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ABSTRACT

This thesis is a first step towards a controlled algebraicK-theory. We give explicit formulas for

the proof of Fundamental Theorem of AlgebraicK-Theory. As a consequence, we provide explicit

estimates on the control of propagation.

The first part of this thesis is an introduction to K0 and K1-groups of rings, where we develop

necessary background materials.

In the second part of this thesis, we prove the Fundamental Theorem of Algebraic K-Theory

by elementary means and give explicit formulas. A detailed discussion of propagation control is

given at the end of this part.

In the last part of this thesis, we introduce negative algebraic K-theory and prove its Funda-

mental Theorem of Algebraic K-Theory.

This work is intended as a first step towards quantitative computations for lower algebraic

K-theory.
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1. INTRODUCTION

Algebraic K-theory is an important branch of Mathematics, whose origins may date back to

A. Grothendieck’s work in reformulation of the Riemann-Roch theorem in algebraic geometry and

Whitehead’s construction of the Whitehead group in homotopy theory. Algebraic K-theory is the

study of K-groups with connections and applications to geometry, topology and number theory.

In this thesis, we are concerned with K0-group, K1-group and K−n-groups for n = 1, 2, · · · . For

a detailed description of the history and ideas of lower algebraic K-theory, one can refer to [1, 2]

and references therein.

In this thesis, we investigate the quantitative aspects of algebraic K-theory. This investigation

is divided into two steps.

First, we prove the Fundamental Theorem of Algebraic K Theory by elementary means and

give explicit formulas in the proof.

Theorem. There is an isomorphism:

K1(R[t, t
−1]) ∼= K0(R)⊕K1(R)⊕NK1(R)⊕NK1(R)

where R[t, t−1] is the localization of the polynomial ring R[t] and NK1(R) is the kernel of the

nature map K1(R[t]) −→ K1(R).

This theorem is of fundamental importance for it connectsK1-group,K0-group and all negative

K-groups. Actually, an explicit proof of the Fundamental Theorem of Algebraic K-Theory allows

us to understand the quantitative properties of lower algebraic K-groups, which is important for

computations.

We prove this theorem by proving there is a split short exact sequence:

0 −→ K1(R[t]) −→ K1(R[t, t
−1])

∂−→ K0(Nil R) −→ 0
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where Nil R is the monoid of elements of the form (P, τ), where P is finitely generated projective

R-module, and τ is a nilpotent endomorphism of P . The boundary map ∂ is given by

K1(R[t, t
−1]) 3 [X] −→ [(R[t]n/tkXR[t]n, t)]− [(R[t]n/tkR[t]n, t)] ∈ K0(Nil R),

where R[t]n/tkXR[t]n ∼= PRm for some idempotent matrix P .

Second, we discuss the propagation control of the boundary map ∂. This is inspired by the

work of H. Oyono-Oyono and G. Yu on quantitative operator K-theory (cf. [3]).

By the virtue of filtered algebra, we give the abstract definition of propagation:

Definition. A filtered algebra over commutative ring R, is a R-algebra A with a family of R-

submodules (Ar), r ∈ R, such that

(1) Ar ⊆ Ar′ , if r ≤ r′

(2) ArAr′ ⊆ Ar+r′

(3) A =
⋃
r Ar

where the family (Ar), r ∈ R is called a filtration of A. Every elements of Ar is said to have

propagation ≤ r.

If no other specification, we assign the propagation of an element a to be the least number r

such that a ∈ Ar.

For group G and ring R, RG carries a natural filtration by defining word length1 on group

G. This treatment also endows M(RG[t, t−1]) with a filtration, and therefore when we consider

group ringRG, matricesX,P ∈M(RG[t, t−1]) both have well-defined propagations. Our explicit

formula allows us to estimate the propagation of P in terms of the propagation of X .

We have a brief introduction to negative K-theory at the last part of this thesis.

1This idea arose from geometric group theory, in which Cayley graph can be endowed with a length function, that
gives Cayley graph the similar structure as we constructed.
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2. REVIEW OF K0 AND K1 OF RINGS

In this part, we are going to review some basic notions and consequences of K0 and K1 of

rings. Unless specific explanations, in our discussion, all the rings have identities, all the ring

homomorphisms are identity-preserving, all modules are unitary left modules, and all ideals are

two-sided. With a little abuse of notation, isomorphism classes are always denoted as [·] unless

other specification. The concrete meaning of [·] can be derived from context.

2.1 K0 of Rings

There are many ways to defineK0-groups for rings. We will follow the traditional way, namely

the group completion version. This is sufficient to talk about most problems in lower algebraic K-

theory. Before the definition, we need some preparations.

2.1.1 Grothendieck Group

Theorem 2.1 (Grothendieck). For every abelian semigroup S, there is an abelian groupG = G(S)

(now called Grothendieck group) with the semigroup homomorphism φ : S −→ G, which satisfies

the universal property that for any group H and semigroup homomorphism ψ : S −→ H , there is

a unique group homomorphism θ : G −→ H such that ψ = θ ◦ φ, or equivalently, the following

diagram commutes:

S
φ //

ψ ��

G

θ
��
H

and if there is another group G′ with semigroup homomorphism φ′ : S −→ G′ satisfies the same

universal property, then there is an isomorphism f : G −→ G′ such that φ′ = f ◦ φ.

Proof. To prove the existence, let F be the free abelian group generated by S, let ` : S −→ F be

the inclusion map, denote the inclusion image as 〈x〉 for x ∈ S, then define G := F/N , where N

is the normal subgroup of F generated by all elements of the form 〈x〉+ 〈y〉−〈x+y〉 for x, y ∈ S.
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Let π : 〈x〉 7−→ [x] be the canonical map from F to G, define φ := π ◦ `. We are going to show G

along with φ is what we need.

Actually, because F is free abelian group, for any abelian group H and homomorphism ψ :

S −→ H , there is a unique homomorphism θ′ : F −→ H such that θ′ ◦ ` = ψ. Because N

is obviously contained in the kernel of θ′, so an unique homomorphism θ : G −→ H such that

θ ◦ φ = ψ is induced.

To prove the uniqueness, if G′ with φ′ : S −→ G′ also satisfies this universal property, then

there are homomorphisms α, β such that φ′ = α ◦ φ and φ = β ◦ φ′, which imply

(α ◦ β) ◦ φ′ = φ′

(β ◦ α) ◦ φ = φ.

It follows that α ◦ β = 1φ′(S) and β ◦ α = 1φ(S). By our construction, φ(S) generates G, because

β◦α is a homomorphism, so β◦α = 1G. Then, we are going to show α◦β = 1G′ by proving ϕ′(S)

generates G′. To do this, first, let G′′ be the normal subgroup of G′ generated by φ′(S). Define

H := G′ ⊕ (G′/G′′). Then, there are two homomorphism θ1 = (1, 0) and θ2 = (1, q), where q is

the quotient map, 1 is the identity map, that make the following diagrams commute:

S

(ϕ′,0)   

ϕ′ // G′

θi
��
H

for i = 1, 2. By universal property, we must have θ1 = θ2, so q = 0. It follows that G′ = G′′, and

thus φ′(S) generates G′. Therefore α ◦ β = 1G′ , α is an isomorphism.

The Grothendieck group of semigroup S is also called the group completion of S. Actually, it

is the way to define the integers from natural numbers.

Example 2.2. For the semigroup N of natural number, G(N) = Z is the group of integers.
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Corollary 2.3 ([4]). Let S be an abelian semigroup, then

(a) Every element of G(S) has the form [x]− [y] for x, y ∈ S.

(b) For any [x], [y] ∈ G(S), [x] = [y] if and only if x+ z = y + z for some z ∈ S.

Proof. (a) By our construction in Theorem 2.1, every element [z] of G(S) can be written as the

difference of two finite sums, namely

[z] =
n∑
i=1

[ai]−
m∑
j=1

[bj]

where ai, bj ∈ S. Because [a] + [b] = [a+ b] for a, b ∈ S, let

x =
n∑
i=1

ai, y =
m∑
j=1

bj

therefore

[z] =
n∑
i=1

[ai]−
m∑
j=1

[bj] = [
n∑
i=1

ai]− [
m∑
j=1

bj] = [x]− [y].

(b) If x+ z = y+ z for x, y, z ∈ S, then [x] + [z] = [x+ z] = [y+ z] = [y] + [z], so [x] = [y].

If [x] = [y], by Theorem 2.1, 〈x〉 − 〈y〉 ∈ N . It follows that

〈x〉 − 〈y〉 =
n∑
i=1

(〈ai〉+ 〈bi〉 − 〈ai + bi〉)−
m∑
j=1

(〈a′j〉+ 〈b′j〉 − 〈a′j + b′j〉).

By transplanting negative terms to the other side, we get

〈x〉+
n∑
i=1

〈ai + bi〉+
m∑
j=1

(〈a′j〉+ 〈b′j〉) = 〈y〉+
n∑
i=1

(〈ai〉+ 〈bi〉) +
m∑
j=1

〈a′j + b′j〉.

Because presently all the terms lie in the image of inclusion map from S to F , so we have

x+
n∑
i=1

(ai + bi) +
m∑
j=1

(a′j + b′j) = y +
n∑
i=1

(ai + bi) +
m∑
j=1

(a′j + b′j).
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Let

z =
n∑
i=1

(ai + bi) +
m∑
j=1

(a′j + b′j)

then x+ z = y + z.

Although we do not need category theory in our discussion, we sometimes use categorical

terminologies to simplify our statements.

Proposition 2.4. G is a covariant functor from the category of abelian semigroup to the category

of abelian group.

Proof. For any seimigroup homomorphism α : S −→ S ′, by Theorem 2.1, we get the following

commutative diagram

S
α //

φ
��

S ′

φ′

��
G(S) θ // G(S ′)

where θ is the unique homomorphism induced by φ and φ′ ◦ α. Define G(α) := θ. If α is

an isomorphism (namely the identity morphism), then S ∼= S ′ and thus G(S) ∼= G(S ′) with

isomorphism θ. Also, if there is additional semigroup homomorphism β : S ′ −→ S ′′, we have the

following commutative diagram

S
α //

φ
��

S ′

φ′

��

β // S ′′

φ′′

��
G(S)

G(α) // G(S ′)
G(β) // G(S ′′)

where G(β ◦ α) = G(β) ◦G(α) by the uniqueness.

2.1.2 Definition and Properties of K0(R)

Definition 2.5. Define Proj R as the abelian monoid of all isomorphism classes of finitely gener-

ated projective R-modules, with direct product ⊕ as the addition operation and the zero module 0
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as the identity element.

Remark 2.6. Proj R is indeed a set. It is because for every finitely generated projective R-module

P , there is a finitely generated projective R-module Q such that P ⊕ Q ∼= Rn for some positive

integer n, so P is isomorphic to a direct summand ofRn and thus we can speak of the set of classes

of finitely generated R-modules with respect to isomorphism (cf. [5], Chapter II, §6.9 ).

We are ready to define K0-group of rings.

Definition 2.7. For any ring R, define K0(R) := G(Proj R).

Especially, this definition is for rings with identity. Sometimes, we need to define K0-groups

for rings without identity. We will generalized this definition after introducing relative K0-groups,

see Definition 2.19.

Corollary 2.8. For any [A], [B] ∈ K0(R), [A] = [B] if and only if A ⊕ Rn ∼= B ⊕ Rn for some

integer n.

Proof. First, we see if A⊕Rn ∼= B⊕Rn for some integer n, then [A⊕Rn] = [B⊕Rn]. Because

[A ⊕ Rn] = [A] + [Rn] and [B ⊕ Rn] = [B] + [Rn] so [A] = [B]. In the other direction, assume

[A] = [B] in K0(R), by Corollary 2.3, we see A ⊕ P ∼= B ⊕ P for some finitely generated

projective R-module P . Assume P ⊕Q ∼= Rn, then A⊕Rn ∼= B ⊕Rn as desired.

Example 2.9. If R is a division ring, then we see every finitely generated R-module is free with

finite basis. However, the dimension of free R-module is the only isomorphism invariant1, which

means Proj R ∼= N and thus K0(R) ∼= Z.

Proposition 2.10. K0 can be defined as a covariant functor from the category of rings to the

category of abelian groups.

Proof. To see this, first, for any ring homomorphism ϕ : R −→ R′, define a homomorphism from

Proj R to Proj R′ by

[P ] 7−→ [R′ ⊗ϕ P ],
1Any two free R-modules are isomorphic if they have same dimension.
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where R′ ⊗ϕ P means that, in this tensor product, R′ is considered as a right R-module while the

scalar multiplication is given by

(a, r) 7−→ ϕ(r)a,

for r ∈ R and a ∈ R′. To verify this map is well-defined, first, because P is a finitely generated

projective R-module, so P ⊕Q ∼= Rn for some finitely generated R-module Q, and some integer

n, then

(R′ ⊗ϕ P )⊕ (R′ ⊗ϕ Q) ∼= R′ ⊗ϕ (P ⊕Q) ∼= R′ ⊗ϕ Rn ∼= (R′ ⊗ϕ R)n ∼= (R′)n,

so R′⊗ϕ P is finitely generated projective R′-module. Assume [P ′] = [P ] in Proj R, then P ′ ∼= P ,

so R′ ⊗ϕ P ∼= R′ ⊗ϕ P ′, which implies [R′ ⊗ϕ P ] = [R′ ⊗ϕ P ′].

By Theorem 2.1, define K0(ϕ) := ϕ∗ : K0(R) −→ K0(R
′) to be the unique homomorphism

makes the following diagram commutes:

Proj R //

φ
��

Proj R′

φ′

��
K0(R) // K0(R

′).

To check this functor is well-defined, first, if R ∼= R′, then every finitely generated R-module is

also a finitely generated R′-module and vice versa by this isomorphism. So there is a R′-module

isomorphismR′⊗ϕP ∼= P , which means the homomorphism [P ] 7−→ [R′⊗ϕP ] is an isomorphism.

Because G is a covariant functor as we proved in Proposition 2.4, K0(R) ∼= K0(R
′).

Also by Proposition 2.4, we have K0(ϕ1 ◦ ϕ2) = K0(ϕ1) ◦K0(ϕ2).

We are in a position to give alternative definition ofK0-group of rings by matrices, which make

K0-theory, to some extent, connect with linear algebra, and endowsK0-theory more computational

characteristics.
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Definition 2.11. For ring R, let Mn(R) be the ring of all n × n matrices on R. Define M(R) as

the union of the resulting sequence:

M1(R) ⊂M2(R) ⊂ · · · ⊂Mn(R) ⊂ · · ·

by identifying g ∈Mn(R) with g 0

0 0

 ∈Mn+1(R).

Let GLn(R) be the group of n× n matrices on R. Define GL(R) as the union of the resulting

sequence:

GL1(R) ⊂ GL2(R) ⊂ · · · ⊂ GLn(R) ⊂ · · ·

by identifying g ∈ GLn(R) with g 0

0 1

 ∈ GLn+1(R).

Define Idem(R) as the set of all idempotent matrices in M(R), that is, A ∈ Idem(R) if and

only if A ∈M(R) and A2 = A.

Remark 2.12. M(R) is also a ring, while GL(R) is also a group. That is because, for example,

for any A,B ∈ M(R), assume A has dimension n, B has dimension m, and n ≥ m, then B can

be embedding into Mn(R). So we can talk about all ring operations of A,B in Mn(R), which

implies M(R) is a ring.

We also say a R-module endomorphism α idempotent, if α2 = α. The definition of idempotent

for matrices is a special case of the definition for endomorphisms.

Theorem 2.13 ([6]). Proj R is isomorphic to the monoid of conjugation orbits of GL(R) on

Idem(R), with zero matrix as the identity element, and with the semigroup operation induced

9



by

(A,B) 7−→

A 0

0 B

 .

This monoid is denoted as Idem(R).

Proof. For any [P ] ∈ Proj R, we have P ⊕ Q ∼= Rn for some integer n, and for some finitely

generated projective R-module Q. Assume this isomorphism is f : P ⊕ Q −→ Rn. Consider the

idempotent endomorphism 1⊕0 on P⊕Q, we see f(1⊕0)f−1 is also an idempotent endomorphism

on Rn. Because Rn is a free R-module, so there is an idempotent matrix A corresponding to

f(1⊕ 0)f−1, then ARn ∼= P .

Define a homomorphism g : Proj R −→ Idem(R) by [P ] 7−→ A such that ARn ∼= P . To see

this map is well-defined, let g([Q]) = B, [Q] = [P ], we have

ARn ∼= P ∼= Q ∼= BRm.

Assume this isomorphism is α : ARn −→ BRm, which induces a homomorphism α′ : Rn −→ Rm

because

ARn ⊕ (1− A)Rn ∼= Rn

BRm ⊕ (1−B)Rm ∼= Rm

and by letting α′ = 0 on (1 − A)Rn. It follows that there is a m × n matrix A′ corresponding to

α′. Similarly, α−1 induced a homomorphism β : Rm −→ Rn, and there is a corresponding n×m

matrix B′. Under our definition, we see, in M(R), A′B′ = B, B′A′ = A, A′ = AA′ = A′B,

B′ = BB′ = B′A. Therefore,

1− A A′

B′ 1−B


A 0

0 0


1− A A′

B′ 1−B

 =

0 0

0 B
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where 1− A A′

B′ 1−B


2

=

1 0

0 1

 .

Also, 0 1

1 0


0 0

0 B


0 1

1 0

 =

B 0

0 0


where 0 1

1 0


2

=

1 0

0 1

 .

This implies in M(R), A, B are in the same conjugation orbits of GL(R), so A = B.

For any [P ], [Q] ∈ Proj R, [P ] + [Q] = [P ⊕Q]. By our definition of semigroup operation on

Idem(R),

g([P ] + [Q]) = g([P ⊕Q]) =

g([P ]) 0

0 g([Q])

 = g([P ]) + g([Q]).

Therefore g is indeed a semigroup homomorphism.

We are going to see g is an isomorphism by proving it has an inverse g−1 : Idem(R) −→

Proj R, given by B 7−→ [BRn], where B is an idempotent matrix in Mn(R). To see this map

is well-defined, assume A = U−1BU , for some U ∈ GLn(R), then ARn ∼= BRn which means

[ARn] = [BRn]. It is obvious the inverse of g. Also by our definition of semigroup operation, g−1

is a homomorphism.

Corollary 2.14. K0(R) ∼= G(Idem(R)), the Grothendieck group of Idem(R).

As an applications of this equivalent definition of K0-groups for rings, we prove the following

proposition:

Proposition 2.15. For rings R1, R2, K0(R1 ×R2) ∼= K0(R1)⊕K0(R2).
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Proof. It is obvious that GL(R1 × R2) = GL(R1) × GL(R2), Idem(R1 × R2) = Idem(R1) ×

Idem(R2). By Theorem 2.13, we see that Proj R is isomorphic to the monoid of conjugation orbits

of GL(R) on Idem(R), and then isomorphic to the monoid of conjugation orbits of GL(R1) ×

GL(R2) on Idem(R1) × Idem(R2), which is Idem(R1) × Idem(R2). Then, take Grothendieck

group on both sides.

2.1.3 Relative K0-Groups

Definition 2.16. Let R be a ring, with ideal I , define D(R, I) as the subring of R×R such that

D(R, I) := {(x, y) ∈ R×R : x− y ∈ I} .

Define

K0(R, I) := ker {(p1)∗ : K0(D(R, I)) −→ K0(R)}

as the relative K0-group of R and its ideal I , where (p1)∗ = K0(p1), and p1 : D(R, I) −→ R is

the projection onto the first coordinate.

Lemma 2.17. Let R be a ring, and I an ideal of R. For any A ∈ GL(R/I), the matrix

A 0

0 A−1


can be lift to a matrix on GL(R).

Proof. Actually, we have the decomposition:

A 0

0 A−1

 =

1 A

0 1


 1 0

−A−1 1


1 A

0 1


0 −1

1 0


while 0 −1

1 0

 =

1 −1

0 1


1 0

1 1


1 −1

0 1

 .
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Assume B,C are the liftings of A and A−1, then we see

2B −BCB −1 +BC

−CB + 1 C

 =

1 B

0 1


 1 0

−C 1


1 B

0 1


0 −1

1 0


is a lifting of A 0

0 A−1


because all matrices on right hand side belong to GL(R).

Theorem 2.18 ([6]). For ring R and ideal I ⊆ R, we have short exact sequence:

K0(R, I)
(p2)∗−→ K0(R)

q∗−→ K0(R/I)

where p2 : D(R, I) −→ R is the projection onto the second coordinate, q is the quotient map, and

(p2)∗ is K0(p2) restricted to K0(R, I) and q∗ = K0(q).

Proof. For any element [a]− [b] of K0(R, I), a, b are idempotent matrices on D(R, I), which have

the form a = (a1, a2), b = (b1, b2), where a1, a2, b1, b2 ∈ Idem(R). It follows that

(p2)∗([a]− [b]) = [a2]− [b2] ∈ K0(R)

and

q∗([a2]− [b2]) = [a2]− [b2] ∈ K0(R/I).

By definition of K0(R, I),

[a1]− [b1] = (p1)∗([a]− [b]) = 0

then

[a2]− [b2] = [a1]− [b1] = 0

follows, which implies the image of (p2)∗ is contained in the kernel of q∗.
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In another direction, assume [x]− [y] ∈ K0(R), where x, y are idempotent matrices on R, thus

q∗([x]− [y]) = [x]− [y] = 0.

We assume x is similar to y, otherwise, we can replace x and y by

x 0

0 1m

 and

y 0

0 1m


for some integer m. So, there is a z such that x = zyz−1. It follows that

x 0

0 0

 =

z 0

0 z−1


y 0

0 0


z−1 0

0 z

 .

By Lemma 2.17, there is a lifting of z 0

0 z−1


to a matrix h ∈ GL(R).

Let

s =

x 0

0 0

 , t = h

y 0

0 0

h−1

while [s] = [x] and [t] = [y] in K0(R). Because s = t on R/I , which means (t, s) is an idempotent

matrix on D(R, I), and [(t, s)]− [(t, t)] is the preimage in K0(R, I) of [x]− [y] ∈ K0(R), thus the

kernel of q∗ is contained in the image of (p2)∗.

We sometimes need to handle rings without identity, especially when we handle a nontrivial

ideal of a ring.

Definition 2.19. For any ring R (which may not have identity), define the augmented ring R+ as
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R+ := R⊕ Z, where the multiplication is defined as

(x, n) · (y,m) = (xy + ny +mx,mn)

and the identity is (0, 1).

Define K0(R) as

K0(R) := ker{(p2)∗ : K0(R+) −→ K0(Z)},

where p2 : R+ −→ Z is the projection onto the second coordinate, and K0(Z) ∼= Z.

Remark 2.20. The verification of the well-definition of R+ is trivial. To see this definition is

consistent with the our original one, let K ′0(R) denoted our original definition of K0-group of R.

We first notice that if R has an identity, then R+
∼= R × Z. Actually, there is an isomorphism

α : R+ −→ R× Z given by

(x, n) 7−→ (x+ ne, n).

Then, we see that

K ′0(R+) ∼= K ′0(R× Z) ∼= K ′0(R)⊕ Z,

where the kernel of the induced homomorphism ρ′∗ : K
′
0(R)⊕ Z −→ Z coincides with K ′0(R) and

by definition of K0, K0(R) ∼= K ′0(R).

Theorem 2.21 (Excision). Let R be a ring, and I an ideal of R, then K0(R, I) ∼= K0(I).

Proof. Define a homomorphism γ : I+ −→ D(R, I) by

(x, n) 7−→ (n · 1, n · 1 + x)

where 1 is the identity of R. Then, we can see there is a commutative diagram

I+

ρ

��

γ // D(R, I)

p1
��

Z ` // R
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where ` is the inclusion map given by n 7−→ n · 1.

Because K0 is a covariant functor2, so above commutative diagram induces a new diagram:

K0(I+)

ρ∗

��

γ∗ // K0(D(R, I))

(p1)∗
��

Z `∗ // K0(R).

It follows that γ∗ maps the kernel of ρ∗ to the kernel of (p1)∗. However, by our definition, K0(I)

is the kernel of ρ∗ and K0(R, I) is the kernel of (p1)∗. By restricting γ∗ to K0(I), we get a

homomorphism f : K0(I) −→ K0(R, I).

f is an isomorphism. The methods of the proof are similar to the methods used in the proof of

Theorem 2.18, as we omit here. For details, one can refer to [6], Theorem 1.5.9.

2Because all the rings in this diagram have identities, K0 can be used as covariant functor for this diagram as we
have proved in Proposition 2.10.
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2.2 K1 of Rings

2.2.1 Definition and Properties of K1(R)

Definition 2.22. Define K1(R) := GL(R)/[GL(R), GL(R)], the abelianization of GL(R), where

GL(R) is as defined in Definition 2.11 and [GL(R), GL(R)] is the commutator subgroup of

GL(R).

Proposition 2.23. K1 can be defined as a covariant functor from the category of rings to the

category of abelian groups.

Proof. To see this, for any ring homomorphism ϕ : R −→ S, define a group homomorphism

ϕ′ : GL(R) −→ GL(S) by A 7−→ B where bij = ϕ(aij), aij , bij are (i, j)-entry of A, B

respectively.

To verify ϕ′ is well-defined, assume A ∈ GL(R), to simplify the notation, denote D := A−1,

we claim that ϕ′(A) ∈ GL(S), where the inverse is ϕ′(D). Actually,

(ϕ′(A)ϕ′(D))ij =
∑
k

ϕ(aik)ϕ(dkj)

= ϕ(
∑
k

aikdkj)

= ϕ((AD)ij).

Because ϕ(1) = 1, ϕ(0) = 0, so (ϕ′(A)ϕ′(D))ij = 1 if i = j, otherwise, (ϕ′(A)ϕ′(D))ij = 0.

so ϕ′(A)ϕ′(D) is the identity matrix. Similarly, ϕ′(D)ϕ′(A) is the identity matrix, which means

ϕ′(A) ∈ GL(S).

To verify ϕ′ is indeed a homomorphism, assume A,C ∈ GLn(R) ⊆ GL(R), B = AC, then

we see

bij =
∑
k

aikckj,

therefore

ϕ(bij) =
∑
k

f(aik)f(ckj)
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which implies that ϕ′(AC) = ϕ′(A)ϕ′(C).

Then, define K1(ϕ) := ϕ∗ : K1(R) −→ K1(S) to be the homomorphism induced by ϕ′.

For ring homomorphism ϕ : R −→ S and ψ : S −→ T , by our definition, (ψ ◦ ϕ)′ = ψ′ ◦ ϕ′,

which induced that K1(ψ ◦ ϕ) = K1(ψ) ◦K1(ϕ). So, K1 is a covariant functor.

Definition 2.24. For integers i 6= j, define elementary matrix eij(a) ∈ GL(R) to be the matrix

whose entries on diagonal are all 1, the off-diagonal (i, j)-entry is a, and other entries are 0. The

subgroup generated by all elementary matrices in GLn(R) is denoted by En(R). The union of all

En(R) is denoted by E(R), which is a subgroup of GL(R).

Remark 2.25. By induction, we see every matrix that has the form

1 A

0 1

 or

1 0

A 1


belongs to E(R), because they can be decomposed as the product of elementary matrices.

Proposition 2.26 (Whitehead’s Lemma). E(R) = [GL(R), GL(R)].

Proof. Because for any eij(b) ∈ E(R) we have eij(b)−1 = eij(−b), so for any eik(a) ∈ E(R), we

have

eik(a) = eij(a)ejk(1)eij(−a)ejk(−1)

= eij(a)ejk(1)eij(a)
−1ejk(1)

−1

so

eik(a) ∈ [E(R), E(R)] ⊆ [GL(R), GL(R)]

which implies E(R) ⊆ [GL(R), GL(R)]. We are going to prove [GL(R), GL(R)] ⊆ E(R).
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Actually, for any A,B ∈ GL(R), we have

ABA−1B−1 0

0 1

 =

AB 0

0 B−1A−1


A−1 0

0 A


B−1 0

0 B

 .

The matrices on the left hand side are all belongs to E(R), which implies

ABA−1B−1 0

0 1

 ∈ E(R)
so that ABA−1B−1 ∈ E(R), which implies [GL(R), GL(R)] ⊆ E(R).

Corollary 2.27. For A ∈ GL(R),

A 0

0 A−1

 ∈ E(R).
Proof. Because we have

A 0

0 A−1

 =

1 A

0 1


 1 0

−A−1 1


1 A

0 1


0 −1

1 0


while 0 −1

1 0

 =

1 −1

0 1


1 0

1 1


1 −1

0 1

 .

Because all matrices in this decomposition belong to E(R), so

A 0

0 A−1

 ∈ E(R).

Remark 2.28. By Definition 2.22, the product of [A], [B] ∈ K1(R) is [AB], but by Corollary 2.27,

19



we see that

[AB] =


A 0

0 B


 .

Actually, this fact follows immediately from

A 0

0 B

 =

AB 0

0 1


B−1 0

0 B


where B−1 0

0 B

 ∈ E(R)
and thus vanishes after taking isomorphic class.

2.2.2 Relative K1-Groups

As we mention before, for any ring R and its ideal I , D(R, I) is defined as

D(R, I) := {(x, y) ∈ R×R : x− y ∈ I} .

We can continue to define K1(R, I):

Definition 2.29. Define K1(R, I) as

K1(R, I) := ker {(p1)∗ : K1(D(R, I)) −→ K1(R)}

where p1 : D(R, I) −→ R is the projection onto the first coordinate, (p1)∗ = K1(p1).

Theorem 2.30 ([6]). Let R be a ring, and I is an ideal of R, then we have the following exact

sequence:

K1(R, I)
(p2)∗−→ K1(R)

q∗−→ K1(R/I),

where p2 : D(R, I) −→ R is the projection onto the second coordinate ,(p2)∗ is K1(p2) restricted
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to K1(R, I), q is quotient map, q∗ = K1(q).

Proof. By definition of K1(R, I), any element of K1(R, I) has the form [(e, B)] ∈ K1(R, I),

where e ∈ E(R), because we have

[(1, Be−1)] = [(e, B)][(e−1, e−1)]

where [(e−1, e−1)] ∈ E(D(R, I)). So any element of K1(R, I) has the form [(1, B)] ∈ K1(R, I),

which also means [1] = [B], so q∗([B]) = [1]. So, the image of (p2)∗ is contained in the kernel of

q∗.

In another direction, assume [B] ∈ K0(R) and [B] = q∗([B]) = [1], then B ∈ E(R/I), so

B can be represented as a product of elementary matrices over R/I . However, because every

elementary matrix over R/I can be lift to an elementary matrix over R, so B can be lift to a matrix

C ∈ E(R) because C is also a product of elementary matrices over R. At that time, we see

[(1, BC−1)] ∈ K1(R, I), because BC−1 = 1. Therefore [(1, BC−1)] is the preimage of [B]. So,

the kernel of q∗ is contained in the image of (p2)∗.

Theorem 2.31 ([6]). Let R be a ring, and I is an ideal of R, then there is an exact sequence:

K1(R, I)
(p2)∗−→ K1(R)

q∗−→ K1(R/I)
∂−→ K0(R, I)

(p2)∗−→ K0(R)
q∗−→ K0(R/I),

where (p2)∗ is K0(p2) (or K1(p2)) restricted to K0(R, I) (or K1(R, I)), q is quotient map, q∗ =

K0(q)(or K1(q)), ∂ is the boundary map.

Proof. We are going to define the boundary map and prove the exactness atK1(R/I) andK0(R, I),

then the conclusion follows by Theorem 2.18 and Theorem 2.30.

For any A ∈ GL(R/I), where A is an n-dimensional matrix on R. Define a D(R, I)-module

P (A) := {(x, y) ∈ Rn ×Rn : y = Ax}
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and the scalar multiplication is defined as

(r1, r2) · (x, y) = (r1x, r2y).

Especially, we see P (1) ∼= D(R, I)n, where 1 is the identity matrix. More generally, if A ∈

GL(R), then P (A) ∼= D(R, I)n, where the isomorphism from P (1) to P (A) is given by

(x, y) 7−→ (A−1x, y).

Also, for any A ∈ GL(R/I), by Lemma 2.17, the matrix

A 0

0 A−1


can be lift to some B ∈ GL2n(R), we have

P (A)⊕ P (A−1) ∼= P (B) ∼= D(R, I)2n

which implies P (A) is projective.

Define the boundary map ∂ : K1(R/I) −→ K0(R, I) as

∂([A]) := [P (A)]− [D(R, I)n]

where n is the dimension of A.

One can see (p1)∗(∂([A])) = [Rn] − [Rn] = 0, thus by definition of K0(R, I), ∂([A]) ∈

K0(R, I). Also, for any elementary matrix B ∈ E(R/I), we see that

P (BA) ∼= P (AB) ∼= P (A),
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so the boundary map is well-defined.

To see ∂ is a homomorphism, for any [A], [B] ∈ K1(R/I), let

X :=

A 0

0 B


we have

∂([A][B]) = ∂(
[
X
]
) = [P (X)]− [D(R, I)2n] = [P (A)]− [D(R, I)n] + [P (B)]− [D(R, I)n]

which means ∂([A][B]) = ∂([A]) + ∂([B]).

Next, we prove the exactness at K1(R/I):

For any [A] ∈ q∗(K1(R)), where A ∈ GL(R), by our previous discussion, ∂([A]) = 0. So, the

image of q∗ is contained in the kernel of ∂.

In the other direction, for any [A] ∈ K1(R/I) such that ∂([A]) = 0, we have [P (A)] =

[D(R, I)n]. Assume P (A) ∼= D(R, I)n, otherwise, redefine

A :=

A 0

0 1m


then P (A) ∼= D(R, I)m+n.

Let f be an isomorphism fromD(R, I)n to P (A). BecauseD(R, I)n and P (A) are both finitely

generated D(R, I)-module, so there is a matrix (B,C) on D(R, I) corresponding to f , namely

f(x, y) = (B,C)(x, y)

for any (x, y) ∈ D(R, I)n. It follows from the definition of P (A) that ABx = Cy. By definition

of D(R, I), we have x = y. So, AB = C by arbitrariness of x. Because B,C are invertible, so

CB−1 ∈ GL(R), and [CB−1] ∈ K1(R) is the preimage of [A]. So, the kernel of ∂ is contained in
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the image of q∗.

Then, we prove the exactness at K0(R, I):

It is obvious that (p2)∗(∂([A])) = [Rn]− [Rn] = 0 so the image of ∂ is contained in the kernel

of (p2)∗.

In the other direction, for any [Q]−[D(R, I)n] ∈ K0(R, I) we have (p2)∗([Q]−[D(R, I)n]) = 0

where Q is a finitely generated D(R, I)-module. Because, by definition of K0(R, I), (p1)∗([Q]−

[D(R, I)n]) = 0. It follows that

[(p1)∗([Q])] = [Rn]

[(p2)∗([Q])] = [Rn].

We assume that

(p1)∗([Q]) ∼= (p2)∗([Q]) ∼= Rn,

otherwise, by the same trick as before, direct summing some finitely generatedD(R, I)-module on

Q. It follows that Q can be represented as P (G), for some G ∈ GL(R/I). So, G is the preimage

of [Q]− [D(R, I)n], which means the kernel of (p2)∗ is contained in the image of ∂.

Corollary 2.32. By Theorem 2.21, we have the following exact sequence

K1(R)
q∗−→ K1(R/I)

∂−→ K0(I)
`∗−→ K0(R)

q∗−→ K0(R/I),

where ` is the inclusion map, and `∗ = K0(`).

In the next section, we will extend this exact sequence to arbitrary long to the right.
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3. FUNDAMENTAL THEOREM OF ALGEBRAIC K-THEORY

3.1 Proof of the Fundamental Theorem of Algebraic K-Theory

In this section, we are going to prove the Fundamental Theorem of Algebraic K-Theory. Be-

fore giving the proof, we need more structures.

Definition 3.1. Define Nil R as the abelian monoid of isomorphism classes of ordered pairs (P, τ),

where P are finitely generated projective R-modules, τ are nilpotent endomorphisms of P , and

the homomorphisms (P, τ) −→ (P ′, τ ′) are R-module homomorphisms such that the following

diagram commutes:

P //

τ
��

P ′

τ ′

��
P // P ′.

[(0, 0)] is the identity element, where the first 0 means zero R-module, the second 0 means zero

homomorphism. The addition operation of this semigroup is defined as

[(P, τ)] + [(Q, ν)] = [(P ⊕Q, τ ⊕ ν)].

Remark 3.2. First, Nil R is indeed a set for the similar reason as in Remark 2.6.

Second, the addition operation is well-defined. To check this, assume [(P, τ)] = [(P ′, τ ′)] and

[(Q, ν)] = [(Q′, ν ′)], the following diagram commutes:

P ⊕Q
∼= //

τ⊕ν
��

P ′ ⊕Q′

τ ′⊕ν′
��

P ⊕Q
∼= // P ′ ⊕Q′

which implies [(P ⊕Q, τ ⊕ ν)] = [(P ′ ⊕Q′, τ ′ ⊕ ν ′)]. Also, we have

[(P, τ)] + [(0, 0)] = [(P ⊕ 0, τ ⊕ 0)] = [(P, τ)]
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because of the following commutative diagram:

P ⊕ 0
p //

τ⊕0
��

P

τ
��

P ⊕ 0
p // P

where p is the projection map. Similarly, we get [(0, 0)] + [(P, τ)] = [(P, τ)]. The verification that

addition is associative is trivial. To see addition is commutative, we claim that [(P ⊕Q, τ ⊕ ν)] =

[(Q⊕ P, ν ⊕ τ)] by the commutative diagram:

P ⊕Q
∼= //

τ⊕ν
��

Q⊕ P
ν⊕τ
��

P ⊕Q
∼= // Q⊕ P.

Short exact sequences in Nil R do not split in general. To overcome this difficult, we give the

following definition of K0(Nil R):

Definition 3.3. Define K0(Nil R) := FR/NR, where FR is the free abelian group generated by

elements of Nil R, and NR is the normal subgroup of FR generated by elements of the form

[(P1, τ1)] + [(P3, τ3)]− [(P2, τ2)], if there is a short exact sequence:

0 −→ (P1, τ1) −→ (P2, τ2) −→ (P3, τ3) −→ 0.

Remark 3.4. First, for any [(P, τ)], [(Q, ν)] ∈ K0(Nil R), since

0 −→ (P, τ) −→ (P ⊕Q, τ ⊕ ν) −→ (Q, ν) −→ 0

is exact, so [(P, τ)] + [(Q, ν)] = [(P ⊕Q, τ ⊕ ν)] in K0(Nil R).

The next Proposition is parallel to Corollary 2.8.

Proposition 3.5. For any [(P1, τ)], [(P2, τ2)] ∈ K0(Nil R), [(P1, τ1)] = [(P2, τ2)] if and only if
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there are short exact sequences in Nil R:

0 −→ (Q′, ν ′) −→ (Q1, ν1) −→ (Q′′, ν ′′) −→ 0

0 −→ (Q′, ν ′) −→ (Q2, ν2) −→ (Q′′, ν ′′) −→ 0

such that (P1 ⊕Q1, τ1 ⊕ ν1) ∼= (P2 ⊕Q2, τ2 ⊕ ν2).

Proof. To prove the sufficiency, by those two short exact sequences, we have [(Q1, ν1)] = [(Q2, ν2)] ∈

K0(Nil R). It follows that

[(P1, τ1)] = [(P1 ⊕Q1, τ1 ⊕ ν1)]− [(Q1, ν1)]

= [(P2 ⊕Q2, τ2 ⊕ ν2)]− [(Q2, ν2)]

= [(P2, τ2)].

To prove the necessity, for any [(P1, τ1)] = [(P2, τ2)] in K0(Nil R), we have

[(P1, τ1)] + [(D′1, γ
′
1)] + [(D′′1 , γ

′′
1 )]− [(D1, γ1)]

= [(P2, τ2)] + [(D′2, γ
′
2)] + [(D′′2 , γ

′′
2 )]− [(D2, γ2)]

in the free abelian group FR, where there are short exact sequences:

0 −→ (D′1, γ
′
1) −→ (D1, γ1) −→ (D′′1 , γ

′′
1 ) −→ 0

0 −→ (D′2, γ
′
2) −→ (D2, γ2) −→ (D′′2 , γ

′′
2 ) −→ 0
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and thus

[(P1 ⊕D′1 ⊕D′′1 ⊕D2, τ1 ⊕ γ′1 ⊕ γ′′1 ⊕ γ2)]

= [(P2 ⊕D′2 ⊕D′′2 ⊕D1, τ2 ⊕ γ′2 ⊕ γ′′2 ⊕ γ1)]

in Nil R, so

(P1 ⊕D′1 ⊕D′′1 ⊕D2, τ1 ⊕ γ′1 ⊕ γ′′1 ⊕ γ2)

∼= (P2 ⊕D′2 ⊕D′′2 ⊕D1, τ2 ⊕ γ′2 ⊕ γ′′2 ⊕ γ1).

Let

(Q′, ν ′) = (D′1 ⊕D′2, γ′1 ⊕ γ′2)

(Q′′, ν ′′) = (D′′1 ⊕D′′2 , γ′′1 ⊕ γ′′2 )

(Q1, ν1) = (D′1 ⊕D′′1 ⊕D2, γ
′
1 ⊕ γ′′1 ⊕ γ2)

(Q2, ν2) = (D′2 ⊕D′′2 ⊕D1, γ
′
2 ⊕ γ′′2 ⊕ γ1)

then we see

(P1 ⊕Q1, τ1 ⊕ ν1) ∼= (P2 ⊕Q2, τ2 ⊕ ν2)

and there are short exact sequences:

0 −→ (Q′, ν ′) −→ (Q1, ν1) −→ (Q′′, ν ′′) −→ 0

0 −→ (Q′, ν ′) −→ (Q2, ν2) −→ (Q′′, ν ′′) −→ 0.

Corollary 3.6. K0(Nil R) ∼= K0(R) ⊕ Nil0(R), where Nil0(R) is the kernel of the forgetful map

F : K0(Nil R) −→ K0(R), that sends every [(P, τ)] to [P ].
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Proof. This can be done by proving that K0(R) embeds into K0(Nil R) as a direct sum. Define

υ : K0(R) −→ K0(Nil R) as the homomorphism induced by [P ] 7−→ [(P, 0)]. Because F is

the left inverse of υ, so K0(R) embeds in K0(Nil R) as a direct sum via υ, and K0(Nil R) ∼=

K0(R)⊕ Nil0(R).

Proposition 3.7. Nil0(R) is generated by elements of form [(Rn, ν)]− [(Rn, 0)].

Proof. First, because Nil0(R) is generated by elements of form [(P1, τ1)] − [(P2, τ2)], such that

[P1] = [P2], so P1 ⊕Q ∼= P2 ⊕Q for some finitely generated projective R-module Q.

Therefore we have

[(P1, τ1)]− [(P2, τ2)] = ([(P1, τ1)] + [(Q, 0)])− ([(P2, τ2)] + [(Q, 0)])

= [(Rn, τ ′1)]− [(Rn, τ ′2)]

= ([(Rn, τ ′1)]− [(Rn, 0)])− ([(Rn, τ ′2)]− [(Rn, 0)]),

which implies Nil0(R) is generated by elements of form [(Rn, ν)]− [(Rn, 0)].

Proposition 3.8. For any finitely generated projective R-module P , there is a natural homomor-

phism from Aut(P ) to K1(R), which send α ∈ Aut(P ) to an element of K1(R) that is induced by

α⊕ 1 ∈ Aut(P ⊕Q) and the isomorphism P ⊕Q ∼= Rn for some integer n.

Give an isomorphism f : P ⊕ Q −→ Rn, then the image of this natural homomorphism of

α ∈ Aut(P ) can be represented as [f(α⊕ 1)f−1] ∈ K1(R).

Proof. To prove this map is well-defined, first, we prove that this map is independent of choice of

the isomorphisms P⊕Q ∼= Rn. Assume there are two different isomorphism f, g : P⊕Q −→ Rn,

assume their corresponding natural homomorphism images are [A], [B] respectively, where

A = f(α⊕ 1Q)f
−1

B = g(α⊕ 1Q)g
−1.
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It follows that B = (gf−1)A(gf−1)−1. Because gf−1 ∈ GL(R), so in K1(R), we have [B] = [A].

Second, we prove that if P ⊕ Q is replaced by P ⊕ Q ⊕ Rj then the corresponding image in

K1(R) is the same as [A] ∈ K1(R) corresponding to P ⊕Q. Actually, the correspondence image

of P ⊕Q⊕Rj is 
A 0

0 1


 = [A],

where 1 is the identity on Rj .

Third, if there is P ⊕Q′ ∼= Rm, without loss of generosity, assume m ≥ n, then by the second

part, we can replace P ⊕Q by P ⊕Q⊕Rm−n so that

P ⊕Q⊕Rm−n ∼= P ⊕Q′ ∼= Rm.

Therefore there is an isomorphism T : P ⊕ Q ⊕ Rm−n −→ P ⊕ Q′. Assume the corresponding

image of α ⊕ 1Q ⊕ 1Rm−n is A, the corresponding image of α ⊕ 1Q′ is B, namely, there are

isomorphisms f, g such that

A = f(α⊕ 1Q ⊕ 1Rm−n)f−1

B = g(α⊕ 1Q)g
−1.

Because α ⊕ 1Q′ = T−1(α ⊕ 1Q ⊕ 1Rm−n)T , so B = (fTg−1)−1A(fTg−1). Also, because

fTg−1 ∈ GL(R), so [B] = [A].

Lemma 3.9. If α is an automorphism ofR[t, t−1]n, which mapsR[t]n intoR[t]n, thenR[t]n/αR[t]n

is finite generated projective module over R.

Proof. Assume the inverse of α is β, then, tkβ is an endomorphism on R[t]n for large enough k.

Denote ei ∈ R[t]n, as the vector whose i index equals 1, and 0 otherwise, i = 1, · · · , n. Then

we have βtkei = tkβei ∈ R[t]n, which means tkei ∈ αR[t]n for all i. So, the generators of
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R[t]n/αR[t]n are contained in {tjei}, i = 1, · · · , n, j = 1, · · · , k − 1, and thus R[t]n/αR[t]n a

finite generated R-module.

To verify R[t]n/αR[t]n is projective R-module, we see for n-dimensional elementary matrix

eij(a) ∈ E(R[t, t−1]), we have the short exact sequence:

0 // (R[t]n−1 + tkeij(a)R[t]
n)/tkeij(a)R[t]

n // R[t]n/tkeij(a)R[t]
n

// R[t]n/(R[t]n−1 + tkeij(a)R[t]
n) // 0,

where R[t]n−1 is considered as the embedding image in R[t]n, the homomorphisms1

(R[t]n−1 + tkeij(a)R[t]
n)/tkeij(a)R[t]

n −→ R[t]n/tkeij(a)R[t]
n

and

R[t]n/tkeij(a)R[t]
n −→ R[t]n/(R[t]n−1 + tkeij(a)R[t]

n)

are both canonical maps.

Because R[t] ∼= R[t]n/R[t]n−1, then the homomorphism given by the composition:

R[t]n −→ R[t]n/R[t]n−1 ∼=−→ R[t]

induces an isomorphism R[t]n/(R[t]n−1 + tkeij(a)R[t]
n) ∼= R[t]/tkR[t].

In addition, we have isomorphism

(R[t]n−1 + tkeij(a)R[t]
n)/tkeij(a)R[t]

n ∼= R[t]n−1/(R[t]n−1 ∩ tkeij(a)R[t]n)

induced by projection onto the first n− 1 coordinates, where

R[t]n−1/(R[t]n−1 ∩ tkeij(a)R[t]n) = R[t]n−1/tkR[t]n−1.

1They are not only R-module homomorphisms but also R[t]-module homomorphisms. We will use this fact soon.
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To sum up, there is a short exact sequence:

0 // R[t]/tkR[t] // R[t]n/tkeij(a)R[t]
n // R[t]n−1/tkR[t]n−1 // 0 .

Because R[t]n−1/tkR[t]n−1 is free and thus projective R-module, so this sequence is split exact,

and thus

R[t]n/tkeij(a)R[t]
n ∼= (R[t]/tkR[t])⊕ (R[t]n−1/tkR[t]n−1) = R[t]n/tkR[t]n.

So, by induction, for any e ∈ E(R[t, t−1]), we have

[R[t]n/tkeR[t]n] = [R[t]n/tkR[t]n] (3.1)

for large enough integer k. The similar result that

[R[t]n/etkR[t]n] = [R[t]n/tkR[t]n] (3.2)

also holds.

However,

(R[t]n/αR[t]n)⊕ (R[t]n/tkβR[t]n) ∼= R[t]2n/(α⊕ tkβ)R[t]2n

while tk 0

0 −1

 =

0 1

1 0


 1 0

tkβ 1


α 0

0 tkβ


1 −β

0 1


1 0

α 1
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and the matrices on the right hand side except

α 0

0 tkβ

 belong to E(R[t, t−1]), so we get

[R[t]2n/(α⊕ tkβ)R[t]2n] = [R[t]2n/(tk ⊕−1)R[t]2n],

where R[t]2n/(tk ⊕−1)R[t]2n is obviously free R-module. It follows that

(R[t]2n/(α⊕ tkβ)R[t]2n)⊕Rm ∼= (R[t]2n/(tk ⊕−1)R[t]2n)⊕Rm.

So, R[t]n/αR[t]n is embedded into a free R-module as a direct sum, R[t]n/αR[t]n is projective

R-module.

The following Lemma is due to H. Bass:

Lemma 3.10 ([6]). For ring R, we have the following propositions:

(a) Every matrix X in GL(R[t]) can be reduced, modulo E(R[t]) and GL(R), to the form 1 + Bt,

where B is a nilpotent matrix on R.

(b) Every matrix X in GL(R[t, t−1]) can be reduced, modulo E(R[t, t−1]) and GL(R) to the form

(1 + A(t− 1))

t−k 0

0 1


in which A is matrix on R such that A = P + N , with idempotent P , nilpotent N such that

PN = NP .

Proof. (a) We see that X = X0 + tX1 + · · · + tnXn, where X0, · · · , Xn are matrix on R. We

claim that X can be reduced, modulo E(R[t]) and GL(R) to a matrix polynomial whose degree
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less than n. Actually, we have

[X] =


X 0

0 1




=


1 tn−1Xn

0 1




X 0

0 1




 1 0

−t 1




=


X tn−1Xn

0 1




 1 0

−t 1




=


X − tnXn tn−1Xn

−t 1




by modulo E(R[t]).

However the last matrix can be represented as a matrix polynomial with degree less than n. So,

by induction, we can prove for any X , it can be reduced to the form B0 + B1t. If B1 = 0, then

the conclusion is obvious, if B1 6= 0, then because the polynomial B0 + B1t ∈ GL(R[t]), taking

t = 0, we see B0 ∈ GL(R). By factoring out B0, X can be reduced to 1+Bt where B = B−1
0 B1.

Because this matrix is invertible, assume its inverse is C0 + · · ·+ Cjt
j , namely

(1 +Bt)(C0 + · · ·+ Cjt
j) = (C0 + · · ·+ Cjt

j)(1 +Bt) = 1

By straightforward computation and comparing the coefficients of terms, we get

C0 = 1

BC0 + C1 = C0B + C1 = 0

· · · · · ·

BCj−1 + Cj = Cj−1B + Cj = 0

BCj = CjB = 0
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which implies Ci = (−B)i. Then, because Cj+1 = 0, so Bj+1 = 0, so B is nilpotent.

(b) Similarly, we can write X ∈ GL(R[t, t−1]) as

X = (X0 +X1t+X2t
2 + · · ·+Xnt

n)t−k,

while all Xi are matrices on R. By the same trick as in (a), X can be reduced to the form

(B0 +B1t)

t−k 0

0 1

 = ((B0 +B1) +B1(t− 1))

t−k 0

0 1

 .

It follows from the fact that X is invertible that ((B0 +B1) +B1(t− 1)) is invertible, then we

claim that B0 +B1 is invertible in R([t, t−1]).

To see this, assume the inverse of (B0+B1)+B1(t−1) is the Laurent polynomial Y , therefore

((B0 +B1) +B1(t− 1))Y = Y ((B0 +B1) +B1(t− 1)) = 1

then let t = 1, we got

Y ′(B0 +B1) = (B0 +B1)Y
′ = 1

where Y ′ is the value of Y when t = 1, which implies B0 + B1 is invertible. Factor out B0 + B1,

X can be reduced to the form

(1 + A(t− 1))

t−k 0

0 1

 .

Assume the inverse of 1 + A(t− 1) is C−it−i + · · ·+ C0 + · · ·+ Cjt
j , therefore

(1 + A(t− 1))(C−it
−i + · · ·+ C0 + · · ·+ Cjt

j) = 1

and

(C−it
−i + · · ·+ C0 + · · ·+ Cjt

j)(1 + A(t− 1)) = 1
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By straightforward computation and comparing the coefficients of terms, we got

(1− A)C−i = C−i(1− A) = 0

(1− A)C−i+1 + AC−i = C−i+1(1− A) + C−iA = 0

· · · · · ·

(1− A)C0 + AC−1 = C0(1− A) + C−1A = 1

· · · · · ·

(1− A)Cj + ACj−1 = Cj(1− A) + Cj−1A = 0

ACj = CjA = 0

Multiply 1− A to the second line both from the left and right, since 1− A commutes with A,

we got

(1− A)2C−i+1 = C−i+1(1− A)2 = 0.

Continuous this process, we have

(1− A)iC−1 = C−1(1− A)i = 0.

Similarly,

Aj+1C0 = C0A
j+1 = 0,

so

0 = (A(1− A))i+j+1((1− A)C0 + AC−1) = (A(1− A))i+j+1

which shows, by induction, that A(1− A) is nilpotent.

To show A can be written as A = P + N , where P is idempotent, N nilpotent, assume

An(1 − A)n = (A(1 − A))n = 0, then because xn and (1 − x)n are relatively prime in Z[x], so
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there are polynomials p, q such that p(x)xn + q(x)(1− x)n = 1. Let2 P = p(A)An, N = A− P ,

then we see

P 2 − P = P (1− P ) = p(A)Anq(A)(1− A)n = p(A)q(A)An(1− A)n = 0

which means P is idempotent. Because

N = A− p(A)An = A(1− p(A)An−1)

N = −(1− A) + (1− P ) = (1− A)(−1 + q(A)(1− A)n−1),

also by the fact that x and 1 − x are relative prime, N = A(1 − A)T (A) for some polynomial

T (x), which means N is nilpotent as well.

Remark 3.11. If α is an automorphism ofR[t, t−1]m, which mapsR[t]m toR[t]m, then by the proof

of (b) in Lemma 3.10 and equations (3.1), (3.2),

[R[t]m/αR[t]m] = [R[t]n/(1 + (P +N)(t− 1))R[t]n]

for integer n, where P is idempotent, N is nilpotent, and P,N commute. We claim that

R[t]n/(1 + (P +N)(t− 1))R[t]n ∼= PRn. (3.3)

2Actually, p(x), q(x) can be represented as

p(x) =

n−1∑
k=0

(
2n− 1

k

)
(1− x)kxn−k−1

q(x) =

2n−1∑
k=n

(
2n− 1

k

)
(1− x)k−nx2n−k−1

by considering the binomial expansion of (1− x+ x)2n−1.
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Actually, because

1 + (P +N)(t− 1) = P (t+N(t− 1)) + (1− P )(1 +N(t− 1))

P (t+N(t− 1))R[t]n ∩ (1− P )(1 +N(t− 1))R[t]n = ∅

so (1 + (P +N)(t− 1))R[t]n = P (t+N(t− 1))R[t]n ⊕ (1− P )(1 +N(t− 1))R[t]n.

Similarly, R[t]n = PR[t]n ⊕ (1− P )R[t]n. Because 1 +N(t− 1) is invertible matrix on R[t],

so

(1− P )(1 +N(t− 1))R[t]n = (1− P )R[t]n.

It follows that3

R[t]n/(1 + (P +N)(t− 1))R[t]n = PR[t]n/P (t+N(t− 1))R[t]n (3.4)

where PR[t]n/P (t+N(t− 1))R[t]n ∼= P (R[t]n/(t+N(t− 1))R[t]n).

Also we have R[t]n/(t+N(t− 1))R[t]n ∼= Rn. To see this, first,

t+N(t− 1) = (1 +N)t−N = (t−N(1 +N)−1)(1 +N).

It follows that (t+N(t− 1))R[t]n = (t−N(1 +N)−1)R[t]n, and thus

R[t]n/(t+N(t− 1))R[t]n = R[t]n/(t−N(1 +N)−1)R[t]n. (3.5)

Then, we have R[t]n/(t − N(1 + N)−1)R[t]n ∼= Rn. To see this, first, for any X(t) ∈ R[t]n,

X(t) = X0 + tX1 + t2X2 + · · · + tkXk. Then, we define the evaluation R[t]n −→ Rn which

is given by t −→ N(1 + N)−1. Because Rn is embedded into R[t]n, so the evaluation is an

3With a little abuse of language we still use t to represent tIn for identity matrix In.
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epimorphism, and the kernel is (t−N(1 +N)−1)R[t]n, therefore

R[t]n/(t−N(1 +N)−1)R[t]n ∼= Rn.

To sum up, R[t]n/(1 + (P +N)(t− 1))R[t]n ∼= PRn.

Definition 3.12. Define NKi(R) to be the cokernel of the natural map

Ki(R) −→ Ki(R[t]),

where i = 0, 1.

Remark 3.13. Because the evaluation

R[t]
t−→1−→ R

induces a splitting of the natural map Ki(R) −→ Ki(R[t]), so we see

Ki(R[t]) ∼= Ki(R)⊕NKi(R)

where i = 0, 1.

Lemma 3.14. There is a surjective boundary map ∂ : K1(R[t, t
−1]) −→ K0(Nil R) that sends

[α] ∈ K1(R[t, t
−1]) to

[(R[t]n/tkαR[t]n, t)]− [(R[t]n/tkR[t]n, t)] ∈ K0(Nil R)

for large enough k, where t is considered as the homomorphism induced by multiplying t, n is the

dimension of the square matrix α, and the right inverse of ∂ embeds K0(Nil R) as a direct sum of

K1(R[t, t
−1]).

Proof. First, we show ∂ is well defined. By Lemma 3.9, we see R[t]n/tkαR[t]n and R[t]n/tkR[t]n
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are indeed finitely-generated projective R-modules, and both t are nilpotents. We also claim that

∂ is independent of choice of k. Actually, we have the short exact sequence:

0 // tkαR[t]n/tk+jαR[t]n // R[t]n/tk+jαR[t]n // R[t]n/tkαR[t]n // 0,

where the intermediate two homomorphisms from left to right are canonical map. Because the

intermediate two homomorphisms are R[t]-module homomorphism, due to fact that they commute

with t, and there is a R[t]-module isomorphism R[t]n/tjR[t]n
tkα−→ tkαR[t]n/tk+jαR[t]n, so there

is a commutative diagram with top and bottom row exact:

0 // R[t]n/tjR[t]n //

t
��

R[t]n/tk+jαR[t]n //

t
��

R[t]n/tkαR[t]n //

t
��

0

0 // R[t]n/tjR[t]n // R[t]n/tk+jαR[t]n // R[t]n/tkαR[t]n // 0

which implies

[(R[t]n/tk+jαR[t]n, t)] = [(R[t]n/tkαR[t]n, t)] + [(R[t]n/tjR[t]n, t)].

Similarly, we have

[(R[t]n/tk+jR[t]n, t)] = [(R[t]n/tkR[t]n, t)] + [(R[t]n/tjR[t]n, t)].

It follows that

[(R[t]n/tk+jαR[t]n, t)]− [(R[t]n/tk+jR[t]n, t)] = [(R[t]n/tkαR[t]n, t)]− [(R[t]n/tkR[t]n, t)],

so ∂ is independent of choice of k(if k is large enough).

Because α is identified with4 α⊕ 1 in K1(R[t, t
−1]), we are going to prove the image of α⊕ 1

4To simplify the notation, for square matrices A,B on ring R, the matrix
(
A 0
0 B

)
is denoted as A ⊕ B. This is

consistent with the notation when we consider A, B as endomorphisms of the finitely generated free R-modules.
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is the same as α. Actually, we have the short exact sequence:

0 // R[t]n/tkαR[t]n ` // R[t]n+j/tk(α⊕ 1)R[t]n+j
pj // R[t]j/tkR[t]j // 0

where ` embeds R[t]n/tkαR[t]n into the first n coordinates of R[t]n+j/tk(α⊕ 1)R[t]n+j , and pj is

the projection of R[t]n+j/tk(α⊕ 1)R[t]n+j onto the last j coordinates.

Also, because ` and pj are R[t]-module homomorphism, by the same manner, we get

[(R[t]n+j/tk(α⊕ 1)R[t]n+j, t)] = [(R[t]n/tkαR[t]n, t)] + [(R[t]j/tkR[t]j, t)]

and thus

[(R[t]n+j/tk(α⊕ 1)R[t]n+j, t)]− [(R[t]n+j/tkR[t]n+j, t)]

=[(R[t]n/tkαR[t]n, t)]− [(R[t]n/tkR[t]n, t)].

Also, for any [β], [γ] ∈ K1(R[t, t
−1]), consider β, γ as the square matrix of large enough

dimension n, by embedding them into GLn(R[t, t−1]). We have the short exact sequence:

0 // tkβR[t]n/t2kβγR[t]n // R[t]n/t2kβγR[t]n // R[t]n/tkβR[t]n // 0,

so in the same manner as above, we have

[(R[t]n/t2kβγR[t]n, t)] = [(R[t]n/tkβR[t]n, t)] + [(R[t]n/tkγR[t]n, t)],

which also implies if ∂ is well-defined, then it is a homomorphism, because

[(R[t]n/t2kβγR[t]n, t)]− [(R[t]n/t2kR[t]n, t)]

=[(R[t]n/tkβR[t]n, t)] + [(R[t]n/tkγR[t]n, t)]− 2[(R[t]n/tkR[t]n, t)].
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Also, for n-dimensional elementary matrix eij(a) ∈ E(R[t, t−1]), similarly as we did in

Lemma 3.9, there is a commutative diagram with the top and bottom rows exact:

0 // R[t]/tkR[t] //

t
��

R[t]n/tkeij(a)R[t]
n //

t
��

R[t]n−1/tkR[t]n−1 //

t
��

0

0 // R[t]/tkR[t] // R[t]n/tkeij(a)R[t]
n // R[t]n−1/tkR[t]n−1 // 0.

It follows that

[(R[t]n/tkeij(a)R[t]
n, t)] = [(R[t]/tkR[t], t)] + [(R[t]n−1/tkR[t]n−1, t)]

= [(R[t]n/tkR[t]n, t)]

which implies ∂(eij(a)α) = ∂(α), for any n-dimensional elementary matrix eij(a) ∈ E(R[t, t−1]).

Similarly, ∂(αeij(a)) = ∂(α). By induction, we see for any ζ, η ∈ E(R[t, t−1]), ∂(ζαη) = ∂(α).

So ∂ is well-defined and a homomorphism.

We are going to prove ∂ is surjective and K0(Nil R) is a summand of K1(R[t, t
−1]) by proving

∂ has right inverse.

Define a map ϕ1 : K0(R) −→ K1(R[t, t
−1]) induced by [P ] 7−→ [tp + 1 − p], where p is a

corresponding idempotent matrix of projective R-module P .

To begin with, we show that this map is well-defined. For tp+1−p, it has an inverse t−1p+1−p,

which implies tp+ 1− p ∈ GL(R[t, t−1]). Then, for another idempotent matrix p′ on R such that

p′ =MpM−1, M ∈ GL(R) we have

[tp′ + 1− p′] = [M ][tp+ 1− p][M−1] = [M ][M ]−1[tp+ 1− p] = [tp+ 1− p].

To see this map is a homomorphism, consider another [P ′] ∈ K0(R).
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Because [P ] + [P ′] = [P ⊕ P ′], so

ϕ1([P ] + [P ′])

= ϕ1([P ⊕ P ′])

=

t
p 0

0 p′

+

1 0

0 1

−
p 0

0 p′




=


tp+ 1− p 0

0 tp′ + 1− p′




= [tp+ 1− p][tp′ + 1− p′]

= ϕ1([P ])ϕ1([P
′]).

By Remark 3.11, we see ϕ1 is the right inverse of F ◦ ∂, where F is the forgetful map.

Define a homomorphism ϕ2 : K0(Nil R) −→ K1(R[t]) induced by sending every [(P, ν)] ∈

Nil R to the image of the automorphism 1 − νt ∈ Aut(P [t]) under the natural homomorphism of

Proposition 3.8. To see this map is well-defined, we need to check:

(1) If (P, ν) ∼= (P ′, ν ′), then ϕ2([(P, ν)]) = ϕ2([(P
′, ν ′)]).

(2) If there is a short exact sequence:

0 −→ (P1, ν1) −→ (P2, ν2) −→ (P3ν3) −→ 0,

then ϕ2([(P2, ν2)]) = ϕ2([(P1, ν1)])ϕ2([(P3, ν3)]).

For (1), assume h is the isomorphism between (P, ν) and (P ′, ν ′), then we got ν ′ = hνh−1,

and thus 1− ν ′t = h(1− νt)h−1. So in the similar manner as we used in the proof of Proposition

3.8, the images of 1− νt and 1− ν ′t under the homomorphism of Proposition 3.8 are the same.

For (2), because P2
∼= P1 ⊕ P3, by selecting particular isomorphism, we can write 1 − ν2t as
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an upper triangular matrix:

1− νt =

1− ν1t γt

0 1− ν2t

 =

1− ν1t 0

0 1− ν2t


1 γ′t

0 1


which implies [1−ν2t] = [1−ν1t][1−ν3t], by taking natural homomorphism we seeϕ2([(P2, ν2)]) =

ϕ2([(P1, ν1)])ϕ2([(P3, ν3)]).

In addition, we see the image of ϕ2 is contained in NK1(R) and ϕ2 : (R
n, ν) 7−→ [1− νt].

We define a homomorphism ψ : NK1(R) −→ Nil0(R) as the composition:

NK1(R) // K1(R[t]) // K1(R[t, t
−1]) // K1(R[s, s

−1]) ∂ // K0(Nil R)
p // Nil0(R)

where the left two homomorphisms are both inclusion map, p is the projection map, the homomor-

phism from K1(R[t, t
−1]) to K1(R[s, s

−1]) is induced by identifying t with s−1.

Define ϕ′2 : Nil0(R) −→ K1(R[s, s
−1]) to be ϕ2 restricted on Nil0(R). By Proposition 3.7,

Nil0(R) is generated by elements of form [(Rn, ν)]− [(Rn, 0)]. However, we have5

∂(ϕ′2([(R
n, ν)]− [(Rn, 0)])) = ∂([1− νs]) = [(Rn, ν)]− [(Rn, 0)]

which means ϕ′2 is the right inverse of ∂ composited with projection p : K0(Nil R) −→ Nil0(R).

Now, we see, K0(Nil R) ∼= K0(R)⊕ Nil0(R), and F : K0(Nil R) −→ K0(R) is the forgetful

map, p : K0(Nil R) −→ Nil0(R) is the projection map, F ◦ ∂ is right invertible by ϕ1, and p ◦ ∂ is

right invertible by ϕ′2. It follows that ∂ is right invertible.

Remark 3.15. By (a) of Lemma 3.10, we see that every element of NK1(R) can be reduced to

[1 − νs]. So, we have ϕ′2(ψ([1 − νs])) = ϕ′2([(R
n, ν)] − [(Rn, 0)]) = [1 − νs], which means ψ is

actually the inverse of ϕ′2, it follows that Nil0(R) ∼= NK1(R).
5Actually, ∂([1− νs]) = ∂([1− νt−1]) = ∂([t− ν][t−1]) = ∂([t− ν]) + ∂([t−1]) = [(Rn, ν)]− [(Rn, 0)].
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Proposition 3.16. The homomorphism K1(R[t]) −→ K1(R[t, t
−1]), which is induced by embed-

ding R[t] ↪→ R[t, t−1], is injective.

Proof. First, we claim K1(R) is embedded in K1(R[t, t
−1]) as a direct sum. Actually, the homo-

morphism from K1(R[t, t
−1]) −→ K1(R) induced by t −→ 1 is the left inverse of the natural

homomorphism K1(R) −→ K1(R[t, t
−1]).

Consider the sequence whose composition is ψ as we define in Lemma 3.14:

NK1(R) // K1(R[t]) // K1(R[t, t
−1]) // Nil0(R)

Because we have K1(R[t]) ∼= K1(R) ⊕ NK1(R), and K1(R) is embedded in K1(R[t, t
−1]) as a

direct sum, and K1(R) is contained in the kernel of K1(R[t, t
−1]) −→ Nil0(R), so we have

NK1(R) ∼= K1(R[t])/K1(R) // K1(R[t, t
−1])/K1(R) // Nil0(R)

whose composition is also ψ. It follows from ψ is an isomorphism that

NK1(R) −→ K1(R[t, t
−1])/K1(R)

is injective, and thus the following homomorphism

K1(R)⊕NK1(R) −→ K1(R)⊕K1(R[t, t
−1])/K1(R)

is injective.

Because K1(R[t]) ∼= K1(R)⊕NK1(R), and K1(R[t, t
−1]) ∼= K1(R)⊕K1(R[t, t

−1])/K1(R),

so we get K1(R[t]) −→ K1(R[t, t
−1]) is injective.

Proposition 3.17 ([4]). For any α, β ∈ GLn(R[t, t−1]), which map R[t]n to R[t]n, if

R[t]n/αR[t]n ∼= R[t]n/βR[t]n
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as a R[t]-module isomorphism, then [α][β−1] lies in the image of K1(R[t]) −→ K1(R[t, t
−1]).

Proof. Choose a R[t]-module isomorphism γ0 from R[t]n/αR[t]n to R[t]n/βR[t]n. Define M :=

R[t]2n/(α⊕ β)R[t]2n then we see

γ :=

 0 γ−1
0

γ0 0


is an R[t]-module automorphism of M whose inverse is itself.

Similarly, as we did in Lemma 2.17, the automorphism

γ 0

0 γ−1


on M ⊕M can be lift to an R[t]-module automorphism γ1 of R[t]4n.

As a result, the following diagram commutes:

0 // R[t]4n
e1 // R[t]4n

γ1
��

π1 // R[t]n/αR[t]n //

γ0

��

0

0 // R[t]4n
e2 // R[t]4n

π2 // R[t]n/βR[t]n // 0

where e1 := (α, 1, 1, 1), e2 := (1, β, 1, 1), π1, π2 are projection map, and the top and bottom rows

exact. So there is isomorphism γ2 : R[t]4n −→ R[t]4n induced, that makes the following diagram

commute:

0 // R[t]4n

γ2
��

e1 // R[t]4n

γ1
��

π1 // R[t]n/αR[t]n //

γ0

��

0

0 // R[t]4n
e2 // R[t]4n

π2 // R[t]n/βR[t]n // 0,

which implies [e1][γ1] = [γ2][e2]. So [α][β−1] = [e1][e
−1
2 ] = [γ2][γ

−1
1 ] lies in the embedding image

of K1(R[t]) into K1(R[t, t
−1]).
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Theorem 3.18 (Fundamental Theorem of Algebraic K-Theory). There is an isomorphism:

K1(R[t, t
−1]) ∼= K0(R)⊕K1(R)⊕NK1(R)⊕NK1(R).

Proof. We are going to prove there is a short exact sequence:

0 // K1(R[t]) // K1(R[t, t
−1]) ∂ // K0(Nil R) // 0.

This sequence is exact on the right by Lemma 3.14, and exact on the left by Proposition 3.16.

To verify that it is exact at K1(R[t, t
−1]), first we see for any [α] ∈ K1(R[t, t

−1]), where α ∈

GLn(R[t]), we have αR[t]n = R[t]n, so ∂([α]) = 0.

For the other direction, we notices that if ∂([α]) = 0, namely

[(R[t]n/tkαR[t]n, t)] = [(R[t]n/tkR[t]n, t)]

then by Proposition 3.5, there are short exact sequences

0 −→ (Q′, ν ′) −→ (Q1, ν1) −→ (Q′′, ν ′′) −→ 0 (3.6)

0 −→ (Q′, ν ′) −→ (Q2, ν2) −→ (Q′′, ν ′′) −→ 0 (3.7)

such that

((R[t]n/tkαR[t]n)⊕Q1, t⊕ ν1) ∼= ((R[t]n/tkR[t]n)⊕Q2, t⊕ ν2). (3.8)

Next, we claim that for any pair (P, τ), where P is finitely generated projective R-module, τ

is a nilpotent endomorphism of P , there is an isomorphism

(P, τ) ∼= (R[t]m/βR[t]m, t)
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for β = 1+(p+(1−τ)−1τ)(t−1) where p is an idempotent matrix corresponding to P . Actually,

by equations (3.4), (3.5) in Remark 3.11, R[t]m/βR[t]m = p(R[t]m/(t − τ)R[t]m), but obviously

we have (P, τ) = (p(R[t]m/(t− τ)R[t]m), t).

By this trick, without loss of generosity, assume

(Q′, ν ′) = (R[t]m/α′R[t]m, t)

(Q′′, ν ′′) = (R[t]m/α′′R[t]m, t)

(Q1, ν1) = (R[t]m/α1R[t]
m, t)

(Q2, ν2) = (R[t]m/α2R[t]
m, t)

then equations (3.6), (3.7) can be written as

0 −→ Q′ −→ Q1 −→ Q′′ −→ 0

0 −→ Q′ −→ Q2 −→ Q′′ −→ 0

where all homomorphisms are R[t]-module homomorphisms.

Equation 3.8 can be written as

(R[t]n+m/(tkα⊕ α1)R[t]
n+m, t) ∼= (R[t]n+m/(tk ⊕ α2)R[t]

n+m, t)

or equivalently,

R[t]n+m/(tkα⊕ α1)R[t]
n+m ∼= R[t]n+m/(tk ⊕ α2)R[t]

n+m (3.9)

as a R[t]-module isomorphism.

We are going to show [α1] = [α2] in K1(R[t, t
−1]). Actually, we have the following commuta-
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tive diagrams:

0

��
0 // R[t]m α′ // R[t]m // Q′

��

// 0

Qi

��
0 // R[t]m α′′ // R[t]m // Q′′

��

// 0

0

for i = 1, 2, with the two horizontal sequences exact.

By Horseshoe Lemma, there are two commutative diagrams:

0

��

0

��

0

��
0 // R[t]m α′ //

��

R[t]m

��

// Q′

��

// 0

0 // R[t]2m
αi //

��

R[t]2m

��

// Qi

��

// 0

0 // R[t]m

��

α′′ // R[t]m

��

// Q′′

��

// 0

0 0 0

for i = 1, 2, with all horizontal and vertical sequences exact.

Since the first two vertical sequences from the left are exact, so [α1] = [α′] + [α′′] = [α2] in

K1(R[t, t
−1]).

By equation 3.9, and Proposition 3.17, we see [α] lies in the embedding image ofK1(R[t]) −→

K1(R[t, t
−1]).

In addition, because ∂ has a right inverse as we proved in Lemma 3.14, so this short exact

sequence splits, and by K0(Nil R) ∼= K0(R)⊕NK1(R), K1(R[t]) ∼= K1(R)⊕NK1(R), we get
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the conclusion:

K1(R[t, t
−1]) ∼= K0(R)⊕K1(R)⊕NK1(R)⊕NK1(R).
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3.2 Propagation Control

In this section, we investigate the propagation control of the boundary map ∂. First, we give

the exact meaning of propagation:

Definition 3.19. A filtered algebra over commutative ring R, is a R-algebra A with a family of

R-submodules (Ar), r ∈ R, such that

(1) Ar ⊆ Ar′ , if r ≤ r′

(2) ArAr′ ⊆ Ar+r′

(3) A =
⋃
r Ar

where the family (Ar), r ∈ R is called a filtration of A. Every elements of Ar is said to have

propagation ≤ r.

If no other specification, we assign the propagation of an element a to be the least number r

such that a ∈ Ar.

We are going to prove that for a group ring6 RG, where R is a ring and G is a (multiplicative)

group, we can give RG a filtration.

Definition 3.20. For a length function on (multiplicative) group G, we mean a function ` : G −→

N such that

(1) `(g) = 0 if and only if g = 1;

(2) `(gg′) ≤ `(g) + `(g′) for all g, g′ ∈ G;

(3) `(g) = `(g−1) for all g ∈ G.

For a group G, select a generating set S of G, then we can define a length function | · |S on G,

by setting |g|S to be the shortest presentation of g as a word in S ∪ S−1.

6Group ring is also called group algebra for its natural R-algebra structure.
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For the group ring RG, we can give RG a filtration by letting An to be the free R-submodule

which is generated by

{g ∈ G : |g|S ≤ n},

then we see RG becomes a filtered algebra over R.

By Lemma 3.10 and Remark 3.11, we see for anyX ∈ GL(RG[t, t−1]), the image of [X] under

∂ is [(RG[t]n/tkXRG[t]n, t)]−[(RG[t]n/tkRG[t]n, t)] ∈ K0(Nil RG), where [RG[t]n/tkXRG[t]n] =

[PRm], for some idempotent matrix P . So, we can track the propagation by considering the algo-

rithm in Lemma 3.10 that make X into P . Before doing this, we need some preparations:

First, we see RG[t, t−1] ∼= R[t, t−1]G, where the isomorphism is induced by

(rg)ti −→ (rti)g

(rg)t−i −→ (rt−i)g,

while r ∈ R, g ∈ G, i ∈ Z.

For convenience, define a propagation function Pr :M(R[t, t−1]G) −→ N by letting Pr(X) to

be the largest propagation of entries of X .

Define

Dn := {X ∈M(R[t, t−1]G) : Pr(X) ≤ n}

then we see M(R[t, t−1]G) becomes a filtered algebra over R[t, t−1], with filtration (Dn), n =

0, 1, · · · .

Now, we are ready to consider the algorithm in (b) of Lemma 3.10. Assume

X = t−k(X0 + tX1 + · · ·+ tnXn) ∈ GL(R[t, t−1]G),

then the entries from different Xi cannot be concelled out, so we have

Pr(X) = max
i
{Pr(Xi)}.
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Assume Pr(X) ≤ r0 and Pr(X−1) ≤ r0 for some integer r0.

The algorithm that makes X into P can be stated into four steps:

(1) X −→ tkX;

(2) tkX −→ B0 + tB1;

(3) B0 +B1t −→ (B0 +B1)
−1(B0 + tB1) = 1 + (t− 1)B;

(4) B −→ p(B)Bn = P ,

where

p(x) =
n−1∑
k=0

(
2n− 1

k

)
(1− x)kxn−k−1.

For (1), by our definition, X and tkX have the same propagation. For (2), we see

tkX −→

tkX 0

0 1


and tkX 0

0 1

 −→
1 tn−1Xn

0 1


tkX 0

0 1


 1 0

−t 1

 ,

where 1 tn−1Xn

0 1


tkX 0

0 1


 1 0

−t 1

 =

tkX − tn−1Xn tn−1Xn

−t 1

 ,

do not change the propagation. We get B0 + tB1 by continuing this process. Also, by induction,

we see Pr(B0 + tB1) ≤ r0.

For step (3), we claim that Pr(1 + (t − 1)B) ≤ (2n−1 + 1)r0. Actually, by conducting corre-

sponding "inverse operations" on X−1, namely

X−1 −→ t−kX−1,
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t−kX−1 −→

t−kX−1 0

0 1

 ,

and t−kX−1 0

0 1

 −→
1 0

t 1


t−kX−1 0

0 1


1 −tn−1Xn

0 1

 ,

where 1 0

t 1


t−kX−1 0

0 1


1 −tn−1Xn

0 1

 =

 t−kX−1 −tn−k−1X−1Xn

t−k+1X−1 −tn−kX−1Xn + 1

 ,

we get the inverse of B0 + tB1. Because the last operation as above doubles the upper bound of

the propagation, also by induction, we have Pr((B0 + tB1)
−1) ≤ 2n−1r0. Because (B0 + tB1)

−1

is also a Laurent polynomial on M(R[t, t−1]G), so the propagation of (B0 + tB1)
−1 is bounded by

the largest propagation of the coefficients of Laurent polynomial (B0 + tB1)
−1, which implies

Pr((B0 +B1)
−1) ≤ Pr((B0 + tB1)

−1) ≤ 2n−1r0.

As a consequence, we see

Pr(1 + (t− 1)B) ≤ Pr((B0 +B1)
−1) + Pr(B0 + tB1) ≤ (2n−1 + 1)r0.

For the final step (4), we have

Pr(B) = max{Pr(1−B),Pr(B)} = Pr(1−B + tB) = Pr(1 + (t− 1)B)

therefore

Pr(P ) = Pr(p(B)Bn) ≤ Pr(p(B)) + Pr(Bn) ≤ (2n− 1) Pr(B) ≤ (2n− 1)(2n−1 + 1)r0.
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That means, if X has propagation ≤ r0, then P has propagation ≤ (2n− 1)(2n−1 + 1)r0, where n

is the degree of X as a polynomial of t.
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4. NEGATIVE K-THEORY

In this section, we are going to construct negative K-theory. The difference are denoted as "-",

especially in K1-groups, we denote the difference of elements [A], [B] as [A] − [B] rather than

[A][B]−1.

Define the group homomorphism K1(R[t])⊕K1(R[t
−1])

±−→ K1(R[t, t
−1]) as

([A], [B]) −→ [A]− [B],

then we have the following proposition:

Proposition 4.1. There is an isomorphism:

K0(R) ∼= coker
(
K1(R[t])⊕K1(R[t

−1])
±−→ K1(R[t, t

−1])
)
.

Proof. We are going to prove the image of± is isomorphic toK1(R)⊕NK1(R)⊕NK1(R) which

is a normal subgroup of K0(R)⊕K1(R)⊕NK1(R)⊕NK1(R).

First, we claim that the image of ± is contained in K1(R) ⊕ NK1(R) ⊕ NK1(R). To prove

this, we only have to prove for any [A] ∈ K1(R[t]), [B] ∈ K1(R[t
−1]), ∂′([A] − [B]) = 0,

where ∂′ := F ◦ ∂, F is the forgetful map from K0(Nil R) to K0(R). Actually, because [A] is

contained in the kernel of ∂, so ∂′([A]− [B]) = −∂′([B]). Similar to the proof of Lemma 3.10, we

see [B] = [B0 − B1t
−1] where B1 ∈ M(R) and B0 ∈ GL(R). If B1 = 0, then it is obvious that

∂′([B]) = 0. AssumeB1 6= 0, then (B0−B1t
−1)R[t]n = (1−B′1t−1)B0R[t]

n = (1−B′1t−1)R[t]n,

where B′1 is nilpotent as we proved in Lemma 3.10. As a consequence,

∂′([B]) = ∂′([B0−B1t
−1]) = [R[t]n/tk(B0−B1t

−1)R[t]n]−[R[t]n/tkR[t]n] = ∂′(1−B′1t−1) = 0,

which means ∂′([A]− [B]) = 0.

Second, we proved that every element of K1(R) ⊕ NK1(R) ⊕ NK1(R) has a preimage in
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K1(R[t])⊕K1(R[t
−1]). By Proposition 3.16, K1(R[t]) embeds into K1(R[t, t

−1]) as a direct sum,

so we only need check every element in NK1(R) has preimage1.

For any generator [(Rn, ν)] − [(Rn, 0)] ∈ Nil0(R) ∼= NK1(R), we have ∂([1 − νt−1]) =

[(Rn, ν)] − [(Rn, 0)], where [1 − νt−1] ∈ K1(R[t
−1]). So, for any element in NK1(R), it has a

preimage in K1(R[t])⊕K1(R[t
−1]).

Corollary 4.2. There is an exact sequence:

0 −→ K1(R)
∆−→ K1(R[t])⊕K1(R[t

−1])
±−→ K1(R[t, t

−1]) � K0(R) −→ 0,

where the epimorphism K1(R[t, t
−1]) −→ K0(R) splits.

This result inspires us to define the negative K-groups:

Definition 4.3. Define

K−n(R) := coker (K−n+1(R[t])⊕K−n+1(R[t
−1])

±−→ K−n+1(R[t, t
−1]))

NK−n(R) := coker (K−n(R) −→ K−n(R[t]))

for n = 1, 2, 3, · · · .

We see

R[t]
t−→1−→ R

also induces a splitting of K−n(R) −→ K−n(R[t]), therefore

K−n(R[t]) ∼= K−n(R)⊕NK−n(R),

and similarly,

K−n(R[t
−1]) ∼= K−n(R)⊕NK−n(R)

1This NK1(R) is a summand of K0(Nil R).
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where n = 1, 2, 3, · · · .

By our definition of K−n, we have

NK−n(R) := coker (NK−n+1(R[t])⊕NK−n+1(R[t
−1])

±−→ NK−n+1(R[t, t
−1]))

for n = 1, 2, 3, · · · .

There is a generalization of Theorem 3.18.

Theorem 4.4 (Fundamental Theorem of Algebraic K-Theory). For any ring R, we have

K−n+1(R[t, t
−1]) ∼= K−n(R)⊕K−n+1(R)⊕NK−n+1(R)⊕NK−n+1(R)

for n = 1, 2, 3, · · · .

Proof. By Theorem 3.18, we have isomorphisms:

K1(R[s, t, t
−1]) ∼= K0(R[s])⊕K1(R[s])⊕NK1(R[s])⊕NK1(R[s])

K1(R[s
−1, t, t−1]) ∼= K0(R[s

−1])⊕K1(R[s
−1])⊕NK1(R[s

−1])⊕NK1(R[s
−1])

K1(R[s, s
−1, t, t−1]) ∼= K0(R[s, s

−1])⊕K1(R[s, s
−1])⊕NK1(R[s, s

−1])⊕NK1(R[s, s
−1])

in whichK0(R[s]), K0(R[s
−1]), K0(R[s, s

−1]) are embedded intoK1(R[s, t, t
−1]),K1(R[s

−1, t, t−1]),

K1(R[s, s
−1, t, t−1]), respectively, as direct summands.

However, by what we discuss above, there is a homomorphism

K1(R[s, t, t
−1])⊕K1(R[s

−1, t, t−1])
±−→ K1(R[s, s

−1, t, t−1])

whose cokernel is K0(R[t, t
−1]). By Definition 4.3, we get

K0(R[t, t
−1]) ∼= K−1(R)⊕K0(R)⊕NK0(R)⊕NK0(R).
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Because we do not use specific meaning of K1, K0 in the proof, so we can actually continue

doing this. By induction, we are done.

Corollary 4.5. There is an exact sequence:

0 −→ K−n+1(R)
∆−→ K−n+1(R[t])⊕K−n+1(R[t

−1])
±−→ K−n+1(R[t, t

−1]) � K−n(R) −→ 0,

for n = 1, 2, 3, · · · , where the epimorphism K−n+1(R[t, t
−1]) −→ K−n(R) splits.

As an application, we can extend the exact sequence in Corollary 2.32:

Theorem 4.6. Let R be a ring, and I is an ideal of R, then there is an extended exact sequence:

· · · −→ K0(R)
q∗−→ K0(R/I)

∂−→ K−1(I)
`∗−→ K−1(R)

q∗−→ K−1(R/I)
∂−→ K−2(I) −→ · · ·

where ` is the inclusion I −→ R, q is the quotient map R −→ R/I , ∂ is the boundary map.

Proof. By Corollary 4.2, 4.5 and 2.32, we have the following commutative diagram with vertical

and horizontal sequences exact:

0 // K1(R)

q∗

��

// K1(R[t])⊕K1(R[t
−1])

q∗
��

// K1(R[t, t
−1])

q∗
��

// K0(R) // 0

0 // K1(R/I)

∂
��

// K1((R/I)[t])⊕K1((R/I)[t
−1])

∂
��

// K1((R/I)[t, t
−1])

∂
��

// K0(R/I) // 0

0 // K0(I)

`∗
��

// K0(I[t])⊕K0(I[t
−1])

`∗
��

// K0(I[t, t
−1])

`∗
��

// K−1(I) // 0

0 // K0(R)

q∗

��

// K0(R[t])⊕K0(R[t
−1])

q∗
��

// K0(R[t, t
−1])

q∗
��

// K−1(R) // 0

0 // K0(R/I) // K0((R/I)[t])⊕K0((R/I)[t
−1]) // K0((R/I)[t, t

−1]) // K−1(R/I) // 0

where the second vertical line of epimorphisms2 from the right are split exact, so an exact sequence
2Namely, K1(R[t, t

−1]) −→ K0(R), K1((R/I)[t, t
−1]) −→ K0(R/I), etc.
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is induced3:

K0(R)
q∗−→ K0(R/I)

∂−→ K−1(I)
`∗−→ K−1(R)

q∗−→ K−1(R/I).

Continue doing this, by induction, we are done.

3For example, K0(R)
q∗−→ K0(R/I) is given by

K0(R) −→ K1(R[t, t
−1])

q∗−→ K1((R/I)[t, t
−1]) −→ K0(R/I).
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5. CONCLUSION

We have given an explicit proof of the Fundamental Theorem for Lower Algebraic K-Theory.

Higher algebraic K-theory was first given by D. Quillen (cf. [7]). In his approach, he defined

K-group as homotopy groups of certain spaces. Also, the Fundamental Theorem of Algebraic

K-Theory can be generalized to higher cases under Quillen’s definitions (see [4], Fundamental

Theorem 8.2.). But the proof involves many topological techniques.

In 2012, D. Grayson gave a purely algebraic description of higher algebraicK-groups (cf. [8]).

Furthermore, T. Harris provided new proofs of the additivity, resolution, and cofinality theorems

under Grayson’s framework (cf. [9]).

It is natural question whether a purely algebraic and explicit proof of the Fundamental The-

orem for Higher Algebraic K-Theory exists. Such a proof would provide important quantitative

information of higher algebraic K-theory.

This will be the subject of further investigation.
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