex deformed shapes. The use of beam element will definitely reduce 

computational cost, especially when large scale structural analyses are considered, with 

a caveat that detailed geometrical shapes and sizes cannot be incorporated in the 

analyses. Later we conduct parametric studies on understanding the effect of cut 
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densities on the overall deformation of the unit-cell using the beam element. An 

experimental test is performed on unit-cell models with different cut densities subjected 

to a uniaxial deformation. Responses from the experiments and FE analyses are 

compared. Finally, large scale plate structures with different arrangements of unit -cells 

of various cut densities are analyzed and the deformed shapes of these structures due to 

mechanical stimulus are studied.  

3.1 Responses of Unit-cell with 3D continuum and beam elements 

Three-dimensional (3D) continuum elements are often computationally expensive, 

especially in large panels consisting of repeated unit sections like what we will design 

later. Alternatively, we can consider structural elements, such as beam or frame element, 

instead of the continuum ones. However, for the result to be accurate, we need to 

demonstrate that the structural element can also capture the deformations of the 

structure well. 

Initially, element type frame3d is chosen to capture the continuum model, but, in 

ABAQUS, frame element can only output forces, moments, elastic strains and 

curvatures instead of stress and displacement which is important indicators for the 

analysis in our cases. Thus, instead of a frame element, beam element is used for the 

following works. Several numerical tests are conducted on the same unit section using 

beam element and continuum element to compare their behaviors.  

To create a beam model, simplifications of the original models are needed. The 3D 

model is designed in SolidWorks based on the actual design parameters provided by the 

architecture lab. The centerline of each cut pattern in the 3D model is represented as a 
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prismatic beam. This way the 3D continuum model is transferred into a planar model 

which is then imported into ABAQUS for the stress analysis. In the following works, 

all continuum models are created in 8-node linear brick element C3D8 and all beam 

models are in linear beam element B31. From the convergence study (see Appendix A), 

the element size for the beam model is 0.0004 inch and the total element number is 

20576, while, for the continuum model, the element size is 0.001 inch and the element 

number is 58240. Both models with 3D continuum and beam elements are now used to 

study the responses under uniaxial extension, biaxial extension, bending and twisting.  

The MDF is modeled as linear elastic and isotropic material with elastic modulus of 

0.58x106 psi, Poisson’s ratio of 0.25 and tensile strength of 2.6x10 3 psi. 

3.1.1 Case 1 uniaxial extension 

In the uniaxial extension, the boundary condition is to constrain the top endpoint in 

all direction of the displacements and a displacement loading is applied at the bottom 

endpoint along the vertical direction in the beam model. In the continuum model, the 

boundary condition and loading are the same, but they are applied on the end faces 

instead of points. Loading is applied until the maximum stress reaches the ultimate 

tensile stress of the MDF. The stress contour and displacement contour for these three 

unit sections under maximum loading are shown in Figure III.1 and Figure III.2, 

respectively. The analysis time for continuum model in uniaxial extension simulation 

is 39s, more than twice of that for the beam model (15s).  

According to Table III.1 and Figure III.3, under uniaxial extension, the continuum 

model and the beam model give relatively close behaviors with less than 10% difference. 
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Figure III.1 Displacement contour for beam and continuum models in case 1  

 

 

 

 

Figure III.2 Stress contour for beam and continuum models in case 1  
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Table III.1 Results for beam and continuum models in case 1  

case1_uniaxial extension 

continuum model 
beam model 

error value 
force/lbf displacement/inch 

2.25E-05 1.85E-07 force/lbf displacement/inch 

2.25E-04 1.85E-06 1.12E-03 1.01E-05 

2.25E-03 1.85E-05 2.25E-03 2.02E-05 9% 

1.12E-02 9.29E-05 1.12E-02 1.01E-04 9% 

1.69E-02 1.39E-04 1.69E-02 1.52E-04 9% 

2.25E-02 1.85E-04 2.25E-02 2.02E-04 9% 

5.62E-02 4.65E-04 5.62E-02 5.08E-04 9% 

1.12E-01 9.29E-04 1.12E-01 1.01E-03 9% 

1.69E-01 1.39E-03 1.69E-01 1.52E-03 9% 

2.25E-01 1.86E-03 2.25E-01 2.03E-03 9% 

Figure III.3 The relation between displacement and force  for beam and continuum models in 

case 1 
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3.1.2 Case 2 biaxial extension 

In the equibiaxial extension, the boundary condition is to constrain the bottom and 

right endpoints in all direction of the displacement and a displacement loading is applied 

at the left and top endpoints along the vertical direction in the beam model. In the 

continuum model, the boundary condition and loading are the same, but they are applied 

on the end faces instead of points. The stress contour and displacement contour for these 

three unit sections under maximum loading are shown in Figure III.4 and Figure III.5, 

respectively. The analysis time for the continuum model under biaxial extension 

simulation is 29s, about twice of that for the beam model (15s). 

According to Table III.2 and Figure III.6, the performance in biaxial extension for 

the continuum model and the beam model are nearly the same. Including the uniaxial 

extension case discussed before, the beam model can capture the stretching behaviors 

of the continuum model well. 

Figure III.4 Displacement contour for beam and continuum models in case 2  



 

 

39 

 

 

Figure III.5 Stress contour for beam and continuum models in case 2 

 

 

Table III.2 Results for beam and continuum models in case 2  

 

 

case2_biaxial extension 

continuum model 
beam model 

error value 
force/lbf displacement/inch 

2.25E-05 4.84E-07 force/lbf displacement/inch 

2.25E-04 4.84E-06 1.12E-03 2.51E-05 

2.25E-03 4.84E-05 2.25E-03 5.00E-05 3.33% 

1.12E-02 2.43E-04 1.12E-02 2.50E-04 3.17% 

1.69E-02 3.64E-04 1.69E-02 3.76E-04 3.31% 

2.25E-02 4.84E-04 2.25E-02 5.00E-04 3.33% 

5.62E-02 1.21E-03 5.62E-02 1.25E-03 3.31% 

1.12E-01 2.43E-03 1.12E-01 2.50E-03 3.31% 

1.69E-01 3.63E-03 1.69E-01 3.68E-03 1.37% 

2.25E-01 4.84E-03 2.25E-01 5.00E-03 3.33% 
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Figure III.6 The relation between displacement and force  for beam and continuum models in 

case 2 

3.1.3 Case 3 twisting 

In twisting, the boundary condition is to constrain the left and right endpoints in all 

direction displacement and forces are applied at the top and bottom endpoints in 

different out-plane directions in the beam model. In the continuum model, the boundary 

condition and loading are the same, but they are applied on the end faces instead of 

points. The stress contour and displacement contour for these three unit sections under 

maximum loading are shown in Figure III.7 and Figure III.8, respectively. The analysis 

time for the continuum model in twisting simulation is 34s, more than twice of that for 

the beam model (14s). 

According to Table III.3 and Figure III.9, the differences in the analyses with beam 

and continuum 3D elements are less than 9%, which is reasonably well. 

0.000

0.001

0.002

0.003

0.004

0.005

0.00 0.05 0.10 0.15 0.20 0.25

d
is

p
la

ce
m

e
n

t 
(i

n
ch

)

force (lbf)

case2_biaxial extension

continuum model beam model



41 

Figure III.7 Displacement contour for beam and continuum models in case 3  

Figure III.8 Stress contour for beam and continuum models in case 3  
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Table III.3 Results for beam and continuum models in case 3  

case3_twisting 

continuum model 
beam model 

error value 
force/lbf displacement/inch 

2.25E-06 5.16E-07 force/lbf displacement/inch 

2.25E-05 5.16E-06 1.12E-04 2.38E-05 

2.25E-04 5.16E-05 2.25E-04 4.76E-05 7.63% 

2.25E-03 5.16E-04 2.25E-03 4.76E-04 7.63% 

1.12E-02 2.58E-03 1.12E-02 2.38E-03 7.93% 

2.25E-02 5.16E-03 2.25E-02 4.76E-03 7.63% 

5.62E-02 1.30E-02 5.62E-02 1.19E-02 8.21% 

1.12E-01 2.59E-02 1.12E-01 2.37E-02 8.50% 

1.69E-01 3.89E-02 1.69E-01 3.55E-02 8.80% 

2.25E-01 5.20E-02 2.25E-01 4.72E-02 9.09% 

Figure III.9 The relation between displacement and force 

for beam and continuum models in case 3  
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3.1.4 Case 4 bending 

In twisting, the boundary condition is to constrain the left and right endpoints in all 

directions of the displacement and forces are applied at the top and bottom endpoints in 

same out-plane directions in the beam model. In the continuum model, the boundary 

condition and loading are the same, but they are applied on the end faces instead of 

points. The stress contour and displacement contour for these three unit sections under 

maximum loading are shown in Figure III.10 and Figure III.11, respectively. The 

analysis time for continuum model in uniaxial extension simulation is 35s, more than 

twice of that for the beam model (15s). According to the analysis time from the four 

cases, the beam model can reduce half or even more time during the simulation 

procedure in contrast to the continuum model.  

According to Table III.4 and Figure III.12, for bending behaviors, the difference 

between the continuum model and beam model is a little larger than the stretching 

behaviors. Beam element can capture the in-plane deformations better than the out-

plane ones. 
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Figure III.10 Displacement contour for beam and continuum models in case 4 

Figure III.11 Stress contour for beam and continuum models in case 3  
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Table III.4 Results for beam and continuum models in case 4 

case4_bending 

continuum model 
beam model 

error value 
force/lbf displacement/inch 

2.25E-06 5.20E-07 force/lbf displacement/inch 

2.25E-05 5.20E-06 1.12E-04 2.16E-05 

2.25E-04 5.20E-05 2.25E-04 4.33E-05 16.67% 

2.25E-03 5.20E-04 2.25E-03 4.33E-04 16.67% 

1.12E-02 2.60E-03 1.12E-02 2.16E-03 16.97% 

2.25E-02 5.20E-03 2.25E-02 4.33E-03 16.67% 

5.62E-02 1.30E-02 5.62E-02 1.08E-02 16.97% 

1.12E-01 2.60E-02 1.12E-01 2.15E-02 17.25% 

1.69E-01 3.91E-02 1.69E-01 3.23E-02 17.34% 

2.25E-01 5.16E-02 2.25E-01 4.29E-02 16.79% 

Figure III.12 The relation between displacement and force  for beam and continuum models 

in case 4 
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3.2 Unit sections in different cutting density 

In order to form desired geometrical shapes , the planar surface is required to have 

distinct flexibilities at different parts. Thus, three unit cells of the same pattern but with 

different cut densities are created in order to examine the effect of cut densities on 

overall deformations. These different patterns are named as dense_1, dense_2, dense_3 

shown in Figure III.13 associated with the number of the cutline layers in a quarter unit-

cell model. Dense_1 pattern has only one layer of cutline, while dense_2 and dense_3 

patterns have 2 and 3 layers, respectively. All unit cells have the unit size of 1 inch x 1 

inch and the thickness of 0.125 inches and the line shown on the cutline models is the 

actual size of the cutline.  

 

 

  Cutline model (dense_1)   Cutline model (dense_2)   Cutline model (dense_3)    

Figure III.13 Cutline model for dense_1, dense_2 and dense_3 unit sections  

 

From the previous study on unit cells, the most fragile places are often the corners  

due to the stress concentration effect , so fillets (0.02 inch radius) are included to these 

models for all corners in order to improve their performance by avoiding failure at the 

junctions (sharp corner). Like the steps before, these patterns are simplified to beam 
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models in Figure III.14. All the models are meshed by linear beam element B31. 

According to the convergence study, the element sizes for dense_1 and dense_2 are both 

0.003 inch and the element numbers are 2347 and 3691 respectively. For dense_3 model, 

the element size is 0.001 inch and the element number is 15114. The cross section area 

of the beams for these three models are shown in Table III.5. The following parametric 

study is to compare their flexibilities under same loading conditions. 

beam_dense_1 beam_dense_2 beam_dense_3 

Figure III.14 Beam model for dense_1, dense_2 and dense_3 unit sections  

Table III.5 Beam cross sections for three models  

Beam cross section Thickness(inch) x Width(inch) 

Dense_1 0.1250 x 0.1000 

Dense_2 0.1250 x 0.0583 

Dense_3 0.1250 x 0.0375 

3.2.1 Case 1 uniaxial extension 

In uniaxial extension, the boundary condition is to constrain the top endpoint in all 

direction displacement and a displacement loading is applied at the bottom endpoint 
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along the vertical direction. The stress contour and displacement contour for these three 

unit sections under maximum loading are shown in Figure and Figure III.16, 

respectively. As expected the cut with higher density gives more flexible deformations 

due to a significantly low second moment of an area of each section between the cut 

lines. Adding more cut lines will certainly create more flexible structures. Ho wever, 

increasing cut lines leads to smaller area of each section between the cut lines, and 

hence reducing load carrying capability of the overall structures.  

Figure III.15 Stress contour for dense_1, dense_2 and dense_3 unit sections in case 1  



 

 

49 

 

 

Figure III.15 Continued 

 

 

 

 

Figure III.16 Displacement contour for dense_1, dense_2 and dense_3 unit sections in case 1  
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3.2.2 Case 2 Twisting  

In twisting, the boundary condition is to constrain the left and right endpoints in all 

direction displacement and concentrated loads are applied at the top and bottom 

endpoints in different out-plane directions. The stress contour and displacement contour 

for these three unit sections under maximum loading are shown in Figure  and Figure 

III.18, respectively. Similar observation like in the uniaxial case that higher density of 

cut lines leads to more flexible structures, due to reduction in the torsional rigidity of 

each section between the cut lines. 

 

 

 

Figure III.17 Stress contour for dense_1, dense_2 and dense_3 unit sections in case 2  
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Figure III.17 Continued 

Figure III.18 Displacement contour for dense_1, dense_2 and dense_3 unit sections in case 2  
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3.2.3 Case 3 Bending 

In bending, the boundary condition is to constrain the left and right endpoints in all 

direction displacement and concentrated loads are applied at the top and bottom 

endpoints in the same out-plane direction. The stress contour and displacement contour 

for these three unit sections under maximum loading are shown in Figure III.19 and 

Figure III.20, respectively. 

 

 

 

 

Figure III.19 Stress contour for dense_1, dense_2 and dense_3 unit sections in case 3  
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Figure III.20 Displacement contour for dense_1, dense_2 and dense_3 unit sections in case 3  

According to the data collected in the results,we can get Table III.6 to compare the 

responses of different patterns under different loading cases. The maxium loads for 

three unit sections in the cases are shown in Table III.7. These maximum values for the 

displacements and loads are determined based on the maximum stresses in the section, 

which is constraint to the failure stress of the MDF (2.6x103 psi). 
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Table III.6 Maximum displacement for dense_1, dense_2 and dense_3 unit sections 

in three cases 

Maximum Displacement(inch) Dense_1 Dense_2 Dense_3 

Uniaxial extension 1.390e-2 3.707e-02 7.627e-02 

Bending 3.795e-2 9.332e-02 1.622e-01 

Twisting 4.277e-2 7.149e-02 9.608e-02 

Table III.7 The maximum force for dense_1, dense_2 and dense_3 unit sections 

in three cases 

Maximum force(lbf) Dense_1 Dense_2 Dense_3 

Uniaxial extension 4.5 1.45 0.60 

Bending 2.5 1.35 0.40 

Twisting 2.5 0.90 0.35 

Figure III.21 Maximum displacement for dense_1, dense_2 and dense_3 unit sections 

in three cases 
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Figure III.22 The relation between force and displacement for dense_1, dense_2 and dense_3 

unit sections in three cases 

 

From Figure III.21, higher cutting densities in the unit cells will result in more 

flexiblities and this characteristics is more obvious under uniaxial extension and 

bending conditions. However it results in low load carrying capability of the structures . 

The relations between force and displacement are taken as the rigidities for the unit 

sections shown in Figure III.22. The unit sections with less cutting shows larger 

rigidities in all cases. 

 

3.3 Experiments 

With the further study on these unit cells, experiments are done on these unit cells 

by prescribing axial deformation to the unit-cells in contrast to the simulation results.  
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The experiments were done at Dr. Michael Moreno’s lab at Texas A&M University.  

3.3.1 Uniaxial extension 

Before the experiment, the sizes of the specimen handles are measured for the 

documentations. The sample is installed between two grips shown in Figure III.23 and 

the cramp marking lines are made to figure out there is no slip between the sample and 

grips during experiment. After the installation of the specimen, data acquire interval, 

the strain and the strain rate are set for the case. By slightly adjustment for the initial 

load and initial stroke, the grip distance is measured to work out the actual displacement 

and speed for each case. Then the experimental set-up is completed. During the uniaxial 

extension experiment, the grip_1 holds one side of the specimen statically, while the 

grip_2 stretch the specimen along the certain axis at the constant speed. Meanwhile, the 

forces and displacement are captured every interval set previously. We have three kinds 

of samples tested at two different strain rates (1% and 0.1%). The relation between the 

reaction forces and displacements for these three unit sections are plotted in  Figure 

III.24. 
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Figure III.23 The experiment instrument 

Figure III.24 Experiment data and simulation results for dense_1, dense_2 and dense_3  

in uniaxial extension 
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Figure III.24 Continued 

0.0

2.0

4.0

6.0

8.0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

fo
rc

e
(l

b
f)

displacement (inch)

dense_2 Uniaxial Extension

experiment(0.01424 inch/s) experiment(0.0013145 inch/s)

experiment(0.012894 inch/s) beam model_simulation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 0.2 0.4 0.6 0.8

fo
rc

e
(l

b
f)

displacement (inch)

dense_3 Uniaxial Extension

experiment(0.0013134 inch/s) experiment_retest(0.0013134 inch/s)

experiment(0.012894 inch/s) beam model_simulation



59 

These figures are in large displacements and they show some nonlinearity in 

material properties when failure starts. In order to discuss the linear behavior of these 

unit section which is used in simulation results, the parts of the displacements below 

0.05 inch are considered. In this way, the experiment data can be assumed 

approximately linear. From Figure III.25, the experimental data match the simulation 

quite well and the experiment rates do not affect the results much. However, in dense_1 

uniaxial case, the relative slow rate experiment in redline shows considerable 

differences with other results. 

Figure III.25 Experiment data and simulation results for dense_1, dense_2 and dense_3 in 

uniaxial extension under 5% strain 
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Figure III.25 Continued 
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3.4 Applications 

3.4.1 Dome shape 

After the study on the unit cells, we create a large panel with varying cut densities 

in order to achieve a desired deformed shape. A 15 inch x 15 inch panel is initially 

designed in Figure III.26. The goal is to generate a dome shape deformation.  

The center area in yellow is 7 inchx7 inch of dense_3 patterns to make the center 

part of the panel most soft, which is surrounded by 2 inches of dense_2 patterns in grey 

on each side. The edge of the panel in blue consists of 2-inches dense_1 patterns. 

  

 

Figure III.26 The panel model for the dome shape 

 

For the large panel, how to deal with the connection between two distinct unit 

sections should be taken into consideration. The connection does not have the same 

length magnitude as the main part of unit cells. Also, in actual situations, the connection 

part is a rectangular rather than a square from front view, like the shade area in Figure 

III.27. This is the connection example between dense_2 and dense_3.  
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Figure III.27 The connection example between dense_2 and dense_3  

As shown in Figure III.27, the width of the connection part is made up of three parts, 

the width of the beam for the left pattern, the width of the beam for the right pattern 

and the gap distance of laser cutting. However, if the left and right patterns are not the 

same, the connection will not be symmetric along the centerline. The problem is that, 

for the simplified beam models, in order to make the connections possible, we have to 

set the connection beams along the centerline of each unit sections (dense_2 beam 

model and dense_3 beam model) like in Figure III.28. 

Figure III.28 The connection of the beam models between dense_2 and dense_3 
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In this way, we need to assume that the connection part should be simplified to be 

symmetric for beam models. The simplification is to choose the smaller beam width 

value (like 0.0375 inch shown above) to replace of the larger beam width value (like 

0.0583 inch shown above). Thus, the width of the connection part should be set as 0.1  

(0.0375+0.0250+0.03750) inch instead of the original 0.1208 (0.0583+0.0250+0.03750) 

inch. 

According to the discussion above, there should be 8 different rectangular cross 

sections for the unit sections in the panel and the thickness for all unit section is 0.125 

inch. 

Table III.8 The parameters for beam cross sections 

Beam cross section Thickness(inch) x Width(inch) 

Dense_1 0.1250 inch x 0.1000 inch 

Dense_2 0.1250 inch x 0.0583 inch 

Dense_3 0.1250 inch x 0.0375 inch 

Connections between dense_1 pattern and 

dense_1 pattern 

0.1250 inch x 0.2250 inch 

Connections between dense_2 pattern and 

dense_2 pattern 

0.1250 inch x 0.1417 inch 

Connections between dense_3 pattern and 

dense_3 pattern 

0.1250 inch x 0.1000 inch 

Connections between dense_1 pattern and 

dense_2 pattern 

0.1250 inch x 0.1417 inch 

Connections between dense_2 pattern and 

dense_3 pattern 

0.1250 inch x 0.1000 inch 
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With the model created, the boundary condition for the case is to constrain the four 

edges in the displacement of all directions and apply pressure on the center part of the 

panel. The element type and size is used as discussed previously. The analysis was 

performed until the maximum stress in the panel reaches the material tensile strength 

(2.6x103 psi) and the stress contour under maximum loading is shown in Figure III.29. 

From the deformed shape in Figure III.30, it is like a dome with the center deformed 

much more than the surroundings. It does turn the stiff surface into a more flexible one 

with the help of cutting. 

Figure III.29 Stress contour for the dome shape panel 
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Figure III.30 Displacement contour for the dome shape panel  

 

3.4.2 Saddle shape 

For more applications, we want to acquire the desired deformed shape using certain 

arrangements of these unit cells with different densities. A saddle roof is a quite popular 

shape in architecture buildings and it is actually a paraboloid which require large 

flexibilities of the structures. In this work, we want to form a saddle shape like the 

surface z = 2xy.  
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Figure III.31 The surface 𝐳 = 𝟐𝐱𝐲 

A 15x15 inch panel as well as the three different unit sections are still used and the 

original point is located in the center point of the pane. The basic result we get from 

the previous works is that more cuttings account for more flexibilities among these 

patterns, so higher dense patterns are located in the locations with larger curvatures.  

K1 is used for the slope of trace of the function f(x, y) for y=b (b is a constant) 

along with the x-axis and K2 is for the slope of trace of the function f(x, y) for x=a (a 

is a constant) along with the y-axis. T is used as the total curvature for x and y axes. 

The expression is shown in Equation (III.1). 

Κ1 =
∂Z

∂x
;  Κ2 =

∂Z

∂y
; T = Κ12 + Κ22 (III.1) 

In the panel, there are 225 unit sections and due to three different patterns we have, 

they are divided into three groups based on the T of the center point of each unit section. 

The first group includes the parts whose T are larger than 50 and locations in this group 
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will be taken place by dense_3 patterns. The second group is those locations with T less 

than 10 and dense_1 patterns will be placed there. The rest are occupied by dense_2 

patterns. 

Figure III.32 The arrangement for three different unit sections  

As Figure III.32 shown, each grid stands for a unit section and the number in the 

grids are the T of the center point of each grid. Also, yellow, red and green are the 

symbols of group 1, 2 and 3, respectively. Considering the connection of the unit 

sections, a new beam panel is created in Figure III.33. The model is meshed as discussed 

before. 
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Figure III.33 The panel model for the saddle shape

In order to form the saddle shape, we apply out-plane forces on two corners on the 

same diagonal and opposite direction pressure on the rest two corners. The boundary 

condition is to constrain three points in the center of the panel shown as the orange 

region in Figure III.33 in the way discussed previously to eliminate the rigid body 

motion. Similiarly, we keep the stress limitation as the material tensile strength (2.6E3 

psi) and the stress contour and the deformed shape under maximum loading are shown 

in Figure III.34 and Figure III.25. 
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Stress contour in undeformed shape (psi) 

Figure III.34 Stress contour for the saddle shape panel  

Displacement contour in undeformed shape and deforemed shape (inch) 

Figure III.35 Displacement contour for the saddle shape panel  
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Figure III.35 Continued  
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CHAPTER IV 

CONCLUSIONS AND FUTURE WORKS 

This study has presented numerical analyses of large deformations in flexible 

structures subjected to thermal and mechanical stimuli. Two flexible systems have been 

studied. The first system is made of bilayers having different material properties for 

each layer. The bilayers are subjected to temperature changes and the deformed shapes 

are examined. Parametric studies have been conducted on the bilayers in order to 

understand the effects of several material and geometrical parameters on the overall 

deformations of the bilayers. Examples are illustrated to show the applications of the 

thermal actuation of the thin layer structures.  In this study, only constant temperature 

change is considered. In the future, one can consider a coupled heat conduction and 

deformation in the bilayers, so that evolutions of the deformed shapes due to time -

dependent changes in the temperature field can be incorporated . 

The second system consider a flexible structure due to kerfing. One kerfing pattern, 

i.e., interlocked Archimedean spiral, has been considered. Parametric studies are

conducted in order to understand the effect of cut densities and loading conditions on 

the overall deformations of the kerf patterns. As expected kerfing with higher cut 

densities leads to more flexible deformations, but reduces the load carrying capabilities 

of the structures. Two examples of flexible structures with different kerfing 

configurations are shown to illustrate how to form desired shapes by arranging the 

repeated unit sections of the kerfing patterns with different cut densities . In this work, 

only one specific pattern have been studied and considered for the entire panel . There 

are a great variety of cutting patterns having different performance in deformations. So 
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including several kinds of patterns in a panel can be considered in order to achieve 

various desired complex shapes. 
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APPENDIX A 

MESH CONVERGENCE STUDY 

In finite element (FE) analyses, mesh convergence is conducted in order to determine 

appropriate element sizes or number and types of elements sufficient to perform the 

analyses. Mesh convergence determines how many elements are needed to  make sure 

that the result will not change by the element size.  In FEM, all structures are divided 

into a series of discrete points with DOFs (degree of freedom), so the more DOFs there 

are in the model, the behavior of structures can be captured more prec isely. However, 

more points will increase the computing time. In engineering, there should be a balance 

between them, which is known as mesh independence study. 

For the kerfing patter, the mesh convergence has been conducted on a unit -cell with 

dense_2 unit section. The load condition is the uniaxial extension and the stroke is 0.2 

inch. The element size varied from 0.1 inch to 0.001 inch. The material is MDF (medium 

density fiberboard) whose elastic modulus is 0.58e6 psi and Poisson’s ratio is 0.25. 

The results of different element sizes is shown in Table A.1. In order to clearly 

present the results, Figure A. 1 and Figure A. 2 are shown below to demonstrate the 

relation of element number and stress and reaction force respectively.  According to 

Figure A. 1 and Figure A. 2, it is illustrated that element size does not affect the result 

much when element size is 0.003 inch or less, so 0.003 inch is chosen as the element 

size for the model of dense_2 unit section in all cases.  
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Table A.1 Results for mesh independence study in dense_2 

element size/inch Element number Stress/psi reaction force/lbf 

0.1 190 8.5250E+03 7.402 

0.08 230 8.5410E+03 7.384 

0.05 295 8.5650E+03 7.378 

0.02 566 8.5910E+03 7.373 

0.01 1117 8.6070E+03 7.357 

0.008 1391 8.6700E+03 7.333 

0.005 2205 8.6720E+03 7.329 

0.003 3691 8.6810E+03 7.327 

0.002 5579 8.6820E+03 7.327 

0.001 11124 8.6840E+03 7.326 

Figure A. 1 The relation of element number and reaction force in dense_2  
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Figure A. 2 The relation of element number and stress in dense_2  
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