
ROBUST BINARY LINEAR PROGRAMMING UNDER IMPLEMENTATION

UNCERTAINTY

A Dissertation

by

JOSE ERNESTO RAMIREZ CALDERON

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, V. Jorge Leon
Co-Chair of Committee, F. Barry Lawrence
Committee Members, Amarnath Banerjee

Erick Moreno-Centeno
Head of Department, Mark Lawley

May 2018

Major Subject: Industrial Engineering

Copyright 2018 Jose Ernesto Ramirez Calderon

ABSTRACT

This dissertation focuses on binary linear programming problems (BLP) affected by

uncertainties preventing the implementation of the solutions exactly as prescribed. This

type of uncertainty is termed implementation uncertainty and occurs due to model fidelity

limitations.

This dissertation presents a model of binary variables under implementation uncer-

tainty and develops a methodology to solve BLPs under this type of uncertainty consisting

in a robust formulation (RBIU). The RBIU identifies solutions that satisfy given levels of

optimality and feasibility for any realizations of the uncertainty. A solution methodology

of the RBIU consists of an equivalent linear programming model.

Robust solutions tend to be conservative in the sense that they sacrifice optimality to

achieve the given level of feasibility. This dissertation presents two methodologies to con-

trol the conservatism of the RBIU solutions. The first method consists in controlling the

feasibility relaxation level and selecting the solutions bounding the value of the objec-

tive function. The second method is an extension of a well-known method in the field

of robust optimization and consists in the development of a cardinality-constrained robust

BLP under implementation uncertainty (CBIU) that controls the conservatism by bounding

the maximum number of variables under uncertainty with different implemented and pre-

scribed values. The proposed concepts of robustness are applied to the knapsack problem,

assignment problem and shortest path problem (SPP) under implementation uncertainty to

identify their solutions immune to uncertainty and to show how particular problem struc-

tures permit to identify different important theoretical and practical properties. This work

examines the properties of the robust counterparts including configurations of the control

parameters, complexity and the development of solutions algorithms.

ii

This dissertation includes experimental studies to show how the proposed concepts of

robustness permit to solve BLPs under implementation uncertainty and identify solutions

protected against this type of uncertainty. The results of the experiments illustrate the

sensitivity of the deterministic solutions to implementation uncertainty, the performance

of the proposed solution methods and the different levels of the conservatism of the robust

solutions. A case study involving information of a distribution company illustrates the

application of the SPP under implementation uncertainty to a real problem.

iii

DEDICATION

To my wife, our little angel, my parents and my siblings for their unconditional support.

iv

ACKNOWLEDGMENTS

Foremost, I want to thank God for his uncountable blessings and for letting me pursue

my dream.

My most sincere appreciation to Dr. Leon for his incredible support throughout my

graduate program. The completion of this work would not have been possible without Dr.

Leon’s wise guidance and patience. I am also grateful to my other committee members,

Dr. Barry Lawrence, Dr. Erick Moreno and Dr. Amarnath Banerjee. All have contributed

significantly to my academic growth and their advise has lifted the level of this research.

I am very thankful with the Fulbright-LASPAU program for supporting me; I am very

proud of being part of their selected group. I would like to also extend my gratitude to the

Industrial Distribution Program and the Global Supply Chain Laboratory, especially to Dr.

Esther Rodriguez and Dr. Barry Lawrence, for contributing enormously to my professional

development. I am also thankful to my professors, colleagues and friends at the Industrial

and Systems Engineering Department, Dr. Adolfo Escobedo, Dr. Daniel Jornada, Dr.

Jorge Samayoa and Erin Roady; all of them made my experience more valuable.

Last but not least, I must thank the most important people in my life, my family. This

work would not have been possible without their support. To my parents, Hector and

Francis, and my siblings, Cildri and Luis, who have supported me since the first moment

I decided to pursue this goal. I have no words to express my gratitude to my wife, Ana

Lucia, who has walked with me throughout this path; she has been my inspiration and

motivation, my strength in the moments of weakness, and my relief during the hard times.

Finally, thanks to our baby Jacob for being my motivation during the final, and the most

complicated, stage of this experience.

May God bless y’all and may the force be with you.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by the dissertation committee consisting of Dr. Jorge Leon as

the academic advisor, Dr. Amarnath Banerjee and Erick Moreno-Centeno of the Depart-

ment of Industrial and Systems Engineering, and Dr. Barry Lawrence of the Department

of Engineering Technologies and Industrial Distribution.

The data analyzed for Chapter 5 was provided by Texas A&M’s Global Supply Chain

Laboratory.

All other work conducted for the dissertation was completed by the student indepen-

dently.

Funding Sources

Graduate study was supported by a Graduate Assistant position at the Department of

Engineering Technologies and Industrial Distribution from Texas A&M University.

vi

NOMENCLATURE

AP Assignment Problem

BLP Binary Linear Programming Problem

CBIU Cardinality-constrained Robust Binary Linear Program-
ming Under Implementation Uncertainty

CRKP Cardinality-constrained Robust Knapsack Problem Un-
der Implementation Uncertainty

CRPM Cardinality-constrained Robust Minimum Weighted Bi-
partite Perfect Matching Problem Under Implementa-
tion Uncertainty

CRSPP Cardinality-constrained Robust Shortest Path Problem
Under Implementation Uncertainty

DP Dynamic Programming

KP Knapsack Problem

MILP Mixed-Integer Linear Programming Problem

PM Minimum Weighted Bipartite Perfect Matching
Problem

RBIU Robust Binary Linear Programing Under Implementa-
tion Uncertainty

RBMP Equivalent Mixed-Integer Linear Reformulation of a
Robust Binary Linear Programming Under Implemen-
tation Uncertainty

RKP Robust Knapsack Problem Under Implementation
Uncertainty

RPM Robust Minimum Weighted Bipartite Perfect Matching
Problem Under Implementation Uncertainty

vii

RSPP Robust Shortest Path Problem Under Implementation
Uncertainty

SPP Shortest Path Problem

viii

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vi

NOMENCLATURE . vii

TABLE OF CONTENTS . ix

LIST OF FIGURES . xii

LIST OF TABLES. xiii

1. INTRODUCTION AND LITERATURE REVIEW .. 1

1.1 Motivation . 1
1.2 Research Objectives and Contributions . 3

1.2.1 Research Objective . 4
1.2.2 Contribution of the Research. 4

1.3 Literature Review . 9
1.3.1 Background on Robust Optimization . 9
1.3.2 Background on the Knapsack Problem . 11
1.3.3 Background on the Assignment Problem . 12
1.3.4 Background on the Shortest Path Problem . 12

1.4 Preliminaries and Notation . 14
1.5 Organization of the Dissertation . 15

2. ROBUST BINARY LINEAR PROGRAMMING UNDER IMPLEMENTATION
UNCERTAINTY . 17

2.1 Introduction. 17
2.2 Implementation Uncertainty in Binary Variables . 20
2.3 Problem Formulation and Analysis . 22

2.3.1 Measures of Robustness . 22

ix

2.3.2 Robust Formulation of a BLP Under Implementation Uncertainty . . 23
2.4 Solution Methodology . 26
2.5 Conservatism of the RBIU Solutions . 30

2.5.1 Feasibility Relaxation and Bounding Solutions Method 31
2.5.2 Cardinality-Constrained Robust Formulation . 34

2.5.2.1 Development of the Cardinality-Constrained Robust For-
mulation for a BLP Under Implementation 34

2.5.2.2 Probability bounds . 39
2.5.2.3 Properties of the CBIU for Certain Problem Structures . . . 41

2.6 Summary and Conclusions . 43

3. ROBUST KNAPSACK PROBLEM UNDER IMPLEMENTATION UNCER-
TAINTY . 45

3.1 Introduction. 45
3.2 Robust Knapsack Problem Under Implementation Uncertainty 46
3.3 Cardinality-Constrained Robust Formulation of the KP . 49
3.4 Experimental Study . 51

3.4.1 Performance Measures . 51
3.4.2 Test Problem Generation . 53
3.4.3 Performance Results. 54

3.4.3.1 RPK and CRPK Performance Results . 54
3.4.3.2 CRKP Probability Bounds Performance 58
3.4.3.3 RKP Solution Methodologies Performance 58

3.5 Summary and Conclusions . 60

4. ROBUST ASSIGNMENT PROBLEM UNDER IMPLEMENTATION UNCER-
TAINTY . 62

4.1 Introduction. 62
4.2 Minimum Weighted Bipartite Perfect Matching Problem. 63
4.3 Robust PM Under Implementation Uncertainty . 65

4.3.1 Model Development . 65
4.3.2 Properties of the RPM. 68

4.4 Cardinality-Constrained Robust Formulation of the PM . 70
4.5 Experimental Study . 72

4.5.1 Performance Measures . 72
4.5.1.1 Feasibility Ratio for Connected Bipartite Graphs 73
4.5.1.2 Feasibility Ratio for Perfect Matchings . 74

4.5.2 Test Problem Generation . 75
4.5.3 Performance Results. 76

4.6 Summary and Conclusions . 81

x

5. ROBUST SHORTEST PATH PROBLEM IMPLEMENTATION UNCERTAINTY 83

5.1 Introduction. 83
5.2 Deterministic Shortest Path Problem . 85
5.3 Robust Shortest Path Problem Under Implementation Uncertainty 86

5.3.1 Model Development . 86
5.3.2 Properties of the RSPP . 89

5.4 Robust Dynamic Shortest Path Algorithm . 93
5.5 Cardinality-Constrained Robust Formulation of the SPP . 99
5.6 Experimental Study . 101

5.6.1 Performance Measures . 101
5.6.2 Test Problem Generation . 103
5.6.3 Performance Results. 110

5.7 Case Study . 115
5.7.1 Problem Description. 115
5.7.2 Solution Approach. 116
5.7.3 Financial Analysis . 118
5.7.4 Performance Results. 120

5.8 Summary and Conclusions . 123

6. CONCLUSIONS AND FUTURE RESEARCH . 125

6.1 Summary . 125
6.2 Future Research . 127

REFERENCES . 129

APPENDIX A. TRANSFORMATION ALGORITHM.. 137

APPENDIX B. DYNAMIC PROGRAMMING ALGORITHM FOR THE KNAP-
SACK PROBLEM .. 139

xi

LIST OF FIGURES

FIGURE Page

3.1 Loss of the objective performance ratio l(x, y). 54

3.2 Feasible performance ratio h(x). 56

3.3 Probability bounds of CRKP solutions. 59

3.4 Average runtime of the MILP and DP solution approaches. 60

4.1 Loss of the objective performance ratio l(x, y). 77

4.2 Feasibility performance ratio with respect to perfect matchings h′′(x) and
connected bipartite graphs h′(x). 78

4.3 Loss of the objective performance ratio l(x, y) for lower bound, upper
bound and average value solutions. 80

5.1 Robust solutions as described in Lemma 5.3.5. (a) Sparse graph. (b) Non-
dense-non-sparse graph. (c) Dense graph. 94

5.2 Graphs with arcs under implementation uncertainty uniformly distributed. 108

5.3 Graphs with arcs under implementation uncertainty clustered in different
areas. 109

5.4 Feasibility performance ratio of the deterministic solutions h′(xD). 111

5.5 Loss of the objective performance ratio l′(xD, xR). 113

5.6 Locations in United States considered in the case study. 116

5.7 Example of accidents reported during 2016 in California, Nevada and
Utah. 117

5.8 Annual profit for the deterministic and robust solutions for different values
of the profit per trip. 123

xii

LIST OF TABLES

TABLE Page

5.1 Runtime of the MILP and Algorithm 1 (milliseconds). 114

5.2 Feasibility performance ratio of each scenario. 120

5.3 Annual profit of the deterministic solutions. 121

5.4 Loss of the objective performance ratio of each scenario in the case study. . 122

5.5 Annual profit of the robust solutions. 122

xiii

1. INTRODUCTION AND LITERATURE REVIEW

This chapter discusses the motivations, contributions and research questions focus of

this dissertation. It also presents a review of the related literature and introduces basic

notation common through all the subsequent chapters. The chapter ends detailing the

organization of this dissertation.

1.1 Motivation

Optimization problems may be impacted by uncertainties in the values of the model

parameters or the implemented values of the decision variables. Data or parameter uncer-

tainty refers to the case when data take values different to the nominal values considering

during the modeling phase. The second type of uncertainty, here denoted as implemen-

tation uncertainty, refers to the type of uncertainty that prevents the implementation of

the solutions exactly as computed. Implementation uncertainty occurs due to a number of

reasons including model fidelity limitations result of unknown or intrinsic characteristics

of the modeled system, estimation errors, unavailable information, lack of precision or

simply limited time available to model the problem in hand.

Uncertainties may impact the level of feasibility or optimality of the solutions of op-

timization problems. For instance, in the knapsack problem, the use of estimates of the

values of the capacity and profits during the modeling phase may produce changes in their

values at the time of implementation leading to a solution that does not remain feasible or

reduces the total profit significantly. On the other hand, the implementation may take too

much time, and some of the prescribed items may not be available anymore and cannot be

selected leading to a reduction of the total profit; similarly, changes in policies or priorities

may force the selection of items not prescribed leading an excess of the given capacity

making the prescribed solution infeasible.

1

There may exist situations when feasibility cannot be guaranteed due to uncertainty,

for instance, when the problem contains equality constraints. It may be possible that the

decision maker is willing to accept a certain level of feasibility relaxation because he

assumes that certain level of infeasibility is manageable or produces meaningful solutions.

For instance, in the knapsack problem, the decision maker may consider that the cost of

increasing the given capacity is smaller than the improvement in the profit. Similarly, in

an assignment problem, one may be willing to accept that more than one task is assigned

to a resource such that all the tasks can be completed, even if that requires more time for

completion. It is of interest to find solutions of optimization problems satisfying certain

levels of optimality and feasibility when impacted by uncertainty.

Different approaches have been developed to protect the solutions of optimization

problems against uncertainties; for instance, stochastic optimization (e.g. Dantzig, 1955;

Beale, 1955; Wets, 1966, 1974, 1983) and robust optimization (e.g. Soyster, 1973; Mulvey

et al., 1995; Bertsimas and Sim, 2004; Ben-Tal et al., 2009). Stochastic optimization uses

random variables to model uncertainty and seeks for solutions that remain optimal and

feasible with high probability. Characteristics of stochastic optimization include that we

should know the associated probability distributions of the uncertain elements, or at least

one should be able to identify the family of distributions to which the true one belongs. Ad-

ditionally, in stochastic optimization there may exist realizations of the uncertainty where

the given levels of optimality or feasibility are not satisfied (see Ben-Tal et al., 2009).

On the other hand, robust optimization seeks for solutions that satisfy given levels of

optimality and feasibility for any realization of the uncertainty; these solutions are termed

robust solutions (Mulvey et al., 1995). Literature in robust optimization is mostly focused

in data uncertainty (see Soyster, 1973; Kouvelis and Yu, 1997; Ben-Tal et al., 2009; Bertsi-

mas et al., 2011; Gabrel et al., 2014). In contrast, only a few work consider implementation

uncertainty explicitly in part because in some cases data and implementation uncertainty

2

have been proven equivalent (see Ben-Tal and Nemirovski, 2002; Ben-Tal et al., 2009).

The existing models of implementation uncertainty account for real variables only and

extending these models to binary variables may not be possible.

To the best of our knowledge, there does not exist previous work in the field of robust

optimization studying binary linear programming problems (BLP) under implementation

uncertainty nor applications of this type of problem. Existing work in the field of optimiza-

tion focuses on the knapsack problem (KP) under data uncertainty only (e.g. Steinberg and

Parks, 1979; Yu, 1996; Bertsimas and Sim, 2003) and does not consider the issue that op-

tions may not be available at the time of implementation or options not initially prescribed

may be forced to be selected, for instance, as a result of policy changes. Similarly, in

the field of robust optimization, the assignment problem (AP) has been addressed when

weights are uncertain (e.g. Kouvelis and Yu, 1997; Katriel et al., 2008) and do not account

for unexpected changes in the prescribed assignments at the time of the implementation.

Finally, the shortest path problem (SPP) has been studied in robust optimization when im-

pacted by parameter uncertainty only (e.g. Kouvelis and Yu, 1997; Yu and Yang, 1998;

Bertsimas and Sim, 2003).

Motivated by the theoretical significance of BLPs under implementation uncertainty

and the practical importance of solutions immune to this type of uncertainty in applications

of these type of problems, this dissertation aims to model implementation uncertainty in

binary variables and develop a methodology to solve BLPs under this type of uncertainty.

1.2 Research Objectives and Contributions

This section describes the research objectives and contributions of this dissertation to

the body of knowledge.

3

1.2.1 Research Objective

The main objective of this dissertation is to develop a methodology to solve BLPs un-

der implementation uncertainty. SSpecifically, this research aims to (i) present a model of

implementation uncertainty in binary variables; (ii) formulate a BLP under implementa-

tion uncertainty; (iii) develop a methodology to solve BLPs under this type of uncertainty

consisting in a robust formulation (RBIU); (iv) develop methodologies to address the con-

servatism of the solutions of the RBIU; (v) apply the proposed concepts of robustness

to well-known BLPs; and (vi) identify the characteristics of the problems that make the

robust solutions more attractive.

1.2.2 Contribution of the Research

The main contributions of this dissertation to the academic body of knowledge are

the model of implementation uncertainty in binary variables and the development of a

methodology to solve BLPs under this type of uncertainty. This dissertation accomplishes

these contributions by studying the following research questions:

(a) How can implementation uncertainty be modeled in binary variables?

(b) How can a BLP under implementation uncertainty be formulated?

(c) How can a BLP under implementation uncertainty be solved?

(d) How can the conservatism of the RBIU be addressed?

(e) How do the proposed concepts of robustness apply to well-known BLPs under imple-

mentation uncertainty and what are the properties of these particular problems?

(f) What are the characteristics of the problem that make robust solutions more attractive?

Question (a) is associated with one of the main contributions of this research and is pre-

sented in Chapter 2. This dissertation presents a model of implementation uncertainty in

4

binary variables that represents the existing uncertainty in the implemented value of the de-

cision variables. Binary variables under this type of uncertainty are termed uncertain vari-

ables, and variables not impacted by uncertainty are termed certain variables. Although

this work focuses on linear programming, this model of implementation uncertainty holds

for nonlinear programming models as well. The proposed model of uncertainty allows

the development of a model of the solutions space by defining an uncertain set containing

all possible implementation vectors due to uncertainty. Properties of the solution space

permit the development of the properties of the robust formulation and robust solutions.

Question (b), dealt in Chapter 2, is motivated by the impact of implementation uncer-

tainty in the solutions of optimization problems. This work develops a robust formulation

for BLPs under implementation uncertainty (RBIU). The RBIU is founded by the defini-

tions of measures of objective and feasibility robustness level. The measure of objective

robustness computes for the worst case value of the objective function, and the measure

of feasibility robustness computes for the maximum deviation from feasibility. The RBIU

seeks for the solution that minimizes the worst case value of the objective function while

satisfying the given level of feasibility for all realizations of the uncertainty. Properties of

the RBIU include nonlinearity and the existence of multiple solutions.

Question (c) is due to the nonlinearity and complexity of the RBIU. Chapter 2 presents

a solution methodology to the RBIU consisting of a linear reformulation (RMBP). The

RMBP is a mixed-integer linear programming problem (MILP) with the number of binary

variables equals to the total number of certain variables. Particular problem structures may

permit the development of algorithms to solve the RBIU using other solution methods

such as dynamic programming; Chapters 3 and 5 show algorithms to solve the robust

counterparts of the KP and the SPP, respectively.

Question (d) aims to address the characteristic of robust solutions that tend to be con-

servative in the sense that they sacrifice optimality to satisfy the level of feasibility (e.g.

5

Ben-Tal and Nemirovski, 1998; Bertsimas and Sim, 2004). A very conservative solution

provide higher protection of the feasibility and degradation of the objective value concern-

ing the given optimization problem; however, the objective value produced by a conserva-

tive solution may be too high, assuming a minimization problem. On the other hand, a less

conservative solution may produce a better objective function value but it may sacrifice

the level of feasibility, or its objective value may degrade when impacted by uncertainty.

For instance, consider the knapsack problem representing the loading of a vehicle with the

most valuable cargo; if there exists the possibility that some items not initially selected

may be included later due to changes in their priority, a conservative solution may be more

attractive because it allows the inclusion of more high priority items although the value of

the cargo is reduced. For the same problem, a too conservative solution, such as the worst

case scenario, may have a low probability to occur, or may never happen, leading to too

much empty space in the vehicle and a significant reduction on the value of the cargo; a

less conservative solution may be more attractive since it improves the utilization of the

space and the total value of the selected items. One may be interested in controlling the

level of the conservatism depending on the characteristics of the problem in hand.

Solutions of the RBIU are not exempt from conservatism, and this dissertation pro-

vides several methods for reducing it. The first methodology consists of the control of the

feasibility relaxation level and the selection of the solutions bounding the value of the ob-

jective function. Feasibility relaxation may reduce conservatism by improving the worst

case value of the objective function, while the selection of the bounding solutions permits

to control the level of conservatism among the set of robust solutions obtained from the

resolution of the RBIU with a fixed feasibility level.

The second method consists in the development of a cardinality-constrained robust

formulation for a BLP under implementation uncertainty (CBIU). This formulation is

based on the model of parameter uncertainty developed by Bertsimas and Sim (2004).

6

The CBIU includes a control parameter to bound the maximum number of uncertain vari-

ables impacted by uncertainty. The CBIU also incorporates a control parameter to allow a

feasibility relaxation; the simultaneous use of the two control parameters may result in a

possible higher reduction of the level of conservatism. This dissertation provides a solu-

tion methodology of the CBIU in the form of an equivalent MILP. The CBIU assumes that

the number of uncertain variables with different prescribed and implemented values is less

than or equal to the maximum value defined by the control parameter; in reality, there may

exist more variables with different implemented values. When the value of the control

parameter is exceeded, the CBIU does not guarantee that the given levels of feasibility or

optimality are satisfied. Feasibility relaxation permits a certain level of infeasibility, and

the RBIU guarantees that such level of infeasibility is protected and it will not be vio-

lated; in contrast, CBIU cannot protect the given level of feasibility relaxation but permits

a higher reduction of the conservatism. This work estimates the probability that the CBIU

loses protection against uncertainty due to a violation of the assumption of the maximum

number of variables impacted by uncertainty. The CBIU for BLPs with particular problem

structures is examined.

Question (e) comprises the application of the proposed concepts of robustness to well-

known BLPs. The first problem corresponds to the KP under implementation uncertainty.

This work applies the proposed concepts of robustness to develop the robust KP under

implementation uncertainty (RKP). The structural properties of the RKP permit the use

dynamic programming to identify robust solutions. Chapter 3 also presents the cardinality-

constrained robust KP under implementation uncertainty (CRKP), its equivalent linear

reformulation and probability bounds.

The second application is presented in Chapter 4 and consists of the AP under imple-

mentation uncertainty. This problem is studied in the context of the equivalent minimum

weight bipartite perfect matching problem (PM). The proposed concepts of robustness

7

are used to develop the robust AP/PM under implementation uncertainty (RPM). Different

configurations of the control parameters of the RPM permit the identification of conditions

for the existence of robust solutions and configurations to generate solutions with different

characteristics, such as solutions defining matchings or connected bipartite graphs. The

corresponding cardinality-constrained robust formulation (CRPM) is demonstrated to be

equivalent to the RPM.

Question (e) is completed in Chapter 5 by applying the proposed concepts of robust-

ness to the shortest path problem (SPP) under implementation uncertainty (RSPP). The

structural properties of the RSPP permit the development of a solution algorithm based

on Dijkstra’s algorithm for the SPP making possible to solve the RSPP using dynamic

programming instead of mathematical programming methods. Similarly to the AP, the

cardinality-constrained robust formulation is shown to be equivalent to the RSPP and can

be treated as such.

Question (f) is associated with the results of the experimental studies included in this

dissertation for each application. The experimental studies aim to show how the proposed

concepts of robustness permit to identify solutions to BLPs under implementation uncer-

tainty that are protected against this type of uncertainty. The results of these experimental

studies demonstrate the sensitivity of the deterministic solutions against implementation

uncertainty in terms of their feasibility level. These results also show that robust solu-

tions tend to sacrifice the objective function value to guarantee the feasibility level; the

higher the sensitivity of the problem to uncertainty the more significant the degeneration

of optimality. Based on the performance of the deterministic solutions, these experimental

studies uncover conditions of the problems that make the robust solutions more attrac-

tive for each application. Some of these conditions are tied to real problem applications;

moreover, the SPP under implementation uncertainty is illustrated in the context of a real

problem involving transportation operations of a distribution company. The results pro-

8

vide alternative routes and recommendations of when to use the robust solutions based on

the average annual profit produced by the deterministic and robust solutions.

1.3 Literature Review

This section presents an overview of the existing literature on robust optimization, and

the KP, the AP and the SPP under uncertainty.

1.3.1 Background on Robust Optimization

The study of optimization under uncertainty dates back to the establishment of modern

decision theory in the 1950s with the development of the first stochastic optimization mod-

els. For instance, Dantzig (1955) presents a special class of two-stage linear programming

problems in which the decisions in the first stage are made to meet the uncertain demands

with known distribution occurring in the second stage. Similarly, Beale (1955) study the

minimization of convex functions with coefficients of the constraints given by random

variables. Recent work in the field of stochastic optimization include Collet and Rennard

(2007); Duchi et al. (2011); Kingma and Ba (2014), among others. The interested reader

is referred to Birge (1997); Birge and Louveaux (2011); Uryasev and Pardalos (2013) for

more information of stochastic optimization models and solution algorithms.

Robust optimization provides a different approach for optimization under uncertainty.

Unlike stochastic optimization, robust optimization provides solutions that are feasible

and optimal for any realization of uncertainty. Soyster (1973) presents the first known

work in robust optimization; the author’s model produces solutions that are feasible for

any realization of the data within convex sets. Mulvey et al. (1995) introduced the term

robust optimization for the first time and termed robust solutions to solutions that satisfy

the given levels of optimality and feasibility. The authors provide a model that identify

robust solutions for all the scenarios of the input data; Kouvelis and Yu (1997) extends

these concepts of robustness to discrete optimization models.

9

A characteristic of robust solutions is that they tend to be conservative in the sense that

they sacrifice optimality to satisfy the given level of feasibility. For instance, the model in

Soyster (1973) is considered too conservative from this perspective (Bertsimas and Sim,

2004). Different authors have addressed this issue by modeling uncertainty using differ-

ent representations. For instance, El Ghaoui and Lebret (1997); El Ghaoui et al. (1998);

Ben-Tal and Nemirovski (1998, 1999, 2002) propose a less conservative model by using

ellipsoidal sets to describe data uncertainty; Bertsimas and Sim (2003, 2004) control con-

servatism by bounding the maximum number of uncertain coefficients changing in each

constraint simultaneously; and (Kouvelis and Yu, 1997) address this issue by proposing

less conservative measures of robustness for data uncertainty.

In the context of discrete optimization, robust optimization models have been devel-

oped to account for data uncertainty only. Kouvelis and Yu (1997) develop a robust ap-

proach for discrete optimization by seeking solutions that minimize the worst case value

of the objective function within a set of scenarios. Lin et al. (2004) developed robust for-

mulations for MILPs with bounded data uncertainty. Bertsimas and Sim (2003) develop

a cardinality-constrained robust formulation for discrete optimization and network flow

problems with uncertain data, and Chen and Lin (2010) propose an algorithm to solve the

robust design of network flow problems with uncertain demand. Li et al. (2011) present a

comprehensive description of these work.

Work in the field of robust optimization accounting for implementation uncertainty can

be found in Ben-Tal and Nemirovski (2000, 2002); Ben-Tal et al. (2009). Ben-Tal et al. de-

note this type of uncertainty as implementation errors and provide two forms of modeling

it on real decision variables; furthermore, they show that these forms of implementation

errors are equivalent to artificial data uncertainties and can be treated as such. Jornada

and Leon (2016) apply these forms of implementation uncertainty to real variables in the

context of multi-objective optimization problems.

10

The interested reader is referred to Beyer and Sendhoff (2007); Ben-Tal et al. (2009);

Bertsimas et al. (2011); Gabrel et al. (2014) for comprehensive studies of robust optimiza-

tion models.

1.3.2 Background on the Knapsack Problem

The KP is a well-known problem in the field of integer programming. This problem

consists of a set of items possessing weights and profits; the objective is to select a subset

of items such that the total profit is maximum and the total weight of the selected items

does not exceed a given capacity (e.g. Bertsimas and Weismantel, 2005). Early publica-

tions of this problem include Dantzig (1957) and Bellman (1957). Applications of the KP

include the capital budget problem (e.g. Weingartner and Ness, 1967), and the loading of a

plane or ship with the most valuable cargo given the capacity constraint (e.g. Shih, 1979).

Bartholdi III (2008) presents other applications of this problem.

Work of the KP under uncertainty includes the work in Steinberg and Parks (1979)

studying the KP with random profits and develop a dynamic solution methodology re-

placing the real-values by a preference ordering of the distributions of the selected items.

Similarly, Henig (1990) develop a methodology combining dynamic programming and a

search procedure to solve the KP where the items possess normally distributed profits. On

the other hand, Yu (1996) presents the first known work of robust optimization applied to

the KP where a set of scenarios define the profits. Bertsimas and Sim (2003, 2004) study

this problem where the profits are given and the weights are independently distributed

following a symmetric distribution; the authors develop a cardinality-constrained robust

formulation to control the maximum number of items with uncertain weights.

The interested reader is referred to Kouvelis and Yu (1997); Schrijver (1998); Wolsey

(1998); Bazaraa et al. (2011) for further information about the KP, solution algorithms,

applications of this problem and the KP under uncertainty.

11

1.3.3 Background on the Assignment Problem

The AP is described as the problem of assigning exactly one resource for every job

and every resource performs exactly one job; the objective is to find the assignments with

the minimum total weight (Bazaraa et al., 2011). Other versions of the AP include the

quadratic assignment problem (e.g. Loiola et al., 2007) and the semi assignment problem

(e.g. Kennington and Wang, 1992). Applications of the AP include personnel selection, ve-

hicle assignment and scheduling problems (e.g. Kuhn, 1955; Fisher and Jaikumar, 1981).

The weights associated with every assignment defines an instance of the AP; the ma-

jority of the work on this problem under uncertainty focuses on the case where the weights

are uncertain. For instance, Katriel et al. (2008) use a stochastic optimization approach to

address the changes in the nominal value of the weights. On the other hand, Kouvelis and

Yu (1997); Aissi et al. (2005); Deı et al. (2006) use robust optimization to deal with the

value of the weights belonging to a set of scenarios. Further information on this topic can

be found in Kasperski (2008); Aissi et al. (2009); Kasperski and Zieliński (2016).

1.3.4 Background on the Shortest Path Problem

The SPP is a well-known problem in the optimization and graph theory fields. Given

a digraph with each arc possessing a nonnegative weight, the SPP consists of finding the

path from a source node to a destination node with the minimum total weight. Early pub-

lications of this problem include Kruskal (1956) discussing the problem of finding the

shortest spanning subtree on a graph; Ford Jr (1956) presenting the network flow problem,

and Loberman and Weinberger (1957) studying the problem of connecting terminals with

the minimum wire length. The first solutions algorithms for this problem are presented

in Bellman (1958), Dijkstra (1959) and Dantzig (1960); Glover et al. (1985a,b) develop a

more efficient algorithm, and Fredman and Tarjan (1987) present an improved implemen-

tation of Dijkstra’s algorithm using Fibonacci heaps.

12

Applications of the SPP include vehicle routing problems (e.g. Desrochers and Soumis,

1988; Toth and Vigo, 2002; Feillet et al., 2004), driving directions on GPS systems (e.g.

Shibuya, 2002; Goldberg and Harrelson, 2005), design of railway networks (e.g. Nachti-

gall, 1995; Schulz et al., 2002), machine learning (e.g. Borgwardt and Kriegel, 2005;

Bunescu and Mooney, 2005), and telecommunications among others (e.g. Montemanni

et al., 2004). The interested reader is referred to Deo and Pang (1984); Cherkassky et al.

(1996) for further information and classification of the shortest path problems and solution

algorithms.

The SPP under parameter uncertainty has been studied in stochastic programming con-

sidering that weights of the arcs follow a random distribution (e.g. Polychronopoulos et al.,

1993), or change probabilistically according to a Markov chain (e.g. Orda et al., 1993).

Further stochastic programming models and solution algorithms for the SPP under param-

eter uncertainty can be found in Bertsekas and Tsitsiklis (1991); Ji (2005); Hutson and

Shier (2009). In the field of robust optimization Kouvelis and Yu (1997); Yu and Yang

(1998) present a robust formulation for the SPP when the weight of the arcs belong to a

set of different scenarios. The authors show that the problem is NP-complete for more

restricted layered networks of width 2 and 2 scenarios; Yu and Yang developed a pseudo-

polynomial to solve the problem in general networks with a bounded number of scenarios.

Montemanni and Gambardella (2004) present an exact algorithm for Kouvelis and Yu’s

robust shortest path model by considering that the uncertain weights belong to a given

interval; Montemanni et al. (2004) uses a branch and bound methodology to improve this

algorithm. Bertsimas and Sim (2003) develop a cardinality-constrained robust SPP with

the weights belonging to a given interval. Vincke (1999); Roy (2005, 2010); Gabrel et al.

(2013) present other robust models and solutions algorithms for the SPP with weights

belonging to an interval or to a set of scenarios.

13

1.4 Preliminaries and Notation

This section presents preliminaries and introduces basic notation used through all the

chapters of this dissertation.

Let x ∈ Rn be a binary decision vector with n binary decision variables xi, i = 1, ..., n.

Let f : Rn → R be a function defined as f(x) =
∑n

i=1 cixi, with ci ∈ R,∀i. Let

gj : Rn → R be a function defined as gj(x) =
∑n

i=1 aijxi with aij ∈ R,∀i, j = 1, ...,m

defining the left-hand-side, and bj ∈ R defining the right-hand-side of the j-th constraint

∀j.

Let X be the feasible set defined as X = {x ∈ Rn : gj(x) ≤ bj,∀j;xi ∈ {0, 1},∀i}.

A BLP can be formulated as follows:

min
x
{f(x) : x ∈ X} . (1.1)

A prescribed vector x̂ denotes an instance of x formed by the given prescribed values

x̂i of the variables xi,∀i. Similarly, x̃ denotes the implemented vector formed by the

implemented values x̃i,∀i.

Variables under implementation uncertainty are termed uncertain variables and vari-

ables not affected by uncertainty are termed certain variables. The following assumptions

are considered through all this dissertation:

Assumption 1.4.1. It is known which variables are uncertain variables.

Assumption 1.4.2. There exists at least one certain variable.

Through all this dissertation, the original BLP formulation is denoted as the determin-

istic model or the deterministic BLP. Similarly, the solutions of the deterministic BLP are

denoted as the deterministic solutions.

14

1.5 Organization of the Dissertation

This dissertation is organized in chapters as follows.

Chapter 2 presents the proposed model of implementation uncertainty in binary vari-

ables. This model of permits the development of a model of the solution space containing

all the possible realizations of the implementation uncertainty; the solution space permits

to identify essential properties of the robust formulation and robust solutions. This chap-

ter introduces the methodology to solve BLPs under implementation uncertainty. This

methodology consists in the formulation a robust BLP under this type of uncertainty that

seeks for solutions satisfying the given levels of optimality and feasibility. The corre-

sponding measures of robustness define the levels of optimality and feasibility of the ro-

bust solutions. This chapter also presents a linear reformulation of the RBIU that permits

to identify robust solutions by applying existing algorithms to solve MILPs. This disser-

tation proposes a methodology consisting of the control of the feasibility relaxation level

and the selection of the solutions bounding the objective function value that allows the de-

cision maker to control the level of conservatism of the robust solutions. Conservatism is

also addressed with a cardinality-constrained methodology that permits the decision maker

to control the conservatism through the control of the maximum number of the uncertain

variables impacted by uncertainty and the control of the feasibility relaxation level.

Chapter 3 focuses in the KP under implementation uncertainty. The proposed concepts

of robustness are applied to develop a robust KP under implementation uncertainty. Sim-

ilarly, the proposed solution is applied to identify the solutions of the RKP. Moreover, the

particular structural properties of this problem permit the use dynamic programming to

identify the robust solutions. This chapter also shows the cardinality-constrained KP un-

der implementation uncertainty and its equivalent linear reformulation. The performance

of the deterministic solutions of the KP and robust solutions of the RKP and CRKP is

15

evaluated in terms of their objective value and feasibility level. Similarly, the dynamic

programming and MILP solution method are compared in terms of their running time.

This chapter includes a discussion of the characteristics of the KP that make deterministic

solutions more sensitive to uncertainty and robust solutions more attractive.

Chapter 4 presents the AP under implementation uncertainty. This chapter describes

the equivalent PM and applies the proposed concepts of robustness to formulate the ro-

bust PM under implementation uncertainty. Different configurations of the RPM permit to

identify conditions for the existence of robust solutions and solutions that define match-

ings or connected bipartite graphs. The cardinality-constrained PM under implementation

uncertainty and the RPM are equivalent due to the structural properties of the PM. The

experimental study evaluates the performance of the deterministic and robust solutions in

terms of the objective function value and feasibility level when producing matchings and

connected bipartite graphs. The experiments also illustrate the difference in the lower and

upper bound of the objective function value as a control of the level of conservatism.

Chapter 5 is devoted to the SPP under implementation uncertainty. The robust SPP

under this type of uncertainty is presented. Different configurations of the control param-

eters permit to identify properties of the RSPP including its equivalence to a reduced SPP

free of uncertainty. This chapter presents a solution algorithm of the RSPP based on Di-

jkstra’s algorithm for SPP. The cardinality-constrained robust SPP under implementation

uncertainty is shown to be equivalent to the RSPP and can be treated as such. An exper-

imental study aims to evaluate the performance of the deterministic and robust solutions

and the performance of the solutions methodologies. Recommendations on the conditions

that make the robust solutions more attractive are included. This chapter ends presenting

a case study for a real application of the SPP under implementation uncertainty.

Chapter 6 presents the conclusions and summary of the contributions of this disserta-

tion, as well a discussion of related future research and extensions.

16

2. ROBUST BINARY LINEAR PROGRAMMING UNDER IMPLEMENTATION

UNCERTAINTY

2.1 Introduction

This chapter presents a model of implementation uncertainty in binary variables and

a methodology to solve BLPs under this type of uncertainty. This chapter includes the

development of a solution methodology to the RBIU and methodologies to address the

conservatism of the robust solutions.

Implementation uncertainty refers to the type of uncertainty that prevents the imple-

mentation of the prescribed solution exactly as computed. In other words, there exists a

possibility that the implemented values of the decision variables are different to the pre-

scribed ones. Implementation uncertainty occurs due model fidelity limitations result of

unknown or intrinsic characteristics of the modeled system, estimation errors, unavailable

or limited information, lack of precision or limited time available to model the problem in

hand. In the context of binary variables, implementation uncertainty can be interpreted as

the possibility that the binary decisions in a prescribed solution switches to the opposite

value when implemented. For instance, consider the solution of a facility location problem

prescribing siting a natural gas electricity generation plant in city A, but at the time of the

implementation new environmental regulations prohibit building this type of plant in this

city; therefore, the implemented value has to switch to do not sit the plant in city A. This

example also illustrates how data uncertainty could not straightforward be used to model

the uncertainty at hand.

Uncertainties may affect the optimality and feasibility of the solutions of an optimiza-

tion problem. One may ask, how can I protect the solutions of optimization of optimiza-

tion problems against uncertainties? Robust optimization approaches seek to answer this

17

question by identifying solutions that satisfy the given levels of optimality and feasibility

for any realization of the uncertainty; such solutions are termed robust solutions (Mulvey

et al., 1995). For instance, Soyster (1973) considers perturbations in the coefficients of the

constraints using convex sets; the resulting model produces solutions that are feasible for

any realization of the data within the convex sets.

Existing work in the field of robust optimization accounting for implementation un-

certainty is very limited. For instance, Ben-Tal et al. (2009) propose two forms of model-

ing this type of uncertainty on real decision variables: 1) additive implementation errors

refers to the case when a random value is added to the prescribed value, and 2) multi-

plicative implementation error refers to the case when the random value multiplies the

prescribed value; furthermore, they show that these forms of implementation errors are

equivalent to artificial data uncertainties and can be treated as such. However, extending

these representations to binary variables may not be straightforward; for instance, when

the prescribed value is zero, multiplicative implementation errors cannot model changes

in the implemented values independent of the random value. This work presents a model

of implementation uncertainty in binary variables that allows the development of a robust

formulation for BLPs under this type of uncertainty.

The proposed model of implementation uncertainty in binary variables describes the

existing uncertainty in the implemented value of this type of variable given its prescribed

value. The proposed model consists of defining the probability that the implemented value

is equal or different to the prescribed value; this probability is assumed to be unknown.

Although this dissertation focuses on linear programming, this model of implementation

uncertainty may hold for nonlinear binary problems as well.

The development of the RBIU is founded by measures of optimality and feasibility ro-

bustness levels. This work proposes a measure of the objective robustness level that seeks

for the worst case value of the objective function among all the possible solutions result of

18

implementation uncertainty, guaranteeing that the implemented solutions do not worsen

the given value. This measure is conservative since it sacrifices too much optimality, and

although there exist less conservative measures such as the maximum deviation from op-

timality or the maximum percentage deviation (Kouvelis and Yu, 1997), the use of the

worst-case value enables a linear reformulation leading to a more tractable robust formu-

lation. Similarly to Mulvey et al. (1995); Jornada and Leon (2016), this work proposes a

measure of the feasibility robustness level that measures the maximum deviation from the

feasible region when binary variables are impacted by implementation uncertainty. This

measure of the feasibility robustness level permits to control of the conservatism of the

robust solutions by controlling the maximum allowed deviation from feasibility.

The RBIU seeks solutions that minimize the worst case value of the objective func-

tion while satisfying the given deviation from the feasible region. Constraints forming

the RBIU require searching for a maximum value among an exponential number of bi-

nary vectors, making the RBIU a nonlinear combinatorial problem. Moreover, this work

demonstrates that RBIU is NP-Complete. This work also proves the existence of multiple

solutions for the RBIU given by every vector within the uncertain set; this result supports

the characteristic of robust formulations producing solutions that satisfy the given levels

of optimality and feasibility for any realization of the uncertainty, and supports the devel-

opment of a methodology to address the conservatism. Given the complexity of the RBIU,

a solutions methodology to the RBIU is developed. This methodology consists in a linear

reformulation of the robust feasible region. A characteristic of the RMBP is a reduction of

the number of binary variables as a function of the number of variables under implemen-

tation uncertainty; the higher the number of uncertain variables the smaller the number of

discrete variables in the RMBP.

The RBIU solutions are not exempt from conservatism and this chapter provides sev-

eral methods to reduce it. This work develops a methodology to address conservatism by

19

controlling the feasibility relaxation level and selecting the solutions bounding the value

of the objective function. The RBIU allows the decision maker to relax the feasibility level

leading to a possible reduction of the sacrifice of the optimality. A feasibility relaxation

is possible through an increment in the maximum permitted deviation from feasibility.

Another methodology to select the level of conservatism of the solutions consists in com-

puting the solutions that produce the lower and upper bounds of the value of the objective

function among the set of robust solutions. The lower bound solution is the least con-

servative, but its value may degrade when impacted by uncertainty; on the other hand,

the upper bound solution is the most conservative by being the worst case value, but its

value may improve when impacted by uncertainty. This dissertation provides another ap-

proach to address conservatism by developing a cardinality-constrained robust BLP under

implementation uncertainty based on Bertsimas and Sim (2004). The CBIU contains two

parameters to control the maximum number of uncertain variables that possess different

prescribed and implemented values and to control the feasibility relaxation level. A solu-

tion methodology and properties of the CBIU are presented in this chapter.

The remainder of this chapter is organized as follows. Section 2.2 presents the model of

implementation uncertainty for binary variables and the development of the solution space.

Section 2.3 presents the development of the RBIU and its properties. Section 2.4 presents

the development of the solution methodology. Section 2.5 presents the methodologies to

address the conservatism of the roust solutions. Section 2.6 presents concluding remarks

for this chapter.

2.2 Implementation Uncertainty in Binary Variables

Consider a binary variable x, an instance x̂i of xi and its implemented value x̃i. Let

P (x̃i|x̂i) be the conditional probability that the implemented value of the decision variable

xi is x̃i given that its prescribed value is x̂i.

20

Consider the following probabilities:

P (x̃i = x̂i|x̂i = 0) = pi, P (x̃i = 1− x̂i|x̂i = 0) = 1− pi

P (x̃i = x̂i|x̂i = 1) = qi, P (x̃i = 1− x̂i|x̂i = 1) = 1− qi,
(2.1)

with 0 ≤ pi, qi ≤ 1, and probabilities pi and qi independent of each other ∀i. The proba-

bilities pi and qi provide the probability of implementing the prescribed values, while their

complements provide the probability that the implemented values are different than the

prescribed values. A binary variable under implementation uncertainty may possess dif-

ferent prescribed and implemented values; an uncertain variable can be defined as follows:

Definition 2.2.1. A binary variable xi is under implementation uncertainty if pi < 1 or

qi < 1.

The following assumption is considered through this dissertation:

Assumption 2.2.1. For the uncertain variables the probabilities pi and qi are unknown.

Without loss of generality, the decision vector x is decomposed into two vectors xC

and xU , where xC is composed of the certain variables x1, ..., xc, and xU is composed of

the uncertain variables xc+1, ..., xn; for convenience define C = {1, ..., c} as the set of

indices of the certain variables in xC with c < n, and U = {c + 1, ..., n} as the set of

indices of uncertain variables in xU .

There exist an uncertain set U(xC) containing all the possible implementation vectors

due to implementation uncertainty. This set models the solution space for the BLP under

implementation uncertainty. The uncertain set is defined as follows:

Definition 2.2.2. Given a decision vector x = (xC , xU)T , the uncertain set is defined as

U(xC) =
{
y = (yC , yU)T : yC = xC ; yi ∈ {0, 1},∀i

}
.

The set U(xC) possesses the following properties:

21

Property 2.2.1. |U(xC)| = 2|U | = 2(n−c).

Property 2.2.2. x ∈ U(xC).

Property 2.2.3. Given binary vectors x, y ∈ Rn, if xC = yC , then U(xC) = U(yC).

The first property states that there are 2|U | vectors in U(xC) because of the 2|U | dif-

ferent outcomes of xU . The second property states that x may be implemented exactly as

computed even when it is under implementation uncertainty. The third property states that

vectors with the same certain values have equal uncertain sets.

2.3 Problem Formulation and Analysis

Consider the BLP in (1.1). A prescribed solution x̂ for the BLP is assumed to be

feasible and optimal; however, the implemented solution x̃ may be different due to im-

plementation uncertainty. It can be observed that given the definition of U(xC), x̃ may

be infeasible or suboptimal because the uncertain variables can take any value at the time

of the implementation. Therefore it is of interest to find solutions that guarantee certain

levels of optimality and feasibility when impacted by implementation uncertainty. Before

this can be done, it is necessary to formalize the concepts of the level of optimality and

level of feasibility.

2.3.1 Measures of Robustness

The objective robustness level, γ : Rn → R, is a measure of the degree to which

a solution is robust with respect to the objective function degradation when affected by

implementation uncertainty. γ is defined as follows:

Definition 2.3.1. The objective robustness level γ is defined as:

γ(x) = max
y∈U(xC)

{f(y)} . (2.2)

22

γ is the worst case value of the objective function among all the elements of U(xC)

guaranteeing that the objective value of the implemented solution will not worsen when

affected by implementation uncertainties. Similarly, the feasibility robustness level, δj :

Rn → R, is a measure of the degree to which a solution is robust with respect to the

violation of constraint j when affected by implementation uncertainty. δj is defined as

follows:

Definition 2.3.2. The feasibility robustness level δj is defined as follows:

δj(x) = max
y∈U(xC)

{gj(y)− bj, 0} , ∀j. (2.3)

The value of δj is positive if there exists a vector y ∈ U(xC) such that gj(y) exceeds

bj , and zero otherwise. The value of δj can be bounded by a given parameter δmax
j such

that a solution x is feasibility robust if the excess of gj over bj is not greater than δmax
j for

all the elements in U(xC). Appropriate scalarization factors may be used in (2.3) to make

comparisons between different constraints significant in practice.

2.3.2 Robust Formulation of a BLP Under Implementation Uncertainty

Let X be a feasible region named robust feasible region; X is defined by the following

set of constraints:

max
y∈U(xC)

{f(y)} ≤ γ(x) (2.4)

max
y∈U(xC)

{gj(y)} − δj(x) ≤ bj, ∀j (2.5)

γ(x) is unrestricted (2.6)

0 ≤ δj(x) ≤ δmax
j , ∀j (2.7)

xi ∈ {0, 1}, ∀i. (2.8)

23

Constraint (2.4) is named objective robustness constraint and it ensures that the Defini-

tion 2.3.1 is satisfied. The value of γ is unrestricted (2.6) since it depends of the coefficients

of the objective function f . Similarly, constraints (2.5) are named feasibility robustness

constraints; they together with constraints (2.7) ensure that the Definition 2.3.2 is satisfied

and the maximum excess of gj over bj is at most δmax
j . Constraints (2.8) are the binary

constraints for the decision variables xi.

It is possible now to formulate the robust BLP under implementation uncertainty (RBIU)

as the following single objective mixed-binary optimization problem:

min
x
{γ(x) : x, γ, δ1, ..., δm ∈ X} . (2.9)

Constraints (2.4) and (2.5) depend on the selected vector x, and require to search for

the maximum value among an exponential number of binary vectors in U(xC); this makes

the constraints nonlinear, and therefore the RBIU is a nonlinear mixed-integer formulation.

Claim 2.3.1 states the complexity of RBIU.

Claim 2.3.1. The RBIU is NP-Complete.

Proof. To prove Claim 2.3.1, it is necessary to prove that: 1) the RBIU is in NP, and 2)

an NP-Complete problem can be polynomially reducible to the RBIU. These results are

shown in Lemmas 2.3.1 and 2.3.2, respectively. Then Claim 2.3.1 holds.

Lemma 2.3.1. The RBIU is in NP.

Proof. Given an instance of RBIU with parameters ci, aij, bj and a solution x∗, γ∗, δ∗j

with δ∗j ≤ δmax
j ,∀j, the verification of a yes answer takes polynomial time. Indeed,

the verification of the expressions max{yi∈U(x∗C)}
{∑

i∈C cix
∗
i +

∑
i∈U ciyi

}
≤ γ∗ and

max{yi∈U(x∗C)}
{∑

i∈C aijx
∗
i +

∑
i∈U aijyi

}
≤ bj + δ∗j for all j runs in O(mn2) time.

24

RBIU is reformulated and solved as a mixed-binary linear problem (RMBP) in Section

2.4. MILPs are considered NP-complete (see Gary and Johnson, 2002).

Lemma 2.3.2. The RMBP is polynomially reducible to the RBIU (RMBP ≤P RBIU).

Proof. To prove that the RMBP is polynomially reducible to the RBIU, it suffices to show

that an instance of the RMBP can be solved as a instance of the RBIU. RBIU and RMBP

are equivalent (see Theorem 2.4.1); therefore RMBP ≤P RBIU.

These results complete the proof of Claim 2.3.1.

The remaining of this section presents structural properties of RBIU. Theorem 2.3.1

establishes the characteristics of the robust solutions.

Theorem 2.3.1. Let x∗ = (x∗C , x
∗
U) be an optimal solution of the RBIU; then any vector

y ∈ U(x∗C) is also optimal for the RBIU.

Proof. Let y be any vector in U(x∗C). From the Property 2.2.3, it follows that U(yC) =

U(x∗C). From Definitions 2.3.1 and 2.3.2, it follows that γ(y) = γ(x∗) and δj(y) = δj(x
∗).

Then, y ∈ X and yields the same value of γ. Therefore, every vector y ∈ U(x∗C) is also

optimal.

The set U(x∗C) is called here the robust-optimal solution set.

Corollary 2.3.1. If U(x∗C) 6= ∅, then RBIU has at least 2|U | optimal solutions.

Proof. This result follows from Property 2.2.1 and Theorem 2.3.1.

Corollary 2.3.2. To find the robust-optimal solutions set, it suffices to find one solution in

the set.

Proof. This result follows from Theorem 2.3.1 and Definition 2.2.2.

25

The proposed measures of robustness and RBIU consider a BLP where the objective is

to minimize the function f subject to inequality constraints of the form gj(x) ≤ bj . When

maximizing f(x), it can be rewritten as the minimization of −f(x) and maxx{f(x)} =

−minx{−f(x)}. Similarly, a constraint gj(x) ≥ bj can be rewritten as −gj(x) ≤ −bj .

On the other hand, the model proposed cannot directly handle equality constraints since

gj(x) = bj is infeasible whether gj exceeds bj or bj exceeds gj . An equality constraint can

be approached by representing it as to two inequalities, i.e. gj(x) ≤ bj and−gj(x) ≤ −bj;

then it is possible to write the corresponding feasibility robustness constraints as follows:

max
y∈U(xC)

{gj(y)} − δLj ≤ bj (2.10)

max
y∈U(xC)

{−gj(y)} − δGj ≤ −bj, (2.11)

with 0 ≤ δLj ≤ δLmax
j and 0 ≤ δGj ≤ δGmax

j .

The variables δLj and δGj measure the infeasibility level of the equality constraint; vari-

able δLj measures the excess of gj over bj; conversely, δGj measures the excess of bj over

gj . When δLj = 0, RBIU produce solutions satisfying the constraint gj(x) ≤ bj; similarly,

when δGj = 0, RBIU produce solutions satisfying the constraint gj(x) ≥ bj . Clearly, the

equality is satisfied when δLj = 0 and δGj = 0 simultaneously.

2.4 Solution Methodology

This section presents the solution approach to solve RBIU using an equivalent mixed-

binary linear formulation. Advantages of solving the linear formulation include: 1) a

reduction in the number of binary variables, and 2) linearity. As will be discussed in

detail later, the total number of binary variables is reduced because the equivalent problem

only depends on the certain variables. Linearity is convenient because of the wealth of

knowledge in the literature when compared to non-linear optimization models. Interested

26

readers are referred to Wolsey (1998); Schrijver (1998) for a review on existing solution

approaches.

Given a prescribed solution x̂ for the BLP, the implemented value x̃i, i ∈ U of an

uncertain variable may affect the feasibility of the j-th constraint if one of the following

conditions is satisfied:

1. x̃i = 1 given x̂i = 0 and aij ≥ 0, or

2. x̃i = 0 given x̂i = 1 and aij < 0.

These conditions describe an increment in the contribution of aijxi to the value of

gj(x). Clearly, any increment in gj(x) may lead to gj(x) > bj making the j-th constraint

infeasible. An increment in the value of f(x) can be described similarly.

Lemma 2.4.1. Expressions (aij + |aij|)/2 and (ci + |ci|)/2 provide the maximum contri-

bution of the terms aijxi and cixi to gj(x) and f(x) for any value of xi, respectively.

Proof. If aij ≥ 0, then |aij| = aij and (aij + |aij|)/2 = (aij + aij)/2 = aij ≥ aijxi.

Similarly, if aij < 0, then |aij| = −aij and (aij + |aij|)/2 = (aij − aij)/2 = 0 ≥ aijxi.

Therefore, (aij + |aij|)/2 ≥ aijxi for any value of xi. Similar proof can be done for the

expression (ci + |ci|)/2.

Result in Lemma 2.4.1 allow the linearization of the measures of robustness.

Let X ′ be a feasible region defined by the following constraints:

∑
i∈C

cixi +
∑
i∈U

(
ci + |ci|

2

)
≤ γ(x) (2.12)

∑
i∈C

aijxi +
∑
i∈U

(
aij + |aij|

2

)
− δj(x) ≤ bj, ∀j (2.13)

(2.6), (2.7), (2.8)

27

Constraint (2.12) is named maximum-contribution objective robustness constraint, and

constraints (2.13) are named maximum-constribution feasibility robustness constraints.

The RMBP can be formulated as follows:

min
x

{
γ(x) : x, γ, δ1, ..., δm ∈ X

′
}
. (2.14)

The RMBP formulation contains: 1) a single objective γ, 2) n − |U | = |C| binary

variables xi, 3) one unconstrained variable γ, 4) m nonnegative variables δj and 5) 2m+ 1

constraints. The relation between the RBIU and RMBP is described in Theorem 2.4.1.

Theorem 2.4.1. The RBIU and RMBP are equivalent.

The proof of Theorem 2.4.1 consists of proving the equality of the sets of solutions of

the RBIU and RMBP formulations. The following lemmas provide the necessary results

to complete this proof.

Lemma 2.4.2. Let x∗, γ∗ and δ∗j ,∀j be a feasible solution of the RMBP. Then x∗, γ∗ and

δ∗j ,∀j is also a feasible solution of the RBIU.

Proof. Given that x∗, γ∗ and δ∗j ,∀j are feasible, they satisfy constraints (2.6), (2.7) and

(2.8). By Lemma 2.4.1, aijyi ≤ (aij + |aij|)/2 and ciyi ≤ (ci + |ci|)/2 for all i ∈ U , and

by Property 2.2.3 x∗C = yC for all y ∈ U(x∗C). Then:

max
y∈U(x∗C)

{∑
i∈C

ciyi +
∑
i∈U

ciyi

}
=
∑
i∈C

cix
∗
i + max

y∈U(x∗C)

{∑
i∈U

ciyi

}

≤
∑
i∈C

cix
∗
i +

∑
i∈U

(
ci + |ci|

2

)
≤ γ∗,

max
y∈U(x∗C)

{∑
i∈C

aijyi +
∑
i∈U

aijyi

}
− δ∗j =

∑
i∈C

aijx
∗
i + max

y∈U(x∗C)

{∑
i∈U

aijyi

}
− δ∗j

≤
∑
i∈C

aijx
∗
i +

∑
i∈U

(
aij + |aij|

2

)
− δ∗j ≤ bj,∀j.

(2.15)

28

Therefore, x∗, γ∗ and δ∗j ,∀j are a feasible solution of the RBIU.

Lemma 2.4.3. Let x∗, γ∗ and δ∗j , ∀j be a feasible solution of the RBIU. Then x∗, γ∗ and

δ∗j ,∀j is also a feasible solution of the RMBP.

Proof. Given that x∗, γ∗ and δ∗j ,∀j are feasible, they satisfy constraints (2.6), (2.7) and

(2.8). By Lemma 2.4.1, maxy∈U(xC)

{∑
i∈U aijxi

}
=
∑

i∈U ((aij + |aij|)/2), and since

x∗ and δ∗j satisfy the constraints (2.5), x∗, γ∗ and δ∗j satisfy the constraints
∑

i∈C aijx
∗
i +∑

i∈U ((aij + |aij|)/2) − δ∗j ≤ bj,∀j. Therefore, x∗, γ∗ and δ∗j ,∀j satisfy constraints

(2.13). A proof that x∗, γ∗ and δ∗j ,∀j satisfy constraint (2.12) follows a similar rationale.

Therefore, x∗, γ∗ and δ∗j ,∀j are feasible solution of the RMBP.

Lemma 2.4.4. Let x∗, γ∗ and δ∗j ,∀j be an optimal solution of the RMBP. Then the optimal

value γ∗ = γ(x∗) of RMBP is also the optimal value of the RBIU.

Proof. Assume γ∗ is not the optimal value of the RBIU; then there should exist a different

value γ′ = γ(x∗) such that γ′ is the optimal value of the RBIU and γ′ < γ∗. By Lemma

2.4.3, γ′ satisfies constraint (2.12); however, γ∗ is the optimal value of the RMBP and γ∗

is the minimum value of the right-hand-side of the constraint (2.12). Then it follows that

γ∗ ≤ γ′, which makes the initial assumption false. Therefore, γ∗ is the optimal value of

the RBIU.

Lemma 2.4.5. Let x∗, γ∗ and δ∗j ,∀j be an optimal solution of the RBIU. Then the optimal

value γ∗ = γ(x∗) of the RBIU is also the optimal value of the RMBP.

Proof. Assume γ∗ is not the optimal value of the RMBP; then there should exist a different

value γ′ = γ(x∗) such that γ′ is the optimal value of the RMBP and γ′ < γ∗. By Lemma

2.4.4, γ′ is also optimal for the RBIU. However, γ∗ is optimal for the RBIU and it follows

that γ∗ ≤ γ′, which makes the initial assumption false. Therefore, γ∗ is optimal for the

RMBP.

29

Using the results in Lemmas 2.4.2, 2.4.3, 2.4.4 and 2.4.5, the proof of Theorem 2.4.1

is as follows:

Proof. Let X ′ be the set of solutions of the RBIU, and let X ′′ be the set of solutions of the

RMBP. By Lemma 2.4.2, a solution x∗, γ∗, δ∗j ∈ X
′ also belongs to X ′′ , then X ′ ⊆ X

′′ .

Similarly, by Lemma 2.4.3, a solution x∗, γ∗, δ∗j ∈ X
′′ also belongs to X ′ , then X ′′ ⊆ X

′ .

It follows that X ′ = X
′′ , and by Lemmas 2.4.4 and 2.4.5 their optimal values coincide;

therefore, the RBIU and RMBP are equivalent.

Corollary 2.4.1. Let x∗ = (x∗C , x
∗
U) be an optimal solution of the RMBP. Then every vector

y ∈ U(x∗C) is also an optimal solution of the RMBP.

Proof. This result follows from Theorems 2.3.1 and 2.4.1.

Note that the RMBP replaces all the terms corresponding to the uncertain variables

with constant values given by the expressions for the maximum contribution in Lemma

2.4.1; therefore, the RMBP does not depend on the uncertain variables. When the number

of uncertain variables |U | is equal to n, the RMBP does not contain any decision variable

and it is not possible to make any decision. Given the equivalence between the RBIU

and RMBP, this paper assumes that the RBIU contains at least one certain variable, i.e.

1 ≤ c < n.

Appendix A presents a polynomial-time transformation of RBIU into RMBP.

2.5 Conservatism of the RBIU Solutions

Robust solutions tend to be conservative in the sense that they sacrifice optimality to

satisfy the given level of feasibility (Ben-Tal and Nemirovski, 1998; Bertsimas and Sim,

2004). Solutions of the RBIU are not exempt from conservatism; this section presents

several methodologies to reduce the level of conservatism of the robust solutions.

30

2.5.1 Feasibility Relaxation and Bounding Solutions Method

This section presents a methodology to address conservatism consisting in the control

of the feasibility relaxation level and the selection of the solutions that bound the value of

the objective function. The methodology to select the solutions providing the lower and

upper bounds of the value of the objective function is presented next.

Theorem 2.3.1 shows that the RBIU produces a robust-optimal solution set U(x∗C).

Each solution within the robust-optimal solution set may produce a different objective

function value. Although the value of each solution depends on the specific problem in-

stance, this work shows a method to compute the solutions within the robust-optimal so-

lution providing the maximum and minimum objective function value; i.e., the upper and

lower bound values of the objective function. Propositions 2.5.1 and 2.5.2 provide these

bounds for the value of f(y), with y ∈ U(x∗C).

Proposition 2.5.1. Let x∗ = (x∗C , x
∗
U) be an optimal solution of the RBIU, and xUB =

(x∗C , x
UB
U), where xi in xUB

U is set as follows:

x∗i =

1, if ci ≥ 0

0, if ci < 0.
(2.16)

Then f(xUB) ≥ f(y),∀y ∈ U(x∗C); hence, f(xUB) is an upper bound for f(y), y ∈

U(x∗C).

Proof. By expression (2.16), if ci ≥ 0 for xi in xUB
U then xi = 1 and cixi = ci ≥ ciyi;

similarly, if ci < 0 then xi = 0 and cixi = 0 ≥ ciyi. Consider a solution y ∈ U(x∗C)

such that xUB 6= y. Given that x∗C = y∗C , then f(xUB) =
∑

xi∈xUB cixi =
∑

xi∈x∗C
cixi +∑

xi∈xUB
U
cixi ≥

∑
xi∈x∗C

cixi +
∑

yi∈yU ciyi =
∑

yi∈y ciyi = f(y). Therefore, f(xUB) ≥

f(y),∀y ∈ U(x∗C).

31

Proposition 2.5.2. Let x∗ = (x∗C , x
∗
U) be an optimal solution of the RBIU, and xLB =

(x∗C , x
LB
U), where xi in xLBU is set as follows:

x∗i =

0, if ci ≥ 0

1, if ci < 0.
(2.17)

Then f(xLB) ≤ f(y),∀y ∈ U(x∗C); hence, f(xLB) is a lower bound for f(y), y ∈

U(x∗C).

Proof. Proof of Proposition 2.5.2 is similar to the proof of Proposition 2.5.1.

The upper bound solution equals the worst case value of the objective function; this

solution is the most conservative among the solutions within the robust-optimal solution

set. The upper bound solution improves the value of f for any implemented value of the

uncertain variables. This solution can be considered as the pessimistic case where the

decision maker believes there exists a high chance that uncertainties will occur during im-

plementation; therefore, the decision maker seeks for more protection against any loss in

the value of the objective function. On the other hand, the lower bound solution is the

least conservative among the solutions within the robust-optimal solution set. The lower

bound solution suffers degradation of the value of f for any implemented value of the un-

certain variables. This solution can be considered as the optimistic case where the decision

maker believes there exists a low chance uncertainties will occur during implementation;

therefore, the decision maker seeks for a better value of f while taking the risk that it may

deteriorate.

The decision maker controls the level of conservatism of the prescribed solution by

computing the solutions described in Propositions 2.5.1 and 2.5.2.

Claim 2.5.1. The upper and lower bounds can be computed in O(n) time.

32

Proof. For every variable xi in the vector xU , the decision consists in evaluating expres-

sions (2.16) or (2.17). Therefore, the complete process requires exactly |U | steps with

0 ≤ |U | ≤ n.

Selecting the bounding solutions permits to control the level of conservatism among

the robust-optimal solution set; however, this methodology does not improve the worst

case value of the objective function, which is the main cause of the conservatism of the

robust solutions. On the other hand, feasibility relaxation permits to improve the worst

case value of the objective function by trading off the feasibility level concerning the

deterministic BLP.

RBIU also provides control on the degree of conservatism by conveniently setting the

parameters δmax
j . By increasing this parameter the decision maker increases the amount of

constraint relaxation, and an associated improvement in the worst case value of the objec-

tive function may be possible. An increment in the value of δmax
j may lead to solutions that

are not feasible for the BLP; therefore, a reduction of conservatism is achieved by sacri-

ficing feasibility with respect to the deterministic problem. In many practical applications,

solutions are required to be feasible with respect to the deterministic BLP; such solutions

can be obtained by setting each parameter δmax
j to value zero for all j. By Theorem 2.3.1,

it follows that U(x∗C) ⊆ X when δmax
j = 0,∀j.

When using feasibility relaxation, the decision maker is optimistic by assuming that

the possible improvement in the objective function is greater than the cost of violating

feasibility with respect to the deterministic BLP. For instance, in the knapsack problem

the cost of increasing the given capacity may be lower than the possible increment in the

profit due to the extra capacity. The optimistic level of the decision maker depends on his

selected level of the constraint relaxation; a pessimistic decision maker may consider that

no constraint relaxation is possible or there is no value in doing so.

33

The use of these two methods simultaneously may result in a possible higher reduction

of the level of the conservatism. Feasibility relaxation permits to reduce the worst case

value of the objective function leading to an overall reduction of the conservatism; the

selection of the bounding solutions allows to control the level of the conservatism among

the robust-optimal solution set obtained from the resolution of the RBIU with a fixed

feasibility level.

2.5.2 Cardinality-Constrained Robust Formulation

A different methodology to address the conservatism of the solutions of the RBIU

consists of the development of a CBIU. Similar to Bertsimas and Sim Bertsimas and Sim

(2004), this formulation constrains the maximum number of uncertain variables that are

impacted by uncertainty simultaneously. The CBIU accounts for uncertainty impacting

discrete variables, which impacts the entire column of the uncertain variables including

constraints and the objective function simultaneously. Moreover, the interval of uncer-

tainty in the proposed model is asymmetric and discrete due to the nature of the deci-

sion variables. The CBIU is founded by the expressions in Lemma 2.4.1 that permits to

represent the implementation uncertainty in binary variables through a linear expression.

Similarly to the RBIU, the CBIU contains parameters to control the feasibility relaxation

level as described in Section 2.5.1. The use of the two controls of conservatism may lead

to a high reduction of the conservatism but a high probability of losing protection. The

development of the CBIU is presented next.

2.5.2.1 Development of the Cardinality-Constrained Robust Formulation for a BLP Un-

der Implementation

Consider the expressions in Lemma 2.4.1 for maximum contribution of aijxi and cixi.

Let Γ be an integer parameter with 1 ≤ Γ ≤ |U | such that Γ represents the maximum

number of uncertain variables with different prescribed and implemented values.

34

Let X ′′ be a robust feasible region defined by the following constraints:

∑
i∈C

cixi + max
{S0:S0⊆U,|S0|≤Γ}

∑
i∈S0

(
ci + |ci|

2

)
+
∑

i∈U\S0

cixi

 ≤ γ(x) (2.18)

∑
i∈C

aijxi + max
{Sj :Sj⊆U,|Sj |≤Γ}

∑
i∈Sj

(
aij + |aij|

2

)
+
∑

i∈U\Sj

aijxi

− δj(x) ≤ bj,∀j

(2.19)

(2.6), (2.7), (2.8)

The CBIU is formulated as follows:

min
x

{
γ(x) : x, γ, δ1, ..., δm ∈ X

′′
}
. (2.20)

The CBIU possesses an alternative control parameter of the conservatism, δmax
j , that

controls the level of feasibility relaxation as described in Section 2.5.1. The incorpora-

tion of the control of feasibility relaxation results in a possible greater reduction of the

conservatism of the solutions, but there exists a higher probability of losing protection

and feasibility with respect to the deterministic BLP. The probability of the CBIU losing

protection is estimated in Section 2.5.2.2.

Formulation (2.20) considers every combination of at most Γ uncertain variables with

different prescribed and implemented values, identifies the combination that produces the

maximum contribution to f(x) and gj(x), and protects the given levels of feasibility and

optimality against these maximum contributions. The selection of the sets S0 and Sj in the

CBIU are nonlinear combinatorial problems making the CBIU a nonlinear combinatorial

problem as well. Theorem 2.5.1 addresses the nonlinearity of the CBIU and describes an

equivalent linear reformulation.

35

Theorem 2.5.1. The following mixed-binary linear programming problem is equivalent to

the CBIU.

min γ

s.t.
∑
i∈C

cixi + Γv0 + u00 +
∑
i∈U

ui0 ≤ γ

v0 + ui0 ≥
ci + |ci|

2
− cixi, ∀i ∈ U

u00 ≥
∑
i∈U

cixi

∑
i∈C

aijxi + Γvj + u0j +
∑
i∈U

uij − δj ≤ bj, ∀j

vj + uij ≥
aij + |aij|

2
− aijxi, ∀i ∈ U, j

u0j ≥
∑
i∈U

aijxi, ∀j

ui0, uij, v0, vj ≥ 0, ∀i ∈ U, j

(2.6), (2.7), (2.8)

(2.21)

Proof of Theorem 2.5.1 is based on demonstrating that the selection of the sets S0

and Sj is equivalent to linear formulations that can be substituted into the CBIU by using

concepts of duality.

The following definitions and propositions provide the necessary results to complete

this proof.

Definition 2.5.1. Given a prescribed vector x̂ and the value of Γ, the protection function

β0(x̂,Γ) of the optimality robustness constraint against at most Γ uncertain variables with

different prescribed and implemented values is defined as follows:

β0(x,Γ) = max
{S0:S0⊆U,|S0|≤Γ}

∑
i∈S0

(
ci + |ci|

2

)
+
∑

i∈U\S0

cixi

 . (2.22)

36

Proposition 2.5.3. The protection function β0(x̂,Γ) equals the value of the objective func-

tion of the following linear program:

β0(x̂,Γ) = max
∑
i∈U

(
ci + |ci|

2

)
zi0 +

∑
i∈U

cix̂i(1− zi0)

s.t.
∑
i∈U

zi0 ≤ Γ

zi0 ∈ {0, 1}, ∀i ∈ U.

(2.23)

Proof. Since cix̂i ≤ (ci + |ci|)/2,∀i the optimal solution of problem (2.23) clearly con-

sists of at most Γ variables zi0 with value 1. This is equivalent to the selection of the

subset S0 such that S0 ⊆ U, |S0| ≤ Γ, and maximizes the value of
∑

i∈S0
((ci + |ci|)/2) +∑

i∈U\S0
cixi.

Definition 2.5.2. Given a prescribed vector x̂ and the value of Γ, the protection function

βj(x̂,Γ) of the j-th feasibility robustness constraint against at most Γ uncertain variables

with different prescribed and implemented values is defined as follows:

βj(x,Γ) = max
{Sj :Sj⊆U,|Sj |≤Γ}

∑
i∈Sj

(
aij + |aij|

2

)
+
∑

i∈U\Sj

aijxi

 . (2.24)

Proposition 2.5.4. The protection function βj(x̂,Γ) equals the value of the objective func-

tion of the following linear program:

βj(x̂,Γ) = max
∑
i∈U

(
aij + |aij|

2

)
zij +

∑
i∈U

aijx̂i(1− zij)

s.t.
∑
i∈U

zij ≤ Γ

zi1 ∈ {0, 1}, ∀i ∈ U.

(2.25)

Proof. Proof of Proposition 2.5.4 is similar to proof of Proposition 2.5.3.

37

The proof of Theorem 2.5.1 is completed as follows.

Proof. Given that the constraint matrix is totally unimodular, it is possible to relax the

constraint zi0 ∈ {0, 1}, ∀i ∈ U in formulation (2.23) with 0 ≤ zi0 ≤ 1, ∀i ∈ U .

The dual problem of formulation(2.23) is the following:

min Γv0 + u00 +
∑
i∈U

ui0

s.t. v0 + ui0 ≥
ci + |ci|

2
− cix̂i, ∀i ∈ U

u00 ≥
∑
i∈U

cix̂i

v0, ui0 ≥ 0, ∀i ∈ U

u00 is unrestricted.

(2.26)

Problem (2.23) is feasible and bounded for all Γ ∈ [0, |U |], by strong duality the

dual problem (2.26) is also feasible and bounded and their objective values coincide. By

Proposition 2.5.3, the value of β0(x̂,Γ) is equal to the objective value of the dual problem

(2.26). Therefore, it is possible to substitute the dual problem (2.26) into CBIU. A similar

process follows for the function βj(x̂,Γ), and its equivalent linear and dual problems.

Therefore the CBIU is equivalent to the CMBP.

The CMBP contains: 1) n binary variables, 2)m+2 unrestricted variables, 3)mn+m+

n+1 nonnegative variables, and 4) 2|U |m+5m+|U |+n+3 constraints. While the CMBP

in Theorem 2.5.1 assumes that there exist at most Γ uncertain variables with different

prescribed and implemented values, Corollary 2.5.1 assumes that there exist exactly Γ

uncertain variables with different prescribed and implemented values.

Corollary 2.5.1. A cardinality-constrained robust formulation with exact Γ uncertain

variables with different prescribed and implemented values is equivalent to CMBP for-

mulation with the variables v0 and vj unrestricted.

38

Proof. Consider constraints
∑

i∈U zi0 ≤ Γ and
∑

i∈U zij ≤ Γ, ∀j in Propositions 2.5.3

and 2.5.4 and replace them by
∑

i∈U zi0 = Γ and
∑

i∈U zij = Γ respectively. Then, the

associated variables v0 and vj in their corresponding dual problems become unrestricted.

The rest of the proof is similar to the proof of Theorem 2.5.1.

Proposition 2.5.5. CBIU is equivalent to RMBP if Γ = |U |.

Proof. With Γ = |U | it follows that |S0| = |Sj| = |U |,∀j; then S0 = Sj = U,∀j.

Therefore the constraints (2.18) and (2.19) in CBIU can be simplified as follows:

∑
i∈C

cixi +
∑
i∈U

(
ci + |ci|

2

)
≤ γ

∑
i∈C

aijxi +
∑
i∈U

(
aij + |aij|

2

)
− δj ≤ bj, ∀j,

(2.27)

which correspond to the constraints (2.12) and (2.13) in the feasible region X ′ of RMBP.

Unlike the RBIU, CBIU does not sacrifice feasibility to improve optimality but it sac-

rifices protection of the solutions instead. The following section presents estimates of the

probabilities of losing protection against uncertainty when using CBIU and presents upper

bounds for such probabilities.

2.5.2.2 Probability bounds

CBIU solutions satisfy the given optimality and feasibility levels if there exist at most

Γ uncertain variables with different implemented and prescribed values. In reality, there

may exist more than Γ uncertain variables with different prescribed and implemented val-

ues; therefore, there exist probabilities that the levels of optimality and feasibility are not

satisfied. To estimate such probabilities, Assumption 2.2.1 will be relaxed and it will be

assumed that pi = p, ∀i and qi = q,∀i, with p and q known.

39

Let η0 and η1 be two independent random variables such that η0 measures the number

of uncertain variables with prescribed value 0 and implemented value 1, and η1 measures

the number of uncertain variables with prescribed value 1 and the implemented value 0.

Then the probability that there exist exactly Γ uncertain variables with different prescribed

and implemented values can be computed as follows:

P (η0 + η1 = Γ) =
Γ∑

i=0

(
U0

i

)
(1− p)ipU0−i

(
U1

Γ− i

)
(1− q)Γ−iqU1−Γ+i, (2.28)

where U0 and U1 are the number of uncertain variables whose prescribed values are 0

and 1, respectively, and U0 + U1 = |U |. Distribution (2.28) represents the sum of two

independent binomial random variables η0 and η1.

Theorem 2.5.2. Given a CBIU solution x∗, γ∗ and δ∗j , the upper bound of the probability

that the solution robustness or any of the j-th model robustness constraints is not satisfied

is given by:

P

({
n∑

i=1

cix
∗
i > γ∗

}
∪

{
n∑

i=1

aijx
∗
i > bj + δ∗j

})

≤ 1−
Γ∑

`=0

(∑̀
i=0

(
U0

i

)
(1− p)ipU0−i

(
U1

`− i

)
(1− q)`−iqU1−`+i

)
.

(2.29)

Proof. Given that the solution and model robustness constraints are protected for at most

Γ uncertain variables with different prescribed and implemented values, it can be assumed

that they may become infeasible if there exist at least one one more uncertain variable with

such characteristic; this is η0 + η1 > Γ in expression (2.28). Therefore, expression (2.29)

holds.

Note that this probability bound depends alone on the number of uncertain variables

with different implemented and prescribed values, and the number of uncertain variables

40

with prescribed value zero or one. By not depending on other elements such as the pa-

rameters of the problem or the values of δmax
j , this probability may be loose for certain

problems.

When p = q, the distribution of η0 +η1 is a binomial distribution with parameters 1−p

and |U |, i.e. η0 + η1 ∼ B(|U |, 1− p). Furthermore, with very little information available,

one may assume that for all the uncertain variables the implemented values are equal or

different to the prescribed value with the same probability, independent of the prescribed

value. The assumption is modeled by making p = 1/2 and the probability bound for this

special case is shown in Corollary 2.5.2.

Corollary 2.5.2. Given a CBIU solution x∗, γ∗ and δ∗j , and η0 + η1 ∼ B(|U |, 1/2), the

upper bound of the probability that the solution robustness or any j-th model robustness

constraint is not satisfied is given by:

P

({
n∑

i=1

cix
∗
i > γ∗

}
∪

{
n∑

i=1

aijx
∗
i > bj + δ∗j

})
≤ 1− 1

2|U |

Γ∑
`=0

(
|U |
`

)
. (2.30)

Proof. This proof is similar to proof of Theorem 2.5.2 with η0 + η1 ∼ B(|U |, 1/2).

When the assumption that p = 1/2 is not satisfied, Theorem 2.5.2 is applied.

2.5.2.3 Properties of the CBIU for Certain Problem Structures

This section shows particular cases where the CBIU formulation shown in Section

2.5.2.1 does not work as intended. Results in Lemmas 2.5.1 and 2.5.2, and Corollaries

2.5.3, 2.5.4, 2.5.5 and 2.5.6 show that, due to certain structural properties of the BLP, there

may not be possible to control the level of conservatism using a cardinality-constrained

robust formulation. Moreover, Corollaries 2.5.4 and 2.5.6 state that for a particular BLP

the CBIU and RBIU are equivalent independent of Γ.

41

Lemma 2.5.1. The cardinality-constrained robust counterpart of a constraint of the form∑n
i=1 xi ≥ b is independent of the value of Γ.

Proof. The cardinality-constrained robust counterpart of a constraint of the form
∑n

i=1 xi ≥

b is the following:

∑
i∈C

xi − max
{S:S⊆U,|S|≤Γ}

− ∑
i∈U\S

xi

+ δ ≥ b. (2.31)

The maximum value of the term−
∑

i∈U\S xi in (2.31) is zero independent of the value

of Γ, with Γ ≥ 1. Then
∑n

i=1 xi ≥ b can be simplified to
∑

i∈C xi + δ ≥ b, and it does not

depend of Γ.

Corollary 2.5.3. The CBIU is independent of Γ if the BLP consists of ci ≥ 0,∀i and

constraints
∑n

i=1 xi ≥ bj,∀j.

Proof. By Lemma 2.5.1, the cardinality-constrained robust counterpart of each constraint

j is independent of Γ. On the other hand, the cardinality-constrained robust counterpart of

the objective function is as shown in (2.18). Since ci ≥ 0 then the maximum value of the

term
∑

i∈S0
((ci + |ci|)/2)+

∑
i∈U\S0

cixi is given by
∑

i∈S0
((ci + |ci|)/2)+

∑
i∈U\S0

ci =∑
i∈U ci for any value of Γ. Therefore, the CBIU is independent of Γ.

Corollary 2.5.4. The CBIU is equivalent to RBIU independent of Γ if the BLP consists of

ci ≥ 0,∀i and constraints
∑n

i=1 xi ≥ bj,∀j.

Proof. By Lemma 2.5.1, the cardinality-constrained robust counterpart of each constraint

j is independent of Γ, and each constraint can be simplified to
∑n

i=1 xi + δj ≥ bj,∀j. By

Corollary 2.5.4, the term
∑

i∈S0
((ci + |ci|)/2) +

∑
i∈U\S0

cixi is equivalent to
∑

i∈U ci =∑
i∈U ((ci + |ci|)/2); constraint (2.18) can be rewritten as

∑
i∈C cixi+

∑
i∈U ((ci + |ci|)/2)

for any value of Γ. Therefore, the reduced expressions of the cardinality-constrained ro-

bust formulation corresponds to the RBIU formulation independent of the value of Γ.

42

Lemma 2.5.2. The cardinality-constrained robust counterpart of a constraint of the form∑n
i=1 xi = b is independent of the value of Γ.

Proof. The cardinality-constrained robust counterpart of a constraint of the form
∑n

i=1 xi =

b is the following:

∑
i∈C

xi − max
{S′:S′⊆U,|S′|≤Γ}

− ∑
i∈U\S′

xi

+ δG ≥ b (2.32)

∑
i∈C

xi + max
{S′′:S′′⊆U,|S′′|≤Γ}

|S ′′|+ ∑
i∈U\S′′

xi

− δL ≤ b. (2.33)

By Lemma 2.5.1, constraint (2.32) is independent of Γ. On the other hand, the maxi-

mum value of the term |S ′′| +
∑

i∈U\S′′ xi is given by |S ′′| + |U \ S ′′| = |U | independent

of Γ, with Γ ≥ 1; then constraint (2.33) can be simplified to
∑

i∈C xi + |U | − δ ≤ b, and

it does not depend of Γ.

Corollary 2.5.5. The CBIU is independent of Γ if the BLP consists of ci ≥ 0,∀i and

constraints
∑n

i=1 xi = bj,∀j.

Proof. Proof of Corollary 2.5.5 is similar to proof of Corollary 2.5.3.

Corollary 2.5.6. The CBIU is equivalent to RBIU independent of Γ if the BLP consists of

ci ≥ 0,∀i and constraints
∑n

i=1 xi = bj,∀j.

Proof. Proof of Corollary 2.5.6 is similar to proof of Corollary 2.5.4.

2.6 Summary and Conclusions

The work presented in this chapter represents the first attempt in the field of robust

optimization to model a BLP under implementation uncertainty. The model of binary

variables under implementation uncertainty is the groundwork for the development of the

43

measures of robustness and the development of a model to solve BLPs under this type of

uncertainty.

The robust formulation for a BLP under implementation uncertainty permits to identify

solutions that satisfy the given level of feasibility when minimize the degradation of the

objective function value for any realization of the uncertain variables. This chapter also

presents a solution methodology to solve the RBIU.

The level of the conservatism of the RBIU can be controlled through a relaxation of the

feasibility level and the selection of the bounding solutions among the robust-optimal solu-

tion set. The cardinality-constrained robust BLP under implementation uncertainty allows

the control of the conservatism by bounding the maximum number of uncertain variables

with different prescribed and implemented values and a relaxation of the feasibility level.

The proposed concepts of robustness can be applied to well-known BLPs under imple-

mentation uncertainty. Particular problem characteristics may make the robust solutions

more attractive from a theoretical or practical standpoint. Applications of these concepts

are presented in the subsequent chapters.

44

3. ROBUST KNAPSACK PROBLEM UNDER IMPLEMENTATION

UNCERTAINTY

3.1 Introduction

This section presents an application of the proposed concepts of robustness presented

in Chapter 2 to the KP under implementation uncertainty. Properties of the robust formu-

lations and robust solutions are developed. This chapter includes an experimental study to

evaluate the performance of the deterministic and robust solutions in terms of the objective

value and feasibility level.

The KP under implementation uncertainty considers that some options may not be

available at the time of implementation or options not initially considered may be forced to

be selected, for instance, as a result of policy changes. Consider for example the problem

of loading a plane with the most valuable cargo; a missing item may not be available to be

loaded, or changes in priority may lead to loading an item not prescribed. These changes

in the implemented values may lead to an excess of the initial capacity or high degradation

of the objective values. Existing work in the field of robust optimization accounts only for

the KP under data uncertainty (e.g. Yu, 1996; Bertsimas and Sim, 2003, 2004). This work

presents the first attempt to study this problem under implementation uncertainty.

The concepts of robustness developed in Chapter 2 are applied to the KP under imple-

mentation uncertainty. This work formulates the corresponding robust KP under imple-

mentation uncertainty and its corresponding linear reformulation as a solution methodol-

ogy. Due to its structural properties, the RKP can be transformed to an equivalent KP free

of uncertainty to which existing dynamic programming algorithms can be applied. The

cardinality-constrained robust KP under implementation uncertainty and its properties are

also presented in this chapter.

45

This chapter presents an experimental study of the KP under implementation uncer-

tainty. This study aims to compare the performance of the deterministic and robust so-

lutions in terms of the objective function value and feasibility level. This work develops

measures of performance to evaluate the solutions. The measure of the objective function

performance computes the average value of the feasible solutions among all the uncertain

set; the measure of feasibility performance computes the proportion of the vectors in the

uncertain set that satisfies the given level of feasibility. The results of the experimental

study show the characteristics of the KP that make the deterministic solutions more sensi-

tive to uncertainty and make the robust solutions more appropriate.

The remainder of this chapter is organized as follows. Section 3.2 presents the devel-

opment of the robust formulations RKP and demonstrates its equivalence to a KP free of

uncertainty. Section 3.3 shows the corresponding CRKP, its equivalent linear reformula-

tion and their properties. Section 3.4 presents the experimental study. Section 3.5 presents

concluding remarks for the chapter.

3.2 Robust Knapsack Problem Under Implementation Uncertainty

The deterministic KP can be described as follows: given a set N containing n different

items, each item possesses a profit ci ≥ 0 and weight ai ≥ 0 for i = 1, ..., n, and a

maximum capacity b ≥ 0. The objective of the KP is to select a subset of items such that

the total profit f(x) is maximum and the total weight does not exceed b. The KP can be

formulated as follows:

max f(x) =
n∑

i=1

cixi

s.t.
n∑

i=1

aixi ≤ b

xi ∈ {0, 1}, i = 1, ..., n.

(3.1)

46

The binary decision variable xi is equal to 1 if the i-th item is selected, and the value

of xi is equal to 0 otherwise.

In practice, there exist a possibility that some of the options selected by the determinis-

tic solutions of the KP formulation may not be available or options not initially considered

may be forced to be selected at the time of the implementation. In any of these situations,

the implemented values of the decision variables are different to the prescribed values.

Definition 2.2.1 of a binary variable under implementation uncertainty and definition

2.2.2 of the uncertain set can be applied to model this situation. Moreover, the KP under

this type of uncertainty can be solved by using the robust formulation developed in Section

2.3.2. The development of the robust KP under implementation uncertainty is presented

next.

Without loss of generality, the objective function of the formulation (3.1) will be

treated as −min{−f(x)} = −min{−
∑n

i=1 cixi}.

The measure of objective robustness level in Definition 2.3.1 corresponding to the KP

is the following:

γ(x) = max
y∈U(xC)

{
−

n∑
i=1

ciyi

}
. (3.2)

Similarly, the measure of feasibility robustness level in Definition 2.3.2 corresponding

to the KP is the following:

δ(x) = max
y∈U(xC)

{
n∑

i=1

aiyi − b, 0

}
. (3.3)

with δ(x) ≤ δmax.

In the context of the KP, the parameter δmax represents the extra capacity that the

decision maker is accepted to consider in order to reduce the conservatism of the robust

solution.

47

Considering the measures of the level of robustness, the robust knapsack problem un-

der implementation uncertainty (RKP) can be formulated as follows:

min γ(x) (3.4)

s.t. max
y∈U(xC)

{
n∑

i=1

−ciyi

}
≤ γ (3.5)

max
y∈U(xC)

{
n∑

i=1

aiyi

}
− δ ≤ b (3.6)

xi ∈ {0, 1}, ∀i (3.7)

γ ≤ 0 (3.8)

0 ≤ δ ≤ δmax. (3.9)

The objective function (3.4) seeks to minimize the worst-case value of the total profit.

Constraint (3.5) is the objective robustness constraint guaranteeing that definition of γ is

satisfied. Similarly, constraint (3.6) is the feasibility robustness constraint and together

with constraint (3.9) guarantee that definition of δ is satisfied. Constraints (3.7) are the

binary constraints for the decision variables xi,∀i.

Note that maxy∈U(xC) {
∑n

i=1 aiyi} − δmax ≤ maxy∈U(xC) {
∑n

i=1 aiyi} − δ, and con-

straints (3.6) and (3.9) can be combined into a single constraint maxy∈U(xC) {
∑n

i=1 aiyi}−

δmax ≤ b.. The equivalent linear reformulation corresponding to the RKP is the following:

min γ (3.10)

s.t. −
∑
i∈C

cixi ≤ γ (3.11)

∑
i∈C

aixi +
∑
i∈U

ai − δmax ≤ b (3.12)

(3.7), (3.8).

48

Results in Theorem 2.3.1 and Corollary 2.3.1 hold for the RKP.

Robust formulations tend to increase the computational complexity of the determin-

istic model. Wolsey (1998) shows that the KP is NP-Complete and presents a dynamic

programming approach to solve this problem in pseudo-polynomial time when the coeffi-

cients ai,∀i and b are positive integers; the dynamic programming algorithm runs inO(nb)

time.

When the parameters of the constraint ai,∀i satisfy this condition, the RKP can be

solved using the Wolsey’s dynamic programming approach by modeling the RKP as an

equivalent KP consisting of variables not under implementation uncertainty only. The

development of the equivalent KP is shown as follows:

Let b′ = b + δmax −
∑

i∈U ai, and let f ′(x) = −
∑

i∈C cixi. The equivalent linear

reformulation of the RKP can be reformulated as follows:

min f ′(x)

s.t.
∑
i∈C

aixi ≤ b′

xi ∈ {0, 1}, i ∈ C.

(3.13)

This formulation is a deterministic KP and can be treated as such; therefore, it can

be solved in pseudo-polynomial time using dynamic programming as shown in Wolsey

(1998).

Appendix B presents an implementation of the dynamic programming approach.

3.3 Cardinality-Constrained Robust Formulation of the KP

Similarly, the cardinality-constrained robust optimization concept presented in Section

2.5.2 can be applied to the KP under implementation uncertainty.

49

The cardinality-constrained robust KP under implementation uncertainty (CRKP) is

the following:

min γ (3.14)

s.t. −
∑
i∈C

cixi + max
{S0:S0⊆U,|S0|≤Γ}

− ∑
i∈U\S0

cixi

 ≤ γ (3.15)

∑
i∈C

aixi + max
{S1:S1⊆U,|S1|≤Γ}

∑
i∈S1

ai +
∑

i∈U\S1

aixi

− δmax ≤ b (3.16)

(3.7), (3.8).

And the equivalent linear reformulation as shown in Section 2.5.2 is the following:

min γ

s.t. −
∑
i∈D

cixi + Γv0 + u00 +
∑
i∈U

ui0 ≤ γ

∑
i∈D

aixi + Γv1 + u0j +
∑
i∈U

ui1 − δmax ≤ b

v0 + ui0 ≥ cixi, ∀i ∈ U

u00 ≥ −
∑
i∈U

cixi

v1 + ui1 ≥ ai − aixi, ∀i ∈ U

u01 ≥
∑
i∈U

aixi

ui0, ui1, v0, v1 ≥ 0, ∀i ∈ U

u00, u01 are unrestricted

(3.7), (3.8).

(3.17)

50

In contrast to the RKP, the CRKP cannot be modeled as an equivalent KP. Existing

methods to solve cardinality-constrained robust formulations address problems with un-

certainty impacting to the objective function only Bertsimas and Sim (2003). Implemen-

tation uncertainty impacts the objective function and constraint of the KP simultaneously;

therefore, the existing solutions methods cannot be applied to the CRKP. The CRKP can

be solved using existing MILP algorithms or commercial software applied to its linear

reformulation.

Result in Theorem 2.5.2 can be also apply to the CRKP. The corresponding expression

for the CRKP is the following:

P

({
−

n∑
i=1

cix
∗
i > γ∗

}
∪

{
n∑

i=1

aix
∗
i > b+ δmax

})

≤ 1−
Γ∑

`=0

(∑̀
i=0

(
U0

i

)
(1− p)ipU0−i

(
U1

`− i

)
(1− q)`−iqU1−`+i

)
(3.18)

3.4 Experimental Study

This section presents the experimental study for the KP under implementation uncer-

tainty. The objective of this study is to illustrate the sensitivity of the deterministic and

robust solutions under uncertainty, the different levels of the conservatism of the RKP and

CRKP, and the tightness of the probability bounds in (3.18).

3.4.1 Performance Measures

The solutions’ performance is evaluated based on the objective function performance

and the level of feasibility in the face of implementation uncertainty. In evaluating these

performances, one needs to account for the fact that solutions under implementation un-

certainty produce a uncertain set U(xC), where xC is the deterministic component of the

51

solution vector. By the result in Theorem 2.3.1, U(xC) provides also the robust-optimal

solution set.

Let F represent the feasible region of a given problem, including the constraint relax-

ation defined by δmax
j , and let F ⊆ U(xC) = {x ∈ U(xC) : x ∈ F ∩ U(xC)} be the set of

all the solutions in U(xC) that are feasible with respect to the given feasible region. The

feasibility ratio h(x) is defined as the proportion of the elements of U(xC) that are feasible

with respect to F ; h(x) can be defined as follows:

Definition 3.4.1. The feasibility ratio h(x) is defined as:

h(x) =
|F|
|U(xC)|

. (3.19)

The objective performance ratio f̄(x) measures the average objective value of the fea-

sible solutions in U(xC).

Definition 3.4.2. The average objective value of the feasible solutions f̄(x) is defined as

follows:

f̄(x) =

∑
x∈F f(x)

|F|
. (3.20)

The difference between the objective performance of the solution sets associated with

two solutions x and y is measured by the loss of the objective performance ratio l(x, y)

of y with respect to x; l(x, y) is defined as follows, assuming a minimization objective

function:

Definition 3.4.3. The loss of the objective performance ratio l(x, y) is defined as follows:

l(x, y) =
f̄(y)− f̄(x)

f̄(x)
; (3.21)

52

The larger the value of l(x, y), the worse is the objective performance of y compared

to x.

3.4.2 Test Problem Generation

Test knapsack problems are generated with the values of ci and ai randomly generated

using a uniform distribution between 1 and 1000. The right hand side of the knapsack

constraint is calculated as b = α
∑
ai, with constant α = 0.75, 0.5 and 0.25 for low,

medium and high levels of sensitivity to implementation uncertainty, respectively. The

experimental study consists of 30 problems with 20 variables for each level of α. Note

that, decreasing values of b result in solutions with increasing number of variables at 0, and

solutions with more variables prescribed at 0 tend to be more sensitive to implementation

uncertainty (i.e. more prone to become infeasible), because there are more chances of

x̂i = 0 and x̃i = 1 resulting in an increase in the value of
∑n

i=1 aixi, and consequently in

a possible violation of the knapsack constraint.

Each problem instance is solved for every |U | = 1, ..., 19 and Γ = 1, ..., |U |. Solutions

xD, xR and xCC are obtained by solving KP, RKP and CRKP, respectively. In turn, the

corresponding robust-optimal solution sets U(xDC), U(xRC) and U(xCC
C), feasible solution

sets F(xD), F(xR) and F(xCC), and performance measures are obtained via complete

enumeration. Recall that U contains all possible implemented outcomes; therefore, the

performance obtained represent the actual performance of a given solution in the face of

implementation uncertainty. It is assumed that the implemented value of the uncertain

variables can be different or equal to the prescribed value with same probability for any

prescribed value, i.e. pi = qi = 0.5,∀i.

53

3.4.3 Performance Results

3.4.3.1 RPK and CRPK Performance Results

Figure 3.1 shows the loss in objective performance ratio of RPK and CRPK (Γ = 1, 5

and 10) solutions versus increasing levels of implementation uncertainty (i.e. the number

of uncertain variables |U |) for high, medium and low sensitivity knapsack problems. In

this graph, a higher value represents a worse performance in objective compared to the

solution of the KP. As expected, in all cases tested the objective performance ratio of

robust solutions is worse than the solution of the KP.

0.
0

0.
1

0.
2

0.
3

0.
4

| U |

l(
x,

y
)

High sensitivity problem

1 3 5 7 9 11 13 15 17 19

0.
0

0.
1

0.
2

0.
3

0.
4

| U |

l(
x,

y
)

Medium sensitivity problem

1 3 5 7 9 11 13 15 17 19

0.
0

0.
1

0.
2

0.
3

0.
4

| U |

l(
x,

y
)

Low sensitivity problem

1 3 5 7 9 11 13 15 17 19

l (xD,xR) l (xD,xΓ=1
CC) l (xD,xΓ=5

CC) l (xD,xΓ=10
CC)

Figure 3.1: Loss of the objective performance ratio l(x, y).

54

For brevity, the following discussions refer to the medium sensitivity problem plot

in Figure 3.1 (the discussion would be similar for the other two cases). RPK solutions

perform similar to the solution of the KP with a loss of 0.02 at |U | = 1 degrading quickly

as the number of uncertain variables start increasing to a loss of around 0.33 at |U | = 10;

interestingly, the performance starts improving for |U | > 10. It can be observed that for

this problem set RPK becomes infeasible at around |U | = 10; hence for each problem, the

last feasible solution is fixed as the solution for the remaining values of |U |. The apparent

improvement in the loss of the objective performance ratio obtained after the solution is

fixed suggests that the difference between robust and solutions of the KP tend to diminish

as the level of uncertainty increases and the level of protection of RPK solutions decrease.

It can be observed that CRKP solutions tend to perform better than RPK solutions in

terms of objective value. This is because, by design and at the expense of feasibility losses,

CRKP produces more optimistic solutions by assuming that only a limited number of

variables will be simultaneously affected by uncertainty. On the other hand, RKP solutions

are the most conservative solutions assuming all uncertain variables may change their

values for the worst, and in our test, also protecting the solutions from becoming infeasible

with respect to the KP (i.e. δmax = 0). As a result, RKP solutions attempt to tradeoff

objective value for assurance of feasibility during implementation. CRKP solutions tend

to behave as the RKP solutions as the value of Γ increases; this effect appears to be stronger

when the problems are more sensitive to implementation uncertainty.

Figure 3.2 displays the feasible ratio versus the level of uncertainty (i.e. the number

of uncertain variables). In this graph, a higher value indicates better performance in terms

of feasibility. It can be observed that, when compared with the deterministic case, the

loss in objective performance ratio discussed so far is accompanied by better protection

against the infeasibility caused by implementation uncertainty; RKP solutions tend to per-

form the best in terms of feasibility for all levels of uncertainty; thus justifying the loss of

55

the objective performance ratio observed earlier. As expected, CRKP tends to have better

feasibility performance as the value of Γ increases and rapidly have similar performance

as RKP. The experimental results confirm that the degradation in feasibility is significant

for problems that are more sensitive to implementation uncertainty and small for low sen-

sitivity problems.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| U |

h
(x

)

High sensitivity problem

1 3 5 7 9 11 13 15 17 19

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| U |

h
(x

)
Medium sensitivity problem

1 3 5 7 9 11 13 15 17 19

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| U |

h
(x

)

Low sensitivity problem

1 3 5 7 9 11 13 15 17 19

h (xD) h (xR) h (xΓ=1
CC) h (xΓ=5

CC) h (xΓ=10
CC)

Figure 3.2: Feasible performance ratio h(x).

The experimental study suggests that the benefits of using robust solutions can be

dramatic. For instance, for highly sensitive problems with |U | = 2, using RKP will result

in a 15% loss in objective performance ratio but ensuring feasibility; while the solution of

56

the KP may become infeasible 50% of the time. Another example is for medium sensitivity

problems with |U | = 5, using CRKP with Γ = 1 the loss in the objective function is less

than 5% with a feasibility of about 75%; while the solution of the KP will only have a

feasibility performance of about 50%.

In summary, the experimental results suggest that in some situations solving the knap-

sack problem using RKP and CRKP may yield solutions that tend to maintain high levels

of feasibility with acceptable losses in the objective function performance. Following are

some practical recommendations based on the experimental results:

• The solutions of the KP are appropriate when the decision maker is optimistic and

believes the problem possesses low sensitivity to uncertainties, or such uncertain-

ties are unlikely to occur. In this case, the decision maker considers that a small

infeasibility is acceptable and prefers a better objective value. This is supported by

the plots of the loss of objective performance and feasible ratio for low sensitivity

problems; it can be observed that the loss of feasibility of the solutions of the KP

is low, and although, RKP and CRKP produce better feasibility level, their loss of

objective performance ratio is high (optimality plot).

• RKP solutions are appropriate when feasibility is very important, the decision maker

is pessimistic, or considers that the problem possesses high sensitivity to uncertain-

ties. Besides, this formulation is appropriate when infeasibilities cannot be accepted

even at the expense of objective value degradation. This behavior is observed in

Figure 3.2 where the feasibility ratio of RKP solutions is higher than the feasibility

ratio of the KP and CRKP solutions.

• CRKP is preferable when additional control in the level of conservativism of the

solutions is desired. In this case, the decision maker considers that the worst-case

scenario (all uncertain variables changing) is unlikely. As a result, the solutions can

57

lead to a better loss of the objective performance ratio while still providing some pro-

tection against uncertainties. This is supported by the plot of optimality that shows

CRKP producing better objective values than RKP (the loss of the objective perfor-

mance ratio of CRKP solutions is smaller than the loss of the objective performance

ratio of RKP solutions); however, the feasibility plot shows that CRKP solutions

produce smaller feasible ratio than RKP solutions, but better than the feasible ratio

of the solution of the KP.

• If possible, use robust solutions when the number of uncertain variables is away,

preferably smaller, from the minimum number of uncertain variables where RKP

cannot find feasible solutions. In these cases, the losses in objective function perfor-

mance tend to be smaller, and the feasibility performance better than the solution of

the KP.

3.4.3.2 CRKP Probability Bounds Performance

The experimental study tests the upper bound probability shown in (3.18). Figure 3.3

displays the experimental results and the theoretical values; the graphs show the plots

for a few values of Γ, and only show the portions of the curve where CRKP is feasible.

The test shows the mean probability obtained after completely enumerating all possible

outcomes of implementation uncertainty. It can be observed that the theoretical bound is

more accurate when the problems are highly sensitive to implementation uncertainty, and

are loose when the problems have medium or low sensitivity.

3.4.3.3 RKP Solution Methodologies Performance

The experimental study also evaluates the performance of the solution methodologies

for the RKP discussed in Section 3.2, namely the use of the equivalent MILP and the

dynamic programming (DP) approach, in terms of their runtime.

58

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| U |

P
(in

fe
as

ib
le

)
Γ=1

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| U |

P
(in

fe
as

ib
le

)

Γ=3

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| U |

P
(in

fe
as

ib
le

)

Γ=5

6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| U |

P
(in

fe
as

ib
le

)

Γ=10

11 12 13 14 15 16 17 18 19

Theoretical
probability

High
sensitivity

Medium
sensitivity

Low
sensitivity

Figure 3.3: Probability bounds of CRKP solutions.

The KP are generated as shown in Section 3.4.2; the values of ai,∀i and b are rounded

such that the constraint contains integer parameters only. 30 problems with 2000 vari-

ables and high sensitivity to uncertainty are tested. The performance of the solution

methodologies is also evaluated in terms of the number of uncertain variables with |U | =

50, 100, 200, 300, 400, ..., 1500. The average runtime of the 30 problems for every value

of |U | is computed; the results are shown in Figure 3.4. The MILP is solved using CPLEX

12.6 and Java; the DP algorithm is implemented in Java.

Results in Figure 3.4 show that the MILP approach provides a significantly runtime

when the number of uncertain variables is low, and it tends to decrease as the number of

59

0
50

0
10

00
15

00
20

00

| U |

R
un

 ti
m

e
(m

ili
se

c)

50 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

MILP Method DP Method

Figure 3.4: Average runtime of the MILP and DP solution approaches.

uncertain variables increases. The runtime of the two approaches is similar for a large

number of uncertain variables due to the reduced number of binary variables forming the

RKP when the number of uncertain variables is large. The effect of reducing the number

of certain variables is less significant for the DP approach than to the MILP.

3.5 Summary and Conclusions

This chapter presents a robust formulation for the KP under implementation uncer-

tainty such that it identifies solutions satisfying a certain level of feasibility while the

reduction of the profit is minimized. The KP particular problem structures permit to iden-

tify an equivalent KP free of uncertainty such that existing dynamic programming solution

approaches can be used to determine the robust solutions.

60

Experimental results show that the applicability of the deterministic solution can easily

become infeasible in the presence of uncertainties, while robust solutions guarantee their

applicability at the expense of optimality. The results show how the sensitivity of the KP to

uncertainty impacts in the performance of the robust solutions making them more attractive

for problems with significant sensitivity to implementation uncertainty. For problems with

low sensitivity, the loss of optimality is justified when one is interested in protecting the

feasibility for all realizations of the uncertainty.

This experimental study shows that computing the robust solutions using a dynamic

programming approach is more efficient for large-scale instances of the problem. The

performance of the dynamic programming and linear programming methods is similar for

problems containing a small number of options. Some practical guidelines are offered for

the applications of the proposed methods.

61

4. ROBUST ASSIGNMENT PROBLEM UNDER IMPLEMENTATION

UNCERTAINTY

4.1 Introduction

This section presents the application of the proposed concepts of robustness presented

in Chapter 2 to the AP when this is impacted by implementation uncertainty. Significant

theoretical and practical results associated with the robust formulation and robust solutions

for this problem are also shown.

The AP under implementation uncertainty considers unexpected changes in the pre-

scribed assignments at the time of the implementation. For instance, last minute changes

in schedules may lead to task without being completed, or vehicle assignments may not be

possible due to breakdowns in the trucks. These unexpected changes may impact the cost

of the assignments or a reduction of the completion level of the assigned tasks. The AP can

be also studied in the context of graph theory as the PM. The PM under implementation

uncertainty considers that certain edges may not be available during the implementation.

Existing work in robust optimization studying the AP accounts for parameter uncer-

tainty only (e.g. Kouvelis and Yu, 1997; Aissi et al., 2005; Deı et al., 2006). This dis-

sertation attempts to address the AP under implementation uncertainty by applying the

concepts of robustness proposed in Chapter 2. This chapter shows the RPM and its cor-

responding linear reformulation. This work develops different configurations of the con-

trols parameters of the RPM that permit to identify the maximum number of uncertain

variables allowing the identification of robust solutions and the identification of solutions

defining matchings (not perfect) or connected bipartite graphs. This chapter presents the

cardinality-constrained robust PM and demonstrates that the CRPM is equivalent to the

RPM and can be treated as such.

62

This chapter presents an experimental study to evaluate the performance of the deter-

ministic and robust solutions. To evaluate the performance of the solutions, the perfor-

mance measures defined in Chapter 3 are used. The feasibility level computes the propor-

tion of the solutions among the uncertain set that define matchings and connected bipartite

graphs. Properties of the measures of feasibility for different configurations of the RPM

are also shown.

The remainder of this chapter is organized as follows. Section 4.2 introduces the PM

as an equivalent AP. Section 4.3 presents the development of the RPM and its properties.

Section crpmsec presents the CRPM and the demonstration of its equivalence with the

RPM. Section 4.5 presents the experimental study of the deterministic and robust solutions

of the PM under uncertainty. Section 4.6 presents concluding remarks for the chapter.

4.2 Minimum Weighted Bipartite Perfect Matching Problem

A graph is an ordered pair G = (V,E) consisting of a nonempty set V of vertices, and

a set E of pairs of vertices called edges. For an edge e = (i, j), vertices i and j are the

endpoints of e, and e is said incident to and connect i and j. A graph G is named bipartite

if the set of vertices V can be divided into two disjoint sets I and J such that every edge

possesses one endpoint in I and another one in J . A bipartite graph is complete if every

vertex in I is connected to every vertex in J .

A set M ⊆ E is called a matching if ∀i ∈ V there exists at most one edge e ∈ M

incident to i. A vertex is matched if it is endpoint of one edge inM ; otherwise, the vertex is

unmatched. A matching is perfect if all vertices are matched; in a bipartite graph, |I| = |J |

is a necessary condition for the existence of a perfect matching.

Given a bipartite graph, and given a weight cij ≥ 0 for each edge e = (i, j), the min-

imum weight bipartite perfect matching problem (PM) consists of identifying the perfect

matching M with minimum total weight. Interested readers are referred to Bondy and

63

Murty (1976); Wolsey (1998) and West et al. (2001) for more information about the PM

problem.

Consider a bipartite graph G, and the two vertex partitions I = {1, ..., n} and J =

{1, ..., n}. Let the binary decision variable xij be defined as follows:

xij =

1, if the edge (i, j) ∈M

0, otherwise
,∀i ∈ I, j ∈ J. (4.1)

The PM can be formulated as a binary linear programming problem as follows:

min f(x) =
∑

(i,j)∈I×J

cijxij (4.2)

s.t.
∑
j∈J

xij = 1, ∀i ∈ I (4.3)

∑
i∈I

xij = 1, ∀j ∈ J (4.4)

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J. (4.5)

The objective function (4.2) represents the total weight of all the edges in M . Con-

straints (4.3) ensure that every vertex in I is connected to exactly one vertex in J , and

constraints (4.4) ensure that every vertex in J is connected to exactly one vertex in I;

constraints (4.5) are the binary constraints for the decision variables.

As it was mentioned in the introduction, the PM is equivalent to the assignment prob-

lem where the weight cij corresponds to the cost of assigning the resource i ∈ I to the job

j ∈ J and the objective is to minimize the cost of all the assignments; constraints (4.3)

ensure that every resource performs one job, and constraints (4.4) ensure that every job is

assigned to one resource.

64

4.3 Robust PM Under Implementation Uncertainty

4.3.1 Model Development

Some of the edges forming the matching M may not be available to be selected or

some edges might be forced into the matching at the time of implementing the solution

of the PM. In other words, variables xij may be affected by implementation uncertainty.

Definitions 2.2.1 and 2.2.2 of a binary variable under implementation uncertainty and the

uncertain set can be applied to this problem.

Let U ⊂ E be the set of edges (i, j) such that the associated binary variable xij is an

uncertain variable, and assume there exists at least one uncertain variable, i.e. |U | > 0.

Given a prescribed solution x̂, the implemented solution x̃ may be any vector in U(x̂C)

due to implementation uncertainty; however, x̃ may not remain optimal nor feasible.

To measure the level of objective robustness, the measure γ can be used as defined in

(3.1). However, the definition of δ as defined in (2.3.1) measures infeasibility as the excess

of the left-hand-side over the right-hand-side; therefore, it cannot be directly applied in

constraints (4.3) and (4.4) since they are equality constraints (i.e. an excess of the right-

hand-side over the left-hand-side is also infeasible). This situation can be resolved by

rewriting constraints (4.3) and (4.4) as inequality constraints as follows:

∑
j∈J

xij ≤ 1,∀i ∈ I (4.6)

−
∑
j∈J

xij ≤ −1,∀i ∈ I (4.7)

∑
i∈I

xij ≤ 1,∀j ∈ J (4.8)

−
∑
i∈I

xij ≤ −1,∀j ∈ J. (4.9)

65

Constraints (4.6) and (4.8) ensure that every vertex in I and J have at most one incident

edge, respectively; in other words, these constraints may lead to matchings that are not

perfect. The measures of feasibility robustness corresponding to constraints (4.6) and

(4.8) are δILi and δJLj , respectively; they measure the excess of edges incident to vertices

in I and J . On the other hand, constraints (4.7) and (4.9) ensure that every vertex in I and

J have at least one incident edge, respectively; in other words, each vertex in one partition

is connected to at least one other in the other partition; i.e., connected bipartite graphs.

The measures of feasibility robustness corresponding to constraints (4.7) and (4.9) are δIGi

and δJGj , respectively; they measure the deficit of edges incident to vertices in I and J .

The robust PM (RPM) can be formulated as follows:

min γ (4.10)

s.t. max
y∈U(xC)

 ∑
(i,j)∈I×J

cijxij

 ≤ γ (4.11)

max
y∈U(xC)

{∑
j∈J

yij

}
− δILi ≤ 1, ∀i ∈ I (4.12)

max
y∈U(xC)

{∑
j∈J

−yij

}
− δIGi ≤ −1, ∀i ∈ I (4.13)

max
y∈U(xC)

{∑
i∈I

yij

}
− δJLj ≤ 1, ∀j ∈ J (4.14)

max
y∈U(xC)

{∑
i∈I

−yij

}
− δJGj ≤ −1, ∀j ∈ J (4.15)

γ is unrestricted (4.16)

0 ≤ δILi ≤ δILmax
i , ∀i ∈ I (4.17)

0 ≤ δIGi ≤ δIGmax
i , ∀i ∈ I (4.18)

66

0 ≤ δJLj ≤ δJLmax
j , ∀j ∈ J (4.19)

0 ≤ δJGj ≤ δJGmax
j , ∀j ∈ J (4.20)

xij ∈ {0, 1}, ∀i ∈ I, j ∈ J. (4.21)

The objective function (4.10) is the objective robustness level; constraint (4.11) is the

objective robustness constraint associated to the objective function (4.2); constraints (4.12)

and (4.13) are the feasibility robustness constraints associated to equality constraints (4.3);

similarly, constraints (4.14) and (4.15) are the feasibility robustness constraints associated

to equality constraints (4.4); constraints (4.17) and (4.19) bound the acceptable excess of

incident edges for all elements in U(xC), and constraints (4.18) and (4.20) bound the ac-

ceptable deficit of incident edges for all elements in U(xC). Constraints (4.21) represents

the binary constraints of variables xij .

Let |U ′i | and |U ′′j | be the number of uncertain variables in constraints (4.12)-(4.13) and

(4.14)-(4.15), respectively, with 0 ≤ |U ′i | ≤ |U |, 0 ≤ |U ′′j | ≤ |U | for all i ∈ I, j ∈ J and∑
i∈I |U

′
i | =

∑
j∈J |U

′′
j | = |U |. The equivalent linear reformulation of the RPM as shown

Section 2.4 is the following:

min γ (4.22)

s.t.
∑

(i,j)∈(I×J)\U

cijxij +
∑

(i,j)∈U

cij ≤ γ (4.23)

∑
{j∈J :(i,j)/∈U}

xij − δILi ≤ 1− |U ′i | ∀i ∈ I (4.24)

∑
{j∈J :(i,j)/∈U}

xij + δIGi ≥ 1 ∀i ∈ I (4.25)

∑
{i∈I:(i,j)/∈U}

xij − δJLj ≤ 1− |U ′′j | ∀j ∈ J (4.26)

67

∑
{i∈I:(i,j)/∈U}

xij + δJGj ≥ 1 ∀j ∈ J (4.27)

(4.16), (4.17), (4.18), (4.19), (4.20), (4.21).

Constraint (4.23) is the maximum-contribution objective robustness constraint associ-

ated with constraint (4.11). Constraints (4.24) and (4.25) are the maximum-contribution

feasibility robustness constraints associated with constraints (4.12) and (4.13), respec-

tively. Similarly, constraints (4.26) and (4.27) are the maximum-contribution feasibility

robustness constraints associated with constraints (4.14) and (4.15) respectively.

To be able to identify robust solutions of the RPM, the following assumption is con-

sidered:

Assumption 4.3.1. Each constraint (4.23), (4.24), (4.25), (4.26) and (4.27) contains at

least one certain variable.

Note that if this assumption is not satisfied, there do not exist any value to be fixed

and the feasibility of these constraints cannot be guaranteed. The following section show

several properties of the RPM.

4.3.2 Properties of the RPM

This section presents properties of the RPM. The following results assume that As-

sumption 4.3.1 is satisfied. Lemma 4.3.1 provides a lower bound on the proportion of

uncertain variables such that RPM has no feasible solutions.

Lemma 4.3.1. RPM solutions do not exist if the proportion of uncertain variables is

greater than 1− 1/n.

Proof. Each variable xij is present in exactly two constraints; once in the set of constraints

(4.3), and once in constraints (4.4). Given that the number of constraints is 2n and each

68

constraint should contain at least one certain variable to guarantee their feasibility, then

there should exist at least n certain variables. Since the number of decision variables is

n2, the minimum proportion of certain variables is 1/n. If the proportion of uncertain

variables is greater than 1 − 1/n then there exists at least one constraint with no certain

variables; therefore, RPM solutions do not exist.

The behavior of the maximum proportion of the number of uncertain variables is expo-

nential; the greater the size of the partitions the greater the level of uncertainty that RPM

can handle in terms of the number of uncertain variables.

The following lemmas provide properties of the control parameters δILmax
i and δIGmax

i , ∀i,

and δJLmax
j and δJGmax

j ,∀j. Different values of these control parameter define different

configurations of the RPM.

Lemma 4.3.2. If there exist solutions of the RPM with δIGi ≥ 1,∀i and δJGj ≥ 1,∀j, these

solutions consist of all the certain variables equal to zero, i.e. xij = 0, ∀(i, j) ∈ (I×J)\U .

Proof. Given that δIGi ≥ 1,∀i, δJGj ≥ 1, ∀j, constraints (4.25) and (4.27) in the equiva-

lent linear formulation are feasible with
∑
{j∈J :(i,j)/∈U} xij ≥ 0 and

∑
{i∈I:(i,j)/∈U} xij ≥

0, respectively. Given that the objective is to minimize, the value of γ can be mini-

mized by setting at value zero as many certain variables as possible; then it follows that∑
{j∈J :(i,j)/∈U} xij = 0 and

∑
{i∈I:(i,j)/∈U} xij = 0. Therefore, the solutions of the RPM

consist of all the certain variables equal to zero.

Given that the right-hand-side of constraints (4.25), (4.27) and decision variables are

integer, variables δIGi and δJGj are integer as well. Therefore, δIGi < 1 implies δIGi = 0,∀i;

similarly, δJGj < 1 implies δJGj = 0,∀j.

Lemma 4.3.3. If there exist solutions of the RPM with δIGi = 0,∀i and δJGj = 0, ∀j,

these solutions contain exactly one certain variable with value 1 in each constraint (4.24),

(4.25), (4.26) and (4.27).

69

Proof. Given that δIGi = 0 and δJGj = 0 and decision variables are binary, constraints

(4.25) are feasible with
∑
{j∈J :(i,j)/∈U} xij ≥ 1 and constraints (4.27) are feasible with∑

{i∈I:(i,j)/∈U} xij ≥ 1. Given that the objective is to minimize, the value of γ can be

minimized by setting at value one as many certain variables as possible; then it follows

that exactly one certain variable xij with a value 1 is necessary to satisfy each constraint

(4.25) and (4.27). Therefore, the solutions of the RPM consist of exactly one certain

variable with value 1 in each constraint (4.24), (4.25), (4.26) and (4.27).

Proofs of Lemmas 4.3.2 and 4.3.3 assume that δILi and δJLj can take any nonnegative

value such that constraints (4.24) and (4.26) are feasible for any value of
∑
{j∈J :(i,j)/∈U} xij

and
∑
{i∈I:(i,j)/∈U} xij , respectively. Lemma 4.3.2 considers that δILi ≥ |U ′i | − 1,∀i to

satisfy constraints (4.24) when δIGi ≥ 1. On the other hand, Lemma 4.3.3 considers that

δILi ≥ |U
′
i |,∀i to satisfy constraints (4.24) when δIGi = 0,∀i. One can conclude that by

setting δILmax
i ≥ |U ′i |,∀i, constraints (4.24) are satisfied for any value of δIGi . Similarly,

constraints (4.26) with δJLmax
j ≥ |U ′′j |,∀j are satisfied for any value of δJGj .

Solutions of the RPM as described in Lemma 4.3.2 define matchings not necessarily

perfect; these solutions can be achieved by making δIGmax
i ≥ 1 and δJGmax

j ≥ 1. On the

other hand, Solutions of the RPM as described in Lemma 4.3.3 define connected bipartite

graphs; these solutions can be achieved by making δIGmax
i = 0 and δJGmax

j = 0. From a

practical perspective, solutions providing connected bipartite graphs are more appropriate;

although they do not produce a match, they guarantee the connectivity of the bipartite

network. In the context of the assignment problem, connectivity guarantee that every job

is assigned to at least one resource and that they will be completed somehow.

4.4 Cardinality-Constrained Robust Formulation of the PM

This section presents the cardinality-constrained formulation of the PM (CRPM) and

the proof of its equivalence with the RPM.

70

The CRPM as shown in Section 2.5.2 can be formulated as follows:

min γ (4.28)

s.t.
∑

(i,j)∈(I×J)\U

cijxij + max
{S0:S0⊆U,|S0|≤Γ}

 ∑
(i,j)∈S0

(
cij + |cij|

2

)
+

∑
(i,j)∈U\S0

cijxij

 ≤ γ

(4.29)

∑
{j∈J :(i,j)/∈U}

xij + max
{S′i :S′i⊆U ′i ,|S′i |≤Γ}

|S ′i|+ ∑
(i,j)∈U ′i \S

′
i

xij

− δILi ≤ 1, ∀i ∈ I (4.30)

∑
{j∈J :(i,j)/∈U}

xij − max
{S′′i :S

′′
i ⊆U

′′
i ,|S′′i |≤Γ}

− ∑
(i,j)∈U ′′i \S

′′
i

xij

− δIGi ≥ 1,∀i ∈ I (4.31)

∑
{i∈I:(i,j)/∈U}

xij + max
{S′′′j :S

′′′
j ⊆U

′
j ,|S
′′′
j |≤Γ}

|S ′′′j |+
∑

(i,j)∈U ′j\S
′′′
j

xij

− δJLj ≤ 1,∀j ∈ J

(4.32)

∑
{i∈I:(i,j)/∈U}

xij − max
{S′′′′j :S

′′′′
j ⊆U

′′
j ,|S′′′′j |≤Γ}

−
∑

(i,j)∈U ′′j \S
′′′′
j

xij

− δJGj ≥ 1,∀j ∈ J

(4.33)

(4.16), (4.17), (4.18), (4.19), (4.20), (4.21).

Corollary 4.4.1 is the result of the structural properties of the PM and the results shown

in Section 2.5.2.3 applied to the CRPM.

Corollary 4.4.1. The CRPM is equivalent to the RPM.

Proof. Consider constraints (4.30); the maximum value of the term |S ′i|+
∑

(i,j)∈U ′i \S
′
i
xij

for any value of Γ is given by xij = 1,∀(i, j) ∈ U ′i \S
′
i . Therefore |S ′i|+

∑
(i,j)∈U ′i \S

′
i
xij =

|S ′i|+ |U
′
i \S

′
i| = |U

′
i | and max{S′i :S′i⊆U ′i ,|S′i |≤Γ}

{
|S ′i|+

∑
(i,j)∈U ′i \S

′
i
xij

}
= |U ′i |, indepen-

71

dent of Γ. Constraint (4.30) can be simplified to
∑
{j∈J :(i,j)/∈U} xij+|U ′i |−δILi ≤ 1,∀i ∈ I ,

which is equivalent to constraint (4.24). Constraint (4.32) can proof to be equivalent to

constraint (4.26) in a similar form.

In constraints (4.31), the maximum value of −
∑

(i,j)∈U ′′i \S
′′
i
xij for any value of Γ is

given by xij = 0, ∀(i, j) ∈ U ′′i \ S
′′
i ; then max{S′′i :S

′′
i ⊆U

′′
i ,|S′′i |≤Γ}

{
−
∑

(i,j)∈U ′′i \S
′′
i
xij

}
=

0. Constraint (4.31) can be simplified to
∑
{j∈J :(i,j)/∈U} xij − δIGi ≥ 1,∀i ∈ I , which is

equivalent to constraint (4.25). Constraint (4.33) can proof to be equivalent to constraint

(4.27) in a similar form.

Given that cij ≥ 0,∀(i, j) ∈ I×J , the maximum value of the term
∑

(i,j)∈S0

(
cij+|cij |

2

)
+∑

(i,j)∈U\S0
cijxij is given by xij = 1,∀(i, j) ∈ U \ S0 for any value of Γ. There-

fore
∑

(i,j)∈S0

(
cij+|cij |

2

)
+
∑

(i,j)∈U\S0
cijxij =

∑
(i,j)∈S0

(
cij+|cij |

2

)
+
∑

(i,j)∈U\S0
cij =∑

(i,j)∈U cij . Constraint (4.29) can be simplified to
∑

(i,j)∈(I×J)\U cijxij+
∑

(i,j)∈U cij ≤ γ,

which is equivalent to constraint (4.23).

Therefore, the CRPM is equivalent to the linear reformulation of the RPM.

By Theorem 2.4.1 and Corollary 4.4.1, all the properties and results developed for the

RPM apply to the CRPM.

4.5 Experimental Study

This section presents the experimental study for the PM under implementation uncer-

tainty. The objective of this study is to illustrate the performance of the deterministic and

robust solutions under uncertainty.

4.5.1 Performance Measures

We consider the performance measures h(x) and l(x, y) defined in Section 3.4.1 to

measure the performance of the deterministic and robust solutions of the PM under imple-

mentation uncertainty.

72

The feasibility ration h(x) exhibits particular properties when used to measure the

feasibility level of connected bipartite graphs or perfect matchings. The following sections

show these properties.

4.5.1.1 Feasibility Ratio for Connected Bipartite Graphs

As it was mentioned in Section 4.3.2, an RPM with δIGi < 1,∀i and δJGj < 1,∀j, and

δILi ≥ |U
′
i |,∀i and δJLj ≥ |U ′′j |,∀j produces connected bipartite graphs. Let h′(x) be the

feasibility ratio h(x) such that h′(x) considers feasible solutions as solutions producing

connected bipartite graphs. The following lemmas present properties of h′(x).

Lemma 4.5.1. Let x′ be a RPM solution satisfying conditions in Lemma 4.3.2. Then

h′(x′) < 1.

Proof. By Lemma 4.3.2, x′ consists of all the certain variables fixed at value 0. Given

that U(x′C) contains all combinations of the uncertain variables, U(x′C) contains a vector y

with all certain variables equal to 0, and y consists of all variables with value 0. Therefore,

F contains at least one element do not producing a connected bipartite graph; then, |F| <

|U(x′C)| and h′(x′) < 1.

Lemma 4.5.2. Let xR be a RPM solution satisfying conditions in Lemma 4.3.3. Then

h′(xR) = 1.

Proof. By Lemma 4.3.3, xR contains exactly one certain variable at value 1 for each con-

straint and these values are fixed. Therefore, Lemma 4.5.2 holds.

Corollary 4.5.1. h′(x′) < h′(xR).

Proof. Corollary 4.5.1 holds from Lemmas 4.5.1 and 4.5.2.

Lemma 4.5.3. Let xD be the deterministic solution of the PM. Then h′(xD) ≤ 1.

73

Proof. Due to constraints (4.3) and (4.4), xD is a perfect matching. If at least one of

its variables with value 1 is uncertain, by implementation uncertainty it may change to 0;

therefore, h′(xD) < 1. On the other hand, if all the variables with value 1 in xD are certain,

then their values are fixed and h′(xD) = 1. Therefore, h′(xD) ≤ 1.

Corollary 4.5.2. h′(xD) ≤ h′(xR).

Proof. Corollary 4.5.2 holds from Lemmas 4.5.2 and 4.5.3.

4.5.1.2 Feasibility Ratio for Perfect Matchings

Given a RPM solution x∗, each element y ∈ U(x∗C) produces a different value of f .

Given that cij ≥ 0, the solution xLB producing the lower bound of f is formed as xLB =

(x∗C , x
LB
U), with every uncertain variable xij in vector xLBU defined as xij = 0,∀(i, j) ∈ U

(see Proposition 2.5.2).

Lemma 4.5.4. Let xLB be the RPM solution providing the lower bound of f among the

elements of U(xLBC), and xLB satisfies Lemma 4.3.3. Then xLB defines a perfect matching.

Proof. By Lemma 4.3.3, there exists exactly one certain variable with the value of one in

each constraint and xij = 0,∀(i, j) ∈ U . Therefore, xLB defines a perfect matching.

Consider the PM formulation and let h′′(x) be the feasible ratio h(x) considering feasi-

ble solutions of the PM; i.e., perfect matchings. The following lemmas present properties

of h′′(x).

Lemma 4.5.5. h′′(xLB) = 1/
(
2|U |
)
.

Proof. By Lemma 4.5.4, the solution producing the lower bound of f is a perfect match-

ing. Since all other elements in U(xLBC) contains at least one uncertain variable with value

0, only xLB is a perfect matching, i.e. |F| = 1. Therefore, h′′(xLB) = 1/
(
2|U |
)
.

74

Lemma 4.5.6. h′′(xD) ≥ 1/
(
2|U |
)
.

Proof. Due to constraints (4.3) and (4.4), xD is a perfect matching. If xD contains at least

two uncertain variables in each constraint and one of them takes a value 1, then there may

exist more than one combination of the uncertain variables such that only one of them takes

a value 1. Therefore, there may exist more than one solution that is a perfect matching, i.e.

|F| ≥ 1.

Lemma 4.5.7. h′′(xD) ≤ Umin/
(
2|K|
)
, where Umin = min

{
|U ′i |, |U

′′
j |
}

.

Proof. Since Umin is the minimum number of uncertain variables among all the con-

straints, there may exist at most Umin combinations of the uncertain variables with exactly

one uncertain variable with value one. Therefore, h′′(xD) ≤ Umin/
(
2|K|
)
.

Corollary 4.5.3 states that the feasibility level of x′′ is better than xD with respect to

perfect matchings; this is as expected because to protect against uncertainty, the RPM

solutions provide redundant edges for each vertex and under implementation uncertainty

the number of edges for every vertex is at least one. On the other hand, PM solutions

seek for one edge for each vertex and several uncertainty conditions may lead to multiple

combinations providing exactly one edge.

Corollary 4.5.3. h′′(xLB) ≤ h′′(xD).

Proof. Corollary 4.5.3 follows from Lemmas 4.5.5 and 4.5.6.

4.5.2 Test Problem Generation

An instance of the PM is given by the costs cij . This experiment study considers two

sets of assignments problems with the following characteristics:

• Set I (low variance): cost cij uniformly distributed between [450, 550].

75

• Set II (high variance): cost cij uniformly distributed between [1, 1000].

Set I consists of costs with low variance, while Set II consists of costs with high vari-

ance. The objective is to observe how the variance of the costs affects the performance of

the robust solutions.

Each set of problems consists of 30 problems with n = 5 vertices in each set I and

J . Each problem is solved for every |U | = 1, ..., 20 (the maximum number of uncertain

variables for n = 5 according to Lemma 4.3.1). Solutions xD and xR are obtained by

solving the PM and RPM formulations, respectively; xR is an RPM solution satisfying

Lemma 4.3.3. The corresponding robust-optimal solutions sets U(xD), U(xR), feasible

solutions sets F(xD) and F(xR), and performance measures are obtained via complete

enumeration. It is assumed that the implemented value of each uncertain variable can

be different or equal to the prescribed value with same probability independent of the

prescribed value, i.e. pi = qi = 0.5,∀i.

4.5.3 Performance Results

Figure 4.1 shows the loss in objective value of the solutions of the RPM versus in-

creasing number of uncertain variables |U | for the two sets of problems. High values in

this graph represents a worse performance in the value of the objective function compared

to the deterministic solution. It can be observed that the objective value of solutions of the

RPM degrade as the uncertainty increases (increment in the number of uncertain variables

|U |). For example, for low variance problems with one uncertain variable, the performance

of the RPM is similar to the PM (degradation is almost zero), while for the same set of

problems with 15 uncertain variables the degradation of the value of the objective func-

tion is around 30%. The robust solutions for problems with low variance perform slightly

better than robust solutions for problems with high variance; although, their behavior is

similar.

76

0.
0

0.
1

0.
2

0.
3

0.
4

| U |

l(
x

,y
)

Loss of The Objective Value

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Low variance High variance

Figure 4.1: Loss of the objective performance ratio l(x, y).

Given that variance of the cost values does not affect the constraints, there do not

exist significant differences in the feasibility performance of the two sets of problems.

Therefore, Figure 4.2 only shows the results for the low variance set of problem.

Figure 4.2 shows the feasibility ratios for perfect matchings, h′(xD) and h′(xR), and

the feasibility ratios for connected bipartite graphs, h′′(xD) and h′′(xR). High values rep-

resent a better feasible performance. With respect to perfect matchings, Figure 4.2 shows

that solutions of the PM and RPM perform similarly; the small improvement in the perfor-

mance of xD over xR is not significant. This plot verifies the result described in Corollary

4.5.3 that deterministic solutions produce better feasibility performance than the robust

77

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| U |

h
(x

)
Feasibility Ratio for
Perfect Matchings

1 2 3 4 5 6 7 8 9 11 13 15 17 19

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

| U |

h
(x

)

Feasibility Ratio for
Connected Bipartite Graphs

1 2 3 4 5 6 7 8 9 11 13 15 17 19

Deterministic solution Robust solution

Figure 4.2: Feasibility performance ratio with respect to perfect matchings h′′(x) and
connected bipartite graphs h′(x).

solutions with respect to perfect matchings. Notice that this result is not surprising given

that the equality constraints in the perfect matching formulation will be violated if any pre-

scribed variable changes its value at the time of implementation. On the other hand, with

respect to connected bipartite graphs, it can be observed that RPM solutions guarantee a

100% feasibility for any occurrence of uncertain variables, while the performance of the

solutions of the PM degrades as the number of uncertain variables increases. For instance,

the feasibility ratio of the solution of the PM is 93% for |U | = 1 and decreases to almost

40% for |U | = 15. This plot verifies the results in Corollary 4.5.2 that robust solutions

78

produce better feasibility ratio than the deterministic solutions with respect to connected

bipartite graphs. In summary, these results suggest the value of robust solutions in situa-

tions where feasibility is important, and connected bipartite solutions may be acceptable

when a perfect matching is affected by implementation uncertainties.

Let xLB be the solution producing the lower bound of the value of f among the ele-

ments of U(xC), let xUB be the solutions producing the upper bound of the value of f ,

and let xAV G be the solutions producing the average value of the objective function com-

puted by total enumeration. The losses of optimality of these solutions with respect to the

deterministic solution l(xD, xLB), l(xD, xUB) and l(xD, xAV G) are shown in Figure 4.3.

It can be observed that the solution producing the lower bound of the objective function

performs better than the other two, while the solution providing the upper bound value of

the objective function delivers the worst performance. For instance, for the set of problems

with low variance, the lower bound provides a small increment in the cost even for |U | =

20 uncertain variables, where the maximum increment is only 6%; for the same set of

problems, the upper bound increases the cost from a minimum percentage of 21% with

one uncertain variable to a maximum value of 430% with |U | = 20 uncertain variables;

the solution providing the average value of the objective function produces a minimum

cost increment of 10% to a maximum value of 217%. These results together with Lemma

4.5.4 show that the lower bound solution provides the smallest increment in the loss of

the value of the objective function while it is simultaneously a perfect matching; these

characteristics of the solution producing the lower bound of the objective function makes

it the most attractive RPM solution.

One can conclude that RPM solutions are more appropriate when changes in the pre-

scribed values likely to happen since they guarantee the existence of connected bipartite

graphs, which are meaningful solutions from the assignment problem point of view (see

Figure 4.2). The performance of RPM solutions for perfect matchings is similar to the

79

0
2

4
6

8
10

12

of uncertain variables

l(
x

,y
)

Low Variance Set

1 2 3 4 5 6 7 8 9 11 13 15 17 19

0
2

4
6

8
10

12

of uncertain variables

l(
x

,y
)

High Variance Set

1 2 3 4 5 6 7 8 9 11 13 15 17 19

l g(xD,xLB) l g(xD,xUB) l g(xD,xAVG)

Figure 4.3: Loss of the objective performance ratio l(x, y) for lower bound, upper bound
and average value solutions.

RPM solutions (see Figure 4.2); although, there is a sacrifice in the cost due to the extra

edges (see Figure 4.1). Furthermore, using the RPM solutions producing the lower bound

of the objective value guarantee a small loss of optimality for problems whose costs pos-

sess low variance, and offers the minimum optimality degradation among other solutions

in the robust-optimal solution set (see Figure 4.3).

In summary, the experimental results suggest that depending on the interest of the

decision maker, robust solutions may be more attractive than the deterministic solutions.

Following are some practical recommendations based on the experimental results:

80

• If the decision maker is interested in obtaining perfect matching, robust solutions

do not provide any advantage given that their feasibility ratio behaves similar (see

Figure 4.2) and robust solutions offer a smaller objective function value.

• In contrast, if the decision maker is interested in obtaining connected bipartite graphs,

robust solutions are more attractive given that their feasibility ratio does not decrease

when impacted by uncertainty (see Figure 4.2).

• The use of the robust solution providing the lower bound of the value of the objective

function among the robust-optimal solution set provides a less conservative value

than other solutions within the set or robust solutions (see Figure 4.3).

4.6 Summary and Conclusions

This chapter presents a robust formulation for the PM under implementation uncer-

tainty such that it identifies solutions satisfying a given level of feasibility while the degra-

dation of the cost is minimum. This work shows configurations of the RPM that produce

solutions defining matchings or connected bipartite graphs for any realization of the un-

certainty. The CRPM is shown to be equivalent to the RPM; the configurations of the

RPM are defined by the control parameters. The CRPM is shown to be equivalent to the

RPM and the control parameters define the configurations of the RPM. Therefore, for the

RPM the only method to control the conservatism is the selection of the least conserva-

tive solutions from the robust-optimal solution set, which is illustrated in the experimental

study.

The results of the experimental study show that the higher the variance of the costs of

the assignments the greater the loss of optimality. This results also show that the determin-

istic and robust solutions posses a similar feasibility level when considering matchings. On

the other hand, the feasibility level of the deterministic solution is significantly degraded

81

when considering connected bipartite graphs. Finally, the results of the experiments show

that the difference between of upper and lower bound of the objective value increases as

the variance of the costs of the assignments increases as well.

82

5. ROBUST SHORTEST PATH PROBLEM IMPLEMENTATION UNCERTAINTY

5.1 Introduction

This chapter presents the SPP under implementation uncertainty. The impact of uncer-

tainty is addressed by applying the proposed concepts of robustness. Significant theoretical

and practical results associated with the robust formulation and robust solutions for this

problem are also shown.

The SPP under implementation uncertainty considers that some arcs of the network

may not be available at the time of implementing the solution. The impediment to mov-

ing through certain arcs may be the result of conditions not considered initially such as

disasters, traffic accidents, etc. For example, Section 5.6 presents the case study of a trans-

portation network where accidents or traffic conditions block roads impeding to reach the

destination location or waiting times to continue traveling may be too long. Unexpected

changes in the arcs selected may lead to a disconnected path between the source and des-

tination nodes, or to a too costly path connecting these nodes. Existing work in robust

optimization studying the SPP accounts for parameter uncertainty only (e.g. Kouvelis and

Yu, 1997; Yu and Yang, 1998; Bertsimas and Sim, 2003). The SPP under implementation

uncertainty is addressed by applying the proposed concepts of robustness.

The proposed concepts of robustness in Chapter 2 permit to develop the corresponding

RSPP and its equivalent linear reformulation. This work identifies properties of the control

parameters of the RSPP including the configuration of the control parameters to obtain

an RSPP equivalent to a reduce SPP free of uncertainty, and to obtain robust solutions

connecting every node destination of an arc associated to an uncertain variable with the

destination node of the deterministic SPP. The equivalent linear reformulation can be used

to identify the set of robust solutions. An algorithm to solve the RSPP based on the work

83

in Dijkstra (1959); Fredman and Tarjan (1987) is presented. The proposed algorithm can

be applied to directed and undirected graphs that do not contain cycles with negative arc

weights. This work proofs the correctness of the proposed algorithm and discusses the its

complexity. Similar to the case of the AP, the cardinality-constrained robust SPP under

implementation uncertainty is shown to be equivalent to the RSPP.

An experimental study of the SPP under implementation uncertainty aims to evaluate

and compare the performance of the deterministic and robust solutions. The performance

measure of the objective function value computes the cost of the minimum path among

all the possible solutions paths connecting the source and destination nodes among the

uncertain set. The performance measure of feasibility level computes the proportion of

the paths in the uncertain set that connect the source and destination nodes. The results of

the experimental study show the characteristics of the network that makes the determinis-

tic solutions more sensitive to implementation uncertainty and the robust solutions more

attractive.

This chapter ends presenting a case study for a real application of the SPP under im-

plementation. The case study involves a distribution company moving products in the East

of United States. The results of the case study determine alternative routes that eliminate

the possible impediment of traveling through the initial deterministic path due to accidents

or other traffic conditions.

The remainder of this chapter is organized as follows. Section 5.2 formulates the

deterministic SPP. Section 5.3 develops the RSPP and presents its properties. Section

5.4 presents an algorithm to identify the solutions of the RSPP. Section 5.6 presents the

experimental study, and Section 5.8 presents concluding remarks for the chapter.

84

5.2 Deterministic Shortest Path Problem

Consider a digraph G = (N,A), where N is the set of nodes and A is the set of arcs.

Let s ∈ N be the source node and d ∈ N be the destination node, and let cij ≥ 0 be the

cost of arc (i, j) ∈ A. The objective of the SPP is to find the path from s to d such that its

total cost is minimum.

Let xij be a binary variable such that xij = 1 if arc (i, j) is included in the path and

xij = 0 otherwise. Wolsey (1998) formulates the SPP from s to d as follows:

min
∑

(i,j)∈A

cijxij (5.1)

s.t.
∑

(s,i)∈A,i 6=s

xsi −
∑

(i,s)∈A,i 6=s

xis = 1 (5.2)

∑
(d,i)∈A,i 6=d

xdi −
∑

(i,d)∈A,i 6=d

xid = −1 (5.3)

∑
(j,i)∈A,i 6=j

xji −
∑

(i,j)∈A,i 6=j

xij = 0, ∀j ∈ N \ s, d (5.4)

xij ∈ {0, 1},∀(i, j) ∈ A (5.5)

The objective function (5.1) seeks to minimize the total cost of the path from node s

to node d. Constraint 5.2 guarantees that there exists exactly one arc whose source is node

s; therefore, it guarantees that there is a path from s to at least another node. Similarly,

constraint (5.3) guarantees that there exists exactly one arc whose destination is node d;

therefore, it guarantees that there is a path from any node to d. Constraint (5.4) are the

flow conservation constraint for transshipment nodes guaranteeing that the in-degree and

out-degree of these nodes are equal; if a node is destination of an arc in the path, then there

is another arc whose destination is the transshipment node such that the path from s to d

continues. Constraint (5.5) is the binary constraint for the decision variables.

85

The deterministic solution of the SPP avoids redundant arcs to reduce the total cost

of the path connecting s and d; therefore, the deterministic solution defines a single path

from s to d whose cost is minimum. This path may be disconnected if at least one of

the constraints (5.2), (5.3) and (5.4) are violated; this is an arc forming the path is not

available at the time of implementation making impossible to travel from the source node

to the destination node. This situation is addressed in the following section.

5.3 Robust Shortest Path Problem Under Implementation Uncertainty

5.3.1 Model Development

Under implementation uncertainty, existing arcs may not be available at the time of

the implementation and the vehicle may not be able to travel through them, or the vehi-

cle may be forced to move through arcs not initially considered. Due to implementation

uncertainty, an existing path may not be able to connect the source and destination nodes.

It is of interest to find robust solutions to the SPP under implementation uncertainty such

that they guarantee the existence of a path connecting the source and destination nodes for

any occurrence of the uncertainty. To identify robust solutions, the following assumption

is considered:

Assumption 5.3.1. For every node i ∈ N , there exists at least one arc associated to a

certain variable whose source is i and at least one arc associated to a certain variable

whose destination is i.

Assumption 5.3.1 is somewhat relaxed for the source and destination nodes as follows:

Assumption 5.3.2. For the source node s, there exists at least one arc associated to a

certain variable whose source is s. For the destination node d, there exists at least one arc

associated to a certain variable whose destination is d.

86

The equality constraints (5.13), (5.14) and (5.15) of the SPP are rewritten as inequali-

ties as follows:

∑
(s,i)∈A,i 6=s

xsi −
∑

(i,s)∈A,i 6=s

xis ≤ 1 (5.6)

−
∑

(s,i)∈A,i 6=s

xsi +
∑

(i,s)∈A,i 6=s

xis ≤ −1 (5.7)

∑
(d,i)∈A,i 6=d

xdi −
∑

(i,d)∈A,i 6=d

xid ≤ −1 (5.8)

−
∑

(d,i)∈A,i 6=d

xdi −
∑

(i,d)∈A,i 6=d

xid ≤ 1 (5.9)

∑
(j,i)∈A,i 6=j

xji −
∑

(i,j)∈A,i 6=j

xij ≤ 0,∀j ∈ N \ s, d (5.10)

−
∑

(j,i)∈A,i 6=j

xji +
∑

(i,j)∈A,i 6=j

xij ≤ 0,∀j ∈ N \ s, d (5.11)

Consider the Definitions 2.2.1 and 2.2.2 of a binary variable under implementation

uncertainty and the uncertain set, respectively, and consider the measures of robustness in

Definitions 2.3.1 and 2.3.2. The RSPP can be formulated as follows:

min γ (5.12)

s.t. max
y∈U(xc)

 ∑
(i,j)∈A

cijyij

 ≤ γ (5.13)

max
y∈U(xc)

 ∑
(s,i)∈A,i 6=s

ysi −
∑

(i,s)∈A,i 6=s

yis

− δLs ≤ 1 (5.14)

max
y∈U(xc)

 ∑
(s,i)∈A,i 6=s

−ysi +
∑

(i,s)∈A,i 6=s

yis

− δGs ≤ −1 (5.15)

max
y∈U(xc)

 ∑
(d,i)∈A,i 6=d

ydi −
∑

(i,d)∈A,i 6=d

yid

− δLd ≤ −1 (5.16)

87

max
y∈U(xc)

 ∑
(d,i)∈A,i 6=d

−ydi +
∑

(i,j)∈A,i 6=d

yid

− δGd ≤ 1 (5.17)

max
y∈U(xc)

 ∑
(j,i)∈A,i 6=j

yji −
∑

(i,j)∈A,i 6=j

yij

− δLj ≤ 0,∀j ∈ N \ {s, d} (5.18)

max
y∈U(xc)

 ∑
(j,i)∈A,i 6=j

−yji +
∑

(i,j)∈A,i 6=j

yij

− δGj ≤ 0,∀j ∈ N \ {s, d} (5.19)

γ is unrestricted (5.20)

0 ≤ δLj ≤ δLmax
j ,∀j ∈ N (5.21)

0 ≤ δLj ≤ δGmax
j ,∀i ∈ N (5.22)

xij ∈ {0, 1}, ∀(i, j) ∈ A (5.23)

The objective function (5.12) seeks to minimize the worst-case value of the cost of

the shortest path from s to d when affected by implementation uncertainty. Constraint

(5.13) is the objective robustness constraint that guarantees that γ will be greater than

the worst-case cost. Constraints (5.14) and (5.15) are the feasibility robustness constraints

associated with the source node s that guarantees that there exists one arc with node s as the

source. Constraints (5.16) and (5.17) are the feasibility robustness constraints associated

with the destination node d that guarantees that there exists one arc with node d as the

destination. Constraints (5.18) and (5.19) are the robustness flow conservation constraints

for the transshipment nodes and guarantee the flow through the graph. Constraints (5.21)

and (5.22) are the maximum infeasibility constraints for δj variables, and constraints (5.23)

are the binary constraints for the decision variables. Section 5.3.2 shows how to set up the

values of δd, δs, δj to identify robust solutions with different characteristics.

Let U ⊂ A be the set of arcs under implementation uncertainty; let U ′j be the set of

arcs under implementation uncertainty whose source is node j, and let U ′′j be the set of

88

arcs under implementation uncertainty whose destination is node j. The equivalent linear

formulation to the RSPP as show in Section 2.4 is the following:

min γ (5.24)

s.t.
∑

(i,j)∈A\U

cijxij +
∑

(i,j)∈U

cij ≤ γ (5.25)

∑
(s,i)∈A\U,i 6=s

xsi + |U ′s| −
∑

(i,s)∈A\U,i6=s

xis − δLs ≤ 1 (5.26)

−
∑

(s,i)∈A\U,i6=s

xsi +
∑

(i,s)∈A\U,i6=s

xis + |U ′′s | − δGs ≤ −1 (5.27)

∑
(d,i)∈A\U,i6=d

xdi + |U ′d| −
∑

(i,d)∈A\U,i 6=d

xid − δLd ≤ −1 (5.28)

−
∑

(d,i)∈A\U,i 6=d

xdi +
∑

(i,d)∈A\U,i6=d

xid + |U ′′d | − δGd ≤ 1 (5.29)

∑
(j,i)∈A\U,i6=j

xji + |U ′j| −
∑

(i,j)∈A\U,i6=j

xij − δLj ≤ 0,∀j ∈ N \ {s, d} (5.30)

−
∑

(j,i)∈A\U,i 6=j

xji +
∑

(i,j)∈A\U,i6=j

xij + |U ′′j | − δGj ≤ 0,∀j ∈ N \ {s, d} (5.31)

(5.20), (5.21), (5.22), (5.23)

The objective function (5.24) is equivalent to the objective (5.12). Constraints (5.25)

are the equivalent linear objective robustness constraint, while constraints (5.26), (5.27),

(5.28), (5.29), (5.30) and (5.31) are the equivalent linear feasibility robustness constraints.

5.3.2 Properties of the RSPP

The following results present properties of the maximum infeasibility levels, i.e., δLmax
j

and δGmax
j for the RSPP.

Lemmas 5.3.1 and 5.3.2 show configurations of the RSPP using the control parameters

δLmax
s , δGmax

s , δLmax
d , δGmax

d , δLmax
j , δGmax

j for which robust solutions do not exist due to the

89

structural properties of the RSPP. These results define the lower bounds for the values of

the control parameter such that robust solutions may exist.

Lemma 5.3.1. RSPP solutions do not exist if ∃j ∈ N \ {s, d} such that δLmax
j < |U ′j| and

δGmax
j < |U ′′j |.

Proof. Assume there exist a solution x∗ of the RSPP, and assume ∃j ∈ N \ {s, d} such

that δLmax
j < |U ′j| and δGmax

j < |U ′′j |. Given that x∗ is solution of the RSPP, it satisfies con-

straints (5.30) and (5.31). Since δLmax
j < |U ′j|, then

∑
(j,i)∈A\U,i6=j x

∗
ji−
∑

(i,j)∈A\U,i6=j x
∗
ij ≤

δLj −|U ′j| < 0. Similarly, since δGmax
j < |U ′′j |, then−

∑
(j,i)∈A\U,i 6=j x

∗
ji+
∑

(i,j)∈A\U,i 6=j x
∗
ij ≤

δGj −|U ′′j | < 0. However,
∑

(j,i)∈A\U,i6=j x
∗
ji−
∑

(i,j)∈A\U,i 6=j x
∗
ij < 0 and−

∑
(j,i)∈A\U,i6=j x

∗
ji+∑

(i,j)∈A\U,i 6=j x
∗
ij < 0 is a contradiction. Therefore, x∗ cannot be a solution of the RSPP.

Lemma 5.3.2. RSPP solutions do not exist if δLmax
s < |U ′s| and δGmax

s < |U ′′s |, or δLmax
d <

|U ′d| and δGmax
d < |U ′′d |.

Proof. Proof of Lemma 5.3.2 is similar to the proof of Lemma 5.3.1.

Lemma 5.3.3 presents the result that makes the RSPP equivalent to an SPP over a graph

formed only by the arcs associated with certain variables; therefore, the resulting RSPP

can be treated as an SPP.

Lemma 5.3.3. A RSPP with δLmax
j = |U ′j| and δGmax

j = |U ′′j |,∀j ∈ N is equivalent to a

SPP over G′, where G′ = (N,A \ U).

Proof. Consider the linear reformulation of the RSPP with δLmax
j = |U ′j| and δGmax

j =

|U ′′j |, ∀j ∈ N , the resulting formulation is as follows:

min γ (5.32)

90

s.t.
∑

(i,j)∈A\U

cijxij +
∑

(i,j)∈U

cij ≤ γ (5.33)

∑
(s,i)∈A\U,i 6=s

xsi −
∑

(i,s)∈A\U,i6=s

xis ≤ 1 (5.34)

−
∑

(s,i)∈A\U,i6=s

xsi +
∑

(i,s)∈A\U,i6=s

xis ≤ −1 (5.35)

∑
(d,i)∈A\U,i6=d

xdi −
∑

(i,d)∈A\U,i 6=d

xid ≤ −1 (5.36)

−
∑

(d,i)∈A\U,i 6=d

xdi +
∑

(i,d)∈A\U,i6=d

xid ≤ 1 (5.37)

∑
(j,i)∈A\U,i 6=j

xji −
∑

(i,j)∈A\U,i 6=j

xij ≤ 0,∀j ∈ N \ {s, d} (5.38)

−
∑

(j,i)∈A\U,i 6=j

xji +
∑

(i,j)∈A\U,i6=j

xij ≤ 0, ∀j ∈ N \ {s, d} (5.39)

(5.20), (5.21), (5.22), (5.23)

The objective function and constraint (5.33) are equivalent to an objective function

min
∑

(i,j)∈A\U cijxij +
∑

(i,j)∈U cij . Since
∑

(i,j)∈U cij is a constant value, the objective

function can be simplified to min
∑

(i,j)∈A\U cijxij and add the given value of
∑

(i,j)∈U cij

after solving the problem. Constraints (5.34) and (5.35), (5.36) and (5.37), and (5.38) and

(5.39) are equivalent to
∑

(s,i)∈A\U,i6=s xsi −
∑

(i,s)∈A\U,i 6=s xis = 1,
∑

(d,i)∈A\U,i 6=s xdi −∑
(i,d)∈A\U,i 6=s xid = −1 and

∑
(j,i)∈A\U,i 6=s xji −

∑
(i,j)∈A\U,i 6=s xij = 0, respectively.

Given that δLmax
j = |U ′j| and δGmax

j = |U ′′j |,∀j ∈ N , constraints (5.21) and (5.22) become

redundant. Therefore, the RSPP is equivalent to a SPP over G′.

Lemma 5.3.4 states the configuration of the RSPP such that if solutions exist all the

certain variables are equal to zero; i.e., robust solutions do not define a path from s to d.

Lemma 5.3.4. Solutions of a RSPP with δLmax
j ≥ |U ′j|+ 1 and δGmax

j ≥ |U ′′j |+ 1,∀j ∈ N

consist of all certain variables equal to zero; i.e., xij = 0,∀(i, j) ∈ A \ U .

91

Proof. Assume the solution of the RSPP, x∗, γ∗ and δLj ∗, δGj ∗ with x∗ij = 0∀(i, j) ∈ A \U

and δLj ∗ ≤ |U ′j| + 1 and δGj ∗ ≤ |U ′′j | + 1,∀j is not optimal. Therefore, there may exist

an optimal solution of the RSPP x′, γ′ and δL′j , δ
G′
j such that ∃x′ij = 1 for (i, j) ∈ A \ U .

Since γ′ is optimal, then γ′ ≤ γ∗. However,
∑

(i,j)∈A\U cijx
∗
ij +

∑
(i,j)∈U cij = 0 ≤ γ∗,

and 1 ≤
∑

(i,j)∈A\U cijx
′
ij +

∑
(i,j)∈U cij ≤ γ′; these results leads to γ∗ < γ′, which

is a contradiction. Therefore, the solution of the RSPP, x∗, γ∗ and δLj ∗, δGj ∗ with x∗ij =

0∀(i, j) ∈ A \ U and δLj ∗ ≤ |U ′j|+ 1 and δGj ∗ ≤ |U ′′j |+ 1,∀j is optimal.

Robust solutions described in Lemma 5.3.4 do not define any path whatsoever since

all the certain variables are equal to zero. On the other hand, robust solutions described

in Lemma 5.3.3 produce a single path from s to d formed only by arcs associated with

certain variables. Although the solutions described in Lemma 5.3.3 guarantee a path from

s to d, there may exist a different path formed with arcs under implementation uncertainty

available to travel through them such that the cost of such path is smaller than the cost

of the path formed by arcs not under implementation uncertainty. Therefore, it is also of

interest to find the shortest paths from nodes reachable with an arc under implementation

uncertainty to the destination node. Lemma 5.3.5 describes robust solutions that permit to

identify such shortest paths.

Lemma 5.3.5. Let M be a large number. RSPP solutions with δLmax
s = M , δGmax

s ≤ |U ′′s |,

δLmax
d ≤ |U ′d|, δ

Gmax
d = M , δLmax

j ≤ |U ′j| and δGmax
j < |U ′′j | define the shortest path

between s and d, and the shortest paths between every node i such that ∃(j, i) with (j, i) ∈

U and d.

Proof. δGmax
s ≤ |U ′′s | leads to |U ′′s |−δGs ≥ 0, then−

∑
(s,i)∈A\U,i6=s xsi+

∑
(i,s)∈A\U,i 6=s xis ≤

−
∑

(s,i)∈A\U,i 6=s xsi +
∑

(i,s)∈A\U,i6=s xis + |U ′′s | − δGs and by constraint (5.27) we have

that −
∑

(s,i)∈A\U,i6=s xsi +
∑

(i,s)∈A\U,i 6=s xis ≤ −1. Constraint (5.27) is feasible with∑
(s,i)∈A\U,i 6=s xsi ≥ 1, and δLmax

s equals to a large number makes constraint (5.26) fea-

92

sible for any value of
∑

(s,i)∈A\U,i6=s xsi; therefore, there exists at least one arc not under

implementation uncertainty whose source is s.

Similarly, δLmax
d ≤ |U ′d| leads to

∑
(i,d)∈A\U,i6=s xid ≥ 1, which guarantee that there ex-

ists at least one arc not under implementation uncertainty whose destination is d. δGmax
j <

|U ′′j | with |U ′′j | = 0 leads to δGj = 0, and with δLmax
j ≤ |U ′j| make the constraints

(5.30) and (5.31) equivalent to flow conservation constraints with arcs not under imple-

mentation uncertainty only. On the other hand, δGmax
j < |U ′′j | with |U ′′j | > 0 leads to

−
∑

(j,i)∈A\U,i6=j xji+
∑

(i,j)∈A\U,i 6=j xij < −
∑

(j,i)∈A\U,i6=j xji+
∑

(i,j)∈A\U,i 6=j xij+|U ′′j |−

δGj ; therefore −
∑

(j,i)∈A\U,i6=j xji+
∑

(i,j)∈A\U,i6=j xij < 0 and there exists at least one arc

not under implementation uncertainty with node j as its source. These constraints together

guarantee the existence of the shortest paths.

Figure 5.1 show examples of the robust solutions described in Lemma 5.3.5. Graphs

in Figure 5.1 possess different densities based on the percentage of all the possible arcs

that may be included; a graph is consider sparse if it contains 10% of all the possible arcs,

non-dense-non-sparse if contains 50% of all the possible arcs, and dense if it contains 90%

of all the arcs.

5.4 Robust Dynamic Shortest Path Algorithm

This section proposes an algorithm to find the robust solutions of the RSPP based on

Dijkstra’s shortest path algorithm. This algorithm is named robust dynamic shortest path

algorithm (RDA). The purpose of the RDA is to identify robust solutions described in

Lemmas 5.3.3 and 5.3.5 without solving the nonlinear or linear formulations.

The proposed algorithm assumes that the values of the control parameters δLmax
s , δGmax

s ,

δLmax
d , δGmax

d , δLmax
j , δGmax

j are set up as described in Lemmas 5.3.3 or 5.3.5. The RDA

does not consider the arcs under implementation uncertainty; RDA only identifies the val-

ues of the uncertain variables and assumes a value of zero for all the uncertain variables.

93

Figure 5.1: Robust solutions as described in Lemma 5.3.5. (a) Sparse graph. (b) Non-
dense-non-sparse graph. (c) Dense graph.

Therefore, the RDA identifies the solution providing the lower bound of the objective

function described in Proposition 2.5.2, i.e., the optimistic solution.

Given a digraph with arcs possessing nonnegative weights, Dijkstra (1959) presents an

algorithm to find the shortest path between a source node and every other node. To form the

shortest paths, Dijkstra’s algorithm divides nodes into two sets containing the visited and

94

non-visited nodes; initially, the set of visited nodes contains the source node only. In every

iteration, the algorithm searches for a pair of nodes in different sets with the minimum

distance between them, it moves the node in the non-visited set to another set, updates the

distances, and repeat the process until the non-visited set is empty. Dijkstra’s algorithm is

able to identify the shortest path on a digraph with cycles containing nonnegative weights.

The RSPP is a modified SPP such that the path connecting the source and destina-

tion nodes is formed only by arcs not under implementation uncertainty. Additionally,

the robust solutions connect every node destination of an arc under implementation un-

certainty with the destination node of the problem. It is possible to develop an algorithm

to identify the robust solutions provided by the formulation of the RSPP. Given a digraph

G = (N,A), a source node s, a destination node d, a nonnegative weight cij for every arc

(i, j) ∈ A, and the set of arcs under implementation uncertainty U , the RDA identifies the

shortest paths formed only with arcs not under implementation uncertainty between the

destination node d, the source node s and every node i ∈ V such that ∃(j, i) ∈ U .

The RDA follows Dijkstra’s concept of dividing nodes into sets containing the visited

and non-visited nodes; the RDA requires to know the set of arcs under implementation

uncertainty and that Assumptions 5.3.1 and 5.3.2 are satisfied. Initially, the RDA includes

the destination node in the set of visited nodes. In every iteration, the RDA searches

for a pair of nodes in different sets connected through arcs not under implementation

uncertainty and minimum weight; then it moves the node in the non-visited set to the

visited set, updates the distances, and repeat the process until the set of non-visited nodes

is empty. The RDA is described in Algorithm 1.

Lines 2 to 8 in Algorithm 1 initialize the process; lines 2 and 6 create a set of vertices

Q, which are considered the non-visited nodes; line 4 makes the cost for every node a

large number, while line 5 sets the next node in the optimal path for every node undefined;

finally, line 11 make the cost of d equals zero. Lines 9 to 19 implement the searching for

95

Algorithm 1 RDA.
input: a digraph G = (N,A), a set of arcs under implementation uncertainty U , a source node s
and a destination node d
output: a precedence list, next, describing the shortest paths

1: function SOLVERSPP(G = (N,A), U, s, d)
2: create node set Q . Set of all the nodes that must be connected to d
3: for all nodes v in G do
4: dist[v]← INFINITY . Unknown distance from d to v
5: next[v]← UNDEFINED . Set the next node in the path from v to d
6: add v to Q . All nodes initially in Q
7: end for
8: dist[d]← 0 . Cost from the destination node to the destination node
9: while Q is not empty do

10: u← node in Q with minimum dist[u] . Node with the smallest cost
11: Remove u from Q
12: for all v in Q such that the arc (v, u) is in A \ U do . Adjacent nodes connect through

arcs not under implementation uncertainty
13: aux← dist[u]+ Cost(u, v)
14: if aux < dist[v] then . If a shortest path is found
15: dist[v]← aux . Update the cost to v
16: next[v]← u . Make u the next node in the optimal path from v to d
17: end if
18: end for
19: end while
20: return next
21: end function

the shortest paths formed by arcs not under implementation uncertainty; this process is

repeated until every node in Q is connected to d. Line 10 seeks for the node u in Q with

the minimum cost; during the first time the node u is always the node d since its cost was

previously set to zero. Line 11 removes u from set Q, which is equivalent to make the

node u a visited node. Lines 12 to 18 search for every node v ∈ Q adjacent to u that is

connected by an arc not under implementation uncertainty whose destination is u. Line

13 computes the total cost from the destination node d to v; if the updated cost is less than

the actual cost (line 14), then line 15 updates the cost of v with the minimum cost. Line

16 makes u the next node in the shortest path from v to d.

96

The shortest paths defined by robust solutions in Lemma 5.3.5 can be read by fol-

lowing the sequences of nodes described in the data structure next[]; Algorithm 1 can be

terminated after line 11 when Q does not contain any node destination of an arc not un-

der implementation uncertainty neither contains the source node s. Robust solutions in

Lemma 5.3.3 can be read similarly; Algorithm 1 can be terminated after line 11 if u = s.

The proof of correctness of the RDA can be constructed by induction; the objective is

to show that dist[u] provides the shortest path from u to d, with u being any node in G.

The proof is as follows:

Proof. Let `(u) be the shortest path from u to d and labeled nodes removing from Q as

visited nodes.

Basis: Let d be a visited node, then dist[d] = `(d) = 0. This is true because of line 8

in Algorithm 1.

Inductive step: For each visited node v, the shortest path from v to d is dist[v] = `(v).

If the non-visited node u is visited, then dist[u] = `(u).

Let the arc (u, v) with v visited node be selected to form the path from u to d and make

u a visited node, then dist[u] = dist[v] + Cost(u, v) = `(v) + Cost(u, v) is the shortest

path from u to d. Assume there exists a shorter path that considers the arc (u, y) with

node y ∈ Q to form the path from u to d; also, assume the arc (y, x) with x visited node

to form the path from y to d. Since u is selected from Q in line 10, it means that the

dist[u] ≤ dist[y]; otherwise, y would be selected. Given that Cost(u, y) is nonnegative,

then dist[u] = `(v) + Cost(u, v) ≤ dist[y] + Cost(u, y) = `(x) + Cost(y, x) + Cost(u, y).

This result is a contradiction and there can be no such node y that leads to a shortest path

from u to d. Therefore, our assumption is false and dist[u] = `(u).

This result completes the proof of the correctness of the RDA; therefore, dist[v] pro-

vides the shortest path from v to d.

97

Algorithm 2 Modified RDA.
input: a digraph G = (N,A), a set of arcs under implementation uncertainty U , a source node s
and a destination node d
output: a precedence list, next, describing the shortest paths

1: function SOLVERSPP(G = (N,A), U, s, d)
2: create node set Q . Set of all the nodes that must be connected to d
3: for all nodes v in G do
4: dist[v]← INFINITY . Unknown distance from d to v
5: next[v]← UNDEFINED . Set the next node in the path from v to d
6: Q.add_priority(v, dist[v]) . Add nodes to Q with a priority based on their dist[v]

value
7: end for
8: dist[d]← 0 . Cost from d to d
9: while Q is not empty do

10: u← Q.extract_min() . Remove and return the node with smallest priority
11: Remove u from Q
12: for all v in Q such that the arc (v, u) is in A \ U do
13: aux← dist[u]+ Cost(u, v)
14: if aux < dist[v] then . If a shortest path is found
15: dist[v]← aux . Update the cost to v
16: next[v]← u . Make u the next node in the optimal path from v to d
17: Q.decrease_priority(v, aux) . Update priority of node v
18: end if
19: end for
20: end while
21: return next
22: end function

Algorithm 2 presents a modification of the RDA using a basic queue to reduce the

computational time of the operations add_priority, extract_priority and decrease_priority;

a Fibonacci heap structure, presented in Fredman and Tarjan (1987), offers optimal imple-

mentation for those three operations leading to a running time of O(|N | log |N | + |A|).

The reason is that the inner loop in lines 9 to 20 is executed O(|N | + |A|) time and the

decrease_priority operation using a Fibonacci heap structure runs in O(1), which leads to

the O(|N | log |N |+ |A|) time.

98

5.5 Cardinality-Constrained Robust Formulation of the SPP

This section shows the cardinality-constrained robust SPP under implementation un-

certainty (CRSPP) based on the concepts presented in Chapter 2.

The CRSPP can be formulated as follows:

min γ (5.40)

s.t.
∑

(i,j)∈A\U

cijxij + max
{S0:S0⊆U,|S0|≤Γ}

 ∑
(i,j)∈S0

(
cij + |cij|

2

)
+

∑
(i,j)∈U\S0

cijxij

 ≤ γ

(5.41)∑
(s,i)∈A\U,i6=s

xsi −
∑

(i,s)∈A\U,i6=s

xis+

max
{S′s:S′s⊆U ′s,|S′s|≤Γ}

|S ′s|+ ∑
(s,i)∈U ′s\S′s,i 6=s

xsi −
∑

(i,s)∈U ′s\S′s,i 6=s

xis

− δLs ≤ 1

(5.42)

−
∑

(s,i)∈A\U,i 6=s

xsi +
∑

(i,s)∈A\U,i6=s

xis+

max
{S′′s :S′′s⊆U ′′s ,|S′′s |≤Γ}

|S ′′s | − ∑
(s,i)∈U ′′s \S′′s ,i 6=s

xsi +
∑

(i,s)∈U ′′s \S′′s ,i 6=s

xis

− δGs ≤ −1

(5.43)∑
(d,i)∈A\U,i6=d

xdi −
∑

(i,d)∈A\U,i6=d

xid+

max
{S′d:S′d⊆U

′
d,|S

′
d|≤Γ}

|S ′d|+ ∑
(d,i)∈U ′d\S

′
d,i 6=d

xdi −
∑

(i,d)∈U ′d\S
′
d,i 6=d

xid

− δLd ≤ −1

(5.44)

−
∑

(d,i)∈A\U,i6=d

xdi +
∑

(i,d)∈A\U,i 6=d

xid+

99

max
{S′′d :S′′d⊆U

′′
d ,|S

′′
d |≤Γ}

|S ′′d | − ∑
(d,i)∈U ′′d \S

′′
d ,i 6=d

xdi +
∑

(i,d)∈U ′′d \S
′′
d ,i 6=d

xid

− δGd ≤ 1

(5.45)∑
(j,i)∈A\U,i 6=j

xji −
∑

(i,j)∈A\U,i6=j

xij+

max
{S′j :S′j⊆U ′j ,|S′j |≤Γ}

|S ′j|+ ∑
(j,i)∈U ′j\S′j ,i 6=j

xji −
∑

(i,j)∈U ′j\S′j ,i 6=j

xij

− δLj ≤ 0,

∀j ∈ N \ {s, d} (5.46)

−
∑

(j,i)∈A\U,i6=j

xji +
∑

(i,j)∈A\U,i 6=j

xij+

max
{S′′j :S′′j ⊆U ′′j ,|S′′j |≤Γ}

|S ′′j | − ∑
(j,i)∈U ′′j \S′′j ,i 6=j

xji +
∑

(i,j)∈U ′′j \S′′j ,i 6=j

xij

− δGj ≤ 0,

∀j ∈ N \ {s, d} (5.47)

(5.20), (5.21), (5.22), (5.23)

The CRSPP attempts to reduce conservatism by bounding the maximum number of

uncertain variables with different prescribed and implemented values. However, CRSPP

can be proved to be equivalent to the RSPP due to the structural properties of the SPP.

Corollary 5.5.1 shows this result.

Corollary 5.5.1. The CRSPP is equivalent to the RSPP.

Proof. Given cij > 0,∀(i, j) ∈ A, Corollary 5.5.1 follows from results in Corollary 2.5.5

applied to SPP.

From Corollary 5.5.1, the CRSPP can be treated as RSPP, including the use of algo-

rithm developed in Section 5.4 to identify its robust solutions.

100

5.6 Experimental Study

This experimental study evaluates the performance of the deterministic and robust so-

lutions in terms of their practical feasibility and objective value. This study aims to illus-

trate the situations where the use of the robust formulation is more appropriate than the

deterministic one.

5.6.1 Performance Measures

Deterministic and robust solutions define at least one path; moreover, implementation

uncertainty may define more paths or may disrupt the existing ones. From a practical

perspective, it is expected that solutions define at least one path connecting the source and

destination nodes; this concept is formalized next.

Let C be the set of all the paths in G connecting s and d. Let P(x) be the set of paths

defined by the solution x. The practical feasibility of x can be defined as follows:

Definition 5.6.1. A solution x is practical feasible if P(x) ∩ C 6= ∅.

Definition 5.6.1 states that a solution is practical feasible if it defines at least one path

connecting the source and destination nodes.

Implementation uncertainty may impact the practical feasibility of the solution. Let

F ′(x) be the set of the practical feasible solutions in U(xC); F ′(x) is defined as follows:

Definition 5.6.2. The set of the practical feasible solutions in U(xC) is defined asF ′(x) =

{x ∈ U(xC) : P(x) ∩X 6= ∅}.

Given a solution x, its feasibility level h′(x) is defined as the proportion of the total

number of practical feasible solutions among all possible implementation vectors result of

implementation uncertainty.

Definition 5.6.3. The feasibility ratio h′(x) can be defined as follows:

101

h′(x) =
|F ′(x)|
|U(xC)|

(5.48)

The greater the feasibility level, better the protection of the solution against implemen-

tation uncertainty.

Given a practical feasible solution x, the cost f−(x) of the shortest path in P(x) ∩X

connecting s and d is defined as follows:

f−(x) = min
y∈P(x)∩X

{f(y)} (5.49)

The decision of computing the cost of the shortest path in P(x) ∩ X to evaluate the

performance of the solutions is driven by the objective of determining how good the so-

lution can be. For instance, consider that the deterministic solution produces the shortest

path among X , say p1; assume that due to implementation uncertainty x also define a sec-

ond path p2 connecting s and d. Assume a different feasible solution y, which produces

a feasible path, say p3, with greater cost than p1; assume also that due to implementation

uncertainty p2 is also defined by y and the cost of p2 is greater than the cost of p3. Note

that the worst case of the two solutions is the same; therefore, under the maximum cost

one can conclude that their performance is the same. However, by evaluating their perfor-

mance according to the minimum value, clearly, the deterministic solution performs better;

therefore, this measure of performance is fair with the solutions that provide a shorter path.

Given a solution x, its average objective value f̄ ′(x) is defined as the average minimum

cost of the shortest paths in P(x) ∩X .

Definition 5.6.4. The average objective value f̄ ′(x) is defined as follows:

f̄ ′(x) =

∑
y∈F ′(x) f

−(y)

|F ′(x)|
(5.50)

102

The lower the value of f̄ ′(x), better the solution performs in terms of the objective

value.

Similarly to the loss of the objective performance ratio in Definition 3.4.3, we define

l′(x, y) for the SPP as follows:

Definition 5.6.5. Given two solutions x and y, the loss of the objective performance ratio,

l′(x, y), of y with respect to x is given as follows, assuming a minimization objective

function:

l′(x, y) =
f̄ ′(y)− f̄ ′(x)

f̄ ′(x)
(5.51)

The larger the value of l′(x, y), the worse is the objective performance of y compared

to x.

5.6.2 Test Problem Generation

The test problems considered in this study are generated as follows:

1. The generation of a directed graph G = (N,A) using Algorithm 3; the parameter n

controls the number of nodes, and parameter b ∈ (0, 1) controls the density of the

arcs, the greater the value of b, more dense the graph is; the parameter d controls the

distance between the source and destination nodes, when d = 1 they are near to each

other, when d = 2 they are located in a middle distance, and when d = 3 locates

them far from each other. The subroutine compute_maximum_distance computes

the maximum distance between any pair of nodes in N . Source and destination

nodes are considered near to each other when the distance between them is less than

25% of the maximum distance between any pair of nodes; they are considered far

from each other if the distance between them is greater than 75% of the maximum

distance, and they are considered in a medium distance otherwise. The subroutine

103

locate_source_destination locates the source and destination nodes randomly such

that their distance satisfies the configuration given by the parameter d. The density

of the graph is defined as the percentage of all the possible arcs that may be included

inG; the parameter b controls such percentage. A graph is consider sparse if b = 0.1,

non-sparse-non-dense if b = 0.5 and dense if b = 0.9.

Algorithm 3 Generation of a graph G = (N,A)
input: number of nodes n, density b, distance between source and destination nodes d
output: directed graph G = (N,A)

1: function GRAPHGENERATION(n,b)
2: for 2 to n− 1 do
3: Coordinate X ← Random number between 1 and 1000 . Generate the coordinate X
4: Coordinate Y ← Random number between 1 and 1000 . Generate the coordinate Y
5: if Coordinates X and Y do not exist already then . Verify that coordinates are unique
6: Add coordinates X and Y to set of nodes N . Add the new node and its coordinates
7: end if
8: end for
9: maximum distance← compute_maximum_distance(N) . Compute the maximum distance

10: N ← locate_source_destination(d,maximum distance) . Locate the source and destination nodes
11: for all nodes i in N do
12: for all nodes j in N do
13: if i 6= j and arc (j, i) not in A then
14: if Random[0, 1) > (1− b) then
15: Add arc (i, j) to A . Add the selected arc to the set of arcs
16: end if
17: end if
18: end for
19: end for
20: Return G = (N,A)
21: end function

2. The determination of the set of arcs under implementation uncertainty U consid-

ering that the arcs under uncertainty are uniformly randomly selected, or they are

clustered near to the source node, destination node or in the middle of these two

nodes. Algorithm 4 shows how to compute U when the arcs under implementation

uncertainty are randomly uniformly select among all elements in A; the parameter

104

p controls the percentage of arcs under implementation uncertainty to be selected.

The subroutine verify_uncertain verifies that Assumption 5.3.1 and 5.3.2 are satis-

fied when the current arc u is considered into the set U .

Algorithm 4 Selection of the arcs under implementation uncertainty U
input: acyclic graph G = (N,A) and percentage of arcs under implementation uncertainty p
output: a set of arcs under implementation uncertainty U

function GENERATEUNCERTAINSET(G = (N,A), p)
while |U | < p× |A| do . Repeat until the maximum number of arcs under implementation

uncertainty is achieved
u← Random number between 1 and |A| . Select one element of A
if verify_uncertain(G = (N,A), U, u) is False then

Add u to set U . Add arcs u to the set U
end if

end while
Return U

end function

Algorithm 5 shows how to compute U when most of the arcs in this set are clustered;

the parameter c determines whether the arcs under uncertainty are clustered near the

source node (c = 1), near the destination node (c = 3), or in the middle of the source

and destination nodes (c = 2). The subroutine sort_nodes_near_to sorts ascending

the nodes based on their cost to the objective node; if c = 1 the objective node is

the source node, if c = 3 the objective node is the destination node, and if c = 2 the

objective node is the midpoint between the source and destination nodes.

Given a graph G generated as described in the step 1, different scenarios are defined

depending of the distribution of the arcs under implementation uncertainty among the

graph as follows:

• Scenario 1: The arcs under implementation uncertainty uniformly randomly dis-

tributed among the graph.

105

Algorithm 5 Selection of the arcs under implementation uncertainty U in clusters
input: acyclic graph G = (N,A), a percentage of arcs under implementation uncertainty p, and cluster
c = 1, 2, 3
output: a set of arcs under implementation uncertainty U

function GENERATEUNCERTAINSET(G = (N,A), p, c)
sorted_nodes = sort_nodes_near_to(N, c) . Sort ascending nodes based on cost to the objective node
i = 0
while i < |N | and |U | < p× |A| do . Repat until the maximum number of arcs under uncertainty

j = 0
while j < |N | and |U | < p× |A| do . Repat until the maximum number of arcs under

uncertainty
if node i is adjacent to sorted_nodes[j] then . Search adjacent nodes to the closest node

select an arc u = (i, sorted_nodes[j]) . Select an arc whose destination is the closest node
if Random number between [0,1) > 0.5 and verify_uncertain(G = (N,A), U, u) is False

then
Add u to set U . Add arcs u to the set U

end if
end if
increment j . Select next node in sorted_nodes[j]

end while
increment i . Select next node

end while
Return U

end function

• Scenario 2: Most of the arcs under implementation uncertainty are clustered near

to the source node.

• Scenario 3: Most of the arcs under implementation uncertainty are clustered near

to the destination node.

• Scenario 4: Most of the arcs under implementation uncertainty are clustered in the

middle of the source and destination nodes.

Each scenario is tested with the source and destination located near, far and at a

medium distance from each other, and when the graph is sparse, dense or non-sparse-non-

dense. Figures 5.2 shows different examples of graphs with arcs under implementation un-

certainty uniformly randomly distributed, different percentages of arcs under uncertainty,

106

and different distances between the source and destination nodes. The deterministic short-

est path is shown but the robust solutions are omitted for clarity of the graphs.

Figure 5.3 show examples of different graphs with the arcs under implementation un-

certainty clustered in different areas. These graphs represent examples of scenarios 2, 3,

and 4, respectively.

The scenarios described above may represent real situations. For instance, in a distri-

bution network with the source or destination points located near to the coast, the roads

connecting them with the rest of the network may be highly affected when a hurricane oc-

curs; this situation may be represented by a scenario with the arcs under implementation

uncertainty clustered near to the source or destination nodes. Similarly, graphs with a low

percentage of arcs under uncertainty may represent transportation networks with a small

number of bridges, few areas prone to flooding, and so on.

On the other hand, graphs with a high number of arcs under uncertainty may represent

areas where disasters or traffic accidents may block many roads with high probability. For

example, traveling through a big metropolis, such as Houston, during peak hours, or when

the city is affected by a disaster such as the hurricane Harvey. In the same way, the density

of the graph may represent the connectivity of the different regions or the type of roads

considered; for example, if only highways are considered, the density may be low given

that only a few roads are considered. In contrast, if any road may be included, then the road

network may be represented for a more dense graph which considers urban roads, detours

and so on. Scenarios with source and destination nodes near to each other may represent

the transportation of loads locally, for example, between south and north Houston areas;

while these nodes located far from each other may represent the travel between two cities,

for example, traveling from San Antonio to Dallas, Texas.

For each scenario and different configuration, there are generated 30 problems with

different graphs G consisting of 500 nodes, and different set of arcs under implementation

107

Figure 5.2: Graphs with arcs under implementation uncertainty uniformly distributed.

108

Figure 5.3: Graphs with arcs under implementation uncertainty clustered in different areas.

uncertainty U . The percentage of arcs under uncertainty ranges from 5% to 35%, in jumps

of 5%. For each problem, the deterministic solution of the SPP, xD, and the robust solution

xR as described in Lemma 5.3.5 are computed. In turn, the corresponding uncertain sets

109

U(xDC) and U(xRC), setsF ′(xD) andF ′(xR), and measures of performances are obtained by

a random sample with 2000 sample points. It is assumed that the implemented value of the

uncertain variables is equal or different to the prescribed value with the same probability.

5.6.3 Performance Results

Figure 5.4 shows the feasibility level for the different scenarios. The results of the

experiments show that the feasibility level of the deterministic solutions is more sensitive

to implementation uncertainty when the arcs under uncertainty are clustered in any region

due to arcs forming the shortest path become uncertain with high probability; therefore,

the shortest path possess a high probability to become disconnected. The probability that

arcs forming the shortest path are impacted by uncertainty is reduced when the arcs under

uncertainty are uniformly randomly distributed among the graph; therefore, there is an

improvement in the feasibility level when arcs under uncertainty are selected in this way.

Similarly, the feasibility level of the deterministic solutions is more affected when the

graph is sparse. The reason is that with fewer arcs in the graph, the probability that arcs in

the shortest path are contained in the set of arcs under uncertaintyU increases. On the other

hand, the feasibility level is less affected by uncertainty when the graph contains more

arcs due to a decrease of the probability aforementioned; therefore, dense graphs provide

better feasibility level. When the arcs under implementation uncertainty are clustered,

the feasibility level is more affected as closer these two nodes are; the reason is that as

closer they are, there is more probability that arcs forming the shortest path are impacted

by uncertainty given that they are clustered near the shortest path; as farther they are, the

arcs under uncertainty are more distributed among arcs not contained in the shortest path.

This behavior is different when the arcs under implementation uncertainty are uniformly

distributed; in this case, the closer the nodes are the better the feasibility level given that

arcs are distributed among all the network and the probability that arcs in the shortest path

110

become uncertain is small. When the arcs are uniformly distributed, the farther the nodes

are there is more probability that the arcs under uncertainty contain arcs into the shortest

path given that there are more arcs forming it.

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Percentage of arcs under implementation uncertainty

h
'(x

)

Arcs under implementation uncertainty uniformly distributed

5 10 15 20 25 30 35

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Percentage of arcs under implementation uncertainty
h

'(x
)

Most of the arcs under implementation uncertainty clustered near the source node

5 10 15 20 25 30 35

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Percentage of arcs under implementation uncertainty

h
'(x

)

Most of the arcs under implementation uncertainty clustered near the destination node

5 10 15 20 25 30 35

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Percentage of arcs under implementation uncertainty

h
'(x

)

Most of the arcs under implementation uncertainty clustered in the
middle of the source and destination nodes

5 10 15 20 25 30 35

Sparce,
Close

Sparce,
Medium

Sparce,
Far

Non−sparse−
non−dense,
Close

Non−sparse−
non−dense,
Medium

Non−sparse−
non−dense,
Far

Dense,
Close

Dense,
Medium

Dense,
Far

Figure 5.4: Feasibility performance ratio of the deterministic solutions h′(xD).

On the other hand, the robust solutions guarantee feasibility for any realization of the

uncertainty; however, there exists an increment of the cost to guarantee such feasibility

level. Figure 5.5 shows the loss of the objective value of the robust solutions against the

deterministic solutions. As more arcs are under implementation uncertainty, there exists

a high probability that arcs possessing low costs become uncertain. Therefore, the robust

111

solutions should form the feasible path by considering arcs with high cost or should form

the shortest path by considering a larger number of arcs. The increment of the cost of the

robust solutions increases when the arcs under uncertainty are clustered in any part of the

graph in comparison to the scenario when these arcs are uniformly randomly distributed;

this increment of the cost is due to the robust solutions forming the feasible path with a

large number of arcs than the deterministic solution does. For all scenarios, the loss of

objective value is not significantly impacted by the density of the graph; though sparse

graphs provide a slightly higher cost, and dense graphs provide the best value. Similarly,

the distance between the source and destination nodes does not impact significantly the

increment in the cost. However, when the arcs under implementation uncertainty are uni-

formly distributed, the closer the two nodes are, the smaller the cost increment is; on the

other hand, when the arcs under uncertainty are clustered, the closer the two nodes are the

higher the cost increment is.

Experimental results also show that in less than 1% of the realizations of the uncer-

tainty, the cost of a path connecting the source and destination nodes result of the uncer-

tainty affecting the deterministic solution possesses a higher cost than the cost of the path

defined by the robust solutions; although, this difference of the cost is not significant. This

phenomenon is due to the deterministic path connecting the source and destination nodes

by using arcs not initially considered due to implementation uncertainty; although these

arcs permit to reach the destination node, their cost is higher than other arcs, including the

ones used by the robust solution.

From a practical perspective, the robust solutions are more appropriate when there ex-

ists a priority to reach the destination, even at an increment of the cost. For example, in

the case of a disaster, there may be roads connecting two points that are not available,

which can be modeled using implementation uncertainty. In this case, first aid supplies are

transported from suppliers to regions affected by the disaster; it is a priority to reach the

112

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Percentage of arcs under implementation uncertainty

l(
x

,y
)

Arcs under implementation uncertainty uniformly distributed

5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Percentage of arcs under implementation uncertainty

l(
x

,y
)

Most of the arcs under implementation uncertainty clustered near the source node

5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Percentage of arcs under implementation uncertainty

l(
x

,y
)

Most of the arcs under implementation uncertainty clustered near the destination node

5 10 15 20 25 30 35

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Percentage of arcs under implementation uncertainty

l(
x

,y
)

Most of the arcs under implementation uncertainty clustered in the
middle of the source and destination nodes

5 10 15 20 25 30 35

No sparce,
no dense graph

Sparce
graph

Dense
graph

Figure 5.5: Loss of the objective performance ratio l′(xD, xR).

destination point, even with an increment of the traveled distance since the regions can-

not wait until the road is available again. A similar scenario can be seen when deployed

troops need supplies and the communication network is destroyed; the priority is to find

a different path to guarantee that the soldiers receive the supplies or they are extracted.

Similarly, retailers such as Amazon may accept an increment in their transportation cost

to satisfy customers, especially to prime members. Not complying with the delivery date

affects Amazon’s customer service level and their promise of service with this type of cus-

tomers. Another industry interested in completing the delivery may be the food industry,

especially companies distributing perishable products.

113

On the other hand, with a small percentage of arcs under implementation uncertainty,

the increment of the cost of the robust solutions may not justify the improvement in the

feasibility level, if there does not exist a high priority to reach the destination node, or

there exists an option to wait until the solution can be implemented. Going back to the

Amazon example, when serving regular customers Amazon may wait until the delivery

is completed using the initial route since they usually provide a wide window of time to

complete these deliveries and the customers are aware of it. Similarly, the delivery of low

cost-not perishable products may not justify the increment in the transportation costs since

they may not be a priority.

The experimental study also evaluates the performance of the two discussed method-

ologies to solve the RSPP in terms of their runtime; the equivalent MILP formulation and

Algorithm 1. The MILP is solved using CPLEX 12.6 and Java; Algorithm 1 is imple-

mented in Java. Table 5.1 shows the average runtime for both solutions methods when

applied to digraphs with arcs under implementation uncertainty uniformly distributed, and

origin and destination at a medium distance. The times are measured in milliseconds.

MILP Algorithm 1
Percentage
of arcs under
implementation
uncertainty

Sparse Non-sparse-
non-dense

Dense Sparse Non-sparse-
non-dense

Dense

5% 117,730 183,474 243,593 980 1,783 2,971
10 104,780 168,796 219,234 912 1,693 2,793
15 94,302 153,604 199,503 857 1,558 2,681
20 85,815 136,708 177,557 806 1,449 2,467
25 76,375 127,138 163,353 757 1,376 2,294
30 69,501 115,696 151,918 712 1,239 2,065
35 62,551 107,597 136,726 669 1,152 1,941

Table 5.1: Runtime of the MILP and Algorithm 1 (milliseconds).

114

Results in Table 5.1 show that the runtime of both solutions is impacted by the density

of the graph and the percentage of uncertain variables. Both of these factors impact the

number or arcs considered in the graph reducing the number of variables, in the case of

the MILP, and loops in Algorithm 1. As expected, Algorithm 1 possesses a better the

performance than the MILP.

5.7 Case Study

This section presents a case study of a distribution company that moves its products in

the east of United States. The road network may be impacted by accidents and weather

conditions that prevent the use of road sections. The developed concepts of robustness

in the context of the SPP are applied to identify the robust routes to move their products.

An analysis of the profit produced by the deterministic and robust solutions presents the

attractiveness of the concepts of robustness.

5.7.1 Problem Description

A distribution company covers the east side of the United States. The company moves

its products among California, Oregon, Idaho, Utah, Nevada, Alaska, Colorado, Washing-

ton, Wyoming, Arizona, Montana and North Dakota. Figure 5.6 shows the map with the

different locations served by this company. There are 126 locations in total distributed

among the states aforementioned.

There exist many source-destination pairs considered in the company’s operations;

however, this case study focuses on those pairs that comprise more than the 65% of their

operations. These pairs and the total number of trips per week between them are:

• Scenario 1: Santa Fe Springs, CA to Salt Lake City, UT; total of 54 trips.

• Scenario 2: Santa Fe Springs, CA to Billings, MT; total of 37 trips.

• Scenario 3: Santa Fe Springs, CA to Upton, WY; total of 33 trips.

115

Figure 5.6: Locations in United States considered in the case study.

• Scenario 4: Redmon, OR to Chula Vista, CA; total of 27 trips.

These source and destination nodes of the four scenarios are represented in Figure 5.6.

The company is interested in visiting these locations, but they also want to include other

locations served by them into the route such that they can serve more than one order on

the same trip.

Due to the nature of their products, the company is interested in reducing the stopping

times of the vehicles and deliver them the fastest possible. Primarily, the company would

like to reduce the times that their fleet is not moving. Uncertainty such as accidents impacts

the traffic conditions, and the company is interested in identifying solutions that permit to

achieve the destination a soon as possible for any realization of the uncertain conditions.

5.7.2 Solution Approach

This case study is addressed by applying the concepts of robustness developed in pre-

vious sections. The modeling of the problem is described as follows:

116

1. Generate a graph G using every mark in Figure 5.6 as the nodes. By considering the

nodes in Figure 5.6, the solutions allow visiting the rest of the locations on the map.

2. The set of arcs is generated by connecting every pair of nodes using two arcs in

opposite directions. The weight of each arc is given by the distance between each

pair of locations according to the information retrieved from Google Maps.

3. The set of arcs under implementation uncertainty is generated by considering the

routes crossing areas with a high number of accidents. The traffic data of accidents

is obtained from the National Highway Traffic Safety Administration (NHTSA)

(U.S. Department of Transportation, 2018). Figure 5.7 shows an example of the data

retrieved from the NHTSA; this figure shows the locations with accidents reported

during 2016 in the states of California, Nevada, and Utah. Similar information is

obtained for the other states served by the company.

Figure 5.7: Example of accidents reported during 2016 in California, Nevada and Utah.

Based on the information from the NHTSA, the arcs under implementation uncer-

tainty for each of the scenarios described above are considered as follows:

117

• Santa Fe Springs, CA to Salt Lake City, UT; arcs under uncertainty are clus-

tered near to these two locations.

• Santa Fe Springs, CA to Billings, MT; arcs under uncertainty are clustered near

to the source point and near to Salt Lake City, UT.

• Santa Fe Springs, CA to Upton, WY; arcs under uncertainty are clustered near

to the source point.

• Redmon, OR to Chula Vista, CA; arcs under uncertainty are clustered around

Los Angeles, CA.

For each of the scenarios, the SPP and RSPP are solved, and their performance is eval-

uated using the feasibility performance ratio in Definition 5.6.3 and the loss of objective

performance ratio in Definition 5.6.4.

5.7.3 Financial Analysis

The deterministic and robust solutions of the case study can be analyzed from a finan-

cially perspective by computing the annual profit of these solutions. Information on the

total number of trips per week and the average profit per trip is available; therefore, the

average annual profit AP of all the trips without uncertainty can be computed as follows:

AP = 52× (#trips per week)× (average profit per trip) (5.52)

Where the term 52 × (#trips per week) provides the total number of trips during one

year. For instance, if the average profit per trip is $1,000, and there are 50 trips per week,

then the average annual profit AP is $2,600,000.

It can be assumed that under uncertainty the feasibility level of the deterministic solu-

tion h(xD) provides the percentage of the annual trips that will be completed during one

year. Therefore, the average annual profit of the deterministic solution APD can be com-

118

puted as the average annual profit of the proportion of trips completed; APD is computed

as follows:

APD = AP × h(xD) (5.53)

For instance, if the average annual profit AP is $1,000,000 and the feasibility level

h(xD) = 0.8, then the average annual profit of the deterministic solution APD is the 80%

of the average annual profit; i.e., APD = $800, 000.

On the other hand, the robust solution xR permits to complete all the trips with an

increment of the traveled distance with respect to the deterministic solution xD. The in-

crement of the traveling distance of the robust solution with respect to the deterministic

solution ∆d(xD, xR) can be computed as follows:

∆d(xD, xR) = d(xR)− d(xD) = (1 + l(xD, xR))× d(xD) (5.54)

Where d(xR) is the total distance produced by the robust solution, d(xD) is the total

distance produced by the deterministic solution, and l(xD, xR) is the loss of objective

performance ratio. The total annual profit of the robust solution APR is computed as the

average annual profit AP minus the cost of the extra distance of the robust solution using

the cost per mile cpm; APR can be computed as follows:

APR = AP − 52× (#trips per week)×∆d(xD, xR)× cpm (5.55)

For instance, assume an increment of 30% of the distance and d(xD) = 200 miles; if

the cost per mile is $1.5, there are 50 trips per wek, and AP = $1, 200, 000, the average

annual profit of the robust solution APR using equation (5.55) is as follows:

APR = 1, 200, 000− 52× 50× (1 + 0.3)× 200× 1.5 = $186, 000 (5.56)

119

Note that the APR may be a negative value if the extra distance or the cost per mile are

high values.

5.7.4 Performance Results

Table 5.2 shows the feasibility level of the deterministic solution for each of the sce-

narios. The results show that the feasibility levels of the scenarios with Santa Fe Springs,

CA as the source are impacted by accidents or other traffic conditions around the Santa Fe

Springs and San Bernardino areas. The traffic conditions around Salt Lake City, UT also

impact the probability of disconnecting the path; therefore, the scenario with this location

as the destination, and the scenario with Billings, MT as the destination posses lower feasi-

bility level than the other scenarios. The deterministic route from Santa Fe Springs, CA to

Upton, WY is not impacted by the traffic around Salt Lake City since the route deviates to

Wyoming before reaching this location; therefore, its feasibility level is slightly improved.

On the other hand, the deterministic solution from Redmon, OR to Chula Vista, CA is

highly impacted by the traffic in Los Angeles since this location is part of the path and

there is a high probability of unavailable roads around it.

Scenario Feasibility performance
ratio h(xD)

1 0.7653
2 0.782492
3 0.845743
4 0.702147

Table 5.2: Feasibility performance ratio of each scenario.

From the data provided by the company, the average profit per trip is $1,500. Using the

total number of trips per week for each scenario and equation (5.52), the average annual

120

profit AP is $11,778,000. The average annual profit of the deterministic solution of each

scenario can be computing using equation (5.53) and information in Table 5.2. Table 5.3

shows the average annual profit of the deterministic solutions for each scenario.

Scenario APD

1 $3,223,443.60
2 $2,258,271.91
3 $2,176,942.48
4 $1,478,721.58

Table 5.3: Annual profit of the deterministic solutions.

The total annual profit provided by the deterministic solution is $9,137,379.58.

On the other hand, the robust solutions are feasible for any realization of the traffic

conditions and it is assumed that all the trips can be completed; however, there is an

increase in the traveled distance to achieve such feasibility level. Table 5.4 shows the

proportion of the increment in the traveled distance of the robust solutions in comparison

to the deterministic solution. The scenario with Santa Fe Springs, CA and Salt Lake

City, UT is the one whose robust solution possesses the highest increment in the traveled

distance; this increase is due to the robust path trying to avoid the areas with high traffic

near the source and the destination. The rest of the scenarios with Santa Fe Springs as

the source possess small increments in the traveled distance since they avoid Salt Lake

City, but the deviations are smaller than trying to avoid all the traffic around this area. The

scenario from Redmon, OR to Chula Vista, CA behaves similarly to the last two mentioned

scenarios.

Using the data provided by the company, the cost per mile is estimated at $1.5. The

average annual profit of the robust solution for each scenario can be computing using

121

Scenario Loss of the objective per-
formance ratio l(xD, xR)

1 0.31736
2 0.18746
3 0.153872
4 0.178593

Table 5.4: Loss of the objective performance ratio of each scenario in the case study.

equation (5.55). Table 5.5 shows the average annual profit of the robust solutions for each

scenario.

Scenario APR

1 $3,583,691.94
2 $2,210,820.07
3 $2,086,046.04
4 $1,728,378.67

Table 5.5: Annual profit of the robust solutions.

The total annual profit of the robust solutions is $9,608,936.72.

Based on previous results, it is possible to conclude the following:

• The company may increase their profit in $609,905.43 by using the robust solutions

for scenarios 1 and 4, and the deterministic solutions for scenarios 2 and 3. The cost

of the extra distance for scenarios 2 and 3 is greater than the profit of the extra trips

completed by the robust solution with respect to the deterministic one.

• If the company implements the robust solutions for all scenarios, the increment of

the annual profit is $471,557.15.

122

• If the profit per trip is reduced more than 18%, the deterministic solutions provide

a better overall profit than the robust ones. Figure 5.8 shows the profit of the deter-

ministic and robust solutions for different values of the profit per trip.

800 1000 1200 1400 1600

2
4

6
8

10

Profit per trip

A
nn

ua
l p

ro
fit

 (
$

m
ill

io
ns

)

Deterministic solution Robust solution

Figure 5.8: Annual profit for the deterministic and robust solutions for different values of
the profit per trip.

5.8 Summary and Conclusions

This chapter presents the first attempt to study the shortest path problem when there

may not be possible to travel through certain arcs considered in the shortest path, or one

may be forced to travel through arcs not initially considered. The study of this problem

123

is useful for transportation companies, distributors or any institution that requires moving

between two points and disruptions or blocs in the communications network may exist.

This study addresses implementation uncertainty by developing a robust formulation

that seeks for a path from the source node to the destination node formed by arcs not

under implementation uncertainty. This work presents a solution algorithm based on Di-

jkstra’s algorithm; the computational complexity of the proposed algorithm is the same as

Dijkstra’s.

The experimental study considers different scenarios representing real situations and

shows that the increment in the cost of the robust solutions to guarantee a path from the

source to the destination node is justified if there exists a priority in reaching the desti-

nation. Examples considering priority in the deliveries such as Amazon prime, first aid

supplies, and supplies to troops are discussed. When there does not exist a high priority in

reaching the destination node, this study suggests that the increment in the cost may not

be justified and the deterministic shortest path may be more appropriate to use.

The case study presented in this chapter illustrates how the concepts of the SPP under

implementation uncertainty and the robust concepts for this type of problem can be applied

to a real problem. The results of the case study show how a company may be financially

benefited by implementing robust solutions. Recommendations for each scenario are in-

cluded.

124

6. CONCLUSIONS AND FUTURE RESEARCH

This chapter summarizes the main contributions from this dissertation. Finally, it pro-

vides directions on possible extensions and future research.

6.1 Summary

This dissertation is motivated by the limited work accounting for implementation un-

certainty in binary variables and the practical applications fo this type of problem. This

dissertation aimed to develop a model of this type of uncertainty and models to identify

solutions immune to implementation uncertainty. The contributions of this research to the

academic body of knowledge can be summarized as follows:

• The model of implementation uncertainty in binary variables presented in Chapter

2 models the existing uncertainty in the implemented value of a binary variable

under this type of uncertainty. This model of implementation uncertainty allows

the development of a solution space, the cornerstone of the robust formulation that

permits the definition of the measures of robustness levels. Properties of the solution

space permit the development of the properties of the robust formulations and robust

solutions.

• Chapter 2 presents the development of a methodology to solve BLPs under imple-

mentation uncertainty that identifies solutions immune to this type of uncertainty.

A characteristic of the proposed robust model is that it allows the development of

a solution method based on a linear reformulation; therefore, the difference in the

complexity of the deterministic and robust models may not be significant. More-

over, the RMBP permits to obtain the robust solutions by applying existing MILP

solution algorithms. Some particular problem structures permit the development of

125

more efficient solution algorithms. For instance, the use of dynamic programming

to solve the RKP and the Dijkstra’s based algorithm for the RSPP.

• The development of solution methodologies to address conservatism of the robust

solutions. These methods permit to reduce conservatism by sacrificing feasibility

with respect to the deterministic BLP, accepting a probability of degradation of the

objective function value, or accepting a probability of losing protection against un-

certainty. Not only the proposed methodologies reduce conservatism, but they also

allow the decision maker a control of the accepted level of the conservatism.

• The application of the proposed concepts of robustness to the KP, the AP and the SSP

under implementation uncertainty. These applications illustrate how the proposed

concepts can be applied to problems with particular structures, and how these struc-

tures define characteristics of the robust counterparts and the robust solutions. These

characteristics include the configurations of the control parameters to identify robust

solutions with different properties or the development of more efficient algorithms.

The experimental studies included for each application identify the characteristics

of the problems and instances of the problems that make the robust solutions more

attractive in terms of protection of the feasibility and degradation of the objective

function value.

• A case study shows that the robust solutions may be attractive for real applications

by providing a better profit than the deterministic solutions when impacted by un-

certainty.

Based on the contributions of this work, it is possible to conclude that this disserta-

tion provides the theoretical concepts necessary to address implementation uncertainty in

binary variables and solve BLPs under this type of uncertainty. Furthermore, this disserta-

126

tion also provides the theoretical results to solve the robust formulation and identify the set

of robust solutions. Similarly, the theoretical results to address conservatism of the robust

solutions of the RBIU are presented.

From a practical perspective, the proposed RBIU provides solutions that guarantee

their applicability or practical meaning for any realization of the uncertainty. Similarly,

the proposed methodology to solve the RBIU can make use of existing algorithms and

software to solve MILPs. By applying the proposed concepts of robustness to well-known

BLPs, this dissertation develops properties based on the particular problem structures,

including more efficient solution algorithms. Finally, recommendations of the conditions

that make robust solutions more attractive from a practical standpoint are also presented.

This recommendations are also presented in the context of a case study for the SPP under

implementation uncertainty.

6.2 Future Research

This work opens opportunities for extensions and future research. Extensions of this

work include:

• The extension of the proposed concepts of implementation uncertainty to integer

programming models. To the best of our knowledge, there does not exist previous

work addressing this type of problem under implementation uncertainty. Integer

programming models under implementation uncertainty may be useful in practical

applications such as production scheduling problems and transportation problems,

among others.

• The development of less conservative measures of robustness or robust formula-

tions based on the model of implementation uncertainty for binary variables. For

instance, the use of maximum deviation from optimality as a measure of optimality

127

robustness. The use of different measures may open the opportunity to develop other

solution methods.

Opportunities for future research include:

• The development of robust models accounting for data and implementation uncer-

tainty simultaneously. These models may provide an opportunity to address a wide

range of problems with higher model fidelity. For instance, networks with uncertain

arc weight and uncertain availability of the nodes. Such networks may represent

communication networks where the speed of the information varies, and some an-

tennas may not be available to receive or transmit the information.

• The application of the proposed concepts of robustness to other BLPs and real prob-

lems. For instance, the set covering problem when installing emergency service

centers and one of them cannot serve to an assigned region due to destruction in the

transportation network or destruction of the center when a disaster impacts the area.

Similarly, the shortest path problem with arcs blocked due to accidents or disasters

preventing to travel from the source to the destination node.

128

REFERENCES

Aissi, H., Bazgan, C., and Vanderpooten, D. Complexity of the min–max and min–max

regret assignment problems. Operations research letters, 33(6):634–640, 2005.

Aissi, H., Bazgan, C., and Vanderpooten, D. Min–max and min–max regret versions

of combinatorial optimization problems: A survey. European journal of operational

research, 197(2):427–438, 2009.

Bartholdi III, J. J. The knapsack problem. In Building Intuition, pages 19–31. Springer,

2008.

Bazaraa, M. S., Jarvis, J. J., and Sherali, H. D. Linear programming and network flows.

John Wiley & Sons, 2011.

Beale, E. M. On minimizing a convex function subject to linear inequalities. Journal of

the Royal Statistical Society. Series B (Methodological), pages 173–184, 1955.

Bellman, R. Dynamic programming. Princeton university press, 1957.

Bellman, R. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.

Ben-Tal, A. and Nemirovski, A. Robust convex optimization. Mathematics of operations

research, 23(4):769–805, 1998.

Ben-Tal, A. and Nemirovski, A. Robust solutions of uncertain linear programs. Operations

research letters, 25(1):1–13, 1999.

Ben-Tal, A. and Nemirovski, A. Robust solutions of linear programming problems con-

taminated with uncertain data. Mathematical programming, 88(3):411–424, 2000.

Ben-Tal, A. and Nemirovski, A. Robust optimization–methodology and applications.

Mathematical Programming, 92(3):453–480, 2002.

Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. Robust optimization. Princeton University

Press, 2009.

129

Bertsekas, D. P. and Tsitsiklis, J. N. An analysis of stochastic shortest path problems.

Mathematics of Operations Research, 16(3):580–595, 1991.

Bertsimas, D. and Sim, M. Robust discrete optimization and network flows. Mathematical

programming, 98(1-3):49–71, 2003.

Bertsimas, D. and Sim, M. The price of robustness. Operations research, 52(1):35–53,

2004.

Bertsimas, D. and Weismantel, R. Optimization over integers, volume 13. Dynamic Ideas

Belmont, 2005.

Bertsimas, D., Brown, D. B., and Caramanis, C. Theory and applications of robust opti-

mization. SIAM review, 53(3):464–501, 2011.

Beyer, H.-G. and Sendhoff, B. Robust optimization–a comprehensive survey. Computer

methods in applied mechanics and engineering, 196(33):3190–3218, 2007.

Birge, J. R. State-of-the-art-survey-stochastic programming: computation and applica-

tions. INFORMS journal on computing, 9(2):111–133, 1997.

Birge, J. R. and Louveaux, F. Introduction to stochastic programming. Springer Science

& Business Media, 2011.

Bondy, J. A. and Murty, U. S. R. Graph theory with applications, volume 290. Citeseer,

1976.

Borgwardt, K. M. and Kriegel, H.-P. Shortest-path kernels on graphs. In Data Mining,

Fifth IEEE International Conference on, pages 8–pp. IEEE, 2005.

Bunescu, R. C. and Mooney, R. J. A shortest path dependency kernel for relation ex-

traction. In Proceedings of the conference on human language technology and empiri-

cal methods in natural language processing, pages 724–731. Association for Computa-

tional Linguistics, 2005.

Chen, S.-G. and Lin, Y.-K. An approximate algorithm for the robust design in a stochastic-

flow network. Communications in StatisticsâĂŤTheory and Methods, 39(13):2440–

130

2454, 2010.

Cherkassky, B. V., Goldberg, A. V., and Radzik, T. Shortest paths algorithms: Theory and

experimental evaluation. Mathematical programming, 73(2):129–174, 1996.

Collet, P. and Rennard, J.-P. Stochastic optimization algorithms. arXiv preprint

arXiv:0704.3780, 2007.

Dantzig, G. B. Linear programming under uncertainty. Management science, 1(3-4):

197–206, 1955.

Dantzig, G. B. Discrete-variable extremum problems. Operations research, 5(2):266–288,

1957.

Dantzig, G. B. On the shortest route through a network. Management Science, 6(2):

187–190, 1960.

Deı, V. G., Woeginger, G. J., et al. On the robust assignment problem under a fixed number

of cost scenarios. Operations Research Letters, 34(2):175–179, 2006.

Deo, N. and Pang, C.-Y. Shortest-path algorithms: Taxonomy and annotation. Networks,

14(2):275–323, 1984.

Desrochers, M. and Soumis, F. A generalized permanent labelling algorithm for the short-

est path problem with time windows. INFOR: Information Systems and Operational

Research, 26(3):191–212, 1988.

Dijkstra, E. W. A note on two problems in connexion with graphs. Numerische mathe-

matik, 1(1):269–271, 1959.

Duchi, J., Hazan, E., and Singer, Y. Adaptive subgradient methods for online learning and

stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–2159,

2011.

El Ghaoui, L. and Lebret, H. Robust solutions to least-squares problems with uncertain

data. SIAM Journal on Matrix Analysis and Applications, 18(4):1035–1064, 1997.

El Ghaoui, L., Oustry, F., and Lebret, H. Robust solutions to uncertain semidefinite pro-

131

grams. SIAM Journal on Optimization, 9(1):33–52, 1998.

Feillet, D., Dejax, P., Gendreau, M., and Gueguen, C. An exact algorithm for the ele-

mentary shortest path problem with resource constraints: Application to some vehicle

routing problems. Networks, 44(3):216–229, 2004.

Fisher, M. L. and Jaikumar, R. A generalized assignment heuristic for vehicle routing.

Networks, 11(2):109–124, 1981.

Ford Jr, L. R. Network flow theory. Technical report, RAND CORP SANTA MONICA

CA, 1956.

Fredman, M. L. and Tarjan, R. E. Fibonacci heaps and their uses in improved network

optimization algorithms. Journal of the ACM (JACM), 34(3):596–615, 1987.

Gabrel, V., Murat, C., and Wu, L. New models for the robust shortest path problem:

complexity, resolution and generalization. Annals of Operations Research, pages 1–24,

2013.

Gabrel, V., Murat, C., and Thiele, A. Recent advances in robust optimization: An

overview. European Journal of Operational Research, 235(3):471–483, 2014.

Gary, M. R. and Johnson, D. S. Computers and Intractability: A Guide to the Theory of

NP-completeness, volume 29. WH Freeman and Company, New York, 2002.

Glover, F., Klingman, D., and Phillips, N. A new polynomially bounded shortest path

algorithm. Operations Research, 33(1):65–73, 1985a.

Glover, F., Klingman, D. D., Phillips, N. V., and Schneider, R. F. New polynomial shortest

path algorithms and their computational attributes. Management Science, 31(9):1106–

1128, 1985b.

Goldberg, A. V. and Harrelson, C. Computing the shortest path: A search meets graph

theory. In Proceedings of the sixteenth annual ACM-SIAM symposium on Discrete al-

gorithms, pages 156–165. Society for Industrial and Applied Mathematics, 2005.

Henig, M. I. Risk criteria in a stochastic knapsack problem. Operations research, 38(5):

132

820–825, 1990.

Hutson, K. R. and Shier, D. R. Extended dominance and a stochastic shortest path problem.

Computers & Operations Research, 36(2):584–596, 2009.

Ji, X. Models and algorithm for stochastic shortest path problem. Applied Mathematics

and Computation, 170(1):503–514, 2005.

Jornada, D. and Leon, V. J. Biobjective robust optimization over the efficient set for pareto

set reduction. European Journal of Operational Research, 2016.

Kasperski, A. Discrete optimization with interval data. Studies in fuzziness and soft com-

puting, 228, 2008.

Kasperski, A. and Zieliński, P. Robust discrete optimization under discrete and interval

uncertainty: A survey. In Robustness Analysis in Decision Aiding, Optimization, and

Analytics, pages 113–143. Springer, 2016.

Katriel, I., Kenyon-Mathieu, C., and Upfal, E. Commitment under uncertainty: Two-stage

stochastic matching problems. Theoretical Computer Science, 408(2-3):213–223, 2008.

Kennington, J. and Wang, Z. A shortest augmenting path algorithm for the semi-

assignment problem. Operations Research, 40(1):178–187, 1992.

Kingma, D. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.

Kouvelis, P. and Yu, G. Robust discrete optimization and its applications, volume 14.

Springer Science & Business Media, 1997.

Kruskal, J. B. On the shortest spanning subtree of a graph and the traveling salesman

problem. Proceedings of the American Mathematical society, 7(1):48–50, 1956.

Kuhn, H. W. The hungarian method for the assignment problem. Naval Research Logistics

(NRL), 2(1-2):83–97, 1955.

Li, Z., Ding, R., and Floudas, C. A. A comparative theoretical and computational study on

robust counterpart optimization: I. robust linear optimization and robust mixed integer

133

linear optimization. Industrial & engineering chemistry research, 50(18):10567–10603,

2011.

Lin, X., Janak, S. L., and Floudas, C. A. A new robust optimization approach for schedul-

ing under uncertainty:: I. bounded uncertainty. Computers & chemical engineering, 28

(6):1069–1085, 2004.

Loberman, H. and Weinberger, A. Formal procedures for connecting terminals with a

minimum total wire length. Journal of the ACM (JACM), 4(4):428–437, 1957.

Loiola, E. M., de Abreu, N. M. M., Boaventura-Netto, P. O., Hahn, P., and Querido, T. A

survey for the quadratic assignment problem. European journal of operational research,

176(2):657–690, 2007.

Montemanni, R. and Gambardella, L. M. An exact algorithm for the robust shortest path

problem with interval data. Computers & Operations Research, 31(10):1667–1680,

2004.

Montemanni, R., Gambardella, L. M., and Donati, A. V. A branch and bound algorithm

for the robust shortest path problem with interval data. Operations Research Letters, 32

(3):225–232, 2004.

Mulvey, J. M., Vanderbei, R. J., and Zenios, S. A. Robust optimization of large-scale

systems. Operations research, 43(2):264–281, 1995.

Nachtigall, K. Time depending shortest-path problems with applications to railway net-

works. European Journal of Operational Research, 83(1):154–166, 1995.

Orda, A., Rom, R., and Sidi, M. Minimum delay routing in stochastic networks.

IEEE/ACM Transactions on Networking (TON), 1(2):187–198, 1993.

Polychronopoulos, G. H., Tsitsiklis, J. N., et al. Stochastic shortest path problems with

recourse. 1993.

Roy, B. A propos de robustesse en recherche opérationnelle et aide à la décision. Flexibilité

et robustesse en ordonnancement, pages 35–50, 2005.

134

Roy, B. Robustness in operational research and decision aiding: A multi-faceted issue.

European Journal of Operational Research, 200(3):629–638, 2010.

Schrijver, A. Theory of linear and integer programming. John Wiley & Sons, 1998.

Schulz, F., Wagner, D., and Zaroliagis, C. Using multi-level graphs for timetable informa-

tion in railway systems. Algorithm engineering and experiments, pages 43–59, 2002.

Shibuya, T. Shortest path search system, March 12 2002. US Patent 6,356,911.

Shih, W. A branch and bound method for the multiconstraint zero-one knapsack problem.

Journal of the Operational Research Society, pages 369–378, 1979.

Soyster, A. L. Technical note-convex programming with set-inclusive constraints and

applications to inexact linear programming. Operations research, 21(5):1154–1157,

1973.

Steinberg, E. and Parks, M. S. A preference order dynamic program for a knapsack prob-

lem with stochastic rewards. Journal of the Operational Research Society, 30(2):141–

147, 1979.

U.S. Department of Transportation. National highway traffic safety administration, 2018.

URL http://www.one.nhtsa.gov.

Toth, P. and Vigo, D. The vehicle routing problem. SIAM, 2002.

Uryasev, S. and Pardalos, P. M. Stochastic optimization: algorithms and applications,

volume 54. Springer Science & Business Media, 2013.

Vincke, P. Robust solutions and methods in decision-aid. Journal of multicriteria decision

analysis, 8(3):181, 1999.

Weingartner, H. M. and Ness, D. N. Methods for the solution of the multidimensional 0/1

knapsack problem. Operations Research, 15(1):83–103, 1967.

West, D. B. et al. Introduction to graph theory, volume 2. Prentice hall Upper Saddle

River, 2001.

Wets, R. J.-B. Programming under uncertainty: the equivalent convex program. SIAM

135

http://www.one.nhtsa.gov

Journal on Applied Mathematics, 14(1):89–105, 1966.

Wets, R. J.-B. Stochastic programs with fixed recourse: The equivalent deterministic

program. SIAM review, 16(3):309–339, 1974.

Wets, R. J.-B. Solving stochastic programss with simple recourse. Stochastics: An Inter-

national Journal of Probability and Stochastic Processes, 10(3-4):219–242, 1983.

Wolsey, L. A. Integer programming, volume 42. Wiley New York, 1998.

Yu, G. On the max-min 0-1 knapsack problem with robust optimization applications.

Operations Research, 44(2):407–415, 1996.

Yu, G. and Yang, J. On the robust shortest path problem. Computers & Operations

Research, 25(6):457–468, 1998.

136

APPENDIX A

TRANSFORMATION ALGORITHM

Given an RBIU formulation with m model robustness constraints and decision vectors

x with n binary variables. Algorithm 6 shows the steps to transform RBIU into RMBP

formulation. Consider ai0 = ci, ∀i, δ0 = 0 and b0 = γ.

Algorithm 6 Transformation of RBIU to RMBP algorithm
input: RBIU formulation
output: RMBP formulation

1: function TRANFORMATION(RBIU formulation)
2: add objective min γ to RMBP formulation
3: for j = 0 to m do
4: for i = 1 to n do
5: if xi is a certain variable then
6: add term aixi to constraint j of RMBP formulation
7: else
8: add term

(
aij+|aij |

2

)
to constraint j of RMBP formulation

9: end if
10: end for
11: add term −δj to constraint j of RMBP formulation
12: add inequality ≤ to constraint j of RMBP formulation
13: add right-hand-side bj to constraint j of RMBP formulation
14: add constraint j to RMBP formulation
15: end for
16: for i = 1 to n do
17: add constraint xi ∈ {0, 1} to RMBP formulation
18: end for
19: for j = 1 to m do
20: add constraint δj ≥ 0 to RMBP formulation
21: end for
22: Return RMBP formulation
23: end function

137

Algorithm 6 requires to verify and modify the values of coefficients of each variable

xi with i = 1, ..., n, for each constraint j = 1, ...,m+ 1. Therefore, Algorithm 6 runs in a

polynomial O(mn) time.

138

APPENDIX B

DYNAMIC PROGRAMMING ALGORITHM FOR THE KNAPSACK PROBLEM

Algorithm 7 presents an implementation of the dynamic programming solution for the

KP as formulated in (3.1). It is assumed that the values of ai,∀i and b are nonnegative

integer.

Algorithm 7 Dynamic programming solutions for the KP.
input: A KP with parameters ai, ci∀i and b.
output: A subset of items minimizing the total cost.

1: function KNAPSACK(ci, ai, b, n)
2: for j from 0 to b do
3: m[0, j] = 0
4: end for
5: for i from 1 to n do
6: for j from 0 to b do
7: if w[i] ≤ j then
8: m[i, j] = max(m[i− 1, j],m[i− 1, j − w[i]] + v[i])
9: else

10: m[i, j] = m[i− 1, j]
11: end if
12: end for
13: end for
14: Return m[n, b]
15: end function

Algorithm 7 runs in O(nb) time (Wolsey, 1998).

139

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction and Literature Review
	Motivation
	Research Objectives and Contributions
	Research Objective
	Contribution of the Research

	Literature Review
	Background on Robust Optimization
	Background on the Knapsack Problem
	Background on the Assignment Problem
	Background on the Shortest Path Problem

	Preliminaries and Notation
	Organization of the Dissertation

	ROBUST BINARY LINEAR PROGRAMMING UNDER IMPLEMENTATION UNCERTAINTY
	Introduction
	Implementation Uncertainty in Binary Variables
	Problem Formulation and Analysis
	Measures of Robustness
	Robust Formulation of a BLP Under Implementation Uncertainty

	Solution Methodology
	Conservatism of the RBIU Solutions
	Feasibility Relaxation and Bounding Solutions Method
	Cardinality-Constrained Robust Formulation
	Development of the Cardinality-Constrained Robust Formulation for a BLP Under Implementation
	Probability bounds
	Properties of the CBIU for Certain Problem Structures

	Summary and Conclusions

	ROBUST KNAPSACK PROBLEM UNDER IMPLEMENTATION UNCERTAINTY
	Introduction
	Robust Knapsack Problem Under Implementation Uncertainty
	Cardinality-Constrained Robust Formulation of the KP
	Experimental Study
	Performance Measures
	Test Problem Generation
	Performance Results
	RPK and CRPK Performance Results
	CRKP Probability Bounds Performance
	RKP Solution Methodologies Performance

	Summary and Conclusions

	ROBUST ASSIGNMENT PROBLEM UNDER IMPLEMENTATION UNCERTAINTY
	Introduction
	Minimum Weighted Bipartite Perfect Matching Problem
	Robust PM Under Implementation Uncertainty
	Model Development
	Properties of the RPM

	Cardinality-Constrained Robust Formulation of the PM
	Experimental Study
	Performance Measures
	Feasibility Ratio for Connected Bipartite Graphs
	Feasibility Ratio for Perfect Matchings

	Test Problem Generation
	Performance Results

	Summary and Conclusions

	ROBUST SHORTEST PATH PROBLEM IMPLEMENTATION UNCERTAINTY
	Introduction
	Deterministic Shortest Path Problem
	Robust Shortest Path Problem Under Implementation Uncertainty
	Model Development
	Properties of the RSPP

	Robust Dynamic Shortest Path Algorithm
	Cardinality-Constrained Robust Formulation of the SPP
	Experimental Study
	Performance Measures
	Test Problem Generation
	Performance Results

	Case Study
	Problem Description
	Solution Approach
	Financial Analysis
	Performance Results

	Summary and Conclusions

	CONCLUSIONS AND FUTURE RESEARCH
	Summary
	Future Research

	REFERENCES
	APPENDIX Transformation Algorithm
	APPENDIX Dynamic Programming Algorithm for the Knapsack Problem

