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ABSTRACT 

Cotton producers are interested in adopting conservation tillage for potential soil 

health benefits such as increasing soil microbial biomass. However, little is known about 

the resulting impacts of cover crops and tillage practices on soil microorganisms, 

especially plant beneficial microbes such as AMF abundance and interactions with 

cotton plants under dryland conditions. The objectives of this study were to evaluate soil 

microbial biomass and soil parameters in different tillage systems and cover crop 

rotations with dryland cotton, and to evaluate root colonization and AMF diversity in 

these treatments. A multi-year field study was conducted with a randomized-complete 

block design, with four replicates. Treatments included conventional tillage, no-till, and 

no-till with a variety of different cover crops. Prior to planting in year 2, soil samples (0-

7.5 cm depth) were collected and characterized for microbial biomass using 

phospholipid fatty acid analysis (PLFA). Mycorrhizal colonization of cotton roots was 

determined at multiple time points during the growing season. Individual root fragments 

were isolated from cotton roots, DNA extracted and used to identify mycorrhizal 

community structure in cotton roots by ribosomal RNA gene sequencing. The PLFA 

results showed little difference in microbial biomass levels between conventional tillage 

and no-till samples Inclusion of a cover crop increased microbial biomass by up to 2-

fold. In August, the use of cover crops increased percentage of mycorrhizal colonization 

of cotton, as higher root colonization was observed in hairy vetch, Austrian winter field 
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pea and crimson clover. Root colonization was lowest in conventionally tilled plots.  In 

October, the differences in root-colonization among the treatments had largely 

disappeared. Principal coordinate analyses of relative abundance of AMF species 

(operational taxonomic units) indicated that different cover crop treatments influenced 

AMF community structure in cotton roots. In August, AMF species colonizing cotton 

roots were similar in most treatments. The AMF community structure appeared distinct 

between conventional tillage and cover crop treatments by October. The results indicated 

that cover crops demonstrated positive legacy effects by increasing soil microbial 

biomass and AMF colonization of cotton roots, especially at the initial growth stages of 

cotton. These impacts could translate to higher drought tolerance and productivity under 

dryland conditions. 
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NOMENCLATURE 

AMF Arbuscular Mycorrhizal Fungi 

AM Arbuscular Mycorrhizae 

VAM Vesicular Arbuscular Mycorrhizae 

P Phosphorus 

N2 Nitrogen 

FAO Food and Agricultural Organization 

T Tillage 

CT Conventional Tillage 

NT No Tillage 

MT Mulch tillage 

C Carbon 

TX Texas 

RCBD Randomize Complete Block Design 

NRCS Natural Resources Conservation Services 

mm Millimeter 

 C Centigrade 

Ib Pound 

ha Hectare 

L Liter 

PLFA Phospholipid Fatty Acid 
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OTU Operational Taxonomic Unit 
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PCA Principal Component Analysis 

PCoA Principal Coordinate Analysis 
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1. INTRODUCTION AND LITERATURE REVIEW 

1.1 Arbuscular Mycorrhizal Fungi Symbiosis 

One of the main components of the soil microbiota in most agro-ecosystems is 

the arbuscular mycorrhizal fungi (AMF). These obligate mutualistic symbionts colonize 

the roots of the vast majority (around 80%) of plant families (Smith, et al., 1997). AMF 

is one of the most abundant organisms in the rhizosphere and more than 200,000 species 

of host plants can be colonized by AMF (Schüßler and Walker, 2010).  

Arbuscules (Figure 1) are the intercellular tree-like branching structures that 

AMF form within root cortical cells of the majority. In some cases, the arbuscule 

structures appear as coils of hyphae (Figure 2). Arbuscules are considered to be essential 

locations for the exchange of carbon and mineral nutrients between AMF and plants, 

particularly the phosphorus (P) from the fungus. Some of the fungi also form large oil-

filled vesicles in the intercellular spaces (Figure 3). The fungi produce hyphae that 

explore intercellularly within the plant and also the extraradical mycelium, that grows 

into soil and can extend several centimeters from the root surface. 
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Figure 1: Typical Arbuscule Structure of AMF in Root Cell After Staining (400X)*. 

 
Figure 2: Typical Hyphae Structure of AMF in Root Cell After Staining (200X)*. 

 
Figure 3: Typical Vesicle Structure of AMF in Root Cell After Staining (200X)*. 

*Figures adapted from (Goss, et al., 2017) 
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1.2 The Influence of AMF on Plants 

The main benefit of the mycorrhizal symbiosis for plants is believed to be 

facilitated nutrient uptake, particularly with respect to immobile nutrients like 

phosphorus (P) (George, et al., 1995, Miller and Jastrow, 1992). AMF can considerably 

increase P acquisition by the plants, both from inorganic sources (Cardoso and Kuyper, 

2006) and from organic P (Jayachandran, et al., 1992). Hawkins, et al. (2000) showed 

that mycorrhizal symbiosis could improve the fitness of their host plant under low soil 

fertility. AMF can also enhance resistance to root pathogens (Borowicz, 2001) or abiotic 

stresses such as drought (Augé, 2001, Augé, 2004, Miransari, 2010, Ruiz-Lozano, 2003), 

metal toxicity (Clark, et al., 1999, Meharg and Cairney, 1999), salinity (Evelin, et al., 

2009, Miransari, 2010, Porcel, et al., 2012), heat (Compant, et al., 2010), and cold 

(Charest, et al., 1993). 

1.3 The Influence of AMF on Soil Chemical and Physical Properties 

AMF may also play a role in the formation of stable soil aggregates, building up 

a macro porous structure of soil that allows penetration of water and air and prevents 

erosion (Miller and Jastrow, 1992). 

Some studies related the occurrence of specific AMF species to soil physical and 

chemical characteristics such as soil texture, organic matter content, and nutrient 

contents; in particular to the availability of phosphorus. Mycorrhizae and fungal hyphae 

play a significant role as binding agents between aggregates (Tisdall, 1994). Glomalin 

produced by AMF can promote soil aggregate stability, especially at the micro aggregate 

level (Rillig, 2004). Oehl, et al. (2010) found that land use intensity and soil type 
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strongly affected AMF community composition as well as the presence and prevalence 

of many AMF. Regardless of soil types, grassland generally has more AMF species and 

genera than arable soils. It seems likely that the inputs of nutrients either organic or 

inorganic is compatible with sustained and abundant AMF population if other elements 

of cropping systems – such as the use of no-till, reduced tillage, and diversified cover-

cropping sequence (Galvez, et al., 2001) – are also supportive. 

1.4 Cotton 

 Archeological evidence shows that humans have used cotton for more than 4000 

yr. The history of cotton cultivation is at least 3000 yr old. There are four domesticated 

species of cotton. Gossypium arboreum L. and G. herbaceum L., both diploids, are 

native to the Old World (India and drier area of Africa and Asia). Gossypium hirsutum 

L. and G. barbadense L., both allotetraploids, evolved in the New World (drier areas of 

Middle America, northern South America, the West Indies, north Africa and Southern 

Asia). Gossypium hirsutum, known most widely as Upland cotton, contributes about 

95% of the current world production of 118 million bales of fiber weighing about 

225kg/bale (Fang and Percy, 2015).  

 Cotton (Gossypium hirsutum L.) remains an important product in the agricultural 

economy of the United States. Its scope and economic impact extend well beyond the 

approximately 19,000 farmers that plant between 4 and 6 million hectares of cotton each 

year in 17 states across the southern United States (Mauney, 2015). 
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1.5 The Influence of Land Practices on Cotton Production 

Since cotton produces low amounts of residue, crop rotation with green manure 

cover crops is essential to produce residue and its management with tillage is often 

required to maintain adequate surface coverage. Naudin, et al. (2010) compared cotton 

treatments with tillage (T), no tillage (NT), and no tillage with mulch (NTM) in a 2-year 

rotation in multiple farmer fields in North Cameroon and found that cotton yields were 

12 % lower for tillage (T) and 24 % lower for no-till (NT) than for no tillage with mulch 

(NTM). Similarly, Nyakatawa, et al. (2000) compared cotton yield with tillage, cropping 

system and N source from 1996 to 1998 in northern Alabama and found that cotton lint 

yield under NT was 24% and 18% greater than that under conventional tillage (CT) and 

mulch-till (MT) treatments, respectively. Also, both no-till and a winter rye (Secale 

cereal L.) cover crop improved seedling emergence in 2 years and lint yield in one year 

of a 2 year study (Nyakatawa, et al., 2000). Also, between 1983 and 1986, cotton yields 

under conservation tillage were always higher than conventional tillage in Texas 

(Harman, et al., 1989). Keeling, et al. (1989) reported that conservation tillage cotton 

systems enhanced net returns compared to conventional tillage at two different locations 

in the Texas Southern High Plains. 

1.6 Crop Rotation Effects on AMF 

The importance of crop rotation is increased under reduced or no-till systems 

where the crop residues accumulate on the soil surface and are an essential element of 

conservation agriculture systems (FAO, 2015). To improve the potential contribution of 

AMF in the agricultural systems, the design of crop rotations must also take into account 
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the impact of the plant host in maintaining AMF colonization. Black and Tinker (1979) 

report that the amount of mycorrhizal spores decreased after leaving the land fallow in 2 

years. Another study notes that fallow treatment and growing a non-mycorrhizal host 

diminished the mycorrhizal propagules by 40% and 13%, respectively (Harinikumar and 

Bagyaraj, 1988); similarly, extending length of the fallow period decreased AM 

efficiency by 33 % in a pot experiment (Kabir, et al., 1999).  

1.7 Cover Crops 

 Cover crops are “herbaceous crops grown to create a favorable soil micro-

climate, decrease evaporation, protect soil from erosion and also to produce biomass that 

can be used as forage and to improve the soil”(Bayer and Waters-Bayer, 1998). Cover 

crops are also known as living mulches and green manures. Cover crops have been 

shown to provide many environmental and agronomic services within agro-systems. 

These include reduced soil erosion, increased biological diversity as well as nutrient 

cycling and nitrogen (N2) fixation, increased soil organic matter content, improved weed 

control, and increased crop yield (Higo, et al., 2010, Lal, 2004, Locke and Bryson, 1997, 

Mallory, et al., 1998, Oka, et al., 2010, Parkin, et al., 2006, Sainju and Singh, 1997, 

Varco, et al., 1999) 

1.8 The Influence of Cover Crops on AMF Abundance and Diversity 

Cover crops should be considered as a key element for the management of AMF 

colonization and diversity, as long as they are mycotrophic, which are in association 

with a mycorrhiza. On the other hand, some cover crops are considered non-

mycotrophic, such as canola and oilseed rape. Cover crops with mixed species or 
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rotations, including legumes, cereals, and other groups of cover crops, can increase the 

diversity as well as number of individual AMF (Lehman, et al., 2012). García-González, 

et al. (2016) found the effect of winter cover crops (barley and vetch) on AMF 

parameters such as length of hyphae, enzymatic activity etc. They found that hyphae 

length of AMF increased to 80% with barley used as a cover crop compared with the 

fallow. Säle, et al. (2015) reported that AMF spore density and species richness 

increased in the topsoil under reduced tillage compared to the plowed plots by 55% and 

20%, respectively. Similarly, Oehl, et al. (2003) found that increased land use intensity 

such as crop rotation and mono-cropping was correlated with a 40% decrease in AMF 

species richness.  

 The integration of cover crops, such as wheat, rapeseed, or crimson clover, in 

crop rotation systems reduces seasonal fallow and thus provides many benefits to 

subsequent cash crop and soil fertility (Clark, 2008). Furthermore, Wang, et al. (2007) 

claim that cover crops increase soil microbiological biomass through the decomposition 

of organic carbon (C).  

 Also, in a four-year study published by Isobe, et al. (2014), the number of AMF 

spores in winter crop wheat, an AMF host plant, was approximately twice as high as 

rapeseed, an AMF non-host plant, in 2008, 2010, and 2011. After rapeseed cultivation, 

the AMF colonization rate in soybean roots was detected at 2.9% to 12.7% in each of 4 

years. The AMF colonization rate was significantly higher in wheat cultivation, was 

detected at 6.7% to 16.3% in each of 4 years. Galvez, et al. (1995) reported, that, hairy 

vetch as an overwintering cover crop, increased the number of Glomus spp. spores and 
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the overall AMF colonization potential of the spring soil samples. In a study by White 

and Weil (2010), a rye cover crop increased AMF colonization of subsequent corn as a 

cash crop in three of six site-years; and a wheat cover crop increased AMF inoculum 

within 2 years in a study by Boswell, et al. (1998). 

1.9 The Influence of Land Practices on AMF Diversity and Colonization 

 AMF abundance or diversity is important for soil biodiversity, soil fertility, and 

functioning of terrestrial ecosystems (Douds, et al., 1995). About 240 AMF species have 

been identified so far (Oehl, et al., 2011). Most of these species belong to the genera of 

Glomus, Acaulospora, Scutellospora, and Gigaspora.  

Farming practices such as soil tillage and fertilization have effects on AMF diversity and 

abundance (Jansa, et al., 2003, Kabir, 2005, Oehl, et al., 2010, Oehl, et al., 2003). AMF 

abundance has been noted to increase under low-input systems (Mäder, et al., 2000, 

Njeru, et al., 2015). Some studies revealed that community structure and diversity of 

AMF in soils differ between tilled and reduced or no-till soils (Jansa, et al., 2002, Köhl, 

et al., 2014, Maurer, et al., 2014, Wetzel, et al., 2014, Yang, et al., 2012). Brito, et al. 

(2012) reported that conventional tillage decreased AMF diversity by 40 % compared to 

no-till. Another study showed that under a no tillage wheat-oat-wheat rotation, the 

number of AMF spores was higher than under conventional tillage, ranging from 158 to 

641 spores per 100 cm
3 

(Castillo, et al., 2006). Glomus spp. are believed to survive 

perturbations and hence they prevail in highly disturbed agricultural systems (Dodd, et 

al., 2000) and become more abundant under conditions of environmental stress such as 

tillage disturbance (Jansa, et al., 2003). Öpik, et al. (2006) reported that Glomus 
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fasciculatum was present in all soil types. Therefore, this genus can be considered a 

‘generalist’. In contrast, other AMF species such as Glomus badium and Glomus 

microcarpum were present in grassland, with Glomus caledonium in arable lands. Those 

species can be characterized as ‘specialists’ as they are only present in grassland or 

specific soil types. At the population level, one of the studies on Glomus intraradices did 

not find any significant tillage treatment effects on its diversity (Koch, et al., 2004), 

suggesting that this species may be relatively more tolerant to disturbance than other 

AMF. 

1.10 The Influence of Plants on AMF Diversity and Colonization 

 Even though many AMF species are thought to be generalists, which are able to 

thrive in a wide variety of environmental conditions, there is evidence that plant species 

composition influences the structure of AM fungal communities (Harley and Smith, 

1983). AMF populations are greatest in ecosystems with higher plant diversity such as 

temperate grasslands and tropical rainforests where they have many potential host plants  

to colonize (Smith and Read, 2010). There is evidence to show both under experimental 

conditions (Van der Heijden, et al., 1998) and natural conditions (Moora, et al., 2004) 

that higher AMF diversity can induce a range of growth responses in plants. Hart and 

Reader (2002) proved that colonization by diverse families of AMF results in 

substantially different benefits to the host plants. As such, Gigasporaceae may be more 

‘mutualistic’ since they provide the most nutritive benefits for their hosts due to heavy 

investment into primarily absorptive hyphae. Further, such differences in mycelium sizes 

may tell that cost of colonization can be higher than the others. That is, AMF with large 
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mycelia may be better at nutrient uptake but may pose a larger carbon sink than AMF 

with small mycelia. 

1.11 The Influence of AMF on Cotton  

 Cotton (Gossypium hirsutum L.) is a mycotrophic plant in which growth and 

nutrient uptake is usually increased by mycorrhizal colonization (Pugh, et al., 1981, 

Torrisi, et al., 1999). Several studies have shown that the association of root systems of 

crop plants, including cotton, with AMF can increase the ability of plants to absorb 

water and nutrients and can result in increased biomass production and yield (Afek, et 

al., 1991, Linderman, 1992, Price, et al., 1989, Rich and Bird, 1974, Smith and 

Roncadori, 1986). As the root system of cotton has a low density per unit soil volume, 

producing an extensive mycelial network system outside of the root by AM can be 

beneficial for cotton (McMichael, 1990). Reduced AM colonization in cotton has been 

linked to reduced nutrient uptake such as, P and Zn and growth disorder of cotton 

(Gossypium hirsutum L.) where early growth in the crop is stunted, crop maturity 

delayed and yield decreased (Nehl, et al., 1996). However, the lack of mycorrhizal 

development was not due to a lack of AM fungi in the soil, suggesting that edaphic 

factors can have substantial impacts on mycorrhizal development in cotton (Nehl, et al., 

1996, Torrisi, et al., 1999). Therefore, cotton may be more dependent on mycorrhizal 

associations for exploring soil for water and nutrients.  

 Introduction of mycorrhizal crops during the winter season can be an effective 

management strategy to increase and sustain AMF diversity in soils and provide 

sufficient inoculum for subsequent crops. In the Texas Rolling Plains, wheat and rye, are 
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the most popular cool season cover crop species because of their high persistence, 

tolerance to grazing, and biomass (Keeling, et al., 1996). These cover crops have been 

successfully implemented as rotation with dryland cotton production. It has been noted 

that mixture of two or more cover crops is often more effective for soil health than 

planting a single species (Zarea, et al., 2009). Kabir and Koide (2002) reported that the 

combination of cover crops (rye and oats) was significantly better than single species of 

cover crops for increasing mycorrhizal colonization. Evidence also exists for many 

crops, including cotton, to show that cover crop rotations can increase yields (Isobe, et 

al., 2014, Oka, et al., 2010). Hence, rotations of mixed cover crops are anticipated to 

enhance AMF diversity and enhance root colonization of the following main crop 

through legacy effects. However, there is no data on AMF diversity and abundance of 

mixed cover crops and their legacy effects on cotton rotation in dryland Texas cropping 

systems. 

1.12 Study Hypothesis and Objectives 

We hypothesize that cool season mixed cover crop rotations will produce larger 

benefits on microbial biomass and AMF diversity and colonization of cotton roots than 

compared to single species of cover crop rotation. Cover crop treatments will include 

wheat (Triticum aestivum L.), Austrian winter field pea (Pisum sativum L.), crimson 

clover (Trifolium incarnatum L.), hairy vetch (Vicia villoa Roth), and mixed cover crops 

in rotation with cotton. We also hypothesize that legume cover crops of Austrian winter 

field pea and hairy vetch will produce larger benefits than other individual cover crops 

due to their higher biomass and lower C/N ratio.  
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These hypotheses were tested on field study by investigating the diversity of 

AMF communities in cotton roots of an established five-year winter cover crop cotton 

rotational system and no till treatments. Following objectives were established to test the 

hypotheses. 

Objective 1. To evaluate soil microbial biomass and soil parameters in different tillage 

systems and cover crop rotations with semi-arid cotton  

Objective 2. To evaluate root colonization and AMF diversity in cotton roots in different 

tillage systems and cover crop rotations. 
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2. MATERIALS AND METHODS 

2.1 Research Location 

The field experiment was conducted in 2016 and evaluated in one growing 

season of multiple years at the Texas A&M AgriLife Chillicothe Research Station 

(34.25  N, 99.51  W, 447 m above sea level) near Chillicothe, TX (Figure 4). Dryland 

cover crop treatments with no-till plots were established in Fall 2011. Soils at the site are 

Grandfield Series fine sandy loam. The initial range of Soil Organic Carbon (SOC) and 

pH for each treatment’s plot in 2015 were between 3990 to 5102 mg/kg and 6.31 to 6.67, 

respectively.  There were 4 demonstration areas each taking 8 rows of cotton that are 15 

m x 12 m. There were 4 rows and 6 m. between each treatment, (Table 1).  

 
Figure 4: Project Location Within The Texas Rolling Plains. 
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Table 1: Field Demonstration for the Cropping System at Texas A&M AgriLife 

Chillicothe Research Station, Chillicothe, TX, USA. 

 
 

2.2 Experimental Design 

The study was arranged as Randomize complete black design RCBD with 4 

replicate plots per treatment. The entire testing site did not have any irrigation and relied 

solely on rainfed precipitation under semi-arid environmental conditions. Average 

rainfall and temperature are shown Table 2 for the region. 
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Table 2: Monthly Rainfall, High and Low Temperature for Chillicothe in 2016. 

Months 
High 

Temperature °C 

Low 

Temperature °C 
Rainfall mm 

January 12.1 -2.4 30 

February 14.4 -0.3 36 

March 19.2 4.3 56 

April 24.3 9 57 

May 28.9 15.3 85 

June 33.1 20.1 108 

July 35.9 22.3 53 

August 35.7 21.8 62 

September 30.9 16.9 80 

October 25.3 10.6 71 

November 18.3 4.1 42 

December 12.4 -1.7 31 

 

The Dryland system consisted of seven treatments: 

 

 Conventional tillage with no cover crop (CT) 

 No-till with no cover crop (NO-TILL) 

 No-till & Austrian Winter field pea (AP) 

 No-till & Wheat (WHEAT) 

 No-till & Hairy vetch (HV) 

 No-till & Crimson clover (CC) 

 No-till & Mixed cover crops (MIXED) 

 

The mixed cover crop (cereal rye 6.7kg/ha, hard red winter wheat 10.1kg/ha, 

austrian winter field pea 13.4kg/ha, and hairy vetch 3.4kg/ha) consisted of a seed mix as 

recommended by NRCS & Haney Soil Health Tool. Each cover crop (MBS seed 
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Denton-TX) was planted in the fall following cotton harvest. Cover crop treatments 

applied for planting and biomass production are shown Table 3 for the region. In the late 

spring, cotton (NG1511- Americot cotton seed company / TX) was planted after 

termination of the cover crops by chemical burn on June 10,
 
2016 and harvested on 

October 22, 2016. There was no fertilizer application. Herbicide applications during the 

treatment are shown Table 4.  

 

Table 3: Planting Densities C:N Ratio, and Biomass Production for Each Cover 

Crop Treatment, with Statistical Significant Denoted by Different Letters (p<0.05). 

Cover Crops 

Treatments 

Densities kg/ha C:N Ratio Biomass 

Production kg/ha 

Crimson Clover 22.4 18.4 1776
c 

Hairy Vetch 22.4 14.6 2908
abc

 

Austrian W. Field Pea 39.2 13.2 3856
ab

 

Wheat 33.6 37.6 1947
bc

 

Mixed 33.6 22.0 4033
a
 

 

Table 4: Herbicides Application for Each Cover Crop Treatment. 

Herbicides Applied Amount Date 

Glyphosate 2.34 l/ha 25 April 2016 

2,4-D 1.17 l/ha 5 May 2016 

Glyphosate 2.34 l/ha 6 June 2016 

 

2.3 Soil and Cotton Root Sampling  

 Soil samples (0-10cm) were collected using soil cores (2.5 cm in diameter) from 

randomly selected locations in each of the four plots per replicate sampled in May of 

2016. Soil samples analyzed for pH (1:2 soil: deionized water; (Schofield and Taylor, 

1955)), soil organic carbon (OC) according to (McGeehan and Naylor, 1988). Samples 
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were run for phospholipid fatty acid (PLFA), which analyses for total bacterial biomass, 

total fungal biomass, and mycorrhizal fungi biomass. Soil collected was transported in 

the cooler to the lab, and then transferred in a zip lock freezer bag. They were frozen and 

shipped immediately to WARD Laboratories, Inc. (Kearney, NE) for PLFA analysis.  

To measure AMF colonization, cotton root samples (3 replicates) were collected 

from randomly selected second or seventh rows in each plot, both in August and October 

2016. Cotton roots were excavated with a shovel and roots separated from the stem. 

Roots were gently washed with tap water three times to remove soil particles and 

divided in two subsamples, one was frozen at -80 °C for subsequent DNA extraction and 

the other was transported on ice to the lab for determining AMF colonization. 

2.4 Fungal / Bacterial Biomass  

 Total fungal biomass, total mycorrhizal fungal biomass and total bacterial 

biomass were determined using phospholipid fatty acid (PLFA) analysis. PLFA were 

analyzed according to the methods of White and Zelles (White, et al., 1979, Zelles, 

1997). PLFA standard markers are shown in Table 5 for each microbial group. The 

abundance of individual PLFAs was expressed as ng PLFA g
-1

 dry soil. 

Table 5: PLFA Standard Markers For Each Microorganism. 

Target Microorganism Marker References 

Total Bacteria 

15:0, i15:0, a15:0, i16:0 

16:0 9, i17:0, a17:0 

cy17:0, 18:1 7, cy19:0 

(Frostegård and Bååth, 1996) 

(Zelles, 1997, Zelles, 1999) 

Total Fungi 18:2 6c & 16:1   
(Frostegård and Bååth, 1996, 

Petersen and Klug, 1994) 

Total Mycorrhizal Fungi 16:1   
(Balser, et al., 2005, Spring, et 

al., 2000) 
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2.5 Detection of Mycorrhizal Colonization 

Cotton roots were collected to measure mycorrhizal colonization by trypan blue 

staining (Phillips and Hayman, 1970). Roots were separated from plants and treated in 

10 % KOH for 45 min at 65 C°. The KOH treatment removes the host cytoplasm and 

then nuclei. Then the roots were washed three times with distilled water and placed in 

0.7N HCl for 45 min, at 65 C°. The HCl treatment decolorizes root pigments. After the 

HCl was poured off, roots were washed three times with distilled water and roots were 

stained for 20 min at 65 C° with 0.05 % trypan blue. As a last step, roots were treated 

with lactic acid for 10 min. Then 10 root segments were cut into 0.8 to 1 cm lengths, 

aligned within a 24 x 50 mm area on a microscope slides, then covered with the same 

size cover slip and viewed under a stereomicroscope at 4X (objective lens) x 10X 

(ocular-eyepiece) total magnification. The proportion of the length of each root segment, 

which contained vesicles, arbuscules, or hyphae, was used to assess colonization levels. 

Data was expressed as percentages of root length infected. 

2.6 DNA Extraction from Roots, PCR and Sequencing 

DNA was extracted from cotton root fragments using the Qiagen DNAeasy Plant 

Minikit (Qiagen Inc.) following the manufacturer’s instructions. The extracted DNA was 

quantified using a NanoDrop ND-1000 (Thermo Scientific, USA) and kept frozen at -20 

C° until used. The PCRs were performed in 50µl reaction mixtures at the Texas A&M 

AgriLife Research and Extension Center at Stephenville, TX. PCR thermocycling 

protocol was 95 degrees for 3 minutes, then 35 cycles of 95 degrees for 10 seconds, 55 

degrees for 30 seconds, 72 degrees for 30 seconds.  The total PCR reaction volume was 
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15 µl, and it contained 7.5 µl of 2X Kapa HiFi PCR master mix, forward and reverse 

primers each at 250 nM concentrations. DNA was normalized to 10 ng/µl before PCR 

thermocycling protocol. Primers used to amplify an 18S rRNA gene fragment for 

arbuscular mycorrhizal fungi are listed in Table 6. 

Table 6: PCR Primers for Amplification of Arbuscular Mycorrhizal Fungi. 

Primer Sequence Target Reference 

AMV4.5NF 5’AAGCTCGTAGTTGAATTTCG 3’ arbuscular 

mycorrhizal 

fungi 

Sato et al. 

2005 AMDGR 5’CCCAACTATCCCTATTAATCAT3’ 

  

Paired-end sequence data was generated on an Illumina MiSeq instrument using v3 600 

cycle kits (Illumina, San Diego, CA) as described in the Illumina 16S Metagenomic 

Sequencing Library Preparation protocol, except that dual 6 bp instead of 8 bp index 

sequences were attached to each amplicon during indexing PCR. 

The raw sequencing reads were processed with a combination of QIIME 

(Caporaso, et al., 2010) and USEARCH (Edgar, 2010) software packages, as well as 

custom python scripts. Individual AMF sequences were compared to the Silva database 

(Quast, et al., 2013) using UCLUST (Edgar, 2010) in order to pick referenced-based 

Operational Taxonomic Units (OTUs) at 97% similarity, and to provide taxonomic 

assignments for each sequence read.  The sequencing dataset was rarified to an equal 

sequence count for each sample by randomly subsampling sequences without 

replacement to provide even measures of microbial alpha- and beta-diversity and for 

statistical analyses. 
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2.7 Statistical Analysis 

The mycorrhizal colonization data and soil organic C data obtained were 

analyzed for normality using JMP® Pro v.12.2 (SAS Institute, 2015). Significant 

differences were detected by using Fisher’s least-significant-difference (LSD) test at a P 

value of <0.05 after a one-way analysis of variance (ANOVA). 

Unweighted UniFrac distance metrics were used in the calculation of diversity 

measures (Lozupone and Knight, 2005). In order to determine if microbial community 

composition was significantly different between samples, PERMANOVA was 

conducted on OTU abundance data. The same matrix was used to perform one-way 

analysis of similarity (ANOSIM) to double check the result of PERMANOVA. Both 

analyses use the same interpretations with different calculations. AMF community 

structure was compared by estimating the bray-curtis distances and then visualized by 

Non-metric Multidimensional Scaling analysis (NMDS) or – PCoA – Principal 

coordinates analysis using PAST 3.X (University of Oslo 2016). Since some of the 

samples did not amplify with the AMF primer, missing values occurred and are replaced 

by their column average (Mean value imputation).  
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3. RESULTS AND DISCUSSION 

3.1 Soil Chemical Properties 

 Soil organic carbon (SOC) levels observed in surface soil samples are presented 

in Figure 5. SOC levels were significantly higher in wheat treatment (4227 mg/kg) than 

the crimson clover treatment (3152 mg/kg). There were no significant differences in 

other treatments compared to wheat and clover treatments (Figure 5). Cover crops 

biomass production ranged from 1176 kg/ha to 4033 kg/ha (Table 3). Mixed cover crop 

biomass was significantly higher than both wheat and crimson clover, while Austrian 

winter field pea was significantly higher than only crimson clover treatments (p<0.05). 

Although both winter cover crop and crimson clover cover crop biomass were lower 

than the rest of cover crops, SOC between wheat and crimson clover was significantly 

different, due to C:N ratio. Lu, et al. (2000) reported that legume cover crops also 

decompose more rapidly due to the low C:N ratio. In general, organic residue 

decomposition rate is considered negatively related to C:N ratios (Melillo, et al., 1989, 

Melillo, et al., 1982). Since crimson clover belongs to the legume family, C/N ratio was 

18.4, while wheat cover crop’s C:N ratio was 37.6 as expected (Table 3). We found 

significant difference only between wheat and crimson clover. If it is assumed that these 

results occur annually for five years of cotton/cover crops cropping systems, then this 

possible reason for the difference may be due to a difference in crop residue quality, or 

possibly due to difference in C:N ratio. Also, the amount of SOC changed little from 

year to year during the study. With more time, larger differences in SOC may be 

observed under different cover crop treatments.   



 

22 

 

 
Figure 5: Soil Organic Carbon as Affected By Tillage and Cover Crop Treatments, 

with Statistical Significant Denoted by Different Letters (p<0.05). 

 

3.2 Microbial Biomass Estimates Based on Phospholipid Fatty Acid (PLFA) 

Analysis 

Phospholipid Fatty Acid analysis (reported in ng/g soil PLFA) was used to 

characterize the total bacterial biomass, total fungal biomass, and mycorrhizal fungal 

biomass. Figure 6 shows total bacterial biomass as affected by tillage and cover crop 

treatments. Total bacterial biomass was significantly higher in hairy vetch and Austrian 

pea treatments than in conventional tillage and no-till treatments (P<0.05). However, 

crimson clover, mixed species, and wheat were not statistically different than 

conventional tillage and no till treatments. The highest total bacterial biomass among 

cover crops was noticed in hairy vetch with 738ng/g soil of PLFA markers detected, 
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while the lowest total bacterial biomass of 436ng/g soil was detected in crimson clover 

plots.    

Total biomass of cover crops seems to be the major factor driving bacterial 

biomass, as positive correlation was observed between the two variables. It is generally 

expected that higher plant residue can support higher decomposer communities 

including bacterial biomass. The most significant differences were observed between 

treatments with cover crops and those without cover crops, no till and conventional 

tillage (Figure 6). The total bacterial biomass results are in agreement with Reddy, et al. 

(2003) who examined the effect of rye and crimson clover residues on weeds, soil 

microbial populations, and soybean yield in conventional tillage and no-tillage systems. 

Their result showed that total fungal and bacterial populations were higher in soil with 

crimson clover (5.41 log10 CFU/g, 8.34 log10 CFU/g), followed by rye (5.25 log10 

CFU/g, 8.32 log10 CFU/g), and no cover crop (5.12 log10 CFU/g, 7.97 log10 CFU/g). 

Similarly, Balota, et al. (2003) found that averaging all crop rotations in the surface 

soils, (0-5 cm), there was 100% increase in microbial biomass for no-till over 

conventional tillage. 

The general increase of microbial biomass under no-till over conventional tillage 

could be based on several factors including higher moisture content and greater soil 

aggregation. Lower disturbance as a result of no-tillage can conserve SOC and hyphal 

networks, and support the microbial community structure compared to conventional 

tillage. Moreover, no-tillage and cover crop rotations favors formation and stabilization 
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of macro aggregates to improve and protect habitat for microbiota (Balota, et al., 2003, 

Powlson and Jenkinson, 1981, Sørensen, et al., 1996).  

 

 
Figure 6: Total Soil Bacterial Biomass as Affected by Tillage and Cover Crop 

Treatments, with Statistical Significant Denoted by Different Letters (p<0.05). 

 

In this study, no statistical differences were observed for total fungal biomass as 

affected by tillage, no-till, and cover crop treatments (Figure 7). Plots under Austrian pea 

rotation had highest fungal biomass at 159 ng/g soils, while the plots with crimson 

clover rotation had the lowest total fungal biomass at 83.7 ng/g soil. Results of our study 

also indicated that total fungal biomass did not significantly increase in no-till compared 

to conventional systems although the cover crop treatments trended higher for fungal 

biomass than in the conventional till and no-till treatments without cover crops (Figure 
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7). Although, it has been confirmed by many studies that fungal populations increase 

when soil is less disturbed by tillage (Govaerts, et al. (2008) and Helgason, et al. (2009), 

although many of those studies were conducted on longer-term tillage plots than this 

study sites. No-tillage systems and cover crop treatments may take longer timeframe 

(probably more than 5 years) to significantly alter fungal populations.  

 

 
Figure 7: Total Soil Fungal Biomass as Affected by Tillage and Cover Crop 

Treatments.  

 

Similar to total fungal biomass, there was no statistical difference for total 
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depths, biomass of AMF decreased by 25% in no-till compared to conventional tillage. 

However, Tiemann, et al. (2015) studied the impact of crop rotational diversity on 

microbial communities in an agro-ecosystem and found almost double AMF abundance 

in the corn monoculture compared to rotations, such as Soy-Wheat-Corn-1 cover crop, 

Soy-Wheat-Corn-2 cover crops, and Soy-Corn rotations. Buyer, et al. (2010) studied soil 

microbial community structure in tomato cropping systems with 9 different treatments: 

bare soil, black polyethylene mulch, white polyethylene mulch, rye cover crop, rye roots 

only, rye shoots only, vetch cover crops, vetch roots only, and vetch shoots only and 

three different sampling time: July, August, and September. The results of the study 

showed that rye and vetch cover crops increased the absolute amount of AM in bulk 

soils, and AMF levels in the tomato rhizosphere were highest under the cover crop 

treatments, while lowest under no cover crop treatments. However, our results showed 

that AMF biomass did not significantly increase under cover crop treatments. Probably 

this was due to shorter duration of these rotations, which suggest that under semiarid 

cotton systems, the cover crops and tillage systems may take longer time frame  to 

produce noticeable differences in mycorrhizal fungi biomass.  
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Figure 8: Total Mycorrhizal Fungi Biomass as Affected by Tillage and Cover Crop 

Treatments. 
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treatments. The root colonization rate in wheat (88%) and mixed species (85%) were 
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mycelial networks. Our result showed that AM colonization under several cover crops 

treatments was significantly higher than conventional tillage and no-till treatments. This 

is in agreement with Kabir and Koide (2002) who conducted an experiment on the 

influence of cover crops (oats, rye, and combination of oats and rye) on AMF 

colonization of sweet corn. AMF colonization under combination of rye and oats (60%), 

only rye (50%), and only oats (48%) were significantly higher than fallow (15%) 

treatments.  

 

 
Figure 9: Percentage of Mycorrhizal Colonization of Cotton at Mid-Season 

(August) as Affected by Tillage and Cover Crop Treatments, with Statistical 

Significant Denoted by Different Letters (p<0.05). 

 

C 

BC 

AB AB 

A A A 

0 

20 

40 

60 

80 

100 

120 

c.till no-till wheat mixed crimson pea vetch 

M
yc

o
rr

h
iz

al
 C

o
lo

iz
at

io
n

 (
%

) 



 

29 

 

However, statistically significant differences between treatments disappeared by 

the end of the season (October; Figure 10). This was mostly as result of higher 

mycorrhizal colonization in conventional tillage and no-till at 82% and 80%, 

respectively. While the root colonization decreased in the no till with cover crop 

treatment to 80%, 80%, 93%, 84%, and 89% in crimson clover, hairy vetch, Austrian 

pea, wheat, and mixed species, respectively. In a study at a similar semi-arid location on 

the Southern High Plains of Texas, mycorrhizal colonization of cotton was detected at 

the higher rate in early season, at around 50% and then declined to around 15% at the 

end of the growing season (Zak, et al., 1998).  

 

 
Figure 10: Percentage of Colonization of Cotton at the End of the Season (October) 

as Affected by Tillage and Cover Crop Treatments. 
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Similarly in our study, AMF colonization of cotton roots was higher during the 

early part of the growing season, which suggest that nutrient acquisition and drought 

tolerance through AMF associations may be critical during initial stages of cotton-plant 

development. As winter cover crops colonize mycorrhizae (Boswell, et al., 1998, Cade-

Menun, et al., 1991), the existence of cover crop roots will enable persistence of AMF 

hyphal networks and spores, which may probably support higher colonization of 

developing cotton seedlings. Despite the significant effects of cover crops on 

mycorrhizal colonization at mid-season, the effect was diminished by the end of the 

season (October). These results are similar to other studies, which observed high 

colonization during the peak growing season and low colonization during the late season 

in comparable habitats (DeMars and Boerner, 1995, Escudero and Mendoza, 2005, 

Kabir, et al., 1997, Mandyam and Jumpponen, 2008, Mullen and Schmidt, 1993, 

Reinhardt and Miller, 1990).  

Tillage disturbances have been noted to negatively affect AMF abundance, and 

the persistence of their active propagules such as spores, hyphae and colonized roots. 

Roldan, et al. (2007) noted the highest levels of mycorrhizal propagules in maize and 

bean crop soil under no-till compare to tillage. Soil tillage has been noted to extensively 

damage hyphal networks, and detrimental to AMF hyphae, especially when the soil is 

tilled before planting of cover crops in the fall (Kabir, 2005). Our result at the mid 

season under no-till with no cover crop trended higher than conventional tillage based on 

the AMF colonization in cotton roots, but this trend disappeared by the end of the 

growing season.  
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3.4 AMF Community Characterization in Cotton Roots 

3.4.1. 18S rRNA Sequence Analysis 

The AMF communities in the cotton roots were evaluated by obtaining 1180 

partial 18S rRNA gene sequences for each root sample DNA. The number of AMF 

OTUs ranged between 98 and 175 in the treatments, while the highest number and the 

lowest numbers were observed in the hairy vetch cover crop treatment and conventional 

tillage treatment in August, respectively (Table 7). In October, the number of AMF 

OTUs ranged between 96 and 205 in the treatments, while the highest number and the 

lowest numbers were observed in the Austrian pea cover crop treatment and no tillage 

treatment, respectively (Table 8). There were no noticeable differences among the 

treatments based upon the number of OTUs, Chao1 richness estimates, or Shannon or 

Simpson’s diversity indices both in August and October. The cover crops trended higher 

compared to conventional tillage and no-till treatments for most measurements based on 

the number of OTUs, Chao1 richness, or Shannon or Simpson’s diversity indices.  
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Table 7: Diversity and Richness Estimates for AMF Communities in Cotton Roots 

under Different Cover Crop Treatments in August. Total number of Sequences Per 

Sample Is 1180. 

Treatments 

 

Number of 

OTUs* 

Chao1 

Richness 

Shannon 

 

Simpson 

(1/D) 

Conventional 

Tillage 

98 

        
191 

        
3.11 

        
0.71 

        

No-Tillage 
133 

        
272 

        
3.92 

       
0.80 

        

Wheat 
126 

        
266 

         

3.39 

        
0.68 

        

Mixed 
130 

        
306 

      
3.55 

        
0.73 

        

Crimson 
111 

        
245 

        
3.33 

        
0.72 

        

Pea 
166 

        
398 

         

4.40 

        
0.86 

        

Vetch 
175 

        
469 

         

4.26 

        
0.81 

       
 

Table 8: Diversity and Richness Estimates for AMF Communities in Cotton Roots 

under Different Cover Crop Treatments in October. Total number of Sequences 

Per Sample Is 1180. 

Treatments 

 

Number of 

OTUs* 

Chao1 

Richness 

Shannon 

 

Simpson 

(1/D) 

Conventional 

Tillage 

122 

       
235 

       
3.76 

        
0.78 

        

No-Tillage 
96 

        
191 

        
3.10 

        
0.74 

        

Wheat 
153 

        
348 

         

4.02 

        
0.78 

        

Mixed 
110 

        
243 

         

3.56 

        
0.77 

       

Crimson 
151 

        
404 

      
4.19 

        
0.84 

        

Pea 
205 

       
565 

        
5.14 

        
0.92 

        

Vetch 
140 

        
363 

         

3.88 

        
0.80 

        
* Obtained from rarefied OTU table. 
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Based on ANOSIM results, we did not find statistically significant differences in 

AMF community composition (R= 0.15, p = 0.11) in cotton roots of target species both 

at mid-season and at end of growing season (Tables 9 & 10). Similarly, PERMANOVA 

results showed (Table 11-12) no significant effect at mid-season (August) and the end of 

the growing season (October) (PERMANOVA p=0.586 and p=0.077 respectively).  

 

Table 9: Result of ANOSIM Pairwise Comparison of AMF Associated with 

Different Tillage and Cover Crop Treatments, at the Mid-Season (August). P<0.05 

 CT No-till Wheat Mixed Crimson Pea Vetch 

CT -       

No-till 0.500 -      

Wheat 0.101 0.101 -     

Mixed 0.097 0.606 0.302 -    

Crimson 0.104 0.097 0.394 0.097 -   

Pea 0.101 0.204 0.202 0.204 0.100 -  

Vetch 0.103 0.306 0.305 0.497 0.499 0.294 - 

 

Table 10: Result of ANOSIM Pairwise Comparison of AMF Associated With 

Different Tillage and Cover Crop Treatments, at the End of the Season (October). 

P<0.05 

 CT No-till Wheat Mixed Crimson Pea Vetch 

CT -       

No-till 0.696 -      

Wheat 1 1 -     

Mixed 0.90 0.607 0.902 -    

Crimson 0.80 0.804 1 1 -   

Pea 0.19 0.693 1 0.600 0.701 -  

Vetch 0.097 0.097 0.194 0.799 0.298 0.102 - 
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Table 11: Result of PERMANOVA Pairwise Comparison of AMF Associated With 

Different Tillage and Cover Crop Treatments, at Mid-Season (August). 

 CT No-till Wheat Mixed Crimson Pea Vetch 

CT -       

No-till 0.798 -      

Wheat 1 1 -     

Mixed 0.603 0.7 0.7 -    

Crimson 0.599 0.698 0.703 0.806 -   

Pea 0.496 1 0.798 0.396 0.2 -  

Vetch 0.104 0.199 0.205 0.297 0.104 0.098 - 

 

Table 12: Result of PERMANOVA Pairwise Comparison of AMF Associated With 

Different Tillage and Cover Crop Treatments, at the End of Season (October). 

 CT No-till Wheat Mixed Crimson Pea Vetch 

CT -       

No-till 0.8 -      

Wheat 0.098 0.101 -     

Mixed 0.096 0.496 0.590 -    

Crimson 0.098 0.106 0.195 0.102 -   

Pea 0.337 0.409 0.603 0.896 0.293 -  

Vetch 0.339 0.496 0.605 0.706 0.297 1 - 

 

Nonmetric multidimensional scaling (NMDS) plot was created using the Bray-

Curtis distance matrices for relative abundances of AMF OTUs in the cotton roots under 

different tillage and cover crops treatments at mid-season (Figure 11). AMF community 

composition in cotton roots under conventional tillage displayed slight dissimilarity 

compared to other treatments. Also, among the cover crop treatments, only hairy vetch 

AMF community was slightly dissimilar. 

Towards the end of the cotton-growing season (October), AMF community in 

cotton roots under cover crops treatments were distinct from those under conventional 

tillage and no-till with no cover crop (Figure 12). Communities were also somewhat 

distinct between the conventional tillage and no-till treatments. 
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Figure 11: Principal Coordinate Analysis (PCoA) of Mycorrhizal Species 

Colonizing Cotton Roots, Under Different Tillage and Cover Crop Treatments, at 

Mid-Season (August). 

 

In addition, AMF species in cotton roots among cover crops showed 

dissimilarities at the end of the season, but not to the extent observed between the cover 

crops and no cover crop treatments. Different level of AMF diversity were reported 

under various agricultural management practices, where tillage (Jansa, et al., 2002) 

decreased diversity, while conservation management (Oehl, et al., 2004, van der Gast, et 

al., 2011), or cover crop systems (Oehl, et al., 2003) increased diversity. Lehman, et al. 

(2012) suggested that multiple cover crops could build affirmative environment for AMF 

inoculum in soils compare to individual cover crops, and winter cover crops in rotation 

would provide diverse, year-round hosts to continue or enhance AMF community 

composition.  Previous studies also suggested that fallow rotations without cover crops 
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declined AMF diversity in both soil and roots (Hijri, et al., 2006, Oehl, et al., 2003, 

Sasvári, et al., 2011). 

Our results also suggested that the effects of cover crop treatments on 

mycorrhizal community were more evident at the end of season (October) than in the 

growing season. It has been noted that AMF may exhibit distinct seasonal patterns 

(Pringle and Bever, 2002) and that the abundance of some AMF taxa in plants may 

change seasonally (Mathimaran, et al., 2007, Merryweather and Fitter, 1998, Turrini, et 

al., 2016). From this perspective our results support that introduction of winter cover 

crops in rotation with dryland cotton can chance AMF community composition and 

support the hypothesis that no-tillage and crop diversification and maintaining 

continuous cover may be beneficial for increasing AMF abundance in semi-arid cotton.  
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Figure 12: Principal Coordinate Analysis (PCoA) of Mycorrhizal Species 

Colonizing Cotton Roots, Under Different Tillage and Cover Crop Treatments, at 

the End of the Season (October). 

 

3.4.2 Identifying Groups of AMF Communities 

 Principal Component Analysis (PCA) was performed on OTU abundance data 

for revealing AMF species associations with treatments and time of sampling. AMF 

communities in cotton roots varied by treatments similar to that seen in the PCoA 

results. First principal component (PC1), accounted for 61% of the variability and PC2, 

accounted for 25.4% of the variability in the mid-season (August) samples (Figure 13). 

At the end of the season (October), PC1 explained 62.3% of the variability, and PC2 

explained 19.6% of the variability (Figure14). Bi-plot vectors within the scatter plots 

represent AMF OTUs, plotted in accordance to their loading values, which in turn 

represents their relative contribution to overall variability of the community between the 
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treatments (commonly used to identify major drivers of variability). Major vectors were 

labeled with respective OTU id to identify the AMF species. Three OTUs that had 

loading values for PC 1 or 2 in excess of 0.67, 0.74, and 0.92 were strongly correlated to 

Glomus intraradices, Glomus sp. G27, and Glomus clarum, respectively, based on 

BLAST search.  Glomus sp. G27 was significantly higher under hairy vetch treatments, 

while Glomus intraradices was significantly higher under no-till in the mid-season 

(Figure 15A-B). However, Glomus clarum was not significantly different among the 

treatments (Figure 15-C). Percentage of Glomus clarum sequence ranged from 6% to 

34% in the treatments, while the highest percentage and the lowest percentage were 

observed in the wheat treatment and vetch treatment, respectively. In October samples, 

AMF communities were similar in cotton roots among all cover crop treatments, but 

were different from no-till and conventional tillage treatments (Figure 14). Results 

showed that Glomus sp. G27 under wheat and crimson clover treatments were 

significantly higher than mixed, no-till and conventional tillage treatments. Also, 

Glomus sp. G27 in hairy vetch treatments were significantly higher than both 

conventional tillage and no-till treatments (Figure 16-A). Glomus intraradices and 

Glomus clarum were significantly higher under conventional treatments and no-till 

treatments, respectively (Figure 16-B, C). 
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Figure 13: Principal Component Analysis (PCA) on Mycorrhizal Species 

Colonizing Cotton Roots, Under Different Tillage and Cover Crop Treatments, at 

Mid-Season (August). 

 

 
Figure 14: Principal Component Analysis (PCA) on Mycorrhizal Species 

Colonizing Cotton Roots, Under Different Tillage and Cover Crop Treatments, at 

the End of the Season (October). 
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Figure 15: Percentage of AMF Sequences as Affected at Mid-Season (August) by 

Tillage and Cover Crop Treatments, with Statistical Significant Denoted by 

Different Letters (p<0.05). 
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Figure 16: Percentage of AMF Sequences as Affected at the End of the Season 

(October) by Tillage and Cover Crop Treatments, with Statistical Significant 

Denoted by Different Letters (p<0.05). 
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 At both sampling times, Glomus sp. G27 was higher in hairy vetch than in both 

conventional tillage and no-till. As a leguminous AMF host crop, hairy vetch may have 

been more supportive to AMF during the winter. Although, Njeru, et al. (2015) reported 

that hairy vetch did not increase AMF species richness and diversity in organic tomato 

farming, while it consistently enhanced spore abundance. Higo, et al. (2011) reported 

that the difference in crop types (wheat vs. red clover), and season (winter vs. spring 

wheat), affected AMF community composition in an andosol. Furthermore, Higo, et al. 

(2013) showed that the shifts in AMF community composition were observed due to 

winter cover crop management. 

Seasonal variability of AMF communities has been observed in soil (Dumbrell, 

et al., 2011) and plant roots (Bever, et al., 2001, Daniell, et al., 2001, Husband, et al., 

2002, Liu, et al., 2008, Öpik, et al., 2003). Some species of AMF may be more sensitive 

to seasonal changes than others according to many reports (Dumbrell, et al., 2011, 

Helgason, et al., 1999, Mathimaran, et al., 2007, Sommerfeld, et al., 2013, Turrini, et al., 

2016). However, some studies reported no such variability and showed that similar AMF 

community colonized plants roots of soybean at all time points of growth stages (Higo, 

et al., 2014, Higo, et al., 2015, Rosendahl and Stukenbrock, 2004, Santos-González, et 

al., 2007). Results of this study showed that the taxon composition of AMF community 

in cotton roots was relatively stable during the growing season.  

Highly infective AMF species, such as many Glomus spp., become more 

abundant under conditions of environmental stress (Oehl, et al., 2004) and tillage 
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disturbance (Jansa, et al., 2003). However, some studies found no significant effect on 

Glomus spp. genetic diversity under tillage treatments (Koch, et al. (2004). Since 

Glomus intraradices produces more external structures early stages of inoculation and 

has a fast colonization rate (Hart and Reader, 2005), we expected this species to 

dominate under tillage treatments.  

Data from this study support our second hypothesis, that cover crop rotations will 

increase AMF root colonization and change AMF community composition in cotton. 

Results revealed significantly different abundance of AMF compositions among the 

sampling periods of the year (Figures 9, 10). We detected Glomus sp. G27, Glomus 

intraradices, and Glomus clarum species both mid-season (August) and end of the 

growing season (October). In another study of andosolic soils in Japan to determine 

whether there is an impact of cover crops on AMF community composition in 

subsequent soybean (Higo, et al., 2014). They did not find a significant change in the 

patterns of the AMF community composition as a whole. However, Higo, et al. (2011) 

reported that the difference in crop type (wheat and red clover) and sowing date (winter 

and spring wheat) affected AMF community composition in its roots. In addition, 

Dumbrell, et al. (2011), Higo, et al. (2013) confirmed that the change of compositions of 

AMF communities were observed based on winter cover crop management. 

Taxonomic association of AMF community was evaluated by comparing 

proportional class distribution of the AMF sequence types in cotton roots (Figure 17). 

Vetch cover crop treatments markedly enhanced the abundance of Glomeromycetes 

(almost 3-fold) and reduced Ambiguous (approximately 6-fold), while other cover crop 
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treatments barely decreased with time. Similarly, conventional tillage treatments 

remarkably increased the abundance of Glomeromycetes (around 2-fold), and reduced 

Ambiguous (around 4-fold) from August to October. Conversely, crimson cover crop 

treatment markedly reduced the amount of Glomeromycetes 3-fold and increased around 

2-fold, while the amount of Incertae sedis, which is called unknown or undefined, 

increased 8-fold during the growing time. For no-till treatment, the amount of Incertae 

sedis increased 6-fold, but Ambiguous decreased around 2-fold from August to October; 

while Glomeromycetes did not change.  

 

 
Figure 17: Proportional Class Distribution of the AMF Sequences Types in Cotton 

Roots at the Mid-Season (August) and at the End of the Season (October). 

 

Overall, Glomeromycetes dominated all cover crop treatments except in vetch 

treatment in August. It is not surprising that most of the AMF class detected belonged to 
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Glomeromycetes given this is the most prevalent class in agricultural soils among AMF 

species described (Daniell, et al., 2001, Jansa, et al., 2003). 

We studied influence of winter cover crops on soil microbial population and 

mycorrhizal colonization of semi-arid cotton in Texas High Plain region. Cover crops 

significantly increased bacterial biomass compared to conventional tillage and no-till 

treatments. We did not find any significant difference in fungal biomass and AMF 

biomass among the treatments, but they trended higher under cover crop treatments than 

conventional tillage and no-till treatments.  

Mycorrhizal colonization of cotton was significantly higher at mid-season 

(August), but differences disappeared at the end of the growing season (October). 

Conversely, impacts of treatments on mycorrhizal community composition were more 

apparent at the end of the growing season (October) than in middle season (August). 
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4. CONCLUSIONS 

 

 The aim of this study was to investigate the impacts of tillage practices and use 

of cover crops on soil microbial populations and mycorrhizal colonization in a dryland 

cotton system. Of the factors analyzed, cover crop treatments had a positive impact on 

total bacterial biomass, while tillage systems proved to have no significant impact. Even 

though the data did not show significant effects on fungal biomass and mycorrhizal 

fungal biomass, values for both parameters trended higher under cover crop treatments 

except crimson clover compared to conventional or no-till with no cover crop. Our 

results suggest that Austrian winter field pea and hairy vetch are the most effective cover 

crops for positively influencing microbial biomass and mycorrhizal root colonization 

under the systems of dryland cotton. 

 The second aim of this study was to investigate the effect of tillage systems and 

cover crop treatments on the enhancement of AMF diversity in cotton. AMF root 

colonization was significantly higher among the treatments early in the growing season, 

but by the end of the growing season there were no significant differences between the 

treatments. However, AMF community composition between the treatments was similar 

during early season, but was dissimilar at the end of the growing season. The result does 

not conclusively identify the most effective cover crops treatments for enhancing AMF 

diversity and colonization in dryland cotton. Although, some cover crops may be more 

beneficial for increasing root colonization at early stages of cotton and establishment.   
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The results of this study, while not conclusive, are promising and elucidate the 

most effective treatment factor, specifically cover crop, on mycorrhizal community 

colonization within a rotational agricultural system. Furthermore, cover crops 

contributed to increased AMF population and enrichment of soil microbial biomass. 

These benefits of cover crops may translate higher drought tolerance, establishment and 

nutrient acquisitions. However, it is not clear from our findings whether 5 years 

cotton/cover crop cropping systems is long enough to significantly increase mycorrhizal 

community colonization. Therefore, further research needs to be carried out in order to 

validate the complex interactions between cotton and AMF interactions in response to 

land management practices of cover crop rotations and tillage systems.  
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