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ABSTRACT

This dissertation introduces two essays with the focus on alternative approaches to em-

pirical research in economics. The first essay uses a reduced-form approach to address a

“macro-phenomenon:” the long-standing puzzle of China’s high household saving rate. The

second essay employs a structural model to evaluate the social welfare of a procurement

mechanism: the A+B auction.

In the first essay, we study the role of income inequality interacting with liquidity con-

straints in explaining the high household saving rate in China. The predictions implied by a

simple lifecycle heterogeneous agent model are consistent with data facts. Using three large

nationally representative data sets, China Household Finance Survey (CHFS), China Family

Panel Studies (CFPS), and Chinese Household Income Project (CHIP), we find robust evi-

dence that (1) the rich save more; (2) the poor are more likely to face liquidity constraints,

and the effect of liquidity constraints on household saving rate is significantly positive; (3)

income inequality has a significant positive effect on aggregate household saving rate; and

(4) the marginal propensity to consume out of transitory income for poor households is

significantly higher than for rich households. Our study provides a policy implication that

economic policy of reducing income inequality would lower the aggregate saving rate and

thus become a policy of economic transition and growth.

In the second essay, we investigate an innovative and widely used contracting mecha-

nism, the A+B auction, in highway procurement projects. We introduce a structural model

with time incentives/disincentives and construction uncertainties under which contractors’

actual working days may deviate from the bidding days in the construction phase. This

may make the A+B mechanism neither ex-ante nor ex-post efficient. We demonstrate that

the model primitives including the contractor’s cost function, distribution of private types,

and incentive/disincentive parameters are all nonparametrically identified. Using the data

from highway procurement auctions in California, we provide strong empirical evidence that
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considering the existence of uncertainty in the structural analysis would lead to a significant

efficiency loss. On average, the ex-ante (ex-post) welfare loss is 38% (37%) of the contract

value. Counterfactual time incentive contracts under A design would decrease the ex-ante

(ex-post) total costs by 26% (36%) of the contract value, with an average reduction of $2.6

million ($3.7 million).
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1. GENERAL INTRODUCTION

The primary focus of the dissertation is to apply alternative empirical methods to address

critical economic questions.

In the first paper, we investigate the role of income inequality interacting with liquidity

constraints in explaining the high household saving rate in China. In a simple two-period

model, households are heterogeneous in income and subjective discount factor, and whether

the liquidity constraint is binding, consumption and saving rate are endogenously deter-

mined. The model generates several predictions consistent data facts: (1) the rich save

more; (2) the proportion of constrained households for the poor is higher than that for the

rich; (3) liquidity constraints would increase household saving rate. (4) when income in-

equality increases, the rich save even more, in the meanwhile, the poor would also save more

due to the binding liquidity constraints, and thus the aggregate household saving rate would

rise.

Using three sources of large, nationally representative household survey data, the China

Household Finance Survey (CHFS), the China Family Panel Studies (CFPS), and the Chi-

nese Household Income Project (CHIP), we provide direct empirical evidence implied by

the theoretical model. We find that in China, (1) the top 20 percent permanent income

households’ saving rate is 19–23 percent significantly higher than the bottom 20 percent

households’. (2) the bottom 20 percent permanent income households are more likely to

face a borrowing constraint, with a 12–20 percent significantly higher probability; (3) the

existence of liquidity constraints would lead to a significant increase of more than 20 percent

in the household saving rate; (4) income inequality would have a significant positive impact

on the household saving rate at the county level, with a 1 point on a scale of 100 measure

increase in the Gini coefficient leading to an increase of 0.2 percent in the aggregate saving

rate; (5) the estimated MPC for the top 20 percent households range from 200 to 400 RMB

per 1000 RMB, while for the bottom 20 percent households, the range from 600 to 900 RMB
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per 1000 RMB.

These findings would have significant policy implications. The Chinese government’s

policies on reducing the saving rate have not yet produced substantial results. If income

inequality and liquidity constraints were the key reasons for the high aggregate household

saving rate, the resulting policy would be drastically different. For example, it is appropriate

for the Chinese government to design some income redistribution programs (such as EITC) to

reduce income inequality or devote more resources to support the credit market development.

An economic policy of tackling income inequality would lower the aggregate saving rate, thus

becoming a policy of economic transition and growth.

In the second essay, we study the A+B procurement contracts in the context of high-

way projects construction. We set up a structural model that features by time incen-

tives/disincentives, externalities, and construction risks. We explain why contractors often

do not complete the projects on time. This discrepancy may make the A+B mechanism

neither ex-ante efficient nor ex-post efficient. We show that the model components (the

marginal expediting cost function, the distribution of private type for contractors, and the

incentive/disincentive daily rate) are all identified from the contract level and bid level data.

We apply the model to analyze the data on the Caltrans auctions of highway procurement

contracts. Our estimates provide substantial evidence that considering the existence of im-

plement uncertainty in the structural analysis of bidding data leads to significant inefficiency.
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2. INCOME INEQUALITY, LIQUIDITY CONSTRAINTS, AND CHINA’S

HOUSEHOLD SAVING RATE

2.1 Introduction

Over the last three decades, the Chinese economy has been growing at an average annual

rate of nearly 10 percent, and now it becomes the second largest economy in the world.

One of the unique features of Chinese economy is the high and rising household saving rates:

China’s aggregate household saving rate has exceeded 35 percent in the recent decade, which

is one of the highest in the world.1 China’s high household saving rate may already have

real implications for the world economy. In 2005, Ben Bernanke, then a governor of the

Federal Reserve Board, argued that China’s large surpluses have adverse effects on richer

countries’ current accounts and financial markets. In fact, another unique feature of the

Chinese economy over the same period should not be ignored: China’s household income

inequality has been among the world’s worst.2 Put them together, between 1992 and 2015,

China’s household saving rate has been increasing steadily from 33.98 to 37.07 percent, in the

meanwhile, Chinese households income inequality measured by the Gini coefficient has also

risen from 0.390 to 0.462.3 Are the two simultaneously existing unique features of Chinese

economy correlated? In this paper, we examine the role of income inequality interacting

with liquidity constraints in explaining the high household saving rate in China.

To date, there are some compelling explanations on the “Chinese Saving Puzzle” (first

refered by Modigliani and Cao, 2004) in the literature, including (1) demographic changes

(Modigliani and Cao, 2004; Horioka and Wan, 2007; Curtis, Lugauer, and Mark, 2015; İmro-

horoğlu, Zhao, et al., 2017; Choukhmane, Coeurdacier, and Jin, 2013; Ge, Yang, and Zhang,

2012); (2) precautionary saving motives (Meng, 2003; He, Huang, Liu, and Zhu, 2017; Cha-

mon and Prasad, 2010; Wang and Wen, 2012); (3) gender imbalance and competitive mo-
1See panel (1) of Figure A.1 in Appendix.
2See panel (2) of Figure A.1 in Appendix.
3See Figure A.3 in Appendix.
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tives (Wei and Zhang, 2011); (4) high income growth and habit formation (Horioka and

Wan, 2007), co-residence effects (Rosenzweig and Zhang, 2014), financial choices (Cooper

and Zhu, 2017).4 No consensus has emerged, and the puzzle remains.

The main contribution of this paper to the literature on China’s household saving rate is

that we make the first endeavor to bridge income distribution with China’s household saving

rate and provide consistent and comforting micro-level evidence. Inspired by the literature

on heterogeneous agent model in macroeconomics (Aiyagari, 1994; Achdou, Han, Lasry,

Lions, and Moll, 2017), we build up a simple two-period model which links household saving

rates to income inequality and liquidity constraints. Specifically, in this model, households

are assumed to be different in two dimensions: (i) heterogeneity in initial wealth and flow

income, with a particular case of two types, the rich and the poor; (ii) heterogeneity in

time preference thereby in subjective discount factor, with a particular case of three types,

the impatient, the less patient, and the patient. Also, we assume that households may face

liquidity constraints.5 Given a household’s type of income and discount factor, whether the

liquidity constraint is binding, consumption and saving rate are endogenously determined

in the model. With this simple model, we provide several implications consistent with data

facts: (1) the rich save more; (2) the proportion of constrained households for the poor

is higher than that for the rich; (3) Liquidity constraints would increase household saving

rate. (4) when income inequality increases, the rich save even more, in the meanwhile, the

poor would also save more due to the binding liquidity constraints, and thus the aggregate

household saving rate would rise.

Using three sources of large, nationally representative household survey data, the China

Household Finance Survey (CHFS), the China Family Panel Studies (CFPS), and the Chinese

Household Income Project (CHIP), we provide direct empirical evidence implied by the

4For a a comprehensive review of the facts and explanations pertaining to China’s saving, see Yang,
Zhang, and Zhou (2012).

5Stiglitz and Weiss (1981) indicate that as long as the institutional barriers (such as a lack of consumer
credit, or capital market imperfections leading to credit rationing) are present, there will be liquidity con-
straints in the economy. Financial development in China, although has been improving over the past decades,
is still underdevelopment. Thus, assuming liquidity constraints exist is reasonable.
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theoretical model. First, we regress the household saving rate on current income quintile

dummies to estimate the differences in the saving rate between higher income quintile and

the lowest. We find a robust positive relationship between the saving rate and current income

across all income classes in all three data sets. For example, for the CHFS, the estimated

increments in the median household saving rate range from 30 percent in the second lowest

income quintile to above 70 percent in the highest, and they are strictly increasing from

the lowest income quintile to the highest. We continue to find a highly significant positive

association when using subsample regressions and three years average income to correct the

endogeneity problem for the current income. Estimated saving rate differences range from

35 percent to 82 percent in the CHFS for the subsample regressions, and from 5 percent

to 19 percent for the average income approach. The positive relationship is even more

pronounced when we exclude high-income entrepreneurs, drop younger households (below

age 60), use an alternative definition of saving rate as a dependent variable, and apply per

capita income to redefine income quintiles. Overall, in China, the top 20 percent permanent

income households’ saving rate is 19–23 percent significantly higher than the bottom 20

percent households’.

We then exploit the probit regression to examine if poor households are more likely

to face liquidity constraints. We use two ways to measure whether or not household i is

facing a liquidity constraint, that is, the variable LCi = 1. One is the definition in Zeldes

(1989a), which states that a household is liquidity constrained if the total value of financial

assets is less than two months permanent income. Another is directly from our CHFS

questionnaire, which asks respondent “Does your family have any credit cards, excluding

inactivated cards?” Our estimates indicate that estimated marginal effects of the income

quintiles on the probability of facing liquidity constraints range from 2 percent for the quintile

4 to 10 percent for the quintile one using measure the first definition in the CHFS. The effects

are even more significant when using the second measure. In sum, the bottom 20 percent

permanent income households are more likely to face a liquidity constraint, with a 12–20
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percent significantly higher probability.

To evaluate the effect of liquidity constraints on the saving rate, we design a difference-

in-difference approach (DID) applying to the CHFS and the CFPS. Only the households

that are credit constrained in 2013 (2012) from CHFS (CFPS) data are used as the whole

sample. We separate them into two groups: treatment group, defined as the unconstrained

households in the year 2015 (2014), and the comparison group, defined as the constrained

group in the year 2015 (2014). We show that the existence of liquidity constraints would

lead to a significant increase of more than 20 percent in the household saving rate.

Next, we address the research question what the general equilibrium effect of the ag-

gregate household saving rate from a rise in the income inequality. We perform the cross-

sectional regression that links the calculated county-level aggregate saving rate to the mea-

sure of income inequality for all three data sets, controlling for location fixed effects and

other factors. We find, in the CHFS, that income inequality would have a significant posi-

tive impact on the aggregate household saving rate at the county level, with a 1 point on a

scale of 100 measure increase in the Gini coefficient leading to an increase of 0.2 percent in

the aggregate saving rate.

Finally, we provide empirical evidence that the marginal propensity to consume out of

both the permanent income and transitory income would be significantly different across

income classes for all three data sets. Although we do not see a diminishing MPC with

income classes, there is still an essential pattern that the MPC out of both types of income

for the bottom 20 percent households are much higher than that for the top 20 percent

households. The estimated MPC for the top 20 percent households ranges from 200 to 400

RMB per 1000 RMB, while for the bottom 20 percent households, the range from 600 to 900

RMB per 1000 RMB.

These empirical pieces of evidence would have significant policy implications. The Chi-

nese government’s policies on reducing the saving rate have not yet produced substantial

results. If income inequality and liquidity constraints were the key reasons for the high
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aggregate household saving rate, the resulting policy would be drastically different. For ex-

ample, it is appropriate for the Chinese government to design some income redistribution

programs (such as EITC) to reduce income inequality or devote more resources to support

the credit market development. An economic policy of tackling income inequality would

lower the aggregate saving rate, thus becoming a policy of economic transition and growth.

Related literature

According to the life-cycle hypothesis (LCH), the basic idea about demographic expla-

nation is that a decrease in the non-working population, which consists of the young and

the old, would increase household savings due to the “less mouths to feed”. Besides, China

has a long historical tradition of children taking care of their elder parents. As a result,

since the one-child policy was introduced in 1979, increased savings were not only due to

the reduction in young population but also viewed as an effective substitute for children

(“old-age security”). Using a ratio of working population to the number of nonworking (“mi-

nors”) as a proxy to the demographic change, Modigliani and Cao (2004) find that increased

China’s household saving rate over the period from 1953 to 2000 can be well explained by

the increased ratio of employed population to nonworking population, mainly driven by the

decrease in the young dependent population. Besides, Curtis, Lugauer, and Mark (2015)

conduct a quantitative overlapping generations model and also provide some evidence sup-

porting the link between demographics and the saving rate at the aggregate level. However,

applying panel data analysis and separately considering the young dependent ratio and the

old dependent ratio, Horioka and Wan (2007) finds that the changes in those ratios do not

go very far in explaining China’s provincial household saving rate for the period 1995–2004.

Using the data from the Urban Household Survey (UHS), Chamon and Prasad (2010) reach

a similar conclusion: there is no significant effect of the demographic shifts in China’s house-

hold saving rate. Recent work about the demographic explanations focus on bridging the

micro-level mechanism with the macro-level framework and provide some micro-evidence

(see, e.g., İmrohoroğlu, Zhao, et al., 2017 and Choukhmane, Coeurdacier, and Jin, 2013).
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One concern about the demographic explanations lies in that demographic shift is not static

but dynamic. As the age population move over time, we would not see a consistently high

and even rising household saving rate. In fact, since 2000, Chinese household saving rate

has been rising rapidly and hit the highest point in the history.

The precautionary saving motives argue that people who are not covered by a social safety

network tend to have precautionary saving motives and thus save more for unexpected events

(Giles and Yoo, 2007). Although the Chinese economy has experienced rapid growth since

the reform and opening up, due to lack of a safe social security and insurance network and

increasing costs on education, housing, and healthcare, etc., make Chinese household tend

to save more to respond the income and expenditures uncertainties in future. On the income

uncertainties side, Meng (2003) examine the role of precautionary saving in Chinese urban

households during the period from 1995 to 1999. She finds that not only the Chinese urban

households ever experienced past income uncertainties tend to have increased propensity

to consume, but for households without unemployed members, the income uncertainty has

an even stronger effect on saving. Using China’s reform of the state-owned enterprises

(SOE) in the late 1990s as a natural experiment, He, Huang, Liu, and Zhu (2017) also

show that the precautionary saving motive does exist in Chinese households. Using the

CHFS, however, our preliminary results show that the saving rate of households whose

heads work in government entities, public-sector organizations and state-owned enterprises

are slightly and insignificantly higher (0.04 percent higher) than that of households whose

heads work in privately-owned enterprises, collectively-owned enterprises, and foreign-funded

enterprises. This result shows that China’s gradually well-established labor law and law of

employment contracts makes income uncertainty a less influential factor for the increasing

household saving rate. On the expenditure uncertainties side, Chamon and Prasad (2010)

argue that uncertainty in expenditures, particularly on education, housing, and healthcare,

may generate high aggregate savings for the young and the elderly. Over the last decade

or so, however, the social insurance system has been firmly established. There is almost
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universal health insurance coverage, and rapid retirement insurance coverage has not lowered

the saving rate. Also, there is no consensus as to whether the high housing prices can explain

the high household saving rate (Wang and Wen, 2012).

Another compelling explanation is the imbalanced sex ratio and competitive motive.

The idea is built on the traditional culture of son preferences in Chinese households: as sex

ratio increase, Chinese households tend to save more to improve son’s competitiveness in

the marriage market. Using household-level data, Wei and Zhang (2011) find that saving

rates for the households with sons in the high sex ratio county is significantly higher than

for the households with sons in the low sex ratio county in both rural and urban sample.

At the provincial level, they find evidence that the sex ratio has a significant positive effect

on the provincial aggregate household saving rate. They argue that during 1990–2007, the

factor can account for at least 60 percent actual increase in China’s household saving rate.

However, we reexamine the competitive saving motives using the same data sources as they

did and find the evidence may be not robust. First, although we find the similar effects of

the sex ratio on household saving rates using the sex ratio from the 1990 census when using

the sex ratio from 2000 census, the effects vanish. Second, even using the ratio from 1990

census, the effects exist only in the rich households sample and rich counties sample. For the

poor households and poor counties, the estimates are significantly negative and statistically

insignificant, respectively.

There are other explanations for Chinese household saving rate. According to Carroll

and Weil (1994), the rising household savings may be due to a consequence of high-income

growth and habit formation. Horioka and Wan (2007) find that the lagged saving rate has a

significant positive effect on the provincial-level household saving, which is consistent with

the existence of inertia or persistence. However, as argued in Modigliani and Cao (2004),

during the 1950s to the mid-1970s, average Chinese household saving rate was lower than

5 percent, which implies that the Chinese cultural, ethical values of “thrifty” counts little

if any. Cooper and Zhu (2017) estimate a structural life-cycle model to study household
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finance in China. They find that the high Chinese household raving rate is mainly driven

by the labor market risk and the patient Chinese households. Other studies, such as Ge,

Yang, and Zhang (2012), Rosenzweig and Zhang (2014), and Song and Yang (2012), focus

on explaining another feature of Chinese household saving rate, the “U–shaped” age-saving

profile started with Chamon and Prasad (2010).

Roadmap

The rest of this chapter is organized as follows. Section 2.2 presents the data and styl-

ized facts of Chinese household saving rates. In Section 2.3, we introduce our theoretical

model that links income inequality, liquidity constraints and saving decisions in a two-period

lifecycle model. Section 2.4 describes the empirical methodology. The results and analysis

are presented in Section 2.5. Section 2.6 concludes. The Appendix contains proofs, figures,

tables, and other details.

2.2 Data

In this section, we provide data pieces of evidence that motivate the idea that income

inequality interacting with liquidity constraints matter in the explanation about China’s high

household saving rate, based on various household survey data sources from China. First, we

plot the household saving rates by income class. The data pattern is consistent with various

data sources. Second, we take a look at the household saving rate by income group and

note, within each income group, the importance of facing a liquidity constraint on household

saving rates. Finally, we show the relationship between the county-level aggregate household

saving rate and the county Gini coefficient. These data facts motivate the theoretical model

in the next section and the reduced form analysis in the following section.

2.2.1 Data sources

We use three data sets from China in the analysis. The data are drawn from the China

Household Finance Survey (CHFS), the China Family Panel Studies (CFPS), and the Chinese

Household Income Project (CHIP).
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The CHFS is our primary source of data used in the analysis. It is a large, nationally

representative and longitudinal data set, conducted by the Survey and Research Center for

China Household Finance at Southwestern University of Finance and Economics in Chengdu,

China. The survey was first launched in 2011, and another three waves were conducted in

2013, 2015, and 2017, respectively. The CHFS uses a three-stage stratified sampling method

and covers 29 provinces and autonomous regions (except Tibet, Xinjiang, Hong Kong, Macao

and Taiwan). It also has a low non-response rate compared to other survey data. The overall

representativeness of the CHFS is excellent, and it fits our research purpose well. Besides,

the survey contains detailed information about a large sample of individuals and households’

demographic characteristics, assets and liabilities, insurance and social welfare, and income

and expenditures. So thus the CHFS is particularly suited to our purposes. We primarily

use the 2013 and 2015 waves in this study.

The CFPS, conducted by the Institute of Social Science Survey at Peking University,

China, is also a nationally and representative longitudinal data set. The survey started in

2010, and the following three waves were in 2012, 2014, and 2016. The primary purpose of the

survey is to track individuals, families, and communities in contemporary China. Although

the CFPS focuses on various aspects of social life, it also collects wealth information about

incomes and expenditures. It fits our research purpose well. Among the current four waves,

the 2012 and 2014 waves are used in the analysis.

The CHIP is nationally representative data set conducted in 1988, 1995, 2002, 2007, and

2013. The five waves of the survey are designed to track the dynamics of income distribution

of Chinese individuals and households in both urban and rural area, and thus it also contains

sufficient information about incomes and expenditures. The 2013 wave is used in the study.

We apply the same criteria in all three data sets to construct our estimation sample.

First, we remove outliers and households with missing data, the 2015 CHFS survey provides

a sample of 21,861 urban households from 1,048 different communities in 262 counties; the

2014 CFPS survey has a total 6,603 urban sample from 1,413 distinctive communities in 358
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counties; the 2013 CHIP survey data include a total 6,674 urban sample from 212 counties.

Survey participation was randomized; so, again, the data are highly representative regarding

the geographic location and economic development. For panel exercise in our paper, we use

both three-years panel and two-years panel, and the matching households from 2013 and

2015 of CHFS data reduces the sample size to 13,120; the matching sample size is 10,677 for

the 2012 and 2014 CFPS survey. We use the 2013 CHIP survey data only to perform the

cross-section analysis because of the long time span for the recent CHIP survey.

2.2.2 Data evidence

Income-saving rate profile

We first summarize China’s uneven distribution of household saving rates across income

level. Additionally, we plot Chinese households by income classes. These pieces of evidence

together show the first of total four facts: not every Chinese household saves; the high-

income households’ savings account for a much larger fraction of total savings, with very

high household saving rates.

Table A.1 shows household saving rates by income classes and shares of savings for each

income class, calculated from our three data sets CHFS 2015, CFPS 2014, CHIP 2013, and

the National Bureau of Statistics of China (NBS). According to the CHFS 2015 data, Chinese

households have an aggregate saving rate of 29.1 percent, which is slightly higher than the

level of 28.5 percent from the NBS of China. It is also consistent with both the available

macro data and microdata used in other studies (see Zhou, 2014 and Banerjee, Meng, Porzio,

and Qian, 2014, for example). The aggregate saving rate for urban households and rural

households are 37.3 percent and 11.6 percent, respectively. Also, not every household saves

in the CHFS 2015 sample, however, as about 44.1 percent of households did not save. More

important, the distribution of saving rates is extremely uneven across income classes. The top

1 percent of income households’ total savings account for nearly 70 percent of total household

savings, with an extraordinary high saving rate of 86.6 percent. The top 5 percent of income
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households have an average saving rate of 74.1 percent, with the share of the total savings

for these households are over 99 percent of total savings. The saving rate for the top 10

percent and top 25 percent of income group households are 67.2 percent and 56.9 percent,

respectively. As an opposite, for the bottom 50 percent of income households, their saving

rates and the shares of savings are even negative, with –132.7 percent and –45.8 percent,

respectively.

The fact that household saving rate is greater for the higher income class than that for the

lower income is robust in the CPFS 2014 and CHIP 2013. In the CFPS 2014, the aggregate

rate goes down from 58.1 percent for the top 1 percent of income class to –45.8 percent for

the bottom 50 percent income class. Moreover, the saving rate decrease to 1.7 percent for

the bottom 50 percent of income class from 53.6 percent for the top 1 percent of income

in the CHIP 2013. Additionally, the savings shares for the top 1 percent of income class

own 44 percent of total savings in the CFPS 2014 and 12.2 percent of total savings in the

CHIP 2013. Figure A.2 displays that Chinese households saving rate by income percentile

increases as income level rises for CHFS 2015 (panel 1), CFPS 2014 (panel 2), and CHIP

2013 (panel 3).

Saving rate and liquidity constraints

Next, we show evidence about the role of liquidity constraints on households saving rates,

by comparing households saving rates for those who may be constrained with those who may

be not across different income classes. In particular, we exam households whose income are

above top 20 percent, below bottom 20 percent, and in the middle. For the measures of

constrained household, we use the one in (Zeldes, 1989a) and the credit card usage to define

whether or not a household is facing liquidity constraint. Table A.2 shows a summary for

CHFS 2015, CFPS 2014, and CHIP 2013.

Among 5179 urban households in CHFS 2015, there are 4330 (83.61 percent) households

in the top 20 percent, 501 (9.67 percent) households in the bottom 20 percent, and 293 (5.66

percent) households in the middle. The first three columns in the panel (a) of Table A.2 uses
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the definition in the literature (Zeldes, 1989a) and the last three uses the credit card usage

measure. We find that in the top 20 percent of income group, about 17 percent households

are facing a liquidity constraint, and the corresponding saving rate is about 78 percent, which

is about 40 percent higher than those who are not facing a liquidity constraint in the same

income group. For the middle-income group, the percentage of constrained households goes

up to near 32 percent, with the saving rate for constrained households is 13 percent, which

is also higher than that for those unconstrained households in the group. The proportion of

constrained households in the bottom 20 percent is even higher to 38 percent. The saving

rate for the constrained households is still higher than that for unconstrained households,

even though it is a negative number. Similarly patterns can be found in the panel (b)

and (c) for CFPS 2014 and for CHIP 2014, respectively. There are more households may

face a liquidity constraint for the bottom 20 percent of income group than that for the top

20 percent of income group. Moreover, within each income group, the saving rate for the

constrained households tend to be higher than that for the unconstrained counterpart in

each income bracket.

Aggregate household saving rate and the Gini coefficient

Finally, we look at data regarding the relationship between aggregate saving rate (both

the country-level and the county-level) and the Gini coefficient. Figure A.3 displays the

simple time-series trend for the aggregate household saving rate and the Gini coefficient

from 1994 to 2015. The household aggregate saving rate increased steadily from 34 percent

in 1992 to 37 percent in 2015, in the meanwhile, the Gini coefficient rose dramatically from

0.39 in 1992 to 0.46 in 2015. Except for some periods, the Gini coefficient exhibits a similar

trend to that of the household aggregate saving rate.

In addition, Figure A.4 shows the simple cross-sectional patterns between the county-level

aggregate household saving rate and the county-leve Gini coefficient. Panel (1) of Figure A.4

simply suggests that a county with a higher Gini coefficient may have a higher aggregate

saving rate for CHFS 2015, even though the pattern seems to be not clear in the panel (2)
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for CFPS 2014 and (3) for CHIP 2013.

To summarize, in this section, as expected, we show that (1) the aggregate household sav-

ing rate is high in China; however, not all households saved, with 44 percent of households

not saving (CHFS 2015). The distribution of household saving rate is extremely uneven.

The rich tend to save more. The saving rate of the top 1 percent of income households is

much higher than that for the bottom 50 percent of income group households; (2) Chinese

households may face a liquidity constraint. Comparing to the top 20 percent of income

households and the middle-income group households, there is a larger proportion of house-

holds in the bottom 20 percent of income group facing a liquidity constraint. Moreover, the

constrained households’ saving rate is higher than the unconstrained’s across income classes;

(3) at county-level, the aggregate saving rate may be higher for the county with higher Gini

coefficient. These pieces of data patterns are robust to various sources of data sets.

2.3 A Simple Heterogeneous Agent Model of Saving

In this section, we formulate a simple two-period endowment economy with heterogeneous

households in time preference, wealth and income. The parsimonious model leads to several

analytic results of household saving behavior that are consistent with data evidence presented

in the previous section. That is, the rich tend to save more; the poor are more likely to face

a liquidity constraint; the existence of liquidity constraints leads to a higher saving rate; a

higher level of income inequality may lead to a higher level of aggregate household saving

rate.

2.3.1 Preference and the constraints

An individual maximizes life-time utility drawn from the consumption ct at each period

t, t = 1, 2

u = log(c1) + β · log(c2) (2.1)

where log(ct) is the per-period utility function, and β ∈ (0, 1) is the subjective discount
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factor. The budget constraints for the household obeys

c1 + w1 = w0 + y1 (2.2)

c2 = (1 +R) · w1 + y2 (2.3)

where w0 denotes the initial level of wealth, w1 represents the level of wealth to carry between

“now” and “the future”, y1 and y2 are the income received today and tomorrow, respectively,

and r is the net real interest rate. We assume that there is no income growth, that is,

y1 = y2 = y.

In addition to the budget constraints 2.2 and 2.3, households may also face a liquidity

constraint

s1 ≥ −
τ · y2

1 +R
(2.4)

where s1 denotes the saving plan and τ ∈ [0,m] measures the degree of constrained.6

Notice that this is a two-period model in which individuals will die at the end of the

second period. We do not consider the bequest saving motive in the last period (even

though it could be more realistic in real life and also be important in theory). Since caring

about nothing afterward, individuals will consume all the available resources in hands, and

there is no savings or wealth left.

2.3.2 Heterogeneity

We assume that individuals are heterogeneous in two dimensions: (i) their initial wealth

w0 and income yt and (ii) their subjective rate of discount factor β. First, we consider two

wealth and income types, the rich (denoted by r) and the poor (denoted by p). Let wk0 and

ykt denote the initial wealth and income for the k class, where k ∈ {r, p}. And the wealth

6This condition ensures non-negative consumption in the second period. When τ = 1, it is actually
so-called “natural borrowing limit” as discussed in Aiyagari (1994).
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and the income for the rich and the poor satisfy

wr0 = θw · wp0

yrt = θy · ypt

where θw and θy are the ratio of wealth to income for the rich and the poor, respectively.

Second, we assume that there are three types of household in terms of the subjective

discount factor: impatient household with 0 < βL ≤ βr; less patient household with βr ≤

βM ≤ βp; and patient household with βp ≤ βM < 1.

2.3.3 Household decisions and the model predictions

The individual household’s optimal consumption can be solved by maximizing the lifetime

utility function 2.1, subject to budget constraints 2.2 and 2.3, and the borrowing constraint

2.4, given the exogenous wealth and income, the discount factor, and the interest rate. Since

there are three levels of subjective discount factor and two levels of initial wealth and income,

there are total six types household in this model economy: (1) rich–impatient household, (2)

rich–less patient household, (3) rich–patient household, (4) poor–impatient household, (5)

poor–less patient household, and (6) poor–patient household.

For each type of household, the interior solution (that is, the borrowing constraint is

not binding) for optimal consumption satisfies the intertemporal Euler equation, and the

assumption of log utility function implies that the current optimal consumption is a linear

function of the present value of lifetime resources, with a fixed proportion

ck1 =
1

1 + βj
(wk0 + yk + τ · R̃ · yk). (2.5)

It follows from Equation (2.5) that household’s current optimal saving is

sk =

(
1− 1 + τ · R̃

1 + βj

)
yk − 1

1 + βj
wk0 . (2.6)
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If the borrowing constraint is binding, then the kinky solution for the current optimal con-

sumption is

ck1 = (1 + τ · R̃) · yk. (2.7)

Whether the household is facing the borrowing constraint depends on wealth/income group

and patient degree. To characterize the equilibrium, we introduce the following assumption

Assumption 1. (a) Assume that the initial wealth gap between the rich and the poor is

smaller than the permanent income gap between them, that is, θw/θy < 1. (b) The cutoff

values of β are given by following equations

βr =
ρr + 1− τ · R̃

1 + τ · R̃

βp =
ρp + 1− τ · R̃

1 + τ · R̃

where ρk =
wk0
yk1
, k ∈ {r, p} and R̃ = 1

1+R
.

This assumption implies that the initial wealth-permanent income ratio for the rich is

smaller than that for the poor, that is, ρr < ρp. Figure A.5 displays the data evidence that

motivates us. Optimal consumptions and savings for different types of household can be

summarized in the following proposition.

Proposition 1. Under Assumption 1, (1) for the rich-impatient, the poor-impatient, and the

poor-less patient household, the borrowing constraint is binding and thus the current optimal

consumption

cr,Lt = (1 + τ · R̃) · yr, for the rich-impatient household,
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and

cp,jt = (1 + τ · R̃) · yr, for the poor-j household, j ∈ {L,M};

(2) for the rich-less patient, the rich-patient, and the poor-patient household, the borrowing

constraint is not binding and thus the current optimal consumption

cr,jt =
1

1 + βj
(wr0 + yr + τ · R̃ · yr), for the rich-j household, j ∈ {M,H},

and

cp,Ht =
1

1 + βH
(wp0 + yp + τ · R̃ · yP ), for the poor-patient household.

These analytic solutions are useful to convey simple predictions that are consistent data

evidence presented in Section 2.2. Those model predictions are summarized as follows:

(1) The rich tends to save more.

(2) Among the poor household, there is a larger fraction of households facing the borrowing

constraint than that among the rich households.

(3) The existence of liquidity constraints lead to a higher aggregate household saving rate.

(4) Increasing the current income inequality would make the aggregate household saving

rate even higher.

2.4 Empirical Strategies

In light of the theoretical model in Section 2.3, we construct and estimate several empirical

models to study: (i) do the rich save more? (ii) are the poor more likely to face the liquidity

constraints, and do the liquidity constraint leads to a higher saving rate? (iii) whether or

not, at the aggregate level, income inequality will have a positive effect on the household
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saving rate? (iv) does the marginal propensity to consume (MPC) decreases with income

level?

2.4.1 Income and saving rate

Econometric specification

Following Dynan, Skinner, and Zeldes (2004), we consider the following empirical speci-

fication

saving ratei = α + β ·DincGi + γ ·X i + εi. (2.8)

In this model, the dependent variable is the household saving rate, which is defined as the

ratio of household disposable income minus household consumption to household disposable

income.

The explanatory variable of interest DincGi is a vector of dummy variables for income

quintile that take a value of one if the household’s income belongs to specific income quintile

and zero if the ith household’s income is not in this quintile. These dummy variables capture

the different types of income class as discussed in the simple theoretical model in Section

2.3. The regression model in Equation (2.8) also includes some control variables that capture

household characteristics and household head’s characteristics. These independent variables

are used to control for other saving motives in the existing literature. The regression errors

are denoted by ε.

The regression model (2.8) is estimated by running the mean and the median cross-

sectional regression. In each case, we include dummies for all income quintiles except for the

first one. The critical parameters of interest are the coefficients of the income quintiles. Each

estimated β for a given income quintile captures, all else equal, the average excess saving

rate for households in that quintile relative to households in the last income quintile.
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The measurement

The variables used in our analysis include household consumption, household income,

household demographic variables (household size, young dependent ratio, old dependent

ratio), precautionary-type variables (employed status, employed type, hukou, health status,

health insurance, pension, housing), competitive-type variables (number of boys and girls,

age of children), and a set of household head characteristics (age, gender, married status,

ccp member, years of schooling). The detailed definition of each variable is shown in panel

(a) of Table A.3. Panel (b) - (d) of Table A.3 shows the summary statistics of these variables

in the full sample.

Endogeneity

One problem in the regression (2.8) is the correlation between current income and the

error term. According to Friedman (1957), one’s consumption at a point in time does not only

depend on the current income, but also on the permanent income, the expected long-term

average income. To solve the endogeneity issue of current income, we adopt two approaches.

First, since the previous related literature has typically found that the association between

current income and permanent income will become close to one between one’s mid-thirties

and forties (see Haider and Solon, 2006, Böhlmark and Lindquist, 2006, and Grawe, 2006), we

do the regression on a subsample which is restricted to include those households whose head’s

age is between 30 and 45. Obviously, this approach will suffer a dramatic decrease in sample

size. Second, we deal with the endogeneity issue by constructing the measure of permanent

income following the most applicable approach in Fuchs-Schündeln and Schündeln (2005)

and Bhalla (1980). Specifically, we use an average of the current income and the recent past

incomes as a proxy for the measure of permanent income, and then re-group households by

using quintile based on the measure of permanent income.
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Robustness check

To examine to what extent the analysis results are robust, we conduct several robustness

checks. First, using the definition of non-entrepreneurs in Gentry and Hubbard (2000) (the

value of business income for a household is less than $5,000), we restrict our samples to non-

entrepreneurs so that we can test if the saving behavior of entrepreneurs drives the main

results.7 Second, we consider if the relationship between income and saving rate is consistent

for the older ages population, by restricting our sample to households with household head’s

age above sixty. Third, rather than define income quintile by household income, we use

per capita household income to regroup households as income quintile dummies to check

the robustness of the estimates. Finally, we investigate whether or not the main results are

robust by using an alternative definition of household saving rate introduced in Chamon and

Prasad (2010) and Wei and Zhang (2011).

2.4.2 Liquidity constraints and saving rate

In Section 2.2, we present data evidence that across three sources data sets, there are more

households may face a liquidity constraint for the bottom 20 percent of income group than

that for the top 20 percent of income group, and within each income group, the saving rate

for the constrained households tend to be higher than that for the unconstrained counterpart

in each income bracket. In this subsection, we formally estimate the probability gap of facing

liquidity constraints between income quintiles and the effect of the liquidity constraints on

the household saving rates.

First, we run a probit regression to estimate the difference in probability of facing liquidity

constraints between income quintiles

Pr(LCi = 1) = Φ(α + β ·DincGi + γ ·X i), (2.9)

7In the literature, Quadrini (1999, 2000), Gentry and Hubbard (2000), and Hurst and Lusardi (2004)
have emphasized that the high-income entrepreneurs plays an important role in wealth accumulation and
thus in savings.
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where LCi is a dummy variable, which takes a value of one if household i face a liquidity

constraint and zero if the household does not face a liquidity constraint. We use two ways

to measure whether or not household i is facing a liquidity constraint, that is, the variable

LCi = 1. One is the definition in Zeldes (1989a), which states that a household is liquidity

constrained if the total value of financial assets is less than two months permanent income.

Another is directly from our CHFS questionnaire, which asks respondent “Does your family

have any credit cards, excluding inactivated cards?” Φ(·) is the cumulative distribution

function of the standard normal distribution. The explanatory variable DincGi and control

variables Xi are the same as Equation (2.8). When do the regression, the last income

quintile is omitted so that the coefficients of interest β are used to measure the difference

in probability of facing a liquidity constraint relative to the last income quintile. We also

use three-year moving average income as a proxy to permanent income to solve for the

endogeneity problem in the probit regression.

Next, we use a Difference-in-Difference (DID) method to estimate the effect of the liq-

uidity constraints on the household saving rates. Specifically, we estimate the following

model

saving rateit = α + β · creditit ·Dit + γ ·Dit + ρ · creditit (2.10)

+ δ · household incomeit + µ ·X it + εit, t = 1, 2,

where creditit is a dummy variable which takes a value of one if household i is credit con-

strained in the first period but unconstrained in the second period and zero otherwise. Dit is

a time dummy variable that takes a value of one if t = 2 and zero if t = 1. household income

is household’s total disposal income, and X includes other household and household head’s

characteristics that are the same as previous regression equations. ε refers to regression er-

rors. The key coefficient of interest is β, which measures the average “treatment” effect of

credit unconstrained on the household saving rate.
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The “common trend” assumption is required to be held for identifying β in DID approach.

That is, in the presence of financial constrained, households without financial constrained

would have experienced changes in saving rate similar to those with financial constrained. We

address the validity of this assumption by using the t-test of all the controlled characteristics

of the treatment and comparison group since we only have one-year panel sample before the

treated year. After the control variables t-test for these two groups, all the indicators on the

leading year are not statistically different between treated and comparison group; therefore,

it provides support for the validity of the identifying assumption.

2.4.3 Income inequality and saving rate

In order to identify the effects of income inequality on household saving rate at aggregate

level, we estimate the following regression model

county saving ratei = α + β · Ginii + γ ·X i + εi, (2.11)

where the dependent variable is county saving rate, which is defined as the ratio of the

sum of total household savings in the same county to the sum of total household disposable

income in the same county. Gini is the Gini coefficient at county-level, and X contains

other county characteristics. ε refers to regression errors. The key coefficient of interest is

β, which measures the average effect of income inequality on the aggregate saving rate at

county-level.

We focus on the Gini coefficient as the primary measure for income inequality, and use

other measures, including the income ratio of the top 20 percent of households to the bottom

20 percent of households as a robustness check. Control variables in X include other county

demographics such as log of county per capita income, county level young dependent ratio,

and county level old dependent ratio, and etc.
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2.4.4 Marginal propensity to consume (MPC)

The old idea that the marginal propensity to consume out of current income is dimin-

ishing, that is, consumption function is concave in current income, can be dating back to

the discussion in Keynes (2016), which writes “. . . not only is the marginal propensity to

consume is weaker in a wealthy community, but, . . . ” in part II of Chapter 3, and “But

with the growth of wealth and the diminishing marginal propensity to consume, . . . ” in part

V of Chapter 23. On the theoretical side, a formal analytical explanation for the intuition

does not appear until Carroll and Kimball (1996).8 On the empirical side, there is little

recent literature that provides the micro empirical evidence that the marginal propensity to

consume for the rich is lower than that for the poor. Lusardi (1996) estimates the changes in

household consumption response to the changes in transitory income using two panel data

sets and provides evidence of the concavity of the consumption function, and Souleles (1999)

examines the response of household consumption to income tax funds and finds that the

response is smaller for rich households.9

In this subesection, rather than estimating the changes in consumption response to the

changes in income, we estimate directly the marginal propensity to consume out of current

income following Paxson (1992). Specifically, we estimate the following equation

consumptioni = α + β · transitory incomei + γ · permanent incomei + δ ·X i + εi,

(2.12)

where consumption is household total consumption, transitory income is the measure

of household temporary income in current period, which equals to the difference between

current income and permanent income, permanent income refers to the household’s ex-

8Carroll and Kimball (1996) show that a sufficient condition for the concavity of consumption function, in
most of the cases, is that introducing income uncertainty into the utility maximization problem. Before them,
Zeldes (1989b) uses numerical methods to show adding labor income uncertainty can make consumption
function concave, and Kimball (1990) explains the increase in the slope of the consumption function.

9There is an older literature focusing on the test of the hypothesis of permanent income, which also finds
the concavity evidence, e.g.
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pected long-term average income, and X summarizes household characteristics and house-

hold head’s characteristics. The key coefficient of interest is β, which measures, by definition,

the marginal propensity to consume out of transitory income.

For the measure permanent income, as in the previous subsection, we use the moving

average of three years income as a proxy for the permanent income. Equation (2.12) is

estimated by running five separate cross-sectional regressions, with each one focusing on an

income quintile sample.

2.5 Empirical Results

In this section, we present our main results to answer four empirical questions: (1)

whether rich households tend to save more? (2) whether poor households are more likely

to face liquidity constraints, and the liquidity constraint makes the household saving rate

higher? (3) whether income inequality, at the county-level, has a positive effect on aggregate

household saving rate? (4) whether the marginal propensity to consume for poor households

is higher?

2.5.1 Income and saving rate

The empirical model in Equation (2.8) is estimated using the CHFS 2015, CFPS 2014,

and CHIP 2013 data. The coefficient of interest is the parameter of the income quintiles β,

which measures the additional saving rate for each income quintile relative to the first one

when controlling for the effects of all other factors that may also affect the household saving

rate. The estimates in Table A.4 are estimated by median regression, and the standard errors

for the coefficients are achieved in parentheses by bootstrapping based on 500 replications.

Saving rate and current income

Panel (a) of Table A.4 presents our estimation results with the first two columns showing

the estimated effects for CHFS 2015 Urban, the next two columns for CFPS 2014 Urban, and

the last two columns for CHIP 2013 Urban. Odd columns show estimates without controlling

for the variable employ_typ, while the estimates in even columns controlling for it.
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Column 1 and column 2 of the panel (a) suggest that the household saving rate increases

dramatically with measured current income in the CHFS. The increments in the median

household saving rate range from 30 percent in the second lowest income quintile to above

70 percent in the highest, and they are strictly increasing from the lowest income quintile

to the highest. All the differences in these columns are statistically significant at 1 percent

significant level. We also report the estimates for other factors that may affect the household

saving rate. Among demographic-type factors, one increase in household size (hh_size)

would decrease household saving rate by 2 percent, and a 1 percent increase in the old-

dependent ratio (ODratio) would increase 0.07–0.10 percent saving rate. Both estimates are

significant. These results are consistent with the existing demographic explanations about

Chinese household saving rate. In precautionary-type variables, a household with urban

hukou would decrease saving rate by 2 percent in column 1, although it is not significant

when controlling for employ type employ_typ in column 2. The private burden of possible

expenditures on health and housing would have a positive effect on the household saving

rate in column 1, which is also consistent with the explanation focusing on precautionary

motives.

Column 3 and column 4 shows results from similar regressions using the CFPS data.

The estimates of the coefficient between the household saving rate and current income are

smaller than in the CFPS. Nevertheless, we still see the estimated the differences in median

saving rate rising significantly from 25 percent for households in the bottom quintile to over

50 percent of households in the top quintile. The qualitative effects of other factors such

as household size, hukou, health, and housing on the saving rate are robust, although the

magnitude is different.

The remaining columns of the table show the relationship between the household saving

rate and current income in the CHIP data. As in the CHFS and the CFPS, the change in

the saving rate strictly increases as income quintile moves up. For the second lowest-income

households, the estimated median saving rate is 7–8 percent higher than the lowest-income,
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and for the highest income quintile, it is 25 percent higher than the lowest. Although the

estimates are much lower than the comparable numbers from the CHFS and the CHIP,

the result is not surprising: the variation in household income is much smaller in that the

CHIP covers a more substantial proportion of households working in the state-own enterprise

(SOE).

Endogeneity: saving rate and permanent income

We now adopt two approaches described in Subsection 2.4.1 to investigate the relationship

between the household saving rate and permanent income. We first do the regression on a

subsample which is restricted to include those households whose head’s age is between 30

and 45. Obviously, this approach will suffer a dramatic decrease in sample size. Then, we

use an average of the current income and the recent past incomes as a proxy for the measure

of permanent income and re-group households by using quintile based on the measure of

permanent income. The results are presented in panel (b) of Table A.4, with the first two

columns showing the estimated results for CHFS, the next two columns for CFPS, and the

last two columns for CHIP.

The odd columns of the table show that when subsample regression is used to consider

the endogeneity issue. The estimated change in the saving rate increases consistently with

income level for all three data sets. Indeed, the difference in the saving rate is significantly

positive for every quintile at 1 percent significant level, range from 35 percent to 82 percent

in the CHFS, 26 percent to 62 percent in the CFPS, and 8 percent to 23 percent in the

CHIP. The estimated gradients of the coefficients are similar to (and in some cases slightly

larger than) to those in panel (a), the relationship between the saving rate and the measured

current income.

Our next approach is to use a three-year moving average current income as a measure

of the permanent income. For the CHFS, we do have three years income data surveyed in

2010, 2012, and 2014. For the CFPS, we also have income data surveyed in 2009, 2011, and

2013. Although the CHIP data cannot keep track of households over time because it does
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not have a panel dimension, it contains information about previous incomes, and thus we

can still calculate a three-year average income. The results are reported in the even columns

of the table. This procedure also yields a strong relationship between the saving rate and the

permanent income. For the CHFS, the estimated differences in the saving rate range from 5

percent for the second lowest-income quintile to 19 percent for the highest-income quintile.

Except for the estimated differences for the second lowest-income quintile, the CFPS also

shows a highly significant correlation, with the range the range from 14 percent for the third

income quintile to 17 percent for the top income quintile. For the CHIP, the estimated

changes in the saving rate are all significant, with the range from 8 percent for the bottom

20 percent of households to 23 percent for the top 20 percent. In all cases, we again see

the saving rate strictly increases with the predicted permanent income. What’s more, the

magnitudes of the saving rate with respect to income are quite close across the three data

sets, but the estimates are much smaller than those in panel (a) and the odd columns. This

result suggests that much of the effects of transitory income is eliminated when simply using

a three-year average as a proxy to permanent income.

Robustness checks

We now turn to show several tests to check the robustness of the main results. We first

extend the analysis to explore the extent to which dropping all entrepreneurs with business

income is greater than $5,000 (Gentry and Hubbard, 2000) affects the results. Next, we

present the results where we restrict the sample to households at older ages (above 60) from

the analysis. Finally, we investigate whether the effects are robust by using an alternative

definition of household saving rate introduced in Chamon and Prasad (2010) and Wei and

Zhang (2011) and by constructing quintile dummies using per capita income, respectively.

In panel (c) of Table A.4, we present the estimates based only on non-entrepreneurs and

older households. Odd columns in the table continue to show a highly significant positive

correlation between the median household saving rate and the income quintile, with the range

of the differences in saving rate from 44 percent for the second lowest-income quintile to 91
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percent to the highest in the CHFS, from 23 percent to 60 percent in the CFPS, and from 9

percent to 24 percent in the CHIP. When considering only the older households, the estimated

differences in the even columns are still significantly positive and strictly increasing, with

the gradients much higher for the CHFS and the CFPS and similar to the previous results

for the CHIP. The estimated differences rise from above 70 percent for the second income

quintile to above 140 percent for the fifth in both CHFS and CFPS, whereas from 8 percent

to 27 percent in the CHIP. These even higher estimates suggest no evidence that at the older

age, high-income households dissave at a faster rate than low-income households.

Panel (d) of the table shows the results using an alternative definition of saving rate (in

the odd columns) and alternative income quintile (in the even columns). Again, the results

show that there is a strong positive association between the saving rate and income in all

three data sets, and the estimates strictly income with income level. The CHFS has the

largest estimated coefficients in both odd columns and even columns, with the range from

33 percent for the second lowest-income quintile to 121 percent for the highest-income, while

the chip’s estimated coefficients are smallest in both odd columns and even columns, with

the range from 8 percent for the second quintile to 25 percent for the fifth quintile.

The validity of the theoretical model

Finally, we present the empirical counterpart of the assumption in Section 2.3 and exam-

ine the validity of the theoretical model. Since we do have data on previous period wealth,

there are only results for the CHFS and CFPS in panel (e) of Table A.4, with first three

columns are results for the CHFS, and the last three are for the CFPS.

The first column is estimated from the similar regression to Equation (2.8) with restricting

the sample to households having data on previous period wealth in the CHFS. The estimated

differences in the saving rate are all significantly positive and strictly increasing. We report

the estimated differences in the ratio of previous wealth to current income for income quintiles

in column 2. The results show that the changes in the ratio strictly decrease as income

quintile moves up. The estimated ratio is six times lower than the bottom 20 percent for
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the second lowest-income quintile, ten times lower for the third income quintile, 12 times

lower for the second highest, and 15 times lower for the highest. This suggests that the

assumption is realistic and reasonable. After controlling for the wealth-income ratio, in

column 3 of the table, the effect of the ratio on saving rate is significantly negative. Besides,

we see again highly significant and strictly increasing estimated differences in saving rate

for income quintile. The smaller coefficients for the income quintiles along with a significant

negative coefficient for the ratio implies that the previous wealth-current income ratio may

be a channel in explaining why the rich tend to save more. As in the CHFS, similar patterns

can be found in the CFPS, and they are shown in column 4–6.

We summarize the results presented so far: looking at all three data sets, although

the estimates in magnitude of the increments in median household saving rate for different

income quintiles relative to the bottom 20 percent differ, the pattern is generally the same

—— as income quintile moves up, the difference in the saving rate between the higher income

quintile and the lowest income quintile is strictly increasing, which implies that the rich do

save more.

2.5.2 Liquidity constraints and saving rate

After carefully examining the relationship between the income distribution and household

saving rate, in this subsection, we formally illustrate that the bottom 20 percent households

are significantly more likely to face a liquidity constraint than the richer household and

that liquidity constraint will lead to about 20 percent of household saving rate increases.

We use two ways to measure whether household i is facing a liquidity constraint, that is,

the variable LCi = 1. For one measurement, we can use the financial liquidity constraint

measure of Zeldes (1989a) in our three sources data sets. Zeldes (1989a) is the first paper

using this financial constraint measure, "a household is liquidity constrained if the total

value of financial assets is less than two months permanent income," and applying it into the

PSID data. The paper finds that the consumption growth responds very strongly to lagged

disposable income for the household with low wealth and also find that the similar estimated
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responses were sometimes statistically insignificant and smaller. He interprets this results

as evidence that in favor of liquidity constraints and between 30 to 66 percent of households

in PSID sample are liquidity constrained by this measurement and different definitions of

"low wealth". For another measurement, we use it directly from our CHFS questionnaire,

which asks respondent “E2002: Does your family have any credit cards, excluding inactivated

cards?”. For the households who reply the question "Yes" as the answer will not face the

liquidity liquidity constraint, and the counterpart will face the liquidity liquidity constraint,

that is LCi = 1, due to the household do not own an activated credit card. Since only

the China Household Finance Survey ask the respondent question about the credit card

information, we only use CHFS 2015 data to examine the relationship between the liquidity

constraint and income distribution.

Liquidity constraints and current income

In this subsection, our dependent variable is the probability of LCi = 1, whether household

i is facing a liquidity constraint, and the explanatory variable of interest is also the income

quintile dummy variables vectorDincGi . We omit the highest income quintile for the reference

in each regression and directly report the marginal effects of each explanatory variable in

the results table for the explanation convenience. Both the results from using the household

current and permanent income, we illustrate similar evidence suggest that financial constraint

and borrowing constraints are important for the poor household in China which is consistent

with the evidence of U.S. (Zeldes, 1989a).

First column of panel (a) and the odd columns of panel (b) of Table A.5 present our

estimation results showing the estimated effects of the current income distribution on the

first measurement of financial liquidity constraint. Column 1 of the panel (a) suggest that the

probability of the household facing the binding financial constraint increases dramatically

with measured current income in the CHFS. The increments in the probability of facing

financial liquidity constraint range from 2 percent in the second highest income quintile, 5

percent in the third highest income quintile, 9 percent in the second lowest income quintile
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to 10 percent in the lowest income quintile all compared to the highest quintile of current

income. Except for the coefficient of second highest income quintile, all the difference in this

column is statically significant at 1 percent significant level. The poor are significantly more

likely to face the liquidity constraint, and this relationship pattern is the same for CFPS

and CHIP data. The odd columns of panel (b) of Table A.5 shows that the increments in

probability of facing financial liquidity constraint range from 5 to 6 percent in the second

highest income quintile to 23 to 13 percent in the lowest income quintile all compared to the

highest quintile of current income for the CFPS and CHIP data respectively. Almost all the

difference in this column are statically significant at 1 percent significant level. Therefore,

the estimates pattern in magnitude of the increments in probability of facing the liquidity

constraint using the current income quintile is generally the same: as income quintile moves

down, the difference in the probability of facing the liquidity constraint between the higher

income quintile and lowest income quintile is strictly increasing, which implies that the poor

are more likely to face the financial liquidity constraint.

For the current income distribution on the second measurement of liquidity constraint,

column 3 of the panel (a) present our estimation results showing the estimated effects.

Column 3 of the panel (a) suggest that the probability of the household facing the binding

liquidity constraint increases dramatically with measured current income in the CHFS. The

increments in the probability of facing liquidity liquidity constraint range from 13 percent

in the second highest income quintile, 18 percent in the third highest income quintile, 23

percent in the second lowest income quintile to 27 percent in the lowest income quintile all

compared to the highest quintile of current income. All the difference in this column is also

statically significant at 1 percent significant level. The poor are significantly more likely to

face the binding liquidity constraint. The magnitude of the effects on liquidity constraint

is much larger compared to the first financial measure using the CHFS data. The reason is

that the credit card application in China has multiple criteria such as the stable income with

good credit record or history, enrolled in the social security system and working job type. A

33



household with "self-employed", "owning small private business" or "farmers" are all very

difficult to apply for the credit card in China financial institution. So the variance of the

second measurement variable is larger than the first one, the difference of facing the liquidity

constraint from the financial institution is more important and severe for the poor household.

Therefore, the difference in the probability of facing the liquidity constraint, measured as

"without an activated credit card," is strictly increasing as income quintile moves down,

which also implies that the poor are more likely to face the liquidity liquidity constraint.

Liquidity constraints and permanent income

These above estimates may be potentially problematic if there is a third factor that

varies across the population and is driving the difference between the probability of facing

the financial liquidity constraint and current income or if there exists reverse causality.

For example, although the current income level of a household will lead to the liquidity

constraint degree, facing the binding borrowing or financial liquidity constraint will also lead

to the short-term property and total income reduction. Therefore, we also use the household

permanent income to correct this endogeneity, and the permanent income is defined same as

the above in three data sets.

Column 2 in the panel (a) of Table A.5 suggest that the probability of the household

facing the binding financial constraint increases dramatically with permanent income defined

same as the above in the CHFS. The increments of magnitude and significance in probability

of facing financial constraint with the permanent income quintile is similar to the current

income, range from 1 percent in the second highest income quintile, 4 percent in the third

highest income quintile, 7 percent in the second lowest income quintile to 12 percent in

the lowest income quintile all compared to the highest quintile of permanent income. The

magnitude of this pattern is slightly larger for the second measurement of liquidity constraint

column 4 of panel (a): from 7 percent in the second highest income quintile, 12 percent in

the third highest income quintile, 16 percent in the second lowest income quintile to 17

percent in the lowest income quintile all compared to the highest quintile of permanent
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income. The magnitude of the effects on liquidity constraint is smaller compared to the

current income quintile analysis using the CHFS data. All the differences in this column are

statically significant at 1 percent significant level. Similarly, the pattern also holds or CFPS

and CHIP data. The even columns of the panel (b) of Table A.5 also shows the increments

effects range from 5 to 6 percent in the second highest income quintile to 20 to 15 percent in

the lowest income quintile all compared to the highest quintile of permanent income for the

CFPS and CHIP data respectively. Almost all the difference in this column are statically

significant at 1 percent significant level. Therefore, the difference in the probability of facing

the financial or borrowing constraint is strictly increasing as permanent income quintile

moves down. Since the permanent income for the household can be treated as exogenous in

the current financial or borrowing constraint situation, these results confirm our theoretical

implication along with the data facts that the poor household are more likely to face the

financial and borrowing liquidity constraint than the counterpart in China.

We also report the estimates for other factors that may affect the probability to face the

financial or borrowing liquidity constraint both for the current income and permanent income

specification. In demographic-type variables, 1 percent increase of the young-dependent

ratio (YDratio) will decrease the probability of facing the liquidity constraint by 0.22 to

0.24 percent. Among precautionary-type factors, the registered residence status (hukou)

change form the rural hukou to the non-rural hukou will decrease the probability of facing

the liquidity constraint by 7 to 8 percent, which is consistent with the explanation that hukou

restrictions system can depress private consumption demand of the migrant or the non-rural

hukou household in the urban city. In addition, the household which has a poor health person

or not being enrolled in public or private health insurance or pension insurance system will

increase the probability of facing the liquidity constraint by 6 to 7 percent, 3 to 5 percent and

12 to 13 percent, respectively, taken the household social security into consideration. The

estimated age-profile of the probability of facing the liquidity constraint is like hump-shaped,

as the estimated coefficient of age (age) and age square (age2) is significantly positive and
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significantly negative, respectively. A married household will be 4 to 5 percent significantly

less likely to face the liquidity constraint due to the complete family structure and the China

Communist Party membership of the household head will be 1 to 3 percent significantly less

likely to face the liquidity constraint. Moreover, the household head with one more year of

schooling will decrease the probability of facing the liquidity constraint about 2 percent. All

the above-estimated coefficient of these other factors are statistically significant from zero

and consistent with consistent with the explanation of previous literature.

Liquidity constraints and household saving rate

Similar to the Zeldes (1989a) as in the U.S., we next to issue that the liquidity constraint

is important to understand the poor household consumption and saving behavior. Therefore,

in this subsection, we identify the effect of liquidity constraint on the household saving rate

in China. In fact, in the previous specifications on identifying the income distribution and

saving rate, we control our liquidity constraint measure and find the significant negative

effects if the household has the financial credit or an activated credit card; however, these

estimates may be potentially problematic if there exists reverse causality. For example, the

current income and saving level of a household will definitely affect the next period income

and also affect the household financial and credit market behavior. Also, a third unobservable

factor such as the risk and financial attitude that drives the difference between the household

liquidity constraint and consumption behavior. Therefore, we use a Difference-in-Difference

(DID) method to estimate the effect of the liquidity constraints on the household saving

rates.

We only use the household that is credit constrained in 2013 as the whole sample from

CHFS data and separates them into two groups: treatment group is the unconstrained

household in the year 2015 and comparison group is the still constrained group in the year

2015. We use the Difference-in-Difference (DID) specification, and the variable of interest

is the interaction term of treatment dummy and year dummy variable, which measures the

average “treatment” effect of credit unconstrained on the household saving rate.
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We use the t-test of all the controlled characteristics of the treatment and comparison

group in the leading year to address the validity of the “common trend” assumption. AS the

results, we provide support for the validity of this identifying assumption. Thus, according to

the Difference-in-Difference (DID) specification, the key coefficient of interest is that before

the interaction term of treatment dummy and year dummy variable. As the column 1 and

2 of Table A.6 shows, the estimated effects of credit unconstrained on the household saving

rate is significantly negative by using the credit card measure. The difference of odd and

even column is that the income control variable, for the odd ones we simply control for the

household disposable income, and control for the logarithm of household disposable income

for the even ones. Compared to the still credit constrained sample, the credit unconstrained

sample will decrease the household saving rate by 11 to 27 percent, that is to say, the average

“treatment” effect of credit unconstrained on the household saving rate is impressive, and

credit constraint is an anchor to reduce the saving rate especially for poor households.

Columns 3 to 6 of Table A.6 show the estimated effects of credit unconstrained on the

household saving rate is significantly negative by using the financial credit measure (Zeldes,

1989a) by using the CHFS and CFPS data. The most recent CHIP data sample of the year

2013 is in the year 2009, and it should be more problematic due to the longer time span.

The Difference-in-Difference (DID) specification and the t-test for the two sample groups

are also the same The magnitude and significance of the interaction term are similar for

the financial constraint measures. Compared to the still financial credit constrained sample,

the financial credit unconstrained sample will decrease the household saving rate by 21 to

26 percent and 24 to 26 percent for CHFS and CFPS data, respectively. The conspicuous

effect of the borrowing and financially unconstrained on the household saving rate confirm

our data facts and theoretical implication that the existence of the liquidity constraint leads

to a significantly higher household saving rate and also expect the liquidity constraint lead

to higher aggregate saving rate if we measure household sample as more aggregate level.
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2.5.3 Income inequality and saving rate

Evidence across counties: cross-section regressions

We have seen that the household saving rate response to a move up in the current and

permanent income quintile significantly positive. We address the research question what the

general equilibrium effect of the aggregate household saving rate from a rise in the income

inequality. We raised this by examining the calculated county-level data and indicators from

CHFS 2015, CFPS 2014 and CHIP 2013 data sets for any association between local total

saving rate and Gini coefficient. The three data sets cover 353 counties, 334 counties and 212

counties, respectively. The empirical exercise is valid for the causal relationship between the

local total saving rate and inequality measure because the inequality across the county has

no association with the county local saving rate after controlling for the location fixed effects.

The income inequality indicators we use is the Gini coefficient and other measures such as

coefficient of variation, Theil index, Mehran index, Piesch index, Kakwani index and the

income ratio of the top 20 percent of households to the bottom 20 percent of households or

relative mean deviation (Chu and Wen, 2017; De Maio, 2007). We perform the cross-sectional

regression that links a county i’s saving rate in the year 2013-2015 with the inequality index,

controlling for location fixed effects and other factors. The variable we controlled maintain

the previous specification as the (Schmidt-Hebbel and Serven, 2000) such as the local level

young-dependent ratio (YDratio) and the old-dependent ratio (ODratio). To be precise, we

report the results both controlling the county level young-dependent ratio (YDratio) and the

old-dependent ratio (ODratio) or not to check the robustness of the effect. The location local

saving rate and the inequality indexes, along with the young-dependent ratio (YDratio) and

the old-dependent ratio (ODratio) are computed from CHFS 2015, CFPS 2014 and CHIP

2013 data sets. The saving rate of each county is defined as local total income minus

consumption, divided by income. The inequality measure is defined as (De Maio, 2007) and

local per-capita disposable income is defined as the county local total income divided by the

38



local total population. We cluster the standard errors by province.

Income inequality and aggregate household saving rate

The odd column of Table A.7 report the regression results with only county per-capita

income and Gini coefficient as the regressors, using the CHFS, CFPS and CHIP data set,

respectively. The effect of income inequality on local saving rate is significantly positive at

5 percent level: a 1 percent increase in the Gini coefficient is associated with higher county

saving rate by 0.18–0.20 percent points. The coefficient on local per-capita income is around

0.33 and statistically different from zero at the 1 percent level. In other words, CHFS 2015

data reveals that the county level saving rate tends to be higher in the county with more

unbalanced income distribution. In any case, we note that similar household saving rate

age-profile patterns relative to the prediction of the life cycle hypothesis are documented

in Chamon and Prasad (2010) since we note that the share of young-age population and

the old-age population has a positive significant coefficient. A 1 percent increase in the the

old-dependent ratio (ODratio) or young-dependent ratio (YDratio) is associated with 0.35

to 0.6 percent higher county saving rate. These results may imply that that old-age house-

holds or household with children tend to save more than working-age household, however

the significant association appears in the CHFS data set is not consistent for other two data

sets. Columns 3 to 6 of Table A.7 show the estimated effects of Gini coefficient on local

saving rate is not significant: a 1 percent increase in the Gini coefficient is associated with

insignificant higher local saving rate by 0.13 and 0.02 percent points for CFPS and CHIP

data, respectively. To save space, we do not report the results using other inequality mea-

sures, and some of the association between the income inequality and local saving rate are

significantly positive at 5 to 10 percent level. To summarize, although the positive relation-

ship between high-income inequality and a high county level saving rate is not robust and

statistically significant, we can conclude that the increase in the current income inequality

would make the local total household saving rate even higher.
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2.5.4 Marginal propensity to consume (MPC)

Friedman’s permanent income hypothesis (PIH) states that one’s current consumption

is determined not just only by the current income but also by the expected future income

(permanent income). The hypothesis suggests that the changes in consumption are mainly

driven by the changes in permanent income rather than the changes in current income, which

implies that the marginal propensity to consume (MPC) out of permanent income would be

greater than the MPC out of current income. To know how Chinese household would respond

to the current income, we estimate Equation (2.12) by running five separate cross-sectional

regressions, with each one focusing on one income quintile sample. Table A.8 presents the

estimates of the MPC out of each type of income.

In panel (a) of Table A.8, for both types of income, the estimated MPCs are significantly

positive in the CHFS. The estimated MPCs out of permanent income range from 223 RMB

per 1000 RMB for the highest-income quintile households to 778 RMB per 1000 RMB for

the lowest. We notice that the coefficients are decreasing with income classes except for the

quintile 4. For the quintile 4, the coefficients are 541 RMB per 1000 RMB, which is not only

greater than the quintile 5 but also than the quintile 3. The estimated MPCs out of current

income share the similar pattern to the permanent income. The lowest-income quintile has

the largest coefficient of 788 RMB per 1000 RMB, and the highest-income quintile has the

smallest MPC with 178 RMB per 1000 RMB. Except for the quintile 4, the coefficients

exhibit a decreasing pattern with as income quintiles move up. The estimated MPC out

of current income for the quintile 4 is 507 RMB per 1000 RMB, which is larger than the

quintile 3 and 5. These results indicate that the MPC out of both types of income for the

bottom 20 percent households is much higher than the top 20 percent.

Panel (b) shows the results from similar regression using CFPS. The MPCs for both

types of income are highly significant. The estimates of the MPCs out of current income

range from 336 RMB per 1000 RMB for the quintile 5 to 927 RMB per 1000 RMB for the

quintile 1. They display a decreasing pattern with income levels except for the quintile 2,
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whose estimated MPC is 361 RMB per 1000 RMB, but it is still larger than the quintile

5. For the MPC out of permanent income, excluding the quintile 2, the coefficients are still

exhibiting a decreasing pattern with income classes. A little bit differences from the MPC

out of current income is that the coefficient for the quintile 2 is 347 RMB per 1000 RMB,

which is the smallest among the five quintiles. The MPC out of both types of income for

the lowest-income quintile is again much higher than the highest-income quintile.

The results of estimation from CHIP are shown in panel (c) of the table. The estimated

MPCs out of permanent income is 613 RMB per 1000 RMB for the bottom 20 percent

households. It increases a little bit to 623 RMB per 1000 RMB for the second income

quintile and then decreases steadily from 510 RMB per 1000 RMB for the third income

quintile to 233 RBM per 1000 RMB for the top 20 percent households. All the numbers

are significantly positive. For the estimated MPCs out of current income, the CHIP data

exhibit a diminishing pattern as income quintiles move up, decreasing from 563 RMB per

1000 RMB for the bottom 20 percent households to 167 RMB per 1000 RMB for the top 20

percent households. Except for the coefficient for the top 20 percent households, all others

are statistically significantly positive. Besides, the results in the CHIP exhibit the pattern

implied by the permanent income hypothesis (PIH) that the coefficients for the permanent

income higher than that for the current income.

In sum, although we do not see a diminishing MPC with income classes across three data

sets, there is still a not surprising pattern that the MPC out of both types of income for the

bottom 20 percent households are much higher than that for the top 20 percent households.

The results are consistent with empirical evidence in the literature.

2.6 Conclusion

We show in this paper the role of income inequality interacting with liquidity constraints

in explaining the high household saving rate in China. In a simple two-period model, house-

holds are heterogeneous in income and subjective discount factor, and whether the liquidity

constraint is binding, consumption and saving rate are endogenously determined. The model
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generates several predictions consistent data facts: (1) the rich save more; (2) the propor-

tion of constrained households for the poor is higher than that for the rich; (3) liquidity

constraints would increase household saving rate. (4) when income inequality increases, the

rich save even more, in the meanwhile, the poor would also save more due to the binding

liquidity constraints, and thus the aggregate household saving rate would rise.

Using three sources of large, nationally representative household survey data sets, the

China Household Finance Survey (CHFS), the China Family Panel Studies (CFPS), and the

Chinese Household Income Project (CHIP), we provide direct empirical evidence implied

by the theoretical model. We find that in China, (1) the top 20 percent permanent income

households’ saving rate is 19–23 percent significant higher than the bottom 20 percent house-

holds’. (2) the bottom 20 percent permanent income households are more likely to face a

liquidity constraint, with a 12–20 percent significantly higher probability; (3) the existence

of liquidity constraints would lead to a significant increase of more than 20 percent in the

household saving rate; (4) income inequality would have a significant positive impact on

the aggregate household saving rate ath the county level, with a 1 point on a scale of 100

measure increase in the Gini coefficient leading to an increase of 0.2 percent in the aggregate

saving rate; (5) the estimated MPC for the top 20 percent households range from 200 to 400

RMB per 1000 RMB, while for the bottom 20 percent, the range from 600 to 900 RMB per

1000 RMB.

These findings would have significant policy implications. The Chinese government’s

policies on reducing the saving rate have not yet produced substantial results. If income

inequality and liquidity constraints were the key reasons for the high aggregate household

saving rate, the resulting policy would be drastically different. For example, it is appropriate

for the Chinese government to design some income redistribution programs (such as EITC) to

reduce income inequality or devote more resources to support the credit market development.

An economic policy of tackling income inequality would lower the aggregate saving rate, thus

becoming a policy of economic transition and growth.
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3. INCENTIVES AND UNCERTAINTIES IN A+B PROCUREMENT CONTRACTS

3.1 Introduction

Public procurement, which is the purchase by governments and state-owned enterprises

of goods, services, and works, constitutes a substantial proportion of GDP and has a direct

and vital impact on the economy. For example, according to estimations drawing from

National Accounts data, governments in OECD member countries spend on average 12.1

percent of their GDP on public procurement in 2013. In the United States, public-sector

procurement accounts for over 10 percent of GDP (Krasnokutskaya and Seim, 2011). An

innovative procurement mechanism widely used by state transportation agencies to select

qualified contractors is called A+B procurement contracts.1 The A+B procurement contract

also referred as the Cost-Plus-Time contract, is awarded through a first-price, sealed-bid

scoring auction that scores bidders on the two-dimensional bid of contract items: the quoted

cost (A component) and the quoted completion time (B component). The project will be

awarded to the bidder with the lowest score. Motivated by the practical prevalence of this

procurement mechanism, this paper makes the first effort to identify and estimate a structural

model of A+B procurement contracts with time incentives and construction uncertainty. Our

structural model can be used to conduct social welfare analysis of the A+B mechanism and

will shed some lights on the study of contract design in procurement industry.

Drawing on the score auction model of Che (1993) and Asker and Cantillon (2008), we

incorporate time incentives/disincentive scheme and allow for a discrepancy between the bid-

ding time and actual completion time by incorporating construction risks. The contracting

game and the constructing practice proceed as follows. Before the bidding stage, the pro-

curer will announce an estimated bundle of construction costs and working days, a selecting

1In the 1990s, the A+B mechanism was first introduced by the Department of Transportation (DOT) of
California as an experiment for emergency-type projects because of the criticism that highway constructions
took too much time, and has been extended to non-emergency type project since 2000. See the memorandum
issued by the DOT of California (http://www.dot.ca.gov/hq/oppd/design/m093002.pdf).
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rule for awarding the contract, and a provision for rewarding early completion and punishing

late completion. These are common knowledge to all players. Next, upon this information

being advertised before bidding, each contractor’s will quote a sealed price-day bid. The

bid depends on contractor’s innate efficiency cost parameter, which is served as a private

information and is drawn independently by nature. The contract will be awarded to the

bidder who has the lowest score, which is calculated by the procurer’s pre-announced rule.

In the construction stage, before the winning contractor’s work, a cost shock is realized

and observed to the contractor. The contractor then rationalizes the actual working days

to maximize the profit. Due to the existence of the construction uncertainties, the actual

working days may deviate from the bidding days. Because of such discrepancy, the A+B

contracting mechanism may be neither ex-ante nor ex-post efficient, meaning that the A+B

mechanism may not select the contractor who will generate the highest social welfare among

all bidders and the winning contractor will not necessarily maximize the social welfare.

We show that the model primitives including the contractor’s cost function, the con-

tractor’s private-type distribution, incentive and disincentive parameters can be nonpara-

metrically identified from the bidding dataset and contracting dataset. The identification

of model primitives can be established through the equilibrium conditions implied by the

model, together with some functional restrictions on the cost function and the variation of

agents’ characteristics. Specifically, our identification argument takes several steps. First,

we use the result in the influential work of Guerre, Perrigne, and Vuong (2000) to identify

the pseudo-type in the theoretical model. Similar to Guerre, Perrigne, and Vuong (2000),

who provide a general identification result on the bidders’ private-type, we explore the one-

to-one mapping between the bidding score and the pseudo-type implied by the theory and

the number of bidders to back out each bidder’s private-type. Second, we use the result

in Torgovitsky (2015) to identify the one-to-one structural link between the pseudo-type

and the actual private-type. Some mild restrictions on the contractor’s cost function, the

variation of contractors’ characteristics and bidding days, and the normalization condition
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of unobserved heterogeneity are used to recover the pseudo-type function. Based on these

two identified one-to-one mappings, we can identify the contractor’s private-type distribu-

tion according to the result in Matzkin (2003). Third, we use the observed actual working

days to identify incentive and disincentive parameters. We show that the cutoff values of

uncertainty for deciding whether or not to complete the project on-time or early or delay

are the same across private-types. Having identified all objectives above, the identification

of contractor’s cost function is established accordingly.

We apply our model to evaluate the social efficiency of A+B contracts in California’s

construction projects between 2003 and 2008. The empirical questions we would like to

address are twofold. First, whether the contractors selected by the California Department

of Transportation will generate the highest social welfare among all competitors. That is,

whether it is possible that there would exist another contractor who would produce a higher

level of social welfare if it would be selected. We call this ex-ante efficiency. Second, no matter

which contractor would be selected, whether or not it would always lead to a maximum level

of social welfare. We call this ex-post efficiency.

Specifically, we propose a three-step semiparametric method to estimate the parameters

of the structural model, and then based on the estimates, we simulate the actual working

days for other contractors if they would implement the project under the same exogenous

shocks. We find that 66 percent of A+B contracts are ex-ante inefficient with a welfare loss

of $1.4 million per contract. Besides, we calculate ex-post optimal social welfare for each

contract, and find that 52 percent of the contracts are ex-post inefficient with a welfare loss of

$3.5 million per contract. Second, we perform two alternative mechanisms, and find that the

counterfactual experiments would increase significantly social welfare in both ex-ante and ex-

post. Specifically, we find that the counterfactual A design with time incentive contracting

will decrease the ex-ante inefficiency to 8.7 percent and increasing welfare by 2.558 million

dollars. Regarding ex-post efficiency, although all contracts will be inefficient under A design,

the average welfare loss is much smaller (0.289 million dollars). Furthermore, under the
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alternative lane rental policy, the ex-ante inefficiency will be reduced by 61.4 percent on

average with an average welfare gain of 0.569 million dollars. For ex-post inefficiency, the

lane rental policy performs much better, with 100 percent inefficiency reduction and welfare

gain of 4.135 million dollars.

Related literature

This paper is related to three main bodies of literature. A wide array of theoretical

models of regulation have been used to study procurement problem (see, e.g., Weitzman,

1974; McAfee and McMillan, 1987; Riordan and Sappington, 1987; Laffont and Tirole, 1987,

1993; Manelli and Vincent, 1995; Krishna, 2009). In the context of A+B mechanism, Che

(1993) studies a two-dimensional scoring auction when private information is one-dimensional

and analyzes optimal buying mechanism. Branco (1997) explores the impact of correlated

bidder costs on the design of the multidimensional mechanism. Asker and Cantillon (2008)

provide a systematic analysis of equilibrium behavior in scoring auctions under bidders’

multidimensional private information and show that scoring auctions dominate several other

commonly used mechanisms. Along the lines of Che (1993) and Asker and Cantillon (2008),

we propose a stylized model of A+B bidding in the context of highway procurement in an

environment where construction uncertainty exists, and contractors may have the incentive

to deviate their bidding when time incentive scheme is introduced.

This paper also contributes to broad literature on the identification and estimation of

structural models in auction and contract theory. Guerre, Perrigne, and Vuong (2000) show

that the underlying distribution of bidders’ private values in the first-price sealed-bid auctions

within the independent private values (IPV) framework can be nonparametrically identified

from observed bids and the number of actual bidders. An, Hu, and Shum (2010) develop

a nonparametric procedure to recover the conditional distribution of the bids given the

number of bidders and consider the identification and estimation problem when the number

of actual bidders is unknown to econometrician, exploiting the results from recent literature

on the models with misclassification error (see, e.g., Mahajan, 2006; Hu, 2008). To our
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best knowledge, there are very few studies on the rigorous econometric analysis of models

related to contract theory. Some of the previous studies build their argument upon the

one-to-one mapping between the characteristics of contract in the data and unobserved type

of agents (see, e.g., d’Haultfoeuille, Février, et al., 2007; Aryal, Perrigne, and Quang, 2012;

Perrigne and Vuong, 2011, 2012). Comparing with their work, we consider A+B incentive

contracts which are competed via a first-price sealed-bid scoring auction and develops a

quantitatively different argument of identification. To our best knowledge, our paper makes

the first attempt to formally address the issue of identification in the scoring auction models,

which is innovative and novel in the literature

Besides, our paper contributes to a growing, but still relatively scarce empirical literature

on auctions with multidimensional attributes (see, e.g., Levin and Athey, 2001; Marion, 2007;

Lewis and Bajari, 2011; Krasnokutskaya and Seim, 2011; Krasnokutskaya, 2011; Bajari,

Houghton, and Tadelis, 2014). Lewis and Bajari (2011) use the same sources of data as

ours to estimate the benefits to commuters from the acceleration of completion time and

that the contractual benefit gain from expanding the use of A+B mechanism design to

all highway construction projects. In comparison, our work differs from Lewis and Bajari

(2011) in several fundamental aspects. First, in terms of the theoretical model, we take

into account the cost uncertainties when modeling the bidding environment and characterize

contractors’ behavior. Specifically, we show that discrepancy between the quoted completion

days and intended actual completion days can happen due to the presence of unanticipated

cost shocks during the construction stage. Second, concerning empirical results, we conduct

the empirical analysis of social welfare related to the A+B mechanism and demonstrate that

A+B mechanism can be neither ex-ante nor ex-post efficient, which contradicts the welfare

analysis result in Lewis and Bajari (2011) since they ignore the construction uncertainties.

Roadmap

The rest of this chapter is organized as follows. Section 3.2 presents our model of A+B

procurement contracting with time incentives and construction uncertainties. In Section 3.3,
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we establish the main identiïňĄcation results. Section 3.4 introduces the A+B mechanism

background of CalTrans highway procurement contracts, and describes the data. A three-

step semiparametric estimation procedure is discussed in Section 3.5. Section 3.6 reports the

estimation results. In Section 3.7, we conduct counterfactual welfare analysis of the A+B

mechanism. Section 3.8 concludes. The Appendix contains proofs, figures, tables, and other

details.

3.2 Model

In this section we lay out a structural model of A+B contracting along the lines of scor-

ing auction literature (see, e.g., Che, 1993; and Asker and Cantillon, 2008). In addition to

extending the classical scoring auction model to a two-stage model, when agents are making

bidding decisions, the structural model also includes both time incentive/disincentive mech-

anism and construction uncertainties in the execution of the contract. The structural model

allows us to quantify the importance of incentives and uncertainties in bidding decisions and

estimate policy counterfactuals. For a generic function f(·) with more than one argument,

we denote fl(·) its derivative with respect to the l-th argument. A random variable is denoted

by uppercase letter while its realized values are denoted by lower case letters.

3.2.1 Setup

A buyer (or procurer) seeks to procure an indivisible good (e.g., a highway project)

among N ≥ 2 potential risk-neutral bidders (or contractors). Unlike the traditional first-

price auction, the bidder needs to submit a bid combination of total cost pB ∈ P ⊂ R+ and

working days xB ∈ X ⊂ R+ in the procurement auction. The contract then is awarded via

a so-called “first-score” auction in the sense that the lowest scorer wins the contract. The

score is calculated by a rule, s : P ×X 7→ s(P ,X ), which is determined by the procurer and

represents a continuous preference relation of the buyer over the bid combination (pB, xB).

The winning cost-time combination becomes the contractual cost and working days.
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Contractor’s cost function

We assume that contractors have different abilities, which reflect the innate efficiency

cost (“type”, hereafter) to complete the construction project and each contractor knows her

own type. The type is denoted as θ, which reflects contractors-specific private information

of cost, such as their current managerial capacity, their expertise with working on a tight

schedule, and their relationships with input suppliers or with subcontractors. The total cost

function is given by:

TC︸︷︷︸
total cost

= (1 + ε)C(xA, θ)︸ ︷︷ ︸
construction cost

+ K(xA, xB, i, d),︸ ︷︷ ︸
incentive cost

(3.1)

where we assume that the total cost function consists of two parts and is additively separable.

The first part in Equation (3.1) is the bidder’s actual construction cost. We assume that it

has a multiplicative structure. That is, the actual construction cost for the contractor equals

a deterministic cost C(xA, θ) times a percentage deviation from the deterministic part of

construction cost due to the construction uncertainty ε. Similar assumption on the cost

function in the literature includes Krasnokutskaya (2011), Bajari, Houghton, and Tadelis

(2014), and etc. The multiplicative structure in cost function is implicit in Krasnokutskaya

(2011), where the bidder’s cost realization is given by an auction common component times

an individual cost component. In Bajari, Houghton, and Tadelis (2014), the authors assume

the bidder’s actual cost is a variant of the engineer’s cost estimate. The second part in

Equation (3.1) is the incentive cost that captures rewards and punishments scheme in the

contract. The incentive costs depend on the relationship between the actual working days

xA and the bidding days xB, and incentive parameters i and d. The specification of incentive

costs K is as follows:

K(xA, xB, i, d) = 1(xA < xB) · i · (xA − xB)︸ ︷︷ ︸
reward early completion

+1(xA > xB) · d · (xA − xB),︸ ︷︷ ︸
punish delay completion

(3.2)
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where I(·) is an indicator function, i ∈ R+ and d ∈ R+ are daily cash bonus and daily cash

punishment, respectively. Equation (3.2) implies that the contractor may face punishment if

the project fails to be completed according to the contractual working days. Alternatively,

the contractor may receive awards due to the early completion relative to the contractual

working days.

Timing and decisions

The construction procurement usually takes place in three stages: First, at the beginning

of the auction, the procurer announces three messages: (i) an engineer’s estimated specifi-

cation of the project, (pE, xE), which is the estimate of the project costs and the project

length in working days respectively; (ii) a scoring rule s : P×X 7→ s(P ,X ) that associates a

score to any potential contract and represents a continuous preference relation over the con-

tractor’s two-dimension bidding (pB, xB); (iii) an incentive/disincentive (I/D) scheme (i, d),

which is the daily cash bonus for the early completion and the daily cash penalty for the

delay completion, respectively.

Second, upon this information being advertised before bidding, each contractor draws

the private-type θ ∈ Θ ⊂ R+ independently from a cumulative distribution function FΘ(·),

with a density fΘ(·) on a support [θ, θ]. The contract then quotes a sealed price-days bid

(pB, xB). The contract is awarded to the bidder that quotes the lowest score (a.k.a. the

“winner”).

Third, according to terms of the contract, the construction stage begins, and then the

contractor receives payment when the project is completed. In the construction stage, the

contractor may encounter various kinds of construction risks or construction uncertainties.

The contractor may adjust implementation plan in response to them. We assume that all

uncertainties are characterized by a percentage deviation from the costs and that they are

realized at the beginning of the project to be carried out.2 Figure B.1 illustrates the timing

2In fact, we assume that ε is a sufficient statistics that reflects all construction uncertainties in the imple-
mentation stage. This is an imperfect approximation, although, in the reality, the realization of construction
uncertainties is a complex dynamic process because different kinds of uncertainties may occur at different
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of events and decisions.

Remark. The engineering’s estimate (pE, xE) serves as a role of “reservation price”in stan-

dard auction models. Unlike the reservation price, however, (pE, xE) is announced by the

procurer at the beginning and this is observed by all bidders. Neither xB > xE nor pB > pE

can be acceptable by the procurer. Therefore, the procurer imposes an upper bound on the

contractor’s bid.

3.2.2 Equilibrium

We now provide the details of contractors’ behavior. We maintain the following restric-

tions on the cost function C and the scoring rule s throughout the paper. Notice that the

engineer’s estimate (pE, xE), the scoring rule s(pB, xB), the incentive scheme (i, d), and type

distribution FΘ(·) are common knowledge. This is an independent private values (IPV)

framework.

Assumption 2. The actual construction costs (1 + ε)C(xA, θ) for the private-type θ to

complete the project in xA days satisfy:

(a) the uncertainty ε is independent and identically distributed according to a known

distribution function Fε(·) with a density fε(·) on its support [−1,∞) with the mean E(ε) = 0.

(b) the deterministic cost function C(·, θ) is strictly decreasing convex for every θ;

(c) C(xA, ·) is strictly increasing for every xA ∈ R+, and the marginal cost C1(xA, ·) is

strictly decreasing for every xA ∈ R+.

In the part (a) of the Assumption 2, we assume that the lower bound of the uncertainty

is −1 to ensure non-negative actual cost; part (b) implies that the cost function is decreasing

convex in actual working days xA. To be specific, both the original construction cost, denoted

as Co(e, θ), and the actual working days XA(e) may be a function of expediting effort e,

given a particular type θ. We assume that Co(e, θ) and xA(e) are increasingly convex and

decreasingly convex in e, respectively. Therefore, C(xA, θ) is considered as a transformed cost

time points.
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function with property of decreasingly convex in xA.3 Part (c) is standard in the procurement

contract literature (see, e.g., Laffont and Tirole, 1993).

Assumption 3. The scoring rule function S is given by:

s(pB, xB) = pB + cu · xB, (3.3)

where cu ∈ R+ is the weight (user cost), calculating the time value in dollars.

The linear in price scoring rule in Assumption 3 is empirically relevant because it is

widely used in many public procurement auctions of U.S. states’ Department of Transporta-

tion (DoT), such as California, Delaware, Idaho, Massachusetts, Oregon, Texas, Utah, and

Virginia, etc.4

When the project is completed and the payment from the procurer is received, the con-

tractor’s ex-post payoff π is given by:

π = pB − TC = pB − (1 + ε)C(xA, θ)−K(xA, xB; i, d). (3.4)

The contractor needs to make two decisions: (i) bidding cost and working days in the

procurement auction and (ii) actual working days in the construction stage given winning

the contract. Thus we solve the contractor’s optimal bidding decisions on costs and working

days by backward induction. First, if the contractor would win the contract, the winner

chooses actual working days to maximize the payoff function in Equation (3.4), after knowing

a realization of uncertainty ε at the beginning of the construction stage. We present an

argument in Lemma 1 for the contractor’s decision on actual working days.

3Lewis and Bajari (2011) assumed a U-shaped cost curve that seems to be a textbook long-run average
cost curve, with the most efficient scale of construction at the engineer’s estimate xE .

4We admit that there are a variety of forms of scoring rules used in real-world public procurement. For
example, many states in the U.S., such as Alaska, Colorado, Michigan, and North Carolina, use the price-
over-quality ratio (PQR) rule to score the bidders; In addition, in some European countries, the scoring rule
is the sum of the price and quality measurements, but the score is nonlinear in price. Here we restrict our
attention to the quasi-linear score rule because of the data in hands.
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Lemma 1. Under Assumption 2 - 3, for any given bid (pB, xB), incentive coefficients (i, d),

and the realization of private-type θ and uncertainty ε, the optimal completion time xA∗(·),

defined as xA∗ = argmin
xA

{
(1 + ε)C(xA, θ) +K(xA, xB; i, d)

}
, can be characterized as follows:

xA
∗
(θ, ε) =


xd(θ, ε) if xB ∈ [0, xd

)
⇔ ε ≥ εd(xB, θ; d)

xB if xB ∈ [xd, xi] ⇔ εi(xB, θ; i) ≤ ε ≤ εd(xB, θ; d)

xi(θ, ε) if xB ∈
(
xi, xE] ⇔ ε ≤ εi(xB, θ; i)

where xd(θ, ε;C) and xi(θ, ε;C) satisfy −C1(xd, θ, ε) = d and −C1(xi, θ, ε) = i, respectively;

εi and εd satisfy −C1(xB, θ, εi) = i and −C1(xB, θ, εd) = d, respectively.

In this lemma, εi and εd denote the cutoff values for the cost shock ε. Specifically, if

the realized value of ε is greater than εd (negative shock), then the optimal decision of the

contractor is to delay the construction process and complete at xd, which is greater than xB.

On the other hand, if ε < εi (positive shock), the optimal decision is to complete early at xi.

Finally, if the cost shock is moderate, i.e., between εi and εd. The decision of the contractor

is to stick to the original plan and complete exactly as the bidding time.

An important implication of Lemma 1 suggests that the optimal actual working days xA∗

may deviate from the bidding days xB due to its dependence on the realization uncertainty

ε. This is important because it may affect the contractor’s bidder behavior. Figure B.2

illustrates the scenario of delay completion under negative construction shocks, meaning

that the realized ε will increase the actual cost of completing the construction project.

Remark. The construction uncertainty is important in our model since it provides the un-

derlying source driving actual working days in the construction stage deviates (no matter

what level of) bidding days in the bidding stage. However, without uncertainty, actually,

working days solely depend on bidding days. That is, for some range of bidding days, actu-

ally working days will deviate bidding days, whereas for other range they are the same. We
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provide detail proof and illustration in Appendix.

Next, we turn back to the contractors’ bidding strategy in the competing stage. The

contractor quotes a bid combination of costs pB and working days xA to do the following

maximization:

max
pB ,xB

{
pB − Emin

xA

[
(1 + ε)C(xA, θ) +K(xA, xB; i, d)

]}
Pr
(
win

∣∣∣ S = s
)
,

where s is the bidding score as in Equation (3.3) and Pr(win|S = s) is the probability for

the bidder to win the auction given her bidding score. The expectation is taken with respect

to the summary of construction uncertainties ε. Define the contractor’s effective cost, or

pseudo-type, which reflects the contractor’s productive potential as

v(θ) ≡ min
xB

{
cux

B + E
[
(1 + ε)C(xA, θ) +K(xA, xB; i, d)

]}
. (3.5)

Then following Che (1993) and Asker and Cantillon (2008), the contractor’s optimization

problem is equivalent to:

max
s

(
s− v(θ)

)
Pr(win | S = s). (3.6)

Let FV (·) denote the CDF of the pseudo-type V and let v denote the lower bound for

the support of V . Then the following proposition characterizes the unique symmetric pure

strategy Bayesian Nash Equilibrium (psBNE) of the A+B bidding models.

Proposition 2. Under Assumption 2, the model of A+B bidding has a unique symmetric

psBNE
(
pB
∗
(θ; cu, i, d), xB

∗
(θ; cu, i, d)

)
:

pB
∗

= E
[
(1 + ε)C(xA, θ) +K(xA, xB; i, d)

]
−
∫ v

v

[
1− FV (ṽ)

1− FV (v)

]N−1

dṽ, (3.7)
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xB
∗

= argmin
xB

{
cux

B + E
[
(1 + ε)C(xA, θ) +K(xA, xB; i, d)

]}
; (3.8)

Furthermore, if θ is scalar, then

pB
∗

= E
[
(1 + ε)C(xA, θ) +K(xA, xB; i, d)

]
−
∫ θ

θ

EC2(xA
∗
, θ, ε)

[
1− FΘ(θ̃)

1− FΘ(θ)

]N−1

dθ̃. (3.9)

∂xB
∗

∂θ
(θ; cu, i, d) > 0. (3.10)

3.2.3 Discussion on social efficiency

To exam how the A+B mechanism affects the social welfare, we focus on two dimensions

of social efficiency: (i) ex-ante efficiency and (ii) ex-post efficiency. Ex-ante efficiency means

that the contract design always picks the right contractor in the sense that the winning

contractor would generate the highest social welfare in equilibrium than that of others if they

would perform the construction. Ex-post efficiency implies that no matter which contractor

would win the contract, the winner always maximizes the social welfare. Let SW ≡ Vc −

(1 + ε)C(xA, θ)− cuxA denote the ex-post realized social welfare, where Vc is the total value

of the construction project, and (1 + ε)C(xA, θ) + cux
A is the total social costs (TSC) in

which cux
A is the cost due to the externalities of the construction.5 Formally, the ex-ante

efficiency and the ex-post efficiency are defined as follows:

Definition 1 (Ex-ante efficiency). A contract design is ex-ante efficient if si < min
j 6=i

sj

implies that SWi ≥ max
j 6=i

SWj.

5This specification is similar to the one in Lewis and Bajari (2011) where they claim that the linear
structure in the working days, with a constant user cost as the coefficient, seems to be the right approximation
although it is easy to be extended to the more complicated one.
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Definition 2 (Ex-post efficiency). A contract design is ex-post efficient if xA maximizes

SW for all type θ ∈ [θ, θ], i.e., xA satisfies −(1 + ε)C1(xA, θ) = cu.

Figure B.4 illustrates that the A+B mechanism may be neither ex-ante efficient nor ex-

post efficient when there is a cost shock to the cost function, e.g., an unexpected weather

condition that happens during the construction stage. Consider two bidders, 1 and 2, with

different private-types, θ1 and θ2 respectively, and θ1 < θ2. The theoretical model implies

that the pseudo-type is a strictly increasing transformation of the private-type, and standard

results from the auction literature imply that the contract will be awarded to the bidder with

lowest pseudo-type. Thus bidder one will win the contract. As illustrated in Figure B.2,

under a negative shock to the cost function, the bidder 1’s best response to it may be to

delay the completion at xd1, thereby the total social cost will be cuxd1 + C(xd1, θ1) as shown

in panel (1) of Figure B.4. However, if the bidder two would be awarded the contract and

under the negative shock, the total social cost would be cuxb2 + C(xd2, θ2), which is smaller

than that of the bidder 1. This may be because that the bidder two can have much smaller

private costs than that of bidder one, even though the working days conducted by bidder

two would be longer than that of bidder 1. Thus, the A+B mechanism may not pick the

most socially-efficient contractor from the ex-ante perspective.

Panel (2) of Figure B.4 shows that under the same negative shock to the contractor one,

the A+B mechanism may not generate the highest social welfare. According to the definition

of social welfare, the social optimal completion days should be xcu1 , at which the contractor

internalizes the social costs and aligns the private interests with social interests. Therefore,

as long as the actual working days deviate from xcu1 , due to the convexity of cost function in

working days, the total social cost will be not be minimized, and thus the social welfare is

not optimal.

3.3 Identification

In this section we show how the model primitives, denoted asM ≡
[
C(·, ·), FΘ(·), i, d

]
,

can be identified when the data report the realized bidding costs pB, the bidding work-
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ing days xB, the engineering’s estimation of working days xE, the actual working days xA,

and a vector of exogenous variables z ⊂ RD that summarizes bidders and contracts char-

acteristics. The vector z, for example in our empirical application of California highway

procurement practice, can include firm capacity, location, distance and a binary variable

indicating whether the contract is federally funded or not, etc. All the model primitives

may depend on z or its sub-vectors. We suppress z whenever there is no ambiguity since

our identification argument will be conditional on z. We assume that the data observed is

rationalized from the model primitivesM and that the equilibrium conditions presented in

the preceding section are satisfied.

Our identification strategy takes several steps. First, following a standard argument

from Guerre, Perrigne, and Vuong (2000), we identify the pseudo-type v(θ) from the number

of bidders in the procurement auctions and the distribution of bidding scores. Second,

we recover the structural link between the (observed) bidding days and the distribution of

the pseudo-type through an instrument variable, which is critical to the identification of the

distribution of the contractor’s private-type. Combining the identified distribution of pseudo-

type and the identified structural link, we can recover the distribution of the private-type.

Third, by exploiting the equilibrium conditions, the identification of incentive/disincentive

parameters can be achieved. Finally, with the identification of model primitives above, we

identify the marginal cost function through an exclusion restriction, which exploiting the

variations in the quantiles of the cost and taking into account the fact that quantiles of the

private-type distribution remain the same. We thus can identify the cost function up to a

constant.

3.3.1 Identification of the pseudo-type’s distribution

The first step of identification is to identify the pseudo-type v for each bidder. Following

the results in Guerre, Perrigne, and Vuong (2000), we recover the value of pseudo-type, which

is denoted as v, by exploring the equilibrium bidding strategy and the distribution of bid-

ding scores. Specifically, the symmetric monotone pure strategy equilibrium in optimization
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problem (3.6) is obtained by solving the first-order differential equation in s(·):

s′(v) = (N − 1)(s(v)− v)
fV (v)

1− FV (v)
(3.11)

with boundary condition s(v) = 0. By introducing the distribution of bidding score FS(s) and

its density fS(s), and substituting FS(s) = Pr(s(V ) ≤ s) = Pr(V ≤ s−1(s)) = FV (s−1(s)) =

FV (v) and fS(s) = fV (v)/S ′(v) into (3.11), we get

v = s− 1

N − 1

1− FS(s)

fS(s)
. (3.12)

Hence the pseudo-type in the symmetric monotone psBNE is identified.

Lemma 2. Under Assumption 2 - 3, contractors’ pseudo-type v(θ) defined in Equation (3.5)

is nonparametrically identified.

3.3.2 Identification of the private-type’s distribution

We now turn to the nonparametric identification of the distribution of private-type FΘ.

Recall the definition of pseudo-type v, and denote

g(xB
∗
, θ) ≡ cux

B∗ + E[(1 + ε)C(xA
∗
, θ) +K(xA

∗
, xB

∗
; i, d)],

where xB∗ is the equilibrium bidding days, xA∗ is the best response to the uncertainty, and

recall that the expectation is taken with respect to the uncertainty ε. Then we have

v = g∗(xB
∗
, θ). (3.13)

For notational simplicity, in the following discussion we suppress the optimal bidding

strategy index B∗ in (3.13) and denote g(·, ·) by the true function form when there is no

ambiguity. Notice that the specification in (3.13) is nonseparable (not additively separable)

in the latent private-type, θ, which captures unobserved heterogeneity in the effect of x on v.
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In addition, x is endogenous explanatory variable because x is obtained as the equilibrium

outcome, which is chosen by the contractor corresponding to θ (see, e.g., optimal bidding

strategy). To identify g∗(·, ·), the following assumptions need to be formalized:

Assumption 4. Let G denote the collection of admissible outcome functions on the support

X ×Θ. If g, g̃ ∈ G are distinct, then there does not exist a strictly increasing function f such

that g(x, θ) = g̃(x, f(θ)) for all (x, θ) ∈ X ×Θ.

Assumption 4 is a normalization condition for point identification of function g∗. Matzkin

(2003) showed that some normalization of unobserved heterogeneity is necessary for nonpara-

metric identification. Specifically, she considers an nonseparable model Y = m(X, ε), where

X is exogenous, and m is strictly increasing in ε. Lemma 1 in Matzkin (2003) established

that if there exists a strictly increasing transformation of ε, say ε̃, then the model cannot

be identified. Thus, some normalization conditions are proposed to achieve identification

purpose. See Matzkin (2003) for some specifications.

Assumption 5. There exists an unobserved variable η and observed instrument variable

W ∈ W for X such that X = h(W, η) and satisfies (a) W ⊥⊥ (θ, η). (b) h(w, ·) is strictly

increasing for every w. (c) V |X = x,W = w and X|W = w are (absolutely) continuously

distributed for all x and w.

As is mentioned in Torgovitsky (2015), Assumption 5 (a)-(b) are essentially the scalar

heterogeneity assumption for the first stage estimation of X on W and is the key restriction

in the nonseparable model 3.13. Both the assumption that W is independent of (θ, η) and

the property that h(w, ·) is strictly increasing are standard in the literature of identification

of nonseparable models with endogenous regressors (see, e.g., Imbens and Newey, 2009;

Torgovitsky, 2015; d’Haultfoeuille and Février, 2015).

The requirement of Assumption 5 can be interpreted using the following example: suppose

the instrumental variable W is whether the contract is federally funded or not (W = 1 or 0,

respectively). Then Assumption 5 implies that whether the contract is federally funded or
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not is independent with bidder’s private-type θ, which is plausible since private-type contains

unobserved information about bidder’s characteristics. Furthermore, in practice it is likely

that bidder’s bidding decision can be affected by the funding source for the contract.

The intuition of the identification method can also be illustrated using this example. By

identification assumptions, bidders with bidding days X = x1 in the auctions with federally

funded contract (W = 1) are unobservably identical (in terms of private-type θ) to bidders

with bidding days X = x0 in the auctions with state funded contract (W = 0) for two

distinct bidding days x1 and x0, as long as these two groups of bidders have the same rank

in terms of their respective X distributions, i.e., FX|W (x1|1) = FX|W (x0|0). Since W has no

effect on V , and the pesudo-type V = v has been identified by Lemma 2, the differences in

pseudo-types between these two groups of bidders must be caused solely by the changes in X

from x0 to x1. Therefore the function g∗ can be point-identified by exploring the variations

generated by these two groups of bidders.

Proposition 3. Suppose Assumption 2-5 hold. Then the function g∗ ∈ G is identified on

(X , ϑ).

Because the function g∗(x, ·) is shown to be strictly increasing for every x, the map-

ping between the function g∗ and the distribution of the observable variables FV,X and the

conditionally cumulative distribution FΘ|X is, for every x and θ,

FΘ|X(θ) = FV |X(g∗(x, θ)).

This is because FΘ|X(θ) = Pr(Θ ≤ θ | X) = Pr(g∗(X,Θ) ≤ g∗(x, θ) | X) = Pr(V ≤

g∗(x, θ) | X) = FV |X(g∗(x, θ)). Since g has been identified in the Proposition 2, FΘ|X(·) is

identified accordingly. Therefore, the distribution of private-type can be recovered

FΘ(θ) =

∫
X
F (x, θ)dx =

∫
X
FΘ|X(θ)FX(x)dx =

∫
X
FV |X(g∗(x, θ))FX(x)dx. (3.14)
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3.3.3 Identification of the cost function and other primitives

We now present the identification of cost function C(·, ·), the daily incentive rate i, and

the disincentive rate d.

First, we show that the cutoff values of uncertainty for deciding whether or not to com-

plete the project on-time or early or delay are the same across private-types. To see this,

recall that the economic model in Section 3.2 implies that the cutoff values should set at the

level that makes marginal revenue equal to marginal cost, that is,

−(1 + ερ)C1(xB, θ) = ρ, ρ ∈ {i, d}.

Taking derivative with respect to θ on the both sides, we have

−dερ

dθ
C1(xB, θ)− (1 + ερ)(C11(xB, θ)

dxB

dθ
+ C12(xB, θ)) = 0.

Then we have dερ/dθ = 0. This is because C11(xB, θ)dxB/dθ + C12(xB, θ) = 0, which is

shown in Proposition 2 in the Appendix. The probability of early completion is

Pr(XA < XB) = Pr(ε < εi) = Fε(ε
i),

and it is same across different private-types because of the fact that εi is independent of θ.

Therefore, εi can be identified as

εi = F−1
ε (Pr(XA < XB)), (3.15)

where the distribution of uncertainty ε is assumed to be known and the probability of early

completion can be identified via the frequency of early completion contracts among total
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observations. Similarly, εd can be identified as

εd = F−1
ε (1− Pr(XA > XB)). (3.16)

Having identified the thresholds εi and εd, we now present the identification of the expe-

diting cost function C(·, ·). The F.O.C of solving for xB∗ is given by

cu +

∫ εi

−1

(−a)dF (ε) + C1(xB, θ)

∫ εd

εi
(1 + ε)dF (ε) +

∫ ∞
εd

(−b)dF (ε) = 0,

plug in the equations for determining the cutoff values i = −(1 + εi)C1(xB, θ) and d =

−(1 + εd)C1(xB, θ) and solve for C1(xB, θ) as

C1(xB, θ) = κ, (3.17)

where

κ = − cu

(1 + εi)Fε(εi) + (1 + εd)(1− Fε(εd)) +
∫ εd
εi

(1 + ε)fε(ε)dε
.

We can see that the right hand side of the equation above is known since cu is observed

data, and by Assumption 2, Fε and fε are known. Also εi and εd are already identified in

the previous steps. Hence κ is identified, and it is a constant. Therefore, i and d can be

recovered as i = −κ(1 + F−1
ε (Pr(XA < XB))) and d = −κ(1 + F−1

ε (1 − Pr(XA > XB)))

respectively.

Finally, we show how to identify cost function C(·, ·). Recall the assumption in part (c) of

Assumption 2, C1(·, θ) is strictly convex, then (3.17) admits a unique function xB = xB(θ;κ)

by the Implicit Function Theorem. Using the argument in the proof of the Proposition 1

that xB(·) is strictly increasing, together with the identified distribution of private-type FΘ

and the known distribution of bidding days FXB , we can recover the functional form of xB(·).

Specifically, since FΘ(θ) = Pr(Θ ≤ θ) = Pr(XB ≤ xB(θ;κ)) = FXB(xB(θ;κ)), then xB(·;κ))

62



can be identified

xB(θ;κ) = F−1
XB(FΘ(θ)) (3.18)

where F−1
XB(·) is the inverse of the curriculum distribution function of bidding days. (3.17)

implies that the marginal expediting cost function C1 can be identified. Therefore, the

expediting cost function can be identified up to a normalization.

We summarize the results of identification in the following theorem.

Theorem 1. Suppose Assumption 2-5 hold. Then the model primitivesM≡
[
C(·, ·), FΘ(·), i, d

]
are identified.

3.3.4 Discussion on the constructive estimation

This section discusses estimation method based on the identification results in Section 3.3.

The model primitives we need to estimate include the cost function C(·, ·) and incentive and

disincentive scheme i and d. The estimation method is an application of the semiparametric

minimum distance method proposed in Torgovitsky (2017). Specifically, we will parametrize

C(xB, θ) and (i, d) so that g(x, θ) can be rewritten as gγ0(x, θ), where the subscript γ0 denotes

the true value of the parameters in C(·, ·) and (i, d). Since contractor’s pesudo type v is

unobserved in the data, we can use equation (3.12) and the nonparametric method proposed

in Guerre, Perrigne, and Vuong (2000) the obtain the estimated value v̂. Specifically,

v̂ = s− 1

N − 1

1− F̂S(s)

f̂S(s)
, (3.19)

where F̂S(s) and f̂S(s) denote the nonparametric (kernel or series) estimator for the CDF

and PDF of the bidding score s. By the identification results in Torgovitsky (2015), we have

γ = γ0 ⇐⇒ (FX|W (·), θ) ⊥⊥ W (3.20)

for all γ in the parameter space Γ, where FX|W (·) is the conditional CDF of X on the
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instrumental variable W . Equation (3.20) implies that

Dγ(t) ≡Pr
[
FX|W (x|w) ≤ tx, g

−1
γ (x, v̂) ≤ tθ, w ≤ tw

]
− Pr

[
FX|W (x|w) ≤ tx, g

−1
γ (x, v̂) ≤ tθ

]
Pr(w ≤ tw)

=Pr
[
x ≤ QX|W (tx|w), v̂ ≤ gγ(x, tθ), w ≤ tw

]
− Pr

[
x ≤ QX|W (tx|w), v̂ ≤ gγ(x, tθ)

]
Pr(w ≤ tw)

=0

for every t = (tx, tθ, tw) ∈ T ≡ (0, 1) × Θ ×W if and only γ = γ0. Note that QX|W is the

conditional quantile function of X given W . Let ‖ · ‖µ denote the L2-norm with respect to

a probability measure µ with support containing T . Then ‖Dγ‖µ = 0 if and only if γ = γ0.

Therefore given some consistent estimator D̂γ of Dγ, we can estimate γ0 by minimizing

‖D̂γ‖µ.

Let Q̂X|W denote a consistent estimator for the conditional quantile function QX|W
6.

Then following Torgovitsky (2017), a feasible estimator of Dγ(t) can be constructed as

D̂γ(t) =
1

n

n∑
j=1

1
[
xj ≤ Q̂X|W (tx|wj), v̂j ≤ gγ(xj, tθ), wj ≤ tw

]
−

(
1

n

n∑
j=1

1
[
xj ≤ Q̂X|W (tx|wj), v̂j ≤ gγ(xj, tθ)

])( 1

n

n∑
j=1

1 [wj ≤ tw]

)
,

and γ̂ can be defined as any γ ∈ Γ such that

γ̂ = argmin
γ∈Γ

‖D̂γ‖µ. (3.21)

Consistency and asymptotic normality follows directly from the results in Torgovitsky

(2017).

6In practice, Q̂X|W can be obtained by using empirical conditional quantile function when W is a finite
set, or by using kernel smoothing quantile regression if W is continuously distributed.
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3.4 CalTrans Auctions: Background and Data

In this section, we apply our model to analyze the auctions of highway construction

contracts awarded by the California Department of Transportation (“CalTrans”, hereafter).

CalTrans is a government department in the state of California that is responsible for the

planning, construction, and maintenance of public transportation facilities such as highway,

bridge, and railways. The innovative A+B contract design was first introduced by the

CalTrans in the 1990s as an experiment for emergency type projects and has been extended

to non-emergency type projects since 2000. At the beginning of the design of each contract,

the engineer will estimate the project’s cost and a target number of working days for project

completion. A maximum number of lanes that can be closed at each phase of the project

and their closure time will also be specified by design engineers, based on advice from traffic

operation unit. Finally, CalTrans will make a decision as to whether a standard first-price

procurement auction or A+B auction should be adopted during the bidding stage of the

construct.

In the standard design, the bidders draw private costs for completing the project once in-

formed of engineer estimates and quotes their prices in the standard design, and the contract

will be awarded to the bidder who quotes the lowest price and should be completed within

the engineer’s days estimate. In the A+B design, the contract will be awarded according to a

scoring rule, and the contractor must complete the contract within the number of days they

bid; otherwise, penalties, which equal to the user cost in A+B contracts, will be charged for

late completion.

We use the same source of data as Lewis and Bajari (2011). The data includes 3202 bids

submitted by contractors in 708 procurement contracts awarded by the CalTrans between

2003 and 2008. Among these contracts, 424 bids conducted in the 80 contracts that are

implemented by the A+B mechanism. These contracts include barrier construction, bridge

repair or resurfacing, new lane and ramp construction, road rehabilitation, slope work and

widening/realignment. We index the contracts by j = 1, 2, · · · , N and the contractors by
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k = 1, 2, · · · , Nj in the jth contract. For each contract, the data reports initial specification,

which includes estimated project cost and working days, and actual specification adopted

(actual cost and working days). The data also reports the bids submitted by all participating

contractors in each auction as well as several characteristics of the contractors. These include

user cost, which is the weight on the days in the A+B scoring rule, the distance between

each contractor’s location and the working site for the project, number of bidders in each

auction, each contractor’s capacity, which is measured as the total values of all contracts

held by a particular contractor during our sample period, two binary variables that indicates

whether the contractor is located in California and whether the contract is federally funded

or not, average annual daily traffic near the contract location and the fraction of the total

number of lanes on the highway that may be closed during construction hours.

Table B.1 presents the summary statistics for our data. The estimated cost and com-

pleting time for a standard A+B contract is about $ 21.9 million and 314 days. During

the bidding stage of each contract, the average working days each bidder submits is 190.1

days while the average actual working days for each contract is 183.9 days. Among the

80 A+B contracts, only about 42.5 percent (34) will be completed exactly as the bidding

days. Therefore more than 50 percent of A+B contracts will be completed either earlier

or later than contractor’s bidding days. Figure B.6 shows the histogram of the difference

between bidding days and actual working days. This provides some empirical evidence that

contractors may strategically deviate from the bidding days in the execution phases.

As we note in the introduction, our paper is motivated by a different set of empirical

questions than that in Lewis and Bajari (2011). Lewis and Bajari (2011) used this data to

estimate construction costs of the procurement contract, which is assumed to be deterministic

after the realization of contractor’s private-type. However, in reality, it is common for the

contractor to face cost uncertainty during the construction stage. For example, unexpected

bad weather condition may increase the project cost and delay completion time. Therefore,

in contrast, the three primary goals of our empirical application are (a) to estimate the
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expediting cost function and test the restrictions on it imposed by theoretical model in

section 3.2; (b) to evaluate the efficiency of A+B mechanism from both ex-ante and ex-

post perspective: specifically, we would like to answer the questions that whether the social

welfare produced by other contractors would be greater than that of winning contractor in

the A+B bidding and that whether winning contract would maximize the social welfare no

matter which contractor wins the contract; and (c) to access the welfare gains that would

be achieved from counterfactual alternatives including change of incentive rule in the A+B

bidding and change of selecting mechanism to traditional one that only A is considered to

award the contracts.

From a modeling perspective, there is a significant qualitative difference between our

approach and that of Lewis and Bajari (2011). Specifically, Lewis and Bajari (2011) main-

tained that no cost uncertainty would happen during the construction stage of the project

and hence contractor has perfect foresight about the construction cost during the bidding

stage. Thus the model in Lewis and Bajari (2011) cannot explain why bidding days may

deviate from actual working days in the data. In comparison we consider the possible dis-

crepancy between the quoted completion days and intended actual completion days due

to incentive mechanism, and incorporate the effect of construction uncertainty on realized

actual completion days and answer empirical and policy questions (a)-(c) above.

3.5 Econometric Implementation

Our estimation strategy takes three steps. First, following a similar procedure as in Lewis

and Bajari (2014) we estimate the private-type θ by regressing normalized bidding days on

bidder’s characteristics and obtaining the residuals as θ̂; Second, we estimate the equilibrium

pseudo-type v by employing a semiparametric technique as in Bajari, Houghton, and Tadelis

(2014). Finally, the cost function of the contractor will be estimated by treating θ and v

obtained from the previous steps as data in the dependent variable and applying the method

of minimum distance. The idea is to construct a minimum distance objective function based

on the equilibrium pseudo-type equation (3.5).
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Recall that the identification argument in Section 3.3 is presented for the simple case with

homogeneous contracts, conditional on given contractors’ characteristics, and no structural

observational errors. In comparison, we consider in the current section a general environ-

ment that allows rich heterogeneity among the contract and contractors. Acknowledging the

limited sample size and to make estimation feasible, we now adopt a parametric specification

of model primitives.

3.5.1 Estimation of the bidder’s private-type

Following the theory in Section 3.2, contractors have latent private-type θ. In order to

estimate contractor’s cost function C(·), we need to first obtain estimated value for θ. We

assume that θ is independently and identically distributed across contracts and contractors

with N (0, σ2
θ),7 and use a linear regression procedure to estimate θ and σθ.

Recall Proposition 2 indicates that bidding days is strictly increasing in private-type,

therefore in the first stage, we estimate the private-type θ by regressing bidding days (nor-

malized by engineers’ estimates) on bidders’ specific characteristics and treat residuals as

the estimated private-types for bidders.

xBjk
xEjk

= zjk · ω + θjk, (3.22)

where zjk is a vector contains bidder’s characteristics that are known to CalTrans as well as

econometricians. Such a specification is also motivated by the fact the bidding days of each

contractor in the auction stage depends on the cost shock ε only through its expected value.

Note that the linear specification assumption is not necessary but easy to implement and

interpret due to the limitation of sample size in data. With sufficient data, a nonparametric

approach can be used instead. Hence under the linear specification, the private-types can

be obtained as the residuals in estimating (3.22). Furthermore, σθ can be estimated as the

7Lewis and Bajari (2011) also assume that the private-type relating to acceleration is normally dis-
tributed, i.i.d across contracts and contractors, and argue that this assumption would validate because this
is not a dynamic model, even though it may seem to be strong due to the persistence of some contractor
characteristics.
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standard deviation of the residuals.

3.5.2 Estimation of the equilibrium pseudo-type

In the second stage, we estimate the equilibrium pseudo-type v and then treat them as

data of the dependant variable. Given the sample size, a nonparametric approach (see, e.g.,

Guerre, Perrigne, and Vuong, 2000) is not feasible since it requires us to nonparametrically

estimate the conditional CDF FS|Z and conditional PDF fS|Z , and it is well known that

nonparametric (kernel or series) estimation will suffer from the curse of dimensionality when

the dimension of Z is large. Consequently, instead of the fully nonparametric approach, we

adopt the semiparametric procedure in Bajari, Houghton, and Tadelis (2014). Specifically,

we estimate the conditional distribution of contractors’ bidding scores via the following linear

regression

s̃jk = zjk ·ψ + ζjk, (3.23)

where the dependant variable s̃jk is the normalized bidding score sjk
sEj

, where

sEj ≡ pEj + cujx
E
j

is the bidding score computed by using engineer’s estimated bidding price and time. As

before, the vector zjk includes the contractors’ characteristics, and the idiosyncratic error

ζjk is independent of zjk. As is mentioned in Bajari, Houghton, and Tadelis (2014), such

specification allows for heterogeneity in the structural error via the contract size sEj .

For each contract indexed by j, we estimate the coefficient ψ̂ and then use it to calculate

the residual ζ̂jk for all contracts. By construction,

FS|Z(sjk) = Pr
(
zjk ·ψ + ζjk ≤

sjk
sEj
| Z
)

= Pr
(
ζjk ≤

sjk
sEj
− zjk ·ψ | Z

)
= Fζ

(
sjk
sEj
− zjk ·ψ

)
,

where Fζ(·) is the curriculum density function of ζjk (we suppress the dependence of FS|Z

and Fζ(·) on Nj to simplify notation). The corresponding conditional density of bidding
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scores is

fS|Z(sjk) =
∂

∂sjk
Fζ

(
sjk
sEj
− zjk ·ψ

)
=

1

sEj
fζ

(
sjk
sEj
− zjk ·ψ

)
.

By plugging in the estimate ψ̂, and the empirical distribution and kernel density of ζ̂ij to

the right hand side above, we can get the estimate F̂S|Z and f̂S|Z respectively. Then using

equation (3.12), the equilibrium pseudo-type for contractor i in the project j is estimated as

v̂jk = sjk −
1

Nj − 1

1− F̂S(sjk)

f̂S(sjk)
. (3.24)

3.5.3 Estimation of the cost function and other parameters

Model primitives specification

We specify the following quadratic functional form of the deterministic expediting cost

by taking into account the contracts and contractors’ heterogeneity

C(x, θ;xE, z;α1, α2,β, φ) = α1(x− xE)2 + (α2θ + β · z̄)(x− xE) + φ, (3.25)

where x is the actual working days, xEjk is the engineering’s estimates of days to work, z̄ ⊆ z

is a vector of contracts and contractors’ characteristics, parameters are α1, α2, β and φ, with

α1 > 0, α2 < 0, φ > 0, respectively. The vector z̄ essentially contains some contract-level

variables that are known to the contractors at the time of their decisions. This specification is

adopted to capture asymmetry among contractors, and satisfies the restriction in Assumption

2 since actual working days x should never exceed the estimated working days by engineer.

Such a specification is also followed by most of the empirical studies on procurement contracts

(see, e.g., Lewis and Bajari, 2014).

In reality, in addition to the engineer’s estimate of project costs and project length,

incentive and disincentive provision may vary across contracts because of the value of the

contract and the degree of project urgency. To capture this feature, the daily incentive and

disincentive rates are specified as i = acu and d = bcu respectively since cu in general will
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vary across different contracts.

Recall that in the identification argument presented in Section 2 we assume that the dis-

tribution of implement uncertainty is known to econometrician so that the model primitives

can be recovered from data. Along with this, we assume that the uncertainty is indepen-

dently and identically distributed across contracts, truncated from a normal distribution

N (0, σ2
ε) with a two-sided truncation −1 < ε < 1.8 Let γ denote the vector of parameters

in this model, then γ = {α1, α2,β, φ, a, b, σε}.

Estimation approach

The main idea to estimate γ is to employ the equilibrium pseudo-type equation as a

regression function. There are two reasons to do so. First, it is complicated to get a closed-

form solution for the bidding days due to the parametrized specification above, so is for

the bidding costs. In order to use both information about bidding, which is a relatively

large sample in our application, the equilibrium pseudo-type is a proper choice because it

contains the information about the bidding days and bidding cost; next, taking into account

the computation speed of estimation, the equilibrium pseudo-type would reduce much time

of estimation because it involves less numerical integration than that of the bidding equation

for the project costs.

The main estimation equation is based on the equilibrium pseudo-type equation (3.5).

The challenge to estimate using (3.5) is that the equilibrium pseudo-type v in the dependent

variable and the private-type θ in the explanatory variables are not available. Therefore we

replace them with the estimated values in the first and second steps and estimate γ by a

minimum distance method. Specifically,

v̂ − cuxB = E[(1 + ε)C(xA
∗
, θ̂)− ρ · (xB∗ − xA∗)], ρ ∈ {i, d}. (3.26)

8Normal distribution of construction risk is widely used in quantitative risk analysis in highway con-
struction management practice. See Guide to Risk Assessment and Allocation for Highway Construction
Management issued by U.S. Department of Transportation Federal Highway Administration.
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Let M̂jk ≡ cujx
B
jk + E

[
(1 + εj)C(xAjk, θ̂jk) − ρj · (xBjk − xAjk)

]
be the estimated value for

the right hand side of equation (3.26), and let γ̂ ∈ Γ denote the estimated value of γ, then

model γ̂ can be estimated via

γ̂ = arg min
γ∈Γ

N∑
j=1

Nj∑
k=1

(v̂jk − M̂jk)
2 (3.27)

By treating θ̂ and v̂ as data in the sample, we adopt a standard bootstrap procedure to

calculate the standard error of parameters in the deterministic expediting cost functions and

the daily incentive/disincentive coefficients.

3.6 Results

3.6.1 Parameters

Table B.2 reports the regression estimates for the normalized bidding days in (3.22) under

three nested specifications. Note that the variable capdummy is a dummy variable and equals

to one if the capacity of the contractor is greater than $50 million. In all specifications, the

capdummy has a significant (at 10 percent) and positive marginal effect (-0.0564 on average

across all three specifications) on the normalized bidding days. This can be interpreted

as the evidence of economies of scale in the construction costs for contractors working on

multiple contracts simultaneously. Furthermore, the number of bidders has a significant

(at 1 percent) and negative marginal effect (-0.0133 on average) on the normalized bidding

days. This may indicate that increased competition in the auction stage will force bidders to

shorten the bidding time for completing the project. Besides the user cost in the specification

(2) and (3) has statistically significant (at 5 percent) and negative impact on the bidding

days. Finally, the relatively small R2 in all three specifications (0.055 on average) means

that the private-type θ plays a deterministic role in contractor’s bidding time decision.

The second stage regression estimates for (3.23) under three similar specifications as in

the first stage are shown in Table B.3. Similar to the first stage, capdummy and the number of

bidders have significant (at 1 percent) and negative impacts on the normalized bidding score
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in all three specifications. The regression results also indicate that contractors located in

California will tend to have smaller bidding scores. This may be because contractors within

California are more familiar with the working conditions of the highway construction projects

and hence are more efficient in conducting the works. Note that in the first specification the

normalized distance between contractor’s location and the working site also has a significant

(at 5 percent) and negative impact (2696.6) on its bidding score. In the second stage, we first

use a nonparametric method to estimate the distribution of the residuals ζ̂, and then derive

the distribution and density function for bidding score s using the estimated distribution.

The kernel density estimate for ζ̂ in specifications (1)-(3) are demonstrated in Figures B.7,

note that we use Gaussian kernel as the smoothing function and the bandwidth is selected

according to the rule of thumb. For comparison, we also include the density plot based on

the normal density function.

Table B.4 shows the estimates of parameters for the structural model under specifications

(1)-(3) of the first and second stage estimation results. From the results in all three speci-

fications, we can see that estimated value of α1, α2 are significantly (at 1 percent) positive

and negative respectively. These results are in accordance with the structural model and

indicate that the cost function is convex in working days and decreasing in private-type.

Furthermore, the values of the estimated coefficients of incentive/disincentive (0.214/7.738

on average) also conform to our model set-up. The estimation results provide strong evi-

dence that the data can be rationalized by our model. Note that in all three specifications

the distance between contractor’s location and the working site, and whether the contract

is federally funded or not will have significant negative effects on contractor’s cost. These

results are consistent with practical construction works. The estimated standard deviation

of the uncertainty ε is also significant with a p-value less than 0.01.

To quantify the welfare analysis of the A+B mechanism, we plug in the structural esti-

mates in Table B.4 to compute the ex-ante and ex-post welfare loss under A+B design of the

procurement contract. From the discussion in Section 3.2.3, an A+B contract is ex-ante inef-
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ficient if the winner of the contract under the A+B mechanism is not the one that generates

the highest social welfare, and the ex-ante welfare loss is defined as the difference between

the social welfare induced by the winner and the highest social welfare induced by other

bidders. Analogously the contract is ex-post inefficient if the winner of the contract does

not maximize the social welfare (complete the contract in the way that would minimize the

total cost), and the ex-post welfare loss is defined as the difference between the social welfare

generated by the operator of the contract and the maximum social welfare that would have

been generated if the contractor had minimized the total cost.

The results of welfare comparison are shown in Table B.5. In all three specifications,

more than 60 percent of the 75 A+B contracts in our sample are ex-ante inefficient, with

an average welfare loss of 1.426 million dollars. Besides, the results also demonstrate that

more than 50 percent of the A+B contracts will be ex-post inefficient and result in a welfare

loss equal to 3.46 million dollars on average. Figure B.8 provides a graphical illustration

of the welfare analysis. Specifically, panel (1) of Figure B.8 shows the rank (based on the

total cost) of the auction winner among all bidders in each of the 75 A+B contracts, and

panel 2 shows the difference between the actual and optimal (first best) total cost for each

contractor. Our results provide strong empirical evidence to support the prediction of the

theoretical model, i.e., when facing implementation uncertainty, it is highly possible that

the A+B mechanism can neither accurately select the contractor who will generate smallest

social cost in the bidding stage nor provide incentive for the contractor to minimize social

cost in the execution stage.

3.6.2 Model fit

In this section, we show that the model fits the actual bidding and working behavior quite

well under our parameterization of the cost function. We examine fit in a number of ways.

In Figure B.9, we show empirical CDFs of each contractor’s bidding days in actual data

(blue, solid) and those simulated from the structural model (red, dashed). This is intended

as an informal check on the shape of the distribution. In Figure B.10, we also plot the actual
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completion time for each A+B contract in actual data (blue, solid) and those simulated from

the structural model (red, dashed). From these two figures, we can see that the model does

an excellent job in predicting each contractor’s bidding behavior and actual working days of

each A+B contract in all three specifications. To further analyze the goodness of fit for the

structural model, we conduct the regression analysis, and the results are presented in Table

B.6 and B.6b. Specifically, we regress bidding days and actual working days in data on their

simulated values obtained from the structural model. The results indicate that the model

fits the data quite well in the sense that the coefficients of simulated data are significant (at

1 percent) and close to unity, and the R2 is relatively high (0.784 on average) under all three

specifications.

3.7 Counterfactuals

In this section, we consider two counterfactual policy changes and provide welfare analysis

for each of them based on the estimated cost function for contractors. In the first counterfac-

tual, we consider what would happen if the incentive/disincentive scheme is changed into a

linear incentive (lane rental) contract, where the contractor pays a penalty (set equal to user

cost) each day from the beginning of the contract. The second is a time incentive contracting

in A design with the incentive cost K = −i · (xE − xA). For comparison, we also simulate

outcomes and calculate welfare for current policy, i.e., A+B mechanism. We first provide

some detailed explanations for the two counterfactual policies below.

Linear incentive contracting in A+B design

Under this policy design, the contractor have to pay a fixed amount of daily penalty

(rent) from the beginning of the construction stage. regardless of the completion time of the

project. The daily penalty will be set to equal to the user cost. Therefore the during the

bidding stage the bidder’s optimization problem becomes:

max
pB ,xB

{
pB − Emin

xA

[
(1 + ε)C(xA, θ) + cu · xA

]}
Pr(win | S = s). (3.28)
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Optimal actual working days xA∗ responding to realized uncertainty should equal marginal

cost to the daily disincentive rate, that is:

(1 + ε)C1(xA
∗
, θ) = −cu. (3.29)

Thus, the ex-post efficiency can be achieved as long as the procurer set this daily incentive

rate as user cost, even though in this case B part would be ineffective, that is, optimal bidding

strategy for working days xB∗ equals to 0, and the optimal bidding cost would be

pB
∗

= E
[
C(xA

∗
, θ, ε) + cu · xA

∗]− ∫ θ

θ

EC2(xA
∗
, θ, ε)

[1− FΘ(θ̃)

1− FΘ(θ)

]N−1
dθ̃. (3.30)

In addition, under current setting the pseudo-type of bidder becomes

v(θ) = E
[
(1 + ε)C(xA

∗
, θ) + cu · xA

∗
]
. (3.31)

Since the A+B mechanism selects the most efficient (with the smallest pseudo-type)

bidder, by the envelope theorem the winner of the contract would perform at the lowest

social cost, which implies the A+B contracting under linear incentive is ex-ante efficient as

well.

Time incentives contracting in A design

Under this policy, contractor will be rewarded for early completion of the project, with

rewards equal to i · (xE − xA)9. Then the bidder’s optimization problem becomes:

max
pB

{
pB − Emin

xA

[
(1 + ε)C(xA, θ)− i · (xE − xA)

]}
Pr(win | S = s). (3.32)

Following Lewis and Bajari (2011), we assume that the engineerâĂŹs estimate of work-

ing days xE is presumably close to the minimum cost which is the most efficient scale of

9If xE < xA, i · (xE − xA) becomes negative and is equivalent to penalties for late completion
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construction. Recall the assumption that cost function is strictly decreasing and convex in

xA that are smaller than the most efficient working days. Consequently, in this case, any

actual working days that is beyond the engineer’s estimate is not rational for any contractor

given a realized uncertainty, because not only do they face an increasing cost but also a

daily penalty. Thus, the rational working days should be no more than engineer’s estimate.

Due to the existing of a positive daily incentive rate for early completion, the contractor will

rationally choose actual working days such that the bonus of one day earlier completion is

the same as the extra cost, which means that the optimal actual working days xA∗ satisfies

(1 + ε)C1(xA
∗
, θ) = −i. (3.33)

Therefore contrary to the lane rental policy, the ex-post efficiency can not be achieved

because the daily incentive i for early completion is smaller than the user cost cu. Besides

contractor’s optimal bidding strategy can be characterized by the equation below:

pB
∗

= E
[
C(xA

∗
, θ, ε)− i · (xE − xA∗)

]
−
∫ θ

θ

EC2(xA
∗
, θ, ε)

[1− FΘ(θ̃)

1− FΘ(θ)

]N−1
dθ̃. (3.34)

However ex-ante efficiency can be guaranteed because under this policy design the bid-

der’s pesudotype becomes

v(θ) = E
[
(1 + ε)C(xA

∗
, θ)− i · (xE − xA∗)

]
. (3.35)

By Assumption 2, the marginal cost C1(xA
∗
, θ) is strictly decreasing in xA∗ and θ, conse-

quently based on (3.33), it is easy to verify that (3.35) is strictly decreasing in θ. Therefore

the most efficient bidder will win the contract and the total social costs generated by that

bidder should also be the smallest among all bidders10.

10This is because the total social costs under xA
∗
is also strictly decreasing in private-type θ.
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Counterfactual analysis

To conduct counterfactual analysis, we simulate outcomes under the A+B policy and two

counterfactual policies by sampling from the estimated distribution of θ and ε. Specifically in

each iteration, we first randomly draw bidder’s private-type from the estimated distribution

of θ, and then follow the auction rules of each policy design to determine the contract

winner by computing the bidding price (and days) for each bidder. Actual working days of

the contractor will be calculated based on the realized uncertainty, which is sampled from

the estimated distribution of ε. Finally, we conduct the ex-ante and ex-post welfare analyses

by using a similar method as in Section 3.6.1 for all three policy designs

The results of welfare analysis are presented in Table B.7. We can see that changing the

incentive scheme has a fairly big impact on inefficiency percentage and average welfare loss.

The current A+B policy can lead to a large percent of ex-ante (81.5 percent on average)

and ex-post inefficiency (100 percent) and average welfare loss of 3.556 (ex-ante) and 4.135

(ex-post) million dollars per contract. Under the alternative lane rental policy, the ex-ante

inefficiency will be reduced by 61.4 percent on average with an average welfare gain of 0.569

million dollars. For ex-post inefficiency, the lane rental policy performs much better, with

100 percent inefficiency reduction and welfare gain of 4.135 million dollars. The A design

with time incentive contracting also performs better than the A+B policy by decreasing the

ex-ante inefficiency to 8.7 percent and increasing welfare by 2.558 million dollars. Regarding

ex-post efficiency, although all contracts will be inefficient under A design, the average welfare

loss is much smaller (0.289 million dollars) than the A+B policy.

3.8 Conclusion

This paper studies A+B procurement contracts in the context of highway projects con-

struction. We set up a structural model that features by time incentives/disincentives,

externalities, and construction risks. We explain why contractors often do not complete the

projects on time. This discrepancy may make the A+B mechanism neither ex-ante efficient
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nor ex-post efficient. We show that the model components (the marginal expediting cost

function, the distribution of private-type for contractors, and the incentive/disincentive daily

rate) are all identified from the contract level and bid level data. We apply the model to

analyze the data on the Caltrans auctions of highway procurement contracts. Our estimates

provide substantial evidence that considering the existence of implement uncertainty in the

structural analysis of bidding data leads to significant inefficiency.
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4. SUMMARY

This dissertation applies alternative empirical methods in economics to study a “macro-

phenomenon” — the “Chinese saving puzzle” and a “micro-mechanism” — the allocation of

procurement contracts.

In the first paper, we investigate the role of income inequality interacting with liquidity

constraints in explaining the high household saving rate in China. In a simple two-period

model, households are heterogeneous in income and subjective discount factor, and whether

the liquidity constraint is binding, consumption and saving rate are endogenously deter-

mined. The model generates several predictions consistent data facts: (1) the rich save

more; (2) the proportion of constrained households for the poor is higher than that for the

rich; (3) liquidity constraints would increase household saving rate. (4) when income in-

equality increases, the rich save even more, in the meanwhile, the poor would also save more

due to the binding liquidity constraints, and thus the aggregate household saving rate would

rise.

Using three sources of large, nationally representative household survey data sets, the

China Household Finance Survey (CHFS), the China Family Panel Studies (CFPS), and the

Chinese Household Income Project (CHIP), we provide direct empirical evidence implied

by the theoretical model. We find that in China, (1) the top 20 percent permanent income

households’ saving rate is 19–23 percent significant higher than the bottom 20 percent house-

holds’. (2) the bottom 20 percent permanent income households are more likely to face a

borrowing constraint, with a 12–20 percent significant higher probability; (3) the existence

of liquidity constraints would lead to a significant increase of more than 20 percent in the

household saving rate; (4) income inequality would have a significant positive impact on the

aggregate household saving rate at the county level, with a 1 point on a scale of 100 measure

increase in the Gini coefficient leading to an increase of 0.2 percent in the aggregate saving

rate; (5) the estimated MPC for the top 20 percent households range from 200 to 400 RMB
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per 1000 RMB, while for the bottom 20 percent households, the range from 600 to 900 RMB

per 1000 RMB.

These findings would have significant policy implications. The Chinese government’s

policies on reducing the saving rate have not yet produced substantial results. If income

inequality and liquidity constraints were the key reasons for the high aggregate household

saving rate, the resulting policy would be drastically different. For example, it is appropriate

for the Chinese government to design some income redistribution programs (such as EITC) to

reduce income inequality or devote more resources to support the credit market development.

An economic policy of tackling income inequality would lower the aggregate saving rate, thus

becoming a policy of economic transition and growth.

In the second essay, we study the A+B procurement contracts in the context of high-

way projects construction. We set up a structural model that features by time incen-

tives/disincentives, externalities, and construction risks. We explain why contractors often

do not complete the projects on time. This discrepancy may make the A+B mechanism

neither ex-ante efficient nor ex-post efficient. We show that the model components (the

marginal expediting cost function, the distribution of private type for contractors, and the

incentive/disincentive daily rate) are all identified from the contract level and bid level data.

We apply the model to analyze the data on the Caltrans auctions of highway procurement

contracts. Our estimates provide substantial evidence that considering the existence of im-

plement uncertainty in the structural analysis of bidding data leads to significant inefficiency.
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APPENDIX A

INCOME INEQUALITY, LIQUIDITY CONSTRAINTS, AND CHINA’S HOUSEHOLD

SAVING RATE

A.1 Figures

Figure A.1: International comparison
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Figure A.1: International comparison continued
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Figure A.2: China’s household saving rate by income class
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Figure A.2: China’s household saving rate by income class continued
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Figure A.3: China’s household saving rate and Gini coefficient
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Figure A.4: County-level aggregate saving rate and Gini coefficient
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Figure A.4: County-level aggregate saving rate and Gini coefficient continued
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Figure A.5: The ratio of previous wealth to current income by income percentile
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A.2 Tables

Table A.1: The uneven distribution of China’s household saving rate

CHFS 2015 CFPS 2014 CHIP 2013 NBS
saving rate shares saving rate shares saving rate shares saving rate

top 1% 0.866 69.1 0.581 44.0 0.536 12.2
top 5% 0.741 99.7 0.515 76.7 0.426 29.3
top 10% 0.672 116.0 0.471 96.6 0.403 44.4
top 25% 0.569 138.2 0.412 133.6 0.373 73.5
bottom 50% -1.327 -45.8 -0.634 -52.8 0.017 1.35

% savers 55.9 45.3 74.6

saving rate (2015) 0.291 0.285
saving rate (2014) 0.189 0.281
saving rate (2013) 0.273 0.278
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Table A.2: Liquidity constraints and saving rate by income group

(a) CHFS 2015 Urban

measure I measure II

FA < 2 mon. PI FA ≥ 2 mon. PI no CC at least one CC
% constrained s.r s.r. % constrained s.r s.r

top 20% 16.93 0.769 0.389 59.51 0.545 0.435
middle income 31.52 0.125 0.003 81.65 0.096 -0.179
bottom 20% 37.78 -0.794 -1.587 92.27 -1.142 -2.677

(b) CFPS 2014 Urban

measure I

FA < 2 mon. PI FA ≥ 2 mon. PI
% constrained s.r s.r.

top 20% 43.01 0.338 0.242
middle income 43.04 -0.015 -0.071
bottom 20% 58.53 -0.781 -0.977

(c) CHIP 2013 Urban

measure I

FA < 2 mon. PI FA ≥ 2 mon. PI
% constrained s.r s.r.

top 20% 15.81 0.422 0.403
middle income 14.40 0.388 0.306
bottom 20% 21.31 0.310 0.2595
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Table A.3: Definition of variables and summary statistics

(a) Definition of variables

Variable Description

household consumption sum of family members’ expenditure on food, clothing, housing,
appliance and commodities, communication and transportation, culture
recreation and entertainment, medical care and others

household income sum of family members’ wage income, business income, agricultural
income, investment income and transfer income

hh_income_i dummy variable, equals one if the household income is in the ith quintile
and zero otherwise

hh_size total number of members in the family
YDratio number of age 0-14 in the household divided by hh_size
ODratio number of age above 65 in the household divided by hh_size
employed dummy variable, takes one if currently employed
employed_typ_j dummy variable, equals one if household head works in type j

organization, j = 1 (SOE, collective, or government), 2 (private or
foreign company), or 3 (others)

hukou dummy variable, takes one for urban and 0 for rural
hh_health dummy variable, equals one if the household has a poor health member

and zero otherwise
health_insurance dummy variable, takes one if the household has health insurance and

zero otherwise
pension dummy variable, equals one if the household has pension and zero

otherwise.
house_owner dummy variable, takes one if the household own house and zero

otherwise.
boy_number number of boys in the household
girl_number number of girls in the household
childage_04/59/1014/1519 dummy variables, takes one for child’s age between 0 and 4 / between 5

and 9/ between 10 and 14/between 15 and 19)
age age of household head
age2 age square
gender dummy variable, takes one for male and zero for female
married dummy variable, equals one for married household head and zero for

unmarried household head
ccp_member dummy variable, takes one for ccp member and zero otherwise
yos years of schooling
hh_credit dummy variable, equals one for constrained household and zero for

unconstrained household
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Table A.3: Definition of variables and summary statistics continued

(b) Summary of statistics: CHFS 2015

Variable Obs Mean Std.Dev. Min Max

hh size 25,635 3.177 1.449 1 20
YDratio 25,634 0.117 0.162 0 1
ODratio 25,634 0.170 0.318 0 1
employed 25,563 0.591 0.492 0 1
employ type 10,248 1.775 0.737 1 3
industry 9,342 11.28 6.968 1 24
hukou 24,377 0.607 0.488 0 1
health 25,584 0.186 0.389 0 1
hh health 25,628 0.314 0.464 0 1
health insurance 25,635 0.914 0.280 0 1
pension 25,169 0.792 0.406 0 1
house owner 22,802 0.990 0.0997 0 1
boy number 25,635 0.340 0.546 0 4
girl number 25,635 0.260 0.517 0 5
childage_04 25,635 0.134 0.377 0 7
childage_59 25,635 0.155 0.397 0 5
childage_1014 25,635 0.132 0.364 0 6
childage_1519 25,635 0.143 0.382 0 5
age 25,628 52.13 14.96 3 101
age2 25,628 2941 1607 9 10201
gender 25,635 0.699 0.459 0 1
married 23,304 0.834 0.372 0 1
ccp member 24,079 0.113 0.316 0 1
yos 25,598 10.28 4.098 0 22
hh credit 25,635 0.721 0.448 0 1
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Table A.3: Definition of variables and summary statistics continued

(c) Summary of statistics: CFPS 2014

Variable Obs Mean Std.Dev. Min Max

hh size 6,603 3.005 1.578 1 14
YDratio 6,603 0.136 0.183 0 1
ODratio 6,603 0.150 0.306 0 1
employed 6,255 0.600 0.490 0 1
employ type 2,641 1.777 0.647 1 3
industry 3,117 8.100 5.188 1 19
hukou 6,387 0.514 0.500 0 1
health 6,597 0.170 0.376 0 1
hh health 6,598 0.273 0.446 0 1
health insurance 6,603 0.876 0.330 0 1
pension 6,603 0.406 0.491 0 1
house owner 6,599 0.821 0.383 0 1
boy number 6,603 0.359 0.573 0 4
girl number 6,603 0.303 0.566 0 5
childage_04 6,603 0.167 0.431 0 4
childage_59 6,603 0.166 0.430 0 4
childage_1014 6,603 0.143 0.379 0 3
childage_1519 6,603 0.154 0.396 0 3
age 6,603 54.37 16.30 0 102
age2 6,603 3221 1792 0 10404
gender 6,603 0.669 0.471 0 1
ethnicity 597 0.0704 0.256 0 1
married 6,600 0.767 0.423 0 1
ccp member 6,603 0.125 0.331 0 1
yos 6,600 7.987 4.870 0 19
schooling 6,600 1.441 0.708 1 3
hh credit 5,986 0.545 0.498 0 1
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Table A.3: Definition of variables and summary statistics continued

(d) Summary of statistics: CHIP 2013

Variable Obs Mean Std.Dev. Min Max

hh size 6,674 2.980 1.107 1 8
YDratio 6,674 0.121 0.162 0 0.667
ODratio 6,674 0.121 0.283 0 1
employed 6,674 0.677 0.468 0 1
employ type 4,515 1.604 0.652 1 3
industry 4,513 9.779 5.993 1 20
hukou 6,672 0.844 0.363 0 1
health 6,667 0.0601 0.238 0 1
hh health 6,670 0.115 0.319 0 1
health insurance 6,640 1.733 6.005 0 156
pension 6,597 1.232 3.533 0 163
house owner 6,322 0.966 0.180 0 1
boy number 6,674 0.309 0.496 0 3
girl number 6,674 0.250 0.471 0 3
childage_04 6,674 0.109 0.324 0 2
childage_59 6,674 0.131 0.350 0 2
childage_1014 6,674 0.138 0.356 0 2
childage_1519 6,674 0.150 0.379 0 3
age 6,674 50.22 13.18 17 97
age2 6,674 2696 1400 289 9409
gender 6,674 0.728 0.445 0 1
ethnicity 6,673 0.0451 0.208 0 1
married 6,672 1.112 0.315 1 2
ccp member 6,634 0.276 0.447 0 1
yos 6,672 11.34 3.555 0 21
hh credit 6,331 0.840 0.366 0 1
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Table A.4: The rich do save more

(a) Saving rate and current income

CHFS 2015 Urban CFPS 2014 Urban CHIP 2013 Urban
VARIABLES (1) (2) (3) (4) (5) (6)

hh_income_2 0.303*** 0.305*** 0.257*** 0.247*** 0.0731*** 0.0868***
(0.0157) (0.0221) (0.0203) (0.0394) (0.0139) (0.0160)

hh_income_3 0.462*** 0.453*** 0.349*** 0.292*** 0.135*** 0.166***
(0.0149) (0.0213) (0.0215) (0.0396) (0.0143) (0.0147)

hh_income_4 0.582*** 0.553*** 0.464*** 0.385*** 0.178*** 0.186***
(0.0154) (0.0202) (0.0224) (0.0392) (0.0142) (0.0146)

hh_income_5 0.783*** 0.750*** 0.628*** 0.544*** 0.241*** 0.262***
(0.0159) (0.0204) (0.0238) (0.0419) (0.0131) (0.0156)

hh_size -0.0219*** -0.0214*** -0.0267*** -0.0498*** -0.000924 -0.00535
(0.00459) (0.00705) (0.00844) (0.0148) (0.00604) (0.00819)

YDratio -0.0730 0.0245 -0.155* -0.240* -0.105** -0.0499
(0.0486) (0.0609) (0.0829) (0.132) (0.0462) (0.0580)

ODratio 0.0656* 0.0989* 0.0653** -0.115 0.0674*** 0.0105
(0.0395) (0.0571) (0.0264) (0.115) (0.0202) (0.0484)

employed 0.0837*** 0.0837*** 0.00187 0.0397 0.0463*** 0.0923
(0.0108) (0.0108) (0.0154) (0.0422) (0.0138) (0.107)

employ_typ_2 0.00141 0.0682** -0.00404
(0.0121) (0.0321) (0.0131)

employ_typ_3 0.00914 0.0126 0.00648
(0.0136) (0.0496) (0.0236)

hukou -0.0234** -0.00854 -0.113*** -0.103*** 0.000936 -0.000357
(0.00923) (0.0127) (0.0141) (0.0308) (0.00986) (0.0123)

hh_health -0.0152* -0.0214 -0.0220 -0.103*** -0.0404*** -0.0349**
(0.00862) (0.0146) (0.0162) (0.0341) (0.0150) (0.0173)

health_insurance -0.0201 -0.0393* 0.0357 -0.0290 -0.00103 -0.00130**
(0.0144) (0.0239) (0.0263) (0.0441) (0.000721) (0.000663)

pension -0.00293 0.0162 0.00969 0.0114 0.000624 -0.000582
(0.0120) (0.0176) (0.0177) (0.0296) (0.00165) (0.00211)

house_owner -0.0458* -0.0582 0.0672*** 0.0647** 0.00454 -0.0303
(0.0265) (0.0494) (0.0170) (0.0275) (0.0239) (0.0291)

boy_number -0.0756** -0.0222 -0.0440 -0.000347 -0.0401 -0.0225
(0.0319) (0.0295) (0.0441) (0.0475) (0.0253) (0.0255)

girl_number -0.0822** -0.0288 -0.0582 0.0145 -0.0489* -0.0337
(0.0323) (0.0335) (0.0477) (0.0540) (0.0266) (0.0271)

childage_04 0.0917** 0.0327 0.0720 0.122* 0.0332 0.0162
(0.0358) (0.0318) (0.0510) (0.0702) (0.0281) (0.0325)

childage_59 0.0621* -0.00946 0.0645 0.0712 0.0491 0.0275
(0.0345) (0.0323) (0.0498) (0.0576) (0.0305) (0.0320)

childage_1014 0.0465 -0.0113 0.0827 0.105 0.0463* 0.0198
(0.0338) (0.0304) (0.0515) (0.0678) (0.0278) (0.0301)

childage_1519 0.0185 -0.0275 -0.00349 -0.00794 0.0238 0.0216
(0.0325) (0.0294) (0.0513) (0.0623) (0.0273) (0.0268)

age 0.00579* -0.00313 0.00431 -0.0133* 0.000673 -0.00655
(0.00316) (0.00442) (0.00303) (0.00755) (0.00236) (0.00431)

age2 -2.50e-05 6.81e-05 -4.22e-05 0.000195** -5.86e-06 8.62e-05*
(3.36e-05) (4.98e-05) (2.83e-05) (8.49e-05) (2.47e-05) (4.78e-05)

gender 0.0327*** 0.0322*** 0.0225 0.0118 0.0336*** 0.0226*
(0.00883) (0.0122) (0.0147) (0.0284) (0.00953) (0.0119)

married -0.0335** -0.00862 -0.0729*** -0.0355 -0.000690 0.0266
(0.0139) (0.0216) (0.0183) (0.0342) (0.0144) (0.0240)

ccp_member -0.0192* -0.0233 -0.0410** -0.0497 -0.0130 -0.0119
(0.0106) (0.0148) (0.0174) (0.0349) (0.0110) (0.0135)

yos -0.00794*** -0.0102*** -0.00898*** -0.00130 -0.00589*** -0.00753***
(0.00161) (0.00213) (0.00158) (0.00352) (0.00134) (0.00195)

hh_credit -0.104*** -0.0903*** -0.0181 0.0117 0.0976*** 0.0789***
(0.00872) (0.0118) (0.0130) (0.0273) (0.0145) (0.0176)

Province FE YES YES YES YES YES YES
Constant -0.0512 0.281*** -0.0442 0.419** 0.167** 0.348**

(0.0742) (0.104) (0.0853) (0.202) (0.0799) (0.172)

Observations 11,236 5,683 4,229 1,766 5,894 4,019

Notes: 1. Robust standard errors (cluster at county level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1; 2. Standard
errors in parentheses are bootstrapped 500 times for bootstrapped median regression.

102



Table A.4: The rich do save more continued

(b) Saving rate and permanent income

CHFS 2015 Urban CFPS 2014 Urban CHIP 2013 Urban
VARIABLES (1) (2) (3) (4) (5) (6)

(sub-sample reg. ) (3 years avg. inc.) (sub-sample reg. ) (3 years avg. inc.) (sub-sample reg. ) (3 years avg. inc.)

hh_income_2 0.347*** 0.0509** 0.255*** 0.0313 0.0959*** 0.0832***
(0.0307) (0.0207) (0.0491) (0.0577) (0.0182) (0.0117)

hh_income_3 0.512*** 0.120*** 0.308*** 0.136** 0.169*** 0.136***
(0.0317) (0.0255) (0.0520) (0.0547) (0.0196) (0.0130)

hh_income_4 0.617*** 0.156*** 0.472*** 0.143* 0.175*** 0.166***
(0.0300) (0.0223) (0.0521) (0.0784) (0.0174) (0.0127)

hh_income_5 0.819*** 0.190*** 0.616*** 0.173*** 0.257*** 0.234***
(0.0319) (0.0265) (0.0620) (0.0606) (0.0194) (0.0153)

hh_size -0.00777 0.0283*** 0.0152 -0.00168 -0.00144 0.00240
(0.00949) (0.00933) (0.0321) (0.0194) (0.0123) (0.00499)

YDratio 0.0391 -0.0479 -0.0291 -0.217 -0.0594 -0.0826*
(0.0681) (0.100) (0.172) (0.181) (0.0693) (0.0476)

ODratio 0.121 0.0466 -0.0533 -0.0343 0.0392**
(0.0923) (0.0633) (0.0947) (0.0770) (0.0176)

employed 0.0648* 0.113*** 0.0347 0.0126 0.0208 0.0419***
(0.0363) (0.0235) (0.0751) (0.0467) (0.0353) (0.0117)

hukou -0.00258 0.00891 -0.0655* -0.0630* 0.000555 -0.00260
(0.0172) (0.0220) (0.0391) (0.0361) (0.0173) (0.0111)

hh_health -0.0379** -0.0556*** -0.0484 -0.0415 -0.0459** -0.0424***
(0.0182) (0.0210) (0.0651) (0.0381) (0.0219) (0.00878)

health_insurance 0.0102 0.000288 0.00430 0.0293 -0.00100 -0.000165
(0.0255) (0.0350) (0.0464) (0.0678) (0.00131) (0.000617)

pension 0.0234 0.0360 0.0917*** 0.0633 0.000445 -0.000399
(0.0186) (0.0253) (0.0353) (0.0443) (0.00249) (0.000723)

house_owner -0.0938 -0.150** 0.0433 0.0812 -0.0296 -0.00581
(0.0839) (0.0662) (0.0331) (0.0536) (0.0376) (0.0252)

boy_number -0.00880 -0.100* -0.0447 -0.0631 0.00134 -0.0451**
(0.0425) (0.0514) (0.0742) (0.0793) (0.0328) (0.0178)

girl_number -0.0143 -0.126** -0.0624 -0.0945 -0.0113 -0.0485**
(0.0448) (0.0541) (0.0834) (0.0864) (0.0362) (0.0200)

childage_04 0.00847 0.0697 0.0211 -0.000895 0.00919 0.0165
(0.0463) (0.0463) (0.0962) (0.0834) (0.0353) (0.0238)

childage_59 -0.0197 0.0720 0.0607 0.153* 0.00537 0.0494**
(0.0453) (0.0507) (0.0847) (0.0891) (0.0356) (0.0235)

childage_1014 -0.0269 0.0788 0.0540 0.109 0.00506 0.0525**
(0.0434) (0.0521) (0.101) (0.0948) (0.0361) (0.0238)

childage_1519 -0.0236 0.0249 0.0105 0.0698 -0.000359 0.0293
(0.0426) (0.0502) (0.0838) (0.0907) (0.0307) (0.0212)

age -0.00787 0.0141 -0.00323
(0.00606) (0.00875) (0.00222)

age2 9.53e-05 -8.97e-05 3.56e-05
(6.53e-05) (8.00e-05) (2.23e-05)

gender 0.0228 -0.00320 0.0344 0.0498 0.0406** 0.0233**
(0.0140) (0.0180) (0.0429) (0.0425) (0.0160) (0.0103)

married -0.0568* 0.0385 -0.129** -0.0340 0.0125 -0.00566
(0.0303) (0.0238) (0.0560) (0.0524) (0.0382) (0.0135)

ccp_member -0.0360 -0.0207 -0.0282 -0.0528 -0.0199 -0.0130
(0.0223) (0.0332) (0.0428) (0.0498) (0.0156) (0.00855)

yos -0.00718*** 0.00289 -0.00751 -0.00507 -0.00587** -0.00576***
(0.00242) (0.00270) (0.00498) (0.00420) (0.00257) (0.00134)

hh_credit -0.0975*** -0.0853*** -0.0148 0.0115 0.0970*** 0.0644***
(0.0178) (0.0172) (0.0337) (0.0356) (0.0189) (0.0125)

Province FE YES YES YES YES YES YES
Constant 0.0554 0.279* -0.133 -0.326 0.207** 0.259***

(0.105) (0.159) (0.118) (0.286) (0.0820) (0.0727)

Observations 3,901 6,849 965 1,030 2,149 5,879

Notes: 1. Robust standard errors (cluster at county level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1; 2. Standard errors in parentheses are bootstrapped 500 times
for bootstrapped median regression.
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Table A.4: The rich do save more continued

(c) Robust check: nonentrepreneurs and older households

CHFS 2015 Urban CFPS 2014 Urban CHIP 2013 Urban
VARIABLES (1) (2) (3) (4) (5) (6)

(excld. entrep. ) (age ≥ 60) (excld. entrep.) (age ≥ 60) (excld. entrep.) (age ≥ 60)

hh_income_2 0.436*** 0.695*** 0.226*** 0.841*** 0.0909*** 0.0769***
(0.0636) (0.0436) (0.0235) (0.112) (0.0125) (0.0253)

hh_income_3 0.448*** 0.990*** 0.291*** 1.164*** 0.148*** 0.122***
(0.0810) (0.0430) (0.0245) (0.114) (0.0119) (0.0304)

hh_income_4 0.864*** 1.194*** 0.426*** 1.271*** 0.184*** 0.184***
(0.0779) (0.0505) (0.0239) (0.128) (0.0133) (0.0287)

hh_income_5 0.910*** 1.445*** 0.599*** 1.412*** 0.244*** 0.274***
(0.0902) (0.0527) (0.0240) (0.140) (0.0154) (0.0351)

hh_size -0.0649** -0.0345** -0.0336*** -0.0531 0.00122 -0.00758
(0.0280) (0.0147) (0.0105) (0.0377) (0.00516) (0.0160)

YDratio -0.224 -0.611*** -0.180** 0.504 -0.0793 -0.336
(0.372) (0.231) (0.0846) (0.389) (0.0499) (0.227)

ODratio -0.486 0.107*** 0.0292 0.323** 0.0448*** 0.0122
(0.329) (0.0286) (0.0462) (0.144) (0.0170) (0.0394)

employed 0.117 0.181*** 0.00277 0.193** 0.0355*** 0.0892***
(0.0746) (0.0378) (0.0214) (0.0840) (0.0120) (0.0292)

hukou 0.0476 -0.0303 -0.112*** -0.141 -0.00145 0.0110
(0.0544) (0.0307) (0.0193) (0.107) (0.0119) (0.0278)

hh_health 0.0558 -0.104*** -0.0109 -0.0174 -0.0373*** -0.0546***
(0.0671) (0.0212) (0.0179) (0.0485) (0.00864) (0.0207)

health_insurance -0.0409 0.00727 0.0465 -0.148 -0.000311 0.00239
(0.0876) (0.0721) (0.0293) (0.0895) (0.000678) (0.00193)

pension 0.127* 0.00395 -0.00722 -0.0806 -0.000471 0.00630
(0.0724) (0.0443) (0.0180) (0.165) (0.000769) (0.00440)

house_owner -0.786*** 0.0836 0.0411* 0.0578 0.00176 0.104**
(0.177) (0.115) (0.0215) (0.0937) (0.0244) (0.0443)

boy_number -0.00417 -0.0741 0.0142 -0.0546 -0.0457** -0.0784
(0.0957) (0.0878) (0.0402) (0.155) (0.0181) (0.0657)

girl_number -0.0214 -0.0198 0.0116 -0.0772 -0.0476** -0.0488
(0.113) (0.0941) (0.0435) (0.152) (0.0202) (0.0733)

childage_04 0.0703 0.0946 0.0249 -0.122 0.0122 0.0717
(0.160) (0.0994) (0.0483) (0.152) (0.0251) (0.0916)

childage_59 0.0681 0.123 0.0135 -0.0137 0.0476* 0.124
(0.145) (0.111) (0.0484) (0.147) (0.0245) (0.0903)

childage_1014 0.130 0.107 0.0312 0.0665 0.0546** 0.143
(0.147) (0.106) (0.0503) (0.139) (0.0256) (0.0891)

childage_1519 -0.0256 -0.0515 -0.0362 -0.000626 0.0291 -0.0161
(0.103) (0.0952) (0.0475) (0.158) (0.0221) (0.0778)

age 0.0282 0.00475 -0.0190 -0.00341 0.0480
(0.0268) (0.00380) (0.0816) (0.00215) (0.0294)

age2 -0.000295 -3.58e-05 9.37e-05 3.47e-05 -0.000313
(0.000277) (3.60e-05) (0.000540) (2.15e-05) (0.000202)

gender -0.00232 0.0712*** 0.0294 0.162** 0.0235** 0.0165
(0.0555) (0.0240) (0.0186) (0.0738) (0.0106) (0.0258)

married -0.103 -0.100*** -0.0685*** -0.108 -0.00565 -0.0155
(0.0900) (0.0348) (0.0231) (0.0816) (0.0133) (0.0285)

ccp_member -0.0305 0.0276 -0.0602*** -0.0385 -0.0125 0.00554
(0.106) (0.0349) (0.0225) (0.0597) (0.00873) (0.0207)

yos -0.0264** -0.00904** -0.00764*** -0.0156** -0.00662*** -0.00705**
(0.0104) (0.00353) (0.00202) (0.00721) (0.00140) (0.00312)

hh_credit 0.0184 -0.0864*** -0.00521 -0.0550 0.0709*** 0.0907**
Province FE YES YES YES YES YES YES

(0.0483) (0.0226) (0.0166) (0.0668) (0.0121) (0.0358)
constant 0.394 -0.747*** -0.189* 0.231 0.263*** -1.563

(0.667) (0.141) (0.105) (2.989) (0.0723) (1.047)

Observations 5,243 5,380 4,228 1,633 5,555 1,182

Notes: 1. Robust standard errors (cluster at county level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1; 2. Standard errors in
parentheses are bootstrapped 500 times for bootstrapped median regression.
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Table A.4: The rich do save more continued

(d) Robust check: per capital income and alternative definition of saving rate

CHFS 2015 Urban CFPS 2014 Urban CHIP 2013 Urban
VARIABLES (1) (2) (3) (4) (5) (6)

(redef. s.r. ) (re-grouped) (redef. s.r. ) (re-grouped) (redef. s.r. ) (re-grouped)

hh_income_2 0.326*** 0.347*** 0.257*** 0.208*** 0.128*** 0.0842***
(0.0213) (0.0287) (0.0289) (0.0610) (0.0186) (0.0193)

hh_income_3 0.529*** 0.519*** 0.349*** 0.309*** 0.222*** 0.151***
(0.0231) (0.0273) (0.0332) (0.0657) (0.0192) (0.0201)

hh_income_4 0.739*** 0.635*** 0.533*** 0.451*** 0.289*** 0.190***
(0.0233) (0.0273) (0.0310) (0.0591) (0.0206) (0.0203)

hh_income_5 1.208*** 0.829*** 0.858*** 0.625*** 0.431*** 0.251***
(0.0328) (0.0290) (0.0387) (0.0600) (0.0286) (0.0188)

hh_size -0.0266** 0.0661*** -0.0476*** 0.0715** 0.00703 0.0441***
(0.0105) (0.0113) (0.0154) (0.0344) (0.00837) (0.0148)

YDratio -0.0258 0.0511 -0.315*** -0.121 -0.0940 -0.0811
(0.0938) (0.0795) (0.107) (0.183) (0.0779) (0.0781)

ODratio 0.0213 0.162** 0.0327 -0.0950 0.0853*** -0.0993
(0.0766) (0.0750) (0.0613) (0.0678) (0.0308) (0.0947)

employed 0.0799*** 0.116*** 0.0116 0.116*** 0.0597*** 0.0153
(0.0194) (0.0296) (0.0302) (0.0296) (0.0182) (0.0422)

hukou -0.0442** -0.000267 -0.185*** -0.0320 -0.0134 -0.00190
(0.0188) (0.0187) (0.0288) (0.0414) (0.0223) (0.0144)

hh_health -0.0281 -0.0481** -0.0171 -0.0623 -0.0674*** -0.0299
(0.0175) (0.0216) (0.0271) (0.0619) (0.0140) (0.0191)

health_insurance 0.000201 -0.00388 0.0699* -0.0478 0.000656 -0.00103
(0.0318) (0.0290) (0.0378) (0.0540) (0.00151) (0.00140)

pension -0.00141 0.000259 -0.0111 0.120*** -0.00162 0.000593
(0.0210) (0.0219) (0.0233) (0.0374) (0.00134) (0.00228)

house_owner -0.122** -0.0510 0.0546* 0.102** -0.0118 -0.0215
(0.0612) (0.0849) (0.0310) (0.0414) (0.0436) (0.0393)

boy_number -0.115** -0.0191 -0.0165 0.0188 -0.0738** -0.0145
(0.0478) (0.0407) (0.0515) (0.0846) (0.0294) (0.0373)

girl_number -0.142*** -0.0156 -0.0233 0.0206 -0.0841** -0.0230
(0.0514) (0.0428) (0.0586) (0.0866) (0.0335) (0.0387)

childage_04 0.119** 0.0293 0.0716 -0.0368 0.0130 0.00650
(0.0520) (0.0464) (0.0641) (0.106) (0.0392) (0.0451)

childage_59 0.0713 0.0125 0.0501 0.0155 0.0612 0.0104
(0.0575) (0.0454) (0.0629) (0.103) (0.0389) (0.0419)

childage_1014 0.0762 -0.0146 0.0799 0.00798 0.0703* 0.0160
(0.0528) (0.0425) (0.0667) (0.108) (0.0392) (0.0426)

childage_1519 0.0241 -0.0203 -0.000193 -0.00355 0.0366 0.00482
(0.0520) (0.0432) (0.0613) (0.0913) (0.0340) (0.0334)

age 0.00519 -0.0235 0.00925* 0.00111 -0.00435 0.0216
(0.00782) (0.0278) (0.00533) (0.000894) (0.00379) (0.0280)

age2 -1.35e-05 0.000396 -7.66e-05 0.0173 4.27e-05 -0.000300
(8.23e-05) (0.000367) (5.21e-05) (0.0409) (3.75e-05) (0.000370)

gender 0.0341* 0.0154 0.0471* -0.0109 0.0354** 0.0410***
(0.0189) (0.0137) (0.0249) (0.0631) (0.0159) (0.0152)

married -0.0422* -0.000399 -0.109*** -0.0363 0.00144 -0.0187
(0.0237) (0.0389) (0.0320) (0.0499) (0.0201) (0.0335)

ccp_member 0.00961 -0.0272 -0.0828*** -0.0157 -0.0186 -0.0177
(0.0293) (0.0193) (0.0280) (0.0670) (0.0145) (0.0151)

yos -0.0136*** -0.00508** -0.0119*** -0.0133*** -0.0112*** -0.00564**
(0.00275) (0.00249) (0.00291) (0.00511) (0.00234) (0.00230)

hh_credit -0.202*** -0.101*** -0.0475** -0.0131 0.0731*** 0.120***
(0.0187) (0.0180) (0.0233) (0.0348) (0.0205) (0.0230)

Province FE YES YES YES YES YES YES
Constant 0.0845 -0.0323 -0.148 1.683 0.399*** -0.293

(0.179) (0.532) (0.138) (1.247) (0.123) (0.523)

Observations 11,236 3,901 4,228 965 5,894 2,149

Notes: 1. Robust standard errors (cluster at county level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1; 2. Standard errors
in parentheses are bootstrapped 500 times for bootstrapped median regression.
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Table A.4: The rich do save more continued

(e) Check validity of the theoretical model

CHFS 2015 Urban CFPS 2014 Urban
VARIABLES (1) (2) (3) (4) (5) (6)

hh_savingrate hh_(prev. w/curr. inc.) hh_savingrate hh_savingrate hh_(prev. w/curr. inc.) hh_savingrate

hh_(prev. w/curr. inc.) -0.00226*** -0.00288***
(0.000436) (0.000769)

hh_income_2 0.286*** -6.333*** 0.290*** 0.226*** -4.402*** 0.224***
(0.0173) (1.200) (0.0220) (0.0235) (1.123) (0.0276)

hh_income_3 0.442*** -10.23*** 0.434*** 0.291*** -5.906*** 0.277***
(0.0176) (1.029) (0.0240) (0.0245) (1.171) (0.0275)

hh_income_4 0.556*** -12.15*** 0.534*** 0.426*** -6.838*** 0.418***
(0.0181) (1.126) (0.0218) (0.0239) (1.099) (0.0291)

hh_income_5 0.756*** -15.00*** 0.719*** 0.599*** -8.061*** 0.580***
(0.0199) (1.355) (0.0272) (0.0240) (1.174) (0.0285)

hh_size -0.0235*** -0.205 -0.0201** -0.0336*** -0.488* -0.0338***
(0.00734) (0.327) (0.00833) (0.0105) (0.282) (0.0112)

YDratio 0.0205 -2.921 -0.0429 -0.180** 1.766 -0.145
(0.0748) (2.679) (0.0807) (0.0846) (2.168) (0.101)

ODratio 0.0528 0.854 0.0409 0.0292 2.372 0.0455
(0.0594) (1.974) (0.0625) (0.0462) (1.464) (0.0507)

employed 0.0595*** 1.290 0.0563*** 0.00277 1.771** 0.00814
(0.0147) (1.111) (0.0165) (0.0214) (0.736) (0.0242)

hukou -0.0181 1.192 -0.0198 -0.112*** -0.0575 -0.106***
(0.0127) (0.838) (0.0194) (0.0193) (0.697) (0.0232)

hh_health -0.0168 -1.298* -0.00522 -0.0109 -0.775 -0.0109
(0.0144) (0.705) (0.0162) (0.0179) (0.764) (0.0204)

health_insurance 0.00298 -1.973** 0.0112 0.0465 -1.112 0.0674*
(0.0227) (0.883) (0.0284) (0.0293) (1.100) (0.0366)

pension -0.00220 1.332* 0.00602 -0.00722 -0.597 -0.0192
(0.0144) (0.728) (0.0187) (0.0180) (0.585) (0.0206)

house_owner -0.0882** 6.180*** -0.179*** 0.0411* 3.493*** 0.0749***
(0.0412) (1.618) (0.0487) (0.0215) (0.949) (0.0273)

boy_number -0.0718** -0.00158 -0.0975** 0.0142 0.0599 -0.00257
(0.0341) (0.959) (0.0452) (0.0402) (0.874) (0.0476)

girl_number -0.0923** -0.385 -0.110** 0.0116 -0.507 -0.00326
(0.0374) (1.144) (0.0466) (0.0435) (0.999) (0.0512)

childage_04 0.0855** 1.940 0.122*** 0.0249 1.043 0.0205
(0.0379) (1.255) (0.0430) (0.0483) (1.008) (0.0563)

childage_59 0.0487 1.567 0.101** 0.0135 1.882 0.0256
(0.0427) (1.258) (0.0490) (0.0484) (1.234) (0.0531)

childage_1014 0.0605 1.106 0.0904* 0.0312 0.527 0.0385
(0.0389) (1.321) (0.0460) (0.0503) (1.142) (0.0579)

childage_1519 0.0176 0.604 0.0538 -0.0362 0.770 -0.0363
(0.0381) (1.228) (0.0446) (0.0475) (1.085) (0.0559)

age 0.00428 -0.00525 0.00471 0.00475 0.403*** 0.0121***
(0.00483) (0.218) (0.00566) (0.00380) (0.115) (0.00424)

age2 -1.06e-05 0.00188 -2.57e-05 -3.58e-05 -0.00260** -0.000101***
(5.21e-05) (0.00244) (5.97e-05) (3.60e-05) (0.00106) (3.83e-05)

gender 0.0197 0.0995 0.0145 0.0294 -1.200* 0.0385*
(0.0139) (0.874) (0.0174) (0.0186) (0.656) (0.0220)

married -0.0200 -1.114 -0.0323 -0.0685*** 0.886 -0.0737***
(0.0175) (1.606) (0.0245) (0.0231) (0.828) (0.0270)

ccp_member 0.00140 -2.071** -0.0103 -0.0602*** 0.229 -0.0614***
(0.0221) (0.992) (0.0326) (0.0225) (0.765) (0.0227)

yos -0.00793*** 0.274*** -0.00717*** -0.00764*** 0.283** -0.00737***
(0.00196) (0.0974) (0.00230) (0.00202) (0.115) (0.00236)

hh_credit -0.108*** 2.797*** -0.0980*** -0.00521 1.653** 0.00170
(0.0130) (0.848) (0.0146) (0.0166) (0.749) (0.0182)

Province FE YES YES YES YES YES YES
Constant -0.110 17.19*** 0.0745 -0.189* 4.290 -0.386***

(0.116) (5.056) (0.140) (0.105) (4.401) (0.131)

Observations 6,849 6,849 6,849 3,235 3,235 3,235

Notes: 1. Robust standard errors (cluster at county level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1; 2. Standard errors in parentheses are bootstrapped 500 times for
bootstrapped median regression.
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Table A.5: The poor are more likely to face liquidity constraints

(a) CHFS 2015 Urban

VARIABLES (1) (f.a. measure) (2) (f.a. measure) (3) (cc measure ) (4) (cc measure )
(3 years avg. inc.) (3 years avg. inc.)

hh_income_1 0.100*** 0.120*** 0.270*** 0.174***
(0.0200) (0.0239) (0.00906) (0.0143)

hh_income_2 0.0900*** 0.0685*** 0.229*** 0.160***
(0.0185) (0.0202) (0.00886) (0.0137)

hh_income_3 0.0545*** 0.0448** 0.188*** 0.119***
(0.0171) (0.0215) (0.00922) (0.0148)

hh_income_4 0.0204 0.00889 0.130*** 0.0723***
(0.0164) (0.0199) (0.00969) (0.0149)

hh_size 0.0116** 0.0102 3.34e-05 -0.0273***
(0.00505) (0.00652) (0.00599) (0.00682)

YDratio -0.0653 -0.133* -0.229*** -0.246***
(0.0583) (0.0746) (0.0570) (0.0677)

ODratio -0.0210 -0.0202 0.120*** 0.134**
(0.0390) (0.0501) (0.0463) (0.0550)

employed -0.0178 -0.0172 0.0100 -0.0246
(0.0121) (0.0149) (0.0150) (0.0168)

hukou -0.0830*** -0.0769*** -0.0883*** -0.0949***
(0.0114) (0.0144) (0.0123) (0.0142)

hh_health 0.0661*** 0.0775*** 0.00966 0.0341***
(0.0109) (0.0134) (0.0111) (0.0122)

health_insurance -0.0331* -0.0579** -0.0275 -0.0117
(0.0182) (0.0240) (0.0168) (0.0232)

pension -0.122*** -0.134*** -0.0702*** -0.0844***
(0.0131) (0.0168) (0.0134) (0.0154)

house_owner -0.0219 0.0493 -0.0428 -0.0591
(0.0489) (0.0606) (0.0385) (0.0649)

age 0.00323 0.0122** -0.0167*** 0.000654
(0.00355) (0.00509) (0.00386) (0.00556)

age2 -1.60e-05 -0.000102* 0.000264*** 8.48e-05
(3.84e-05) (5.47e-05) (4.39e-05) (6.19e-05)

gender -0.0257** -0.0136 0.0128 0.00724
(0.0106) (0.0137) (0.00933) (0.0127)

married -0.0461*** -0.0512** 0.00962 0.00916
(0.0159) (0.0213) (0.0159) (0.0214)

ccp_member -0.0104 0.0461 -0.0346** -0.00545
(0.0139) (0.0285) (0.0162) (0.0263)

yos -0.0191*** -0.0165*** -0.0273*** -0.0271***
(0.00158) (0.00196) (0.00174) (0.00214)

Province FE YES YES YES YES

Observations 11,236 6,849 11,236 6,849

Notes: 1. Robust standard errors (cluster at county level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1; 2. Stan-
dard errors in parentheses are bootstrapped 500 times for bootstrapped median regression.
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Table A.5: The poor are more likely to face liquidity constraints continued

(b) CFPS 2014 Urban and CHIP 2013 Urban

VARIABLES (1) (f.a. measure) (2) (f.a. measure) (3) (f.a. measure) (4) (f.a. measure)
(3 years avg. inc.) (3 years avg. inc.)

hh_income_1 0.232*** 0.195*** 0.135*** 0.145***
(0.0300) (0.0349) (0.0303) (0.0272)

hh_income_2 0.204*** 0.136** 0.104*** 0.105***
(0.0270) (0.0532) (0.0248) (0.0246)

hh_income_3 0.0927*** 0.128*** 0.0412* 0.0441**
(0.0274) (0.0327) (0.0232) (0.0204)

hh_income_4 0.0553** 0.0547* 0.0658*** 0.0569**
(0.0268) (0.0303) (0.0219) (0.0234)

hh_size 0.00322 0.00866 0.0178*** 0.0196***
(0.00701) (0.00814) (0.00639) (0.00631)

YDratio -2.40e-05 -0.0263 -0.00654 -0.00428
(0.0489) (0.0642) (0.0409) (0.0403)

ODratio -0.0455 -0.0547 -0.0574** -0.0594**
(0.0370) (0.0426) (0.0277) (0.0273)

employed -0.0212 -0.0124 -0.0208 -0.0200
(0.0215) (0.0248) (0.0149) (0.0149)

hukou -0.0822*** -0.0935*** 0.0251 0.0231
(0.0236) (0.0247) (0.0182) (0.0184)

hh_health 0.0720*** 0.0741*** 0.0374** 0.0358**
(0.0196) (0.0230) (0.0162) (0.0163)

health_insurance -0.0314 -0.0451 0.000329 0.000341
(0.0282) (0.0373) (0.000554) (0.000547)

pension -0.00806 -0.0127 -0.00342 -0.00328
(0.0193) (0.0242) (0.00235) (0.00232)

house_owner -0.0280 -0.0180 -0.0388 -0.0314
(0.0203) (0.0244) (0.0368) (0.0357)

age 0.00651* 0.00988** -0.00440 -0.00436
(0.00341) (0.00492) (0.00285) (0.00280)

age2 -5.63e-05* -7.73e-05* 3.43e-05 3.53e-05
(3.42e-05) (4.52e-05) (2.71e-05) (2.66e-05)

gender 0.00215 0.0384* -0.00287 -0.00460
(0.0181) (0.0220) (0.0132) (0.0132)

married -0.0412* -0.0683** 0.0211 0.0187
(0.0251) (0.0308) (0.0178) (0.0176)

ccp_member -0.0247 -0.0431* 0.0128 0.0132
(0.0253) (0.0253) (0.0139) (0.0139)

yos -0.00483** -0.00748*** -0.00162 -0.00107
(0.00231) (0.00269) (0.00195) (0.00197)

Province FE YES YES YES YES

Observations 4,387 3,016 4,907 4,898

Notes: 1. Robust standard errors (cluster at county level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1; 2. Standard
errors in parentheses are bootstrapped 500 times for bootstrapped median regression.
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Table A.6: The effect of liquidity constraints on the household saving rate

CHFS 2015 Urban CFPS 2014 Urban
VARIABLES (1) (2) (3) (4) (5) (6)

(cc measure ) (cc measure) (f.a. measure) (f.a. measure) (f.a. measure ) (f.a. measure)

credit × 2015 -0.278*** -0.114*** -0.263*** -0.212*** -0.264** -0.240**
(0.0775) (0.0357) (0.0673) (0.0440) (0.118) (0.230)

credit -0.0942* -0.194*** 0.0192 -0.0486* 0.0114 -0.0688***
(0.0548) (0.0421) (0.0335) (0.0252) (0.0398) (0.0251)

2015 -0.279*** -0.130*** 0.0783 -0.0190 -0.244*** -0.159***
(0.0368) (0.0257) (0.0494) (0.0357) (0.0437) (0.0252)

income 2.13e-06*** 1.93e-06*** 9.27e-06***
(3.44e-07) (2.84e-07) (1.04e-06)

loginc 0.756*** 0.778*** 0.798***
(0.0159) (0.0181) (0.00912)

hh_size 0.160*** -0.0408*** 0.161*** -0.0421*** 0.0794*** -0.131***
(0.0175) (0.0121) (0.0188) (0.0153) (0.0201) (0.0102)

YDratio -0.0321 -0.147 -0.0937 -0.197 -0.242 -0.475***
(0.220) (0.166) (0.240) (0.188) (0.169) (0.105)

ODratio -0.304*** -0.00651 -0.736*** -0.224* -0.0933 0.158***
(0.0679) (0.0527) (0.159) (0.116) (0.0775) (0.0459)

employed 0.185*** 0.186*** 0.236*** 0.204*** 0.103*** 0.0794***
(0.0411) (0.0307) (0.0441) (0.0341) (0.0350) (0.0209)

hukou 0.0755** -0.243*** 0.0714* -0.132*** -0.0817** -0.321***
(0.0367) (0.0297) (0.0405) (0.0326) (0.0369) (0.0232)

hh_health -0.180*** -0.0564** -0.181*** -0.0539* -0.0880*** -0.0112
(0.0348) (0.0277) (0.0377) (0.0292) (0.0310) (0.0184)

health_insurance 0.0278 -0.0900** 0.0601 -0.0523 -0.0136 -0.0429
(0.0602) (0.0422) (0.0601) (0.0422) (0.0526) (0.0300)

pension 0.248*** -0.0102 0.266*** -0.00377 -0.0313 -0.0161
(0.0381) (0.0287) (0.0399) (0.0311) (0.0395) (0.0242)

house_owner 0.0249 0.0960*** -0.0313 0.0146 0.156*** 0.0554*
(0.0487) (0.0363) (0.0527) (0.0369) (0.0501) (0.0295)

boy_number -0.164** -0.155** -0.199** -0.151** -0.0608* -0.00537
(0.0747) (0.0604) (0.0778) (0.0639) (0.0358) (0.0228)

girl_number -0.152* -0.150** -0.172** -0.151** -0.0185 -0.0118
(0.0829) (0.0668) (0.0871) (0.0712) (0.0400) (0.0241)

childage_04 -0.0540 0.148** -0.0440 0.144* -0.133** 0.135***
(0.0895) (0.0708) (0.0970) (0.0779) (0.0545) (0.0340)

childage_59 -0.0474 0.141** -0.0122 0.150* -0.116** 0.120***
(0.0908) (0.0702) (0.0986) (0.0767) (0.0522) (0.0328)

childage_1014 -0.0915 0.110 -0.0632 0.132 -0.0390 0.145***
(0.0948) (0.0749) (0.102) (0.0819) (0.0589) (0.0383)

childage_1519 -0.0888 0.0194 -0.0768 0.0236 -0.101** -0.00102
(0.0889) (0.0699) (0.0938) (0.0742) (0.0393) (0.0262)

age -0.00552 0.0179*** 0.0198 0.0160 0.0183** 0.0325***
(0.00830) (0.00683) (0.0134) (0.0104) (0.00858) (0.00490)

age2 0.000127 -4.37e-05 -0.000165 -2.41e-05 -0.000144* -0.000224***
(7.78e-05) (6.45e-05) (0.000143) (0.000111) (7.92e-05) (4.49e-05)

gender 0.00717 -0.0195 0.0641 0.0198 0.0496** 0.0690***
(0.0380) (0.0290) (0.0406) (0.0325) (0.0208) (0.0150)

married -0.150*** -0.278*** -0.121** -0.248*** -0.0555 -0.0759***
(0.0513) (0.0384) (0.0574) (0.0448) (0.0435) (0.0248)

ccp_member -0.122 -0.0565 -0.141 -0.105 -0.0446 -0.127***
(0.0911) (0.0604) (0.0970) (0.0642) (0.0508) (0.0314)

yos 0.0170*** -0.0146*** 0.0106* -0.0253*** -0.00382 -0.0161***
(0.00466) (0.00362) (0.00541) (0.00436) (0.00370) (0.00227)

Province FE YES YES YES YES YES YES
Constant -0.787*** -8.220*** -1.294*** -8.309*** -4.58e-06** -8.785***

(0.260) (0.254) (0.329) (0.300) (1.91e-06) (0.211)

Observations 9,588 9,588 7,024 7,024 7,209 7,209
R-squared 0.231 0.558 0.243 0.576 0.237 0.579

Notes: 1. Robust standard errors (cluster at county level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1; 2. Standard errors in paren-
theses are bootstrapped 500 times for bootstrapped median regression.
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Table A.7: The effect of income inequality on the aggregate household saving rate

CHFS 2015 Urban CFPS 2014 Urban CHIP 2013 Urban
VARIABLES county_savingrate county_savingrate county_savingrate county_savingrate county_savingrate county_savingrate

county gini 0.198* 0.176** 0.135 0.139 0.0188 0.00636
(0.115) (0.0710) (0.413) (0.412) (0.126) (0.125)

logcounty_pc_inc 0.322*** 0.329*** 0.00946* 0.00967* 0.0962*** 0.107***
(0.0178) (0.0201) (0.00535) (0.00599) (0.0223) (0.0229)

county_YDratio 0.353 -0.0237 0.277
(0.330) (0.0967) (0.177)

county_ODratio 0.583** 0.0354 -0.104
(0.283) (0.0744) (0.151)

Constant -3.093*** -3.290*** 0.0301 0.0284 -0.637*** -0.761***
(0.178) (0.225) (0.173) (0.189) (0.241) (0.251)

Province FE YES YES YES YES YES YES
Observations 353 353 334 334 212 212
R-squared 0.521 0.527 0.227 0.227 0.152 0.169

Notes: 1. Robust standard errors (cluster at county level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1; 2. Standard errors in parentheses are bootstrapped 500 times for
bootstrapped median regression.
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Table A.8: The estimates of marginal propensity to consume out of transitory income

(a) CHFS Urban

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
VARIABLES hh_consump hh_consump hh_consump hh_consump hh_consump

hh_per_income 0.788*** 0.610*** 0.374* 0.541*** 0.223**
(0.112) (0.135) (0.191) (0.125) (0.0889)

hh_tran_income 0.788*** 0.611*** 0.364* 0.507*** 0.178*
(0.112) (0.135) (0.191) (0.127) (0.0952)

hh_netasset 0.00258 0.00267 0.00552*** 0.00378* 0.00755***
(0.00178) (0.00189) (0.00184) (0.00203) (0.00108)

hh_size 1,845*** 2,256*** 1,928** -455.1 7,738**
(520.1) (746.1) (964.9) (1,603) (2,975)

YDratio 3,356 3,752 7,838 728.0 -53,291***
(5,460) (5,902) (9,017) (9,438) (19,647)

ODratio 255.8 1,937 -6,332** -8,972 -6,840
(1,664) (3,839) (2,968) (6,439) (13,406)

employed -835.8 -3,095 -5,642 -3,028 3,586
(1,155) (2,406) (3,619) (4,439) (6,465)

hukou 1,115 1,618 3,557 -5,127 4,924
(1,020) (1,945) (2,923) (4,383) (6,983)

hh_health 468.2 600.7 5,046* 5,281 13,002
(1,252) (1,763) (2,840) (4,557) (8,132)

health_insurance 818.5 -5,301* 5,876 10,938** -37,742
(2,548) (2,983) (5,334) (4,575) (26,362)

pension 107.5 -1,709 -354.5 8,811*** 15,302
(1,528) (2,093) (5,229) (3,223) (13,844)

house_owner 963.7 6,240 10,855** -11,075
(2,840) (10,370) (4,182) (25,768)

age -309.7 -405.6 -2,064** -1,498 550.6
(311.6) (758.6) (949.9) (922.6) (2,172)

age2 2.048 1.537 15.82* 12.43 -9.408
(2.641) (6.461) (8.723) (7.890) (19.29)

gender -2,579* -2,514 -1,020 1,485 18,535
(1,311) (2,731) (3,287) (4,034) (12,512)

married 3,402** 3,223 6,112** 6,899 4,335
(1,501) (2,730) (2,465) (7,658) (8,798)

ccp_member 2,003 7,668 -9,152 -10,602* 1,014
(3,108) (4,754) (10,935) (6,198) (12,878)

yos 201.1 393.1 -329.7 1,042** 19.43
(233.7) (388.4) (400.1) (443.0) (1,212)

Province FE YES YES YES YES YES
Constant 3,139 16,225 51,066* 48,290 6,421

(10,747) (23,458) (27,895) (39,625) (83,059)

Observations 294 436 479 476 488
R-squared 0.650 0.220 0.222 0.228 0.238

Notes: 1. Robust standard errors (cluster at county level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1; 2.
Standard errors in parentheses are bootstrapped 500 times for bootstrapped median regression.
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Table A.8: The estimates of marginal propensity to consume out of transitory income con-
tinued

(b) CFPS Urban

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
VARIABLES hh_consump hh_consump hh_consump hh_consump hh_consump

hh_per_income 0.874*** 0.347** 0.831*** 0.486** 0.393***
(0.102) (0.169) (0.198) (0.208) (0.126)

hh_tran_income 0.927*** 0.361* 0.739*** 0.477** 0.336***
(0.0985) (0.187) (0.203) (0.206) (0.125)

hh_netasset 0.00410** 0.00453 0.00425 0.00102 0.00764**
(0.00159) (0.00360) (0.00343) (0.00196) (0.00369)

hh_size 879.4* 1,423** 1,621 2,557** -840.1
(489.1) (672.4) (1,050) (989.1) (2,085)

YDratio -1,503 -4,587 1,425 8,354 23,179
(3,648) (5,285) (6,333) (9,386) (17,154)

ODratio 776.4 -4,393 1,852 -6,132 -6,818
(1,785) (3,251) (5,194) (6,606) (19,803)

employed -692.5 -1,254 3,645 5,278 8,038
(978.3) (2,234) (3,030) (3,654) (6,518)

hukou 831.1 4,431** 3,471 7,554** 14,384**
(1,014) (1,708) (2,131) (3,533) (6,118)

hh_health -716.9 -363.0 2,192 -429.5 -2,001
(749.6) (1,979) (2,406) (3,483) (5,962)

health_insurance -94.29 624.9 38.74 -9,354 -8,738
(1,407) (2,759) (2,618) (6,569) (8,984)

pension 1,007 -1,382 -1,900 251.4 9,983*
(1,016) (2,184) (2,435) (2,971) (5,519)

house_owner -2,441** -3,162 -4,790 860.8 -3,897
(1,155) (2,573) (3,417) (3,256) (7,581)

age -310.8 -565.2 -1.083 -979.6 -918.4
(325.9) (416.9) (551.5) (831.7) (1,486)

age2 1.740 4.446 -0.978 11.08 11.59
(2.735) (3.716) (4.861) (7.028) (12.55)

gender 905.9 -2,282 -849.3 -5,015 -1,582
(784.4) (1,980) (2,426) (3,648) (6,571)

married -1,966* 5,344** -40.79 9,584** 14,149**
(1,070) (2,071) (2,749) (4,458) (5,956)

ccp_member 1,470 3,282 2,242 2,882 -461.7
(1,513) (2,064) (3,024) (3,230) (6,547)

yos 146.4 121.6 768.0*** 347.7 133.1
(129.8) (190.0) (265.2) (337.8) (770.2)

Province FE YES YES YES YES YES
Constant 22,369** 19,787 11,894 16,818 29,539

(10,159) (14,757) (21,953) (28,023) (47,455)

Observations 359 489 546 572 494
R-squared 0.557 0.216 0.226 0.162 0.204

Notes: 1. Robust standard errors (cluster at county level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1; 2.
Standard errors in parentheses are bootstrapped 500 times for bootstrapped median regression.
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Table A.8: The estimates of marginal propensity to consume out of transitory income con-
tinued

(c) CHIP Urban

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5
VARIABLES hh_consump hh_consump hh_consump hh_consump hh_consump

hh_per_income 0.613*** 0.623*** 0.510*** 0.346*** 0.233***
(0.0287) (0.0707) (0.0827) (0.0871) (0.0806)

hh_tran_income 0.563*** 0.502*** 0.453*** 0.308*** 0.0167
(0.0732) (0.111) (0.107) (0.101) (0.111)

hh_netasset 0.00258 -0.00342 0.00283 0.000505 0.00129
(0.00338) (0.00523) (0.00306) (0.00378) (0.00356)

hh_size 400.5 556.1 679.0 1,246* 1,052
(264.7) (414.3) (559.5) (683.8) (1,234)

YDratio 940.3 1,880 8,397** -2,443 11,196
(1,524) (2,736) (3,752) (5,187) (8,620)

ODratio -475.2 -3,291** -1,227 -5,937* -16,334**
(991.9) (1,594) (2,141) (3,374) (6,964)

employed -1,458** -1,731* -2,714* -2,834 -4,635
(638.1) (1,042) (1,384) (1,827) (4,941)

hukou -1,325** 80.83 1,145 -366.2 6,422

(626.6) (998.8) (1,439) (1,870) (4,076)
hh_health 777.7* 2,542** 1,204 5,521*** 1,689

(458.1) (997.9) (1,389) (1,882) (4,341)
health_insurance 148.1 6.603 61.08 102.8 72.48

(115.5) (56.30) (92.83) (63.91) (178.4)
pension -32.62 -8.11 14.03 43.11 879.7

(78.36) (156.2) (41.50) (169.0) (549.1)
house_owner -649.5 119.0 -143.1 2,579 323.7

(992.3) (2,177) (2,818) (4,149) (8,969)

age -70.71 -173.2 146.3 134.9 1,110**
(133.4) (224.0) (257.9) (411.2) (449.7)

age2 -0.0399 1.116 -1.415 -1.741 -7.981*
(1.322) (2.171) (2.526) (3.944) (4.668)

gender -348.6 -165.2 -1,901 -2,882* -5,462**
(636.8) (861.6) (1,275) (1,575) (2,609)

married 502.3 724.7 102.3 -2,231 -4,509
(632.4) (1,475) (1,539) (2,792) (4,368)

ccp_member -265.5 297.8 1,392 160.3 1,592
(634.0) (848.8) (1,003) (1,608) (2,260)

yos 108.2 339.4*** 480.4*** 850.1*** 1,617***
(86.61) (123.5) (172.5) (224.7) (489.5)

Province FE YES YES YES YES YES
Constant 8,524** 4,150 -634.0 12,734 1,985

(3,964) (8,733) (8,572) (15,165) (22,473)

Observations 1,214 1,205 1,236 1,236 1,240
R-squared 0.363 0.122 0.098 0.074 0.237

Notes: 1. Robust standard errors (cluster at county level) in parentheses. *** p<0.01, ** p<0.05, * p<0.1; 2.
Standard errors in parentheses are bootstrapped 500 times for bootstrapped median regression.
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APPENDIX B

INCENTIVES AND UNCERTAINTIES IN A+B PROCUREMENT CONTRACTS

B.1 Proofs

B.1.1 Proof of lemma 1

At the beginning of the construction stage, when there is a realized shock ε, the contractor

chooses optimal actual working days xA to minimize the realized total cost (1 +ε)C(xA, θ) +

K(xA, xB; i, d), where K(xA, xB, i, d) = I(xA < xB) · i · (xA−xB) + I(xA > xB) ·d · (xA−xB).

Intuitively, because of the daily incentive for the early completion and the daily disincentive

for the delay completion, there are two critical points for the shock ε in the support, such

that

−(1 + εi)C1(xB, θ) = i (B.1)

−(1 + εd)C1(xB, θ) = d (B.2)

for any given xB, where εi < εd since i < d and C1(·, θ) < 0. Notice that if the contractor

completes the construction based on the bidding days, that is xA = xB, then the realized total

costs, denoted as TC0, equals (1 + ε)C(xB, θ). Depending on the realization of uncertainty

ε, there are three scenarios:

Scenarios (I): The shock is “positive”, namely ε ∈ (−1, εi).

(i) If the contractor chooses to delay to complete the project, xA > xB, then the realized

total costs, denoted as TC+, equals (1+ε)C(xA, θ)+d ·(xA−xB). Taking difference between

114



TC0 and TC+, we have:

TC0 − TC+ = (1 + ε)C(xB, θ)−
[
(1 + ε)C(xA, θ) + d · (xA − xB)

]
= (1 + ε)

[
C(xB, θ)− C(xA, θ)

]
− (1 + εd)C1(xB, θ) · (xB − xA)

= (1 + ε)C1(x̃, θ) · (xB − xA)− (1 + εd)C1(xB, θ) · (xB − xA)

=
[
(1 + ε)C1(x̃, θ)− (1 + ε)C1(xB, θ) + (1 + ε)C1(xB, θ)− (1 + εd)C1(xB, θ)

]
· (xB − xA)

=
{

(1 + ε)
[
C1(x̃, θ)− C1(xB, θ)

]
︸ ︷︷ ︸

+

+ (ε− εd)C1(xB, θ)︸ ︷︷ ︸
+

}
· (xB − xA)︸ ︷︷ ︸

−

< 0,

namely, TC0 < TC+, which implies that any choice of delay completion is worse than on-

time completion. The second equality is due to plug in the Equation B.2; the third equality is

obtained by the Mean-Value theorem where xB < x̃ < xA; the first part in the sixth equality

is positive by the assumption of the convexity of the cost function and the lower bound of

the shock is −1; the second part is positive because ε < εi < εd and the assumption that

the cost function is decreasing in working days; the last part is negative under the condition

that xA < xB.

(ii) If the contractor completes the project earlier than the bidding days, that is, xA < xB,

then total realized costs, denoted as TC−, equals (1 + ε)C(xA, θ) + i · (xA − xB). Consider

xA = xi such that − (1 + ε)C1(xi, θ) = i, (B.3)

combing above equation with Equation B.1, we have xi < xB because the assumption of the

convexity of the cost function and ε < εi. Let TCi denote the total costs evaluates at xi.
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Taking difference between TCi and TC0, we have

TCi − TC0 =
[
(1 + ε)C(xi, θ) + i · (xi − xB)

]
− (1 + ε)C(xB, θ)

= (1 + ε)C(xi, θ)− (1 + ε)C1(xi, θ) · (xi − xB)− (1 + ε)C(xB, θ)

= (1 + ε)
[
C(xi, θ)− C(xB, θ)− C1(xi, θ) · (xi − xB)

]
= (1 + ε)

[
C1(x′, θ) · (xi − xB)− C1(xi, θ) · (xi − xB)

]
= (1 + ε)︸ ︷︷ ︸

+

[
C1(x′, θ)− C1(xi, θ)

]
︸ ︷︷ ︸

+

· (xi − xB)︸ ︷︷ ︸
−

< 0,

namely, TCi < TC0, which implies that early completion at xi is better than on-time

completion. The second equality is obtained by plugging in the Equation B.3; the fourth

equality is because the Mean-Value theorem where xi < x′ < xB; the first part in the fifth

equality is positive due to ε > 1, and the second part is positive because of the assumption

of the convexity for the cost function. Next, notice that Equation B.3 is also the first-order-

condition (F.O.C) for the optimal working days conditional on early completion, therefore

xA = xi < xB is the optimal working days given the construction shock is “positive” (i.e.,

ε < εi).

Scenarios (II): The shock is “negative”, namely ε > εd. Applying similar arguments as
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above, we have

TC0 − TC− = (1 + ε)C(xB, θ)−
[
(1 + ε)C(xA, θ) + i · (xA − xB)

]
= (1 + ε)

[
C(xB, θ)− C(xA, θ)

]
− (1 + εi)C1(xB, θ) · (xB − xA)

= (1 + ε)C1(x̃, θ) · (xB − xA)− (1 + εi)C1(xB, θ) · (xB − xA)

=
[
(1 + ε)C1(x̃, θ)− (1 + εi)C1(xB, θ)

]
· (xB − xA)

=
[
(1 + ε)C1(x̃, θ)− (1 + ε)C1(xB, θ) + (1 + ε)C1(xB, θ)− (1 + εi)C1(xB, θ)

]
· (xB − xA)

=
{

(1 + ε)
[
C1(x̃, θ)− C1(xB, θ)

]
︸ ︷︷ ︸

−

+ (ε− εi)C1(xB, θ)︸ ︷︷ ︸
−

}
· (xB − xA)︸ ︷︷ ︸

+

< 0,

for early completion, namely xA < xB, and

TCd − TC0 =
[
(1 + ε)C(xd, θ) + i · (xd − xB)

]
− (1 + ε)C(xB, θ)

= (1 + ε)C(xd, θ)− (1 + ε)C1(xd, θ) · (xd − xB)− (1 + ε)C(xB, θ)

= (1 + ε)
[
C(xd, θ)− C(xB, θ)− C1(xd, θ) · (xi − xB)

]
= (1 + ε)

[
C1(x′′, θ) · (xd − xB)− C1(xd, θ) · (xd − xB)

]
= (1 + ε)︸ ︷︷ ︸

+

[
C1(x′′, θ)− C1(xd, θ)

]
︸ ︷︷ ︸

−

· (xd − xB)︸ ︷︷ ︸
+

< 0,

for delay completion at xA = xd < xB, where xd satisfies the F.O.C −(1 + ε)C1(xd, θ) = d.

Thus, under a negative shock to construction cost function, the contractor will delay to

complete the project at xd.
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Scenarios (III): The shock is “normal”, namely εi ≤ ε ≤ εd. We have

TC0 − TC− =
{

(1 + ε)
[
C1(x̃, θ)− C1(xB, θ)

]
︸ ︷︷ ︸

−

+ (ε− εi)C1(xB, θ)︸ ︷︷ ︸
≤0

}
· (xB − xA)︸ ︷︷ ︸

+

< 0,

and

TC0 − TC+ =
{

(1 + ε)
[
C1(x̃, θ)− C1(xB, θ)

]
︸ ︷︷ ︸

+

+ (ε− εd)C1(xB, θ)︸ ︷︷ ︸
≥0

}
· (xB − xA)︸ ︷︷ ︸

−

< 0,

which implies that in this case the contractor will choose actual working days not to deviate

bidding days. �

Proof under the case without uncertainties

Without construction uncertainty in the execution stage, the contractor chooses optimal

actual working days xA to minimize the realized total cost C(xA, θ) +K(xA, xB; i, d), where

K(xA, xB, i, d) = 1(xA < xB) · i · (xA − xB) + 1(xA > xB) · d · (xA − xB). Notice that

whether or not the contractor chooses to deviate bidding days xB solely depend on the level

of xB, whereas in the case with uncertainty, for any level of bidding days xB, the contractor

may deviate depending on the realization of shocks to cost function. Similar to the case with

uncertainty, because of the daily incentive for the early completion and the daily disincentive

for the delay completion, there are two critical level of bidding days such that:

−C1(x̃i, θ) = i (B.4)

−C1(x̃d, θ) = d (B.5)

where x̃d < x̃i due to the convexity of the cost function and the assumption of d > i. The
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two values partition bidding days into three interval: (i) xB < x̃d, (ii) x̃d ≤ xB ≤ x̃i, and

(iii) xB > x̃i.

Case (i): If xB < x̃d, consider xA = x̃d, we have

T̃C
d
− TC0 =

[
C(x̃d, θ) + d · (x̃d − xB)

]
− C(xB, θ)

= C(x̃d, θ)− C(xB, θ)− C1(x̃d, θ) · (x̃d − xB)

= C1(x̃′, θ) · (x̃d − xB)− C1(x̃d, θ) · (x̃d − xB)

=
[
C1(x̃′, θ)− C1(x̃d, θ)

]
︸ ︷︷ ︸

−

· (x̃d − xB)︸ ︷︷ ︸
+

< 0,

where xB < x̃′ < x̃d. This implies, along with the Equation B.5, that optimal actual working

days will be longer than bidding days and will be set equal to x̃d. The second equality is

obtained by plugging in the Equation B.5, and the third equality is achieved by Mean-Value

Theorem. The first part in the fourth equality is negative due to the convexity of the cost

function.

Case (ii): If x̃d ≤ xB ≤ x̃i, consider xA = xB, then following similar arguments, for any

x̃A < xB, we have

TC0 − T̃C
−

= C(xB, θ)−
[
C(x̃A, θ) + i · (x̃A − xB)

]
= C(xB, θ)− C(x̃A, θ)− C1(x̃i, θ) · (xB − x̃A)

= C1(x̃′′, θ) · (xB − x̃A)− C1(x̃i, θ) · (xB − x̃A)

=
[
C1(x̃′′, θ)− C1(x̃i, θ)

]
︸ ︷︷ ︸

−

· (xB − x̃A)︸ ︷︷ ︸
+

< 0,
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where x̃A < x̃′′ < xB; and for any x̃A > xB, we have

TC0 − T̃C
+

= C(xB, θ)−
[
C(x̃A, θ) + d · (x̃A − xB)

]
= C(xB, θ)− C(x̃A, θ)− C1(x̃d, θ) · (xB − x̃A)

= C1(x̃′′′, θ) · (xB − x̃A)− C1(x̃d, θ) · (xB − x̃A)

=
[
C1(x̃′′′, θ)− C1(x̃d, θ)

]
︸ ︷︷ ︸

+

· (xB − x̃A)︸ ︷︷ ︸
−

< 0,

where xB < x̃′′′ < x̃A. Thus, when bidding days xB ∈ [x̃d, x̃i], the contractor has no incentive

to deviate to complete the project.

Case (iii): If xB > x̃i, consider xA = x̃i, we have

T̃C
i
− TC0 =

[
C(x̃i, θ) + i · (x̃i − xB)

]
− C(xB, θ)

= C(x̃i, θ)− C(xB, θ)− C1(x̃i, θ) · (x̃i − xB)

= C1(x̃′′′′, θ) · (x̃i − xB)− C1(x̃i, θ) · (x̃i − xB)

=
[
C1(x̃′′′′, θ)− C1(x̃i, θ)

]
︸ ︷︷ ︸

+

· (x̃i − xB)︸ ︷︷ ︸
−

< 0,

where x̃i < x̃′′′′ < xB. This implies, along with the Equation B.4, that optimal actual

working days will be shorter than bidding days and will be set equal to x̃i.

In summary, actual working days will depend on which interval bidding days lie in. Next,

what bidding days the contractor will quote in the competition stage? Without uncertainty,

optimal bidding days will be solved by the following minimization problem (by the argument
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in Proposition 2):

xB
∗

= argmin
xB

{
cux

B +
[
C(xA, θ) +K(xA, xB; i, d)

]}
. (B.6)

Let P̃ V denote cux̃B +
[
C(xA, θ) +K(xA, x̃B; i, d)

]
, where x̃B satisfies −C1(x̃B, θ) = cu.

Notice that x̃d < x̃B < x̃i due to the convexity of the cost function and the assumption that

i < cu < d, and thus xA = x̃B and P̃ V = cux̃
B + C(x̃B, θ) by the argument above. Now we

can compare the value of objective function in the Equation B.6 at different bidding days.

Denote PV1 and PV2 the value of objective function for any xB < x̃d and for any xB > x̃i,

respectively, we have

P̃ V − PV1 = cux̃
B + C(x̃B, θ)−

[
cux

B + C(x̃d, θ) + d · (x̃d − xB)
]

= cu · (x̃B − x̃d + x̃d − xB) + C(x̃B, θ)− C(x̃d, θ)− d · (x̃d − xB)

= cu · (x̃B − x̃d) + cu · (x̃d − xB) + C1(x̄, θ) · (x̃B − x̃d)− d · (x̃d − xB)

=
[
cu + C1(x̄, θ)

]
· (x̃B − x̃d) + (cu − d) · (x̃d − xB)

=
[
C1(x̄, θ)− C1(x̃B, θ)

]
︸ ︷︷ ︸

−

· (x̃B − x̃d)︸ ︷︷ ︸
+

+ (cu − d)︸ ︷︷ ︸
−

· (x̃d − xB)︸ ︷︷ ︸
+

< 0,

where x̃d < x̄ < x̃B, and

P̃ V − PV2 = cux̃
B + C(x̃B, θ)−

[
cux

B + C(x̃i, θ) + i · (x̃i − xB)
]

=
[
C1(x̄′, θ)− C1(x̃B, θ)

]
︸ ︷︷ ︸

+

· (x̃B − x̃i)︸ ︷︷ ︸
−

+ (cu − i)︸ ︷︷ ︸
+

· (x̃i − xB)︸ ︷︷ ︸
−

< 0.

where x̃B < x̄′ < x̃i. Furthermore, P̃ V < cux
B+C(xB, θ), for any xB ∈ [x̃d, x̃i] and xB 6= x̃B.

Therefore, without construction uncertainties, the contractor will bid working days at x̃B in
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the competition stage and then choose to complete the project on time. �

B.1.2 Proof of proposition 2

Recall the contractor’s optimization problem in the bidding stage after plugging in the

working decision function xA∗(θ, ε) to response the realization of uncertainty ε for any bidding

days xB

max
pB ,xB

{
pB − Emin

xA

[
(1 + ε)C(xA, θ) +K(xA, xB; i, d)

]}
Pr
(
win

∣∣∣ S = s
)
,

subject to s = pB+cux
B. First, we show that the equilibrium bidding days can be determined

separately from the choice of score, and each contractor sets the bidding days according to

the Equation (3.8). Suppose the contractor with type θ bids (p̃B, x̃B) where x̃B 6= xB
∗ . By

choosing the bidding days equal to xB
∗ , we can show that the contractor can always be

better-off if the bidding price is set to be p̃B + cu(x̃
B − xB

∗
). Notice that the scores are

exactly same in both cases since p̃B + cu(x̃
B − xB∗) + cux

B∗ = p̃B + cux̃
B. The difference

between their expected payoff

{
π(p̃B + cu(x̃

B − xB∗), xB∗)− π(pB
∗
, xB

∗
)
}
Pr(win | S = s)

=
{
p̃B + cu(x̃

B − xB∗)− E
[
C(xA

∗
, θ, ε)− ρ · (xB∗ − xA∗)

]
− p̃B + E

[
C(x̃A, θ, ε)− ρ · (x̃B − x̃A)

]}
Pr(win | S = s)

=
{(
cux̃

B + E
[
C(x̃A, θ, ε)− ρ · (x̃B − x̃A)

])
−
(
cux

B∗ + E
[
C(xA

∗
, θ, ε)− ρ · (xB∗ − xA∗)

])}
Pr(win | S = s)

>0.

The last inequality holds following by the Equation (3.6) and the argument shown in Che

(1993) that the winning probability must be positive.

Next, the optimization problem (3.6) can be solved using the established equilibrium re-
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sult in standard first-price auctions literature that has established the existence and unique-

ness of a symmetric monotone Bayesian Nash Equilibrium (psBNE) (see, Maskin, 1985).

With the symmetric property that contractors j 6= i using the identical bidding strategy

sj = s(vj), which is a strictly increasing, continuous, and differentiable function of the

pseudo cost, the contractor i’s winning probability Pr(win | S = s) = [1− FV (s−1(si))]
N−1.

Then the first order condition of optimization problem (3.6) yields

− (N − 1)(s∗i − vi)[1− FV (s−1(s∗i ))]
N−2fV (s−1(s∗i ))

1

s′(s−1(s∗i ))
+ [1− FV (s−1(s∗i ))]

N−1 = 0.

(B.7)

At a symmetric equilibrium, s∗i = s∗(vi), Equation (B.7) reduces to a differential equation

(here, drop the i subscript)

d
{

[1− FV (v)]N−1s∗(v)
}

=− (N − 1)s∗(v)[1− FV (v)]N−2fV (v) + [1− FV (v)]N−1s∗
′
(v)

=− (N − 1)v[1− FV (v)]N−2fV (v)]′

=vd
{

[1− FV (v)]N−1
}
.

Integrating by part with boundary condition s(v) = 0 yields

s∗(v) = v −
∫ v

v

[
1− FV (ṽ)

1− FV (v)

]N−1

dṽ. (B.8)

If θ is scalar, by the envelope theorem, dv = EC2(xA
∗
, θ, ε)dθ, and it is strictly increasing

in θ. We have FV (v) = Pr(V (θ) ≤ v) = Pr(θ ≤ V −1(v)) = FΘ(V −1(v)) = FΘ(θ). Changing

integration interval to [θ, θ] for θ

s∗(v) = v −
∫ θ

θ

EC2(xA
∗
, θ, ε)

[
1− FΘ(θ̃)

1− FΘ(θ)

]N−1

dθ̃. (B.9)

Then Equation (3.7) and (3.8) can be obtained by substituting the formula of score rule
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and plugging the definition of pseudo cost into Equation (B.8) and (B.9) respectively. �

B.1.3 Proof of proposition 3

By Theorem 1 in Torgovitsky (2015), Assumption 4 and 5 imply that the identified set

for g(·, ·), denoted as G∗ can be characterized as

G∗ ≡ {g ∈ G : (g−1(X, V ), U) ⊥⊥ W}, (B.10)

where g−1(x, ·) denotes the inverse of g with respect to θ, and U ≡ FX|W (·) is the conditional

rank of X. In the following proof, we focus on the case where the instrumental variable W

is binary, i.e., W = {0, 1}. The proof for the case of continuous W is technically easier and

can be found in Torgovitsky (2015).

By Assumption 5, θ ⊥⊥ W |U . Also since V |X = x,W = w and X|W = w are assumed

to be continuously distributed for all x and w, the events [X = x,W = w] and [U =

FX|W (x|w),W = w] are equivalent with each other for x ∈ X o
w ≡ int supp(X|W = w).

These two conditions together imply that if

FX|W (x1|w1) = FX|W (x2|w2) = u for x1 ∈ X o
w1

and x2 ∈ X o
w2
,

then

FΘ|X,W (θ|X = x1,W = w1) = FΘ|X,W (θ|X = x2,W = w2) = FΘ|U(θ|U = u).

Thus, the differences between V |X = x1,W = w1 and V |X = x2,W = w2 are solely

due to the direct effect of g∗ on V when X is shifted from x1 to x2. Since the pseudo-type

v is strictly increasing in θ, this direct effect can be isolated. Specifically, if v ∈ Vox1,w1
≡

int supp(V |X = x1,W = w1), then there exists a unique e such that v = g∗(x1, e). If the

change from x1 to x2 does not change the conditional distribution of X given W = w, then

from the discussion above we know the value of g∗(x2, e) can be recovered as

124



g∗(x2, e) = F−1
Y |X,W (FY |X,W (v|x1, w1)). (B.11)

Following the discussion in Torgovitsky (2015), next we need to show that two things:

First, g∗(x1, e) can be exogenously compared to g∗(x, e) for all x ∈ X . Second, g∗(x2, e) can

be point-identified for a particular e of interest.

Define Ig(x, e) = g−1(x, g∗(x, e)) as a measure of difference between g∗ and any g ∈ G. It

can be easily verified that Ig(x, e) = e if and only if g(x, e) = g∗(x, e). Also by the strictly

monotonicity of v in θ, Ig(x, ·) is strictly increasing. By Assumption 4, if Ig(x, e) is constant

across all x, i.e., Ig(x, e) = Jg(e), then g(x, e) = g∗(x, e) for all (x, θ) ∈ X × Θ and g∗ is

point-identified.

In order to show that Ig(x, e) = Jg(e), suppose g ∈ G∗ and define θg = g−1(X, V ). By

strict monotonicity of v, we haveQΘg |X,W (t|x,w) = g−1(x,QV |X,W (t|x,w)) andQV |X,W (t|x,w) =

g∗(x,QΘ|X,W (t|x,w)). These two conditions together imply that

Ig(x,QΘ|X,W (t|x,w)) = QΘg |X,W (t|x,w). (B.12)

By the conditional independence of θ and θg with W , and the fact that the events

[X = x,W = w] and [U = FX|W (x|w),W = w] are equivalent with each other, the Equation

B.12 can be rewritten as

Ig(x,QΘ|X,W (t|x,w)) = Dg(FX|W (x|w), e) for x ∈ X o
w, e ∈ Θo

x,w (B.13)

and Dg(FX|W (x|w), e) ≡ QΘg |U(FΘ|U(e|u)|u). From the Equation (B.13), if for all e ∈ Θo
x1,w1

,

there exist two distinct points (x1, w1) and (x2, w2) in X ×W such that

FX|W (x1|w1) = FX|W (x2|w2),

then Ig(x1, e) = Ig(x2, e). Consequently, Ig(x, e) is not a function of x and the desired
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point-identification result follows directly. To ensure the existence of such two points, we

use a sequencing argument similar to Torgovitsky (2015). Specifically, since the bidding

days can not be negative, with loss of generality we assume that X = Xw = [ξ,∞) with

ξ ≥ 0. Also for ease of exposition we assume that FX|W (x|1) > FX|W (x|0) for all x > ξ and

FX|W (x|1) = FX|W (x|0) for x = ξ, and Θx,w = Θ. Define a mapping π : X 7→ X such that

π(x) = QX|W (FX|W (x|0), 1),

which satisfies FX|W (π(x)|1) = FX|W (x|0). Pick an arbitrary point x0 > ξ and define a

sequence {xn}∞n=0 such that xn+1 = π(xn). Since

π(x) = QX|W (FX|W (x|0), 1) < QX|W (FX|W (x|1), 1) = x

for all x ∈ X , the sequence {xn}∞n=0 is decreasing. Therefore by Monotone Convergence

Theorem and the fact that FX|W (x|1) > FX|W (x|0) for all x except x = ξ, limn→∞ xn = ξ.

Figure B.5 in Appendix B.2 provides a graphic illustration of the convergence of sequence

{xn}∞n=0. Then A straightforward application of the Continuous Mapping Theorem implies

that

FX|W

(
lim
n→∞

xn|1
)

= FX|W

(
lim
n→∞

xn|0
)
.

Since Ig(x, e) is continuous and FX|W (π(x)|1) = FX|W (x|0), again by Continuous Map-

ping Theorem,

Ig(x0, e) = Ig(x1, e) = · · · = Ig(ξ, e). (B.14)

Since x0 is arbitrarily chosen, (B.14) implies that there exist two distinct points (x0, w0)

and (ξ, wξ) such that Ig(x0, e) = Ig(ξ, e) = Jg(e) for all x > ξ and e ∈ Θo. From the previous

discussion we know g∗ is point-identified. �
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B.1.4 Additional details on the empirical application

Expression of M̂jk

M̂jk ≡ cujx
B
jk − E

[
(1 + εj)C(xAjk, θ̂jk)− ρj · (xBjk − xAjk)

]
= cujx

B
jk +

∫ εij

−1

[
(1 + εj)C(xijk, θjk)− ij · (xBjk − xijk)

]
dF (εj)

+

∫ εdjk

εijk

[
(1 + εj)C(xBjk, θjk)

]
dF (εj)

+

∫ 1

εdjk

[
(1 + εj)C(xdjk, θjk)− dj · (xBjk − xdjk)

]
dF (εj).

in which

C(·, θjk) = α(· − xEj )2 + (βθjk + γzjk)(· − xEj ) + φ

xijk =− 1

2α

( ij
1 + εj

+ βθjk + γzjk

)
+ xEj

xdjk =− 1

2α

( dj
1 + εj

+ βθjk + γzjk

)
+ xEj

εijk = − 1− ij
2α(xBjk − xEj ) + βθjk + γzjk

εdjk = − 1− dj
2α(xBjk − xEj ) + βθjk + γzjk

ij = awj = acuj

dj = bwj = bcuj

and the parameters satisfy α > 0, β < 0, 0 < λ < 1, and 0 < a < 1 < b.
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B.2 Figures

Figure B.1: Timing of events and the contractor’s decisions
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Figure B.2: Actual working days may deviate from bidding days
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Figure B.3: Actual working days in the case of without uncertainties
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Figure B.4: Inefficiency under uncertainties
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Figure B.5: Illustration of the identification of function g∗

days

1

x2

f2

x0

f0

x1

f1

ξ

FX|W (·|0)

FX|W (·|1)

132



Figure B.6: Descriptive evidence of discrepancy
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Figure B.7: Density of the residuals
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Figure B.8: Ex-ante and ex-post inefficiency
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Figure B.9: Model fit: bidding days
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Figure B.10: Model fit: actual working days
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B.3 Tables

Table B.1: Summary statistics

Variable Mean Std. Dev. Min Max
engineer’s costs estimate (million $) 21.90 29.20 0.860 198.0
engineer’s days estimate 313.6 202.8 45 1000
usercost ($) 14815 15367 1800 93985
bidding costs (million $) 19.90 28.20 0.698 178.0
bidding days 190.1 153.4 25 813
actual working days 183.9 139.4 22 696
number of bidders 5.463 2.565 1 14
distance (miles) 65.04 127.8 1.908 802.1
firm capacity (million $) 70.20 77.40 0 285.0
instate contractor (binary) 0.975 0.157 0 1
federal contract (binary) 0.813 0.393 0 1
daily traffic (vehicles) 117768 74062 2525 284000
lane closure fraction (%) 44.9 10.9 25.0 87.5
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Table B.2: The first stage estimation results

(1) (2) (3)
Constant 0.740∗∗∗ 0.790∗∗∗ 0.783∗∗∗

(0.0625) (0.0756) (0.0783)

Capdummy(>$50M) -0.0584∗ -0.0550∗ -0.0559∗
(0.0309) (0.0308) (0.0310)

Distance/Estimated Bidding Days -0.00645 -0.0299 -0.0311
(0.0252) (0.0413) (0.0413)

Usercost/Estimated Bidding Days 0.0000307 0.000396 0.000405
(0.000212) (0.000275) (0.000279)

In-state Contractor 0.0597 0.0151 0.0153
(0.0548) (0.0671) (0.0673)

Number of Bidders -0.0133∗∗∗ -0.0133∗∗∗ -0.0132∗∗∗
(0.00314) (0.00318) (0.00318)

Distance 0.0000547 0.0000578
(0.000142) (0.000141)

Usercost -0.00000195∗∗ -0.00000202∗∗
(0.000000823) (0.000000851)

Federal Contract 0.00967
(0.0238)

Observations 424 424 424
R2 0.049 0.057 0.058

Notes: (a) Standard errors in parentheses; (b) ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B.3: The second stage estimation results

(1) (2) (3)
Constant 1.020∗∗∗ 1.088∗∗∗ 1.090∗∗∗

(0.0511) (0.0725) (0.0749)

Capdummy(>$50M) -0.0749∗∗∗ -0.0767∗∗∗ -0.0765∗∗∗
(0.0288) (0.0276) (0.0278)

Distance/Estimated Bidding Score 2696.6∗∗ 1148.0 1155.6
(1189.9) (1280.5) (1307.6)

Usercost/Estimated Bidding Score -9.450 3.744 3.505
(21.13) (20.03) (19.64)

In-state Contractor 0.143∗∗∗ 0.107∗ 0.107∗
(0.0436) (0.0598) (0.0598)

Number of Bidders -0.0289∗∗∗ -0.0296∗∗∗ -0.0296∗∗∗
(0.00284) (0.00289) (0.00291)

Distance 0.000123 0.000123
(0.000114) (0.000115)

Usercost -0.00000274∗∗∗ -0.00000273∗∗∗
(0.000000692) (0.000000709)

Federal Contract -0.00214
(0.0255)

Observations 424 424 424
R2 0.176 0.199 0.199

Notes: (a) Standard errors in parentheses; (b) ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B.4: Structural estimation results

Parameters Estimates
(1) (2) (3)

α1 202.709∗∗ 193.331∗∗∗ 221.303∗∗∗
(89.447) (54.174) (50.301)

α2 -204761.468∗∗∗ -189668.128∗∗∗ -207967.317∗∗∗
(72359.927) (38137.009) (36231.117)

β1 (distance) -5.766∗∗ -3.073∗∗∗ -2.468∗∗∗
(2.358) (0.875) (0.953)

Cost Function β2 (firm capacity) 46.485 42.343 24.871
(1592.820) (1512.216) (1386.748)

β3 (in-state contractor) -5387.479 -5865.766∗ -3163.878
(5593.719) (3476.555) (3808.598)

β4 (federal contract) -33664.011∗∗∗ -28416.266∗∗∗ -31557.521∗∗∗
(11488.394) (6281.580) (6542.208)

φ 528.504 761.566 183.079
(42134.626) (34286.920) (189628.219)

Incentive/Disincentive a 0.230∗∗ 0.215∗∗ 0.197∗∗
(0.107) (0.092) (0.093)

b 8.161∗∗∗ 7.355∗∗∗ 7.698∗∗∗
(2.933) (1.593) (1.596)

σε 0.174∗∗∗ 0.164∗∗∗ 0.175∗∗∗
(0.057) (0.029) (0.027)

Notes: (a) Columns (1), (2) and (3) reports estimates based on the first and second stage estimates from specifica-
tions (1), (2) and (3) in Table B.2 and B.3, respectively; (b) Standard errors in parentheses are calculated using 500
bootstrap samples; (c) ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table B.5: Welfare analysis for the A+B mechanism

Inefficiency Percentage Average Welfare Loss (million $)
(1) (2) (3) (1) (2) (3)

Ex-ante Inefficiency 65.33% 66.67% 66.67% 1.536 1.345 1.397
(64.0%, 66.7%) (65.33%, 69.33%) (65.33%, 68.0%) (0.674, 1.891) (0.640, 1.744) (0.612, 1.588)

Ex-post Inefficiency 60.0% 56.0% 53.33% 3.220 3.413 3.746
(52.70%, 97.30%) (51.35%, 95.95%) (51.35%, 95.95%) (2.093, 9.738) (2.405, 10.037) (2.966, 11.194)

Notes: (a) Columns (1), (2) and (3) reports inefficiency percentage and average welfare loss calculated from estimates in specifications (1), (2) and (3) in
Table B.4; (b) 95% confidence intervals in parentheses are calculated using 500 bootstrap samples.
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Table B.6: Model fit: regression results

(a) Bidding days

Bidding Days in Data
(1) (2) (3)

Simulated Bidding Days 1.004∗∗∗ 1.028∗∗∗ 1.030∗∗∗
(0.0463) (0.0474) (0.0465)

Constant -2.002 -5.432 -5.833
(8.106) (8.250) (8.102)

Observations 424 424 424
R2 0.784 0.783 0.786

Notes: (a) Columns (1), (2) and (3) reports estimates based on structural estimates from specifications (1),
(2) and (3) in Table B.4, respectively; (b) Standard errors in parentheses; (c) ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗
p < 0.01.

(b) Working days

Actual Working Days in Data
(1) (2) (3)

Simulated Actual Working Days 0.834∗∗∗ 0.837∗∗∗ 0.831∗∗∗
(0.0756) (0.0747) (0.0900)

Constant -2.137 -2.966 -0.920
(14.71) (14.62) (16.26)

Observations 75 75 75
R2 0.746 0.739 0.697

Notes: (a) Columns (1), (2) and (3) reports estimates based on structural estimates from specifications (1),
(2) and (3) in Table B.4, respectively; (b) Standard errors in parentheses; (c) ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗
p < 0.01.
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Table B.7: Counterfactual analysis

Current policy Lane rental A design
(1) (2) (3) (1) (2) (3) (1) (2) (3)

Ex-ante Inefficiency Percentage 81.3% 81.5% 81.6% 18.2% 20.1% 21.9% 8.2% 7.8% 10.1%
(73.3%, 88.0%) (73.3%, 89.3%) (74.7%, 88.0%) (13.3%, 21.3%) (16.0%, 25.3%) (17.3%, 26.7%) (5.3%, 10.7%) (5.3%, 10.7%) (6.7%, 13.3%)

Ex-ante Average Welfare Loss (million $) 3.702 3.345 3.622 2.821 2.854 3.287 0.980 0.849 1.166
(2.848, 4.675) (2.621, 3.943) (2.849, 4.615) (1.707, 3.833) (1.959, 3.943) (2.269, 4.500) (0.394, 1.757) (0.351, 1.598) (0.547, 2.060)

Ex-post Inefficiency Percentage 100.0% 100.0% 100.0% 0.0% 0.0% 0.0% 100.0% 100.0% 100.0%
- - - - - - - - -

Ex-post Average Welfare Loss (million $) 4.580 3.891 3.933 0.000 0.000 0.000 0.281 0.306 0.280
(4.258, 4.948) (3.607, 4.172) (3.689, 4.225) - - - (0.252, 0.324) (0.276, 0.354) (0.250, 0.323)

Notes : (a) Counterfactual welfare analysis under different policies. Current policy is the original A+B contracting design. Lane rental is A+B design with linear incentive contracting. A design
represents time incentive contracting in A design, i.e., bidders only bid price during the auction stage. (b) 95% confidence intervals in parentheses are simulated 500 times.
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