A Thesis
by
QINFENG ZHU

Submitted to the Office of Graduate and Professional Studies of Texas A\&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

Chair of Committee, Zhizhang Xie
Co-Chair of Committee, Guoliang Yu
Committee Member, Michael T. Longnecker
Head of Department, Emil J. Straube

May 2018

Major Subject: Mathematics

Copyright 2018 Qinfeng Zhu

Abstract

This thesis is a first step towards a controlled algebraic K-theory. We give explicit formulas for the proof of Fundamental Theorem of Algebraic K-Theory. As a consequence, we provide explicit estimates on the control of propagation.

The first part of this thesis is an introduction to K_{0} and K_{1}-groups of rings, where we develop necessary background materials.

In the second part of this thesis, we prove the Fundamental Theorem of Algebraic K-Theory by elementary means and give explicit formulas. A detailed discussion of propagation control is given at the end of this part.

In the last part of this thesis, we introduce negative algebraic K-theory and prove its Fundamental Theorem of Algebraic K-Theory.

This work is intended as a first step towards quantitative computations for lower algebraic K-theory.

DEDICATION

To my parents

ACKNOWLEDGMENTS

I would like to give special thank to my advisor Dr. Zhizhang Xie, who patiently supervised me in mathematical research.

I am also very grateful to the Dr. Guoliang Yu, Dr. Michael T. Longnecker, for being my committe members, and to all my friends and teachers in Texas A\&M University.

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Dr. Zhizhang Xie and Dr. Guoliang Yu of the Department of Mathematics and Dr. Michael T. Longnecker of the Department of Statistics.

All the work conducted for the thesis was completed by the student, under the advisement of Dr. Zhizhang Xie of the Department of Mathematics.

Funding Sources

There are no outside funding contributions to acknowledge.

TABLE OF CONTENTS

Page

ABSTRACT ii
DEDICATION iii
ACKNOWLEDGMENTS iv
CONTRIBUTORS AND FUNDING SOURCES v
TABLE OF CONTENTS vi

1. INTRODUCTION 1
2. REVIEW OF K_{0} AND K_{1} OF RINGS 3
$2.1 \quad K_{0}$ of Rings 3
2.1.1 Grothendieck Group 3
2.1.2 Definition and Properties of $K_{0}(R)$ 6
2.1.3 Relative K_{0}-Groups 12
$2.2 K_{1}$ of Rings 17
2.2.1 Definition and Properties of $K_{1}(R)$ 17
2.2.2 Relative K_{1}-Groups 20
3. FUNDAMENTAL THEOREM OF ALGEBRAIC K-THEORY 25
3.1 Proof of the Fundamental Theorem of Algebraic K-Theory 25
3.2 Propagation Control 51
4. NEGATIVE K-THEORY 56
5. CONCLUSION 61
REFERENCES 62

1. INTRODUCTION

Algebraic K-theory is an important branch of Mathematics, whose origins may date back to A. Grothendieck's work in reformulation of the Riemann-Roch theorem in algebraic geometry and Whitehead's construction of the Whitehead group in homotopy theory. Algebraic K-theory is the study of K-groups with connections and applications to geometry, topology and number theory. In this thesis, we are concerned with K_{0}-group, K_{1}-group and K_{-n}-groups for $n=1,2, \cdots$. For a detailed description of the history and ideas of lower algebraic K-theory, one can refer to [1, 2] and references therein.

In this thesis, we investigate the quantitative aspects of algebraic K-theory. This investigation is divided into two steps.

First, we prove the Fundamental Theorem of Algebraic K Theory by elementary means and give explicit formulas in the proof.

Theorem. There is an isomorphism:

$$
K_{1}\left(R\left[t, t^{-1}\right]\right) \cong K_{0}(R) \oplus K_{1}(R) \oplus N K_{1}(R) \oplus N K_{1}(R)
$$

where $R\left[t, t^{-1}\right]$ is the localization of the polynomial ring $R[t]$ and $N K_{1}(R)$ is the kernel of the nature map $K_{1}(R[t]) \longrightarrow K_{1}(R)$.

This theorem is of fundamental importance for it connects K_{1}-group, K_{0}-group and all negative K-groups. Actually, an explicit proof of the Fundamental Theorem of Algebraic K-Theory allows us to understand the quantitative properties of lower algebraic K-groups, which is important for computations.

We prove this theorem by proving there is a split short exact sequence:

$$
0 \longrightarrow K_{1}(R[t]) \longrightarrow K_{1}\left(R\left[t, t^{-1}\right]\right) \xrightarrow{\partial} K_{0}(\mathrm{Nil} R) \longrightarrow 0
$$

where Nil R is the monoid of elements of the form (P, τ), where P is finitely generated projective R-module, and τ is a nilpotent endomorphism of P. The boundary map ∂ is given by

$$
K_{1}\left(R\left[t, t^{-1}\right]\right) \ni[X] \longrightarrow\left[\left(R[t]^{n} / t^{k} X R[t]^{n}, t\right)\right]-\left[\left(R[t]^{n} / t^{k} R[t]^{n}, t\right)\right] \in K_{0}(\operatorname{Nil} R),
$$

where $R[t]^{n} / t^{k} X R[t]^{n} \cong P R^{m}$ for some idempotent matrix P.
Second, we discuss the propagation control of the boundary map ∂. This is inspired by the work of H. Oyono-Oyono and G. Yu on quantitative operator K-theory (cf. [3]).

By the virtue of filtered algebra, we give the abstract definition of propagation:

Definition. A filtered algebra over commutative ring R, is a R-algebra A with a family of R submodules $\left(A_{r}\right), r \in \mathbb{R}$, such that
(1) $A_{r} \subseteq A_{r^{\prime}}$, if $r \leq r^{\prime}$
(2) $A_{r} A_{r^{\prime}} \subseteq A_{r+r^{\prime}}$
(3) $A=\bigcup_{r} A_{r}$
where the family $\left(A_{r}\right), r \in \mathbb{R}$ is called a filtration of A. Every elements of A_{r} is said to have propagation $\leq r$.

If no other specification, we assign the propagation of an element a to be the least number r such that $a \in A_{r}$.

For group G and ring $R, R G$ carries a natural filtration by defining word length ${ }^{1}$ on group G. This treatment also endows $M\left(R G\left[t, t^{-1}\right]\right)$ with a filtration, and therefore when we consider group ring $R G$, matrices $X, P \in M\left(R G\left[t, t^{-1}\right]\right)$ both have well-defined propagations. Our explicit formula allows us to estimate the propagation of P in terms of the propagation of X.

We have a brief introduction to negative K-theory at the last part of this thesis.

[^0]
2. REVIEW OF K_{0} AND K_{1} OF RINGS

In this part, we are going to review some basic notions and consequences of K_{0} and K_{1} of rings. Unless specific explanations, in our discussion, all the rings have identities, all the ring homomorphisms are identity-preserving, all modules are unitary left modules, and all ideals are two-sided. With a little abuse of notation, isomorphism classes are always denoted as [.] unless other specification. The concrete meaning of [.] can be derived from context.

2.1 K_{0} of Rings

There are many ways to define K_{0}-groups for rings. We will follow the traditional way, namely the group completion version. This is sufficient to talk about most problems in lower algebraic K theory. Before the definition, we need some preparations.

2.1.1 Grothendieck Group

Theorem 2.1 (Grothendieck). For every abelian semigroup S, there is an abelian group $G=G(S)$ (now called Grothendieck group) with the semigroup homomorphism $\phi: S \longrightarrow G$, which satisfies the universal property that for any group H and semigroup homomorphism $\psi: S \longrightarrow H$, there is a unique group homomorphism $\theta: G \longrightarrow H$ such that $\psi=\theta \circ \phi$, or equivalently, the following diagram commutes:

and if there is another group G^{\prime} with semigroup homomorphism $\phi^{\prime}: S \longrightarrow G^{\prime}$ satisfies the same universal property, then there is an isomorphism $f: G \longrightarrow G^{\prime}$ such that $\phi^{\prime}=f \circ \phi$.

Proof. To prove the existence, let F be the free abelian group generated by S, let $\ell: S \longrightarrow F$ be the inclusion map, denote the inclusion image as $\langle x\rangle$ for $x \in S$, then define $G:=F / N$, where N is the normal subgroup of F generated by all elements of the form $\langle x\rangle+\langle y\rangle-\langle x+y\rangle$ for $x, y \in S$.

Let $\pi:\langle x\rangle \longmapsto[x]$ be the canonical map from F to G, define $\phi:=\pi \circ \ell$. We are going to show G along with ϕ is what we need.

Actually, because F is free abelian group, for any abelian group H and homomorphism ψ : $S \longrightarrow H$, there is a unique homomorphism $\theta^{\prime}: F \longrightarrow H$ such that $\theta^{\prime} \circ \ell=\psi$. Because N is obviously contained in the kernel of θ^{\prime}, so an unique homomorphism $\theta: G \longrightarrow H$ such that $\theta \circ \phi=\psi$ is induced.

To prove the uniqueness, if G^{\prime} with $\phi^{\prime}: S \longrightarrow G^{\prime}$ also satisfies this universal property, then there are homomorphisms α, β such that $\phi^{\prime}=\alpha \circ \phi$ and $\phi=\beta \circ \phi^{\prime}$, which imply

$$
\begin{aligned}
(\alpha \circ \beta) \circ \phi^{\prime} & =\phi^{\prime} \\
(\beta \circ \alpha) \circ \phi & =\phi .
\end{aligned}
$$

It follows that $\alpha \circ \beta=1_{\phi^{\prime}(S)}$ and $\beta \circ \alpha=1_{\phi(S)}$. By our construction, $\phi(S)$ generates G, because $\beta \circ \alpha$ is a homomorphism, so $\beta \circ \alpha=1_{G}$. Then, we are going to show $\alpha \circ \beta=1_{G^{\prime}}$ by proving $\varphi^{\prime}(S)$ generates G^{\prime}. To do this, first, let $G^{\prime \prime}$ be the normal subgroup of G^{\prime} generated by $\phi^{\prime}(S)$. Define $H:=G^{\prime} \oplus\left(G^{\prime} / G^{\prime \prime}\right)$. Then, there are two homomorphism $\theta_{1}=(1,0)$ and $\theta_{2}=(1, q)$, where q is the quotient map, 1 is the identity map, that make the following diagrams commute:

for $i=1,2$. By universal property, we must have $\theta_{1}=\theta_{2}$, so $q=0$. It follows that $G^{\prime}=G^{\prime \prime}$, and thus $\phi^{\prime}(S)$ generates G^{\prime}. Therefore $\alpha \circ \beta=1_{G^{\prime}}, \alpha$ is an isomorphism.

The Grothendieck group of semigroup S is also called the group completion of S. Actually, it is the way to define the integers from natural numbers.

Example 2.2. For the semigroup \mathbb{N} of natural number, $G(\mathbb{N})=\mathbb{Z}$ is the group of integers.

Corollary 2.3 ([4]). Let S be an abelian semigroup, then
(a) Every element of $G(S)$ has the form $[x]-[y]$ for $x, y \in S$.
(b) For any $[x],[y] \in G(S),[x]=[y]$ if and only if $x+z=y+z$ for some $z \in S$.

Proof. (a) By our construction in Theorem 2.1, every element $[z]$ of $G(S)$ can be written as the difference of two finite sums, namely

$$
[z]=\sum_{i=1}^{n}\left[a_{i}\right]-\sum_{j=1}^{m}\left[b_{j}\right]
$$

where $a_{i}, b_{j} \in S$. Because $[a]+[b]=[a+b]$ for $a, b \in S$, let

$$
x=\sum_{i=1}^{n} a_{i}, \quad y=\sum_{j=1}^{m} b_{j}
$$

therefore

$$
[z]=\sum_{i=1}^{n}\left[a_{i}\right]-\sum_{j=1}^{m}\left[b_{j}\right]=\left[\sum_{i=1}^{n} a_{i}\right]-\left[\sum_{j=1}^{m} b_{j}\right]=[x]-[y] .
$$

(b) If $x+z=y+z$ for $x, y, z \in S$, then $[x]+[z]=[x+z]=[y+z]=[y]+[z]$, so $[x]=[y]$.

If $[x]=[y]$, by Theorem $2.1,\langle x\rangle-\langle y\rangle \in N$. It follows that

$$
\langle x\rangle-\langle y\rangle=\sum_{i=1}^{n}\left(\left\langle a_{i}\right\rangle+\left\langle b_{i}\right\rangle-\left\langle a_{i}+b_{i}\right\rangle\right)-\sum_{j=1}^{m}\left(\left\langle a_{j}^{\prime}\right\rangle+\left\langle b_{j}^{\prime}\right\rangle-\left\langle a_{j}^{\prime}+b_{j}^{\prime}\right\rangle\right) .
$$

By transplanting negative terms to the other side, we get

$$
\langle x\rangle+\sum_{i=1}^{n}\left\langle a_{i}+b_{i}\right\rangle+\sum_{j=1}^{m}\left(\left\langle a_{j}^{\prime}\right\rangle+\left\langle b_{j}^{\prime}\right\rangle\right)=\langle y\rangle+\sum_{i=1}^{n}\left(\left\langle a_{i}\right\rangle+\left\langle b_{i}\right\rangle\right)+\sum_{j=1}^{m}\left\langle a_{j}^{\prime}+b_{j}^{\prime}\right\rangle .
$$

Because presently all the terms lie in the image of inclusion map from S to F, so we have

$$
x+\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)+\sum_{j=1}^{m}\left(a_{j}^{\prime}+b_{j}^{\prime}\right)=y+\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)+\sum_{j=1}^{m}\left(a_{j}^{\prime}+b_{j}^{\prime}\right) .
$$

Let

$$
z=\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)+\sum_{j=1}^{m}\left(a_{j}^{\prime}+b_{j}^{\prime}\right)
$$

then $x+z=y+z$.

Although we do not need category theory in our discussion, we sometimes use categorical terminologies to simplify our statements.

Proposition 2.4. G is a covariant functor from the category of abelian semigroup to the category of abelian group.

Proof. For any seimigroup homomorphism $\alpha: S \longrightarrow S^{\prime}$, by Theorem 2.1, we get the following commutative diagram

where θ is the unique homomorphism induced by ϕ and $\phi^{\prime} \circ \alpha$. Define $G(\alpha):=\theta$. If α is an isomorphism (namely the identity morphism), then $S \cong S^{\prime}$ and thus $G(S) \cong G\left(S^{\prime}\right)$ with isomorphism θ. Also, if there is additional semigroup homomorphism $\beta: S^{\prime} \longrightarrow S^{\prime \prime}$, we have the following commutative diagram

where $G(\beta \circ \alpha)=G(\beta) \circ G(\alpha)$ by the uniqueness.

2.1.2 Definition and Properties of $K_{0}(R)$

Definition 2.5. Define Proj R as the abelian monoid of all isomorphism classes of finitely generated projective R-modules, with direct product \oplus as the addition operation and the zero module 0
as the identity element.

Remark 2.6. Proj R is indeed a set. It is because for every finitely generated projective R-module P, there is a finitely generated projective R-module Q such that $P \oplus Q \cong R^{n}$ for some positive integer n, so P is isomorphic to a direct summand of R^{n} and thus we can speak of the set of classes of finitely generated R-modules with respect to isomorphism (cf. [5], Chapter II, §6.9).

We are ready to define K_{0}-group of rings.
Definition 2.7. For any ring R, define $K_{0}(R):=G(\operatorname{Proj} R)$.
Especially, this definition is for rings with identity. Sometimes, we need to define K_{0}-groups for rings without identity. We will generalized this definition after introducing relative K_{0}-groups, see Definition 2.19.

Corollary 2.8. For any $[A],[B] \in K_{0}(R),[A]=[B]$ if and only if $A \oplus R^{n} \cong B \oplus R^{n}$ for some integer n.

Proof. First, we see if $A \oplus R^{n} \cong B \oplus R^{n}$ for some integer n, then $\left[A \oplus R^{n}\right]=\left[B \oplus R^{n}\right]$. Because $\left[A \oplus R^{n}\right]=[A]+\left[R^{n}\right]$ and $\left[B \oplus R^{n}\right]=[B]+\left[R^{n}\right]$ so $[A]=[B]$. In the other direction, assume $[A]=[B]$ in $K_{0}(R)$, by Corollary 2.3, we see $A \oplus P \cong B \oplus P$ for some finitely generated projective R-module P. Assume $P \oplus Q \cong R^{n}$, then $A \oplus R^{n} \cong B \oplus R^{n}$ as desired.

Example 2.9. If R is a division ring, then we see every finitely generated R-module is free with finite basis. However, the dimension of free R-module is the only isomorphism invariant ${ }^{1}$, which means $\operatorname{Proj} R \cong \mathbb{N}$ and thus $K_{0}(R) \cong \mathbb{Z}$.

Proposition 2.10. K_{0} can be defined as a covariant functor from the category of rings to the category of abelian groups.

Proof. To see this, first, for any ring homomorphism $\varphi: R \longrightarrow R^{\prime}$, define a homomorphism from Proj R to Proj R^{\prime} by

$$
[P] \longmapsto\left[R^{\prime} \otimes_{\varphi} P\right],
$$

[^1]where $R^{\prime} \otimes_{\varphi} P$ means that, in this tensor product, R^{\prime} is considered as a right R-module while the scalar multiplication is given by
$$
(a, r) \longmapsto \varphi(r) a,
$$
for $r \in R$ and $a \in R^{\prime}$. To verify this map is well-defined, first, because P is a finitely generated projective R-module, so $P \oplus Q \cong R^{n}$ for some finitely generated R-module Q, and some integer n, then
$$
\left(R^{\prime} \otimes_{\varphi} P\right) \oplus\left(R^{\prime} \otimes_{\varphi} Q\right) \cong R^{\prime} \otimes_{\varphi}(P \oplus Q) \cong R^{\prime} \otimes_{\varphi} R^{n} \cong\left(R^{\prime} \otimes_{\varphi} R\right)^{n} \cong\left(R^{\prime}\right)^{n}
$$
so $R^{\prime} \otimes_{\varphi} P$ is finitely generated projective R^{\prime}-module. Assume $\left[P^{\prime}\right]=[P]$ in $\operatorname{Proj} R$, then $P^{\prime} \cong P$, so $R^{\prime} \otimes_{\varphi} P \cong R^{\prime} \otimes_{\varphi} P^{\prime}$, which implies $\left[R^{\prime} \otimes_{\varphi} P\right]=\left[R^{\prime} \otimes_{\varphi} P^{\prime}\right]$.

By Theorem 2.1, define $K_{0}(\varphi):=\varphi_{*}: K_{0}(R) \longrightarrow K_{0}\left(R^{\prime}\right)$ to be the unique homomorphism makes the following diagram commutes:

To check this functor is well-defined, first, if $R \cong R^{\prime}$, then every finitely generated R-module is also a finitely generated R^{\prime}-module and vice versa by this isomorphism. So there is a R^{\prime}-module isomorphism $R^{\prime} \otimes_{\varphi} P \cong P$, which means the homomorphism $[P] \longmapsto\left[R^{\prime} \otimes_{\varphi} P\right]$ is an isomorphism. Because G is a covariant functor as we proved in Proposition 2.4, $K_{0}(R) \cong K_{0}\left(R^{\prime}\right)$.

Also by Proposition 2.4, we have $K_{0}\left(\varphi_{1} \circ \varphi_{2}\right)=K_{0}\left(\varphi_{1}\right) \circ K_{0}\left(\varphi_{2}\right)$.

We are in a position to give alternative definition of K_{0}-group of rings by matrices, which make K_{0}-theory, to some extent, connect with linear algebra, and endows K_{0}-theory more computational characteristics.

Definition 2.11. For ring R, let $M_{n}(R)$ be the ring of all $n \times n$ matrices on R. Define $M(R)$ as the union of the resulting sequence:

$$
M_{1}(R) \subset M_{2}(R) \subset \cdots \subset M_{n}(R) \subset \cdots
$$

by identifying $g \in M_{n}(R)$ with

$$
\left(\begin{array}{ll}
g & 0 \\
0 & 0
\end{array}\right) \in M_{n+1}(R)
$$

Let $G L_{n}(R)$ be the group of $n \times n$ matrices on R. Define $G L(R)$ as the union of the resulting sequence:

$$
G L_{1}(R) \subset G L_{2}(R) \subset \cdots \subset G L_{n}(R) \subset \cdots
$$

by identifying $g \in G L_{n}(R)$ with

$$
\left(\begin{array}{ll}
g & 0 \\
0 & 1
\end{array}\right) \in G L_{n+1}(R)
$$

Define $\operatorname{Idem}(R)$ as the set of all idempotent matrices in $M(R)$, that is, $A \in \operatorname{Idem}(R)$ if and only if $A \in M(R)$ and $A^{2}=A$.

Remark 2.12. $M(R)$ is also a ring, while $G L(R)$ is also a group. That is because, for example, for any $A, B \in M(R)$, assume A has dimension n, B has dimension m, and $n \geq m$, then B can be embedding into $M_{n}(R)$. So we can talk about all ring operations of A, B in $M_{n}(R)$, which implies $M(R)$ is a ring.

We also say a R-module endomorphism α idempotent, if $\alpha^{2}=\alpha$. The definition of idempotent for matrices is a special case of the definition for endomorphisms.

Theorem 2.13 ([6]). Proj R is isomorphic to the monoid of conjugation orbits of $G L(R)$ on $\operatorname{Idem}(R)$, with zero matrix as the identity element, and with the semigroup operation induced
by

$$
(A, B) \longmapsto\left(\begin{array}{cc}
A & 0 \\
0 & B
\end{array}\right)
$$

This monoid is denoted as $\overline{\operatorname{Idem}(R)}$.

Proof. For any $[P] \in \operatorname{Proj} R$, we have $P \oplus Q \cong R^{n}$ for some integer n, and for some finitely generated projective R-module Q. Assume this isomorphism is $f: P \oplus Q \longrightarrow R^{n}$. Consider the idempotent endomorphism $1 \oplus 0$ on $P \oplus Q$, we see $f(1 \oplus 0) f^{-1}$ is also an idempotent endomorphism on R^{n}. Because R^{n} is a free R-module, so there is an idempotent matrix A corresponding to $f(1 \oplus 0) f^{-1}$, then $A R^{n} \cong P$.

Define a homomorphism $g: \operatorname{Proj} R \longrightarrow \overline{\operatorname{Idem}(R)}$ by $[P] \longmapsto \bar{A}$ such that $A R^{n} \cong P$. To see this map is well-defined, let $g([Q])=\bar{B},[Q]=[P]$, we have

$$
A R^{n} \cong P \cong Q \cong B R^{m}
$$

Assume this isomorphism is $\alpha: A R^{n} \longrightarrow B R^{m}$, which induces a homomorphism $\alpha^{\prime}: R^{n} \longrightarrow R^{m}$ because

$$
\begin{aligned}
& A R^{n} \oplus(1-A) R^{n} \cong R^{n} \\
& B R^{m} \oplus(1-B) R^{m} \cong R^{m}
\end{aligned}
$$

and by letting $\alpha^{\prime}=0$ on $(1-A) R^{n}$. It follows that there is a $m \times n$ matrix A^{\prime} corresponding to α^{\prime}. Similarly, α^{-1} induced a homomorphism $\beta: R^{m} \longrightarrow R^{n}$, and there is a corresponding $n \times m$ matrix B^{\prime}. Under our definition, we see, in $M(R), A^{\prime} B^{\prime}=B, B^{\prime} A^{\prime}=A, A^{\prime}=A A^{\prime}=A^{\prime} B$, $B^{\prime}=B B^{\prime}=B^{\prime} A$. Therefore,

$$
\left(\begin{array}{cc}
1-A & A^{\prime} \\
B^{\prime} & 1-B
\end{array}\right)\left(\begin{array}{ll}
A & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
1-A & A^{\prime} \\
B^{\prime} & 1-B
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & B
\end{array}\right)
$$

where

$$
\left(\begin{array}{cc}
1-A & A^{\prime} \\
B^{\prime} & 1-B
\end{array}\right)^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Also,

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & B
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
B & 0 \\
0 & 0
\end{array}\right)
$$

where

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

This implies in $M(R), A, B$ are in the same conjugation orbits of $G L(R)$, so $\bar{A}=\bar{B}$.
For any $[P],[Q] \in \operatorname{Proj} R,[P]+[Q]=[P \oplus Q]$. By our definition of semigroup operation on $\overline{\operatorname{Idem}(R)}$,

$$
g([P]+[Q])=g([P \oplus Q])=\left(\begin{array}{cc}
g([P]) & 0 \\
0 & g([Q])
\end{array}\right)=g([P])+g([Q]) .
$$

Therefore g is indeed a semigroup homomorphism.
We are going to see g is an isomorphism by proving it has an inverse $g^{-1}: \overline{\operatorname{Idem}(R)} \longrightarrow$ Proj R, given by $\bar{B} \longmapsto\left[B R^{n}\right]$, where B is an idempotent matrix in $M_{n}(R)$. To see this map is well-defined, assume $A=U^{-1} B U$, for some $U \in G L_{n}(R)$, then $A R^{n} \cong B R^{n}$ which means $\left[A R^{n}\right]=\left[B R^{n}\right]$. It is obvious the inverse of g. Also by our definition of semigroup operation, g^{-1} is a homomorphism.

Corollary 2.14. $K_{0}(R) \cong G(\overline{\operatorname{Idem}(R)})$, the Grothendieck group of $\overline{\operatorname{Idem}(R)}$.

As an applications of this equivalent definition of K_{0}-groups for rings, we prove the following proposition:

Proposition 2.15. For rings $R_{1}, R_{2}, K_{0}\left(R_{1} \times R_{2}\right) \cong K_{0}\left(R_{1}\right) \oplus K_{0}\left(R_{2}\right)$.

Proof. It is obvious that $G L\left(R_{1} \times R_{2}\right)=G L\left(R_{1}\right) \times G L\left(R_{2}\right), \operatorname{Idem}\left(R_{1} \times R_{2}\right)=\operatorname{Idem}\left(R_{1}\right) \times$ $\operatorname{Idem}\left(R_{2}\right)$. By Theorem 2.13, we see that Proj R is isomorphic to the monoid of conjugation orbits of $G L(R)$ on $\operatorname{Idem}(R)$, and then isomorphic to the monoid of conjugation orbits of $G L\left(R_{1}\right) \times$ $G L\left(R_{2}\right)$ on $\operatorname{Idem}\left(R_{1}\right) \times \operatorname{Idem}\left(R_{2}\right)$, which is $\overline{\operatorname{Idem}\left(R_{1}\right)} \times \overline{\operatorname{Idem}\left(R_{2}\right)}$. Then, take Grothendieck group on both sides.

2.1.3 Relative K_{0}-Groups

Definition 2.16. Let R be a ring, with ideal I, define $D(R, I)$ as the subring of $R \times R$ such that

$$
D(R, I):=\{(x, y) \in R \times R: x-y \in I\} .
$$

Define

$$
K_{0}(R, I):=\operatorname{ker}\left\{\left(p_{1}\right)_{*}: K_{0}(D(R, I)) \longrightarrow K_{0}(R)\right\}
$$

as the relative K_{0}-group of R and its ideal I, where $\left(p_{1}\right)_{*}=K_{0}\left(p_{1}\right)$, and $p_{1}: D(R, I) \longrightarrow R$ is the projection onto the first coordinate.

Lemma 2.17. Let R be a ring, and I an ideal of R. For any $A \in G L(R / I)$, the matrix

$$
\left(\begin{array}{cc}
A & 0 \\
0 & A^{-1}
\end{array}\right)
$$

can be lift to a matrix on $G L(R)$.
Proof. Actually, we have the decomposition:

$$
\left(\begin{array}{cc}
A & 0 \\
0 & A^{-1}
\end{array}\right)=\left(\begin{array}{cc}
1 & A \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-A^{-1} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & A \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

while

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Assume B, C are the liftings of A and A^{-1}, then we see

$$
\left(\begin{array}{cc}
2 B-B C B & -1+B C \\
-C B+1 & C
\end{array}\right)=\left(\begin{array}{cc}
1 & B \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-C & 1
\end{array}\right)\left(\begin{array}{ll}
1 & B \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

is a lifting of

$$
\left(\begin{array}{cc}
A & 0 \\
0 & A^{-1}
\end{array}\right)
$$

because all matrices on right hand side belong to $G L(R)$.
Theorem 2.18 ([6]). For ring R and ideal $I \subseteq R$, we have short exact sequence:

$$
K_{0}(R, I) \xrightarrow{\left(p_{2}\right)_{*}} K_{0}(R) \xrightarrow{q_{*}} K_{0}(R / I)
$$

where $p_{2}: D(R, I) \longrightarrow R$ is the projection onto the second coordinate, q is the quotient map, and $\left(p_{2}\right)_{*}$ is $K_{0}\left(p_{2}\right)$ restricted to $K_{0}(R, I)$ and $q_{*}=K_{0}(q)$.

Proof. For any element $[a]-[b]$ of $K_{0}(R, I), a, b$ are idempotent matrices on $D(R, I)$, which have the form $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right)$, where $a_{1}, a_{2}, b_{1}, b_{2} \in \operatorname{Idem}(R)$. It follows that

$$
\left(p_{2}\right)_{*}([a]-[b])=\left[a_{2}\right]-\left[b_{2}\right] \in K_{0}(R)
$$

and

$$
q_{*}\left(\left[a_{2}\right]-\left[b_{2}\right]\right)=\left[\overline{a_{2}}\right]-\left[\overline{b_{2}}\right] \in K_{0}(R / I)
$$

By definition of $K_{0}(R, I)$,

$$
\left[a_{1}\right]-\left[b_{1}\right]=\left(p_{1}\right)_{*}([a]-[b])=0
$$

then

$$
\left[\overline{a_{2}}\right]-\left[\overline{b_{2}}\right]=\left[\overline{a_{1}}\right]-\left[\overline{b_{1}}\right]=0
$$

follows, which implies the image of $\left(p_{2}\right)_{*}$ is contained in the kernel of q_{*}.

In another direction, assume $[x]-[y] \in K_{0}(R)$, where x, y are idempotent matrices on R, thus

$$
q_{*}([x]-[y])=[\bar{x}]-[\bar{y}]=0 .
$$

We assume \bar{x} is similar to \bar{y}, otherwise, we can replace \bar{x} and \bar{y} by

$$
\left(\begin{array}{cc}
\bar{x} & 0 \\
0 & \overline{1_{m}}
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
\bar{y} & 0 \\
0 & \overline{1_{m}}
\end{array}\right)
$$

for some integer m. So, there is a \bar{z} such that $\bar{x}=\overline{z y z^{-1}}$. It follows that

$$
\left(\begin{array}{cc}
\bar{x} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
\bar{z} & 0 \\
0 & \overline{z^{-1}}
\end{array}\right)\left(\begin{array}{ll}
\bar{y} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\overline{z^{-1}} & 0 \\
0 & \bar{z}
\end{array}\right) .
$$

By Lemma 2.17, there is a lifting of

$$
\left(\begin{array}{cc}
\bar{z} & 0 \\
0 & \overline{z^{-1}}
\end{array}\right)
$$

to a matrix $h \in G L(R)$.
Let

$$
s=\left(\begin{array}{ll}
x & 0 \\
0 & 0
\end{array}\right), \quad t=h\left(\begin{array}{ll}
y & 0 \\
0 & 0
\end{array}\right) h^{-1}
$$

while $[s]=[x]$ and $[t]=[y]$ in $K_{0}(R)$. Because $\bar{s}=\bar{t}$ on R / I, which means (t, s) is an idempotent matrix on $D(R, I)$, and $[(t, s)]-[(t, t)]$ is the preimage in $K_{0}(R, I)$ of $[x]-[y] \in K_{0}(R)$, thus the kernel of q_{*} is contained in the image of $\left(p_{2}\right)_{*}$.

We sometimes need to handle rings without identity, especially when we handle a nontrivial ideal of a ring.

Definition 2.19. For any ring R (which may not have identity), define the augmented ring R_{+}as
$R_{+}:=R \oplus \mathbb{Z}$, where the multiplication is defined as

$$
(x, n) \cdot(y, m)=(x y+n y+m x, m n)
$$

and the identity is $(0,1)$.
Define $K_{0}(R)$ as

$$
K_{0}(R):=\operatorname{ker}\left\{\left(p_{2}\right)_{*}: K_{0}\left(R_{+}\right) \longrightarrow K_{0}(\mathbb{Z})\right\},
$$

where $p_{2}: R_{+} \longrightarrow \mathbb{Z}$ is the projection onto the second coordinate, and $K_{0}(\mathbb{Z}) \cong \mathbb{Z}$.
Remark 2.20. The verification of the well-definition of R^{+}is trivial. To see this definition is consistent with the our original one, let $K_{0}^{\prime}(R)$ denoted our original definition of K_{0}-group of R. We first notice that if R has an identity, then $R_{+} \cong R \times \mathbb{Z}$. Actually, there is an isomorphism $\alpha: R_{+} \longrightarrow R \times \mathbb{Z}$ given by

$$
(x, n) \longmapsto(x+n e, n) .
$$

Then, we see that

$$
K_{0}^{\prime}\left(R_{+}\right) \cong K_{0}^{\prime}(R \times \mathbb{Z}) \cong K_{0}^{\prime}(R) \oplus \mathbb{Z},
$$

where the kernel of the induced homomorphism $\rho_{*}^{\prime}: K_{0}^{\prime}(R) \oplus \mathbb{Z} \longrightarrow \mathbb{Z}$ coincides with $K_{0}^{\prime}(R)$ and by definition of $K_{0}, K_{0}(R) \cong K_{0}^{\prime}(R)$.

Theorem 2.21 (Excision). Let R be a ring, and I an ideal of R, then $K_{0}(R, I) \cong K_{0}(I)$.
Proof. Define a homomorphism $\gamma: I_{+} \longrightarrow D(R, I)$ by

$$
(x, n) \longmapsto(n \cdot 1, n \cdot 1+x)
$$

where 1 is the identity of R. Then, we can see there is a commutative diagram

where ℓ is the inclusion map given by $n \longmapsto n \cdot 1$.
Because K_{0} is a covariant functor ${ }^{2}$, so above commutative diagram induces a new diagram:

It follows that γ_{*} maps the kernel of ρ_{*} to the kernel of $\left(p_{1}\right)_{*}$. However, by our definition, $K_{0}(I)$ is the kernel of ρ_{*} and $K_{0}(R, I)$ is the kernel of $\left(p_{1}\right)_{*}$. By restricting γ_{*} to $K_{0}(I)$, we get a homomorphism $f: K_{0}(I) \longrightarrow K_{0}(R, I)$.
f is an isomorphism. The methods of the proof are similar to the methods used in the proof of Theorem 2.18, as we omit here. For details, one can refer to [6], Theorem 1.5.9.

[^2]
2.2 K_{1} of Rings

2.2.1 Definition and Properties of $K_{1}(R)$

Definition 2.22. Define $K_{1}(R):=G L(R) /[G L(R), G L(R)]$, the abelianization of $G L(R)$, where $G L(R)$ is as defined in Definition 2.11 and $[G L(R), G L(R)]$ is the commutator subgroup of $G L(R)$.

Proposition 2.23. K_{1} can be defined as a covariant functor from the category of rings to the category of abelian groups.

Proof. To see this, for any ring homomorphism $\varphi: R \longrightarrow S$, define a group homomorphism $\varphi^{\prime}: G L(R) \longrightarrow G L(S)$ by $A \longmapsto B$ where $b_{i j}=\varphi\left(a_{i j}\right), a_{i j}, b_{i j}$ are (i, j)-entry of A, B respectively.

To verify φ^{\prime} is well-defined, assume $A \in G L(R)$, to simplify the notation, denote $D:=A^{-1}$, we claim that $\varphi^{\prime}(A) \in G L(S)$, where the inverse is $\varphi^{\prime}(D)$. Actually,

$$
\begin{aligned}
\left(\varphi^{\prime}(A) \varphi^{\prime}(D)\right)_{i j} & =\sum_{k} \varphi\left(a_{i k}\right) \varphi\left(d_{k j}\right) \\
& =\varphi\left(\sum_{k} a_{i k} d_{k j}\right) \\
& =\varphi\left((A D)_{i j}\right)
\end{aligned}
$$

Because $\varphi(1)=1, \varphi(0)=0$, so $\left(\varphi^{\prime}(A) \varphi^{\prime}(D)\right)_{i j}=1$ if $i=j$, otherwise, $\left(\varphi^{\prime}(A) \varphi^{\prime}(D)\right)_{i j}=0$. so $\varphi^{\prime}(A) \varphi^{\prime}(D)$ is the identity matrix. Similarly, $\varphi^{\prime}(D) \varphi^{\prime}(A)$ is the identity matrix, which means $\varphi^{\prime}(A) \in G L(S)$.

To verify φ^{\prime} is indeed a homomorphism, assume $A, C \in G L_{n}(R) \subseteq G L(R), B=A C$, then we see

$$
b_{i j}=\sum_{k} a_{i k} c_{k j}
$$

therefore

$$
\varphi\left(b_{i j}\right)=\sum_{k} f\left(a_{i k}\right) f\left(c_{k j}\right)
$$

which implies that $\varphi^{\prime}(A C)=\varphi^{\prime}(A) \varphi^{\prime}(C)$.
Then, define $K_{1}(\varphi):=\varphi_{*}: K_{1}(R) \longrightarrow K_{1}(S)$ to be the homomorphism induced by φ^{\prime}.
For ring homomorphism $\varphi: R \longrightarrow S$ and $\psi: S \longrightarrow T$, by our definition, $(\psi \circ \varphi)^{\prime}=\psi^{\prime} \circ \varphi^{\prime}$, which induced that $K_{1}(\psi \circ \varphi)=K_{1}(\psi) \circ K_{1}(\varphi)$. So, K_{1} is a covariant functor.

Definition 2.24. For integers $i \neq j$, define elementary matrix $e_{i j}(a) \in G L(R)$ to be the matrix whose entries on diagonal are all 1, the off-diagonal (i, j)-entry is a, and other entries are 0 . The subgroup generated by all elementary matrices in $G L_{n}(R)$ is denoted by $E_{n}(R)$. The union of all $E_{n}(R)$ is denoted by $E(R)$, which is a subgroup of $G L(R)$.

Remark 2.25. By induction, we see every matrix that has the form

$$
\left(\begin{array}{ll}
1 & A \\
0 & 1
\end{array}\right) \quad \text { or } \quad\left(\begin{array}{ll}
1 & 0 \\
A & 1
\end{array}\right)
$$

belongs to $E(R)$, because they can be decomposed as the product of elementary matrices.

Proposition 2.26 (Whitehead's Lemma). $E(R)=[G L(R), G L(R)]$.

Proof. Because for any $e_{i j}(b) \in E(R)$ we have $e_{i j}(b)^{-1}=e_{i j}(-b)$, so for any $e_{i k}(a) \in E(R)$, we have

$$
\begin{aligned}
e_{i k}(a) & =e_{i j}(a) e_{j k}(1) e_{i j}(-a) e_{j k}(-1) \\
& =e_{i j}(a) e_{j k}(1) e_{i j}(a)^{-1} e_{j k}(1)^{-1}
\end{aligned}
$$

so

$$
e_{i k}(a) \in[E(R), E(R)] \subseteq[G L(R), G L(R)]
$$

which implies $E(R) \subseteq[G L(R), G L(R)]$. We are going to prove $[G L(R), G L(R)] \subseteq E(R)$.

Actually, for any $A, B \in G L(R)$, we have

$$
\left(\begin{array}{cc}
A B A^{-1} B^{-1} & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
A B & 0 \\
0 & B^{-1} A^{-1}
\end{array}\right)\left(\begin{array}{cc}
A^{-1} & 0 \\
0 & A
\end{array}\right)\left(\begin{array}{cc}
B^{-1} & 0 \\
0 & B
\end{array}\right) .
$$

The matrices on the left hand side are all belongs to $E(R)$, which implies

$$
\left(\begin{array}{cc}
A B A^{-1} B^{-1} & 0 \\
0 & 1
\end{array}\right) \in E(R)
$$

so that $A B A^{-1} B^{-1} \in E(R)$, which implies $[G L(R), G L(R)] \subseteq E(R)$.
Corollary 2.27. For $A \in G L(R),\left(\begin{array}{cc}A & 0 \\ 0 & A^{-1}\end{array}\right) \in E(R)$.
Proof. Because we have

$$
\left(\begin{array}{cc}
A & 0 \\
0 & A^{-1}
\end{array}\right)=\left(\begin{array}{ll}
1 & A \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-A^{-1} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & A \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

while

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right) .
$$

Because all matrices in this decomposition belong to $E(R)$, so

$$
\left(\begin{array}{cc}
A & 0 \\
0 & A^{-1}
\end{array}\right) \in E(R)
$$

Remark 2.28. By Definition 2.22, the product of $[A],[B] \in K_{1}(R)$ is $[A B]$, but by Corollary 2.27,
we see that

$$
[A B]=\left[\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right)\right]
$$

Actually, this fact follows immediately from

$$
\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right)=\left(\begin{array}{cc}
A B & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
B^{-1} & 0 \\
0 & B
\end{array}\right)
$$

where

$$
\left(\begin{array}{cc}
B^{-1} & 0 \\
0 & B
\end{array}\right) \in E(R)
$$

and thus vanishes after taking isomorphic class.

2.2.2 Relative K_{1}-Groups

As we mention before, for any ring R and its ideal $I, D(R, I)$ is defined as

$$
D(R, I):=\{(x, y) \in R \times R: x-y \in I\} .
$$

We can continue to define $K_{1}(R, I)$:

Definition 2.29. Define $K_{1}(R, I)$ as

$$
K_{1}(R, I):=\operatorname{ker}\left\{\left(p_{1}\right)_{*}: K_{1}(D(R, I)) \longrightarrow K_{1}(R)\right\}
$$

where $p_{1}: D(R, I) \longrightarrow R$ is the projection onto the first coordinate, $\left(p_{1}\right)_{*}=K_{1}\left(p_{1}\right)$.

Theorem 2.30 ([6]). Let R be a ring, and I is an ideal of R, then we have the following exact sequence:

$$
K_{1}(R, I) \xrightarrow{\left(p_{2}\right)_{*}} K_{1}(R) \xrightarrow{q_{*}} K_{1}(R / I),
$$

where $p_{2}: D(R, I) \longrightarrow R$ is the projection onto the second coordinate , $\left(p_{2}\right)_{*}$ is $K_{1}\left(p_{2}\right)$ restricted
to $K_{1}(R, I)$, q is quotient map, $q_{*}=K_{1}(q)$.

Proof. By definition of $K_{1}(R, I)$, any element of $K_{1}(R, I)$ has the form $[(e, B)] \in K_{1}(R, I)$, where $e \in E(R)$, because we have

$$
\left[\left(1, B e^{-1}\right)\right]=[(e, B)]\left[\left(e^{-1}, e^{-1}\right)\right]
$$

where $\left[\left(e^{-1}, e^{-1}\right)\right] \in E(D(R, I))$. So any element of $K_{1}(R, I)$ has the form $[(1, B)] \in K_{1}(R, I)$, which also means $[\overline{1}]=[\bar{B}]$, so $q_{*}([B])=[\overline{1}]$. So, the image of $\left(p_{2}\right)_{*}$ is contained in the kernel of q_{*}.

In another direction, assume $[B] \in K_{0}(R)$ and $[\bar{B}]=q_{*}([B])=[\overline{1}]$, then $\bar{B} \in E(R / I)$, so \bar{B} can be represented as a product of elementary matrices over R / I. However, because every elementary matrix over R / I can be lift to an elementary matrix over R, so \bar{B} can be lift to a matrix $C \in E(R)$ because C is also a product of elementary matrices over R. At that time, we see $\left[\left(1, B C^{-1}\right)\right] \in K_{1}(R, I)$, because $\overline{B C^{-1}}=\overline{1}$. Therefore $\left[\left(1, B C^{-1}\right)\right]$ is the preimage of $[B]$. So, the kernel of q_{*} is contained in the image of $\left(p_{2}\right)_{*}$.

Theorem 2.31 ([6]). Let R be a ring, and I is an ideal of R, then there is an exact sequence:

$$
K_{1}(R, I) \xrightarrow{\left(p_{2}\right)_{*}} K_{1}(R) \xrightarrow{q_{*}} K_{1}(R / I) \xrightarrow{\partial} K_{0}(R, I) \xrightarrow{\left(p_{2}\right)_{*}} K_{0}(R) \xrightarrow{q_{*}} K_{0}(R / I),
$$

where $\left(p_{2}\right)_{*}$ is $K_{0}\left(p_{2}\right)$ (or $K_{1}\left(p_{2}\right)$) restricted to $K_{0}(R, I)$ (or $K_{1}(R, I)$), q is quotient map, $q_{*}=$ $K_{0}(q)\left(\right.$ or $\left.K_{1}(q)\right), \partial$ is the boundary map.

Proof. We are going to define the boundary map and prove the exactness at $K_{1}(R / I)$ and $K_{0}(R, I)$, then the conclusion follows by Theorem 2.18 and Theorem 2.30.

For any $\bar{A} \in G L(R / I)$, where A is an n-dimensional matrix on R. Define a $D(R, I)$-module

$$
P(\bar{A}):=\left\{(x, y) \in R^{n} \times R^{n}: \bar{y}=\overline{A x}\right\}
$$

and the scalar multiplication is defined as

$$
\left(r_{1}, r_{2}\right) \cdot(x, y)=\left(r_{1} x, r_{2} y\right)
$$

Especially, we see $P(\overline{1}) \cong D(R, I)^{n}$, where $\overline{1}$ is the identity matrix. More generally, if $A \in$ $G L(R)$, then $P(\bar{A}) \cong D(R, I)^{n}$, where the isomorphism from $P(\overline{1})$ to $P(\bar{A})$ is given by

$$
(x, y) \longmapsto\left(A^{-1} x, y\right)
$$

Also, for any $\bar{A} \in G L(R / I)$, by Lemma 2.17, the matrix

$$
\left(\begin{array}{cc}
A & 0 \\
0 & A^{-1}
\end{array}\right)
$$

can be lift to some $B \in G L_{2 n}(R)$, we have

$$
P(\bar{A}) \oplus P\left(\overline{A^{-1}}\right) \cong P(\bar{B}) \cong D(R, I)^{2 n}
$$

which implies $P(\bar{A})$ is projective.
Define the boundary map $\partial: K_{1}(R / I) \longrightarrow K_{0}(R, I)$ as

$$
\partial([\bar{A}]):=[P(\bar{A})]-\left[D(R, I)^{n}\right]
$$

where n is the dimension of A.
One can see $\left(p_{1}\right)_{*}(\partial([\bar{A}]))=\left[R^{n}\right]-\left[R^{n}\right]=0$, thus by definition of $K_{0}(R, I), \partial([\bar{A}]) \in$ $K_{0}(R, I)$. Also, for any elementary matrix $\bar{B} \in E(R / I)$, we see that

$$
P(\overline{B A}) \cong P(\overline{A B}) \cong P(\bar{A}),
$$

so the boundary map is well-defined.
To see ∂ is a homomorphism, for any $[\bar{A}],[\bar{B}] \in K_{1}(R / I)$, let

$$
X:=\left(\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right)
$$

we have

$$
\partial([\bar{A}][\bar{B}])=\partial([\bar{X}])=[P(\bar{X})]-\left[D(R, I)^{2 n}\right]=[P(\bar{A})]-\left[D(R, I)^{n}\right]+[P(\bar{B})]-\left[D(R, I)^{n}\right]
$$

which means $\partial([\bar{A}][\bar{B}])=\partial([\bar{A}])+\partial([\bar{B}])$.
Next, we prove the exactness at $K_{1}(R / I)$:
For any $[\bar{A}] \in q_{*}\left(K_{1}(R)\right)$, where $A \in G L(R)$, by our previous discussion, $\partial([\bar{A}])=0$. So, the image of q_{*} is contained in the kernel of ∂.

In the other direction, for any $[\bar{A}] \in K_{1}(R / I)$ such that $\partial([\bar{A}])=0$, we have $[P(\bar{A})]=$ $\left[D(R, I)^{n}\right]$. Assume $P(\bar{A}) \cong D(R, I)^{n}$, otherwise, redefine

$$
A:=\left(\begin{array}{cc}
A & 0 \\
0 & 1_{m}
\end{array}\right)
$$

then $P(\bar{A}) \cong D(R, I)^{m+n}$.
Let f be an isomorphism from $D(R, I)^{n}$ to $P(\bar{A})$. Because $D(R, I)^{n}$ and $P(\bar{A})$ are both finitely generated $D(R, I)$-module, so there is a matrix (B, C) on $D(R, I)$ corresponding to f, namely

$$
f(x, y)=(B, C)(x, y)
$$

for any $(x, y) \in D(R, I)^{n}$. It follows from the definition of $P(\bar{A})$ that $\overline{A B x}=\overline{C y}$. By definition of $D(R, I)$, we have $\bar{x}=\bar{y}$. So, $\overline{A B}=\bar{C}$ by arbitrariness of x. Because B, C are invertible, so $C B^{-1} \in G L(R)$, and $\left[C B^{-1}\right] \in K_{1}(R)$ is the preimage of $[\bar{A}]$. So, the kernel of ∂ is contained in
the image of q_{*}.
Then, we prove the exactness at $K_{0}(R, I)$:
It is obvious that $\left(p_{2}\right)_{*}(\partial([\bar{A}]))=\left[R^{n}\right]-\left[R^{n}\right]=0$ so the image of ∂ is contained in the kernel of $\left(p_{2}\right)_{*}$.

In the other direction, for any $[Q]-\left[D(R, I)^{n}\right] \in K_{0}(R, I)$ we have $\left(p_{2}\right)_{*}\left([Q]-\left[D(R, I)^{n}\right]\right)=0$ where Q is a finitely generated $D(R, I)$-module. Because, by definition of $K_{0}(R, I),\left(p_{1}\right)_{*}([Q]-$ $\left.\left[D(R, I)^{n}\right]\right)=0$. It follows that

$$
\begin{aligned}
& {\left[\left(p_{1}\right)_{*}([Q])\right]=\left[R^{n}\right]} \\
& {\left[\left(p_{2}\right)_{*}([Q])\right]=\left[R^{n}\right] .}
\end{aligned}
$$

We assume that

$$
\left(p_{1}\right)_{*}([Q]) \cong\left(p_{2}\right)_{*}([Q]) \cong R^{n},
$$

otherwise, by the same trick as before, direct summing some finitely generated $D(R, I)$-module on Q. It follows that Q can be represented as $P(\bar{G})$, for some $\bar{G} \in G L(R / I)$. So, \bar{G} is the preimage of $[Q]-\left[D(R, I)^{n}\right]$, which means the kernel of $\left(p_{2}\right)_{*}$ is contained in the image of ∂.

Corollary 2.32. By Theorem 2.21, we have the following exact sequence

$$
K_{1}(R) \xrightarrow{q_{*}} K_{1}(R / I) \xrightarrow{\partial} K_{0}(I) \xrightarrow{\ell_{*}} K_{0}(R) \xrightarrow{q_{*}} K_{0}(R / I),
$$

where ℓ is the inclusion map, and $\ell_{*}=K_{0}(\ell)$.

In the next section, we will extend this exact sequence to arbitrary long to the right.

3. FUNDAMENTAL THEOREM OF ALGEBRAIC K-THEORY

3.1 Proof of the Fundamental Theorem of Algebraic K-Theory

In this section, we are going to prove the Fundamental Theorem of Algebraic K-Theory. Before giving the proof, we need more structures.

Definition 3.1. Define Nil R as the abelian monoid of isomorphism classes of ordered pairs (P, τ), where P are finitely generated projective R-modules, τ are nilpotent endomorphisms of P, and the homomorphisms $(P, \tau) \longrightarrow\left(P^{\prime}, \tau^{\prime}\right)$ are R-module homomorphisms such that the following diagram commutes:

$[(0,0)]$ is the identity element, where the first 0 means zero R-module, the second 0 means zero homomorphism. The addition operation of this semigroup is defined as

$$
[(P, \tau)]+[(Q, \nu)]=[(P \oplus Q, \tau \oplus \nu)] .
$$

Remark 3.2. First, Nil R is indeed a set for the similar reason as in Remark 2.6.
Second, the addition operation is well-defined. To check this, assume $[(P, \tau)]=\left[\left(P^{\prime}, \tau^{\prime}\right)\right]$ and $[(Q, \nu)]=\left[\left(Q^{\prime}, \nu^{\prime}\right)\right]$, the following diagram commutes:

which implies $[(P \oplus Q, \tau \oplus \nu)]=\left[\left(P^{\prime} \oplus Q^{\prime}, \tau^{\prime} \oplus \nu^{\prime}\right)\right]$. Also, we have

$$
[(P, \tau)]+[(0,0)]=[(P \oplus 0, \tau \oplus 0)]=[(P, \tau)]
$$

because of the following commutative diagram:

where p is the projection map. Similarly, we get $[(0,0)]+[(P, \tau)]=[(P, \tau)]$. The verification that addition is associative is trivial. To see addition is commutative, we claim that $[(P \oplus Q, \tau \oplus \nu)]=$ $[(Q \oplus P, \nu \oplus \tau)]$ by the commutative diagram:

Short exact sequences in Nil R do not split in general. To overcome this difficult, we give the following definition of $K_{0}(\mathrm{Nil} R)$:

Definition 3.3. Define $K_{0}(\operatorname{Nil} R):=F_{R} / N_{R}$, where F_{R} is the free abelian group generated by elements of $\mathrm{Nil} R$, and N_{R} is the normal subgroup of F_{R} generated by elements of the form $\left[\left(P_{1}, \tau_{1}\right)\right]+\left[\left(P_{3}, \tau_{3}\right)\right]-\left[\left(P_{2}, \tau_{2}\right)\right]$, if there is a short exact sequence:

$$
0 \longrightarrow\left(P_{1}, \tau_{1}\right) \longrightarrow\left(P_{2}, \tau_{2}\right) \longrightarrow\left(P_{3}, \tau_{3}\right) \longrightarrow 0
$$

Remark 3.4. First, for any $[(P, \tau)],[(Q, \nu)] \in K_{0}(\mathrm{Nil} R)$, since

$$
0 \longrightarrow(P, \tau) \longrightarrow(P \oplus Q, \tau \oplus \nu) \longrightarrow(Q, \nu) \longrightarrow 0
$$

is exact, so $[(P, \tau)]+[(Q, \nu)]=[(P \oplus Q, \tau \oplus \nu)]$ in $K_{0}(\mathrm{Nil} R)$.

The next Proposition is parallel to Corollary 2.8.

Proposition 3.5. For any $\left[\left(P_{1}, \tau\right)\right],\left[\left(P_{2}, \tau_{2}\right)\right] \in K_{0}(\operatorname{Nil~R}),\left[\left(P_{1}, \tau_{1}\right)\right]=\left[\left(P_{2}, \tau_{2}\right)\right]$ if and only if
there are short exact sequences in $\mathrm{Nil} R$:

$$
\begin{aligned}
& 0 \longrightarrow\left(Q^{\prime}, \nu^{\prime}\right) \longrightarrow\left(Q_{1}, \nu_{1}\right) \longrightarrow\left(Q^{\prime \prime}, \nu^{\prime \prime}\right) \longrightarrow 0 \\
& 0 \longrightarrow\left(Q^{\prime}, \nu^{\prime}\right) \longrightarrow\left(Q_{2}, \nu_{2}\right) \longrightarrow\left(Q^{\prime \prime}, \nu^{\prime \prime}\right) \longrightarrow 0
\end{aligned}
$$

such that $\left(P_{1} \oplus Q_{1}, \tau_{1} \oplus \nu_{1}\right) \cong\left(P_{2} \oplus Q_{2}, \tau_{2} \oplus \nu_{2}\right)$.
Proof. To prove the sufficiency, by those two short exact sequences, we have $\left[\left(Q_{1}, \nu_{1}\right)\right]=\left[\left(Q_{2}, \nu_{2}\right)\right] \in$ $K_{0}(\mathrm{Nil} R)$. It follows that

$$
\begin{aligned}
{\left[\left(P_{1}, \tau_{1}\right)\right] } & =\left[\left(P_{1} \oplus Q_{1}, \tau_{1} \oplus \nu_{1}\right)\right]-\left[\left(Q_{1}, \nu_{1}\right)\right] \\
& =\left[\left(P_{2} \oplus Q_{2}, \tau_{2} \oplus \nu_{2}\right)\right]-\left[\left(Q_{2}, \nu_{2}\right)\right] \\
& =\left[\left(P_{2}, \tau_{2}\right)\right] .
\end{aligned}
$$

To prove the necessity, for any $\left[\left(P_{1}, \tau_{1}\right)\right]=\left[\left(P_{2}, \tau_{2}\right)\right]$ in $K_{0}($ Nil $R)$, we have

$$
\begin{aligned}
& {\left[\left(P_{1}, \tau_{1}\right)\right]+\left[\left(D_{1}^{\prime}, \gamma_{1}^{\prime}\right)\right]+\left[\left(D_{1}^{\prime \prime}, \gamma_{1}^{\prime \prime}\right)\right]-\left[\left(D_{1}, \gamma_{1}\right)\right]} \\
& =\left[\left(P_{2}, \tau_{2}\right)\right]+\left[\left(D_{2}^{\prime}, \gamma_{2}^{\prime}\right)\right]+\left[\left(D_{2}^{\prime \prime}, \gamma_{2}^{\prime \prime}\right)\right]-\left[\left(D_{2}, \gamma_{2}\right)\right]
\end{aligned}
$$

in the free abelian group F_{R}, where there are short exact sequences:

$$
\begin{aligned}
& 0 \longrightarrow\left(D_{1}^{\prime}, \gamma_{1}^{\prime}\right) \longrightarrow\left(D_{1}, \gamma_{1}\right) \longrightarrow\left(D_{1}^{\prime \prime}, \gamma_{1}^{\prime \prime}\right) \longrightarrow 0 \\
& 0 \longrightarrow\left(D_{2}^{\prime}, \gamma_{2}^{\prime}\right) \longrightarrow\left(D_{2}, \gamma_{2}\right) \longrightarrow\left(D_{2}^{\prime \prime}, \gamma_{2}^{\prime \prime}\right) \longrightarrow 0
\end{aligned}
$$

and thus

$$
\begin{aligned}
& {\left[\left(P_{1} \oplus D_{1}^{\prime} \oplus D_{1}^{\prime \prime} \oplus D_{2}, \tau_{1} \oplus \gamma_{1}^{\prime} \oplus \gamma_{1}^{\prime \prime} \oplus \gamma_{2}\right)\right]} \\
& =\left[\left(P_{2} \oplus D_{2}^{\prime} \oplus D_{2}^{\prime \prime} \oplus D_{1}, \tau_{2} \oplus \gamma_{2}^{\prime} \oplus \gamma_{2}^{\prime \prime} \oplus \gamma_{1}\right)\right]
\end{aligned}
$$

in Nil R, so

$$
\begin{aligned}
& \left(P_{1} \oplus D_{1}^{\prime} \oplus D_{1}^{\prime \prime} \oplus D_{2}, \tau_{1} \oplus \gamma_{1}^{\prime} \oplus \gamma_{1}^{\prime \prime} \oplus \gamma_{2}\right) \\
& \cong\left(P_{2} \oplus D_{2}^{\prime} \oplus D_{2}^{\prime \prime} \oplus D_{1}, \tau_{2} \oplus \gamma_{2}^{\prime} \oplus \gamma_{2}^{\prime \prime} \oplus \gamma_{1}\right)
\end{aligned}
$$

Let

$$
\begin{aligned}
& \left(Q^{\prime}, \nu^{\prime}\right)=\left(D_{1}^{\prime} \oplus D_{2}^{\prime}, \gamma_{1}^{\prime} \oplus \gamma_{2}^{\prime}\right) \\
& \left(Q^{\prime \prime}, \nu^{\prime \prime}\right)=\left(D_{1}^{\prime \prime} \oplus D_{2}^{\prime \prime}, \gamma_{1}^{\prime \prime} \oplus \gamma_{2}^{\prime \prime}\right) \\
& \left(Q_{1}, \nu_{1}\right)=\left(D_{1}^{\prime} \oplus D_{1}^{\prime \prime} \oplus D_{2}, \gamma_{1}^{\prime} \oplus \gamma_{1}^{\prime \prime} \oplus \gamma_{2}\right) \\
& \left(Q_{2}, \nu_{2}\right)=\left(D_{2}^{\prime} \oplus D_{2}^{\prime \prime} \oplus D_{1}, \gamma_{2}^{\prime} \oplus \gamma_{2}^{\prime \prime} \oplus \gamma_{1}\right)
\end{aligned}
$$

then we see

$$
\left(P_{1} \oplus Q_{1}, \tau_{1} \oplus \nu_{1}\right) \cong\left(P_{2} \oplus Q_{2}, \tau_{2} \oplus \nu_{2}\right)
$$

and there are short exact sequences:

$$
\begin{aligned}
& 0 \longrightarrow\left(Q^{\prime}, \nu^{\prime}\right) \longrightarrow\left(Q_{1}, \nu_{1}\right) \longrightarrow\left(Q^{\prime \prime}, \nu^{\prime \prime}\right) \longrightarrow 0 \\
& 0 \longrightarrow\left(Q^{\prime}, \nu^{\prime}\right) \longrightarrow\left(Q_{2}, \nu_{2}\right) \longrightarrow\left(Q^{\prime \prime}, \nu^{\prime \prime}\right) \longrightarrow 0 .
\end{aligned}
$$

Corollary 3.6. $K_{0}(\operatorname{Nil} R) \cong K_{0}(R) \oplus \operatorname{Nil}_{0}(R)$, where $\operatorname{Nil}_{0}(R)$ is the kernel of the forgetful map $F: K_{0}(\mathrm{Nil} R) \longrightarrow K_{0}(R)$, that sends every $[(P, \tau)]$ to $[P]$.

Proof. This can be done by proving that $K_{0}(R)$ embeds into $K_{0}($ Nil $R)$ as a direct sum. Define $v: K_{0}(R) \longrightarrow K_{0}($ Nil $R)$ as the homomorphism induced by $[P] \longmapsto[(P, 0)]$. Because F is the left inverse of v, so $K_{0}(R)$ embeds in $K_{0}($ Nil $R)$ as a direct sum via v, and $K_{0}($ Nil $R) \cong$ $K_{0}(R) \oplus \operatorname{Nil}_{0}(R)$.

Proposition 3.7. $\mathrm{Nil}_{0}(R)$ is generated by elements of form $\left[\left(R^{n}, \nu\right)\right]-\left[\left(R^{n}, 0\right)\right]$.
Proof. First, because $\operatorname{Nil}_{0}(R)$ is generated by elements of form $\left[\left(P_{1}, \tau_{1}\right)\right]-\left[\left(P_{2}, \tau_{2}\right)\right]$, such that [$\left.P_{1}\right]=\left[P_{2}\right]$, so $P_{1} \oplus Q \cong P_{2} \oplus Q$ for some finitely generated projective R-module Q.

Therefore we have

$$
\begin{aligned}
{\left[\left(P_{1}, \tau_{1}\right)\right]-\left[\left(P_{2}, \tau_{2}\right)\right] } & =\left(\left[\left(P_{1}, \tau_{1}\right)\right]+[(Q, 0)]\right)-\left(\left[\left(P_{2}, \tau_{2}\right)\right]+[(Q, 0)]\right) \\
& =\left[\left(R^{n}, \tau_{1}^{\prime}\right)\right]-\left[\left(R^{n}, \tau_{2}^{\prime}\right)\right] \\
& =\left(\left[\left(R^{n}, \tau_{1}^{\prime}\right)\right]-\left[\left(R^{n}, 0\right)\right]\right)-\left(\left[\left(R^{n}, \tau_{2}^{\prime}\right)\right]-\left[\left(R^{n}, 0\right)\right]\right)
\end{aligned}
$$

which implies $\operatorname{Nil}_{0}(R)$ is generated by elements of form $\left[\left(R^{n}, \nu\right)\right]-\left[\left(R^{n}, 0\right)\right]$.
Proposition 3.8. For any finitely generated projective R-module P, there is a natural homomorphism from $\operatorname{Aut}(P)$ to $K_{1}(R)$, which send $\alpha \in \operatorname{Aut}(P)$ to an element of $K_{1}(R)$ that is induced by $\alpha \oplus 1 \in \operatorname{Aut}(P \oplus Q)$ and the isomorphism $P \oplus Q \cong R^{n}$ for some integer n.

Give an isomorphism $f: P \oplus Q \longrightarrow R^{n}$, then the image of this natural homomorphism of $\alpha \in \operatorname{Aut}(P)$ can be represented as $\left[f(\alpha \oplus 1) f^{-1}\right] \in K_{1}(R)$.

Proof. To prove this map is well-defined, first, we prove that this map is independent of choice of the isomorphisms $P \oplus Q \cong R^{n}$. Assume there are two different isomorphism $f, g: P \oplus Q \longrightarrow R^{n}$, assume their corresponding natural homomorphism images are $[A],[B]$ respectively, where

$$
\begin{aligned}
& A=f\left(\alpha \oplus 1_{Q}\right) f^{-1} \\
& B=g\left(\alpha \oplus 1_{Q}\right) g^{-1}
\end{aligned}
$$

It follows that $B=\left(g f^{-1}\right) A\left(g f^{-1}\right)^{-1}$. Because $g f^{-1} \in G L(R)$, so in $K_{1}(R)$, we have $[B]=[A]$.
Second, we prove that if $P \oplus Q$ is replaced by $P \oplus Q \oplus R^{j}$ then the corresponding image in $K_{1}(R)$ is the same as $[A] \in K_{1}(R)$ corresponding to $P \oplus Q$. Actually, the correspondence image of $P \oplus Q \oplus R^{j}$ is

$$
\left[\left(\begin{array}{ll}
A & 0 \\
0 & 1
\end{array}\right)\right]=[A]
$$

where 1 is the identity on R^{j}.
Third, if there is $P \oplus Q^{\prime} \cong R^{m}$, without loss of generosity, assume $m \geq n$, then by the second part, we can replace $P \oplus Q$ by $P \oplus Q \oplus R^{m-n}$ so that

$$
P \oplus Q \oplus R^{m-n} \cong P \oplus Q^{\prime} \cong R^{m} .
$$

Therefore there is an isomorphism $T: P \oplus Q \oplus R^{m-n} \longrightarrow P \oplus Q^{\prime}$. Assume the corresponding image of $\alpha \oplus 1_{Q} \oplus 1_{R^{m-n}}$ is A, the corresponding image of $\alpha \oplus 1_{Q^{\prime}}$ is B, namely, there are isomorphisms f, g such that

$$
\begin{aligned}
& A=f\left(\alpha \oplus 1_{Q} \oplus 1_{R^{m-n}}\right) f^{-1} \\
& B=g\left(\alpha \oplus 1_{Q}\right) g^{-1} .
\end{aligned}
$$

Because $\alpha \oplus 1_{Q^{\prime}}=T^{-1}\left(\alpha \oplus 1_{Q} \oplus 1_{R^{m-n}}\right) T$, so $B=\left(f T g^{-1}\right)^{-1} A\left(f T g^{-1}\right)$. Also, because $f T g^{-1} \in G L(R)$, so $[B]=[A]$.

Lemma 3.9. If α is an automorphism of $R\left[t, t^{-1}\right]^{n}$, which maps $R[t]^{n}$ into $R[t]^{n}$, then $R[t]^{n} / \alpha R[t]^{n}$ is finite generated projective module over R.

Proof. Assume the inverse of α is β, then, $t^{k} \beta$ is an endomorphism on $R[t]^{n}$ for large enough k. Denote $e_{i} \in R[t]^{n}$, as the vector whose i index equals 1 , and 0 otherwise, $i=1, \cdots, n$. Then we have $\beta t^{k} e_{i}=t^{k} \beta e_{i} \in R[t]^{n}$, which means $t^{k} e_{i} \in \alpha R[t]^{n}$ for all i. So, the generators of
$R[t]^{n} / \alpha R[t]^{n}$ are contained in $\left\{t^{j} e_{i}\right\}, i=1, \cdots, n, j=1, \cdots, k-1$, and thus $R[t]^{n} / \alpha R[t]^{n}$ a finite generated R-module.

To verify $R[t]^{n} / \alpha R[t]^{n}$ is projective R-module, we see for n-dimensional elementary matrix $e_{i j}(a) \in E\left(R\left[t, t^{-1}\right]\right)$, we have the short exact sequence:

$$
\begin{gathered}
0 \longrightarrow\left(R[t]^{n-1}+t^{k} e_{i j}(a) R[t]^{n}\right) / t^{k} e_{i j}(a) R[t]^{n} \longrightarrow R[t]^{n} / t^{k} e_{i j}(a) R[t]^{n} \\
\longrightarrow R[t]^{n} /\left(R[t]^{n-1}+t^{k} e_{i j}(a) R[t]^{n}\right) \longrightarrow 0,
\end{gathered}
$$

where $R[t]^{n-1}$ is considered as the embedding image in $R[t]^{n}$, the homomorphisms ${ }^{1}$

$$
\left(R[t]^{n-1}+t^{k} e_{i j}(a) R[t]^{n}\right) / t^{k} e_{i j}(a) R[t]^{n} \longrightarrow R[t]^{n} / t^{k} e_{i j}(a) R[t]^{n}
$$

and

$$
R[t]^{n} / t^{k} e_{i j}(a) R[t]^{n} \longrightarrow R[t]^{n} /\left(R[t]^{n-1}+t^{k} e_{i j}(a) R[t]^{n}\right)
$$

are both canonical maps.
Because $R[t] \cong R[t]^{n} / R[t]^{n-1}$, then the homomorphism given by the composition:

$$
R[t]^{n} \longrightarrow R[t]^{n} / R[t]^{n-1} \xrightarrow{\cong} R[t]
$$

induces an isomorphism $R[t]^{n} /\left(R[t]^{n-1}+t^{k} e_{i j}(a) R[t]^{n}\right) \cong R[t] / t^{k} R[t]$.
In addition, we have isomorphism

$$
\left(R[t]^{n-1}+t^{k} e_{i j}(a) R[t]^{n}\right) / t^{k} e_{i j}(a) R[t]^{n} \cong R[t]^{n-1} /\left(R[t]^{n-1} \cap t^{k} e_{i j}(a) R[t]^{n}\right)
$$

induced by projection onto the first $n-1$ coordinates, where

$$
R[t]^{n-1} /\left(R[t]^{n-1} \cap t^{k} e_{i j}(a) R[t]^{n}\right)=R[t]^{n-1} / t^{k} R[t]^{n-1}
$$

[^3]To sum up, there is a short exact sequence:

$$
0 \longrightarrow R[t] / t^{k} R[t] \longrightarrow R[t]^{n} / t^{k} e_{i j}(a) R[t]^{n} \longrightarrow R[t]^{n-1} / t^{k} R[t]^{n-1} \longrightarrow 0
$$

Because $R[t]^{n-1} / t^{k} R[t]^{n-1}$ is free and thus projective R-module, so this sequence is split exact, and thus

$$
R[t]^{n} / t^{k} e_{i j}(a) R[t]^{n} \cong\left(R[t] / t^{k} R[t]\right) \oplus\left(R[t]^{n-1} / t^{k} R[t]^{n-1}\right)=R[t]^{n} / t^{k} R[t]^{n}
$$

So, by induction, for any $e \in E\left(R\left[t, t^{-1}\right]\right)$, we have

$$
\begin{equation*}
\left[R[t]^{n} / t^{k} e R[t]^{n}\right]=\left[R[t]^{n} / t^{k} R[t]^{n}\right] \tag{3.1}
\end{equation*}
$$

for large enough integer k. The similar result that

$$
\begin{equation*}
\left[R[t]^{n} / e t^{k} R[t]^{n}\right]=\left[R[t]^{n} / t^{k} R[t]^{n}\right] \tag{3.2}
\end{equation*}
$$

also holds.
However,

$$
\left(R[t]^{n} / \alpha R[t]^{n}\right) \oplus\left(R[t]^{n} / t^{k} \beta R[t]^{n}\right) \cong R[t]^{2 n} /\left(\alpha \oplus t^{k} \beta\right) R[t]^{2 n}
$$

while

$$
\left(\begin{array}{cc}
t^{k} & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
t^{k} \beta & 1
\end{array}\right)\left(\begin{array}{cc}
\alpha & 0 \\
0 & t^{k} \beta
\end{array}\right)\left(\begin{array}{cc}
1 & -\beta \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
\alpha & 1
\end{array}\right)
$$

and the matrices on the right hand side except $\left(\begin{array}{cc}\alpha & 0 \\ 0 & t^{k} \beta\end{array}\right)$ belong to $E\left(R\left[t, t^{-1}\right]\right)$, so we get

$$
\left[R[t]^{2 n} /\left(\alpha \oplus t^{k} \beta\right) R[t]^{2 n}\right]=\left[R[t]^{2 n} /\left(t^{k} \oplus-1\right) R[t]^{2 n}\right]
$$

where $R[t]^{2 n} /\left(t^{k} \oplus-1\right) R[t]^{2 n}$ is obviously free R-module. It follows that

$$
\left(R[t]^{2 n} /\left(\alpha \oplus t^{k} \beta\right) R[t]^{2 n}\right) \oplus R^{m} \cong\left(R[t]^{2 n} /\left(t^{k} \oplus-1\right) R[t]^{2 n}\right) \oplus R^{m}
$$

So, $R[t]^{n} / \alpha R[t]^{n}$ is embedded into a free R-module as a direct sum, $R[t]^{n} / \alpha R[t]^{n}$ is projective R-module.

The following Lemma is due to H. Bass:

Lemma 3.10 ([6]). For ring R, we have the following propositions:
(a) Every matrix X in $G L(R[t])$ can be reduced, modulo $E(R[t])$ and $G L(R)$, to the form $1+B t$, where B is a nilpotent matrix on R.
(b) Every matrix X in $G L\left(R\left[t, t^{-1}\right]\right)$ can be reduced, modulo $E\left(R\left[t, t^{-1}\right]\right)$ and $G L(R)$ to the form

$$
(1+A(t-1))\left(\begin{array}{cc}
t^{-k} & 0 \\
0 & 1
\end{array}\right)
$$

in which A is matrix on R such that $A=P+N$, with idempotent P, nilpotent N such that $P N=N P$.

Proof. (a) We see that $X=X_{0}+t X_{1}+\cdots+t^{n} X_{n}$, where X_{0}, \cdots, X_{n} are matrix on R. We claim that X can be reduced, modulo $E(R[t])$ and $G L(R)$ to a matrix polynomial whose degree
less than n. Actually, we have

$$
\begin{aligned}
{[X] } & =\left[\left(\begin{array}{ll}
X & 0 \\
0 & 1
\end{array}\right)\right] \\
& =\left[\left(\begin{array}{ll}
1 & t^{n-1} X_{n} \\
0 & 1
\end{array}\right)\right]\left[\left(\begin{array}{ll}
X & 0 \\
0 & 1
\end{array}\right)\right]\left[\left(\begin{array}{cc}
1 & 0 \\
-t & 1
\end{array}\right)\right] \\
& =\left[\left(\begin{array}{cc}
X & t^{n-1} X_{n} \\
0 & 1
\end{array}\right)\right]\left[\left(\begin{array}{cc}
1 & 0 \\
-t & 1
\end{array}\right)\right] \\
& =\left[\left(\begin{array}{cc}
X-t^{n} X_{n} & t^{n-1} X_{n} \\
-t & 1
\end{array}\right)\right]
\end{aligned}
$$

by modulo $E(R[t])$.
However the last matrix can be represented as a matrix polynomial with degree less than n. So, by induction, we can prove for any X, it can be reduced to the form $B_{0}+B_{1} t$. If $B_{1}=0$, then the conclusion is obvious, if $B_{1} \neq 0$, then because the polynomial $B_{0}+B_{1} t \in G L(R[t])$, taking $t=0$, we see $B_{0} \in G L(R)$. By factoring out B_{0}, X can be reduced to $1+B t$ where $B=B_{0}^{-1} B_{1}$.

Because this matrix is invertible, assume its inverse is $C_{0}+\cdots+C_{j} t^{j}$, namely

$$
(1+B t)\left(C_{0}+\cdots+C_{j} t^{j}\right)=\left(C_{0}+\cdots+C_{j} t^{j}\right)(1+B t)=1
$$

By straightforward computation and comparing the coefficients of terms, we get

$$
\begin{aligned}
& C_{0}=1 \\
& B C_{0}+C_{1}=C_{0} B+C_{1}=0 \\
& \ldots \quad \ldots \\
& B C_{j-1}+C_{j}=C_{j-1} B+C_{j}=0 \\
& B C_{j}=C_{j} B=0
\end{aligned}
$$

which implies $C_{i}=(-B)^{i}$. Then, because $C_{j+1}=0$, so $B^{j+1}=0$, so B is nilpotent.
(b) Similarly, we can write $X \in G L\left(R\left[t, t^{-1}\right]\right)$ as

$$
X=\left(X_{0}+X_{1} t+X_{2} t^{2}+\cdots+X_{n} t^{n}\right) t^{-k}
$$

while all X_{i} are matrices on R. By the same trick as in (a), X can be reduced to the form

$$
\left(B_{0}+B_{1} t\right)\left(\begin{array}{cc}
t^{-k} & 0 \\
0 & 1
\end{array}\right)=\left(\left(B_{0}+B_{1}\right)+B_{1}(t-1)\right)\left(\begin{array}{cc}
t^{-k} & 0 \\
0 & 1
\end{array}\right)
$$

It follows from the fact that X is invertible that $\left(\left(B_{0}+B_{1}\right)+B_{1}(t-1)\right)$ is invertible, then we claim that $B_{0}+B_{1}$ is invertible in $R\left(\left[t, t^{-1}\right]\right)$.

To see this, assume the inverse of $\left(B_{0}+B_{1}\right)+B_{1}(t-1)$ is the Laurent polynomial Y, therefore

$$
\left(\left(B_{0}+B_{1}\right)+B_{1}(t-1)\right) Y=Y\left(\left(B_{0}+B_{1}\right)+B_{1}(t-1)\right)=1
$$

then let $t=1$, we got

$$
Y^{\prime}\left(B_{0}+B_{1}\right)=\left(B_{0}+B_{1}\right) Y^{\prime}=1
$$

where Y^{\prime} is the value of Y when $t=1$, which implies $B_{0}+B_{1}$ is invertible. Factor out $B_{0}+B_{1}$, X can be reduced to the form

$$
(1+A(t-1))\left(\begin{array}{cc}
t^{-k} & 0 \\
0 & 1
\end{array}\right)
$$

Assume the inverse of $1+A(t-1)$ is $C_{-i} t^{-i}+\cdots+C_{0}+\cdots+C_{j} t^{j}$, therefore

$$
(1+A(t-1))\left(C_{-i} t^{-i}+\cdots+C_{0}+\cdots+C_{j} t^{j}\right)=1
$$

and

$$
\left(C_{-i} t^{-i}+\cdots+C_{0}+\cdots+C_{j} t^{j}\right)(1+A(t-1))=1
$$

By straightforward computation and comparing the coefficients of terms, we got

$$
\begin{aligned}
& (1-A) C_{-i}=C_{-i}(1-A)=0 \\
& (1-A) C_{-i+1}+A C_{-i}=C_{-i+1}(1-A)+C_{-i} A=0 \\
& \ldots \quad \ldots \\
& (1-A) C_{0}+A C_{-1}=C_{0}(1-A)+C_{-1} A=1 \\
& \ldots \quad \ldots \\
& (1-A) C_{j}+A C_{j-1}=C_{j}(1-A)+C_{j-1} A=0 \\
& A C_{j}=C_{j} A=0
\end{aligned}
$$

Multiply $1-A$ to the second line both from the left and right, since $1-A$ commutes with A, we got

$$
(1-A)^{2} C_{-i+1}=C_{-i+1}(1-A)^{2}=0
$$

Continuous this process, we have

$$
(1-A)^{i} C_{-1}=C_{-1}(1-A)^{i}=0
$$

Similarly,

$$
A^{j+1} C_{0}=C_{0} A^{j+1}=0
$$

so

$$
0=(A(1-A))^{i+j+1}\left((1-A) C_{0}+A C_{-1}\right)=(A(1-A))^{i+j+1}
$$

which shows, by induction, that $A(1-A)$ is nilpotent.
To show A can be written as $A=P+N$, where P is idempotent, N nilpotent, assume $A^{n}(1-A)^{n}=(A(1-A))^{n}=0$, then because x^{n} and $(1-x)^{n}$ are relatively prime in $\mathbb{Z}[x]$, so
there are polynomials p, q such that $p(x) x^{n}+q(x)(1-x)^{n}=1$. Let $^{2} P=p(A) A^{n}, N=A-P$, then we see

$$
P^{2}-P=P(1-P)=p(A) A^{n} q(A)(1-A)^{n}=p(A) q(A) A^{n}(1-A)^{n}=0
$$

which means P is idempotent. Because

$$
\begin{aligned}
& N=A-p(A) A^{n}=A\left(1-p(A) A^{n-1}\right) \\
& N=-(1-A)+(1-P)=(1-A)\left(-1+q(A)(1-A)^{n-1}\right)
\end{aligned}
$$

also by the fact that x and $1-x$ are relative prime, $N=A(1-A) T(A)$ for some polynomial $T(x)$, which means N is nilpotent as well.

Remark 3.11. If α is an automorphism of $R\left[t, t^{-1}\right]^{m}$, which maps $R[t]^{m}$ to $R[t]^{m}$, then by the proof of (b) in Lemma 3.10 and equations (3.1), (3.2),

$$
\left[R[t]^{m} / \alpha R[t]^{m}\right]=\left[R[t]^{n} /(1+(P+N)(t-1)) R[t]^{n}\right]
$$

for integer n, where P is idempotent, N is nilpotent, and P, N commute. We claim that

$$
\begin{equation*}
R[t]^{n} /(1+(P+N)(t-1)) R[t]^{n} \cong P R^{n} \tag{3.3}
\end{equation*}
$$

${ }^{2}$ Actually, $p(x), q(x)$ can be represented as

$$
\begin{aligned}
& p(x)=\sum_{k=0}^{n-1}\binom{2 n-1}{k}(1-x)^{k} x^{n-k-1} \\
& q(x)=\sum_{k=n}^{2 n-1}\binom{2 n-1}{k}(1-x)^{k-n} x^{2 n-k-1}
\end{aligned}
$$

by considering the binomial expansion of $(1-x+x)^{2 n-1}$.

Actually, because

$$
\begin{gathered}
1+(P+N)(t-1)=P(t+N(t-1))+(1-P)(1+N(t-1)) \\
P(t+N(t-1)) R[t]^{n} \cap(1-P)(1+N(t-1)) R[t]^{n}=\emptyset \\
\text { so }(1+(P+N)(t-1)) R[t]^{n}=P(t+N(t-1)) R[t]^{n} \oplus(1-P)(1+N(t-1)) R[t]^{n} .
\end{gathered}
$$

Similarly, $R[t]^{n}=P R[t]^{n} \oplus(1-P) R[t]^{n}$. Because $1+N(t-1)$ is invertible matrix on $R[t]$, so

$$
(1-P)(1+N(t-1)) R[t]^{n}=(1-P) R[t]^{n}
$$

It follows that ${ }^{3}$

$$
\begin{equation*}
R[t]^{n} /(1+(P+N)(t-1)) R[t]^{n}=P R[t]^{n} / P(t+N(t-1)) R[t]^{n} \tag{3.4}
\end{equation*}
$$

where $P R[t]^{n} / P(t+N(t-1)) R[t]^{n} \cong P\left(R[t]^{n} /(t+N(t-1)) R[t]^{n}\right)$.
Also we have $R[t]^{n} /(t+N(t-1)) R[t]^{n} \cong R^{n}$. To see this, first,

$$
t+N(t-1)=(1+N) t-N=\left(t-N(1+N)^{-1}\right)(1+N)
$$

It follows that $(t+N(t-1)) R[t]^{n}=\left(t-N(1+N)^{-1}\right) R[t]^{n}$, and thus

$$
\begin{equation*}
R[t]^{n} /(t+N(t-1)) R[t]^{n}=R[t]^{n} /\left(t-N(1+N)^{-1}\right) R[t]^{n} . \tag{3.5}
\end{equation*}
$$

Then, we have $R[t]^{n} /\left(t-N(1+N)^{-1}\right) R[t]^{n} \cong R^{n}$. To see this, first, for any $X(t) \in R[t]^{n}$, $X(t)=X_{0}+t X_{1}+t^{2} X_{2}+\cdots+t^{k} X_{k}$. Then, we define the evaluation $R[t]^{n} \longrightarrow R^{n}$ which is given by $t \longrightarrow N(1+N)^{-1}$. Because R^{n} is embedded into $R[t]^{n}$, so the evaluation is an

[^4]epimorphism, and the kernel is $\left(t-N(1+N)^{-1}\right) R[t]^{n}$, therefore
$$
R[t]^{n} /\left(t-N(1+N)^{-1}\right) R[t]^{n} \cong R^{n} .
$$

To sum up, $R[t]^{n} /(1+(P+N)(t-1)) R[t]^{n} \cong P R^{n}$.

Definition 3.12. Define $N K_{i}(R)$ to be the cokernel of the natural map

$$
K_{i}(R) \longrightarrow K_{i}(R[t]),
$$

where $i=0,1$.

Remark 3.13. Because the evaluation

$$
R[t] \xrightarrow{t \longrightarrow 1} R
$$

induces a splitting of the natural map $K_{i}(R) \longrightarrow K_{i}(R[t])$, so we see

$$
K_{i}(R[t]) \cong K_{i}(R) \oplus N K_{i}(R)
$$

where $i=0,1$.
Lemma 3.14. There is a surjective boundary map $\partial: K_{1}\left(R\left[t, t^{-1}\right]\right) \longrightarrow K_{0}(\mathrm{Nil} R)$ that sends $[\alpha] \in K_{1}\left(R\left[t, t^{-1}\right]\right)$ to

$$
\left[\left(R[t]^{n} / t^{k} \alpha R[t]^{n}, t\right)\right]-\left[\left(R[t]^{n} / t^{k} R[t]^{n}, t\right)\right] \in K_{0}(\operatorname{Nil} R)
$$

for large enough k, where t is considered as the homomorphism induced by multiplying t, n is the dimension of the square matrix α, and the right inverse of ∂ embeds $K_{0}(\mathrm{Nil} R)$ as a direct sum of $K_{1}\left(R\left[t, t^{-1}\right]\right)$.

Proof. First, we show ∂ is well defined. By Lemma 3.9, we see $R[t]^{n} / t^{k} \alpha R[t]^{n}$ and $R[t]^{n} / t^{k} R[t]^{n}$
are indeed finitely-generated projective R-modules, and both t are nilpotents. We also claim that ∂ is independent of choice of k. Actually, we have the short exact sequence:

$$
0 \longrightarrow t^{k} \alpha R[t]^{n} / t^{k+j} \alpha R[t]^{n} \longrightarrow R[t]^{n} / t^{k+j} \alpha R[t]^{n} \longrightarrow R[t]^{n} / t^{k} \alpha R[t]^{n} \longrightarrow 0,
$$

where the intermediate two homomorphisms from left to right are canonical map. Because the intermediate two homomorphisms are $R[t]$-module homomorphism, due to fact that they commute with t, and there is a $R[t]$-module isomorphism $R[t]^{n} / t^{j} R[t]^{n} \xrightarrow{t^{k} \alpha} t^{k} \alpha R[t]^{n} / t^{k+j} \alpha R[t]^{n}$, so there is a commutative diagram with top and bottom row exact:

which implies

$$
\left[\left(R[t]^{n} / t^{k+j} \alpha R[t]^{n}, t\right)\right]=\left[\left(R[t]^{n} / t^{k} \alpha R[t]^{n}, t\right)\right]+\left[\left(R[t]^{n} / t^{j} R[t]^{n}, t\right)\right] .
$$

Similarly, we have

$$
\left[\left(R[t]^{n} / t^{k+j} R[t]^{n}, t\right)\right]=\left[\left(R[t]^{n} / t^{k} R[t]^{n}, t\right)\right]+\left[\left(R[t]^{n} / t^{j} R[t]^{n}, t\right)\right]
$$

It follows that

$$
\left[\left(R[t]^{n} / t^{k+j} \alpha R[t]^{n}, t\right)\right]-\left[\left(R[t]^{n} / t^{k+j} R[t]^{n}, t\right)\right]=\left[\left(R[t]^{n} / t^{k} \alpha R[t]^{n}, t\right)\right]-\left[\left(R[t]^{n} / t^{k} R[t]^{n}, t\right)\right]
$$

so ∂ is independent of choice of k (if k is large enough).
Because α is identified with ${ }^{4} \alpha \oplus 1$ in $K_{1}\left(R\left[t, t^{-1}\right]\right)$, we are going to prove the image of $\alpha \oplus 1$

[^5]is the same as α. Actually, we have the short exact sequence:
$$
0 \longrightarrow R[t]^{n} / t^{k} \alpha R[t]^{n} \xrightarrow{\ell} R[t]^{n+j} / t^{k}(\alpha \oplus 1) R[t]^{n+j} \xrightarrow{p_{j}} R[t]^{j} / t^{k} R[t]^{j} \longrightarrow 0
$$
where ℓ embeds $R[t]^{n} / t^{k} \alpha R[t]^{n}$ into the first n coordinates of $R[t]^{n+j} / t^{k}(\alpha \oplus 1) R[t]^{n+j}$, and p_{j} is the projection of $R[t]^{n+j} / t^{k}(\alpha \oplus 1) R[t]^{n+j}$ onto the last j coordinates.

Also, because ℓ and p_{j} are $R[t]$-module homomorphism, by the same manner, we get

$$
\left[\left(R[t]^{n+j} / t^{k}(\alpha \oplus 1) R[t]^{n+j}, t\right)\right]=\left[\left(R[t]^{n} / t^{k} \alpha R[t]^{n}, t\right)\right]+\left[\left(R[t]^{j} / t^{k} R[t]^{j}, t\right)\right]
$$

and thus

$$
\begin{aligned}
& {\left[\left(R[t]^{n+j} / t^{k}(\alpha \oplus 1) R[t]^{n+j}, t\right)\right]-\left[\left(R[t]^{n+j} / t^{k} R[t]^{n+j}, t\right)\right] } \\
= & {\left[\left(R[t]^{n} / t^{k} \alpha R[t]^{n}, t\right)\right]-\left[\left(R[t]^{n} / t^{k} R[t]^{n}, t\right)\right] . }
\end{aligned}
$$

Also, for any $[\beta],[\gamma] \in K_{1}\left(R\left[t, t^{-1}\right]\right)$, consider β, γ as the square matrix of large enough dimension n, by embedding them into $G L_{n}\left(R\left[t, t^{-1}\right]\right)$. We have the short exact sequence:

$$
0 \longrightarrow t^{k} \beta R[t]^{n} / t^{2 k} \beta \gamma R[t]^{n} \longrightarrow R[t]^{n} / t^{2 k} \beta \gamma R[t]^{n} \longrightarrow R[t]^{n} / t^{k} \beta R[t]^{n} \longrightarrow 0,
$$

so in the same manner as above, we have

$$
\left[\left(R[t]^{n} / t^{2 k} \beta \gamma R[t]^{n}, t\right)\right]=\left[\left(R[t]^{n} / t^{k} \beta R[t]^{n}, t\right)\right]+\left[\left(R[t]^{n} / t^{k} \gamma R[t]^{n}, t\right)\right]
$$

which also implies if ∂ is well-defined, then it is a homomorphism, because

$$
\begin{aligned}
& {\left[\left(R[t]^{n} / t^{2 k} \beta \gamma R[t]^{n}, t\right)\right]-\left[\left(R[t]^{n} / t^{2 k} R[t]^{n}, t\right)\right] } \\
= & {\left[\left(R[t]^{n} / t^{k} \beta R[t]^{n}, t\right)\right]+\left[\left(R[t]^{n} / t^{k} \gamma R[t]^{n}, t\right)\right]-2\left[\left(R[t]^{n} / t^{k} R[t]^{n}, t\right)\right] . }
\end{aligned}
$$

Also, for n-dimensional elementary matrix $e_{i j}(a) \in E\left(R\left[t, t^{-1}\right]\right)$, similarly as we did in Lemma 3.9, there is a commutative diagram with the top and bottom rows exact:

It follows that

$$
\begin{aligned}
{\left[\left(R[t]^{n} / t^{k} e_{i j}(a) R[t]^{n}, t\right)\right] } & =\left[\left(R[t] / t^{k} R[t], t\right)\right]+\left[\left(R[t]^{n-1} / t^{k} R[t]^{n-1}, t\right)\right] \\
& =\left[\left(R[t]^{n} / t^{k} R[t]^{n}, t\right)\right]
\end{aligned}
$$

which implies $\partial\left(e_{i j}(a) \alpha\right)=\partial(\alpha)$, for any n-dimensional elementary matrix $e_{i j}(a) \in E\left(R\left[t, t^{-1}\right]\right)$. Similarly, $\partial\left(\alpha e_{i j}(a)\right)=\partial(\alpha)$. By induction, we see for any $\zeta, \eta \in E\left(R\left[t, t^{-1}\right]\right), \partial(\zeta \alpha \eta)=\partial(\alpha)$. So ∂ is well-defined and a homomorphism.

We are going to prove ∂ is surjective and $K_{0}(\mathrm{Nil} R)$ is a summand of $K_{1}\left(R\left[t, t^{-1}\right]\right)$ by proving ∂ has right inverse.

Define a map $\varphi_{1}: K_{0}(R) \longrightarrow K_{1}\left(R\left[t, t^{-1}\right]\right)$ induced by $[P] \longmapsto[t p+1-p]$, where p is a corresponding idempotent matrix of projective R-module P.

To begin with, we show that this map is well-defined. For $t p+1-p$, it has an inverse $t^{-1} p+1-p$, which implies $t p+1-p \in G L\left(R\left[t, t^{-1}\right]\right)$. Then, for another idempotent matrix p^{\prime} on R such that $p^{\prime}=M p M^{-1}, M \in G L(R)$ we have

$$
\left[t p^{\prime}+1-p^{\prime}\right]=[M][t p+1-p]\left[M^{-1}\right]=[M][M]^{-1}[t p+1-p]=[t p+1-p]
$$

To see this map is a homomorphism, consider another $\left[P^{\prime}\right] \in K_{0}(R)$.

Because $[P]+\left[P^{\prime}\right]=\left[P \oplus P^{\prime}\right]$, so

$$
\begin{aligned}
& \varphi_{1}\left([P]+\left[P^{\prime}\right]\right) \\
& =\varphi_{1}\left(\left[P \oplus P^{\prime}\right]\right) \\
& =\left[t\left(\begin{array}{ll}
p & 0 \\
0 & p^{\prime}
\end{array}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)-\left(\begin{array}{ll}
p & 0 \\
0 & p^{\prime}
\end{array}\right)\right] \\
& =\left[\left(\begin{array}{cc}
t p+1-p & 0 \\
0 & t p^{\prime}+1-p^{\prime}
\end{array}\right)\right] \\
& =[t p+1-p]\left[t p^{\prime}+1-p^{\prime}\right] \\
& =\varphi_{1}([P]) \varphi_{1}\left(\left[P^{\prime}\right]\right)
\end{aligned}
$$

By Remark 3.11, we see φ_{1} is the right inverse of $F \circ \partial$, where F is the forgetful map.
Define a homomorphism $\varphi_{2}: K_{0}(\operatorname{Nil} R) \longrightarrow K_{1}(R[t])$ induced by sending every $[(P, \nu)] \in$ Nil R to the image of the automorphism $1-\nu t \in \operatorname{Aut}(P[t])$ under the natural homomorphism of Proposition 3.8. To see this map is well-defined, we need to check:
(1) If $(P, \nu) \cong\left(P^{\prime}, \nu^{\prime}\right)$, then $\varphi_{2}([(P, \nu)])=\varphi_{2}\left(\left[\left(P^{\prime}, \nu^{\prime}\right)\right]\right)$.
(2) If there is a short exact sequence:

$$
0 \longrightarrow\left(P_{1}, \nu_{1}\right) \longrightarrow\left(P_{2}, \nu_{2}\right) \longrightarrow\left(P_{3} \nu_{3}\right) \longrightarrow 0,
$$

then $\varphi_{2}\left(\left[\left(P_{2}, \nu_{2}\right)\right]\right)=\varphi_{2}\left(\left[\left(P_{1}, \nu_{1}\right)\right]\right) \varphi_{2}\left(\left[\left(P_{3}, \nu_{3}\right)\right]\right)$.
For (1), assume h is the isomorphism between (P, ν) and (P^{\prime}, ν^{\prime}), then we got $\nu^{\prime}=h \nu h^{-1}$, and thus $1-\nu^{\prime} t=h(1-\nu t) h^{-1}$. So in the similar manner as we used in the proof of Proposition 3.8, the images of $1-\nu t$ and $1-\nu^{\prime} t$ under the homomorphism of Proposition 3.8 are the same.

For (2), because $P_{2} \cong P_{1} \oplus P_{3}$, by selecting particular isomorphism, we can write $1-\nu_{2} t$ as
an upper triangular matrix:

$$
1-\nu t=\left(\begin{array}{cc}
1-\nu_{1} t & \gamma t \\
0 & 1-\nu_{2} t
\end{array}\right)=\left(\begin{array}{cc}
1-\nu_{1} t & 0 \\
0 & 1-\nu_{2} t
\end{array}\right)\left(\begin{array}{cc}
1 & \gamma^{\prime} t \\
0 & 1
\end{array}\right)
$$

which implies $\left[1-\nu_{2} t\right]=\left[1-\nu_{1} t\right]\left[1-\nu_{3} t\right]$, by taking natural homomorphism we see $\varphi_{2}\left(\left[\left(P_{2}, \nu_{2}\right)\right]\right)=$ $\varphi_{2}\left(\left[\left(P_{1}, \nu_{1}\right)\right]\right) \varphi_{2}\left(\left[\left(P_{3}, \nu_{3}\right)\right]\right)$.

In addition, we see the image of φ_{2} is contained in $N K_{1}(R)$ and $\varphi_{2}:\left(R^{n}, \nu\right) \longmapsto[1-\nu t]$.
We define a homomorphism $\psi: N K_{1}(R) \longrightarrow \operatorname{Nil}_{0}(R)$ as the composition:

$$
N K_{1}(R) \longrightarrow K_{1}(R[t]) \longrightarrow K_{1}\left(R\left[t, t^{-1}\right]\right) \longrightarrow K_{1}\left(R\left[s, s^{-1}\right]\right) \xrightarrow{\partial} K_{0}(\operatorname{Nil} R) \xrightarrow{p} \operatorname{Nil}_{0}(R)
$$

where the left two homomorphisms are both inclusion map, p is the projection map, the homomorphism from $K_{1}\left(R\left[t, t^{-1}\right]\right)$ to $K_{1}\left(R\left[s, s^{-1}\right]\right)$ is induced by identifying t with s^{-1}.

Define $\varphi_{2}^{\prime}: \operatorname{Nil}_{0}(R) \longrightarrow K_{1}\left(R\left[s, s^{-1}\right]\right)$ to be φ_{2} restricted on $\operatorname{Nil}_{0}(R)$. By Proposition 3.7, $\operatorname{Nil}_{0}(R)$ is generated by elements of form $\left[\left(R^{n}, \nu\right)\right]-\left[\left(R^{n}, 0\right)\right]$. However, we have ${ }^{5}$

$$
\partial\left(\varphi_{2}^{\prime}\left(\left[\left(R^{n}, \nu\right)\right]-\left[\left(R^{n}, 0\right)\right]\right)\right)=\partial([1-\nu s])=\left[\left(R^{n}, \nu\right)\right]-\left[\left(R^{n}, 0\right)\right]
$$

which means φ_{2}^{\prime} is the right inverse of ∂ composited with projection $p: K_{0}(\operatorname{Nil} R) \longrightarrow \operatorname{Nil}_{0}(R)$.
Now, we see, $K_{0}(\mathrm{Nil} R) \cong K_{0}(R) \oplus \operatorname{Nil}_{0}(R)$, and $F: K_{0}(\mathrm{Nil} R) \longrightarrow K_{0}(R)$ is the forgetful map, $p: K_{0}(\mathrm{Nil} R) \longrightarrow \operatorname{Nil}_{0}(R)$ is the projection map, $F \circ \partial$ is right invertible by φ_{1}, and $p \circ \partial$ is right invertible by φ_{2}^{\prime}. It follows that ∂ is right invertible.

Remark 3.15. By (a) of Lemma 3.10, we see that every element of $N K_{1}(R)$ can be reduced to $[1-\nu s]$. So, we have $\varphi_{2}^{\prime}(\psi([1-\nu s]))=\varphi_{2}^{\prime}\left(\left[\left(R^{n}, \nu\right)\right]-\left[\left(R^{n}, 0\right)\right]\right)=[1-\nu s]$, which means ψ is actually the inverse of φ_{2}^{\prime}, it follows that $\operatorname{Nil}_{0}(R) \cong N K_{1}(R)$.

[^6]Proposition 3.16. The homomorphism $K_{1}(R[t]) \longrightarrow K_{1}\left(R\left[t, t^{-1}\right]\right)$, which is induced by embedding $R[t] \hookrightarrow R\left[t, t^{-1}\right]$, is injective.

Proof. First, we claim $K_{1}(R)$ is embedded in $K_{1}\left(R\left[t, t^{-1}\right]\right)$ as a direct sum. Actually, the homomorphism from $K_{1}\left(R\left[t, t^{-1}\right]\right) \longrightarrow K_{1}(R)$ induced by $t \longrightarrow 1$ is the left inverse of the natural homomorphism $K_{1}(R) \longrightarrow K_{1}\left(R\left[t, t^{-1}\right]\right)$.

Consider the sequence whose composition is ψ as we define in Lemma 3.14:

$$
N K_{1}(R) \longrightarrow K_{1}(R[t]) \longrightarrow K_{1}\left(R\left[t, t^{-1}\right]\right) \longrightarrow \operatorname{Nil}_{0}(R)
$$

Because we have $K_{1}(R[t]) \cong K_{1}(R) \oplus N K_{1}(R)$, and $K_{1}(R)$ is embedded in $K_{1}\left(R\left[t, t^{-1}\right]\right)$ as a direct sum, and $K_{1}(R)$ is contained in the kernel of $K_{1}\left(R\left[t, t^{-1}\right]\right) \longrightarrow \operatorname{Nil}_{0}(R)$, so we have

$$
N K_{1}(R) \cong K_{1}(R[t]) / K_{1}(R) \longrightarrow K_{1}\left(R\left[t, t^{-1}\right]\right) / K_{1}(R) \longrightarrow \operatorname{Nil}_{0}(R)
$$

whose composition is also ψ. It follows from ψ is an isomorphism that

$$
N K_{1}(R) \longrightarrow K_{1}\left(R\left[t, t^{-1}\right]\right) / K_{1}(R)
$$

is injective, and thus the following homomorphism

$$
K_{1}(R) \oplus N K_{1}(R) \longrightarrow K_{1}(R) \oplus K_{1}\left(R\left[t, t^{-1}\right]\right) / K_{1}(R)
$$

is injective.
Because $K_{1}(R[t]) \cong K_{1}(R) \oplus N K_{1}(R)$, and $K_{1}\left(R\left[t, t^{-1}\right]\right) \cong K_{1}(R) \oplus K_{1}\left(R\left[t, t^{-1}\right]\right) / K_{1}(R)$, so we get $K_{1}(R[t]) \longrightarrow K_{1}\left(R\left[t, t^{-1}\right]\right)$ is injective.

Proposition 3.17 ([4]). For any $\alpha, \beta \in G L_{n}\left(R\left[t, t^{-1}\right]\right)$, which map $R[t]^{n}$ to $R[t]^{n}$, if

$$
R[t]^{n} / \alpha R[t]^{n} \cong R[t]^{n} / \beta R[t]^{n}
$$

as a $R[t]$-module isomorphism, then $[\alpha]\left[\beta^{-1}\right]$ lies in the image of $K_{1}(R[t]) \longrightarrow K_{1}\left(R\left[t, t^{-1}\right]\right)$.

Proof. Choose a $R[t]$-module isomorphism γ_{0} from $R[t]^{n} / \alpha R[t]^{n}$ to $R[t]^{n} / \beta R[t]^{n}$. Define $M:=$ $R[t]^{2 n} /(\alpha \oplus \beta) R[t]^{2 n}$ then we see

$$
\gamma:=\left(\begin{array}{cc}
0 & \gamma_{0}^{-1} \\
\gamma_{0} & 0
\end{array}\right)
$$

is an $R[t]$-module automorphism of M whose inverse is itself.
Similarly, as we did in Lemma 2.17, the automorphism

$$
\left(\begin{array}{cc}
\gamma & 0 \\
0 & \gamma^{-1}
\end{array}\right)
$$

on $M \oplus M$ can be lift to an $R[t]$-module automorphism γ_{1} of $R[t]^{4 n}$.
As a result, the following diagram commutes:

where $e_{1}:=(\alpha, 1,1,1), e_{2}:=(1, \beta, 1,1), \pi_{1}, \pi_{2}$ are projection map, and the top and bottom rows exact. So there is isomorphism $\gamma_{2}: R[t]^{4 n} \longrightarrow R[t]^{4 n}$ induced, that makes the following diagram commute:

which implies $\left[e_{1}\right]\left[\gamma_{1}\right]=\left[\gamma_{2}\right]\left[e_{2}\right]$. So $[\alpha]\left[\beta^{-1}\right]=\left[e_{1}\right]\left[e_{2}^{-1}\right]=\left[\gamma_{2}\right]\left[\gamma_{1}^{-1}\right]$ lies in the embedding image of $K_{1}(R[t])$ into $K_{1}\left(R\left[t, t^{-1}\right]\right)$.

Theorem 3.18 (Fundamental Theorem of Algebraic K-Theory). There is an isomorphism:

$$
K_{1}\left(R\left[t, t^{-1}\right]\right) \cong K_{0}(R) \oplus K_{1}(R) \oplus N K_{1}(R) \oplus N K_{1}(R)
$$

Proof. We are going to prove there is a short exact sequence:

$$
0 \longrightarrow K_{1}(R[t]) \longrightarrow K_{1}\left(R\left[t, t^{-1}\right]\right) \xrightarrow{\partial} K_{0}(\mathrm{Nil} R) \longrightarrow 0 .
$$

This sequence is exact on the right by Lemma 3.14, and exact on the left by Proposition 3.16. To verify that it is exact at $K_{1}\left(R\left[t, t^{-1}\right]\right)$, first we see for any $[\alpha] \in K_{1}\left(R\left[t, t^{-1}\right]\right)$, where $\alpha \in$ $G L_{n}(R[t])$, we have $\alpha R[t]^{n}=R[t]^{n}$, so $\partial([\alpha])=0$.

For the other direction, we notices that if $\partial([\alpha])=0$, namely

$$
\left[\left(R[t]^{n} / t^{k} \alpha R[t]^{n}, t\right)\right]=\left[\left(R[t]^{n} / t^{k} R[t]^{n}, t\right)\right]
$$

then by Proposition 3.5, there are short exact sequences

$$
\begin{align*}
& 0 \longrightarrow\left(Q^{\prime}, \nu^{\prime}\right) \longrightarrow\left(Q_{1}, \nu_{1}\right) \longrightarrow\left(Q^{\prime \prime}, \nu^{\prime \prime}\right) \longrightarrow 0 \tag{3.6}\\
& 0 \longrightarrow\left(Q^{\prime}, \nu^{\prime}\right) \longrightarrow\left(Q_{2}, \nu_{2}\right) \longrightarrow\left(Q^{\prime \prime}, \nu^{\prime \prime}\right) \longrightarrow 0 \tag{3.7}
\end{align*}
$$

such that

$$
\begin{equation*}
\left(\left(R[t]^{n} / t^{k} \alpha R[t]^{n}\right) \oplus Q_{1}, t \oplus \nu_{1}\right) \cong\left(\left(R[t]^{n} / t^{k} R[t]^{n}\right) \oplus Q_{2}, t \oplus \nu_{2}\right) \tag{3.8}
\end{equation*}
$$

Next, we claim that for any pair (P, τ), where P is finitely generated projective R-module, τ is a nilpotent endomorphism of P, there is an isomorphism

$$
(P, \tau) \cong\left(R[t]^{m} / \beta R[t]^{m}, t\right)
$$

for $\beta=1+\left(p+(1-\tau)^{-1} \tau\right)(t-1)$ where p is an idempotent matrix corresponding to P. Actually, by equations (3.4), (3.5) in Remark 3.11, $R[t]^{m} / \beta R[t]^{m}=p\left(R[t]^{m} /(t-\tau) R[t]^{m}\right)$, but obviously we have $(P, \tau)=\left(p\left(R[t]^{m} /(t-\tau) R[t]^{m}\right), t\right)$.

By this trick, without loss of generosity, assume

$$
\begin{aligned}
& \left(Q^{\prime}, \nu^{\prime}\right)=\left(R[t]^{m} / \alpha^{\prime} R[t]^{m}, t\right) \\
& \left(Q^{\prime \prime}, \nu^{\prime \prime}\right)=\left(R[t]^{m} / \alpha^{\prime \prime} R[t]^{m}, t\right) \\
& \left(Q_{1}, \nu_{1}\right)=\left(R[t]^{m} / \alpha_{1} R[t]^{m}, t\right) \\
& \left(Q_{2}, \nu_{2}\right)=\left(R[t]^{m} / \alpha_{2} R[t]^{m}, t\right)
\end{aligned}
$$

then equations (3.6), (3.7) can be written as

$$
\begin{aligned}
& 0 \longrightarrow Q^{\prime} \longrightarrow Q_{1} \longrightarrow Q^{\prime \prime} \longrightarrow 0 \\
& 0 \longrightarrow Q^{\prime} \longrightarrow Q_{2} \longrightarrow Q^{\prime \prime} \longrightarrow 0
\end{aligned}
$$

where all homomorphisms are $R[t]$-module homomorphisms.
Equation 3.8 can be written as

$$
\left(R[t]^{n+m} /\left(t^{k} \alpha \oplus \alpha_{1}\right) R[t]^{n+m}, t\right) \cong\left(R[t]^{n+m} /\left(t^{k} \oplus \alpha_{2}\right) R[t]^{n+m}, t\right)
$$

or equivalently,

$$
\begin{equation*}
R[t]^{n+m} /\left(t^{k} \alpha \oplus \alpha_{1}\right) R[t]^{n+m} \cong R[t]^{n+m} /\left(t^{k} \oplus \alpha_{2}\right) R[t]^{n+m} \tag{3.9}
\end{equation*}
$$

as a $R[t]$-module isomorphism.
We are going to show $\left[\alpha_{1}\right]=\left[\alpha_{2}\right]$ in $K_{1}\left(R\left[t, t^{-1}\right]\right)$. Actually, we have the following commuta-
tive diagrams:

for $i=1,2$, with the two horizontal sequences exact.
By Horseshoe Lemma, there are two commutative diagrams:

for $i=1,2$, with all horizontal and vertical sequences exact.
Since the first two vertical sequences from the left are exact, so $\left[\alpha_{1}\right]=\left[\alpha^{\prime}\right]+\left[\alpha^{\prime \prime}\right]=\left[\alpha_{2}\right]$ in $K_{1}\left(R\left[t, t^{-1}\right]\right)$.

By equation 3.9, and Proposition 3.17, we see $[\alpha]$ lies in the embedding image of $K_{1}(R[t]) \longrightarrow$ $K_{1}\left(R\left[t, t^{-1}\right]\right)$.

In addition, because ∂ has a right inverse as we proved in Lemma 3.14, so this short exact sequence splits, and by $K_{0}(\operatorname{Nil} R) \cong K_{0}(R) \oplus N K_{1}(R), K_{1}(R[t]) \cong K_{1}(R) \oplus N K_{1}(R)$, we get
the conclusion:

$$
K_{1}\left(R\left[t, t^{-1}\right]\right) \cong K_{0}(R) \oplus K_{1}(R) \oplus N K_{1}(R) \oplus N K_{1}(R)
$$

3.2 Propagation Control

In this section, we investigate the propagation control of the boundary map ∂. First, we give the exact meaning of propagation:

Definition 3.19. A filtered algebra over commutative ring R, is a R-algebra A with a family of R-submodules $\left(A_{r}\right), r \in \mathbb{R}$, such that
(1) $A_{r} \subseteq A_{r^{\prime}}$, if $r \leq r^{\prime}$
(2) $A_{r} A_{r^{\prime}} \subseteq A_{r+r^{\prime}}$
(3) $A=\bigcup_{r} A_{r}$
where the family $\left(A_{r}\right), r \in \mathbb{R}$ is called a filtration of A. Every elements of A_{r} is said to have propagation $\leq r$.

If no other specification, we assign the propagation of an element a to be the least number r such that $a \in A_{r}$.

We are going to prove that for a group ring $^{6} R G$, where R is a ring and G is a (multiplicative) group, we can give $R G$ a filtration.

Definition 3.20. For a length function on (multiplicative) group G, we mean a function $\ell: G \longrightarrow$ \mathbb{N} such that
(1) $\ell(g)=0$ if and only if $g=1$;
(2) $\ell\left(g g^{\prime}\right) \leq \ell(g)+\ell\left(g^{\prime}\right)$ for all $g, g^{\prime} \in G$;
(3) $\ell(g)=\ell\left(g^{-1}\right)$ for all $g \in G$.

For a group G, select a generating set S of G, then we can define a length function $|\cdot|_{S}$ on G, by setting $|g|_{S}$ to be the shortest presentation of g as a word in $S \cup S^{-1}$.

[^7]For the group ring $R G$, we can give $R G$ a filtration by letting A_{n} to be the free R-submodule which is generated by

$$
\left\{g \in G:|g|_{S} \leq n\right\}
$$

then we see $R G$ becomes a filtered algebra over R.
By Lemma 3.10 and Remark 3.11, we see for any $X \in G L\left(R G\left[t, t^{-1}\right]\right)$, the image of $[X]$ under ∂ is $\left[\left(R G[t]^{n} / t^{k} X R G[t]^{n}, t\right)\right]-\left[\left(R G[t]^{n} / t^{k} R G[t]^{n}, t\right)\right] \in K_{0}($ Nil $R G)$, where $\left[R G[t]^{n} / t^{k} X R G[t]^{n}\right]=$ $\left[P R^{m}\right]$, for some idempotent matrix P. So, we can track the propagation by considering the algorithm in Lemma 3.10 that make X into P. Before doing this, we need some preparations:

First, we see $R G\left[t, t^{-1}\right] \cong R\left[t, t^{-1}\right] G$, where the isomorphism is induced by

$$
\begin{aligned}
& (r g) t^{i} \longrightarrow\left(r t^{i}\right) g \\
& (r g) t^{-i} \longrightarrow\left(r t^{-i}\right) g,
\end{aligned}
$$

while $r \in R, g \in G, i \in \mathbb{Z}$.
For convenience, define a propagation function $\operatorname{Pr}: M\left(R\left[t, t^{-1}\right] G\right) \longrightarrow \mathbb{N}$ by letting $\operatorname{Pr}(X)$ to be the largest propagation of entries of X.

Define

$$
D_{n}:=\left\{X \in M\left(R\left[t, t^{-1}\right] G\right): \operatorname{Pr}(X) \leq n\right\}
$$

then we see $M\left(R\left[t, t^{-1}\right] G\right)$ becomes a filtered algebra over $R\left[t, t^{-1}\right]$, with filtration $\left(D_{n}\right), n=$ $0,1, \cdots$.

Now, we are ready to consider the algorithm in (b) of Lemma 3.10. Assume

$$
X=t^{-k}\left(X_{0}+t X_{1}+\cdots+t^{n} X_{n}\right) \in G L\left(R\left[t, t^{-1}\right] G\right),
$$

then the entries from different X_{i} cannot be concelled out, so we have

$$
\operatorname{Pr}(X)=\max _{i}\left\{\operatorname{Pr}\left(X_{i}\right)\right\} .
$$

Assume $\operatorname{Pr}(X) \leq r_{0}$ and $\operatorname{Pr}\left(X^{-1}\right) \leq r_{0}$ for some integer r_{0}.
The algorithm that makes X into P can be stated into four steps:
(1) $X \longrightarrow t^{k} X$;
(2) $t^{k} X \longrightarrow B_{0}+t B_{1}$;
(3) $B_{0}+B_{1} t \longrightarrow\left(B_{0}+B_{1}\right)^{-1}\left(B_{0}+t B_{1}\right)=1+(t-1) B$;
(4) $B \longrightarrow p(B) B^{n}=P$,
where

$$
p(x)=\sum_{k=0}^{n-1}\binom{2 n-1}{k}(1-x)^{k} x^{n-k-1}
$$

For (1), by our definition, X and $t^{k} X$ have the same propagation. For (2), we see

$$
t^{k} X \longrightarrow\left(\begin{array}{cc}
t^{k} X & 0 \\
0 & 1
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
t^{k} X & 0 \\
0 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{cc}
1 & t^{n-1} X_{n} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
t^{k} X & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-t & 1
\end{array}\right)
$$

where

$$
\left(\begin{array}{cc}
1 & t^{n-1} X_{n} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
t^{k} X & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-t & 1
\end{array}\right)=\left(\begin{array}{cc}
t^{k} X-t^{n-1} X_{n} & t^{n-1} X_{n} \\
-t & 1
\end{array}\right)
$$

do not change the propagation. We get $B_{0}+t B_{1}$ by continuing this process. Also, by induction, we see $\operatorname{Pr}\left(B_{0}+t B_{1}\right) \leq r_{0}$.

For step (3), we claim that $\operatorname{Pr}(1+(t-1) B) \leq\left(2^{n-1}+1\right) r_{0}$. Actually, by conducting corresponding "inverse operations" on X^{-1}, namely

$$
X^{-1} \longrightarrow t^{-k} X^{-1}
$$

$$
t^{-k} X^{-1} \longrightarrow\left(\begin{array}{cc}
t^{-k} X^{-1} & 0 \\
0 & 1
\end{array}\right)
$$

and

$$
\left(\begin{array}{cc}
t^{-k} X^{-1} & 0 \\
0 & 1
\end{array}\right) \longrightarrow\left(\begin{array}{cc}
1 & 0 \\
t & 1
\end{array}\right)\left(\begin{array}{cc}
t^{-k} X^{-1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -t^{n-1} X_{n} \\
0 & 1
\end{array}\right)
$$

where

$$
\left(\begin{array}{ll}
1 & 0 \\
t & 1
\end{array}\right)\left(\begin{array}{cc}
t^{-k} X^{-1} & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -t^{n-1} X_{n} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
t^{-k} X^{-1} & -t^{n-k-1} X^{-1} X_{n} \\
t^{-k+1} X^{-1} & -t^{n-k} X^{-1} X_{n}+1
\end{array}\right)
$$

we get the inverse of $B_{0}+t B_{1}$. Because the last operation as above doubles the upper bound of the propagation, also by induction, we have $\operatorname{Pr}\left(\left(B_{0}+t B_{1}\right)^{-1}\right) \leq 2^{n-1} r_{0}$. Because $\left(B_{0}+t B_{1}\right)^{-1}$ is also a Laurent polynomial on $M\left(R\left[t, t^{-1}\right] G\right)$, so the propagation of $\left(B_{0}+t B_{1}\right)^{-1}$ is bounded by the largest propagation of the coefficients of Laurent polynomial $\left(B_{0}+t B_{1}\right)^{-1}$, which implies

$$
\operatorname{Pr}\left(\left(B_{0}+B_{1}\right)^{-1}\right) \leq \operatorname{Pr}\left(\left(B_{0}+t B_{1}\right)^{-1}\right) \leq 2^{n-1} r_{0}
$$

As a consequence, we see

$$
\operatorname{Pr}(1+(t-1) B) \leq \operatorname{Pr}\left(\left(B_{0}+B_{1}\right)^{-1}\right)+\operatorname{Pr}\left(B_{0}+t B_{1}\right) \leq\left(2^{n-1}+1\right) r_{0} .
$$

For the final step (4), we have

$$
\operatorname{Pr}(B)=\max \{\operatorname{Pr}(1-B), \operatorname{Pr}(B)\}=\operatorname{Pr}(1-B+t B)=\operatorname{Pr}(1+(t-1) B)
$$

therefore

$$
\operatorname{Pr}(P)=\operatorname{Pr}\left(p(B) B^{n}\right) \leq \operatorname{Pr}(p(B))+\operatorname{Pr}\left(B^{n}\right) \leq(2 n-1) \operatorname{Pr}(B) \leq(2 n-1)\left(2^{n-1}+1\right) r_{0} .
$$

That means, if X has propagation $\leq r_{0}$, then P has propagation $\leq(2 n-1)\left(2^{n-1}+1\right) r_{0}$, where n is the degree of X as a polynomial of t.

4. NEGATIVE K-THEORY

In this section, we are going to construct negative K-theory. The difference are denoted as "-", especially in K_{1}-groups, we denote the difference of elements $[A],[B]$ as $[A]-[B]$ rather than $[A][B]^{-1}$.

Define the group homomorphism $K_{1}(R[t]) \oplus K_{1}\left(R\left[t^{-1}\right]\right) \xrightarrow{ \pm} K_{1}\left(R\left[t, t^{-1}\right]\right)$ as

$$
([A],[B]) \longrightarrow[A]-[B],
$$

then we have the following proposition:
Proposition 4.1. There is an isomorphism:

$$
K_{0}(R) \cong \operatorname{coker}\left(K_{1}(R[t]) \oplus K_{1}\left(R\left[t^{-1}\right]\right) \xrightarrow{ \pm} K_{1}\left(R\left[t, t^{-1}\right]\right)\right) .
$$

Proof. We are going to prove the image of \pm is isomorphic to $K_{1}(R) \oplus N K_{1}(R) \oplus N K_{1}(R)$ which is a normal subgroup of $K_{0}(R) \oplus K_{1}(R) \oplus N K_{1}(R) \oplus N K_{1}(R)$.

First, we claim that the image of \pm is contained in $K_{1}(R) \oplus N K_{1}(R) \oplus N K_{1}(R)$. To prove this, we only have to prove for any $[A] \in K_{1}(R[t]),[B] \in K_{1}\left(R\left[t^{-1}\right]\right), \partial^{\prime}([A]-[B])=0$, where $\partial^{\prime}:=F \circ \partial, F$ is the forgetful map from $K_{0}(\mathrm{Nil} R)$ to $K_{0}(R)$. Actually, because $[A]$ is contained in the kernel of ∂, so $\partial^{\prime}([A]-[B])=-\partial^{\prime}([B])$. Similar to the proof of Lemma 3.10, we see $[B]=\left[B_{0}-B_{1} t^{-1}\right]$ where $B_{1} \in M(R)$ and $B_{0} \in G L(R)$. If $B_{1}=0$, then it is obvious that $\partial^{\prime}([B])=0$. Assume $B_{1} \neq 0$, then $\left(B_{0}-B_{1} t^{-1}\right) R[t]^{n}=\left(1-B_{1}^{\prime} t^{-1}\right) B_{0} R[t]^{n}=\left(1-B_{1}^{\prime} t^{-1}\right) R[t]^{n}$, where B_{1}^{\prime} is nilpotent as we proved in Lemma 3.10. As a consequence,
$\partial^{\prime}([B])=\partial^{\prime}\left(\left[B_{0}-B_{1} t^{-1}\right]\right)=\left[R[t]^{n} / t^{k}\left(B_{0}-B_{1} t^{-1}\right) R[t]^{n}\right]-\left[R[t]^{n} / t^{k} R[t]^{n}\right]=\partial^{\prime}\left(1-B_{1}^{\prime} t^{-1}\right)=0$,
which means $\partial^{\prime}([A]-[B])=0$.
Second, we proved that every element of $K_{1}(R) \oplus N K_{1}(R) \oplus N K_{1}(R)$ has a preimage in
$K_{1}(R[t]) \oplus K_{1}\left(R\left[t^{-1}\right]\right)$. By Proposition 3.16, $K_{1}(R[t])$ embeds into $K_{1}\left(R\left[t, t^{-1}\right]\right)$ as a direct sum, so we only need check every element in $N K_{1}(R)$ has preimage ${ }^{1}$.

For any generator $\left[\left(R^{n}, \nu\right)\right]-\left[\left(R^{n}, 0\right)\right] \in \operatorname{Nil}_{0}(R) \cong N K_{1}(R)$, we have $\partial\left(\left[1-\nu t^{-1}\right]\right)=$ $\left[\left(R^{n}, \nu\right)\right]-\left[\left(R^{n}, 0\right)\right]$, where $\left[1-\nu t^{-1}\right] \in K_{1}\left(R\left[t^{-1}\right]\right)$. So, for any element in $N K_{1}(R)$, it has a preimage in $K_{1}(R[t]) \oplus K_{1}\left(R\left[t^{-1}\right]\right)$.

Corollary 4.2. There is an exact sequence:

$$
0 \longrightarrow K_{1}(R) \xrightarrow{\Delta} K_{1}(R[t]) \oplus K_{1}\left(R\left[t^{-1}\right]\right) \xrightarrow{ \pm} K_{1}\left(R\left[t, t^{-1}\right]\right) \leftrightarrows K_{0}(R) \longrightarrow 0,
$$

where the epimorphism $K_{1}\left(R\left[t, t^{-1}\right]\right) \longrightarrow K_{0}(R)$ splits.

This result inspires us to define the negative K-groups:

Definition 4.3. Define

$$
\begin{aligned}
& K_{-n}(R):=\operatorname{coker}\left(K_{-n+1}(R[t]) \oplus K_{-n+1}\left(R\left[t^{-1}\right]\right) \xrightarrow{ \pm} K_{-n+1}\left(R\left[t, t^{-1}\right]\right)\right) \\
& N K_{-n}(R):=\operatorname{coker}\left(K_{-n}(R) \longrightarrow K_{-n}(R[t])\right)
\end{aligned}
$$

for $n=1,2,3, \cdots$.

We see

$$
R[t] \xrightarrow{t \longrightarrow 1} R
$$

also induces a splitting of $K_{-n}(R) \longrightarrow K_{-n}(R[t])$, therefore

$$
K_{-n}(R[t]) \cong K_{-n}(R) \oplus N K_{-n}(R),
$$

and similarly,

$$
K_{-n}\left(R\left[t^{-1}\right]\right) \cong K_{-n}(R) \oplus N K_{-n}(R)
$$

[^8]where $n=1,2,3, \cdots$.
By our definition of K_{-n}, we have
$$
N K_{-n}(R):=\operatorname{coker}\left(N K_{-n+1}(R[t]) \oplus N K_{-n+1}\left(R\left[t^{-1}\right]\right) \xrightarrow{ \pm} N K_{-n+1}\left(R\left[t, t^{-1}\right]\right)\right)
$$
for $n=1,2,3, \cdots$.
There is a generalization of Theorem 3.18.

Theorem 4.4 (Fundamental Theorem of Algebraic K-Theory). For any ring R, we have

$$
K_{-n+1}\left(R\left[t, t^{-1}\right]\right) \cong K_{-n}(R) \oplus K_{-n+1}(R) \oplus N K_{-n+1}(R) \oplus N K_{-n+1}(R)
$$

for $n=1,2,3, \cdots$.

Proof. By Theorem 3.18, we have isomorphisms:

$$
\begin{aligned}
& K_{1}\left(R\left[s, t, t^{-1}\right]\right) \cong K_{0}(R[s]) \oplus K_{1}(R[s]) \oplus N K_{1}(R[s]) \oplus N K_{1}(R[s]) \\
& K_{1}\left(R\left[s^{-1}, t, t^{-1}\right]\right) \cong K_{0}\left(R\left[s^{-1}\right]\right) \oplus K_{1}\left(R\left[s^{-1}\right]\right) \oplus N K_{1}\left(R\left[s^{-1}\right]\right) \oplus N K_{1}\left(R\left[s^{-1}\right]\right) \\
& K_{1}\left(R\left[s, s^{-1}, t, t^{-1}\right]\right) \cong K_{0}\left(R\left[s, s^{-1}\right]\right) \oplus K_{1}\left(R\left[s, s^{-1}\right]\right) \oplus N K_{1}\left(R\left[s, s^{-1}\right]\right) \oplus N K_{1}\left(R\left[s, s^{-1}\right]\right)
\end{aligned}
$$

in which $K_{0}(R[s]), K_{0}\left(R\left[s^{-1}\right]\right), K_{0}\left(R\left[s, s^{-1}\right]\right)$ are embedded into $K_{1}\left(R\left[s, t, t^{-1}\right]\right), K_{1}\left(R\left[s^{-1}, t, t^{-1}\right]\right)$, $K_{1}\left(R\left[s, s^{-1}, t, t^{-1}\right]\right)$, respectively, as direct summands.

However, by what we discuss above, there is a homomorphism

$$
K_{1}\left(R\left[s, t, t^{-1}\right]\right) \oplus K_{1}\left(R\left[s^{-1}, t, t^{-1}\right]\right) \xrightarrow{ \pm} K_{1}\left(R\left[s, s^{-1}, t, t^{-1}\right]\right)
$$

whose cokernel is $K_{0}\left(R\left[t, t^{-1}\right]\right)$. By Definition 4.3, we get

$$
K_{0}\left(R\left[t, t^{-1}\right]\right) \cong K_{-1}(R) \oplus K_{0}(R) \oplus N K_{0}(R) \oplus N K_{0}(R)
$$

Because we do not use specific meaning of K_{1}, K_{0} in the proof, so we can actually continue doing this. By induction, we are done.

Corollary 4.5. There is an exact sequence:

$$
0 \longrightarrow K_{-n+1}(R) \xrightarrow{\Delta} K_{-n+1}(R[t]) \oplus K_{-n+1}\left(R\left[t^{-1}\right]\right) \xrightarrow{ \pm} K_{-n+1}\left(R\left[t, t^{-1}\right]\right) \leftrightarrows K_{-n}(R) \longrightarrow 0,
$$

for $n=1,2,3, \cdots$, where the epimorphism $K_{-n+1}\left(R\left[t, t^{-1}\right]\right) \longrightarrow K_{-n}(R)$ splits.
As an application, we can extend the exact sequence in Corollary 2.32:

Theorem 4.6. Let R be a ring, and I is an ideal of R, then there is an extended exact sequence:

$$
\cdots \longrightarrow K_{0}(R) \xrightarrow{q_{*}} K_{0}(R / I) \xrightarrow{\partial} K_{-1}(I) \xrightarrow{\ell_{*}} K_{-1}(R) \xrightarrow{q_{*}} K_{-1}(R / I) \xrightarrow{\partial} K_{-2}(I) \longrightarrow \cdots
$$

where ℓ is the inclusion $I \longrightarrow R, q$ is the quotient map $R \longrightarrow R / I, \partial$ is the boundary map.
Proof. By Corollary 4.2, 4.5 and 2.32, we have the following commutative diagram with vertical and horizontal sequences exact:

where the second vertical line of epimorphisms ${ }^{2}$ from the right are split exact, so an exact sequence

[^9]is induced ${ }^{3}$:
$$
K_{0}(R) \xrightarrow{q_{*}} K_{0}(R / I) \xrightarrow{\partial} K_{-1}(I) \xrightarrow{\ell_{*}} K_{-1}(R) \xrightarrow{q_{*}} K_{-1}(R / I) .
$$

Continue doing this, by induction, we are done.

[^10]$$
K_{0}(R) \longrightarrow K_{1}\left(R\left[t, t^{-1}\right]\right) \xrightarrow{q_{*}} K_{1}\left((R / I)\left[t, t^{-1}\right]\right) \longrightarrow K_{0}(R / I) .
$$

5. CONCLUSION

We have given an explicit proof of the Fundamental Theorem for Lower Algebraic K-Theory. Higher algebraic K-theory was first given by D. Quillen (cf. [7]). In his approach, he defined K-group as homotopy groups of certain spaces. Also, the Fundamental Theorem of Algebraic K-Theory can be generalized to higher cases under Quillen's definitions (see [4], Fundamental Theorem 8.2.). But the proof involves many topological techniques.

In 2012, D. Grayson gave a purely algebraic description of higher algebraic K-groups (cf. [8]). Furthermore, T. Harris provided new proofs of the additivity, resolution, and cofinality theorems under Grayson's framework (cf. [9]).

It is natural question whether a purely algebraic and explicit proof of the Fundamental Theorem for Higher Algebraic K-Theory exists. Such a proof would provide important quantitative information of higher algebraic K-theory.

This will be the subject of further investigation.

REFERENCES

[1] C. Weibel, "The development of algebraic K-theory before 1980," AMS Contemp. Math., vol. 243, pp. 211-238, 1999.
[2] T. Lam and M. Siu, "An introduction to algebraic K-theory," The American Mathematical Monthly, vol. 82, pp. 329-364, April 1975.
[3] H. Oyono-Oyono and G. Yu, "On quantitative operator K-theory," Annales De L'institut Fourier, vol. 65, no. 2, pp. 605-674, 2015.
[4] C. Weibel, The K-book: An introduction to Algebraic K-theory. American Mathematics Society, 2013.
[5] N. Bourbaki, Theory of Sets. Springer-Verlag Berlin Heidelberg, 2004.
[6] J. Rosenberg, Algebraic K-theory and its Applications. Springer-Verlag, 1994.
[7] D. Quillen, "Higher algebraic K-theory: I," Higher K-theories, pp. 85-147, 1973.
[8] D. Grayson, "Algebraic K-theory via binary complexes," Journal of the American Mathematical Society, vol. 25, no. 4, pp. 1149-1167, 2012.
[9] T. Harris, Binary complexes and algebraic K-theory. University of Southampton, 2015.

[^0]: ${ }^{1}$ This idea arose from geometric group theory, in which Cayley graph can be endowed with a length function, that gives Cayley graph the similar structure as we constructed.

[^1]: ${ }^{1}$ Any two free R-modules are isomorphic if they have same dimension.

[^2]: ${ }^{2}$ Because all the rings in this diagram have identities, K_{0} can be used as covariant functor for this diagram as we have proved in Proposition 2.10.

[^3]: ${ }^{1}$ They are not only R-module homomorphisms but also $R[t]$-module homomorphisms. We will use this fact soon.

[^4]: ${ }^{3}$ With a little abuse of language we still use t to represent $t I_{n}$ for identity matrix I_{n}.

[^5]: ${ }^{4}$ To simplify the notation, for square matrices A, B on ring R, the matrix $\left(\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right)$ is denoted as $A \oplus B$. This is consistent with the notation when we consider A, B as endomorphisms of the finitely generated free R-modules.

[^6]: ${ }^{5}$ Actually, $\partial([1-\nu s])=\partial\left(\left[1-\nu t^{-1}\right]\right)=\partial\left([t-\nu]\left[t^{-1}\right]\right)=\partial([t-\nu])+\partial\left(\left[t^{-1}\right]\right)=\left[\left(R^{n}, \nu\right)\right]-\left[\left(R^{n}, 0\right)\right]$.

[^7]: ${ }^{6}$ Group ring is also called group algebra for its natural R-algebra structure.

[^8]: ${ }^{1}$ This $N K_{1}(R)$ is a summand of $K_{0}($ Nil $R)$.

[^9]: ${ }^{2}$ Namely, $K_{1}\left(R\left[t, t^{-1}\right]\right) \longrightarrow K_{0}(R), K_{1}\left((R / I)\left[t, t^{-1}\right]\right) \longrightarrow K_{0}(R / I)$, etc.

[^10]: ${ }^{3}$ For example, $K_{0}(R) \xrightarrow{q_{*}} K_{0}(R / I)$ is given by

