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ABSTRACT 

 

Exposure to fine particular matter (PM2.5) is associated with various adverse health 

outcomes, including cardiovascular disease, cancer and respiratory related diseases. 

Reducing exposure assessment errors for epidemiologic studies, and facilitating new 

models of community-engaged research may benefit from improved understanding of the 

spatiotemporal distribution of PM with respect to mobile and stationary sources of 

particular emissions. In this study, the performance of a low-cost PM monitor based on 

the Shinyei PPD42NS PM sensor was tested and calibrated with a beta-attenuation based 

reference PM2.5 monitor (BAM-1020) in two Chinese cities (Nanjing and Chengdu) using 

linear, power-law and artificial neural network (ANN) approaches. The first eight months’ 

data in Nanjing showed that the low-cost monitor can provide reasonably accurate 

estimation of hourly PM2.5 under non-condensing conditions (RH<95%). Among all three 

calibration methods, the ANN approach shows the highest correlation between the 

estimated and BAM-1020 measured hourly PM2.5 (R2=0.76). PM2.5 estimated from the 

power-law equation demonstrates a slightly better agreement (R2=0.70) with BAM-1020 

hourly PM2.5 than linear fit method (R2=0.68). Approximately 73% of the hourly PM2.5 

estimated by the low-cost monitor with the ANN calibration approach is within the low-

cost monitor performance guideline of the Ministry of Environment of China, which is 

better than linear and power-law approaches (approximately 64% and 67%, respectively). 

The better performance of ANN is mainly due to including temperature and relative 

humidity (RH) as input data in addition to the raw sensor output of Low-pulse Occupancy 
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Ratio (LOR). The performance of the low-cost monitor deteriorates after 5-6 months on 

continuous operation in polluted environments. R2 for the first, second and third four-

month periods based on the ANN approach are 0.80, 0.64 and 0.24, respectively. This 

suggests that regular replacement or cleaning of the PM optical sensing unit is needed to 

use the low-cost monitor for long-term community monitoring. However, in terms of 

monthly average concentrations, the low-cost monitor has a small error of 10%, even after 

long operation periods. The consistency of the low-cost sensors is also tested in this study. 

Poor correlation in sensor raw readings was found among three collocated low-cost 

monitors.  This suggests that a screening of the sensors of consistency is needed to ensure 

consistent results. Also, the calibration parameters developed using the low-cost monitor 

data collected in Nanjing do not lead to good estimations of PM2.5 when sensor data in 

Chengdu are used.  Variation of the sensor-to-sensor responses or different weather 

conditions are possible causes, but the root cause of the problem is still unclear and 

requires more investigation.  
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NOMENCLATURE 
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MLR Multi Linear Regression 
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1 INTRODUCTION 

1.1 Statement of Problems 

 

Air pollution has caused a significant amount of health related problems. In 

2014, 92% of the world population lived in the places that did not meet WHO air 

quality guideline requirements (WHO, 2016). There are over 3.2 million premature 

deaths and more than 76 million people lost disability-adjusted life time each year 

(Hankey, Marshall, & Brauer, 2012; Lim et al., 2012). The rapid Chinese economic 

growth, in which GDP grew on average 10% each year for over a decade, has come at 

the expense of its environment and public health (Xu, 2016). The average annual 

exposure to PM2.5 in 272 Chinese cities was 56 µg/m³, significantly above the WHO 

air quality guideline of 10 µg/m³. For each 10 µg/m³ increase in air pollution, there 

will be a 0.29 percent increase in all respiratory mortality and a 0.38 percent increase 

in chronic obstructive pulmonary disease (COPD) mortality. (Chen et al., 2017). 

Among all the air pollutants, PM2.5 and ozone are ranking high on the health burden 

factor list around the world (Holstius, Pillarisetti, Smith, & Seto, 2014). 

Therefore, it is crucial to monitor the real time air quality. In the urban areas 

of many developed countries, there might be one air quality monitoring station that 

covers about 100,000 people, whereas in the cities of some severely polluted 

developing countries, one air quality monitoring station might cover millions of 

people. For instance, there are about 300 monitoring stations in the United Kingdom, 

but only around 600 monitoring sites in India (DEFRA, 2011; CPCB, 2017). Same 
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problem was in China with only about 1500 air quality monitoring sites covering over 

190 cities in 2015 (Rohde & Muller, 2015). The existing air quality monitoring 

infrastructure cannot fulfill the need to characterize urban PM2.5 concentrations spatial 

and temporal variability (Holstius et al., 2014).  

At the same time, most of the existing air quality measurement devices are 

made for professionals. They are expensive and are normally not accessible to the 

general public. Because of this need, small, low-cost and portable air quality detection 

devices have a great market potential. Also they can greatly improve the ability to 

generate higher resolution of spatial and temporal aerosol concentrations with a fairly 

low system cost. The data collected from this low-cost monitoring system can be 

utilized for supplementing the official air pollution monitors and provide a better 

understanding of exposure estimates to raise air pollution awareness in communities. 

(Abraham & Li, 2016) 

However, data quality is a major concern of these low-cost monitors. Several 

studies have begun to investigate the utility of low-cost monitors in charactering 

outdoor and indoor air pollutant levels (Klepeis et al., 2013; Snyder et al., 2013). 

Unreliable data may mislead the users to make inappropriate decisions, such as 

outdoor activities, school cancellation, etc. For data quality assurance, sensor 

calibration process is necessary. It includes routine laboratory calibration under certain 

conditions by the end-user. For large sensor systems, it is more practical to utilize 

statistical techniques for data quality assurance. Before using low cost sensors, their 

characteristics need to be first understood. For instance, detection limit, range of 
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concentration, influence of temperature and relative humidity, consistency between 

individual sensors, temporal variation sensitivity, etc.  

 

1.2 Background 

 
 

There has been a considerable amount of previous academic researches on low 

cost particular matter sensors. Major themes of this study are outlined as following:  

• Build of the low-cost air quality monitoring platforms.  

• The performance of low cost sensors & data quality analysis with    

consideration of potential factors, such as temperature and relative humidity.  

• Nonlinear regression and artificial neural network techniques used to 

correlate sensor reading with particulate matter reading from reference 

instruments.  

1.2.1 Build of the Low-Cost Air Quality Monitoring System  

 

There are many different custom-build low cost air quality monitoring 

platforms. For instance, Portable and Affordable Nephelometric Data Acquisition 

System (PANDA), Village Green Project (VGP), Portable University of Washington 

Particle (PUWP) and a lot more (Gao, Cao, & Seto, 2015; Holstius et al., 2014; Jiao 

et al., 2015). The design considerations for most platforms included: (1) compact 

physical size and structural design supporting their portability, (2) enabling real-time 

data acquisition for air pollution monitors, (3) wireless communication features, (4) 
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components are commercially available to smooth technology transfer and increase 

system flexibility, (5) collected data quality assurance.  

The platforms included in the above studies always operate alongside an 

officially approved reference instrument. Beta Attenuation Monitors (BAM-1020) is 

a very popular EPA federal equivalent method (FEM) reference instrument for PM2.5 

and PM10. Tapered element oscillating microbalance (TEOM) is often used to evaluate 

the accuracy of low cost sensors’ measurements as well. TEOM based instruments 

have been approved by US EPA for air quality monitoring as well (Taylor, 2016). 

The most essential component of a platform is the low-cost sensor, which is 

the one of the central topics of this study. Shinyei PPD42NS and Sharp GP2Y are two 

of the preferred sensors used by varies researchers. The PPD42NS sensor has a 

partially enclosed chamber with a single light emitting diode, a plastic lens, and an 

optical receiver at a forward angle of approximately 45 degrees. It also comes with a 

removable cap, which makes it easier to swab residue off the lens. The details are 

showed in Figure 1-1. The Sharp GP2Y contains an infrared emitting diode (IRED) 

and a phototransistor. The IRED illuminate particles in the air flow with a 10ms pulse 

driven waveform with a duty ratio of 0.032. Scattered light intensity is converted to a 

0-3.5 V analog signal by phototransistor (Li & Biswas, 2017). Both of the sensors cost 

less than 15 US dollars.  
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Figure 1-1. Inside the Shinyei PPD42NS (Michael, 2013). It demonstrates the structure 
of PPD42NS sensor and the function of each component.  

 

 
Figure 1-2. Inside the Sharp GP2Y Dust Sensor (mybotic, 2016). It demonstrates the 
structure of Sharp sensor and the function of each component.  
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1.2.2 Sensor Performance and Data Quality 

A good amount of studies has been reported on the performance of low cost 

optical PM sensors (Austin, Novosselov, Seto, & Yost, 2015; Holstius et al., 2014; 

Sousan et al., 2016; Wang et al., 2015). Most of the studies found a good linear relation 

between the readings of optical PM sensors and PM mass concentration from non-

FEM instruments, such as SidePak or DustTrak (Amaral, de Carvalho, Costa, & 

Pinheiro, 2015), scanning mobility particle sizers (SMPSs) and aerodynamic particle 

sizers (APS) (Sioutas, Abt, Wolfson, & Koutrakis, 1999). However, using SidePak 

and DustTrak as reference instrument is problematic, because both are photometric 

sensors and all PM sensors used in previous studies are based on the same principle, 

which means if the principle itself has problem, then all the sensors could not 

sufficiently show the problem (Liu, Zhang, Jiang, & Chen, 2017). SMPS and APS 

estimated PM mass concentration from number-based particle size distributions under 

the assumption that particles are spherical and particle density is known. The 

measuring cycle of SMPS/APS with some low-cost PM sensors may different, which 

could bring another issue that is the time delay between the responses of reference and 

evaluated PM sensors. Time delay could result in potential error during the sensor 

performance calibration process. Therefore, calibrate PM sensors in laboratory by 

using proper reference instruments such as BAM-1020 and TEOM can provide high 
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accuracy measurements and they are independent of the size composition and 

distribution of particulate matter.  

The specification of low cost and portable PM sensors, such as model size, 

sampling method, detection principle, detectable size range, concentration range and 

output signal, were tested in a previous study (Liu et al., 2017). Four low cost optical 

PM sensors, Shinyei PPD42NS, Samyoung DSM501A, Sharp GP2Y1010AU0F and 

Oneair CP-15-A4, were selected because of their compact sizes and popularity. All 

these optical PM sensors are based on light scattering technique. Thermal-driven 

upwind flows are generated in both Shinyei and Samyoung PM Sensors. Different 

from Shinyei and Samyoung, the Oneair sensor has a build-in fan to move particles 

through the sensing volume. However, the Sharp sensor only relies on diffusion to 

move particles through the sensor. Their results showed that the responses of all tested 

PM sensors have a linear relationship with particle mass concentration, but the 

composition of particles had a significant effect on the performance of optical PM 

sensors.    

Study shows that a simple linear function is generally sufficient to provide 

moderate to high correlation coefficient values when the sensor response was 

calibrated with the reference measurements (Rai et al., 2017). However, a few other 

investigations (Austin et al., 2015; Kelly & Sukhatme, 2017; Manikonda, Zikova, 

Hopke, & Ferro, 2016; Wang et al., 2015) have reported that the sensor response 

started to saturate at high particle concentrations (higher than 50-100 µg m-3) so that 

other data fitting methods, such as power-law or higher order polynomial functions 
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(Rai et al., 2017), will be needed to correlate the measurements. Therefore, it is 

essential to choose an appropriate method to calibrate particular sensors. 

Low cost sensors typically perform better (with high R2 values) under 

laboratory conditions (R2 ranges from 0.7 to almost 1) compared with field condition 

(R2 ranges from 0.4 to nearly 1). The deteriorated performance in the real-world 

condition is because of changing particle composition, sizes and the variation of 

environmental factors. Thus, on-site calibration is very important and laboratory 

calibrated sensors should not be used directly in field measurement (Rai et al., 2017). 

Furthermore, study shows that small variations in the sensor specifications may lead 

to significant differences in their responses (Hojaiji, Kalantarian, Bui, King, & 

Sarrafzadeh, 2017), the variation of the sensors needs to be better understood by co-

located field measurements.  

Before analyzing the data collected by low-cost sensors, all measurements 

were first time-matched to the nearest second (Austin et al., 2015). The sensor data 

were collected over 5-second intervals. Spline function was used to interpolate 

concentrations between the 5-second slots. The Shinyei PPD42NS sensors collect data 

for 1 second intervals. After being time-matched, the data were averaged to every 2-

minute. 

Coefficients of determination were used to quantify and compare the strengths 

of correlations for pairwise data. Empirical and simulated R2 were computed for two 

collocated BAM-1020 to give the range of 1-hour integration R2 values. Root mean 

squared errors (RMSE) were computed to provide the accuracy of linear calibrations 
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(Holstius et al., 2014). Shinyei PPD42NS sensor was used in the same study to test the 

performance of the sensor when compared with reference instruments.  The results 

showed high correlations between individual low-cost monitors and reference 

instrument. The accuracies of linear models based on each monitor were essentially 

the same (RMSE for PANDAs, GRIMM, Dylos, and DustTrak = 3.4-3.6; 3.4 and 3.5; 

and 3.5 µg m-3 respectively). Given the substantial cost differences, the agreement of 

PANDAs and commercially available devices was outstanding (Holstius et al., 2014). 

Similar study (Wang et al., 2015) has been done to evaluate the calibration methods 

of three low cost sensors, Shinyei PPD42NS, Samsung DSM501A and Sharp GP2Y. 

The response of the three sensors agreed well on particle mass concentration fall in the 

range of 0-1000 µg m-3. The correlations of the sensors were higher than 0.78 after 

pairwise output readings. 

The limit of detection (LOD) of the Shinyei sensor was calculated based on 

348 observations for which the measurement was 1 µg/m3 or less (Austin et al., 2015). 

The result proves that LOD of Shinyei is low enough to make it an appropriate sensor 

in most ambient and indoor conditions. Same study also shows that the precision of 

Shinyei sensors is quite high with extremely small standard deviation estimated for the 

slope and high R2. This also indicates that the accuracy of Shinyei PPD42NS, when 

idiomatic sensor response is accounted for, is acceptable for wide deployment. 

Relative humidity affected the performance of particle sensors in different 

ways. Water in the air may absorb infrared radiation and cause an overestimation of 

particle mass concentration because of the lessened light intensity. Also, high water 
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vapor content in the air could cause malfunction of the sensors. Last but not least, the 

reference instrument may also generate inaccurate outputs under high humidity 

conditions (Wang et al., 2015). Environmental factors, such as relative humidity, 

temperature and light, have been assessed by several studies (Austin et al., 2015; 

Hojaiji et al., 2017; Manikonda et al., 2016; Rai et al., 2017). For instance, an 

environmental chamber was used to study the effect of changing environmental factors 

on the performance of low-cost sensors (Wang et al., 2015). The study compared the 

outputs under different temperature and relative humidity conditions, while 

maintaining similar PM mass concentration. As they increased relative humidity from 

20% to 67%, sensor output (Low Pulse Occupancy) first increased by 7-8% and then 

decreased 15% when relative humidity rose from 75% to 90%. Whereas the impact of 

temperature on sensor was ignorable compared to relative humidity.  

Similar study showed that temperature and relative humidity had a large effect 

on output dust concentrations (Hojaiji et al., 2017). The results demonstrated that 

Shinyei sensor was less sensitive in high humidity conditions. The possible reasons 

for changing output with different relative humidity can be explained by (1) water 

absorbs radiation and results an overestimation of particle concentration, (2) 

inappropriate reference instrument used under high relative humidity. For example, 

scanning mobility particle sizers (SMPS). (3) possible failure of particle sensors at 

high relative humidity (Wang et al., 2015).  

However, there are other investigations showing environmental factors such as 

temperature and relative humidity have negligible effect on sensor output (Bart et al., 
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2014; Holstius et al., 2014; Jiao et al., 2015). (Holstius et al., 2014) averaged hourly 

data from the reference instrument (BAM-1020), using only Temperature, Relative 

Humidity and Light as predictors, served as negative controls: if there is no confound 

data, there should be no association. They found that variability in 1-hour BAM output 

cannot be explained by light or temperature. Though 1-hour relative humidity had 

some ability to predict 1-hour BAM responses.  

 
1.2.3 Neural Network Account for Temperature and Relative Humidity 

 

Artificial Neural Network (ANN) has been widely used to solve non-linear 

data fitting problems, which do not have explicit equations between dependent and 

independent variables.  

 

!"#$	&'2.5 = ,(./0	.$/12345, !, .7,… ) 

 

As demonstrated in Figure 1-2, ANN is based on many connected nodes or so 

called artificial neurons. The neurons between each connection can transmit signals to 

each other. The number of hidden neurons was determined through a series of neural 

network configurations with 1 to 100 neurons. Model performs better with 10-50 

hidden neurons (Zu et al., 2017). Generally, the signals between connections are real 

numbers, and the output of neurons is calculated by using a non-linear function to sum 

up the corresponding inputs. Typically, neurons and connections have a weight that 

can be adjusted with the learning process. Data or signals are transferred from one 
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layer to another via several series processes. Input layer contains input parameters. 

Hidden layers evaluate input parameters by different algorithms and transfer them to 

output layer (Ozkan, 2010).  

Recent studies applied statistical techniques to predict PM concentrations by 

using the readings of other pollutants or the past measurements. ANN is one of the 

leading statistical techniques to make predictions and its pattern recognition function 

can be well applied in environmental field. Studies also showed that ANN generally 

performed better than other prediction models. (Park et al., 2018) 

 

 
Figure 1-3. Artificial Neural Network System (Dormehl, 2017). It explains what is 
artificial neural network and the principle behind neural network.  

 
In the US, EPA developed the Models-3 Community Multi-Scale Air Quality 

system (CMAQ) to provide 24-48 hours’ air quality forecasts. Because of its ability to 

model different pollutants independently, CMAQ has been widely used for modeling 

air pollution for nearly two decades. The CMAQ forecast function was compared with 

Artificial Neural Network. The result showed that ANN generally results more 
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accurate prediction of future pollution levels for a single grid cell (Lightstone, 

Moshary, & Gross, 2017). However, it is limited in predicting extreme events.  

To set up the Neural Network, the collected PM2.5 data were used as the input. 

The neural network was created and tested using historical data. The input includes 

surface air temperature, surface pressure, planetary boundary layer height (PBLH), 

relative humidity and horizontal wind. Seasonal variation was taken into account as 

an input as well. In order to optimize the neural network performance, some 

preliminary tests were done to better use meteorological input variables. The most 

obvious result was the dramatic improvement of neural network during night and 

morning hours, where CMAQ model has the most trouble with. This is because of the 

machine learning approach in neural network, where the input, forecast periods, time 

have a significant effect on output performance (Lightstone et al., 2017).  

Researchers (Zu et al., 2017) developed artificial neural network by using the 

fitnet and train functions in MATLAB. The levenberg-Marquardt network was 

deployed using 10 hidden nodes. As a means to provide better and more reliable 

predictions, 20 neural networks were trained and averaged to give final prediction. 

Compared to Multi Linear Regression (MLR) analysis, the ANN matches the 

measured concentration better, with R2 of 0.74 and root mean square error (RMSE) of 

32.05. However, the model still has difficulties to predict well under high pollutant 

levels.  
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1.3 Research Objectives  

 

The objective of this study is to test the performance of custom-built low-cost 

monitor with Shinyei PPD42NS sensor by using different data fitting methods to 

compare the collected output with reference instrument values in two Chinese cities: 

Nanjing and Chengdu.  

There are extensive researches on comparing low cost gas sensors and 

calibrating data with artificial neural network, but very few of them combined these 

two aspects together. Further, low-cost sensor (Shinyei PPD42NS) has been tested not 

performing well under laboratory high relative humidity conditions, but rarely tested 

under real world conditions.  

In this study, we will be looking at two different sites (Chengdu, Sichuan 

Province and Nanjing, Jiangsu Province) in China. Chengdu is located in one of the 

most polluted and humid regions in China. The primary air pollutants were PM2.5 and 

PM10, with annual concentration 7 times higher than the WHO guideline values. 

Nanjing is located in the Yangtze River Delta – one of the most economic developed 

regions in China, and is suffering from poor air quality as well (Qiao, Jaffe, Tang, 

Bresnahan, & Song, 2015). We deployed one low-cost monitor in Chengdu and 

another three monitors side by side in Nanjing. More details of the data collection and 

analyses are documented in Chapter 2.   
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2 FIELD CALIBRATION OF LOW-COST AIR QUALITY MONITOR 

2.1 Introduction 

Particular matter is a mixture of particles which differ in size and composition. 

It is generated by a wide variety of nature and anthropogenic activities. According to 

WHO, particular matter is a mixture of solid and liquid particles of inorganic and 

organic substance suspended into the air. It could be dust, smoke, ash, soot, exhaust 

particles and other particles (WHO, 2016).  As mentioned in the previous chapter, 

portable low-cost PM monitors could substantially improve the resolution of spatial 

and temporal aerosol concentrations. The data collected from these monitors could be 

utilized for supplementing the officially approved air quality monitors. However, 

many researchers expressed concerns over the quality of data from low-cost PM 

sensors and the consistency of the sensor performance. Extensive field calibration of 

these low-cost monitors with reference instruments to understand their performances 

under different environmental conditions and their operational lifespan are essential in 

wide applications of these potentially very useful instruments in environmental quality 

and epidemiology studies.  Previously, a low-cost optical aerosol sensor Shinyei 

PPD42NS was calibrated with official approved air quality monitor conducted by a 

regulatory agency and with some other optical sensors in Xi’an China. The results 
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demonstrated some great benefits of using affordable sensors at some severe polluted 

areas. Also, studies showed the good ability of PPD42NS to capture spatiotemporal 

variabilities in various environmental conditions (Gao et al., 2015).  

 

2.2 Methodology 

2.2.1 Low-Cost Air Quality Monitor  

 

A custom-built low-cost monitor (Figure 2-1) used in this study incorporates 

the Shinyei PPD42NS (Shinyei Corp, 2010) as the PM sensor. It also incorporates a 

temperature and relative humidity sensor (DHT22), a real time clock (RTC) module 

(DS3231), an SD card extension board, a mini-fan and a small 1-inch OLED display 

(128x64 pixels).  All these components are controlled by an Arduino MEGA 2560 R3 

microcontroller and placed in a 3D printed ABS case with a dimension 30x15x10 cm3.  

The low-cost monitor can be powered through the 9V or 5V DC connects on the 

Arduino board. The estimated cost of the whole device is about $50-60.   

The Shinyei PPD42NS sensor has been proved to be a reliable sensor in normal 

weather conditions (Austin et al., 2015). The PPD42NS sensor is designed to detect 

particles larger than 1 µm in diameter.  The sensor operates on a 5V (±10%) DC power 

supply.  When the infrared light from the LED light emitter scattered by the particles 

is detected, the voltage on the output pin drops from 4.0V to 0.7V, creating a low 

voltage pulse that has a width of 10-90ms.  The standard operation of the sensor 

requires counting the low pulse occupancy time for at least 30 sec and the fraction of 
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low pulse occupancy time during that accumulation period demonstrates a distinct 

dependency with the number concentration of particles, which is clear from the 

calibration curve shown in the factory specification sheet. Nominally, it has a detection 

limit of 0-2.8×107 particles m-3.  Since the factory calibration curve is for cigarette 

smoke particles, to apply the sensor for ambient air quality monitoring and to report 

particle mass concentrations, it is necessary perform field calibrations to correlate the 

raw low occupancy ratio (LOR) output with particle mass concentrations reported by 

a reference monitor. PPD42NS has two LOR output channels, one for particles greater 

than ~1 µm (LOR1) and the other for particles greater than ~2.5 µm (LOR2). The 

operation environmental conditions are temperature within 0-45°C, and RH less than 

95% (without dew condensation). Study (Gao et al., 2015) shows that there is an 

approximate error of 25% in detecting particles under most of the operational range. 

At very low concentrations, the error becomes enormously larger. For instance, when 

the particle density is less than 100,000 particles per cubic meter, the error could be 

over 50%.  The DHT22 is a relatively low cost temperature and humidity sensor. It 

operates on 5V DC (accepts 3.3-6V). Temperature measurement has a resolution of 

0.1○C and error of < ±0.5○C. RH measurement has a resolution of 0.1% and error of 

±2%. The operation range of the temperature and RH sensors are -40○C – 80○C and 

5% RH - 99%RH, respectively. The DS3231 is a low-cost, extremely accurate RTC 

with an integrated temperature-compensated crystal oscillator (TCXO) and crystal. 

The DS3231 has an error of 2 ppm per day (0.17 seconds per day) under typical 

ambient environment temperature. It communicates with the Arduino broad using the 
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industrial standard I²C interface. This ensures that no additional adjustment of the 

clock is necessary during the expected lifetime of the monitor. The DS3231 used in 

this project has an external battery to ensure continuous operation when power supply 

to the low-cost monitor is disconnected. Programming of the instrument was done 

under the Arduino IDE development environment.     

The low-cost monitors were configured to save two-minute average of LOR1 

and LOR2, and relative humidity and temperature. In addition, instantaneous reading 

of fan speed (rpm) and internal DC voltage (mV) were also recorded.  All recorded 

data are timestamped with time readings from the RTC.      

 

 
 
 
2.2.2 Study Location 

 
We chose two cities in China as our study locations – Chengdu in Sichuan 

Province and Nanjing in Jiangsu Province. As we mentioned, both of the cities are 

Figure 2-1. Custom Build Low-Cost PM2.5 Monitor 
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suffering severe air pollution problems. Chengdu, the provincial capital of Sichuan 

Province, is a mega city located in the west side of the heavily polluted Sichuan Basin 

and the year-round climate is very humid (around 79-84%). Nanjing is sitting next to 

Yangtze River with four-season climate and the yearly average humidity is much 

lower than Chengdu. To calibrate the raw sensor readings and to assess inter-monitor 

variations, three low-cost PM monitors were co-located alongside with a beta-

attenuation monitor (BAM-1020) on the campus of Nanjing University of Information 

Science and Technology (NUIST) in an open field. These three monitors are named 

A001-A003 in the following discussions. Another low-cost monitor was placed on 

campus of Sichuan University in Chengdu, which is also co-located with a BAM-1020 

monitor. The A001 monitor in Nanjing is the first prototype and collected data from 

December 2015 to June 2017. A002 and A003 were made later and collected data from 

July 2016 to June 2017. The low-cost monitor in Chengdu was in operation from July 

2016 to January 2017 

 

2.2.3 Data Analysis 

 

Linear regression, non-linear regression with a power law function and the 

artificial neural network (ANN) technique are used to relate the LOR readings with 

the BAM-1020 readings. The linear regression and power law regression only use 

hourly average LOR1 as the independent variable and the hourly BAM-1020 as the 

dependent variable, as shown in the equation (1) and (2),  
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:;<=.>?@< = /AB.1 + E (1) 

:;<=.>?@< = / AB.1 F (2) 

where :;<=.>?@<  represents hourly concentrations of PM2.5 measured by BAM-1020, and 

a and b are parameters to be determined from the regression analysis.   

The ANN technique has been developed and applied in previous studies 

(Lightstone et al., 2017; Park et al., 2018). It is modified in this study to correlate the 

low-cost monitor raw data (LOR1, LOR2, temperature and RH, and hour of the day) 

with the BAM-1020.  A summary of the technique is provided below. The ANN used 

in this study is a two-layer feed-forward neural network (NN) with one hidden layer.  

The optimal number of neurons in the hidden layer will be determine in this study. The 

fitnet and train functions in MATLAB’s Neural Network Toolbox were used to create 

and train the NNs, respectively. The Levenberg-Marquardt (Hagan & Menhaj, 1994) 

was selected to use in the training function to determine the weight and bias parameters 

for the NN.  An ensemble approach (Hansen & Salamon, 1990) that weight-average 

twenty separately-trained NNs was used to provide a final estimation of PM2.5 from 

the inputs.  This ensemble approach could provide more stable estimations than a 

single NN (Rai et al., 2017).  The weight of each NN (w) in the ensemble was 

determined by minimizing an objective function Q: 

G = :;<=.>,H?@< − 0J:;<=.>,H
@KK,J

=L

JMN

=K

HMN

 (3) 

Where N is the number of hourly PM2.5 data (including both testing data and 

validation data);  :;<=.>,H?@<  is the BAM-1020 reported PM2.5 concentration for the ith 
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data point; :;<=.>,H
@KK,J is the estimated PM2.5 for the ith data point by the mth NN in the 

ensemble. Typically, less than 10 members of the ensemble have a weight factor 

greater than 0.01. Thus, a 20-member ensemble seems sufficient to get optimized 

result and additional members are not likely lead to better performance. In each 

ensemble ANN run, the entire set of ANN model training data were partitioned 

randomly into 70% training data and 30% cross-validation data. The cross-validation 

is an effective way of reducing over-fitting during ANN training. The parameters from 

the trained ANN ensemble were saved in order to make prediction for the PM2.5 in 

other sites. 

The data collected by A001 at NUIST from the first year of operation (From 

December 2015 to December 2016; No data were collected on May, June, August, 

September and October 2016 and the instrument was powered off, leaving only 8 

months of useful data) were used as input data for the correlation analysis. For all three 

correlation analyses, input data were divided into training data (odd number data 

points) and evaluation data (even number data points). Data quality control was 

performed to remove 1) data with hourly RH greater than 95% (as suggested by the 

manufacture), 2) hourly BAM-1020 PM2.5 greater than 800 µg m-3, 3) hours with less 

than 20 valid 2-minute low-cost instrument data. In addition, data points with 

LOR1/LOR2 > 1000 or < 1, or with LOR1/BAM-1020 > 0.5 or LOR1/BAM-1020 < 

0.005 were considered as outliers and were excluded from analysis. Overall, a total 

number of 3610 valid hourly data were used in the analysis.    

 Environmental factors were also investigated to check if low-cost sensor 
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readings were affected by different relative humidity and temperature combinations. 

Last but not least, by considering all datasets in Nanjing, sensor deterioration was 

plotted as well.   

 
2.3 Results and Discussion 

2.3.1 Training Data in Nanjing using linear and non-linear regression  

 

Figure 2-2(a) shows the correlation of hourly averaged raw low-cost sensor 

signal – Low Pulse Occupancy Channel 1 ratio (LOR1) with the reference BAM-1020 

PM2.5 using the odd data points (training data) from the first eight months. Higher 

PM2.5 concentrations are generally higher in the first few months, which is also clear 

from the time series plot of BAM-1020 data in Figure 2-2(b). The analysis shows a 

moderate correlation between LOR1 and the BAM-1020 PM2.5 with a coefficient 

determination R2=0.6847. The maximum LOR1 reading goes to ~20% with a 

corresponding BAM-1020 PM2.5 of ~350 µg m-3.  
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Figure 2-3 shows the power law fit of LOR1 with BAM-1020 PM2.5 using 

equation (2). Simply looking at the coefficient determination R2=0.6290 leaves an 

impression that this non-linear regression does not provide a better fit of the data.  

However, to evaluate if the power law fitting provides a better estimation of PM2.5 

concentrations, it is necessary to compare the estimated PM2.5 with BAM-1020 

PM2.5. The non-linear transformation of the LOR1 to estimated PM2.5 is expected to 

generate a different correlation coefficient.  Using the linear equation (1) to estimate 

PM2.5 from LOR1, however, is going to yield a correlation coefficient with BAM-

1020 PM2.5 the same as shown in Figure 2-2.   

Figure 2-2. (a) Linear regression of LOR1 and BAM-1020 for low-cost monitor A001 on 
NUIST campus in Nanjing, China.  Half of the valid hourly data between December 2015 
and December 2016 (odd number data points; N=1105) were used in this regression 
analysis. The data points were colored to show the number of months the monitor has 
been in operation. Note that no data were collected in May, June, August, September and 
October 2016. Since the monitor was not running during these months, these missing 
months were not counted towards the total operation time. (b) Time series of the first year 
BAM-1020 PM2.5 concentrations for the odd number data used in panel (a). 
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Figure 2-3. Same as Figure 2-2, using non-linear regression for power law equation (2). 

 

As it shows in Figure 2-4 (b), the estimated PM2.5 from LOR1 and the power-

law equation yields the coefficient determinant R2=0.7016, which represents a slight 

improvement from the linear estimation (R2=0.6847). The slope of the regression is 

very close to unity, suggesting that there is little bias in estimating ambient PM2.5 

using the low-cost monitor LOR1 reading and both of the linear and power law 

equation. The number of data points that fall into the ±20 µg m-3 and ±20% area was 

also computed, as it indicated in Table 2-1. It is clear that higher percentage of data 

points with less than 100 µg m-3 will fall into the area than the data points with higher 

PM concentration (66.3% versus 57.2% for linear regression and 69.4% versus 60.9% 

for power law regression). More data points for power law estimations fall into the 

confined area than linear estimations (67.3% over 64.4%), which demonstrated a better 

data fitting ability than linear fit method.  
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Figure 2-4. Linear correlation between low-cost monitor estimated PM2.5 in Nanjing 
using the linear & power law equation (see Figure 2-3) and BAM-1020 PM2.5 for training 
data set.  The two purple lines show the required low-cost monitor performance for gridded 
community PM2.5 monitoring by the Ministry of Environment of China (Agency, 2007): 
an absolute error within ±20 µg/m3 when the reference instrument reading is below 100 
µg/m3 and a relative error within ±20% when the reference instrument reading is above 
100 µg/m3.  The data points were colored to show the number of months the monitor has 
been in operation. 

  

Linear Estimation 

 
Number of Data Points 
With Less Than 100 µg m-
3 

Number of Data Points with 
Higher Than 100µg m-3 

Total 
Percentage 

Within  581 66.3% 131 57.2% 64.4% 
Not Within  295 33.7% 98 42.8% 35.6% 
Total Number  876  229  1105 

Power Law Estimation 
Within 579 69.4% 165 60.9% 67.3% 
Not Within  255 30.6% 106 39.1% 32.7% 
Total Number  834  271  1105 

 

Table 2-1. Comparison of the number and percentage of data points with linear or power 
law estimated PM concentrations that either less or larger than 100µg m-3.  Same method 
was applied to calculate the number and percentage of data points that fall into the 
enclosed area of ±20µg m-3 and ±20% of the linear and power law estimations.  
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Figure 2-5 shows the normalized bias, MNB and MNE for both linear and 

power law fitting method in order to estimate the overall deviation between the 

predicted and measured values. It is clear that the normalized bias for low PM 

concentrations are significantly higher than the higher PM concentrations. Power law 

estimations also demonstrate better results for both MNE and MNB than linear 

estimations, as it indicates in Figure 2-5 (a) and (b). For linear regression method, there 

are 509 out of 1105 data points within ±20% of the normalized bias area, whereas 521 

out of 1105 data points for power law regression method.  

 
 

 

Figure 2-5 Normalized bias between the low-cost monitor PM2.5 and the BAM-1020 
PM2.5 (PM2.5 low-cost monitor – PM2.5 BAM-1020) as a function of the BAM-1020 
PM2.5.  The data points were colored to show the number of months the monitor has been 
in operation. MNE: mean normalized error; MNB: mean normalized bias.  
 

 

Figure 2-6 shows the correlation between ANN estimated PM2.5 and the BAM-

1020 PM2.5 using different number of neurons in the hidden layer. As the number of 

neurons increases from 10 to 20, the coefficient determinant R2 increases from 0.833 to 
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0.865.  Adding more neurons in the hidden layer leads to decreases in R2. Thus, the 

subsequent analyses are based on the results from the 20-neuron setup.    

 

 
 

Figure 2-6. Optimal nodes in hidden layer to avoid both over fitting and under fitting. 

 
Figure 2-7 shows the correlation of neural network estimation with BAM-1020 

reference readings. Neural network shows the highest agreement (R2=0.7597) 

compared with linear fit and power law fit. Most of the data can be observed within 

the area enclosed by the two proposed low-cost monitor performance guidelines. For 

PM concentration less than 100 µg m-3, 600 out of 823 (72.9%) data points are within 

the purple line enclosed area. 210 out of 282 (74.5%) data points fall into the higher 

concentration area. The overall percentage of data points falling into the enclosed area 

is 73.3% for neural network, which is significantly higher than linear and power law 

regression (64.4% and 67.3%, respectively ).  Also, neural network shows better 

prediction results for higher PM concentrations rather than lower concentrations 
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(74.5% compares to 72.9%). However, linear and power law regression show a reverse 

trend, as it mentioned in Table 2-1.  

 

 

Figure 2-7. Same as Figure 2-4. Linear correlation between low-cost monitor estimated 
PM2.5 in Nanjing using artificial neural network and BAM-1020 PM2.5 for training data 
set.   

 

Normalized bias and normalized error for artificial neural network method are 

calculated and shown in Figure 2-8. The normalized error decreases with the increase 

of PM2.5 concentrations. Compared to linear and power law fit, as it demonstrated in 

Figure 2-5, the neural network approach leads to a better estimation of PM2.5 based 

on the statistical measures of MNE (34.82% to 42.06% and 37.73%) and MNB 

(16.18% to 23.69% and 17.26%). 
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Figure 2-8. Same as Figure 2-5. Normalized bias between the low-cost monitor PM2.5 
and the BAM-1020 PM2.5 (PM2.5 low-cost monitor – PM2.5 BAM-1020) as a function 
of the BAM-1020 PM2.5. 
 

2.3.2 Data Evaluation  

 

To evaluate if the parameters for linear, power-law and ANN approaches using 

the training data can be applied to reliably estimate PM2.5 concentrations for other 

data, the odd number of data points from December 2015 to December 2016 generated 

from low-cost monitor A001 were used as inputs.  The estimated hourly PM2.5 

concentrations were compared with BAM-1020 and shown in Figure 2-9. The training 

process is successful as the performance of the three approaches with the evaluation 

data set is similar to what they have achieved with the training data set.  The ANN, as 

it is able to consider the influence of temperature and RH on sensor readings, still 

shows the best performance with R2=0.7565 and 71.5% of the estimated PM2.5 

concentrations are within the low-cost monitor operation guidelines. For linear and 
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power law methods, the percentage of data points fall into the confined area are 65.2% 

and 67.9%. Further, all three approaches demonstrate that lower estimated PM2.5 

concentrations have higher chance to locate in the guideline area than higher 

concentrations. The percentages of data points that are within the low and high PM2.5 

concentrations confined area are (66.25%, 61.16%), (70.64%, 59.7%), (74.2%, 64.4%) 

for linear, power law and ANN approaches. It also performs best in estimating high 

PM2.5 concentrations (> 200 µg m-3) than the other two approaches.  The MNB and 

MNE for high PM2.5 concentrations are (23.28%, 41.71%), (16.93%, 37.51%) and 

(16.23%, 36.45%) for linear, power-law and ANN approaches respectively. While the 

ANN approach shows best performance among the three, the power-law and linear 

equations are relatively easy to implement and could provide acceptable estimations 

as well after calibrating with a reference instrument.  

 

 



 

31 
 

 

 

Figure 2-9. Evaluate the linear (a,b), power law (c,d) and neural network (e,f) approaches 
in estimating PM2.5 concentrations. The even number data points for the first eight 
months between December 2015 and December 2016 were used as input data.  The 
parameters were derived using odd number data points. Panels (a, c, e) show the 
correlation between estimated and BAM-1020 PM2.5, and panels (b, d, f) show 
normalized bias, mean fractional bias and fractional error for the three approaches. 
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2.3.3 Sensor Deterioration Test  

 

From the previous analyses, it is noticed that the agreement of PM2.5 between the 

low-cost monitor estimations and the BAM-1020 measurements in the first few months of 

operation are noticeably better than later months.  The accuracy of the low-cost monitor 

appears to deteriorate in later months.  This deterioration might happen due to aging of the 

electric components and/or accumulation of dust on the surface of the optical components 

as no maintenance was done during the operation of the low-cost monitor.  In order to 

further confirm this, all input data collected by A001 in Nanjing from December 2015 to 

July 2017 are used as inputs to the ANN to estimate PM2.5 and results are compared with 

BAM-1020 measurements. Figure 2-10 shows estimation of all data in Nanjing generated 

by artificial neural network plot against the reference instrument readings. Even after 

considering all data points from December 2015 to June 2017, the sensor still 

demonstrated a moderate performance. By comparing Figure 2-10 (a) through (d), we can 

clearly observe a more dispersal trend for the sensor performance and significant dropping 

of R2 as time goes by. The same conclusion can also be drawn from Figure 2-11. The 

PPD42NS sensor can maintain a good performance within the first 4-5 months’ usage. But 

after operating for several months, it started to get larger normalized bias. It is also 

demonstrated in Table 2-2 that during the first four month of operation, the sensor can still 

generate good results with low MNE, MNB and high R2. The overall agreement of 

monthly average of ANN estimations and the BAM-1020 measurements are acceptable.   
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Figure 2-10. All 14 months of Nanjing data from December 2015 to June 2017 were 
broken down into four periods to check the sensor’s overall performance and potential 
deterioration. Figure 2-10 (a) covers from December 2015 to March 2016, (b) covers 
April, July, November and December of 2016, (c) covers January through March of 2017, 
(d) covers the last three months, which are April, May and June of 2017. The total number 
of data points with relative humidity less than 95% was 3630. 
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Figure 2-11. The normalized bias for all Nanjing data were calculated and plotted for the 
range of -100% to 400%. Different sizes of the circles represent the PM2.5 concentrations 
from reference reading. The sensor had higher normalized bias after 6 months of usage. 

 
 

Month 
BAM 
Avg.  

(µg/m3) 

ANN 
Avg.  

(µg/m3) 
MNB (%) MNE (%) RMSE 

(µg/m3) R2 

Dec 2015 117 115 7.29 21.52 28.53 0.77 
Jan 2016 127 114 -5.32 18.38 24.53 0.87 
Feb 2016 69 94 55.11 56.92 30.98 0.78 
Mar 2016 87 87 18.64 33.04 22.94 0.79 
Apr 2016 65 71 26.64 38.70 23.96 0.52 
Jul 2016 32 33 26.65 50.69 15.67 0.15 

Nov 2016 51 63 55.76 68.62 29.69 0.05 
Dec 2016 70 64 10.92 35.00 28.08 0.57 
Jan 2017 52 58 28.89 38.16 19.54 0.60 
Feb 2017 75 56 -12.81 32.72 31.94 0.32 
Mar 2017 65 59 6.27 34.83 29.17 0.05 
Apr 2017 52 51 14.68 36.40 21.78 0.21 
May 2017 57 49 5.89 43.69 29.27 0.05 
Jun 2017 48 52 16.27 34.79 17.90 0.07 

 

Table 2-2. Comparison of BAM-1020 monthly average, ANN monthly average, MNB, 
MNE, RMSE and R2 for each month of Nanjing data.   
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2.3.4 Chengdu Data 

 

Figure 2-12 compares the estimated PM2.5 with BAM-1020 measurements in 

Chengdu by using different parameters from data training in Nanjing (linear, power law 

regression and artificial neural network.). From Figure 2-12 (a), (c) and (e), data points 

are more dispersed than Figure 2-9 (a), (c) and (e). The low R2 values (R2 = 0.382, 0.415 

and 0.440 for linear, power law and ANN respectively) indicate that the data training 

parameters from Nanjing do not fit well in Chengdu. Figure 2-12 (b), (d), (f) show a much 

higher MNB, MNE in all three methodologies compared to Nanjing. This also proves that 

parameters from Nanjing cannot be directly used to predict PM2.5 concentration levels. 

Therefore, the validity of Chengdu data is tested in this study. The analysis 

processes are essentially the same as the processes in Nanjing. By using the linear, power 

law fitting and ANN equations in section 2.2.3, new parameters are generated and 

compared to the parameters in Nanjing, as it shows in Table 2-3. For the same data training 

method, the parameters in these two cities are different. Based on the linear and power 

law regression parameters (slope, intercept and exponent), both the linear and power law 

equation for Nanjing data are closer to y=x compared to Chengdu, which means the data 

are better correlated in Nanjing. R2 from the same table can further prove that the sensor 

in Nanjing performs better than that in Chengdu.  
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Figure 2-12. Evaluate the data training parameters from the linear (a,b), power law (c,d) 
and neural network (e,f) approaches in Nanjing on estimating PM2.5 concentrations in 
Chengdu. The all Chengdu data between July 2016 and January 2017 were used as input 
data. Panels (a, c, e) show the correlation between estimated and BAM-1020 PM2.5, and 
panels (b, d, f) show normalized bias, mean fractional bias and fractional error for the 
three approaches.  
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 Equations Nanjing Chengdu 
a b R2 a b R2 

Linear Fit :;<=.>?@< = /AB.1 + E 13.0 31.3 0.68 11.7 37.9 0.38 
Power 

Law Fit :;<=.>?@< = / AB.1 F 38.9 0.61 0.70 45.1 0.52 0.42 

ANN :;<=.>?@< = ,(./0	.$/12345, !, .7, … )   0.76   0.69 

 

Table 2-3. Comparison of data training parameters from different methodologies in 
Nanjing and Chengdu. R2 values are used to test which monitoring site gives better 
estimations.  

 
Meteorology conditions such as different temperature and humidity patterns in 

these two cities may potentially affect the performance of the low-cost sensor. As it 

indicated in Figure 2-13, even though the general pattern of relative humidity and 

temperature are similar, the year-round lowest temperature in Nanjing is about 6-7 °C 

colder than Chengdu. Before analyzing meteorology inputs, data screening were first 

conducted following the same rule in Section 2.2.3. More than 60% of Chengdu data were 

excluded from this study, whereas only less than 50% of Nanjing data were excluded.  
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Figure 2-13. Temperature and relative humidity pattern comparison in Nanjing and 
Chengdu.  

 

Table 2-4 and 2-5 showed the comparison of relative humidity and temperature in 

Nanjing and Chengdu. Higher humidity in Chengdu can be observed by comparing the 

median and mean values of relative humidity.  Standard error mean was found lower in 

Nanjing because of larger sampling size. Higher temperature in Chengdu can also be 

observed. 

 

 Nanjing Chengdu 
100% Maximum 95 95 
75.0% Quartile 73 84 
50.0% Median 52 64 
25.0% Quartile 32 38 
0.0% Minimum 1 1 

 Mean 52.3 59.6 
 Std Dev 24.6 26.6 
 Std Err Mean 0.41 0.90 
 Number of Points 3630 874 

 

Table 2-4. Summary statistics for relative humidity in Nanjing and Chengdu 
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 Nanjing Chengdu 
100% Maximum 52 48 
75.0% Quartile 23 24 
50.0% Median 16 17 
25.0% Quartile 10 13 
0.0% Minimum 1 7 

 Mean 16.8 19.2 
 Std Dev 9.4 8.8 
 Std Err Mean 0.15 0.30 
 Number of Points 3630 874 

 

Table 2-5. Summary statistics for temperature in both Nanjing and Chengdu 

 

The different sensor performances in the two cities may also attributed by the 

variability the sensor itself. As it mentioned, three low-cost monitors (A001, A002 and 

A003) with the same sensors were deployed side by side on NUIST campus. Inter-

comparison among all low-cost sensors were conducted in this study. Because the 

operation period for the sensors are different, time-match all the screened data are first 

approached. As it shows in Figure 2-14 (a), (b), (c), the LOR1 for each monitor is not 

correlated each other (the highest R2 is only 0.037), which indicates that the reliability of 

the low-cost sensors is not sufficient enough to generate highly trustworthy results. When 

compares the temperature measurements with each of the low-cost monitor, all sensors 

show a great agreement (the lowest R2 is 0.96), which demonstrates an excellent 

consistency of the temperature sensors, as it shows in panel (d), (e) and (f). Relative 

humidity measurements are compared as well (panel (g), (h) and (i)). Both A001 and A002 

show a high to moderate correlation with A003 (R2=0.82 and 0.55, respectively), whereas, 

A001 and A002 show a poor agreement with each other (R2=0.20).  
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Figure 2-14. Inter-comparison of A001, A002, A003. Panel (a), (b) and (c) show the correlation of sensor raw results (LOR1) 
with each other (A001 vs. A002, A001 vs. A003 and A002 vs. A003). Panel (d), (e) and (f) compare each of the low-cost 
monitor’s temperature readings (the comparison sequence is the same as (a), (b) and (c)). RH readings are compared as well, as 
it shows in panel (g), (h) and (i). The number of points for each monitor is 314.  
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2.3.5 Influence of input parameters on performance of ANN 

 
As it indicated in table 2-6, the number of neural network input parameters were 

tested to find out with how many parameters neural network can generate the best results. 

All five parameters are Hour, Relative Humidity, Temperature, LOR1 and LOR2. The 

result shows that with three input parameters (Relative Humidity, Temperature and 

LOR1), the neural network generates the best estimation with the highest overall and 

training correlation coefficient. The Root Mean Standard Error (RMSE) and Mean 

Normalized Error were also the lowest. Furthermore, the neural network did not perform 

very well after eliminating any of the relative humidity and temperature data.  

 

Number of  
Input Parameters R_train R_all RMSE 

(µg/m3) MNE (%) MNB (%) 

5  0.88 0.87 24.66 0.35 0.15 
4 (w/o HR) 0.87 0.87 24.90 0.34 0.13 
3 (w/o LOR2) 0.88 0.87 24.48 0.34 0.14 
2 (w/o Temp.) 0.85 0.84 26.97 0.38 0.19 
2 (w/o RH) 0.86 0.85 26.22 0.37 0.18 
1 (only LOR1) 0.84 0.84 26.90 0.40 0.22 

 

Table 2-6. Influence of input parameters on the ability of the neural network in estimating 
ambient PM2.5. The initial input data include five parameters, LOR1, LOR2, temperature, 
relative humidity (RH) and hour of the day. In each of the sensitivity simulations, one 
additional parameters were removed. 
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2.4 Conclusion 

 
This study demonstrated that the low-cost PM sensor could be potentially used to 

improve existing PM2.5 sampling networks and as an affordable technology to enhance 

spatiotemporal resolution of PM2.5 datasets in both ambient monitoring networks and 

highly polluted areas. However, the sensor needs to be regularly calibrated with co-located 

reference instrument, such as BAM-1020.   

 Among all three different calibration methods used in this study (linear, power-

law and ANN), ANN approach demonstrates the highest correlation between the sensor 

estimations and BAM-1020 hourly PM2.5 measurements (R2=0.76). PM2.5 estimations 

from power-law equation shows a slightly better correlation than linear fit method 

(R2=0.70 and 0.68 respectively). Further, approximately 73% of ANN estimations are 

located within the Ministry of Environment of China low-cost monitor performance 

guidelines, which is better than linear and power-law methods (~64% and ~67%, 

respectively). The main reason why ANN performs better than the other two approaches 

is that it not only takes the raw sensor output LOR1 as input training data, but also takes 

environmental and other factors into consideration as well. For instance, temperature, 

relative humidity and LOR2, etc.  

The sensor deterioration was found after 5-6 months of continuous operation. All 

Nanjing data are separated into 4 periods with the first two periods have 4 months’ data 

and the last two have 3-month data. The R2 value for each of the four periods are 0.80, 

0.64, 0.24 and 0.13, respectively. Therefore, for long-term use the low-cost sensor, regular 

replacement or cleaning of the PM optical sensor is needed. But on the other hand, 
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compare to the BAM measurements, the monthly average PM concentrations of the sensor 

bas a small error of 10%.  

The inter-comparison of 3 co-located low-cost sensors were conducted in the study 

as well. However, poor correlations of ANN estimations for each sensor were found, 

which demonstrates that one sensor cannot be used to predict another, regards to provide 

consistent results.  

Last but not the least, the calibration parameters developed by using low-cost 

monitor data in Nanjing do not fit well for the low-cost monitor in Chengdu. In addition 

to the sensor variation and environmental conditions, some further investigations need to 

be conducted to find the cause of this phenomenon.  

 There are some limitations in this study. More works are required to better 

understand the sensor’s technological limitations and under what environmental 

conditions these sensors could be used. In addition, this study did not examine the potential 

effect of particles’ chemical and optical compositions, seasonal variations on the low-cost 

monitor detection and calibration.  
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APPENDIX A. SHINYEI PPD42NS SPECIFICATION 

 
Items Min Norm Max Unit 
VCC 4.75 - 5.25 V 

Standby Current Supply - 90 - mA 

Detectable Range of 
Concentration - 0 ~ 28,000/ 0 ~ 8000 - 

 

pcs/liter or 
pcs/0.01cf 

 
Operating Temperature 

Range 0 - 45 °C 

Output Method Negative Logic, Digital output, Hi over 4.0V(Rev.2) Lo: 
under 0.7V 

Detecting the Particle 
Diameter >1 um 

Dimensions 59(W) × 45(H) × 22(D) [mm] 
Humidity Range 95%rh or less 

 




