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ABSTRACT

The explosion of data availability and fast data analytic requirements led to the advent of data-

intensive applications, characterized by their large memory footprint and low data reuse rate. These

data intensive applications place a significant amount of stress on modern memory systems and

communication infrastructure. These workloads, ranging from data analytics to machine learning,

exhibit a considerable number of aggregation operations over large data sets, whose performance is

limited by the memory stalls due to widening gap between high CPU compute density and deficient

memory bandwidth.

This work presents Active-Routing, an In-Network Compute Architecture enabling compute

on the way for Near-Data Processing (NDP), which reduces data movements across the memory

hierarchy. It moves computations close to data location onto the memory network switches which

operate concurrently and construct an Active-Routing tree. The network is enabled with computing

capability to optimize the aggregation operations on a dynamically built routing tree to reduce

network traffic and parallelize computation across the memory network. Evaluations in this work

show that Active-Routing can achieve up to 6x speedup with an average of 75% performance

improvement across various benchmarks compared to a Baseline system integrated with a die-

stacked memory network.
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NOMENCLATURE

ISA Instruction Set Architecture

NDP Near Data Processing

PIM Processing-In-Memory

CPU Central Processing Unit

CMP Chip Multiprocessor

HMC Hybrid Memory Cube

TSV Through-Silicon Via

ILP Instruction Level Parallelism

TLP Thread Level Parallelism

MLP Memory Level Parallelism

AR Active Routing

ALU Arithmetic Logic Unit

ARE Active Routing Engine

API Application Interface

MI Message Interface

ROB Reorder Buffer

NUCA Non-Uniform Cache Architecture

EDP Energy-Delay Product
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1. INTRODUCTION

With the onset of big data era, modern data-intensive applications require a large amount of

on-off chip data movements across the memory hierarchy due to limited cache sizes and irregular

memory access patterns. This has further worsened the issue of widening gap between computation

speed and memory system performance, namely the memory wall [1]. As a result, modern large-

scale systems fail to achieve their peak computational capability for data-intensive applications.

Therefore, it is critical to find solutions that can circumvent the memory wall.

Near-Data Processing (NDP) or Processing-In-Memory (PIM) [2, 3, 4], a paradigm to reduce

data movements across the memory hierarchy by moving computation near to data location was in-

troduced in the 1900s [5]. PIM has gained significant amount of interest recently due to the modern

technological advancements like 3D Die-Stacking [6] such as in Hybrid Memory Cubes (HMC)

[7] facilitating compute units close to memory dies. The need for higher performance and larger

memory bandwidth/capacity has driven processor architectures to adopt multi-core designs with

more than one memory slot on a single chip. The number of such memory slots that can be placed

on a chip is limited by the physical chip-pin count. Interconnection networks have been the ubiq-

uitous solution for communication infrastructure among such rapidly scaling processing/memory

systems. Recent works have proposed memory-centric network designs to interconnect memory

modules as a network to increase memory capacity by overcoming the chip-pin bottleneck and fully

utilize the processor and memory bandwidth [8, 9]. These designs use passive network switches to

route memory requests/responses over a scalable fabric of memory modules.

However, with NDP/PIM the current passive communication networks are still not optimized

to reduce the network traffic for different tasks in data-intensive applications. Though NDP/PIM

systems can reduce the data movement to the compute nodes, they still incur the costs of trans-

ferring remote source data or gathering the compute results. For example, a multiply-accumulate

operation sum += input[i]∗weight[j] in deep learning applications will require the movement of

all the elements of the arrays input and weight to either the compute node or to the location of tar-
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get data sum in the memory. With big data applications from graph analytics to deep learning, the

intensive use of aggregation on another operator over a large data set puts high pressure on memory

system and communication infrastructure. Therefore, it is critical to design an efficient memory

network architecture which optimizes network traffic due to reduction/aggregation operations on

large data sets for better system performance.

This work proposes a novel interconnection network solution, Active-Routing, to comprehen-

sively optimize data processing phase as well as reduction operations as a whole. The main idea

boils down to moving the computation closest compute resource to the location of source operands

in memory network and aggregate the results in the network along a dynamically built routing

tree. As an example, the operation sum += input[i] ∗ weight[j] is optimized by building a dy-

namic tree with nodes as memory modules in the memory network where optimal nodes (in the

tree) are identified, on an individual basis of each (i, j), to compute the summation of each of the

corresponding multiplication result of data arrays input and weight. The optimal memory node in

such a dynamically built routing tree is the common ancestor of the nodes where the operands are

located. Active-Routing is seamlessly integrated with current systems using instruction set exten-

sions to offload special load/store Update and Gather instructions through message interface. A

programming interface is provided to convert the program semantics into these instruction set ex-

tensions. It offloads operations as PIM computations through Update packets to dynamically build

Active-Routing trees on-the-fly, concurrently it initiates data processing when operands are ready

on memory network switches. Reduction operations over results of Update instructions belong-

ing to the same memory node are processed as soon as they commit. A following Gather packet

handles the reduction along the routing tree to obtain the final aggregated result.

The main advantages of Active-Routing are: (a) it reduces data movement for data-intensive ap-

plications especially pointer referenced accessing; (b) data processing happens in concurrent with

task offloading with minimized stalls; (c) it eliminates the coherence communication overheads

of shared data update; and (d) reduction/aggregation can be performed along the routing path to

reduce the network traffic and latency. Evaluations from this work show that Active-Routing can
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achieve upto 6x speedup with a geomean of 75% performance improvement across various real

world benchmarks compared to a Baseline system integrated with a die-stacked memory. It is

also observed that Active-Routing achieves high efficiency with an average Energy-Delay Product

(EDP) improvement of 88%.
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2. BACKGROUND

Die-Stacked Memory [7, 6] architectures possess some underlying characteristics, which can

be leveraged to improve the system performance through NDP. This chapter introduces such char-

acteristics and later discusses the data movement bottleneck of data intensive applications and

inherent limitations of synchronization constructs in multithreaded programs, which motivates

Active-Routing. Later, three directions related to memory and memory-network research are dis-

cussed to further ascertain the need for this work.

2.1 Die-Stacked Memory

Advancements in memory technology have facilitated the integration of logic and memory dies

in the same package using 3D Die-Stacking. The DRAM stacks are connected to the logic die with

low-latency, high bandwidth through-silicon vias (TSVs) etched vertically through the stacked

dies [6]. Hybrid Memory Cube (HMC) [7] is one popular example of die-stacked DRAM. HMC is

vertically partitioned into several functionally independent vaults consisting of DRAM banks and

multiple TSV connections. Each vault has a memory controller called a vault controller, placed

on the logic layer that manages all memory references within that vault. These vault controllers

are sparsely spaced leaving ample amount of unused silicon area on the logic layer [3]. Figure 2.1

shows an HMC organization with 8 memory and a logic layer consisting of vault controllers.

HMC provides high speed Ser/Deser links to connect it to processor or other HMCs, supporting

packetized communication among them. A crossbar switch is located on the logic layer which

routes packets to their destination vaults.

There are several benefits of die-stacked DRAM over the conventional DRAM memory. For ex-

ample, HMC provides better scalability in terms of memory capacity and bandwidth. Die-stacking

technology enables larger memory size per package while fast TSVs and Ser/Deser link proto-

col leads to abundant internal and external bandwidth. The packet-based communication protocol

gives flexibility in extending the type of commands supported. These advantages are leveraged in

4



Figure 2.1: Hybrid Memory Cube Organization

many existing NDP and PIM studies [2, 10, 11, 4, 3]. The logic layer is leveraged to implement

computation capability ranging from limited fixed functionality [2, 10, 11] to full-fledged in-order

processors [3]. Existing research has shown significant improvements of NDP/PIM paradigm over

the conventional systems by offloading computation to the memory. This work exploits NDP

paradigm not only to offload operations to memory, but also to enable routers with active function-

ality to compute while transferring data on the route.

2.2 Memory Network

Conventional systems with DRAM memory have capacity limit and bandwidth bottleneck due

to limited number of physical pins of the processor chip. Therefore, scaling of memory capacity

in traditional systems require more processor sockets to connect DRAM packages. However, in

data intensive applications, data movement and memory requirement is much higher than compu-

tation. This stalls compute units for the availability of data operands and leads to underutilization

of computation resources. In contrast, HMCs can be chained together to form a pool of memory or

a memory network for providing larger memory capacity as necessary. In addition, current system

designs mostly use processor-centric interconnection networks to optimize processor-processor

communication but overlook the possibility of communication among memory cubes. Recent stud-

ies [9, 8] have shown that the memory-centric interconnect design can provide better bandwidth

utilization as compared to the processor-centric design for traditional computation paradigm. In

such memory-centric interconnect system memory modules such as HMCs are interconnected in
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various topologies and memory requests and responses are routed ideally utilizing both processor

interconnect and the memory interconnect. Active-Routing exploits NDP to embed computation

of data while transferring on the route during communication from data location in memory to

processor. Therefore, this work adopts a unified memory-centric network [9] design to provide

better bandwidth as well as a better fit for Active-Routing.

2.3 Motivation

The explosion of digital data and fast data analytic requirements lead to the rise of emerging

data-intensive applications, which have very low operations per data and large data movement

demand [12, 13]. The low data reuse rate of large working sets can cause high cache miss rate

and incur low energy efficiency of data movement from or to memory. Furthermore, such char-

acteristics can force the processor to be stalled for the data to arrive from memory and hinder the

thread-level parallelism (TLP) as well as instruction-level parallelism (ILP). To scale the perfor-

mance with the data generation, Active-Routing moves computation from processor to memory

instead of moving data from memory to processor through NDP. With NDP, we extract parallelism

from multi-threaded applications to exploit memory-level parallelism (MLP) of die-stacked mem-

ory and network concurrency.

Multi-threaded programs achieve good performance by exploiting TLP in the CMP environ-

ment. However, mostly the benefits of TLP are partially offset by the synchronization constructs,

because of inherent limitations in hardware to maintain memory consistency. In conventional

systems it is hard to preserve the program semantics of multi-threaded programs due to race con-

ditions without imposing constraints on execution. Hence, synchronization constructs such as

barriers/locks are used to synchronize threads at certain points in program where they need to op-

erate on some shared variables. This kind of operations limit the performance of applications to a

good extent and are unavoidable. A subset of this problem can be solved by providing the constant

operand along with the memory request and operate them atomically in the memory [2]. How-

ever, such an operation still requires to bring one or more source operands to the processor side,

which may offset the benefit of offloading to compute in memory. Active-Routing first offloads
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operations near memory to reduce data movement of source operands and builds an active-routing

tree dynamically. Then the router switches are upgraded with computation capability to aggre-

gate the commutative computed results on the way while transferring the partial results along the

active-routing tree.

2.4 Related Work

The idea presented in this work is at the intersection of various research directions in high

performance computer architecture designs to improve system performance. This section discusses

three such directions and presents some previous works to distinguish them from Active-Routing.

2.4.1 Near-Data Processing

Paradigms like NDP have been proposed a long time back [5] to reduce the overhead of data

movement across the memory hierarchy, but did not come to fruition because of the limitations in

the memory technology at that time. These paradigms are currently experiencing a resurgence in

interest [2, 3, 4, 14, 11, 15, 10, 16] from architecture community, driven by the advances in memory

technology [6, 7] like 3D Die-Stacking, and the increasing memory bandwidth stress imposed by

emerging big data applications [12, 13]. Ahn et al. [2] proposed to monitor data locality and process

the fetch-and-update operations either on host or offload it via extended instructions to memory.

This mechanism limits to fetch-and-update operations which only carries the memory target, and

also the locality monitoring incurs back-invalidation and back-updates for coherence. Ahn et al.

also proposed Tesseract [3], a programmable PIM accelerator for large-scale graph processing.

Tesseract accelerates data intesive kernels by offloading them entirely on to in-order processor

cores embedded on memory. Nair et al. [14, 15] proposed a new architecture, Active Memory Cube

(AMC), to perform computation in the memory module for exascale systems. They propose to

leverage the commercially demonstrated Hybrid Memory Cube (HMC) to place vector architecture

based computation elements (integer, floating-point, predicate and scatter-gather) in the logic layer.

Their mechanism suffers from requirements to pre-load instructions into the Instruction buffer

of these vector compute elements by the host, address translation from the host and a complex

7



interconnect for fully connecting vaults and lanes in each quadrant of the AMC layout.

2.4.2 Leveraging Commutativity in Operations

There has been considerable research exploring mechanisms to leverage the commutativity/as-

sociativity in operations to improve the effective performance by alleviating the overheads of co-

herence or gathering [17, 4]. AIM [4] proposed to reduce the data movement on-off chip by per-

forming the commutative and associative aggregation at the data location without modifying the

coherence protocol, thereby improving performance and saving energy. Zhang et al. [17] presented

COUP which augments the cache coherence protocol so that the several copies of a shared variable

can be updated in parallel. It is especially beneficial for applications with finely interleaved reads

and updates to shared data. Both AIM and COUP have to bring source operands to CPU for updates

while Active-Routing can leverage NDP for source data as well.

2.4.3 Processing in the Interconnection Network

Previous research [18, 19, 20] has encouraged interconnection network to offer more func-

tionalities other than just routing packets. Active Message [18] embeds the function pointer

and arguments across the network to perform tasks in remote compute nodes. Pfister et al. [19]

and Ma [21] proposed mechanisms to combine messages so as to reduce network traffic. Re-

cently, IncBricks [20] implements an in-network caching middlebox for key-value acceleration in

router switches. Several studies [22, 23, 24] proposed mechanisms to optimize shared value up-

date or reduction in the network. The NYU Ultracomputer [22] implemented adder in network

switches to coalesce the atomic fetch-and-update for same target address along their way to mem-

ory. Panda [23] and Chen et al. [24] describe similar mechanisms that provides network interface

functionality as well as hardware support for MPI collective reduction communication in a static

manner. These mechanisms, targeting at shared variable update optimization, cannot be applied to

optimize data processing phase before reduction, thus requiring large amount of data movement for

the source data from memory to CPU. Active-Routing, on the other hand supports data processing

in the memory network as well as reduction on the way along a topology-oblivious dynamically
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built Active-Routing tree.

9



3. ACTIVE ROUTING ARCHITECTURE

This chapter describes the system and communication architecture and then detail the com-

ponents that implement Active-Routing. Figure 3.1 presents the system configuration where host

processors are connected to a memory network of Hybrid Memory Cubes (HMC) [7]. Processing

cores on the host side and the cache hierarchy communicate with each other through an on-chip

network. On the other hand, processing cores communicate with the memory subsystem via HMC

controllers connected to a high bandwidth memory network. Each memory module is enabled with

router switches, built into the logic layer of the memory cube to establish communication among

the cubes.
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Figure 3.1: System Configuration with a Host CMP Connected to a Memory Network.

Active-Routing is an active interconnection network processing solution to optimize reduc-

tion/aggregation operations, with multiple operands. The main idea is as follows:

• Computation is moved to the memory cube to facilitate data processing on the memory side.

Hence, mitigate the data supply overhead across deep memory hierarchy.

• Topology-oblivious Active-Routing tree is constructed dynamically in parallel with the com-

putation offloading and data processing in the memory network.
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• Reduction operations are optimized by performing partial result reduction in the network

along the Active-Routing tree (ARTree) from leaf nodes to the root.

There are multiple components which work in synergy to realize Active-Routing. Primarily an

Application Interface (API) is required to facilitate offloading computation to data-resident loca-

tions and perform seamless reduction operations along the ARTree. Simple programming interface

(Update and Gather), is provided to translate operation semantics into extended instructions for of-

floading data processing and reduction operations. The programming interface is discussed in

detail in Section 3.1. Additionally, microarchitectural modifications across the on-chip and mem-

ory networks are necessary to support Active-Routing functionalities. An Active-Routing Engine

(ARE) is added to the router switches of the memory network to implement the functionalities.

An ARE consists of an ALU for near data computation, a Flow Table to track multiple concurrent

active flows, a pool of operand buffers to store data processing operands, and a packet decoder

for the Update and Gather traffic. Section 3.2 and 3.3 present the detailed components of ARE

and their functionalities in realizing Active-Routing. Later in Section 3.4, design considerations to

seamlessly integrate this architecture into current systems are discussed.

3.1 Programming Interface and ISA Extension

A simple programming interface, (Update and Gather) is provided to translate the operation

semantics into extended instructions. The ISA extensions are used to communicate with the Mes-

sage Interface to offload the computation to data-resident locations for NDP as well as perform

result reduction along the ARTree.

3.1.1 Programming Interface

Update ( vo i d ∗ s r c1 , vo id ∗ s r c2 , vo id ∗ t a r g e t , i n t op ) ;

Ga th e r ( vo id ∗ t a r g e t , i n t num_th reads ) ;

The above Update API carries two source memory addresses for processing, and a target ad-

dress to register a unique flow entry in the Flow Table along the way to the near-data location.

The op parameter indicates the operation to be done in place (e.g. multiplication) through Update
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command packets. The op can be used as an opcode and the memory addresses can be conveyed

to the Message Interface through registers. Similarly, the Gather API embeds the target address

as a flow identification to the Active Flow Table for reduction/aggregation. The num_threads

parameter is used for implicit barrier purpose at the root of the routing tree, which guarantees all

the Updates have been initiated. Since some operations have no need for reduction, the Update API

is generalized with the operation code op for ISA translation.

/ / b a s e l i n e i m p l e m e n t a t i o n
g l o b a l d i f f = 0 . 0 ;
l o c a l l o c _ d i f f = 0 . 0 ;
f o r ( v : v _ s t a r t t o v_end ) {

l o c _ d i f f += abs ( v . n e x t _ p a g e r a n k − v . p a g e r a n k ) ;
v . p a g e r a n k = v . n e x t _ p a g e r a n k ;
v . n e x t _ p a g e r a n k = 0 . 1 5 / g raph . n u m _ v e r t i c e s ;

}
a to mi c d i f f += l o c _ d i f f ;

/ / a c t i v e o p t i m i z a t i o n
g l o b a l d i f f = 0 . 0 ;
f o r ( v : v _ s t a r t t o v_end ) {

Update (&v . n e x t _ p a g e r a n k , &v . pagerank , &d i f f , abs ) ;
Update (&v . n e x t _ p a g e r a n k , n i l , &v . pagerank , mov ) ;
temp = 0 . 1 5 / g raph . n u m _ v e r t i c e s ;
Update ( temp , n i l , &v . n e x t _ p a g e r a n k , c o n s t _ a s s i g n ) ;

}
G a th e r (& d i f f , num_th reads ) ;

Figure 3.2: Pseudocode of Thread Worker for Parallel PageRank.

Figure 3.2 shows the thread worker pseudocode of pagerank calculation loop before and after

optimization, respectively. In the baseline implementation without optimization, the atomic update

for diff needs to fetch the pagerank and next_pagerank value for each vertex of the graph,

which consumes large amount of bandwidth due to irregular graph accessing patterns. It also
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needs to reduce diff value atomically from each thread, which causes high overhead and limit the

scaling as the number of threads scales. In contrast, Active-Routing optimization allows updates

of diff near data-resident locations in memory, which not only saves bandwidth but also enables

bandwidth proportional MLP. In addition, the Gather commands from all the threads of same flow

will be synchronized at a single point, the root of ARTree, as an implicit barrier. Then reduction is

initiated by these commands and is accelerated along the ARTree.

3.1.2 Message Interface for Offloading

To convert the programming interface into offloading commands, the APIs are translated into

extended instructions that can communicate with Message Interface (MI) shown in Figure 3.1.

The Update and Gather instructions write the operand information to special registers in MI for

network processing message generation. MI packetizes the command opcode and register values

sent by the instruction into an Update/Gather packet. Then it offloads the packet into memory

network for Active-Routing network processing. The MI functionalities can be added to Network

Interface by connecting the core and router switch with marginal change without modifying the

core architecture.

3.2 Active-Routing Microarchitecture

The Active-Routing microarchitecture is implemented in the HMC logic layer as shown in

Figure 3.3 and described below.

3.2.1 Active-Routing Engine

Figure 3.3 (a) shows the processing engine that implements the Active-Routing functionali-

ties, called Active-Routing Engine (ARE). On the HMC logic layer, Ser/Deser link I/Os and vault

controllers communicate through the Intra-Cube Network, which is assumed as a switch in this

work [7]. Since we adopt a unified memory network architecture [9] aiming for high network

throughput, the switch is also used for forwarding packets that are not destined to the attached

cube. On top of it, one extra connection is added from the switch to ARE for communication

after processing. ARE can receive Update and Gather command packets as well as operand re-
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Figure 3.3: Active-Routing Microarchitecture: (a) Engine Implementation in HMC Logic Layer
with (b) Flow Table Entry and (c) Operand Buffer Entry.

sponses for data processing. It also sends out responses for Gather commands to join its parent

for Active-Routing reduction when the subtree originated from this cube finishes the corresponding

flow.

ARE consists of a Packet Decoder, Active-Routing Flow Table, a pool of Operand Buffers and

an Arithmetic Logic Unit (ALU). The Packet Decoder decodes the active command packets and

schedule operations for data processing. It registers an entry in the Flow Table for new incoming

active flow and keeps track of the packets belonging to the existing flows. It can also generate data

requests for operands to the local DRAM through vault controller or remote memory cubes.

3.2.2 Active Flow Table

During Active-Routing processing, multiple active flows can co-exist in the memory network

simultaneously. For example, if each thread is working on a vertex of a graph application, the num-

ber of concurrent flows will be the number of threads. Therefore, Active-Routing should support

multiple active flows in the memory network and distinguish them. A unique flow ID is assigned

for each flow that can be tracked by Active Flow Table shown in Figure 3.3 (a).

Figure 3.3 (b) displays a flow entry of the Flow Table. A flow entry needs to keep track of

a unique flow based on a flow ID, and information of number of pending/committed operations.

Note that each flow will generate an ARTree, which is also maintained by the flow entry with its
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parent and children info. The entry fields are summarized in Table 3.1.

Table 3.1: Flow Table Entry Fields.

Field Name Purpose
flow ID A unique ID of the Active Routing flow
opcode The operation type of this flow
result The reduction result processed in this cube
req_counter Count of Update requests for this node
rep_counter Count of processed requests
parent the port id connected to parent of Active-Routing tree
children_flags Indicator of children of 4 cube ports
Gflag Gather ready flag for Active-Routing reduction

3.2.3 Operand Buffers Management

For an Update command packet to finish processing, the offloaded operation needs to request

for the operand data first before it starts to compute and commit the operation. Therefore, operand

buffers are used to maintain and track the on-going Update operations. In general, each Update

needs one operand buffer, especially for the operations that require two operands (e.g. sum +=

A[i]×B[i]), since the two operand responses may arrive at the ARE from vault controllers at

different times. However, for simple reduction operations such as sum += A[i], there is no need

for an operand buffer. The single operand response for the operation can bypass the operand buffer

and be supplied to finish the reduction operation in ALU and update the result in the flow entry.

This optimization frees the operand buffer resources to accelerate the two-operand operation flows.

Figure 3.3 (c) shows an Operand Buffer Entry, which keeps the flow ID to indicate which flow

the Update belongs to and the corresponding flow entry the operation should update. It also keeps

two fields to store the operand values and two ready flag bits for the operands. When a new operand

response arrives to update its buffer entry, it marks the operand ready flag, and fires the operation

to commit the Update request.
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3.3 Active-Routing Processing

3.3.1 Three-Phase Processing

In general, Active-Routing Processing is composed of three phases as it progresses in the time-

line. While sending Update command packets, it dynamically builds Active-Routing tree on-the-fly,

and also starts NDP phase in parallel, followed by the Gather command packets. When NDP phase

finishes, the Gather commands initiates Active-Routing reduction along the routing tree to finish

the whole processing. Figure 3.4 shows the processing flow for different active packets, which will

involve in either one or two phases during packet processing.

Tree	Construction NDP Active-Routing	Reduction

Flow	exists

Register	flow	entry

Record	parent
Increment	req_counter

Destination	
or	split	point

Reserve	operand	buffer
Send	operand	requests
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N

Y

N

Y

Find	operand	buffer	w/	opID
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Operand(s)	
ready
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Release	operand	buffer
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Y
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(a) Update Packet. (b) Operand Response.
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Figure 3.4: Active Packet Processing Flow Chart for (a) Update Packet, (b) Operand Response
Packet, (c) Gather Request Packet and (d) Gather Response Packet.
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Active-Routing Tree Construction. The first phase of Active-Routing Processing is to con-

struct ARTree, which is dynamically built while processing Update requests, as shown in Figure 3.4

(a). An Update packet belonging to a new flow registers a flow entry to build the tree node in the

cube and record its incoming link port in the parent field. If the Update packet is not destined for

this cube or does not need to split for two-operand operation, it forwards the packet to its child and

records the child field. A packet is split if both the operands do not belong to the same cube and

the split location is at the last common cube on their routing path of the two operands’ locations.

Near-Data Processing (Update Phase). While constructing the ARTree, Update phase starts

Near-Data Processing at the same time. This phase involves processing of Update packet, and

operand request/response packet as shown in Figure 3.4 (b). While processing Update commands

whose split point of the two operands is the current cube, the processing procedure reserves an

operand buffer entry and sends out operand request(s). When it receives operand responses, it

records the operand value to finish the Update operation and commits to the flow entry.

Active-Routing Reduction (Gather Phase). Figure 3.4 (b) - (d) shows the packet processing

in Gather Phase to finish Active-Routing reduction. The Gather Phase has one forward pass to

spread the Gather requests from root to leaf nodes which marks the their Gflags, and a backward

pass to reduce the results from leaf nodes to root node. Once the local and children’s NDP finishes1,

the node replies to its parent and deallocate its flow entry. This procedure recurses from leaf nodes

to the root and the whole Active-Routing processing commits.

3.3.2 Walking through Example

Figure 3.5 shows an example of Active-Routing in the memory network, where the ARTree is

built from cube 0 as the root during the update phase. The three processing phases that constitute

Active-Routing are illustrated below through an example of sum += A[i]×B[i] over a large

loop, which forms an Active-Routing flow, as shown in Figure 3.6.

• The first phase constructs an ARTree on-the-fly as shown in Figure 3.6 (a), while the pro-

cessors are offloading computations to the memory network through message interfaces to
1A parent receives Gather response from all of its children to indicate the completion of their NDP.
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HMC controller. The HMC controller issues the active packets and starts the update phase

at the same time.

• The offloaded computations drive Near-Data Processing during the update phase as shown in

Figure 3.6 (b). Each operation A[i]×B[i] needs to request its source operands A[i] and

B[i] to finish the computation. Figure 3.6 (b) also shows a case where two operands do not

resides in the same cube. In such scenarios, the update packet will reserve an operand buffer

at the last common cube of the minimum routes (cube 3) for both operands: 1 it replicates
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to issue two operand requests for Ak and Bk to the resident memory cube 15 and cube 12,

respectively. 2 The two operand responses are replied to cube 3 for processing and release

the operand buffer.

• Figure 3.6 (c) shows the gather phase when the Gather packet is issued after sending all the

Update packets. It waits for all the Updates in the same flow to finish and initiate network

aggregation from the leaf nodes to the root along the ARTree.

3.4 Integrity Considerations

There are two important design considerations to seamlessly integrate Active-Routing into cur-

rent computer systems: (1) virtual memory support and (2) cache coherence with NDP offloading.

3.4.1 Virtual Memory Support

Modern processor systems use Virtual Memory and Paging to allocate memory resources to

processes on demand. Each physical memory address is mapped to a different virtual address in

the processes space. The applications run in the system with virtual address which is translated

to physical address through TLB and page table lookup. Since Active-Routing is implemented by

ISA extension, the offload instructions are treated as extended active loads/stores, so that they can

perform the same virtual to physical address translation as normal load/store instructions. With this

design principle, we can avoid overhead for address translation units in the directories or memory.

In addition, page faults can be handled as normal.

3.4.2 Cache Coherence

Multi-core systems use Cache Coherency protocols to view the most recent copies of data

in each cores private caches. To offload instructions for Active-Routing optimization, it should

ensure that the offloaded flow is using the up-to-date data in memory. A naïve way is allocating

uncacheable memory for the data that may be used in the optimization. However, it may hurt the

performance in other program execution phases which can use the deep cache hierarchy to exploit

locality. To work around with coherence, offloaded packets are first sent to the directory based on

their addresses, and query for back-invalidation if data is cached on-chip similar to [2]. Then it will
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be issued to the memory for Active-Routing processing. Since Update packets are issued in parallel,

the back-invalidation overhead is amortized across massive concurrent packets. Back-invalidation

rarely happens in the simulations run in this work.
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4. IMPLEMENTATION AND SIMULATIONS

Software based simulation environments are widely used in computer architecture research to

generate performance projections due to infeasibility in hardware implementations. These simula-

tors model the microarchitecture of a design under evaluation to measure the number of machine

cycles required to execute program instructions. In general, a baseline configuration implemented

in the same simulation environment is used as a reference for these performance projections. The

level of detail incorporated by such models depends on the explicit modeling of various compo-

nent modules of the architecture and may vary from simulator to simulator. One such software

simulation environment with detailed organization is adopted to model the microarchitecture of

Active-Routing to estimate the performance gains and energy efficiency achievable from this work.

Section 4.1 describes the simulator choices and system modeling details of Active-Routing ar-

chitecture implemented in this work. Later, Section 4.2 introduces benchmarks from various

benchmark suites and microbenchmarks used to evaluate the architecture. The system configura-

tion evaluated in this work is shown in Figure 3.1 and its specifications are listed in Table 4.1.

4.1 System Modeling

An execution-driven manycore simulator McSimA+ [25] with detailed microarchitecture mod-

els is used as backend for processor cores and cache hierarchy. The host CPU is configured as a

16 core out-of-order CMP with on-chip network, a two level cache hierarchy with directory based

MESI coherence protocol and 4 memory slots. McSimA+ uses PIN [26], a program analysis as

its front-end to extract instructions from program binaries and simulate their execution cycles in

its detailed backend. PIN exposes many binary instrumentation features which are widely used to

implement various tools for computer architecture analysis. A PIN tool capable of instrumenting

Pthread api’s is used in McSimA+ to simulate the behavior of multi-threaded applications. The

tool is modified in this work to replace the Update and Gather api’s in programs with equivalent

x86 instruction extensions.

21



Table 4.1: System Configurations

Parameter Configuration
CPU Core 16 O3cores @ 2 GHz

issue/commit width: 8, ROB: 64
L1I/DCache Private, 16KB, 4 way
L2Cache S-NUCA 16MB, 16 way, MESI
NoC 4x4 mesh, 4 MC at 4 corners

Memory DRAM Baseline 4 MCs, 64GB
4 ranks/channel, 64 banks/rank
tRCD=14,tRAS=34,tRP=14
tCL=14,tBL=4,tRR=1

HMC 4GB/cube, 4 layers
32 vaults, 8 banks/vault

HMC-Net 16 cube Dragonfly, 4 controllers
Minimal routing, virtual cut-through
16 lanes link, 12.5 Gbps/lane
CrossbarSwitch clock @ 1 GHz

For HMC memory modeling, a cycle-accurate HMC simulator CasHMC [27] is integrated with

McSimA+’s backend to replace its DRAM subsystem. The 4 memory controllers are updated to

HMC controllers which support HMC Ser/Deser link protocol for packet based memory requests.

The 16 off-chip HMCs are connected to form a pool of unified memory-network [9] with Drag-

onfly topology [8]. Edge links of the dragon-fly topology are connected to the HMC controllers

integrated with McSimA+. Minimal routing algorithm is used to route memory requests across the

memory network and virtual channels are implemented to avoid any potential network deadlocks.

The microarchitectural behaviors of Active-Routing processing are implemented on the crossbar

switch in HMC logic layer.

CACTI [28], a dynamic power modeling tool is used for on-chip cache power estimation.

CACTI measures the power consumption of a model based on performance counters obtained

from simulations. The CACTI tool is extended to incorporate memory network power which is

modeled in-terms of network hops and memory accesses. This work assumes 5pJ/bit for each

hop inside the memory network [29], 12 pJ/bit for HMC memory access and 39 pJ/bit access for
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DRAM [30] in the baseline configuration.

4.2 Workloads

Active-Routing targets applications that have abundant reduction on data processing operations

such as multiplication or pure reduction operations over a large memory footprint. To evaluate

our architecture, five emerging applications from several benchmark suites are studied and four

data-intensive microbenchmarks are developed for case study. In order to support execution with

McSimA+ front-end, all the applications are re-implemented using Pthread library.

4.2.1 Benchmarks

Back Propagation (backprop) [31] is a machine learning algorithm to used train a multi-layer

neural network. It has feed-forward phase and a backward weight adjustment phase. In the feed-

forward pass, each node in a layer aggregates the multiplication result of the inputs from the pre-

vious layer and their corresponding connection weights for activation. For a neural network with

large number of nodes, such computations bring a large amount of data movement for inputs and

weights from memory to on-chip cache. Since on-chip cache is not big enough to hold all the data,

it causes low data reuse and high miss rate. To solve this problem, Active-Routing optimization

is applied for this computation phase. A neural network with a single hidden layer with 2097152

hidden units is chosen as the input model.

LU Decomposition (lud) [32] is a linear algebra routine that decomposes a matrix as the prod-

uct of a lower and upper triangular matrices. In the kernel, it accesses the input matrix using

different strides and behaves poor locality with large data set. Active-Routing is applied for this

region of code to accelerate its execution. The input matrix dimension in the simulation is 4096.

PageRank (pagerank) [33] is an iterative graph analytic algorithm to compute the ranking

score for each vertex in a graph and is well applied in web services. The core of the algorithm is

page rank score calculation where it accumulates the average incoming scores of the pages linking

to it. The irregular graph structure leads to irregular memory access patterns for such operations

and can cause inefficient data reuse for big graphs. The score calculation is optimized with Active-
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Routing and offload it to memory network. This benchmark uses web-Google graph [34] as input

in this evaluations.

Matrix Multiplication (sgemm) [35] is a dense matrix multiplication kernel widely used in

linear algebra programs. It is an important block in many library packages, such as the BLAS (Ba-

sic Linear Algebra Subprograms) and NNPACK [36], an acceleration package for neural networks

on multi-core CPUs. The multiply-accumulate operations are optimized for each output elements

with Active-Routing. To simulate large data footprint, 4096x4096 is used as the input matrix size.

Sparse Matrix-Vector Multiplication (spmv) [35] is a matrix vector multiplication kernel

which exploits sparsity in the input matrix to reduce computation and storage. It is also an impor-

tant block in BLAS. The matrix-vector multiplication loop is optimized with Active-Routing. The

matrix dimension chosen was 4096 with 0.7 sparsity for large input size.

4.2.2 Microbenchmarks

Real world application contain segments of code which cannot be optimized by Active-Routing.

Hence, four microbenchmarks are developed to evaluate the potential of Active-Routing on the

pure optimization segment. Two microbenchmarks model reduction operations while the other

two perform multiply-accumulate operations to model reduction over an another operator.

Reduction (reduce, rand_reduce) is an associative and commutative operation that is broadly

used in big data applications and frameworks [37, 38]. A parallel kernel reduce was implemented

which computes the sum of all elements of a large array sequentially. Each thread works on one

partition of the array. To mimic random memory access pattern, This kernel is adapted to access

the elements in the array randomly, called rand_reduce.

Multiply-Accumulate (mac, rand_mac) is widely used in machine learning community, espe-

cially deep learning applications [39, 36]. Similar to reduce, A multi-threaded microbenchmark

mac was developed, which accumulates the element-wise multiplication over two large vectors.

Each thread iterates from the beginning to the end of its responsible segment to model regular

memory access pattern. For irregular memory accessing, they multiply two random elements of

both vectors in their own segments for rand_mac.
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5. PERFORMANCE AND POWER ANALYSIS

This work presents a novel architecture to perform reduction/aggregation operation on large-

data footprints. The potential performance benefits and power efficiency that Active-Routing can

achieve is analyzed here. Section 5.1 presents various configurations of the architecture analyzed in

this work. Later Sections 5.2 and 5.3 analyze performance and power efficiency of Active-Routing

respectively

5.1 Configurations

Five configuration schemes are used to understand the scope of our work in various implemen-

tations. These configurations are described as follows.

• DRAM system has traditional DDR memory and executes the whole program in host pro-

cessor conventionally. This is considered as the baseline system for this study.

• HMC replaces the memory system of the baseline configuration with HMC memory net-

work in dragonfly topology as shown in Figure 3.1. It runs the applications fully on host

CPU without any NDP.

• Active-Routing-Tree (ART) enhances the HMC system with NDP capability to enable

Active-Routing optimization. It constructs one tree for each flow through a static port con-

nected to the memory network.

• Active-Routing-Forest-tid (ARF-tid) extends ART to construct the trees by interleaving

over all the four memory network ports based on the thread ID. Multiple threads working on

the same flow can generate up to four trees and work parallelly.

• Active-Routing-Forest-addr (ARF-addr) is an alternative of ARF-tid. Instead of building

the trees based on thread ID, it constructs the trees depending on the operand addresses

embedded in the Update packets.
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5.2 Performance

This section presents the performance analysis of Active-Routing over DRAM Baseline using

applications and kernels from various benchmark suites and our developed microbenchmarks. First

the impact on execution time is shown, then the roundtrip latency of the offloading is analyzed.

Lastly, the reduction of data movement is shown.
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Figure 5.1: Runtime Speedup Over DRAM.

Figure 5.1 shows the execution time speedup of both benchmarks and microbenchmarks. We

observe that the static ART scheme is suboptimal in some cases, even worse than HMC Baseline as

in spmv. When it is optimized to create multiple trees from all memory access ports, called Active-

Routing Forest, the performance improves significantly. For a neural network algorithm backprop

and a dense matrix multiplication kernel sgemm and lud, they achieve more than 4x, 6x and 10x

speedup compared to DRAM Baseline. When compared to HMC, ARF-addr improves lud and

sgemm up to 6x speedup. In geomean, ARF-tid and ARF-addr help achieve more than 2x speedup

for performance compared to DRAM. When compared with HMC, ARF-tid and ARF-addr im-

prove performance by 86% and 75%, respectively. In microbenchmarks studies, the performance
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improvement is drastic since the whole execution is region of interest for optimization. Similarly,

the static ART scheme can worsen the performance when the applications have regular memory

access patterns mainly due to offloading overhead, which will be analyzed in next section. Both

ARF alternatives work well across all the microbenchmarks. In irregular memory accessing sce-

narios, the performance can be improved even more. One interesting observation is that ARF-tid

and ARF-addr may alternate the champion for different applications. Their performance depends

on the balance of work distribution to the network, which will be discussed more in next section.

5.2.2 Update Offloading Roundtrip Latency

In Figure 5.2, Update roundtrip latency is broken into request, stall and response to help us

understand the contribution of different communication components on data processing. As ex-

pected, the total latency is inversely proportional to the performance shown in Figure 5.1. It shows

that static ART scheme leads to very high latency for request and stall components. This is mainly

due to congestion and hotspot. In ART, all Update requests are sent to one memory access port

which is a many-to-one communication pattern. The congestion at the port causes long stalls and

propagates the pressure back leading to high request latency as well. On the other hand, ARF-tid

and ARF-addr dynamically distribute the Updates across all available ports for tree construction.

The ARF schemes can balance the load evenly and utilize the memory network resources more

efficiently.

However, it is observed that the address-based ARF-addr may sometimes have higher latency

due to the stalls (lud and reduction). This is because of the memory network congestion caused

by load imbalance if the linear virtual memory space is not hashed well to be evenly distributed

across four ports.

Figure 5.3 shows a heatmap of lud for ARF-tid and ARF-addr. In the heatmap darker colors are

used for denoting higher number of event occurrences. Each big square depicts the whole memory

network and each small square block represents one cube in the memory network. The memory

access ports are placed at four corners of the memory network. In lud, data and tasks are distributed

to all the threads evenly. When applying ARF-tid, threads distribute their generated flows to the
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Figure 5.2: Update Roundtrip Latency Breakdown into Request, Stall and Response Latency.
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Figure 5.3: LUD Stalls and Update Distribution

memory network by interleaving the memory access ports based on their thread ID. Therefore,

ARF-tid can evenly distribute the trees across the network. While in ARF-addr, active flows are

distributed to the ports based on the source operands’ addresses to choose the nearest port in order

to reduce the hops in memory network. As shown in Figure 5.3, update distribution in ARF-tid

is more balanced compared to the one in ARF-addr. Also, due to the imbalanced distribution in
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ARF-addr, it causes more stalls in the memory network, which limits performance1.

5.2.3 Data Movement

The data movement breakdowns for normal data and active data transfer are shown in Fig-

ure 5.4. For most applications, Active-Routing can reduce the memory requests fetching the data,

mostly source operands. However, the total data movement of Active-Routing schemes are higher

than HMC Baseline. The region of interest for optimization is the code segment that has reduc-

tion on large amount of data processing tasks. In the benchmarks, only parts of the whole parallel

phase that are evaluated are our optimization targets. The other phases still require data movement.

Another overhead comes from massive Update fine-grained offloading.
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Figure 5.4: On/Off-chip Data Movement Normalized to HMC.

In the microbenchmarks, the whole parallel phase can be optimized and hence the data move-

ment decreases a lot. In reduce, majority of its execution time is spent on summing up all the

elements of a large array. Since it accesses the array elements sequentially, it exhibits very good

spatial locality in its memory accesses. Good spatial locality results in high cache hits and lowers

the benefit of Active Routing. On the other hand, in mac, the multiply-accumulate operation it-

erates over two large vectors. That may cause cache contention and conflicts due to their large

1The operand distribution are different due to the dynamic memory allocation.
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footprints. Therefore, Active-Routing is beneficial for cases that have abundant reductions on

multiple-operand operations such as multiply-accumulate over two large memory objects. For

randomly access patterns, it can reduce the waiting time of data supply which effectively reduces

stalls and thus improves performance.

5.3 Power and Energy

5.3.1 Power Consumption
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Figure 5.5: Normalized Power Consumption Over DRAM.

The power consumption breakdowns into cache, memory and memory network power are pre-

sented in Figure 5.5. It is observed that the cache power is not reduced for most of the benchmarks.

This is because in the unoptimized code, the cache accessing on large data footprint can cause stall

of processors thus reduce the cache access density. Whereas with Active-Routing optimization,

the cores can issue UPDATE packets aggressively with less stalls. This increases the cache access

density from the operand address loading and calculation for Update packets. Memory access and

network power also increases due to massive processing in the memory network. Since ARF-tid

and ARF-addr distribute Updates evenly to the network, the processing density is even higher for

both benchmarks and microbenchmarks, which leads to more power consumption.

30



5.3.2 Energy Consumption

DR
AM

HM
C

AR
T

AR
F-

tid
AR

F-
ad

dr
DR

AM
HM

C
AR

T
AR

F-
tid

AR
F-

ad
dr

DR
AM

HM
C

AR
T

AR
F-

tid
AR

F-
ad

dr
DR

AM
HM

C
AR

T
AR

F-
tid

AR
F-

ad
dr

DR
AM

HM
C

AR
T

AR
F-

tid
AR

F-
ad

dr

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
iz

ed
 E

ne
rg

y 
Br

ea
kd

ow
n

backprop lud pagerank sgemm spmv

cache memory network

(a) Benchmarks

DR
AM

HM
C

AR
T

AR
F-

tid
AR

F-
ad

dr

DR
AM

HM
C

AR
T

AR
F-

tid
AR

F-
ad

dr

DR
AM

HM
C

AR
T

AR
F-

tid
AR

F-
ad

dr

DR
AM

HM
C

AR
T

AR
F-

tid
AR

F-
ad

dr

0.0

0.2

0.4

0.6

0.8

1.0

1.2

No
rm

al
iz

ed
 E

ne
rg

y 
Br

ea
kd

ow
n

reduce rand_reduce mac rand_mac

cache memory network

(b) Microbenchmarks

Figure 5.6: Normalized Energy Consumption Over DRAM.

Figure 5.6 shows the energy consumptions. Active-Routing reduces the energy consumption

in most cases, especially for microbenchmarks. For the cases that energy increases, the main con-

tributor is the network energy. When two source operands of a data processing operation are far

away in two memory cubes, they need to travel multiple hops in the network, consuming more net-

work energy. In addition, Active-Routing significantly reduces cache access energy by offloading

computation to memory.

5.3.3 Energy-Delay Product

Energy-Delay Product (EDP) is shown in Figure 5.7 to show the energy efficiency. It is ob-

served that Active-Routing has lower EDP for all applications except for spmv. In spmv, the sparse

structure can lead to input vector access with irregular stride, which highly spreads the operands

across the network. This causes more network energy consumption that offsets the benefit of per-

formance improvement. For others, even with higher energy consumption, Active-Routing can

achieve high efficiency owing to runtime reduction from the massive parallelism in memory net-

work. For the pure optimization region of interest in microbenchmarks, it significantly improves
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Figure 5.7: Normalized Energy-Delay Product Over DRAM

the efficiency coming from benefits of both energy saving and execution acceleration. The energy-

aware scheduling can improve the efficiency even more, which is left for future work. To sum-

marize, ARF-tid and ARF-addr reduce the EDP for benchmarks by 75% and 88% on average

compared to HMC Baseline.

5.4 Dynamic Offloading: A Case Study
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This section shows with the help of an example that the performance can be further improved
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using application information. Active-Routing can be enhanced with a runtime knob, which de-

cides whether to offload Updates dynamically on the basis of memory access and communication

patterns to achieve more performance gains. Execution phases that exhibits good locality expe-

rience performance benefits by exploiting cache hits when scheduled on the host processor. In

lud, the working set in each iteration keeps increasing during its kernel execution. At the begin-

ning, the application benefits from locality. And as the iterations increases, it walks through larger

data footprint and breaks the locality. This can be captured from the relationship between Up-

dates per flow and cache parameters. For such program behavior, the best execution model will

be processing in the host at the beginning and adapt to Active-Routing processing as it progresses

and exhibits low reuse memory access pattern. This case study analyzes lud’s phase behaviors as

shown in Figure 5.8. At the beginning phases, the IPC of HMC is higher than ARF-tid. When

it proceeds to a later phase, ARF-tid catches up and outperform HMC. A mix of two, named

ARF-tid-adaptive is run, which executes in host processor before the crosspoint and later offload

for Active-Routing processing. For this analysis, a matrix size of 256 was used as input data

size and Active-Routing offloading is enabled when Updates per flow is higher that a threshold

(CACHE_BLK_SIZE
stride1

+ CACHE_BLK_SIZE
stride2

). The ARF-tid-adaptive improves performance from 1.5x

to 2.0x.
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6. CONCLUSIONS AND FUTURE WORK

This work proposes Active-Routing, an In-Network Compute Architecture enabling compute

on the way for Near-Data Processing, to accelerate reduction on data processing operations in data-

intensive applications. Active-Routing is implemented as a novel three-phase processing mecha-

nism: Active-Routing tree Construction, Data Processing and Active-Routing Reduction. It moves

the computation near data in the memory network for processing and aggregates the results along

their routing paths. Our evaluation results show that Active-Routing can achieve up to 6x speedup

with a geometric mean of 75% performance improvement and reduce energy-delay product by

88% on average, compared to a system integrated with a die-stacked memory network.

To extend this work, various granularities for Active-Routing offloading and energy-aware

scheduling to amortize the data movement and energy overhead can be explored. In addition, a

model can be formalized to categorize memory access patterns and communication patterns and

use it to design a runtime-aware architecture for dynamic offloading to push performance improve-

ment further.
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