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ABSTRACT 

 

An extended least square method for reflection analysis that separates long-crested or 

short-crested wave fields into the incident and reflected components from the measured wave 

surface elevations and from other wave parameters is presented. This method uses the least 

squares technique by minimizing the squared errors between the measured and the estimated 

wave heights. This method applies linear wave theory including the linear dispersion relationship 

and the transfer functions translating the surface wave elevations and other wave parameters. The 

wave parameters are measured simultaneously from several positions, and the wave probe 

measurements from three or an arbitrary number of the positions are selected for reflection 

analysis. 

A probe spacing algorithm is described that determines the total number of the wave 

probes and their positions between the wave maker and the reflecting structure and selects three 

probes from the pre-arranged probe array for reflection analysis. The algorithm automates the 

arrangement of wave probes for a wave basin test involving several wave conditions featuring 

the wave period and water depth, and the corresponding wavelength varies according to these 

conditions. 

New software, named REFANA (reflection analysis), has been written that conducts the 

reflection analysis using the extended least square method and determines the number of probes 

and their positions and selects three of them for the reflection analysis. The incident wave 

heights determined by REFANA approximate the input incident wave heights. The reflection 

coefficients computed by REFANA agree well with REFLS, a commercial software for 
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reflection analysis. Moreover, probe positions can be arranged automatically using REFANA, 

which also minimizes the total number of required wave probes. 

Experimental measurements of wave reflection on two different breakwaters are 

conducted in the laboratory, and the reflection coefficients are evaluated using the software 

REFANA.  The results from REFANA are compared to the REFLS commercial software. Also, 

an empirical function is developed to estimate reflection coefficient in front of breakwaters.  The 

empirical function is a two sigmoid-curve (s-shaped) function, such as logistic function and error 

function, in terms of the surf similarity number. The empirical function with proper coefficients 

can approximate the reflection coefficient for a rough, sloped, and permeable breakwater. 
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NOMENCLATURE 

 

𝛿𝛿𝑚𝑚 Wave steepness 

ELSM Extended least squares method 

𝜀𝜀𝑛𝑛,𝑝𝑝 Error between the measured and the estimated wave for the 𝑛𝑛𝑡𝑡ℎ Fourier component 

at probe 𝑝𝑝 

𝑓𝑓𝑛𝑛 Wave frequency 

𝐹𝐹𝑛𝑛,𝑝𝑝 𝑛𝑛𝑡𝑡ℎ Fourier coefficient of the measured wave at probe 𝑝𝑝 

𝐹𝐹𝐼𝐼𝑛𝑛 𝑛𝑛𝑡𝑡ℎ Fourier coefficient of the estimated incident wave 

𝐹𝐹𝑅𝑅𝑛𝑛 𝑛𝑛𝑡𝑡ℎ Fourier coefficient of the estimated reflected wave 

𝜑𝜑 Angle between probe pair orientation and wave direction 

𝜙𝜙 Velocity potential 

𝑔𝑔 Gravitational acceleration 

𝐺𝐺 Goodness function 

𝐺𝐺(𝑓𝑓,𝜃𝜃) Direction distribution function 

𝛾𝛾𝑛𝑛,𝑝𝑝 Phase shift due to reflection for the 𝑛𝑛𝑡𝑡ℎ Fourier component at probe 𝑝𝑝 

ℎ Water depth 

𝐻𝐻 Wave height 

𝐻𝐻𝑛𝑛,𝑝𝑝 Transfer function for measured wave for the 𝑛𝑛𝑡𝑡ℎ Fourier component at probe 𝑝𝑝 

𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝 Transfer function for estimated incident wave for the 𝑛𝑛𝑡𝑡ℎ Fourier component at 

probe 𝑝𝑝 
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𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝 Transfer function for estimated reflected wave for the 𝑛𝑛𝑡𝑡ℎ Fourier component at 

probe 𝑝𝑝 

𝜂𝜂 Surface elevation 

𝑖𝑖 Imaginary number 𝑖𝑖 = √−1 

𝑘𝑘𝑛𝑛 Wave number for the 𝑛𝑛𝑡𝑡ℎ Fourier component, 𝑘𝑘𝑛𝑛 = 2𝜋𝜋 𝜆𝜆𝑛𝑛⁄  

𝐾𝐾𝑅𝑅 Reflection coefficient 

LSM Least squares method 

𝜆𝜆𝑝𝑝 Wavelength corresponding to the peak frequency 𝑓𝑓𝑝𝑝 

𝜔𝜔𝑛𝑛 Circular frequency 𝜔𝜔𝑛𝑛 = 2𝜋𝜋𝑓𝑓𝑛𝑛 

𝑝𝑝 Pressure 

𝑝𝑝 Probe position 𝑝𝑝 = 1,2, … ,𝑃𝑃 

𝜃𝜃 Wave direction 

𝜃𝜃 Averaged slope of breakwater 

𝜃𝜃𝑑𝑑 Slope of breakwater beneath the berm 

𝜃𝜃𝑢𝑢 Slope of breakwater above the berm 

SWL Still water level 

𝑡𝑡𝑚𝑚 The 𝑚𝑚𝑡𝑡ℎ temporal step for time series 

𝑇𝑇 Wave period or duration of recording 

𝜓𝜓 Angle between 𝑥𝑥-axis and probe pair orientation 

𝑢𝑢 Particle velocity along the 𝑥𝑥-axis 

𝑢𝑢𝑡𝑡 Particle acceleration along the 𝑥𝑥-axis 

𝑣𝑣 Particle velocity along the 𝑦𝑦-axis 
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𝑣𝑣𝑡𝑡 Particle acceleration along the 𝑦𝑦-axis 

𝑤𝑤 Particle velocity along the 𝑧𝑧-axis 

𝑤𝑤𝑡𝑡 Particle acceleration along the 𝑧𝑧-axis 

𝑊𝑊𝑛𝑛,𝑝𝑝 Weighting coefficient for the 𝑛𝑛𝑡𝑡ℎ Fourier component at probe 𝑝𝑝 

𝜉𝜉 Surf similarity number (Irribarren number) 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Introduction 

The measured surface elevations and the corresponding flow fields in front of a physical 

model in a laboratory water wave basin test are altered by the interference of incident waves 

generated by the wave maker and reflected waves from model and the basin boundaries. The 

wave reflections are also inevitable in a harbor basin, which can cause excessive wave elevations 

that jeopardize the entry and docking of the ships, increase scouring and beach erosion, and 

destabilize the costal structures. Since the levels of reflections are quantified by the reflection 

coefficients, which is a ratio of the incident and the reflected wave heights, a reflection analysis 

method for separating incident and reflected waves and obtaining reflection coefficients from the 

co-existing wave field is necessary. 

A review of the methods for reflection analysis is presented chronologically. Based on 

the assumption that the profile of water surface elevation is a summation of many sinusoidal 

signals, a least squares method minimizing the squares of errors between the measured and 

estimated waves using three wave probes proposed by Mansard and Funke (1980) is widely used 

in reflection analysis for both regular and irregular waves. The least squares method employs the 

measurements from three wave probes positioned parallel to the wave propagation direction and 

at specified probe positions are required according to the specific wavelength to eliminate the 

impact of singularities and to enhance accuracy and versatility in wider bandwidths. However, a 

basin model test may consist of multiple wave conditions featuring the water depth and wave 

period with their corresponding wavelengths, and more wave probes may be required. A probe 
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spacing algorithm automatically arranges the wave probe array and selects three of them for 

reflection analysis for a specific wavelength is efficient for a basin model test having multiple 

wave conditions. 

The measurements for estimating the wave spectra that is for practicing reflection 

analysis may employs the other wave parameters, such as pressure and particle velocity, instead 

of surface elevation, which is according to the instruments used for observation. Also, the waves 

may propagate obliquely. An extended least squares method (ELSM) conducting reflection 

analysis for the obliquely propagated waves by using surface elevation and the other wave 

parameters expressed as the product of surface elevation and the corresponding transfer function 

are necessary. The transfer function translating wave parameters from expression of surface 

elevation are based on linear wave theory. The reflection from the laboratory basin boundary 

such as rock beach for reflection absorbing is inevitable that contaminants the wave field in front 

of the model. Removal of the reflections from basin boundary when using ELSM is also 

necessary. 

The real ocean is three-dimensional and to simulate the real sea, many laboratories are 

equipped with wave makers being able to generate multidirectional or short-crest waves. The 

multidirectional waves are considered as the superposition of composite waves with variable 

amplitudes, frequencies, phases, and directions. The spectrum of the reflection coefficients is 

accordingly a function of both frequency and wave direction. The methods for measuring and 

estimating directional spectrum is reviewed, which are more complicated than measurements of 

long-crested wave, and a simple method using ELSM estimating the incident and reflected 

spectra and the spectrum of reflection coefficients is useful. 
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Objectives 

The objectives for this dissertation are listed as follows: 

1. Developing an extended least square method (ELSM) for reflection analysis using 

measurements of surface elevation and other wave parameters from an arbitrary 

number of probes for both normal and oblique waves. 

2. Developing a probe spacing algorithm that automates the arrangement of the wave 

probes, estimates the space between the wave maker and model, and selects three of 

the probes for reflection analysis for a laboratory basin test consisting of multiple 

wave conditions. 

3. Developing a software REFANA consisting of reflection analysis method for normal 

and oblique waves and incorporating probe spacing algorithm  

4. Conducting a breakwater project in Haynes Coastal Engineering Laboratory (Randall, 

et al. 2016) and using its data for reflection analysis. The reflection coefficients 

computed by REFANA are also compared to REFLS of GEDAP (Miles and Funke 

1990), a commercial software. 

5. Empirical equation for estimating reflection coefficients in front of a sloped, rough, 

and permeable breakwater is developed, which is based on the experimental data for a 

rubble mounded breakwater. 

  



 

4 

 

Literature Review 

Methods for reflection analysis are generally classified according to the application of 

linear or higher order wave theories, and usage of frequency or time domain. Most of the existing 

reflection analysis methods are frequency domain methods using small amplitude wave theory. 

Isaacson (1991) reviews and simplifies several methods to analyze wave reflection for linear 

regular nonbreaking waves. Hughes (1993) discusses methods of reflection analysis for non-

breaking waves in a comprehensive manner including methods using linear waves theory and 

some early works employing higher order wave theory. Yu (2010) reviews and introduces 

several reflection analysis methods for irregular waves, he uses the reflection coefficient 

spectrum and the expression of bulk reflection coefficient.  A recent review by Varghese et al. 

(2016) discusses techniques for estimation reflection characteristics in front of coastal structures. 

The envelope of co-existing wave profiles features uniform extremes, the incident and 

reflected wave heights, and the corresponding reflection coefficient are obtained by measuring 

these extremes by using one wave probe slowly moving parallel to the wave propagation 

direction for one fourth of wave length, or applying two wave probes at the node and anti-node. 

This is the node-and-anti-node method that is presented by Dean and Dalrymple (1991), and 

Hughes (1993). The incident and reflected wave heights are the summation and subtraction of 

extremes of surface elevations, respectively, and the coefficient of reflection is the ratio of 

reflected wave height over the incident wave height. The node and anti-node method is for 

regular waves only, and knowing the positions of the node and anti-node a-priori is required for 

reliability.  

The two-point method presented by Thornton and Calhoun (1972), and Goda and Suzuki 

(1976) is for both regular and irregular waves. This method employs two wave probes at fixed 
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positions to measure wave heights from both probes and the phase shifts between the two probes. 

The measured wave profiles with known amplitudes and phase differences are equated to 

theoretical wave profiles consisting of the incident and reflected parts with corresponding 

amplitudes to be determined, and the trigonometric manipulation gives expressions of incident 

and reflected amplitude spectra in terms of the spectra of measured amplitudes and phase 

differences. Spectral densities for incident and reflected waves are then computed. The incident 

and reflected wave heights are computed as four times the zeroth moment of their spectra. 

Spectrum of reflection coefficients are then the ratio of amplitude spectra of the reflected wave 

over incident wave. 

Mansard and Funk (1980) showed that the 2-point method has limitations, such as limited 

frequency range, critical gauge positions causing singularity, and sensitivity to errors. A least 

square method minimizes the squares of errors between measured and theoretical signals. The 

errors are assumed to be caused by nonlinear wave interaction, signal noise, etc. and are 

represented as a noise term in the expression of the theoretical wave profile. The least squares 

method overcomes the limitations of the two-point method, which was initially proposed by 

Mansard and Funke (1980) for irregular waves, and the application of this method on 

monochromatic waves was discussed by Isaacson (1991). Wave heights are measured from three 

probes aligned parallel to the wave propagation direction, and two groups of phase shifts among 

these probes with certain distances apart are also measured. Incident and reflected spectral 

densities and wave heights, spectrum of reflection coefficients, and averaged reflection 

coefficient are obtained and represent the same as for two-point method. The least square method 

overcomes limitations of limited frequency range and sensitivities to error, but the limitation of 
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critical probe spacing that causes singularity remains, which is cumbersome and labor intensive 

for analyzing waves with conditions of multiple wavelengths. 

Isaacson (1991) proposed a reflection analysis method for linear regular waves via 

measuring wave heights from three probes. This method avoids measurements of phases and the 

computing of phase shifts for regular wave only. Isaacson (1991) and Hughes (1993) both 

indicated that this method gives better accuracy compared with two-point and least square 

methods. Isaacson (1991) also extended his three-probe method for oblique reflection by 

avoiding alignment of wave gauges parallel to the axis normal to wave maker. 

Other reflection analysis methods involving measurements of particle velocities are the 

vertical array method and co-located velocities method. The former method employs vertically 

distributed wave gauge and velocity gauge measuring surface elevation and horizontal particle 

velocity, respectively, at the same location, which was proposed by Guza, et al. (1984) for long 

wave and was modified by Hughes (1993) with the introduction of a time lag (𝜏𝜏) between two 

probes. The latter method measures both horizontal and vertical particle velocities Hughes 

(1993). The principle of these methods is equating measured values in terms of Fourier 

components to theoretical values. Hughes (1993) showed that methods of vertical and co-located 

arrays using the linear assumptions twice on both heights and particle velocities is relatively 

inaccurate compared with the least square method involving linear theory only once. 

Frigaard and Brorsen (1995) presented a time-domain method employing digital filters to 

separate incident and reflected waves in real time. The measurements of wave elevations come 

from the two probes parallel to the propagation direction of the waves. This method gives 

coefficients of reflection in the form of a time series rather than a spectrum.  
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There is always nonlinear phenomenon for waves in basin tests. The waves may be 

generated using linear wave theory, however the effects from basin bottom or side walls always 

cause nonlinearity, and reflection analysis employing the assumption of linear dispersion relation 

accordingly introduces inevitable errors. Mansard, et al. (1985) presented a non-linear reflection 

analysis technique using a nonlinear least squares technique that treats waves as a linear 

fundamental wave, a bounded second harmonic component, and free harmonic component, 

separately. Mansard, et al. (1985) concluded that this method is more accurate than other linear 

reflection techniques. 

Based on two-point and least square methods, Lin and Huang (2004) proposed a 

technique separating incident and reflected higher harmonic waves using four wave gauges. This 

method distinguishes and isolates the free and locked modes in the higher harmonics. This 

method is used in software WAVELAB (2016). 

To measure and estimate the directional spectra, Barber (1961) applied two-dimensional 

direct Fourier transform method to transform the cross-covariance function;  Longuet-Higgins et 

al. (1963) presented a parameterizing method expanding directional spectrum into a Fourier 

series; Capon (1968) proposed a method using the maximum likelihood method (MLM) to 

estimate the directional spectrum; Panicker, et al. (1974) presented the “locked phase method” 

and “random phase method” to estimate directional spectra using measurements from wave-

gauge arrays; Isobe and Kondo (1984) presented the modified maximum likelihood method 

(MMLM) to estimate the directional spectrum in a co-existing wave field including both indent 

and reflected wave field. 
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CHAPTER II  

LINEAR WATER WAVE THEORY AND BASIN LIMITATION  

 

A Review of Linear Water Wave Theory  

Governing equation and boundary conditions 

Considering a two-dimensional 𝑥𝑥-𝑧𝑧 plane and assuming that the fluid motion is 

irrotational and the water is incompressible, the velocity potential exists and satisfies the 

continuity, which is expressed as a divergence of gradient deriving the governing equation - 

Laplace equation. The governing equation in two-dimensional form is presented in Equation 1.  

 ∇2𝜙𝜙 =
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝜙𝜙
𝜕𝜕𝑧𝑧2

= 0 1 

where: 𝜙𝜙 is velocity potential and the velocities 𝑢𝑢 and 𝑤𝑤 in terms of velocity potential are 

presented in Equation 2  

 𝑢𝑢 =
𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥

, 𝑤𝑤 =
𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧

 2 

The kinematic boundary conditions characterizing no penetrations or separations on 

boundaries, shall be maintained on both bottom and free surface. Mathematically, it is expressed 

(Equation 3) such that the total derivative of the boundary is zero for either an impermeable 

bottom or to move with free surface. 

 
𝑑𝑑𝑓𝑓
𝑑𝑑𝑡𝑡

=
𝜕𝜕𝑓𝑓
𝜕𝜕𝑡𝑡

+ 𝑢𝑢
𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥

+ 𝑤𝑤
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧

= 0 3 

The expressions of boundaries 𝑓𝑓(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 0, such as bottom and free surface are 

expressed in Equations 4 

 and 5, respectively. 
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 𝑓𝑓(𝑥𝑥, 𝑧𝑧) = 𝑧𝑧 + ℎ(𝑥𝑥) = 0 

𝑓𝑓(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑧𝑧 − 𝜂𝜂(𝑥𝑥, 𝑡𝑡) = 0 

4 

5  

Substituting the expressions of the bottom and free surface boundaries into kinematic 

boundary condition to obtain the bottom boundary condition and kinematic free surface 

boundary condition expressed in Equations 6 and 7, respectively. 

 
𝑤𝑤 + 𝑢𝑢

𝑑𝑑ℎ
𝑑𝑑𝑥𝑥

= 0, 𝑧𝑧 = −ℎ(𝑥𝑥) 

𝑤𝑤 −
𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡

− 𝑢𝑢
𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥

= 0, 𝑧𝑧 = 𝜂𝜂(𝑥𝑥, 𝑡𝑡) 

6 

7 

The dynamic free surface boundary condition presented in Equation 8 should be held to 

support the variation of pressure across the interface, which can be obtained by substituting two-

dimensional irrotationality condition into Euler equation that is a governing equation of motion. 

 −
𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡

+
1
2

(𝑢𝑢2 + 𝑤𝑤2) + 𝑔𝑔𝑧𝑧 = 𝐶𝐶(𝑡𝑡), 𝑧𝑧 = 𝜂𝜂(𝑥𝑥, 𝑡𝑡) 8 

The lateral boundary conditions are held since the waves are periodic both spatially and 

temporally. The spatial and temporal lateral boundary conditions are presented in the Equations 9 

and 10, respectively. 

 
𝜙𝜙(𝑥𝑥, 𝑡𝑡) = (𝑥𝑥,𝑦𝑦, 𝑡𝑡) 

𝜙𝜙(𝑥𝑥, 𝑡𝑡) = (𝑥𝑥, 𝑡𝑡 + 𝑇𝑇) 

9 

10 

Linearized governing equation and boundary conditions 

Taylor series expansion is usually used to linearize governing equation and boundary 

conditions, which transfer boundary conditions from free surface 𝑧𝑧 = 𝜂𝜂 to still water level 𝑧𝑧 = 0 

by expansion and then retaining linear terms of parameters 𝜂𝜂, 𝑢𝑢, and 𝑤𝑤 only. The definition of 

Taylor series expansion is expressed in Equation 11. 
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 𝑓𝑓(𝑥𝑥, 𝑧𝑧, 𝑡𝑡)|𝑧𝑧=𝜂𝜂 = 𝑓𝑓(𝑥𝑥, 𝑧𝑧, 𝑡𝑡)|𝑧𝑧=0 + (𝜂𝜂 − 0)
𝜕𝜕𝑓𝑓
𝜕𝜕𝑧𝑧
�
𝑧𝑧=0

+ ⋯ 11 

Substituting kinematic free surface boundary condition, i.e. Equation 7, into Equation 11, 

and categorizing the terms according to their orders to have: 

�𝑤𝑤 −
𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡

− 𝑢𝑢
𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥
�
𝑧𝑧=𝜂𝜂

= �𝑤𝑤 −
𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡

− 𝑢𝑢
𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥
�
𝑧𝑧=0

+ 𝜂𝜂
𝜕𝜕
𝜕𝜕𝑧𝑧
�𝑤𝑤 −

𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡

− 𝑢𝑢
𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥
�
𝑧𝑧=0

+ ⋯ 

�𝑤𝑤 −
𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡
�
𝑧𝑧=0

− �𝑢𝑢
𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥

− 𝜂𝜂 �
𝜕𝜕𝑤𝑤
𝜕𝜕𝑧𝑧

−
𝜕𝜕2𝜂𝜂
𝜕𝜕𝑡𝑡𝜕𝜕𝑧𝑧

−
𝜕𝜕𝑢𝑢
𝜕𝜕𝑧𝑧

𝜕𝜕𝜂𝜂
𝜕𝜕𝑥𝑥

− 𝑢𝑢
𝜕𝜕2𝜂𝜂
𝜕𝜕𝑥𝑥𝜕𝜕𝑧𝑧

��
𝑧𝑧=0

+ ⋯ = 0 

Canceling all higher order terms to obtain linearized kinematic free surface boundary condition. 

𝑤𝑤 =
𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡
�
𝑧𝑧=0

, 𝑜𝑜𝑜𝑜 
𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧
�
𝑧𝑧=0

=
𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡

 

Substituting dynamic free surface boundary condition, i.e. Equation 8, into Equation 11, 

and categorizing the terms according to their orders to have: 

�−
𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡

+
𝑢𝑢2 + 𝑤𝑤2

2
+ 𝑔𝑔𝜂𝜂�

𝑧𝑧=𝜂𝜂

= �−
𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡

+
𝑢𝑢2 + 𝑤𝑤2

2
+ 𝑔𝑔𝜂𝜂�

𝑧𝑧=0
+ 𝜂𝜂

𝜕𝜕
𝜕𝜕𝑧𝑧
�−

𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡

+
𝑢𝑢2 + 𝑤𝑤2

2
+ 𝑔𝑔𝜂𝜂�

𝑧𝑧=0
+ ⋯ 

�−
𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡

+ 𝑔𝑔𝜂𝜂�
𝑧𝑧=0

+ �
𝑢𝑢2 + 𝑤𝑤2

2
+ 𝜂𝜂

𝜕𝜕
𝜕𝜕𝑧𝑧
�−

𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡

+
𝑢𝑢2 + 𝑤𝑤2

2
+ 𝑔𝑔𝜂𝜂��

𝑧𝑧=0
+ ⋯ = 𝐶𝐶(𝑡𝑡) 

Canceling all higher order terms to obtain linearized dynamic free surface boundary condition. 

Also, notice that 𝐶𝐶(𝑡𝑡) = 0 since 𝜂𝜂 has zero spatial and temporal mean. 

�−
𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡

+ 𝑔𝑔𝜂𝜂�
𝑧𝑧=0

= 𝐶𝐶(𝑡𝑡), 𝑜𝑜𝑜𝑜 𝜂𝜂 =
1
𝑔𝑔
𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡
�
𝑧𝑧=0

+
1
𝑔𝑔
𝐶𝐶(𝑡𝑡) 

 
Accordingly, the governing equation and the linearized boundary conditions are tabulated 

in Table 1. 
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Table 1. Governing equation and linearized boundary conditions 

Description Expression 

Governing Equation 
G.O.V. ∇2𝜙𝜙 = 0 

Bottom Boundary Condition (horizontal) 
B.B.C. 

𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧

= 0, 𝑧𝑧 = −ℎ 

Kinematic Free Surface Boundary Condition 
K.F.S.B.C. 

𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧

=
𝜕𝜕𝜂𝜂
𝜕𝜕𝑡𝑡

, 𝑧𝑧 = 0 

Dynamic Free Surface Boundary Condition 
D.F.S.B.C. 𝜂𝜂 =

1
𝑔𝑔
𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡

, 𝑧𝑧 = 0 

Lateral Boundary Condition 
L.B.C. 

𝜙𝜙(𝑥𝑥, 𝑡𝑡) = (𝑥𝑥 + 𝜆𝜆, 𝑡𝑡) 
𝜙𝜙(𝑥𝑥, 𝑡𝑡) = (𝑥𝑥, 𝑡𝑡 + 𝑇𝑇) 

 
 
 
Solution of velocity potential and dispersion relationship 

The governing equation is a partial differential equation (PDE), which is solved by first 

applying method of separation of variables separating the equation into a product of the functions 

of each variable and then by substituting the boundary conditions. 

let: 

𝜙𝜙(𝑥𝑥, 𝑧𝑧, 𝑡𝑡) = 𝑋𝑋(𝑥𝑥)𝑍𝑍(𝑧𝑧)𝑇𝑇(𝑡𝑡) 

Substituting into governing equation to governing equation to have: 

1
𝑋𝑋(𝑥𝑥)

𝑑𝑑2𝑋𝑋(𝑥𝑥)
𝑑𝑑𝑥𝑥2

+
1

𝑍𝑍(𝑧𝑧)
𝑑𝑑2𝑍𝑍(𝑧𝑧)
𝑑𝑑𝑧𝑧2

= 0 

The equation can be held only when each term equal to the same constant, i.e. 𝛼𝛼, while 

with reversed signs, which yield a pair of ordinary differential equation (ODE), such as: 

𝑑𝑑2𝑋𝑋(𝑥𝑥)
𝑑𝑑𝑥𝑥2

+ 𝛼𝛼𝑋𝑋(𝑥𝑥) = 0 
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𝑑𝑑2𝑍𝑍(𝑧𝑧)
𝑑𝑑𝑧𝑧2

− 𝛼𝛼𝑍𝑍(𝑧𝑧) = 0 

Constant 𝛼𝛼 shall be positive, because the periodicity in 𝑋𝑋(𝑥𝑥) requires positive 𝛼𝛼, which 

could be mathematically proved using energy method to prove that 𝛼𝛼 is non-negative, and then 

to prove 𝛼𝛼 is non-zero using proof by contradiction. Using the solution of positive 𝛼𝛼 for the ODE 

pair to obtain a general solution for velocity potential that is presented in Equation 12. 

 𝜙𝜙 = �𝐴𝐴 cos√𝛼𝛼𝑥𝑥 + 𝐵𝐵 sin√𝛼𝛼𝑥𝑥� ∙ �𝐶𝐶𝑒𝑒√𝛼𝛼𝑧𝑧 + 𝐷𝐷𝑒𝑒−√𝛼𝛼𝑧𝑧� ∙ 𝑇𝑇(𝑡𝑡) 12 

Substituting bottom boundary condition into 𝜕𝜕𝜙𝜙 𝜕𝜕𝑧𝑧⁄ = 0, 𝑜𝑜𝑛𝑛 𝑧𝑧 = −ℎ and letting 𝐶𝐶 =

𝐷𝐷𝑒𝑒2√𝛼𝛼ℎ. Then, substituting lateral boundary condition to satisfy the periodicity, which requires 

that √𝛼𝛼𝜆𝜆 = 2𝜋𝜋, and obtained the velocity potential in Equation 13. 

 𝜙𝜙 = cosh 𝑘𝑘(𝑧𝑧 + ℎ) [𝐾𝐾1(𝑡𝑡) cos 𝑘𝑘𝑥𝑥 + 𝐾𝐾2(𝑡𝑡) sin 𝑘𝑘𝑥𝑥] 13 

Where: 

𝐾𝐾1(𝑡𝑡) = 2𝐴𝐴�cos�√𝛼𝛼𝑥𝑥��𝐷𝐷𝑒𝑒√𝛼𝛼ℎ𝑇𝑇(𝑡𝑡) 

𝐾𝐾2(𝑡𝑡) = 2𝐵𝐵�sin�√𝛼𝛼𝑥𝑥��𝐷𝐷𝑒𝑒√𝛼𝛼ℎ𝑇𝑇(𝑡𝑡) 

Substituting velocity potential (Equation 13) into dynamic free surface boundary 

condition, and using sine or cosine function (Equation 14) with amplitude of half of wave height 

for the expression of surface elevation on the left side of the equation. 

 
𝜂𝜂(𝑥𝑥, 𝑡𝑡) =

𝐻𝐻
2

sin(𝑘𝑘𝑥𝑥 − 𝜔𝜔𝑡𝑡) 

𝜂𝜂(𝑥𝑥, 𝑡𝑡) =
𝐻𝐻
2

cos(𝑘𝑘𝑥𝑥 − 𝜔𝜔𝑡𝑡) 

14 



 

13 

 

To get the expression of the derivatives of 𝐾𝐾1(𝑡𝑡) and 𝐾𝐾2(𝑡𝑡). Integrating them with 

respective to 𝑡𝑡, and substituting them into Equation 13 to obtain the velocity potential that is 

presented in Equations 15. 

 
𝜙𝜙 =

𝐻𝐻
2
𝑔𝑔
𝜔𝜔

cosh[𝑘𝑘(ℎ + 𝑧𝑧)]
cosh 𝑘𝑘ℎ

cos(𝑘𝑘𝑥𝑥 − 𝜔𝜔𝑡𝑡) 

𝜙𝜙 = −
𝐻𝐻
2
𝑔𝑔
𝜔𝜔

cosh[𝑘𝑘(ℎ + 𝑧𝑧)]
cosh 𝑘𝑘ℎ

sin(𝑘𝑘𝑥𝑥 − 𝜔𝜔𝑡𝑡) 

15 

Substituting the velocity potential into kinematic free surface boundary condition to yield 

the dispersion relationship, presented in Equation 16. 

 𝜔𝜔2 = 𝑔𝑔𝑘𝑘 tanh𝑘𝑘ℎ 16 

Wave properties and transfer functions 

Considering an oblique wave with wave direction 𝜃𝜃, the velocity potential for the oblique 

wave in polar form may be written as Equation 17. 

 𝜙𝜙 = −𝑖𝑖
𝐻𝐻
2
𝑔𝑔
𝜔𝜔

cosh[𝑘𝑘(ℎ + 𝑧𝑧)]
cosh 𝑘𝑘ℎ

𝑒𝑒−𝑖𝑖[𝑘𝑘(𝑥𝑥 cos𝜃𝜃+𝑦𝑦sin𝜃𝜃)−𝜔𝜔𝑡𝑡] 17 

The corresponding surface elevations for the oblique wave is presented in Equation 18, 

which is obtained by substituting the velocity potential into dynamic free surface boundary 

condition at still water level (𝑧𝑧 = 0). 

 𝜂𝜂 =
1
𝑔𝑔
𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡
�
𝑧𝑧=0

=
𝐻𝐻
2
𝑒𝑒−𝑖𝑖[𝑘𝑘(𝑥𝑥 cos𝜃𝜃+𝑦𝑦 sin𝜃𝜃)−𝜔𝜔𝑡𝑡] 18 

The particle velocities are presented in Equation 19. 
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𝑢𝑢 = −
𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥

=
𝐻𝐻
2
𝜔𝜔

cosh[𝑘𝑘(ℎ + 𝑧𝑧)]
sinh 𝑘𝑘ℎ

cos 𝜃𝜃 𝑒𝑒−𝑖𝑖[𝑘𝑘(𝑥𝑥 cos𝜃𝜃+𝑦𝑦 sin𝜃𝜃)−𝜔𝜔𝑡𝑡] 

𝑣𝑣 = −
𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦

=
𝐻𝐻
2
𝜔𝜔

cosh[𝑘𝑘(ℎ + 𝑧𝑧)]
sinh𝑘𝑘ℎ

sin 𝜃𝜃 𝑒𝑒−𝑖𝑖[𝑘𝑘(𝑥𝑥 cos𝜃𝜃+𝑦𝑦 sin𝜃𝜃)−𝜔𝜔𝑡𝑡] 

𝑤𝑤 = −
𝜕𝜕𝜙𝜙
𝜕𝜕𝑧𝑧

= −𝑖𝑖
𝐻𝐻
2
𝜔𝜔

sinh[𝑘𝑘(ℎ + 𝑧𝑧)]
sinh𝑘𝑘ℎ

𝑒𝑒−𝑖𝑖[𝑘𝑘(𝑥𝑥 cos𝜃𝜃+𝑦𝑦 sin𝜃𝜃)−𝜔𝜔𝑡𝑡] 

19 

The particle accelerations are presented in Equation 20. 

 

𝑢𝑢𝑡𝑡 =
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

= 𝑖𝑖
𝐻𝐻
2
𝜔𝜔2 cosh[𝑘𝑘(ℎ + 𝑧𝑧)]

sinh 𝑘𝑘ℎ
cos𝜃𝜃 𝑒𝑒−𝑖𝑖[𝑘𝑘(𝑥𝑥 cos𝜃𝜃+𝑦𝑦 sin𝜃𝜃)−𝜔𝜔𝑡𝑡] 

𝑣𝑣𝑡𝑡 =
𝜕𝜕𝑣𝑣
𝜕𝜕𝑡𝑡

= 𝑖𝑖
𝐻𝐻
2
𝜔𝜔2 cosh[𝑘𝑘(ℎ + 𝑧𝑧)]

sinh𝑘𝑘ℎ
sin𝜃𝜃 𝑒𝑒−𝑖𝑖[𝑘𝑘(𝑥𝑥 cos𝜃𝜃+𝑦𝑦 sin𝜃𝜃)−𝜔𝜔𝑡𝑡] 

𝑤𝑤𝑡𝑡 =
𝜕𝜕𝑤𝑤
𝜕𝜕𝑡𝑡

=
𝐻𝐻
2
𝜔𝜔2 sinh[𝑘𝑘(ℎ + 𝑧𝑧)]

sinh𝑘𝑘ℎ
𝑒𝑒−𝑖𝑖[𝑘𝑘(𝑥𝑥 cos𝜃𝜃+𝑦𝑦 sin𝜃𝜃)−𝜔𝜔𝑡𝑡] 

20 

The pressure under progressive wave are presented in Equation 21. 

 

𝑝𝑝 = −𝜌𝜌𝑔𝑔𝑧𝑧 + 𝜌𝜌
𝜕𝜕𝜙𝜙
𝜕𝜕𝑡𝑡

 

= −𝜌𝜌𝑔𝑔𝑧𝑧 + 𝜌𝜌𝑔𝑔
𝐻𝐻
2

cosh[𝑘𝑘(ℎ + 𝑧𝑧)]
cosh 𝑘𝑘ℎ

𝑒𝑒−𝑖𝑖[𝑘𝑘(𝑥𝑥 cos𝜃𝜃+𝑦𝑦 sin𝜃𝜃)−𝜔𝜔𝑡𝑡] 

21 

The transfer equations equating the surface elevation and other wave parameters, such as 

the particle velocities, the particle accelerations, and the pressure under a progressive wave are 

tabulated in Table 2. 
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Table 2. Transfer functions. 

Wave Parameter Symbol Transfer Function 

Surface elevation 𝜂𝜂 1 

Particle velocity (𝑥𝑥) 𝑢𝑢 𝜔𝜔
cosh[𝑘𝑘(ℎ + 𝑧𝑧)]

sinh 𝑘𝑘ℎ
cos 𝜃𝜃 

Particle velocity (𝑦𝑦) 𝑣𝑣 𝜔𝜔
cosh[𝑘𝑘(ℎ + 𝑧𝑧)]

sinh 𝑘𝑘ℎ
sin𝜃𝜃 

Particle velocity (𝑧𝑧) 𝑤𝑤 −𝑖𝑖𝜔𝜔
sinh[𝑘𝑘(ℎ + 𝑧𝑧)]

sinh𝑘𝑘ℎ
 

Particle acceleration (𝑥𝑥) 𝑢𝑢𝑡𝑡 𝑖𝑖𝜔𝜔2 cosh[𝑘𝑘(ℎ + 𝑧𝑧)]
sinh 𝑘𝑘ℎ

cos 𝜃𝜃 

Particle acceleration (𝑦𝑦) 𝑣𝑣𝑡𝑡 𝑖𝑖𝜔𝜔2 cosh[𝑘𝑘(ℎ + 𝑧𝑧)]
sinh 𝑘𝑘ℎ

sin𝜃𝜃 

Particle acceleration (𝑧𝑧) 𝑤𝑤𝑡𝑡 𝜔𝜔2 sinh[𝑘𝑘(ℎ + 𝑧𝑧)]
sinh 𝑘𝑘ℎ

 

Pressure (𝑝𝑝 + 𝜌𝜌𝑔𝑔𝑧𝑧) 𝑝𝑝� 𝜌𝜌𝑔𝑔
cosh[𝑘𝑘(ℎ + 𝑧𝑧)]

cosh 𝑘𝑘ℎ
 

 
 
 
Wave Generator Breaking Wave Design Curves for Haynes Coastal Engineering 

Laboratory 

This section introduces the wave generator breaking wave design curves for 3-D shallow 

water wave basin in Haynes Coastal Engineering Laboratory. The design curves are bounded by 

both breaking criteria and wave generator capacity that is based on the height-to-stroke ratio, which 

are plotted and represented as maximum wave heights versus wave periods under specific water 

depths. The dispersion relationship, breaking criteria, and height-to-stroke ratio are introduced 

successively for convenience of demonstrating wave breaking criteria. The design curves offer an 
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theoretical estimation for the wave height capability of maximum non-breaking wave that can be 

generated in the 3-D shallow water basin in Haynes Coastal Engineering Laboratory.  

Wavelengths iteration 

Wavelength 𝜆𝜆 or wave number 𝑘𝑘 is initially specified for wave classifications that are then 

used as indices for the selection of the breaking criteria. The shallow, intermediate, and deep-water 

waves can be defined and tabulated as represented in Table 3. 

 

Table 3. Classification of waves according to water depth. 

Wave Type Classified By 𝑘𝑘  Classified By 𝜆𝜆 

Shallow 𝑘𝑘ℎ < 𝜋𝜋 10⁄  or ℎ 𝜆𝜆⁄ < 1 20⁄  

Intermediate 𝜋𝜋 10⁄ < 𝑘𝑘ℎ < 𝜋𝜋 or 1 20⁄ < ℎ 𝜆𝜆⁄ < 1 2⁄  

Deep 𝑘𝑘ℎ > 𝜋𝜋 or ℎ 𝜆𝜆⁄ < 1 20⁄  

 
 
 

The corresponding wave length and wave number under the specified water depth and 

wave period can be numerically iterated from dispersion relationship using Equation 16. Since the 

circular frequency can be defined as 𝜎𝜎 = 2𝜋𝜋 𝑇𝑇⁄  and the relationship between wave number and 

wave length is𝑘𝑘 = 2𝜋𝜋 𝜆𝜆⁄ , the formula for iteration can be derived from dispersion relationship and 

represented as Equation 22. 

 𝜆𝜆 =
𝑔𝑔𝑇𝑇2

2𝜋𝜋
tanh �

2𝜋𝜋ℎ
𝜆𝜆
� 22 

The initial guess for numerical iteration, which is derived from the approximation of 

dispersion relationship that was initially proposed by Eckhart (1952) and was later altered by 
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Fenton and McKee (1990) for minimizing errors in wave length estimation for both short and long 

waves, can be represented as Equation 23. 

 𝜆𝜆 =
𝑔𝑔𝑇𝑇2

2𝜋𝜋
�tanh ��

4𝜋𝜋2ℎ
𝑔𝑔𝑇𝑇2

�
3 4⁄

��
2 3⁄

 23 

The wave number is accordingly computed by using the relationship between wave number 

and wave length, i.e. 𝑘𝑘 = 2𝜋𝜋 𝜆𝜆⁄ . The wave lengths for wave periods varying up to 10 s and water 

depth varying between 0.1 m and 1 m with 0.1 m incremental depth are represented in Figure 1. 

 
 

 
Figure 1. Wavelength from dispersion relation. 
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Breaking criteria 

Breaking criteria are generally represented as either limiting steepness 𝛿𝛿𝑚𝑚 that is a ratio of 

wave height versus wave length or breaking index 𝜅𝜅 that is a ratio of wave height versus water 

depth (Equation 24), the latter criteria is usually used for shallow-water wave. These criteria are 

presented in Table 4. 

 

𝛿𝛿𝑚𝑚 = �
𝐻𝐻
𝜆𝜆
�
𝑏𝑏
 

𝜅𝜅 = �
𝐻𝐻
ℎ
�
𝑏𝑏
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Table 4. Break criteria. 

Method Equation Applicability 

Michell (1893) 𝛿𝛿𝑚𝑚𝑚𝑚 =
1
7
 Deep-water wave 

Plane bottom 

Miche (1944) 𝛿𝛿𝑚𝑚 =
1
7

tanh �
2𝜋𝜋ℎ
𝜆𝜆
� General form 

Plane bottom 

 𝜅𝜅 = 0.89 Shallow-water wave 
Plane bottom 

Goda (1970) 𝜅𝜅 = 0.17
𝜆𝜆𝑚𝑚
ℎ𝑏𝑏
�1 − 𝑒𝑒−�

1.5𝜋𝜋ℎ𝑏𝑏
𝜆𝜆𝑜𝑜

�� General form 
Plane bottom 

Kamphuis (1991) 𝛿𝛿𝑚𝑚𝑚𝑚 = 0.095 tanh�
2𝜋𝜋ℎ𝑏𝑏
𝜆𝜆𝑝𝑝𝑏𝑏

� 
General form 

Significant wave height 
Peak period wavelength 

 𝜅𝜅𝑚𝑚 = 0.56 
Shallow-water wave 

Significant wave height 
Peak period wavelength 

Kamphuis (2000) 𝜅𝜅 = 0.78 Shallow-water wave 
Flat bottom 
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Wave generator capacity 

The wave generator capacity is based upon the height-to-stroke ratio (𝐻𝐻 𝑆𝑆⁄ ), which is for 

estimating the heights of waves that are generated by knowing the wave number 𝑘𝑘 (or wave length 

𝜆𝜆), water depth ℎ, and wave board stroke 𝑆𝑆. The first-order height-to-stroke ratio (S. A. Hughes 

1993) for piston typed wave generator is represented in Equation 25. 

 
𝐻𝐻
𝑆𝑆

=
2[cosh(2𝑘𝑘ℎ) − 1]
sinh(2𝑘𝑘ℎ) + 2𝑘𝑘ℎ

 25 

For water depths varying up to 1 m with 0.1 m incremental water depth and wave period 

varying up to 10 s, the corresponding maximum wave height that can be generated under the 

maximum stroke amplitude 0.988 m is plotted and represented in Figure 2. 

 
 

 
Figure 2. Wave height from height-to-stroke ratio. 
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Wave height capacity 

The wave height capacity for a shallow water wave basin in Haynes Laboratory is 

estimated and plotted as an envelope of the breaking criteria and first-order height-to-stroke ratio. 

This design curve is for estimation of maximum non-breaking wave under maximum paddle 

stroke. The design curves presenting the non-breaking waves are bounded by Goda (1970) 

breaking criteria presented in Figure 3. 

 
 

 
Figure 3. Design curve for 3-D wave basin in Haynes Coastal Engineering Laboratory. 

 

 



 

21 

 

CHAPTER III  

REFLECTION ANALYSIS USING EXTENDED LEAST SQUARES METHOD 

 

Assumption and Coordinate System 

Airy wave theory (often referred to as linear wave theory) is used and a fully developed 

wave filed in front of a reflected structure is linearly superposed by incident wave trains moving 

toward the structure and their reflected wave trains moving away from the structure, which 

generate a co-existing wave field. Both incident and reflected wave fields are assumed to be 

linearly superposed by wave trains from different directions and the wave of each direction is 

assumed to be linearly superposed by infinite number of wavelets with variable amplitudes, 

frequencies, and initial phases. For long-crest wave, the wave directions to constitute the surface 

profile are at a uniform value. In physical modeling experiment, reflection from basin’s side 

walls may be assumed to be negligible with properly placed effective absorption material. 

Cartesian coordinate is used with 𝑥𝑥-axis being perpendicular to the toe of reflected 

structure and orienting positively away from the structure and with 𝑦𝑦-axis being orthogonal to 𝑥𝑥-

axis and orienting to the left of the positive 𝑥𝑥-axis. The coordinate system is presented in Figure 

4. Angle 𝜃𝜃 is the incident wave angle, i.e. 𝜃𝜃𝐼𝐼 = 𝜃𝜃, it is made by the 𝑥𝑥 axis turning counter-clock-

wisely to the incident wave crest orthogonal (orientation of the incident wave component) and, 

which ranges from 0 to 𝜋𝜋 counter clockwise from the positive 𝑥𝑥-axis.  

Accordingly, to have the relationship between the incident and reflected wave angles, 

which are presented in Equation 26 in term of angle theta 𝜃𝜃. 

  



 

22 

 

 
𝜃𝜃𝐼𝐼 = 𝜃𝜃 

𝜃𝜃𝑅𝑅 = 𝜋𝜋 − 𝜃𝜃 
26 

The corresponding sine and cosine functions are presented in Equation 27. 

 
sin𝜃𝜃𝐼𝐼 = sin𝜃𝜃 , cos 𝜃𝜃𝐼𝐼 = cos 𝜃𝜃 

sin𝜃𝜃𝑅𝑅 = sin𝜃𝜃 , cos 𝜃𝜃𝑅𝑅 = − cos 𝜃𝜃 
27 

 
 
 

 
Figure 4. Coordinate system for incident and reflected wave system. 

 
 
 

For long-crest wave, the reflection analysis is usually conducted using least squares 

method by minimizing the square errors between the spectra of observed and estimated surface 

elevations. This method was proposed by Mansard and Funke (1980), and the author presents an 

extended version applied on both normal and oblique waves. 
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Reflection Analysis for Long-Crest Normal or Oblique Wave Using Lest Squares Method 

Time series of surface elevation  

The observed surface elevation at a fixed point (probe 𝑝𝑝) can be presented as 

superposition of many sinusoid waves, and the trigonometric form of the surface elevation is the 

real part of polar form of that can be presented in Equation 28. 

 �𝜂𝜂𝑚𝑚,𝑝𝑝�𝑀𝑀 = �𝐹𝐹𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚

𝑁𝑁

𝑛𝑛=1

 28 

Where: �𝜂𝜂𝑚𝑚,𝑝𝑝�𝑀𝑀 = 𝜂𝜂𝑝𝑝(𝑡𝑡𝑚𝑚) is the observed time series of surface elevation; 𝑡𝑡𝑚𝑚 is cumulative 

time with 𝑡𝑡𝑚𝑚 = 𝑚𝑚∆𝑡𝑡, and ∆𝑡𝑡 is time incremental; 𝐹𝐹𝑛𝑛,𝑝𝑝 is the measured Fourier components of 

frequency 𝜔𝜔𝑛𝑛 at probe 𝑝𝑝; 𝜔𝜔𝑛𝑛 is circular frequency defined as 𝜔𝜔𝑛𝑛 = 2𝜋𝜋𝑓𝑓𝑛𝑛 = 2𝜋𝜋𝑛𝑛 𝑇𝑇⁄ ; 𝛼𝛼𝑛𝑛,𝑝𝑝 is the 

initial phase of frequency 𝜔𝜔𝑛𝑛.Let 𝑇𝑇 be the total record duration, the time incremental is defined 

as 𝑇𝑇 = 𝑁𝑁∆𝑡𝑡, and accordingly 𝑡𝑡𝑚𝑚 = 𝑚𝑚𝑇𝑇 𝑁𝑁⁄ . 

The estimated surface elevation may be presented as superposition of incident wave and 

reflected wave, and each wave is assumed to be the superposition of many sinusoidal waves, the 

polar form of which is presented in Equation 29. 

 

�𝜂𝜂𝑚𝑚,𝑝𝑝�𝐸𝐸 = �𝐹𝐹𝐼𝐼𝑛𝑛𝑒𝑒𝑖𝑖�−𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃𝐼𝐼−𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝐼𝐼+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚�
𝑁𝑁

𝑛𝑛=1

+ �𝐹𝐹𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖�−𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃𝑅𝑅−𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑅𝑅+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚�
𝑁𝑁

𝑛𝑛=1

 

29 

Where: �𝜂𝜂𝑚𝑚,𝑝𝑝�𝐸𝐸 = 𝜂𝜂𝑝𝑝�𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝, 𝑡𝑡𝑚𝑚� is the estimated time series of surface elevation; 𝐹𝐹𝐼𝐼𝑛𝑛 and 𝐹𝐹𝑅𝑅𝑛𝑛 

are the incident and reflected Fourier components of frequency 𝜔𝜔𝑛𝑛; 𝑘𝑘𝑛𝑛 is wave number and 

related with circular frequency by dispersion relationship; �𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝� is the position of probe 𝑝𝑝 
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relative to the first probe; 𝜃𝜃 is incident wave angle; 𝜃𝜃𝑅𝑅 is the reflected wave angle having 

relationship with incident wave angle as 𝜃𝜃𝑅𝑅 = 𝜋𝜋 − 𝜃𝜃. The estimated surface elevation in the 

wave field constituted by the incident and reflected waves can be re-written and presented in 

Equation 30. 

 

�𝜂𝜂𝑚𝑚,𝑝𝑝�𝐸𝐸 = �𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐹𝐹𝐼𝐼𝑛𝑛𝑒𝑒𝑖𝑖�−𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚�
𝑁𝑁

𝑛𝑛=1

+ �𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐹𝐹𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖�𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚�
𝑁𝑁

𝑛𝑛=1

 

30 

Fourier transform of time series of surface elevation 

The discrete Fourier transformation is defined and presented in Equation 31. 

 𝐹𝐹(𝜔𝜔𝑛𝑛) = � 𝜂𝜂𝑚𝑚𝑒𝑒−𝑖𝑖𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚

𝑁𝑁

𝑚𝑚=1

 31 

Where: 𝐹𝐹(𝜔𝜔𝑛𝑛) = 𝐹𝐹𝑛𝑛 is the amplitude spectrum of surface elevation. Substitute Equations 

28 into Equation 31 to get the amplitude spectrum of measured wave as presented in Equation 

32. 

 ℱ ��𝜂𝜂𝑚𝑚,𝑝𝑝�𝑀𝑀� = 𝐹𝐹𝑛𝑛,𝑝𝑝 32 

Substitute Equations 30. into Equation 31 to get the amplitude spectrum of estimated 

wave as presented in Equation 33. 

 
ℱ ��𝜂𝜂𝑚𝑚,𝑝𝑝�𝐸𝐸� = 𝐹𝐹𝐼𝐼𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�

+ 𝐹𝐹𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃� 
33 
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LSM to separate incident and reflected waves for obliquely long-crest wave 

Using three wave gauges placed parallel to the reflected structure orthogonal or parallel 

to 𝑥𝑥-axis, the sum of squares of errors is accordingly presented as Equation 34. 

 
��𝜀𝜀𝑛𝑛,𝑝𝑝�

2
3

𝑝𝑝=1

= ��𝐹𝐹𝐼𝐼𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
3

𝑝𝑝=1

+ 𝐹𝐹𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃� − 𝐹𝐹𝑛𝑛,𝑝𝑝�
2
 

34 

Where: 𝜖𝜖𝑛𝑛,𝑝𝑝 is the error between the observed and estimated amplitude spectra. 

The minimum square value is assumed to be achieved the partial derivative of sum of 

squares of 𝜀𝜀𝑛𝑛,𝑝𝑝 with respective to both 𝐹𝐹𝐼𝐼,𝑛𝑛 and 𝐹𝐹𝑅𝑅,𝑛𝑛 are zero, such that presented in Equation 35. 

 
𝜕𝜕 �∑ �𝜀𝜀𝑛𝑛,𝑝𝑝�

23
𝑝𝑝=1 �
𝜕𝜕𝐹𝐹𝐼𝐼𝑛𝑛

=
𝜕𝜕 �∑ �𝜀𝜀𝑛𝑛,𝑝𝑝�

23
𝑝𝑝=1 �
𝜕𝜕𝐹𝐹𝑅𝑅𝑛𝑛

= 0 35 

To get an equation pair, such that 

��𝐹𝐹𝐼𝐼𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃� + 𝐹𝐹𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃� − 𝐹𝐹𝑛𝑛,𝑝𝑝�𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
3

𝑝𝑝=1

= 0 

��𝐹𝐹𝐼𝐼𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃� + 𝐹𝐹𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃� − 𝐹𝐹𝑛𝑛,𝑝𝑝�𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
3

𝑝𝑝=1

= 0 

Rearranging the above equation pair to obtain Equation 36: 

 

𝐹𝐹𝐼𝐼𝑛𝑛 ��𝑒𝑒𝑖𝑖2𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
3

𝑝𝑝=1

� + 3𝐹𝐹𝑅𝑅𝑛𝑛 = �𝐹𝐹𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
3

𝑝𝑝=1

 

𝐹𝐹𝑅𝑅𝑛𝑛 ��𝑒𝑒𝑖𝑖2𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
3

𝑝𝑝=1

� + 3𝐹𝐹𝐼𝐼𝑛𝑛 = �𝐹𝐹𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
3

𝑝𝑝=1

 

36 

Solving Equation 36 to obtain 𝐹𝐹𝐼𝐼𝑛𝑛 and 𝐹𝐹𝑅𝑅𝑛𝑛 presented in Equation 37. 
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𝐹𝐹𝐼𝐼𝑛𝑛 =
𝑂𝑂2𝑂𝑂3 − 3𝑂𝑂4
𝑂𝑂1𝑂𝑂2 − 9

 

𝐹𝐹𝑅𝑅𝑛𝑛 =
𝑂𝑂1𝑂𝑂4 − 3𝑂𝑂3
𝑂𝑂1𝑂𝑂2 − 9

 

37 

The spectrum of reflection coefficients is presented in Equation 38 as a ratio of 𝐹𝐹𝑅𝑅𝑛𝑛 over 

𝐹𝐹𝐼𝐼𝑛𝑛, such that 

 𝐾𝐾𝑅𝑅 =
𝐹𝐹𝑅𝑅𝑛𝑛
𝐹𝐹𝐼𝐼𝑛𝑛

=
𝑂𝑂1𝑂𝑂4 − 3𝑂𝑂3
𝑂𝑂2𝑂𝑂3 − 3𝑂𝑂4

 38 

Notice that when the wave direction normal to the reflected structure, the angle 𝜃𝜃 = 0. The 

parameters in Equation 37 and Equation 38 are presented in Equation 39. 

 

𝑂𝑂1 = �𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 cos𝜃𝜃
3

𝑝𝑝=1

 

𝑂𝑂2 = �𝑒𝑒𝑖𝑖2𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 cos𝜃𝜃
3

𝑝𝑝=1

 

𝑂𝑂3 = �𝐹𝐹𝑝𝑝,𝑛𝑛𝑒𝑒−𝑖𝑖𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 cos𝜃𝜃
3

𝑝𝑝=1

 

𝑂𝑂4 = �𝐹𝐹𝑝𝑝,𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 cos𝜃𝜃
3

𝑝𝑝=1

 

39 

Reflection Analysis for Long-Crest Normal or Oblique Wave Using Extended Lest Squares 

Method (ELSM) 

The measurements used for reflection analysis can be other wave parameters that are 

expressed as a product of surface elevation and transfer function 𝐻𝐻𝑛𝑛,𝑝𝑝 presented in Table 2 

relating the surface elevation and corresponding wave parameter. Also, to practice the reflection 

analysis using an arbitary number of probes, Zelt and Skejebreia (1992) introduced the weighted 
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sum of the squares of the errors for each wave gauge with non-uniform weighting coefficient 

𝑊𝑊𝑛𝑛,𝑝𝑝.  

Time series of a wave parameter 

The observed wave variable at a fixed point (probe 𝑝𝑝) is assumed to be superposition of 

many sinusoid waves that is a product of surface elevation (Equation 28) and the corresponding 

transfer function according to the types of measurements, and its polar form can be presented in 

Equation 40. 

 𝑓𝑓𝑝𝑝(𝑡𝑡𝑚𝑚) = �𝐻𝐻𝑛𝑛,𝑝𝑝𝐹𝐹𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚

𝑁𝑁

𝑛𝑛=1

 40 

Where: �𝑓𝑓𝑚𝑚,𝑝𝑝�𝑀𝑀 = 𝑓𝑓𝑝𝑝(𝑡𝑡𝑚𝑚) is the observed time series of wave parameter; 𝐻𝐻𝑛𝑛,𝑝𝑝 = 𝐻𝐻𝑛𝑛,𝑝𝑝(𝜔𝜔𝑛𝑛,𝜃𝜃) is 

transfer function (Table 2) relating the wave parameter and surface elevation and 𝐻𝐻𝑛𝑛,𝑝𝑝 = 1 when 

the wave parameter is surface elevation. 

The estimated surface elevation may be presented as superposition of incident wave and 

reflected wave, and each wave is assumed to be the superposition of many sinusoidal waves that 

are the products of surface elevation (Equation 30) and the corresponding transfer function, the 

polar form of which is presented in Equation 41. 

 

𝑓𝑓𝑝𝑝�𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝, 𝑡𝑡𝑚𝑚� = �𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐹𝐹𝐼𝐼𝑛𝑛𝑒𝑒𝑖𝑖�−𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚�
𝑁𝑁

𝑛𝑛=1

+ �𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐹𝐹𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖�𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚�
𝑁𝑁

𝑛𝑛=1

 

41 
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Where: �𝑓𝑓𝑚𝑚,𝑝𝑝�𝐸𝐸 = 𝑓𝑓𝑝𝑝�𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝, 𝑡𝑡𝑚𝑚� is the estimated time series of wave parameter; 𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝 =

𝐻𝐻𝑛𝑛,𝑝𝑝(𝜔𝜔𝑛𝑛,𝜃𝜃) and 𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝 = 𝐻𝐻𝑛𝑛,𝑝𝑝(𝜔𝜔𝑛𝑛,𝜃𝜃𝑅𝑅) are transfer functions for incident and reflected waves, 

respectively, and notice that 𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝 = 𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝 = 1 for surface elevations. 

Fourier Transform of time series of wave parameter 

Using Fourier transform on time series by substituting Equations 40 and 41 into Equation 

31 to have the amplitude spectra of measured and estimated wave variables presented in the 

Equations 42 and 43, respectively. 

 

ℱ ��𝑓𝑓𝑚𝑚,𝑝𝑝�𝑀𝑀� = 𝐻𝐻𝑛𝑛,𝑝𝑝𝐹𝐹𝑛𝑛,𝑝𝑝 

ℱ ��𝑓𝑓𝑚𝑚,𝑝𝑝�𝐸𝐸� = 𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐹𝐹𝐼𝐼𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�

+ 𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐹𝐹𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃� 

42 

43 

ELSM to separate incident and reflected waves for obliquely long-crest wave 

Probes measuring wave parameters are placed parallel to the reflected structure 

orthogonal or parallel to 𝑥𝑥-axis, the error 𝜀𝜀𝑛𝑛,𝑝𝑝 between the observed and estimated waves is 

accordingly presented as Equation 44. 

 
𝜀𝜀𝑛𝑛,𝑝𝑝 = 𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐹𝐹𝐼𝐼𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�

+ 𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐹𝐹𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃� − 𝐻𝐻𝑛𝑛,𝑝𝑝𝐹𝐹𝑛𝑛,𝑝𝑝 
44 

In order to practice the reflection analysis using any number of gauges, Zelt and 

Skejebreia (1992) introduced the weighted sum of the squares of the errors for each wave gauge 

with either uniform or non-uniform weighting 𝑊𝑊𝑛𝑛,𝑝𝑝, which is presented in Equation 45, as 

 𝐸𝐸𝑛𝑛 = �𝑊𝑊𝑛𝑛,𝑝𝑝𝜀𝜀𝑛𝑛,𝑝𝑝𝜀𝜀𝑛𝑛,𝑝𝑝
∗

𝑃𝑃

𝑝𝑝=1

 45 
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Where: 𝑊𝑊𝑛𝑛,𝑝𝑝 is the weighting coefficient for wave gauge 𝑝𝑝 at frequency 𝜔𝜔𝑛𝑛, which equals to 

unity for uniform weighting coefficient, the principle of selecting the weighting coefficient will 

be discussed later.  

Since the minimum of the weighed sum of squares of errors occurs when 𝐸𝐸𝑛𝑛 is stationary 

that holds the criteria, such that in Equation 46 as. 

 
∂𝐸𝐸𝑛𝑛
∂𝐹𝐹𝐼𝐼𝑛𝑛

=
∂𝐸𝐸𝑛𝑛
∂𝐹𝐹𝑅𝑅𝑛𝑛

= 0 46 

To further obtain a pair of Equation 47. 

 

�𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝜀𝜀𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
𝑃𝑃

𝑝𝑝=1

= 0 

�𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝜀𝜀𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
𝑃𝑃

𝑝𝑝=1

= 0 

47 

Substituting Equation 44 into Equation 47 to get an Equation pair. 

�𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝�𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐹𝐹𝐼𝐼𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃� + 𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐹𝐹𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
𝑃𝑃

𝑝𝑝=1

− 𝐻𝐻𝑛𝑛,𝑝𝑝𝐹𝐹𝑛𝑛,𝑝𝑝�𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃� = 0 

�𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝�𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐹𝐹𝐼𝐼𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃� + 𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐹𝐹𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
𝑃𝑃

𝑝𝑝=1

− 𝐻𝐻𝑛𝑛,𝑝𝑝𝐹𝐹𝑛𝑛,𝑝𝑝�𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃� = 0 

And rearranging the above equation pair to obtain Equation 48: 
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𝐹𝐹𝐼𝐼𝑛𝑛 ��𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖2𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
𝑃𝑃

𝑝𝑝=1

�

+ 𝐹𝐹𝑅𝑅𝑛𝑛 ��𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃
𝑃𝑃

𝑝𝑝=1

�

= �𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑛𝑛,𝑝𝑝𝐹𝐹𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
𝑃𝑃

𝑝𝑝=1

 

𝐹𝐹𝐼𝐼𝑛𝑛 ��𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃
𝑃𝑃

𝑝𝑝=1

�

+ 𝐹𝐹𝑅𝑅𝑛𝑛 ��𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖2𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
𝑃𝑃

𝑝𝑝=1

�

= �𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐻𝐻𝑛𝑛,𝑝𝑝𝐹𝐹𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
𝑃𝑃

𝑝𝑝=1

 

48 

Parameterizing the equation by letting: 

𝑂𝑂1 = �𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖2𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 cos𝜃𝜃−𝑦𝑦𝑝𝑝 sin𝜃𝜃�
𝑃𝑃

𝑝𝑝=1

 

𝑂𝑂2 = �𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖2𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 cos𝜃𝜃−𝑦𝑦𝑝𝑝 sin𝜃𝜃�
𝑃𝑃

𝑝𝑝=1

 

𝑂𝑂3 = �𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑛𝑛,𝑝𝑝𝐹𝐹𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 cos𝜃𝜃−𝑦𝑦𝑝𝑝 sin𝜃𝜃�
𝑃𝑃

𝑝𝑝=1

 

𝑂𝑂4 = �𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐻𝐻𝑛𝑛,𝑝𝑝𝐹𝐹𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 cos𝜃𝜃−𝑦𝑦𝑝𝑝 sin𝜃𝜃�
𝑃𝑃

𝑝𝑝=1

 

And rewriting the Equation 48 into the Equation 42 to have Equation 49. 
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𝐹𝐹𝐼𝐼𝑛𝑛𝑂𝑂1 + 𝐹𝐹𝑅𝑅𝑛𝑛 ��𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃
𝑃𝑃

𝑝𝑝=1

� = 𝑂𝑂3 

𝐹𝐹𝐼𝐼𝑛𝑛 ��𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃
𝑃𝑃

𝑝𝑝=1

� + 𝐹𝐹𝑅𝑅𝑛𝑛𝑂𝑂2 = 𝑂𝑂4 

49 

Solving Equation 49 and presenting 𝐹𝐹𝐼𝐼𝑛𝑛 and 𝐹𝐹𝑅𝑅𝑛𝑛 in terms of 𝐹𝐹𝑛𝑛,𝑝𝑝. The expression of 𝐹𝐹𝐼𝐼𝑛𝑛 

and 𝐹𝐹𝑅𝑅𝑛𝑛 are expressed in the Equations 50 and 51, respectively. 

 𝐹𝐹𝐼𝐼𝑛𝑛 =
𝑂𝑂2𝑂𝑂3 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑃𝑃

𝑝𝑝=1 �𝑂𝑂4
𝑂𝑂1𝑂𝑂2 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑃𝑃

𝑝𝑝=1 �
2  50 

 𝐹𝐹𝑅𝑅𝑛𝑛 =
𝑂𝑂1𝑂𝑂4 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑃𝑃

𝑝𝑝=1 �𝑂𝑂3
𝑂𝑂1𝑂𝑂2 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑃𝑃

𝑝𝑝=1 �
2  51 

The corresponding spectrum of reflection coefficients is presented in Equation 52 as a 

ratio of 𝐹𝐹𝑅𝑅𝑛𝑛 over 𝐹𝐹𝐼𝐼𝑛𝑛, i.e. 𝐾𝐾𝑅𝑅 = 𝐹𝐹𝑅𝑅𝑛𝑛 𝐹𝐹𝐼𝐼𝑛𝑛⁄ . 

 𝐾𝐾𝑅𝑅 = �
𝑂𝑂1𝑂𝑂4 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑃𝑃

𝑝𝑝=1 �𝑂𝑂3
𝑂𝑂2𝑂𝑂3 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑃𝑃

𝑝𝑝=1 �𝑂𝑂4
� 52 

Notice that this expression become the conventional least square method when using 

uniformed weighting coefficients, i.e. 𝑊𝑊𝑛𝑛,𝑝𝑝 → 1, and using measurements of surface elevations, 

i.e. 𝐻𝐻𝑛𝑛,𝑝𝑝 = 𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝 = 𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝 → 1, from three probes, i.e. 𝑃𝑃 = 3. The solution using an arbitrary 

number of wave probes (Zelt and Sejelbreia 1992) is also a special solution for this general 

expression by using 𝑊𝑊𝑛𝑛,𝑝𝑝, using measurements of surface elevations with transfer functions 

equaling to unity, and by using 𝑃𝑃 = 𝑃𝑃. 
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Removal of The Reflection from Laboratory Basin Boundary 

The reflection from laboratory basin boundary is inevitable that interferes the co-existing 

wave field in front of a model. However, the reflection coefficient of the basin boundary is 

usually given in priori, which can be either computed using reflection analysis before the model 

test or estimated by multiplying a proper reflection coefficient to the input incident wave spectra. 

Let the amplitude spectrum of the basin boundary as 𝐹𝐹𝑅𝑅𝑅𝑅𝑛𝑛, the estimated time series of surface 

elevation can be presented in Equation 53. 

 

𝑓𝑓𝑝𝑝�𝑥𝑥𝑝𝑝,𝑦𝑦𝑝𝑝, 𝑡𝑡𝑚𝑚� = �𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐹𝐹𝐼𝐼𝑛𝑛𝑒𝑒𝑖𝑖�−𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚�
𝑁𝑁

𝑛𝑛=1

+ �𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐹𝐹𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖�𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚�
𝑁𝑁

𝑛𝑛=1

+ �𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐹𝐹𝑅𝑅𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖�𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚�
𝑁𝑁

𝑛𝑛=1

 

53 

Using Fourier transformation (Equation 31) to obtain the amplitude spectrum of 

estimated wave as presented in Equation 54. 

 

ℱ ��𝜂𝜂𝑚𝑚,𝑝𝑝�𝐸𝐸� = 𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐹𝐹𝐼𝐼𝑛𝑛𝑒𝑒𝑖𝑖�−𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚�

+ 𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐹𝐹𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖�𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚�

+ 𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐹𝐹𝑅𝑅𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖�𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚� 

54 

The squares of errors between the measured wave (Equation 32) and the estimated wave 

is presented in Equation 55. 
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��𝜀𝜀𝑛𝑛,𝑝𝑝�
2

3

𝑝𝑝=1

= ��𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐹𝐹𝐼𝐼𝑛𝑛𝑒𝑒𝑖𝑖�−𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚�
3

𝑝𝑝=1

+ 𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐹𝐹𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖�𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚�

+ 𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐹𝐹𝑅𝑅𝑅𝑅𝑛𝑛𝑒𝑒𝑖𝑖�𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚� − 𝐹𝐹𝑛𝑛,𝑝𝑝�
2
 

55 

Using the extended least squares error method (Equation 35), to get a pair of Equation 56. 

 

𝐹𝐹𝐼𝐼𝑛𝑛 ��𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖2𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
𝑃𝑃

𝑝𝑝=1

�

+ (𝐹𝐹𝑅𝑅𝑛𝑛 + 𝐹𝐹𝑅𝑅𝑅𝑅𝑛𝑛)��𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃
𝑃𝑃

𝑝𝑝=1

�

= �𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑛𝑛,𝑝𝑝𝐹𝐹𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
𝑃𝑃

𝑝𝑝=1

 

𝐹𝐹𝐼𝐼𝑛𝑛 ��𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃
𝑃𝑃

𝑝𝑝=1

�

+ (𝐹𝐹𝑅𝑅𝑛𝑛 + 𝐹𝐹𝑅𝑅𝑅𝑅𝑛𝑛) ��𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖2𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
𝑃𝑃

𝑝𝑝=1

�

= �𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝐻𝐻𝑛𝑛,𝑝𝑝𝐹𝐹𝑛𝑛,𝑝𝑝𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃−𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃�
𝑃𝑃

𝑝𝑝=1

 

56 

Parameterizing Equation 56 using Equation 39 to have Equation 57 
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𝐹𝐹𝐼𝐼𝑛𝑛𝑂𝑂1 + (𝐹𝐹𝑅𝑅𝑛𝑛 + 𝐹𝐹𝑅𝑅𝑅𝑅𝑛𝑛)��𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃
𝑃𝑃

𝑝𝑝=1

� = 𝑂𝑂3 

𝐹𝐹𝐼𝐼𝑛𝑛 ��𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃
𝑃𝑃

𝑝𝑝=1

� + (𝐹𝐹𝑅𝑅𝑛𝑛 + 𝐹𝐹𝑅𝑅𝑅𝑅𝑛𝑛)𝑂𝑂2 = 𝑂𝑂4 

57 

Solving Equation 57 to obtain the expressions of the incident and reflected spectra with 

removal of the reflection from laboratory boundary, that are presented in Equation 58. 

 

𝐹𝐹𝐼𝐼𝑛𝑛 =
𝑂𝑂2𝑂𝑂3 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑃𝑃

𝑝𝑝=1 �𝑂𝑂4
𝑂𝑂1𝑂𝑂2 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑃𝑃

𝑝𝑝=1 �
2  

𝐹𝐹𝑅𝑅𝑛𝑛 =
𝑂𝑂1𝑂𝑂4 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑃𝑃

𝑝𝑝=1 �𝑂𝑂3
𝑂𝑂1𝑂𝑂2 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑃𝑃

𝑝𝑝=1 �
2 − 𝐹𝐹𝑅𝑅𝑅𝑅𝑛𝑛 
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The spectrum of the reflection coefficients considering the reflection from basin 

boundary is according computed as the ration of 𝐹𝐹𝑅𝑅𝑛𝑛 over 𝐹𝐹𝐼𝐼𝑛𝑛, which is presented in Equation 59. 

 

𝐾𝐾𝑅𝑅𝑛𝑛 = �
𝑂𝑂1𝑂𝑂4 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑃𝑃

𝑝𝑝=1 �𝑂𝑂3
𝑂𝑂2𝑂𝑂3 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑃𝑃

𝑝𝑝=1 �𝑂𝑂4

−
𝐹𝐹𝑅𝑅𝑅𝑅𝑛𝑛 �𝑂𝑂1𝑂𝑂2 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑃𝑃

𝑝𝑝=1 �
2
�

𝑂𝑂2𝑂𝑂3 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝐼𝐼𝑛𝑛,𝑝𝑝𝐻𝐻𝑅𝑅𝑛𝑛,𝑝𝑝𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑃𝑃
𝑝𝑝=1 �𝑂𝑂4

� 
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Reflection analysis for Short-Crest Waves Using Extended Least Squares Method 

The short-crest wave is considered as superposition of many sinusoid waves featuring 

different not only the amplitudes, frequencies, and initial phases, but also different directions 𝜃𝜃𝑗𝑗 . 

Accordingly, measurement of a directional spectrum requires more probes, rather than obtaining 

spectrum of long-crest by measuring the surface elevation at a fixed position. The wave energy 

accordingly distributed across both along frequency 𝜔𝜔𝑛𝑛 and direction 𝜃𝜃𝑗𝑗 , and to have the 
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relationship between an energy density spectrum and its directional spectrum, such that in 

Equation 60. 

 𝑆𝑆(𝜔𝜔) = � 𝑆𝑆(𝜔𝜔,𝜃𝜃) 𝑑𝑑𝜃𝜃
𝜋𝜋

−𝜋𝜋
 60 

Using the relationship between the energy density spectrum and the frequency spectrum, 

which is presented in Equation 61. 

 

𝑆𝑆(𝑓𝑓𝑛𝑛) =
|𝐹𝐹(𝑓𝑓𝑛𝑛)|2

2𝑓𝑓𝑚𝑚
 

𝑆𝑆(𝜔𝜔𝑛𝑛) = (2𝜋𝜋)2
|𝐹𝐹(𝜔𝜔𝑛𝑛)|2

2𝜔𝜔𝑚𝑚
 

61 

Where: 

𝑛𝑛𝑓𝑓𝑚𝑚 = 𝑓𝑓𝑛𝑛 

𝑛𝑛𝜔𝜔𝑚𝑚 = 𝜔𝜔𝑛𝑛 

𝜔𝜔 = 2𝜋𝜋𝑓𝑓 

 
Accordingly, to have the relationships presented in Equation 62. 

 

𝐹𝐹𝑝𝑝(𝜔𝜔) = � 𝐹𝐹𝑝𝑝(𝜔𝜔, 𝜃𝜃)𝑑𝑑𝜃𝜃
𝜋𝜋

−𝜋𝜋
 

𝐹𝐹𝐼𝐼(𝜔𝜔) = � 𝐹𝐹𝐼𝐼(𝜔𝜔, 𝜃𝜃)𝑑𝑑𝜃𝜃
𝜋𝜋

−𝜋𝜋
 

𝐹𝐹𝑅𝑅(𝜔𝜔) = � 𝐹𝐹𝑅𝑅(𝜔𝜔,𝜃𝜃) 𝑑𝑑𝜃𝜃
𝜋𝜋

−𝜋𝜋
 

62 

Reflection analysis for short-crest wave is presented by firstly using least squares method 

or the extended least squares method presented in the previous sections in this chapter to 

compute 𝐹𝐹𝐼𝐼(𝜔𝜔) and 𝐹𝐹𝑅𝑅(𝜔𝜔) and both are in term of 𝐹𝐹𝑝𝑝(𝜔𝜔). Then either using parameterize method 
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to estimate 𝐹𝐹𝑝𝑝(𝜔𝜔, 𝜃𝜃𝑛𝑛) and obtain the directional spectra 𝐹𝐹𝐼𝐼(𝜔𝜔,𝜃𝜃𝑛𝑛) and 𝐹𝐹𝑅𝑅(𝜔𝜔,𝜃𝜃𝑛𝑛), or using the 

form of directional spectrum in terms of directional distribution function. The reflection 

coefficients are accordingly a ratio of 𝐹𝐹𝑅𝑅(𝜔𝜔,𝜃𝜃𝑛𝑛) over 𝐹𝐹𝐼𝐼(𝜔𝜔,𝜃𝜃𝑛𝑛), which is a directional spectrum, 

i.e. 𝐾𝐾𝑅𝑅(𝜔𝜔,𝜃𝜃𝑛𝑛). The transfer functions are also directional spectra.  

Time series of wave parameter for short-crest wave 

The time series of measured wave in terms of measurement from the first probe is 

presented in Equation 63. 

 �𝑓𝑓𝑚𝑚,𝑘𝑘,𝑝𝑝�𝑀𝑀 = ��𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝𝐹𝐹𝑛𝑛,𝑗𝑗,𝑝𝑝

𝑀𝑀

𝑗𝑗

𝑁𝑁

𝑛𝑛

𝑒𝑒𝑖𝑖�𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚+𝜃𝜃𝑗𝑗𝑙𝑙𝑘𝑘� 63 

The time series of estimated wave is a superposition of incident and reflected wave, 

which is presented in Equation 64. 

 

�𝑓𝑓𝑚𝑚,𝑘𝑘,𝑝𝑝�𝐸𝐸

= ��𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝
𝐼𝐼 𝐹𝐹𝑛𝑛,𝑗𝑗,𝑝𝑝

𝐼𝐼 𝑒𝑒𝑖𝑖�−𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃𝑗𝑗−𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑗𝑗+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚+𝜃𝜃𝑗𝑗𝑙𝑙𝑘𝑘�
𝑀𝑀

𝑗𝑗

𝑁𝑁

𝑛𝑛

+ ��𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝
𝑅𝑅 𝐹𝐹𝑛𝑛,𝑗𝑗,𝑝𝑝

𝑅𝑅 𝑒𝑒𝑖𝑖�𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 𝑐𝑐𝑚𝑚𝑚𝑚 𝜃𝜃𝑗𝑗−𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑗𝑗+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚+𝜃𝜃𝑗𝑗𝑙𝑙𝑘𝑘�
𝑀𝑀

𝑗𝑗

𝑁𝑁

𝑛𝑛

 

64 

Where: 𝑙𝑙𝑘𝑘 is the orientation of probe array. 

Results of the short-crested wave 

Using two-dimensional Fourier transformation that: 

𝐹𝐹�𝜔𝜔𝑛𝑛, 𝜃𝜃𝑗𝑗� = ��𝑓𝑓(𝑡𝑡𝑚𝑚, 𝑙𝑙𝑘𝑘)
𝑀𝑀

𝑘𝑘

𝑁𝑁

𝑚𝑚

𝑒𝑒−𝑖𝑖�𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚+𝜃𝜃𝑗𝑗𝑙𝑙𝑘𝑘� 
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Using the Equations 50, 51, and 52 to obtain  𝐹𝐹𝑛𝑛,𝑗𝑗,𝑝𝑝
𝐼𝐼 , 𝐹𝐹𝑛𝑛,𝑗𝑗,𝑝𝑝

𝑅𝑅 , and 𝐾𝐾𝑅𝑅, respectively. We 

notice that these spectra are functions of frequency 𝜔𝜔 when the incident wave propagates along a 

unity-direction, i.e. 𝐹𝐹𝐼𝐼 = 𝐹𝐹𝐼𝐼(𝜔𝜔𝑛𝑛), 𝐹𝐹𝑅𝑅 = 𝐹𝐹𝑅𝑅(𝜔𝜔𝑛𝑛), and 𝐾𝐾𝑅𝑅 = 𝐾𝐾𝑅𝑅(𝜔𝜔𝑛𝑛), however, when the 

composite waves are multi-directional, these values become a function of both frequency 𝜔𝜔 and 

direction 𝜃𝜃, that is to say, directional spectrum, i.e. 𝐹𝐹𝐼𝐼 = 𝐹𝐹𝐼𝐼�𝜔𝜔𝑛𝑛,𝜃𝜃𝑗𝑗�, 𝐹𝐹𝑅𝑅 = 𝐹𝐹𝑅𝑅�𝜔𝜔𝑛𝑛,𝜃𝜃𝑗𝑗�, and 𝐾𝐾𝑅𝑅 =

𝐾𝐾𝑅𝑅�𝜔𝜔𝑛𝑛,𝜃𝜃𝑗𝑗�. The Fourier components of the incident 𝐹𝐹𝑛𝑛,𝑗𝑗,𝑝𝑝
𝐼𝐼  and the reflected 𝐹𝐹𝑛𝑛,𝑗𝑗,𝑝𝑝

𝑅𝑅  wave are 

presented in Equation 67. The reflection coefficient for directional wave is presented in Equation 

66. 

 

𝐹𝐹𝑛𝑛,𝑗𝑗,𝑝𝑝
𝐼𝐼 =

𝑂𝑂2𝑂𝑂3 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝
𝐼𝐼 𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝

𝑅𝑅 𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 sin𝜃𝜃𝑗𝑗𝑃𝑃
𝑝𝑝=1 �𝑂𝑂4

𝑂𝑂1𝑂𝑂2 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝
𝐼𝐼 𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝

𝑅𝑅 𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 sin𝜃𝜃𝑗𝑗𝑃𝑃
𝑝𝑝=1 �

2  

𝐹𝐹𝑛𝑛,𝑗𝑗,𝑝𝑝
𝑅𝑅 =

𝑂𝑂1𝑂𝑂4 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝
𝐼𝐼 𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝

𝑅𝑅 𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 sin𝜃𝜃𝑗𝑗𝑃𝑃
𝑝𝑝=1 �𝑂𝑂3

𝑂𝑂1𝑂𝑂2 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝
𝐼𝐼 𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝

𝑅𝑅 𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 sin𝜃𝜃𝑗𝑗𝑃𝑃
𝑝𝑝=1 �

2  
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 𝐾𝐾𝑅𝑅(𝜔𝜔𝑛𝑛,𝜃𝜃𝑛𝑛) =
𝑂𝑂1𝑂𝑂4 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝

𝐼𝐼 𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝
𝑅𝑅 𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑗𝑗𝑃𝑃

𝑝𝑝=1 �𝑂𝑂3
𝑂𝑂2𝑂𝑂3 − �∑ 𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝

𝐼𝐼 𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝
𝑅𝑅 𝑒𝑒−𝑖𝑖2𝑘𝑘𝑛𝑛𝑦𝑦𝑝𝑝 𝑚𝑚𝑖𝑖𝑛𝑛 𝜃𝜃𝑗𝑗𝑃𝑃

𝑝𝑝=1 �𝑂𝑂4
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The corresponding parameters are 

𝑂𝑂1 = �𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝
𝐼𝐼 𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝

𝐼𝐼 𝑒𝑒𝑖𝑖2𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 cos𝜃𝜃𝑗𝑗−𝑦𝑦𝑝𝑝 sin𝜃𝜃𝑗𝑗�
𝑃𝑃

𝑝𝑝=1

 

𝑂𝑂2 = �𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝
𝑅𝑅 𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝

𝑅𝑅 𝑒𝑒𝑖𝑖2𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 cos𝜃𝜃𝑗𝑗−𝑦𝑦𝑝𝑝 sin𝜃𝜃𝑗𝑗�
𝑃𝑃

𝑝𝑝=1

 

𝑂𝑂3 = �𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝
𝐼𝐼 𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝𝐹𝐹𝑛𝑛,𝑗𝑗,𝑝𝑝𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�−𝑥𝑥𝑝𝑝 cos𝜃𝜃𝑗𝑗−𝑦𝑦𝑝𝑝 sin𝜃𝜃𝑗𝑗�

𝑃𝑃

𝑝𝑝=1

 

𝑂𝑂4 = �𝑊𝑊𝑛𝑛,𝑝𝑝𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝
𝑅𝑅 𝐻𝐻𝑛𝑛,𝑗𝑗,𝑝𝑝𝐹𝐹𝑛𝑛,𝑗𝑗,𝑝𝑝𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛�𝑥𝑥𝑝𝑝 cos𝜃𝜃𝑗𝑗−𝑦𝑦𝑝𝑝 sin𝜃𝜃𝑗𝑗�

𝑃𝑃

𝑝𝑝=1
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Estimating directional spectrum in terms of directional function 

The real ocean is three-dimensional and the corresponding spectrum should be directional 

spectrum, the two-dimensional spectrum is a spectrum that the energy concentrates on a specific 

direction (usually at 𝜃𝜃 = 0) and the energy will spread along the directions directional spectrum. 

The directional spectra may be estimated as a production of frequency spectrum and directional 

function, and according the directional spectrum of the reflection coefficients can be presented in 

Equation 67. 

 𝐾𝐾𝑅𝑅(𝜔𝜔,𝜃𝜃) = 𝐾𝐾𝑅𝑅(𝜔𝜔)𝐷𝐷(𝜔𝜔,𝜃𝜃) 67 

Where: 𝐾𝐾𝑅𝑅(𝜔𝜔) is frequency spectrum computed using extended least squares method in previous 

section; 𝐷𝐷(𝜔𝜔, 𝜃𝜃) is direction distribution function or simply as directional function presenting the 

distribution or dissipation of energy along the direction on both sides of main direction, which 

satisfies Equation 68. 

 � 𝐷𝐷(𝜔𝜔, 𝜃𝜃)𝑑𝑑𝜃𝜃
𝜋𝜋

−𝜋𝜋
= 1 68 

Because 

𝐾𝐾𝑅𝑅(𝜔𝜔) = � 𝐾𝐾𝑅𝑅(𝜔𝜔,𝜃𝜃) 𝑑𝑑𝜃𝜃
𝜋𝜋

−𝜋𝜋
= 𝐾𝐾𝑅𝑅(𝜔𝜔)� 𝐷𝐷(𝜔𝜔,𝜃𝜃) 𝑑𝑑𝜃𝜃

𝜋𝜋

−𝜋𝜋
 

Determination of frequency spectrum 𝐾𝐾𝑅𝑅(𝜔𝜔) uses the same pattern of wave probe arrays 

applied in least square method. Estimation of directional spectrum for the reflection coefficients 

becomes the determination of direction distribution function.  

A simple empirical function that is independent from frequency, i.e. 𝐷𝐷(𝜔𝜔,𝜃𝜃) = 𝐷𝐷(𝜃𝜃), 

may be used to present the direction distribution function, which is presented in Equation 69. 
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 𝐷𝐷(𝜔𝜔,𝜃𝜃) = 𝐶𝐶(𝑠𝑠) cos2𝑚𝑚 𝜃𝜃 69 

With: 

𝐶𝐶(𝑠𝑠) =
1
√𝜋𝜋

Γ(𝑠𝑠 + 1)
Γ(𝑠𝑠 + 1 2⁄ ) =

2𝑠𝑠‼
𝜋𝜋(2𝑠𝑠 − 1)‼

 

Where: the gamma function Γ(𝑠𝑠) has properties of: 

Γ(𝑠𝑠 + 1) = 𝑠𝑠Γ(𝑠𝑠) = (𝑠𝑠 − 1)! 

Γ(𝑠𝑠 + 1 2⁄ ) =
(2𝑠𝑠 − 1) ∙ … ∙ 3 ∙ 1

2𝑛𝑛 √𝜋𝜋 =
(2𝑠𝑠 − 1)‼

2𝑛𝑛 √𝜋𝜋 

2𝑠𝑠‼ = 2𝑠𝑠 ∙ … ∙ 4 ∙ 2 

(2𝑠𝑠 − 1)‼ = (2𝑠𝑠 − 1) ∙ … ∙ 3 ∙ 1 

The coefficient 𝑠𝑠 is a direction distribution coefficient, which is a constant in simple 

empirical function, which need to be determined according to the wave directions. Direction 

distribution coefficient  𝑠𝑠 may be a function of frequency 𝜔𝜔 for other direction distribution 

functions. Some of the other direction distribution functions include equation presented by 

Longuet-Higgins (1963) using direction distribution coefficient presented by Mitsuyasu, et al. 

(1975) and Yu and Liu (1994). Measurements are necessary to verify the applicability of these 

direction distribution function and to develop new functions being applicable for the spectra of 

incident wave, reflected wave and the reflection coefficients. 
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Estimating composite wave directions from measurement of probe pairs 

The directions of the composite waves may be distributed within an interval of angles 𝜃𝜃𝑛𝑛. 

The direction of the composite waves can be obtained by computing the phase shifts using 

measurement from a pair of probe, the relationship among the wave direction, orientation of the 

connecting line of the probe pair and the angle between the wave direction and connecting line of 

probe pair is illustrated in Figure 5. 

 
 

 
Figure 5. Relationships between wave direction and probe pair orientation. 

 
 
 

Considering the time series of surface elevation captured by two wave probes presented 

in Equation 70. 

 

𝜂𝜂𝑚𝑚,1 = �𝐴𝐴𝑛𝑛,1𝑒𝑒𝑖𝑖(−𝑘𝑘𝑛𝑛𝑥𝑥1 cos𝜃𝜃𝑛𝑛−𝑘𝑘𝑛𝑛𝑦𝑦1 sin𝜃𝜃𝑛𝑛+𝜔𝜔𝑛𝑛𝑡𝑡𝑚𝑚)
𝑁𝑁

𝑛𝑛=1

 

𝜂𝜂𝑚𝑚,2 = �𝐴𝐴𝑛𝑛,2𝑒𝑒𝑖𝑖�−𝑘𝑘𝑛𝑛(𝑥𝑥1+𝐷𝐷𝑥𝑥)cos𝜃𝜃𝑛𝑛−𝑘𝑘𝑛𝑛�𝑦𝑦1+𝐷𝐷𝑦𝑦� sin𝜃𝜃𝑛𝑛�
𝑁𝑁

𝑛𝑛=1

 

70 

The Fourier series of the time series are presented in Equation 71. 
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ℱ�𝜂𝜂𝑚𝑚,1� = 𝐴𝐴𝑛𝑛,1𝑒𝑒−𝑖𝑖(𝑘𝑘𝑛𝑛𝑥𝑥1 cos𝜃𝜃𝑛𝑛+𝑘𝑘𝑛𝑛𝑦𝑦1 sin𝜃𝜃𝑛𝑛) 

ℱ�𝜂𝜂𝑚𝑚,2� = 𝐴𝐴𝑛𝑛,2𝑒𝑒−𝑖𝑖�𝑘𝑘𝑛𝑛(𝑥𝑥1+𝐷𝐷𝑥𝑥)cos𝜃𝜃𝑛𝑛+𝑘𝑘𝑛𝑛�𝑦𝑦1+𝐷𝐷𝑦𝑦�sin𝜃𝜃𝑛𝑛� 
71 

Since 

𝐷𝐷𝑥𝑥 = 𝐷𝐷 cos𝜑𝜑 

𝐷𝐷𝑦𝑦 = 𝐷𝐷 sin𝜑𝜑 

𝜓𝜓𝑛𝑛 = 𝜃𝜃𝑛𝑛 − 𝜑𝜑 

The equation pair can be written as Equation 72 

 
ℱ�𝜂𝜂𝑚𝑚,1� = 𝐴𝐴𝑛𝑛,1𝑒𝑒−𝑖𝑖(𝑘𝑘𝑛𝑛𝑥𝑥1 cos𝜃𝜃𝑛𝑛+𝑘𝑘𝑛𝑛𝑦𝑦1 sin𝜃𝜃𝑛𝑛) 

ℱ�𝜂𝜂𝑚𝑚,2� = 𝐴𝐴𝑛𝑛,2𝑒𝑒−𝑖𝑖[(𝑘𝑘𝑛𝑛𝑥𝑥1 cos𝜃𝜃𝑛𝑛+𝑘𝑘𝑛𝑛𝑦𝑦1 sin𝜃𝜃𝑛𝑛)+𝑘𝑘𝑛𝑛𝐷𝐷cos𝜓𝜓𝑛𝑛] 
72 

Using Euler’s formula that is presented in Equation 73. 

 

cos(𝑘𝑘𝑛𝑛𝐷𝐷 cos𝜓𝜓𝑛𝑛) =
ℱ�𝜂𝜂𝑚𝑚,1�ℱ∗�𝜂𝜂𝑚𝑚,2� + ℱ∗�𝜂𝜂𝑚𝑚,1�ℱ�𝜂𝜂𝑚𝑚,2�

2�ℱ�𝜂𝜂𝑚𝑚,1�ℱ∗�𝜂𝜂𝑚𝑚,2��
 

sin(𝑘𝑘𝑛𝑛𝐷𝐷 cos𝜓𝜓𝑛𝑛) =
ℱ�𝜂𝜂𝑚𝑚,1�ℱ∗�𝜂𝜂𝑚𝑚,2� − ℱ∗�𝜂𝜂𝑚𝑚,1�ℱ�𝜂𝜂𝑚𝑚,2�

𝑖𝑖2�ℱ�𝜂𝜂𝑚𝑚,1�ℱ∗�𝜂𝜂𝑚𝑚,2��
 

73 

Where: 

ℱ�𝜂𝜂𝑚𝑚,1�ℱ∗�𝜂𝜂𝑚𝑚,2� = 𝐴𝐴𝑛𝑛,1𝐴𝐴𝑛𝑛,2𝑒𝑒𝑖𝑖𝑘𝑘𝑛𝑛𝐷𝐷 cos𝜓𝜓𝑛𝑛 

ℱ∗�𝜂𝜂𝑚𝑚,1�ℱ�𝜂𝜂𝑚𝑚,2� = 𝐴𝐴𝑛𝑛,1𝐴𝐴𝑛𝑛,2𝑒𝑒−𝑖𝑖𝑘𝑘𝑛𝑛𝐷𝐷 cos𝜓𝜓𝑛𝑛 

to have Equation 74.  

 tan(𝑘𝑘𝑛𝑛𝐷𝐷 cos𝜓𝜓𝑛𝑛) = −𝑖𝑖
ℱ�𝜂𝜂𝑚𝑚,1�ℱ∗�𝜂𝜂𝑚𝑚,2� − ℱ∗�𝜂𝜂𝑚𝑚,1�ℱ�𝜂𝜂𝑚𝑚,2�
ℱ�𝜂𝜂𝑚𝑚,1�ℱ∗�𝜂𝜂𝑚𝑚,2� + ℱ∗�𝜂𝜂𝑚𝑚,1�ℱ�𝜂𝜂𝑚𝑚,2�

 74 

Hence to get the relative angle between the connection line of probe pair and the wave 

direction, which is presented in Equation 75. 
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 𝜓𝜓𝑛𝑛 = cos−1

⎩
⎪
⎨

⎪
⎧tan−1 �−𝑖𝑖

ℱ�𝜂𝜂𝑚𝑚,1�ℱ∗�𝜂𝜂𝑚𝑚,2� − ℱ∗�𝜂𝜂𝑚𝑚,1�ℱ�𝜂𝜂𝑚𝑚,2�
ℱ�𝜂𝜂𝑚𝑚,1�ℱ∗�𝜂𝜂𝑚𝑚,2� + ℱ∗�𝜂𝜂𝑚𝑚,1�ℱ�𝜂𝜂𝑚𝑚,2�

�

𝑘𝑘𝑛𝑛𝐷𝐷

⎭
⎪
⎬

⎪
⎫

 75 

And the directions of one of the composite wave is presented in Equation 76. 

 𝜃𝜃𝑛𝑛 = cos−1

⎩
⎪
⎨

⎪
⎧tan−1 �−𝑖𝑖

ℱ�𝜂𝜂𝑚𝑚,1�ℱ∗�𝜂𝜂𝑚𝑚,2� − ℱ∗�𝜂𝜂𝑚𝑚,1�ℱ�𝜂𝜂𝑚𝑚,2�
ℱ�𝜂𝜂𝑚𝑚,1�ℱ∗�𝜂𝜂𝑚𝑚,2� + ℱ∗�𝜂𝜂𝑚𝑚,1�ℱ�𝜂𝜂𝑚𝑚,2�

�

𝑘𝑘𝑛𝑛𝐷𝐷

⎭
⎪
⎬

⎪
⎫

+ 𝜑𝜑 76 

This gives wave directions 𝜃𝜃𝑛𝑛, including the extremes of the wave directions, the distribution of 

composite wave directions can be accordingly computed. 
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CHAPTER IV  

PROBE POSITION CRITERIA 

 

Principles for Probe Arrangement 

The principle for probe arrangement is to measure wave parameters with known phase 

and time lag, measurements shall be either at the same location with known time lag or at 

different locations with known relative probe positions. The techniques for wave measurement 

employ direct technique using instrument in the water, including capacitance wave gauge 

measuring the surface elevation, current meter measuring particle velocity, free float buoy 

measuring particle velocity and wave slope, pressure gauge measuring wave pressure, and so on. 

Indirect technique such as stereography using optical methods including camera to capture the 

image of surface elevation. The indirect method is usually used for the directional waves 

This section emphasizing on introducing a method using five wave probes and three of 

them are selected for spectra estimation and reflection analysis (three-of-five), which is based on 

the least square technique. The weighted coefficient used in the method employing an arbitrary 

number wave gauge is also introduced. Both methods are based on the principles of how to 

properly select a set of wave probes and both of them can reduce the labor in relocating wave 

probes when the test conditions employing multiple wavelengths. Also, these two methods are 

for long-crested waves. A software is developed for automatically arranging and selecting wave 

probes and its applicability based on the three-of-five technique are presented with instruction 

and sample results.  
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For short-crested waves, the methods of probes arrangement for capturing directional 

spectrum are introduced and are categorized in to narrow and wide spreading angles of the 

composite waves. 

Probe Position for Long-Crest Waves 

For long-crested waves, probe arrays employing at least two probes or one probe 

measuring at least two wave parameters simultaneously is usually used to capture the surface 

elevations and other wave parameters for estimating wave spectrum and further used for 

reflection analysis, and the probe arrays consist of arrangements such as spatially-spaced array, 

vertical array, co-located array, and wave probe matrix. A spatially-spaced array presented in top 

left of Figure 6 uses two (Thornton and Calhoun 1972); (Goda and Suzuki 1976), three (Mansard 

and Funke 1980), or an arbitrary number of (Zelt and Sejelbreia 1992) wave probes positioned 

parallel to wave propagation direction to measure surface elevations. A vertical array (S. A. 

Hughes 1993) presented in left middle of Figure 6 uses a wave probe measuring surface 

elevation and a current meter positioned vertically at the same horizontal position measuring 

particle velocity simultaneously. A co-located array (S. A. Hughes 1993) employs a current 

meter measuring the particle velocities of two directions simultaneously, which is presented in 

left bottom of Figure 6. Estimating wave spectrum according to the measurement for long-crest 

oblique wave may employ a wave probes matrix presented in right of Figure 6, and there is no 

need to restrict the positions of wave probes parallel to the orthogonal of reflection object (or 

wavemaker). The wave probe matrix technique is an extension of spatially-spaced array 

technique, however according to calculation by Issacson (1991) and by the author in the previous 

chapter, the offset of wave probes relative to the wavemaker orthogonal may not be necessary 

and the spatially spaced technique is still applicable for oblique long-crest wave. 
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Figure 6. Probes array used in reflection analysis for long-crest wave. 

 
 
 

For both single wavelength condition, distance between any of the two wave probes shall 

never be any integer multiplying half wavelength, and the distances between any wave probe and 

the wave source/reflected object shall be at least one wavelength. For a single wave condition 

with one wavelength only, a criterion determining the positions of the three wave probes 

recommended by Mansard and Funke (1980) is used, which is presented in Equation 77.  

 
𝑥𝑥12 =

𝜆𝜆
10

 

𝜆𝜆
6

< 𝑥𝑥13 <
𝜆𝜆
5

 or 
𝜆𝜆
5

< 𝑥𝑥13 <
3𝜆𝜆
10

 or 
3𝜆𝜆
10

< 𝑥𝑥13 <
𝜆𝜆
3

 

77 

Where: 𝑥𝑥12 and 𝑥𝑥13 are the probe distances between probes 1 and 2, and between probes 1 and 3 

respectively, and probe 1 is the probe closest to the wave maker; 𝜆𝜆 is the wavelength 

corresponding to peak period of the wave spectrum. 



 

46 

 

Singularities that causing zero denominator for waves propagating normal to the toe of 

structure, i.e. 𝜃𝜃 = 0, in Equation 37 for calculating 𝐹𝐹𝐼𝐼 and 𝐹𝐹𝑅𝑅, respectively, happens when the 

probe distance between the first and the 𝑝𝑝𝑡𝑡ℎ, i.e. 𝑥𝑥1𝑝𝑝, equals to an integer multiplied by half 

wavelength. This situation presented in Equation 78 needs to be carefully avoided. 

 𝑒𝑒𝑖𝑖2𝑘𝑘𝑛𝑛𝑥𝑥1𝑝𝑝 = 1
𝑦𝑦𝑖𝑖𝑦𝑦𝑙𝑙𝑑𝑑𝑚𝑚
�⎯⎯⎯� 𝑘𝑘𝑛𝑛𝑥𝑥1𝑝𝑝 = 𝑧𝑧𝑝𝑝𝜋𝜋

𝑦𝑦𝑖𝑖𝑦𝑦𝑙𝑙𝑑𝑑𝑚𝑚
�⎯⎯⎯� 𝑥𝑥1𝑝𝑝 = 𝑧𝑧𝑝𝑝

𝜆𝜆
2

, 𝑧𝑧𝑝𝑝 ∈ ℤ 78 

A model basin test usually involves one or multiple wave conditions featuring single and 

variable wavelengths, respectively. For multiple wave conditions featuring specific wavelength 

for each scenario, two methods may be used, one of the methods is applying the weighted 

coefficients proposed by Zelt and Skejebreia (1992) and choosing three or more wave gauges 

from the wave probe array, the other method is using five probes, and three of the wave probes 

are used for reflection analysis for each specific wavelength of each corresponding wave 

condition or for several wavelengths of several corresponding wave conditions. 

Three-of-five probes method 

The breakwater project that let several wave conditions sharing a set of three wave probes 

for reflection analysis using least square technique indicates that margins maybe tolerable for the 

above probe spacing criterion. Also, the actual probe position may be an approximate to the 

probe spacing criteria. Accordingly, in the latter method, sharing three wave probes for several 

wavelengths to compute reflection coefficient using least squares method following spacing 

criteria above when only five probes are available may be a feasible method in basin test.  

Let the five wave probes from the position closest to the wavemaker to the reflected 

structure as probes 1, 2, 3, 4, and 5 and the three wave probes used for reflection analysis from 

the position closest to the wave maker to the reflected structure as probes 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶. The probe 
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distances relative to probe 1 are 𝑥𝑥12, 𝑥𝑥13, 𝑥𝑥14, and 𝑥𝑥15, and the probe distance relative to probe 𝐴𝐴 

are 𝑥𝑥𝐴𝐴𝐴𝐴, and 𝑥𝑥𝐴𝐴𝐴𝐴 . Also, for conditions of wavelengths with totally 𝑀𝑀 wavelengths, let 𝜆𝜆𝑚𝑚 be each 

wave condition and 𝑚𝑚 = 1,2, … ,𝑚𝑚, …𝑀𝑀. According to the breakwater project, margin of 1% of 

wave length may be added to the probe position criteria by Mansard and Funke (1980) for the 

distance between the first and the second wave probes, i.e. 𝑥𝑥𝐴𝐴𝐴𝐴, and use the same probe criteria 

for the distance between the first and the third wave probes, i.e. 𝑥𝑥𝐴𝐴𝐴𝐴 , the singularities are also 

need to be carefully avoided and the distance between the wavemaker to probe 𝐴𝐴 and the toe of 

reflected structure to probe 𝐶𝐶 shall be equal or larger than one wave length. Hence, the revised 

probe criteria for 𝑥𝑥𝐴𝐴𝐴𝐴 and 𝑥𝑥𝐴𝐴𝐴𝐴  may be presented in Equation 79. 

 

9𝜆𝜆
100

≤ 𝑥𝑥𝐴𝐴𝐴𝐴 ≤
11𝜆𝜆
100

 

𝜆𝜆
6

< 𝑥𝑥𝐴𝐴𝐴𝐴 <
𝜆𝜆
3
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Accordingly, the conditions that allow two wavelengths 𝜆𝜆1 and 𝜆𝜆𝑚𝑚 (𝜆𝜆𝑚𝑚 > 𝜆𝜆1) to share 

wave probes for reflection analysis can be established. The probe space distance between the 

probes 𝐴𝐴 and 𝐵𝐵 for 𝜆𝜆1 and 𝜆𝜆𝑚𝑚 are 𝑥𝑥𝐴𝐴𝐴𝐴1  and 𝑥𝑥𝐴𝐴𝐴𝐴𝑚𝑚 , respectively; The probe space distance between 

the probes 𝐴𝐴 and 𝐶𝐶 for 𝜆𝜆1 and 𝜆𝜆𝑚𝑚 are 𝑥𝑥𝐴𝐴𝐴𝐴1  and 𝑥𝑥𝐴𝐴𝐴𝐴𝑚𝑚 , respectively. 

𝜆𝜆𝑚𝑚 and 𝜆𝜆1 share the same 𝑥𝑥𝐴𝐴𝐴𝐴 when the lower limit of probe distance between the probes 

𝐴𝐴 and 𝐵𝐵 for the 𝑚𝑚𝑡𝑡ℎ wavelength 𝜆𝜆𝑚𝑚, i.e. 𝑥𝑥𝐴𝐴𝐴𝐴𝑚𝑚 = (9 100⁄ )𝜆𝜆𝑚𝑚, falls between the interval of the 

probe distance between the probes 𝐴𝐴 and 𝐵𝐵 for the first wavelength 𝜆𝜆1, i.e. 𝑥𝑥𝐴𝐴𝐴𝐴1 . This condition is 

presented in Equation 80. 

 
9

100
𝜆𝜆1 <

9
100

𝜆𝜆𝑚𝑚 <
11

100
𝜆𝜆1

𝑦𝑦𝑖𝑖𝑦𝑦𝑙𝑙𝑑𝑑𝑚𝑚
�⎯⎯⎯� 𝜆𝜆1 < 𝜆𝜆𝑚𝑚 <

11
9
𝜆𝜆1 80 
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𝜆𝜆𝑚𝑚 and 𝜆𝜆1 share the same 𝑥𝑥𝐴𝐴𝐴𝐴  when the lower limit of probe distance between the probes 

𝐴𝐴 and 𝐶𝐶 for the 𝑚𝑚𝑡𝑡ℎ wavelength 𝜆𝜆𝑚𝑚, i.e. 𝑥𝑥𝐴𝐴𝐴𝐴𝑚𝑚 = (1 6⁄ )𝜆𝜆𝑚𝑚, falls between the interval of the probe 

distance between the probes 𝐴𝐴 and 𝐶𝐶 for the first wavelength 𝜆𝜆1, i.e. 𝑥𝑥𝐴𝐴𝐴𝐴1 . This condition is 

presented in Equation 81. 

 
1
6
𝜆𝜆1 <

1
6
𝜆𝜆𝑚𝑚 <

1
3
𝜆𝜆1

𝑦𝑦𝑖𝑖𝑦𝑦𝑙𝑙𝑑𝑑𝑚𝑚
�⎯⎯⎯� 𝜆𝜆1 < 𝜆𝜆𝑚𝑚 < 2𝜆𝜆1 81 

The probe distance between the probes 𝐴𝐴 and 𝐵𝐵 for the 𝑚𝑚𝑡𝑡ℎ wavelength 𝜆𝜆𝑚𝑚, i.e. 𝑥𝑥𝐴𝐴𝐴𝐴𝑚𝑚 , 

overlaps the probe distance between the probes  𝐴𝐴 and 𝐶𝐶 for the 1𝑡𝑡ℎ wavelength of 𝜆𝜆1, i.e. 𝑥𝑥𝐴𝐴𝐴𝐴1 , 

when the lower limit of 𝑥𝑥𝐴𝐴𝐴𝐴𝑚𝑚 , i.e. 𝑥𝑥𝐴𝐴𝐴𝐴𝑚𝑚 = (9 100⁄ )𝜆𝜆𝑚𝑚, falls between the interval of 𝑥𝑥𝐴𝐴𝐴𝐴1 . This 

condition is presented in Equation 82. 

 1
6
𝜆𝜆1 <

9
100

𝜆𝜆𝑚𝑚 <
1
3
𝜆𝜆1

𝑦𝑦𝑖𝑖𝑦𝑦𝑙𝑙𝑑𝑑𝑚𝑚
�⎯⎯⎯�

50
27

𝜆𝜆1 < 𝜆𝜆𝑚𝑚 <
100
27

𝜆𝜆1 82 

These relations from Equation 79 to 82 are tabulated in Table 5 below. 

 
 

Table 5. The conditions for sharing wave probes. 

𝜆𝜆𝑚𝑚 𝑥𝑥𝐴𝐴𝐴𝐴1 ∩ 𝑥𝑥𝐴𝐴𝐴𝐴𝑚𝑚  𝑥𝑥𝐴𝐴𝐴𝐴1 ∩ 𝑥𝑥𝐴𝐴𝐴𝐴𝑚𝑚  𝑥𝑥𝐴𝐴𝐴𝐴1 ∩ 𝑥𝑥𝐴𝐴𝐴𝐴𝑚𝑚  

�𝜆𝜆1,
11
9
𝜆𝜆1� ≠ 0 ≠ 0 = 0 

�
11
9
𝜆𝜆1,

50
27

𝜆𝜆1� = 0 ≠ 0 = 0 

�
50
27

𝜆𝜆1, 2𝜆𝜆1� = 0 ≠ 0 ≠ 0 

�2𝜆𝜆1,
100
27

𝜆𝜆1� = 0 = 0 ≠ 0 

�
100
27

𝜆𝜆1,∞� = 0 = 0 = 0 
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Based on the conditions tabulated in Table 5, the software can be programed to 

automatically determine the number of wave probes and their positions, and three of these probes 

will be selected for reflection analysis according to the wavelength used in the test. The 

directions are stated as follows: 

1. Inputting the wavelengths used in a test and sorting them ascendingly to get an array of 

wavelengths 𝜆𝜆𝑚𝑚 

𝜆𝜆𝑚𝑚 = {𝜆𝜆1,𝜆𝜆2, … , 𝜆𝜆𝑀𝑀} 

2. Comparing each wavelength that is larger than the first wavelength, i.e. 𝜆𝜆𝑚𝑚′ =

{𝜆𝜆2, … , 𝜆𝜆𝑀𝑀}, to the first wavelengths 𝜆𝜆1 until there is zero overlapping between 𝑥𝑥𝐴𝐴𝐴𝐴1  and 

𝑥𝑥𝐴𝐴𝐴𝐴𝑚𝑚 . Marking the longest wavelength having its 𝑥𝑥𝐴𝐴𝐴𝐴 overlap with 𝑥𝑥𝐴𝐴𝐴𝐴1  as 𝜆𝜆𝑀𝑀1, and 

marking the shortest wavelength that does not have its 𝑥𝑥𝐴𝐴𝐴𝐴 overlap with 𝑥𝑥𝐴𝐴𝐴𝐴1  as 𝜆𝜆𝑀𝑀1+1, 

and 1 ≤ 𝑀𝑀1 < 𝑀𝑀. Wavelength 𝜆𝜆𝑀𝑀1+1 and 𝜆𝜆1 have the following relationship derived 

from Equation 82. 

𝜆𝜆𝑀𝑀1+1 >
100
27

𝜆𝜆1 

A group of the wavelengths (main group 1 – MG (1)) having overlapping to 𝜆𝜆1 can be 

formed, such that 

𝑀𝑀𝐺𝐺(1) = {𝜆𝜆1, … , 𝜆𝜆𝑀𝑀1} 

3. Comparing each wavelength that is larger than 𝜆𝜆𝑀𝑀1+1, i.e. 𝜆𝜆𝑚𝑚′ = {𝜆𝜆𝑀𝑀1+2, … , 𝜆𝜆𝑀𝑀}, to the 

𝜆𝜆𝑀𝑀1+1 until there is zero overlapping between 𝑥𝑥𝐴𝐴𝐴𝐴
𝑀𝑀1+1 and 𝑥𝑥𝐴𝐴𝐴𝐴𝑚𝑚 . Marking the longest 

wavelength having its 𝑥𝑥𝐴𝐴𝐴𝐴 overlap with 𝑥𝑥𝐴𝐴𝐴𝐴
𝑀𝑀1+1 as 𝜆𝜆𝑀𝑀2, and marking the shortest 

wavelength that does not have its 𝑥𝑥𝐴𝐴𝐴𝐴 overlap with 𝑥𝑥𝐴𝐴𝐴𝐴
𝑀𝑀1+1 as 𝜆𝜆𝑀𝑀2+1, and 𝑀𝑀1 + 1 ≤ 𝑀𝑀2 <
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𝑀𝑀. Wavelength 𝜆𝜆𝑀𝑀2+1 and 𝜆𝜆𝑀𝑀1+1 have the following relationship derived from Equation 

82. 

𝜆𝜆𝑀𝑀2+1 >
100
27

𝜆𝜆𝑀𝑀1+1 

A group of the wavelengths (main group 2 – MG (2)) having overlapping to 𝜆𝜆1 can be 

formed, such that 

𝑀𝑀𝐺𝐺(2) = {𝜆𝜆𝑀𝑀1+1, … , 𝜆𝜆𝑀𝑀2} 

4. Repeating the steps 2 and 3 until finishing comparing all wavelengths and categorizing 

all wavelengths, i.e. 𝜆𝜆𝑚𝑚 = {𝜆𝜆1,𝜆𝜆2, … , 𝜆𝜆𝑀𝑀}, into the main groups of 

𝑀𝑀𝐺𝐺(1) = {𝜆𝜆1, … , 𝜆𝜆𝑀𝑀1} 

𝑀𝑀𝐺𝐺(2) = {𝜆𝜆𝑀𝑀1+1, … , 𝜆𝜆𝑀𝑀2} 

⋯ 

𝑀𝑀𝐺𝐺(𝑖𝑖) = {𝜆𝜆𝑀𝑀𝑖𝑖−1+1, … , 𝜆𝜆𝑀𝑀} 

5. Categorizing each main group, the 1st group, i.e. {𝜆𝜆1, … , 𝜆𝜆𝑀𝑀1}, for example, into the 

subgroups 𝑆𝑆𝐺𝐺𝑠𝑠 

a. Categorizing the wavelengths according to Table 5 into four subgroups: a group 

that all wavelengths sharing the same 𝑥𝑥𝐴𝐴𝐴𝐴 and the same 𝑥𝑥𝐴𝐴𝐴𝐴  with those of 𝜆𝜆1; a 

group sharing the same 𝑥𝑥𝐴𝐴𝐴𝐴  while having zero overlapping of 𝑥𝑥𝐴𝐴𝐴𝐴 with those of 

𝜆𝜆1; a group sharing the same 𝑥𝑥𝐴𝐴𝐴𝐴  and the 𝑥𝑥𝐴𝐴𝐴𝐴 of the longer wavelengths have the 

overlap with the 𝑥𝑥𝐴𝐴𝐴𝐴  of 𝜆𝜆1; a group that the 𝑥𝑥𝐴𝐴𝐴𝐴 of the longer wavelengths have 

the overlap with the 𝑥𝑥𝐴𝐴𝐴𝐴  of 𝜆𝜆1. 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 
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11
9
𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} <

50
27

𝜆𝜆1 

50
27

𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑆𝑆3} <
550
243

𝜆𝜆1 

550
243

𝜆𝜆1 < {𝜆𝜆𝑆𝑆3+1, … , 𝜆𝜆𝑀𝑀1} <
100
27

𝜆𝜆1 

b. For a subgroup 𝑆𝑆𝐺𝐺(1) sharing the same 𝑥𝑥𝐴𝐴𝐴𝐴 and the same 𝑥𝑥𝐴𝐴𝐴𝐴 , i.e. 𝜆𝜆1 <

{𝜆𝜆1, … , 𝜆𝜆𝑎𝑎1} < (11 9⁄ )𝜆𝜆1, three wave probes are needed. The distance between the 

first and the second probes, i.e. 𝑥𝑥12, are used as distance between the probes 𝐴𝐴 

and 𝐵𝐵, i.e. 𝑥𝑥𝐴𝐴𝐴𝐴, and the distance between the first and the third probes, i.e. 𝑥𝑥13, are 

used as distance between the probes 𝐴𝐴 and 𝐶𝐶, i.e. 𝑥𝑥𝐴𝐴𝐴𝐴 . 

𝑥𝑥12
1~𝑆𝑆1 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆1 � 

𝑥𝑥13
1~𝑆𝑆1 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆1 � 

c. For a subgroup 𝑆𝑆𝐺𝐺(2) sharing the same 𝑥𝑥𝐴𝐴𝐴𝐴  while having zero overlapping of 𝑥𝑥𝐴𝐴𝐴𝐴 

with those of 𝜆𝜆1, i.e. (11 9⁄ )𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} < (50 27⁄ )𝜆𝜆1, up to five wave 

probes are needed. These wavelengths share the same 𝑥𝑥𝐴𝐴𝐴𝐴  with the previous 

subgroup can be categorized into up to three groups, and each group shares the 

same 𝑥𝑥𝐴𝐴𝐴𝐴.  

𝑥𝑥12
𝑆𝑆1+1~𝑎𝑎1 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑎𝑎1� 

𝑥𝑥13
𝑎𝑎1+1~𝑎𝑎2 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑎𝑎1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑎𝑎2� 

𝑥𝑥14
𝑎𝑎2+1~𝑆𝑆2 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑎𝑎2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆2 � 

𝑥𝑥15
𝑆𝑆1+1~𝑆𝑆2 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆2 � 
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d. The subgroup, i.e. 𝑆𝑆𝐺𝐺(3), of (50 27⁄ )𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑆𝑆3} < (550 243⁄ )𝜆𝜆1 is re-

written from 𝜆𝜆𝑆𝑆2+1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑆𝑆3} < (11 9⁄ )𝜆𝜆𝑆𝑆2+1, and the wavelengths in this 

group share the same 𝑥𝑥𝐴𝐴𝐴𝐴 and the same 𝑥𝑥𝐴𝐴𝐴𝐴 . Three wave probes are needed. The 

distance between the first and the second probes, i.e. 𝑥𝑥12, are used as distance 

between the probes 𝐴𝐴 and 𝐵𝐵, i.e. 𝑥𝑥𝐴𝐴𝐴𝐴, and the distance between the first and the 

third probes, i.e. 𝑥𝑥13, are used as distance between the probes 𝐴𝐴 and 𝐶𝐶, i.e. 𝑥𝑥𝐴𝐴𝐴𝐴 . 

𝑥𝑥12
𝑆𝑆2+1~𝑆𝑆3 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆3 � 

𝑥𝑥13
𝑆𝑆2+1~𝑆𝑆3 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆3 � 

e. The wavelengths in subgroup 𝑆𝑆𝐺𝐺(4) of (550 243⁄ )𝜆𝜆1 < {𝜆𝜆𝑆𝑆3+1, … , 𝜆𝜆𝑀𝑀1} <

(100 27⁄ )𝜆𝜆1 share their distance 𝑥𝑥𝐴𝐴𝐴𝐴 with the distance between the first and the 

third probe of the shortest wavelength 𝜆𝜆1, i.e. 𝑥𝑥𝐴𝐴𝐴𝐴1 . The interval of this subgroup 

can be rewritten as  𝜆𝜆𝑆𝑆3+1 < {𝜆𝜆𝑆𝑆3+1, … , 𝜆𝜆𝑀𝑀1} < (18 11⁄ )𝜆𝜆𝑆𝑆3+1 and knowing that 

(11 9⁄ )𝜆𝜆𝑆𝑆3+1 < (18 11⁄ )𝜆𝜆𝑆𝑆3+1 < (50 27⁄ )𝜆𝜆𝑆𝑆3+1, the wavelengths in this 

subgroup share the same distance 𝑥𝑥𝐴𝐴𝐴𝐴  with that of the shortest wavelength 𝜆𝜆𝑆𝑆3+1 

in this group, i.e. 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆3+1. Up to five wave probes are needed in this group. 

𝑥𝑥12
𝑆𝑆3+1~𝑏𝑏1 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆3+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑏𝑏1 � 

𝑥𝑥13
𝑏𝑏1+1~𝑏𝑏2 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑏𝑏1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑏𝑏2 � 

𝑥𝑥14
𝑏𝑏2+1~𝑀𝑀1 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑏𝑏2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑀𝑀1� 

𝑥𝑥15
𝑆𝑆3+1~𝑀𝑀1 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆3+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑀𝑀1� 
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f. According to Table 5, knowing that 𝑥𝑥1𝑝𝑝
𝑎𝑎2+1~𝑆𝑆2 in 𝑆𝑆𝐺𝐺(2) overlaps 𝑥𝑥13

1~𝑆𝑆1 in 𝑆𝑆𝐺𝐺(1) 

Also 𝑥𝑥13
𝑆𝑆3+1~𝑀𝑀1 in 𝑆𝑆𝐺𝐺(4) has overlap with overlap of 𝑥𝑥1𝑝𝑝

𝑎𝑎2+1~𝑆𝑆2 in 𝑆𝑆𝐺𝐺(2) and 𝑥𝑥13
1~𝑆𝑆1 

in 𝑆𝑆𝐺𝐺(1). Accordingly Merging can be applied to those subgroups:  

i. Merging �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � and �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆2 � 

ii. Merging, �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 �, �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆2 �, and �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆3 � 

g. To get the result that 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑎𝑎1� 

𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑎𝑎1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑎𝑎2� 

𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑎𝑎2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 

𝑥𝑥16 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆2 � 

= �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆3 � 

𝑥𝑥17 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆3+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑏𝑏1 � 

𝑥𝑥18 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑏𝑏1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑏𝑏2 � 

𝑥𝑥19 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑏𝑏2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑀𝑀1� 

𝑥𝑥1,10 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆3 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑀𝑀1� 

6. Repeating step 5 to complete the other main groups 

Accordingly, by using the procedures above, several cases using up to five wave probes 

with the corresponding required number of probes and their positions can be obtained and are 

presented in Table 6 to Table 18. 
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The Case I presented in Table 6 indicating that all the wavelengths fall into the subgroup 

𝑆𝑆𝐺𝐺(1). The wavelengths in this case share the same 𝑥𝑥𝐴𝐴𝐴𝐴 and the same 𝑥𝑥𝐴𝐴𝐴𝐴 , and only three wave 

probes are required. Distance 𝑥𝑥12 is for 𝑥𝑥𝐴𝐴𝐴𝐴 of all wavelengths, and distance 𝑥𝑥12 is for 𝑥𝑥𝐴𝐴𝐴𝐴  of all 

wavelengths. 

 
 

Table 6. Cases and required number of probes – Case I. 

{𝜆𝜆1, … , 𝜆𝜆𝑀𝑀} Probe Position 𝑃𝑃 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑀𝑀} <
11
9
𝜆𝜆1 

𝑥𝑥12 = {𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 } 
𝑥𝑥13 = {𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 } 3 

 
 
 
The wavelengths in Case II fall into two subgroups, including Case II-1 presented in 

Table 7. Cases and required number of probes – Case II-1. that wavelengths fall into 𝑆𝑆𝐺𝐺(1) and 

𝑆𝑆𝐺𝐺(2), Case II-2 presented in Table 8 that wavelengths fall into 𝑆𝑆𝐺𝐺(1) and 𝑆𝑆𝐺𝐺(3), and Case II-3 

presented in Table 9 that wavelengths fall into 𝑆𝑆𝐺𝐺(1) and 𝑆𝑆𝐺𝐺(4). 

Case II-1 presented in Table 7 that all wavelengths fall into 𝑆𝑆𝐺𝐺(1) and 𝑆𝑆𝐺𝐺(2) indicates 

that at least four wave probes and up to six wave probes are needed in this case. All wavelengths 

in this case share the same 𝑥𝑥𝐴𝐴𝐴𝐴 . The wavelengths fall into 𝑆𝑆𝐺𝐺(1) share the same 𝑥𝑥𝐴𝐴𝐴𝐴 that is 

independent from those of the wavelengths fall into 𝑆𝑆𝐺𝐺(2). The wavelengths fall into 𝑆𝑆𝐺𝐺(2) may 

need up to three 𝑥𝑥𝐴𝐴𝐴𝐴s depending on how many intervals that these wavelengths fall into, and 

each interval using the same criteria of 𝑆𝑆𝐺𝐺(1) that guarantees all wavelengths in this interval 

share the same 𝑥𝑥𝐴𝐴𝐴𝐴 and 𝑥𝑥𝐴𝐴𝐴𝐴 . When the wavelengths in 𝑆𝑆𝐺𝐺(2) fall into three intervals, six wave 

probes are needed and this above the limit of five probe method. 
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Table 7. Cases and required number of probes – Case II-1. 

{𝜆𝜆1, … , 𝜆𝜆𝑀𝑀} Probe Position 𝑃𝑃 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

11
9
𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑀𝑀} < �

11
9
�
2

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

𝑥𝑥14 = {𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 } 
4 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑀𝑀} < �
11
9
�
3

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

𝑥𝑥14 = {𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 } 
4 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

�
11
9
�
3

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑀𝑀} <
50
27

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

𝑥𝑥14 = {𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 } 
4 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

11
9
𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑎𝑎1} < �

11
9
�
2

𝜆𝜆1 

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑎𝑎1+1, … , 𝜆𝜆𝑀𝑀} < �
11
9
�
3

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑎𝑎1� 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑎𝑎1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = {𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 } 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

11
9
𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑎𝑎1} < �

11
9
�
2

𝜆𝜆1 

�
11
9
�
3

𝜆𝜆1 < {𝜆𝜆𝑎𝑎1+1, … , 𝜆𝜆𝑀𝑀} <
50
27

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑎𝑎1� 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑎𝑎1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = {𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 } 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑎𝑎1} < �
11
9
�
3

𝜆𝜆1 

�
11
9
�
3

𝜆𝜆1 < {𝜆𝜆𝑎𝑎1+1, … , 𝜆𝜆𝑀𝑀} <
50
27

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑎𝑎1� 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑎𝑎1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = {𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 } 

5 
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Table 7. Continued. 

{𝜆𝜆1, … , 𝜆𝜆𝑀𝑀} Probe Position 𝑃𝑃 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

11
9
𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑎𝑎1} < �

11
9
�
2

𝜆𝜆1 

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑎𝑎1+1, … , 𝜆𝜆𝑎𝑎2} < �
11
9
�
3

𝜆𝜆1 

�
11
9
�
3

𝜆𝜆1 < {𝜆𝜆𝑎𝑎2+1, … , 𝜆𝜆𝑀𝑀} <
50
27

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑎𝑎1� 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑎𝑎1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑎𝑎2� 

𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑎𝑎2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

𝑥𝑥16 = {𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 } 

6 

 
 
 
Case II-2 presented in Table 8 that all wavelengths fall into 𝑆𝑆𝐺𝐺(1) and 𝑆𝑆𝐺𝐺(3) indicates 

that at only four wave probes are needed in this case. The 𝑥𝑥𝐴𝐴𝐴𝐴s of the wavelengths in these 

subgroups have no overlap. All wavelengths in this case share the same 𝑥𝑥𝐴𝐴𝐴𝐴  if the wavelengths in 

𝑆𝑆𝐺𝐺(3) are shorter than 2𝜆𝜆1. 𝑥𝑥𝐴𝐴𝐴𝐴  of 𝑆𝑆𝐺𝐺(1) is independent from that of 𝑆𝑆𝐺𝐺(3) when some 

wavelengths in the latter subgroup are longer than 2𝜆𝜆1, and the 𝑥𝑥𝐴𝐴𝐴𝐴 of 𝑆𝑆𝐺𝐺(3) share the probes 

with 𝑥𝑥𝐴𝐴𝐴𝐴  of 𝑆𝑆𝐺𝐺(1). 

 
 

Table 8. Cases and required number of probes – Case II-2. 

{𝜆𝜆2, … , 𝜆𝜆𝑀𝑀} Probe Position 𝑃𝑃 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

50
27

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑀𝑀} < 2𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

𝑥𝑥14 = {𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 } 
4 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

50
27

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑀𝑀} <
550
243

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

= �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

4 
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Case II-3 presented in Table 9 that all wavelengths fall into 𝑆𝑆𝐺𝐺(1) and 𝑆𝑆𝐺𝐺(4) indicates 

that at least four wave probes and up to six wave probes are needed in this case. The wavelengths 

in subcase 𝑆𝑆𝐺𝐺(1) share the same 𝑥𝑥𝐴𝐴𝐴𝐴 and 𝑥𝑥𝐴𝐴𝐴𝐴 . The wavelengths in 𝑆𝑆𝐺𝐺(4) share the same 𝑥𝑥𝐴𝐴𝐴𝐴  and 

may need up to three 𝑥𝑥𝐴𝐴𝐴𝐴s depending on how many intervals that these wavelengths fall into, and 

each interval using the same criteria of 𝑆𝑆𝐺𝐺(1) that guarantees all wavelengths in this interval 

share the same 𝑥𝑥𝐴𝐴𝐴𝐴 and 𝑥𝑥𝐴𝐴𝐴𝐴 . The 𝑥𝑥𝐴𝐴𝐴𝐴s of 𝑆𝑆𝐺𝐺(4) overlap the 𝑥𝑥𝐴𝐴𝐴𝐴  of 𝑆𝑆𝐺𝐺(4) and letting one of the 

𝑥𝑥𝐴𝐴𝐴𝐴s of 𝑆𝑆𝐺𝐺(4) share the wave probe with the 𝑥𝑥𝐴𝐴𝐴𝐴  of 𝑆𝑆𝐺𝐺(4). When the wavelengths in 𝑆𝑆𝐺𝐺(2) fall 

into three intervals, six wave probes are needed and this above the limit of five probe method. 

 
 

Table 9. Cases and required number of probes – Case II-3. 

{𝜆𝜆2, … , 𝜆𝜆𝑀𝑀} Probe Position 𝑃𝑃 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

550
243

𝜆𝜆1 ≤ {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑀𝑀} <
550
243

�
11
9
� 𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

= �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

4 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

550
243

�
11
9
� 𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑀𝑀} <

550
243

�
11
9
�
2

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

= �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

4 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

550
243

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑀𝑀} <
550
243

�
18
11
� 𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

= �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

4 
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Table 9. Continued. 

{𝜆𝜆2, … , 𝜆𝜆𝑀𝑀} Probe Position 𝑃𝑃 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

550
243

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑏𝑏1} <
550
243

�
11
9
� 𝜆𝜆1 

550
243

�
11
9
� 𝜆𝜆1 < {𝜆𝜆𝑏𝑏1+1, … , 𝜆𝜆𝑀𝑀} <

550
243

�
11
9
�
2

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

= �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑏𝑏1 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑏𝑏1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

550
243

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑏𝑏1} <
550
243

�
11
9
� 𝜆𝜆1 

550
243

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑏𝑏1+1, … , 𝜆𝜆𝑀𝑀} <
550
243

�
18
11
� 𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

= �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑏𝑏1 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑏𝑏1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

550
243

�
11
9
� 𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑏𝑏1} <

550
243

�
11
9
�
2

𝜆𝜆1 

550
243

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑏𝑏1+1, … , 𝜆𝜆𝑀𝑀} <
550
243

�
18
11
� 𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

= �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑏𝑏1 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑏𝑏1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

550
243

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑏𝑏1} <
550
243

�
11
9
� 𝜆𝜆1 

550
243

�
11
9
� 𝜆𝜆1 < {𝜆𝜆𝑏𝑏1+1, … , 𝜆𝜆𝑏𝑏2} <

550
243

�
11
9
�
2

𝜆𝜆1 

550
243

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑏𝑏2+1, … , 𝜆𝜆𝑀𝑀} <
550
243

�
18
11
� 𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

= �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑏𝑏1 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑏𝑏1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑏𝑏2 � 

𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑏𝑏2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

𝑥𝑥16 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

6 

 
 
 

The wavelengths in Case III fall into three subgroups, including Case III-1 presented in 

Table 10 and Table 11 that wavelengths fall into 𝑆𝑆𝐺𝐺(1), 𝑆𝑆𝐺𝐺(2), and, 𝑆𝑆𝐺𝐺(3), Case III-2 presented 
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in Table 12, Table 13, and Table 14 that wavelengths fall into 𝑆𝑆𝐺𝐺(1), 𝑆𝑆𝐺𝐺(2), and, 𝑆𝑆𝐺𝐺(4), and 

Case III-3 presented in Table 15 and Table 16 that wavelengths fall into 𝑆𝑆𝐺𝐺(1), 𝑆𝑆𝐺𝐺(3), and, 

𝑆𝑆𝐺𝐺(4). 

Case III-1 presented in Table 10 for Case III-1a and Table 11 for Case III-1b that all 

wavelengths fall into 𝑆𝑆𝐺𝐺(1), 𝑆𝑆𝐺𝐺(2), and, 𝑆𝑆𝐺𝐺(3) indicates that five wave probes are needed in 

this case if the wavelengths in 𝑆𝑆𝐺𝐺(2) fall into only one of its intervals. All wavelengths in this 

case share the same 𝑥𝑥𝐴𝐴𝐴𝐴  if the wavelengths in 𝑆𝑆𝐺𝐺(3) are shorter than 2𝜆𝜆1, which are presented in 

Case III-1a. 𝑥𝑥𝐴𝐴𝐴𝐴  of 𝑆𝑆𝐺𝐺(1) and 𝑆𝑆𝐺𝐺(2) is independent from that of 𝑆𝑆𝐺𝐺(3) when some wavelengths 

in the subgroup 𝑆𝑆𝐺𝐺(3) are longer than 2𝜆𝜆1, and the 𝑥𝑥𝐴𝐴𝐴𝐴 of 𝑆𝑆𝐺𝐺(3) share the probes with 𝑥𝑥𝐴𝐴𝐴𝐴  of 

𝑆𝑆𝐺𝐺(1) and 𝑆𝑆𝐺𝐺(2), which are presented in Case III-1b. 

 
 

Table 10. Cases and required number of probes – Case III-1a. 

{𝜆𝜆1, … , 𝜆𝜆𝑀𝑀} Probe Position 𝑃𝑃 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

11
9
𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} < �

11
9
�
2

𝜆𝜆1 
50
27

𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} < 2𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = {𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 } 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} < �
11
9
�
3

𝜆𝜆1 
50
27

𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} < 2𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = {𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 } 

5 
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Table 10. Continued. 

{𝜆𝜆1, … , 𝜆𝜆𝑀𝑀} Probe Position 𝑃𝑃 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

�
11
9
�
3

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} <
50
27

𝜆𝜆1 
50
27

𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} < 2𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = {𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 } 

5 

 
 
 

Table 11. Cases and required number of probes – Case III-1b. 

{𝜆𝜆1, … , 𝜆𝜆𝑀𝑀} Probe Position 𝑃𝑃 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

11
9
𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} < �

11
9
�
2

𝜆𝜆1 
50
27

𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <
550
243

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
= �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} < �
11
9
�
3

𝜆𝜆1 
50
27

𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <
550
243

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
= �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

�
11
9
�
3

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} <
50
27

𝜆𝜆1 
50
27

𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <
550
243

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
= �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 
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Case III-2 presented in Table 12 for Case III-2a and in Table 13 for Case III-2b and in 

Table 14 for Case III-2c that all wavelengths fall into 𝑆𝑆𝐺𝐺(1), 𝑆𝑆𝐺𝐺(2), and, 𝑆𝑆𝐺𝐺(4) indicates that 

five wave probes are needed in this case if the wavelengths in 𝑆𝑆𝐺𝐺(2) and 𝑆𝑆𝐺𝐺(4) fall into only 

one of their intervals. All wavelengths in 𝑆𝑆𝐺𝐺(1) and 𝑆𝑆𝐺𝐺(2) in this case share the same 𝑥𝑥𝐴𝐴𝐴𝐴  that is 

independent from that of 𝑆𝑆𝐺𝐺(4). 𝑥𝑥𝐴𝐴𝐴𝐴 of the wavelengths in 𝑆𝑆𝐺𝐺(4) share the probes with 𝑥𝑥𝐴𝐴𝐴𝐴  of 

the wavelengths in 𝑆𝑆𝐺𝐺(1) and 𝑆𝑆𝐺𝐺(2). 

 
 

Table 12. Cases and required number of probes – Case III-2a. 

{𝜆𝜆1, … , 𝜆𝜆𝑀𝑀} Probe Position 𝑃𝑃 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

11
9
𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} < �

11
9
�
2

𝜆𝜆1 
550
243

𝜆𝜆1 ≤ {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <
550
243

�
11
9
� 𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
= �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} < �
11
9
�
3

𝜆𝜆1 
550
243

𝜆𝜆1 ≤ {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <
550
243

�
11
9
� 𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
= �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

�
11
9
�
3

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} <
50
27

𝜆𝜆1 
550
243

𝜆𝜆1 ≤ {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <
550
243

�
11
9
� 𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
= �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 
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Table 13. Cases and required number of probes – Case III-2b. 

{𝜆𝜆1, … , 𝜆𝜆𝑀𝑀} Probe Position 𝑃𝑃 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

11
9
𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} < �

11
9
�
2

𝜆𝜆1 

550
243

�
11
9
� 𝜆𝜆1 ≤ {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <

550
243

�
11
9
�
2

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
= �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} < �
11
9
�
3

𝜆𝜆1 

550
243

�
11
9
� 𝜆𝜆1 ≤ {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <

550
243

�
11
9
�
2

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
= �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

�
11
9
�
3

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} <
50
27

𝜆𝜆1 

550
243

�
11
9
� 𝜆𝜆1 ≤ {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <

550
243

�
11
9
�
2

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
= �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 
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Table 14. Cases and required number of probes – Case III-2c. 

{𝜆𝜆1, … , 𝜆𝜆𝑀𝑀} Probe Position 𝑃𝑃 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

11
9
𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} < �

11
9
�
2

𝜆𝜆1 

550
243

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <
550
243

�
18
11
� 𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
= �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} < �
11
9
�
3

𝜆𝜆1 

550
243

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <
550
243

�
18
11
� 𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
= �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

�
11
9
�
3

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} <
50
27

𝜆𝜆1 

550
243

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <
550
243

�
18
11
� 𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
= �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

 
 
 
Case III-3 presented in Table 15 for Case III-3a and Table 16 for Case III-3b that all 

wavelengths fall into 𝑆𝑆𝐺𝐺(1), 𝑆𝑆𝐺𝐺(3), and, 𝑆𝑆𝐺𝐺(4) indicates that five wave probes are needed in 

this case if the wavelengths in 𝑆𝑆𝐺𝐺(4) fall into only one of its intervals. All wavelengths in 𝑆𝑆𝐺𝐺(1) 

and 𝑆𝑆𝐺𝐺(3) share the same 𝑥𝑥𝐴𝐴𝐴𝐴  if the wavelengths in 𝑆𝑆𝐺𝐺(3) are shorter than 2𝜆𝜆1, which are 

presented in Case III-3a, and 𝑥𝑥𝐴𝐴𝐴𝐴 of the wavelengths in 𝑆𝑆𝐺𝐺(4) overlaps with the 𝑥𝑥𝐴𝐴𝐴𝐴  of 𝑆𝑆𝐺𝐺(1) 

and 𝑆𝑆𝐺𝐺(3). The 𝑥𝑥𝐴𝐴𝐴𝐴s of 𝑆𝑆𝐺𝐺(1) and 𝑆𝑆𝐺𝐺(3) are independent to each other if the wavelengths in 

𝑆𝑆𝐺𝐺(3) are longer than 2𝜆𝜆1, 𝑥𝑥𝐴𝐴𝐴𝐴 of the wavelengths in 𝑆𝑆𝐺𝐺(3) share the probes with 𝑥𝑥𝐴𝐴𝐴𝐴  of 𝑆𝑆𝐺𝐺(1) 

and 𝑆𝑆𝐺𝐺(2), and wavelengths in 𝑆𝑆𝐺𝐺(3) and 𝑆𝑆𝐺𝐺(4) share the probes for 𝑥𝑥𝐴𝐴𝐴𝐴 , which are presented 

in Case III-3b. 
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Table 15. Cases and required number of probes – Case III-3a. 

{𝜆𝜆2, … , 𝜆𝜆𝑀𝑀} Probe Position 𝑃𝑃 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

50
27

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} < 2𝜆𝜆1 
550
243

𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <
550
243

�
11
9
� 𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
= �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

50
27

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} < 2𝜆𝜆1 

550
243

�
11
9
� 𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <

550
243

�
11
9
�
2

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
= �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

50
27

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} < 2𝜆𝜆1 

550
243

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <
550
243

�
18
11
� 𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
= �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 
𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 
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Table 16. Cases and required number of probes – Case III-3b. 

{𝜆𝜆2, … , 𝜆𝜆𝑀𝑀} Probe Position 𝑃𝑃 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

50
27

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} <
550
243

𝜆𝜆1 
550
243

𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <
550
243

�
11
9
� 𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

= �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆2 � 

𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

50
27

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} <
550
243

𝜆𝜆1 

550
243

�
11
9
� 𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <

550
243

�
11
9
�
2

𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

= �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆2 � 

𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

50
27

𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} <
550
243

𝜆𝜆1 

550
243

�
11
9
�
2

𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑀𝑀} <
550
243

�
18
11
� 𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

= �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆2 � 

𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

 
 
 

The wavelengths in Case IV fall into four subgroups 𝑆𝑆𝐺𝐺(1), 𝑆𝑆𝐺𝐺(2), 𝑆𝑆𝐺𝐺(3), and, 𝑆𝑆𝐺𝐺(4). 

In this case, at least six and up to ten wave probes are required, and one of the cases in presented 

in Table 17, below. 
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Table 17. Cases and required number of probes – Case IV. 

{𝜆𝜆1, … , 𝜆𝜆𝑀𝑀} Probe Position 𝑃𝑃 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} <
11
9
𝜆𝜆1 

11
9
𝜆𝜆1 < {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑆𝑆2} < �

11
9
�
2

𝜆𝜆1 
50
27

𝜆𝜆1 < {𝜆𝜆𝑆𝑆2+1, … , 𝜆𝜆𝑆𝑆3} < 2𝜆𝜆1 
550
243

𝜆𝜆1 ≤ {𝜆𝜆𝑆𝑆3+1, … , 𝜆𝜆𝑀𝑀} <
550
243

�
11
9
� 𝜆𝜆1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1 � 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2 � 
𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴

𝑆𝑆2+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆3 � 

𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆3 � 

= �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆3+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

𝑥𝑥16 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑆𝑆3+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

6 

 
 
 

The wavelengths in Case V fall into the first subgroups of two main groups, such as  

𝑆𝑆𝐺𝐺(1) of 𝑀𝑀𝐺𝐺(1) and 𝑆𝑆𝐺𝐺(1) of 𝑀𝑀𝐺𝐺(2) and five wave probes are needed in this scenario. This is 

presented in Table 18. 

 
 

Table 18. Cases and required number of probes – Case V. 

{𝜆𝜆1, … , 𝜆𝜆𝑀𝑀} Probe Position 𝑃𝑃 

𝜆𝜆1 ≤ {𝜆𝜆1, … , 𝜆𝜆𝑀𝑀1} <
11
9
𝜆𝜆1 

𝜆𝜆𝑀𝑀1+1 ≤ {𝜆𝜆𝑀𝑀1+1, … , 𝜆𝜆𝑀𝑀} <
11
9
𝜆𝜆𝑀𝑀1+1 

𝑥𝑥12 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑀𝑀1� 

𝑥𝑥13 = �𝑥𝑥𝐴𝐴𝐴𝐴1 , … , 𝑥𝑥𝐴𝐴𝐴𝐴
𝑀𝑀1� 

𝑥𝑥14 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑀𝑀1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

𝑥𝑥15 = �𝑥𝑥𝐴𝐴𝐴𝐴
𝑀𝑀1+1, … , 𝑥𝑥𝐴𝐴𝐴𝐴𝑀𝑀 � 

5 

 
 
 

Software based on the principle stated previously is programed using MATLAB, which is 

presented in the Appendix. The input file is the wavelengths used in the test that shall be inputted 

in a format of a linear array such as [𝜆𝜆1, 𝜆𝜆2, … 𝜆𝜆𝑛𝑛], and the output files displayed on Command 

Window, including a table of the wavelengths and their corresponding 𝑥𝑥𝐴𝐴𝐴𝐴, 𝑥𝑥𝐴𝐴𝐴𝐴 , and the 
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positions of probes  𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 denoted as “PA”, “PB”, and “PC”, and a table of the probe 

distances relative to the first probe denoted as “X1P”. Total probe number and the minimum total 

distance required from the wavemaker to the toe of probe structure is also displayed. Other 

variables and output files can be found in Workspace. A sample of input and output is illustrated 

in Figure 7. 

 
 

 
Figure 7. Sample of automatic probe arrangement. 

 
 
 

Using the wavelength in the breakwater project and computing the number of wave 

probes required and the corresponding probe positions. The comparison between the probe 

position used in the breakwater project and the probe positions computed by the software are 
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stated in the Table 19. The total number or required wave probes is 5 and the total distance 

between the wavemaker and the toe of breakwater is 20.21 m. 

 
 

Table 19. Comparison between the probe spaces computed by software and used in project. 

𝜆𝜆 𝑥𝑥𝐴𝐴𝐴𝐴 [m] 𝑥𝑥𝐴𝐴𝐴𝐴  [m] 

[m] Computed Project Diff. Computed Project Diff. 

𝜆𝜆1 4.33 0.48 0.48 0.00 1.13 1.17 0.04 

𝜆𝜆2 5.29 0.48 0.48 0.00 1.13 1.17 0.04 

𝜆𝜆3 6.24 0.67 0.67 0.00 1.13 1.67 0.54 

𝜆𝜆4 7.18 0.67 0.67 0.00 1.13 1.67 0.54 

𝜆𝜆5 8.12 1.13 0.91 0.22 2.11 2.26 0.15 

𝜆𝜆6 9.05 1.13 0.91 0.22 2.11 2.26 0.15 
 
 
 

Using the auto probe spacing arrangement software, the total number of wave probes 

required in the project under the same wave condition are reduced from six to five.  

Weighting coefficient 

The errors between the measurement and the estimation may be primarily caused by the 

phase deviations due to the usage of linear dispersion relation, which associate with the relative 

phase due to the probe spacing between two probes 𝑘𝑘�𝑥𝑥𝑝𝑝 − 𝑥𝑥𝑞𝑞�, and a goodness function 

(Equation 83) proposed by Zelta et al. (1992) quantifies the desirability of the phase difference 

associated with probe spacing. 

 𝐺𝐺�∆𝜑𝜑𝑛𝑛,𝑝𝑝𝑞𝑞� =
sin2 ∆𝜑𝜑𝑛𝑛,𝑝𝑝𝑞𝑞

1 + �∆𝜑𝜑𝑛𝑛,𝑝𝑝𝑞𝑞 𝜋𝜋⁄ �
2 83 
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Where: 

∆𝜑𝜑𝑛𝑛,𝑝𝑝𝑞𝑞 = 𝜑𝜑𝑛𝑛,𝑝𝑝 − 𝜑𝜑𝑛𝑛,𝑞𝑞 

𝜑𝜑𝑛𝑛,𝑝𝑝 = 𝑘𝑘𝑛𝑛𝑥𝑥𝑝𝑝 

𝜑𝜑𝑛𝑛,𝑞𝑞 = 𝑘𝑘𝑛𝑛𝑥𝑥𝑞𝑞 

The goodness function is a function of relative phase change of two probes and the larger 

value of the goodness functions the better wave gauge spacing. The weighting coefficient for 

wave probe 𝑝𝑝 is defined as the summation of the goodness function of each probe, which is 

presented in Equation 84. 

 𝑊𝑊𝑛𝑛,𝑝𝑝 = �𝐺𝐺�∆𝜑𝜑𝑛𝑛,𝑝𝑝𝑞𝑞�
𝑃𝑃

𝑞𝑞=1

 84 

Probe spacing criteria for directional wave 

The general principle to obtain a directional spectrum of relatively higher resolution is to 

place as many probes as possible. For estimating directional spectrum using the ELSM method, 

the gauge pattern used for long-crest wave is also applicable. For directional wave with small 

spreading angle, a linear array of wave probes is usually used being perpendicular to the main 

wave direction. When using parameterizing method or maximum likelihood method Wave-gauge 

array with 4 or more wave gauges are used for waves with larger spreading angles and Penicker 

and Borgman (1974) and Yu and Liu (2010) presented the directional wave spectrum captured 

by several types of probe array patterns that are presented in Figure 8, and tabulated in Table 20. 

Goda (1985) gives the general criteria concluded by Yu and Liu (2010) for probe matrix to 

capture directional wave spectra using the wave probes capturing surface elevations, such that: 
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1. The distances and orient of wave instrument-pair shall be identical 

2. The Euclidean distances of the instrument-pair vectors shall be homogeneously 

distributed crossing an extensive range 

3. The minimum distance of an instrument-pair shall be smaller than half of the shortest 

wavelength, and for irregular wave this distance shall be smaller than 0.3 times of peak 

wavelength. 

 
 

Table 20. Types of wave probes for capturing directional spectrum. 

 Type Number of Probes Note 
1 Star-shape 4 (Top left, Figure 8) 
2 T-shape 5 (Top left, Figure 8) 
3 5-probe Plus 5 (Top left, Figure 8) 
4 Pentagon 5 (Mid left, Figure 8) 
5 SWOC 6 (Mid left, Figure 8) 
6 CERC 5 (Mid left, Figure 8) 
7 Hexagon 6 (Bottom center, Figure 8) 
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Figure 8. Types of wave probes for capturing directional spectrum.  
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CHAPTER V  

WAVE REFLECTION INFRONT OF RUBBLEMOUNDED BREAKWATERS 

 

Introduction 

Validation of least square method used in software REFANA applies reflection analysis 

on basin test data, since the reflection analysis on this data originally employs a commercial 

software REFLS (M. D. Miles 1994). Results from REFLS are reliable and are available for 

validating other customized software using the least squares method. Since the reflection 

performance of rock beach that is for absorbing wave reflection on the end of model basin is 

known and consistently low, the spectra captured in front of the rock beach are considered as 

spectra in open water and are compared with the separated spectra in front of the reflected 

structures to validate the estimation using the least square method. 

Reflection analysis on measurements in Haynes Coastal Engineering Laboratory usually 

apply REFLS employing least square method that enable users to input wave data and specify 

cutoff frequencies and data truncation points for auto- and cross- spectra analysis. The reflection 

analysis using least square method requires the specific probe spacing criteria associated with the 

wavelengths corresponding to peak frequencies and for a project having more than one 

wavelengths requires multiple probe-spacing combinations. The probe-spacing combinations that 

are hand calculated in the breakwater project are compared with the probe-spacing combinations 

estimated by a software programed by the author to automatically arrange wave probes and to 

select three of them for a certain peak frequency, which indicates a good agreement. 

The measurements come from breakwater tests in the 3D shallow water basin, presented 

in Figure 9 and Figure 13, with dimensions of 120 ft (36.58 m) in length, 75 ft (22.86 m) in 
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width, and 4 ft (1.22 m) in depth. The basin is equipped with a wave maker (No. 1 in Figure 9) of 

48 piston typed paddles being able to move independently and to generate monochromatic 

waves, irregular waves with provided spectra, short crested waves, and customized wave input 

by users. A rock beach with slope of (V:H = 1:6, m = 0.17) is installed for mitigating reflection 

on the opposite side of wave maker. A motorized bridge (No. 4 in Figure 9) over the basin 

accommodates computers processing and storing signals from wave gauges and other 

instruments, details of which are presented in Figure 10. 

Capacitance wave gauges made by Reed (2006) are employed for sampling surface 

elevation, and the varying volts output is recorded and converted automatically using a 

LabVIEW based software Helios programmed by Yeh (2010), Sonne (2012), and Kim (2013). 

The conversion from volts to elevation is translated by calibration curves that are linear featuring 

slope and intercept, and these curves are obtained from calibration procedures employing a 

motorized calibration stand (No. 5 in Figure 9) designed and programmed by Rosas (2007) and 

the calibration package of Helios (Sonne 2012). The details of data calibration and acquisition 

systems, including a computer installed with Helios, a National Instrument DAQ, and a signal 

amplifier are shown in Figure 10. 
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Figure 9. Apparatus for wave generation and data acquisition: (1) wave maker, (2) computer for 
wave maker, (3) capacitance wave gauge, (4) motorized bridge with data acquisition system, and 

(5) calibration stand.  
 
 
 

 
Figure 10. Data acquisition system: (1) computer installed with Helios, (2) National Instrument’s 

DAQ, (3) signal amplifier, and (4) manual for Helios (Sonne 2012). 
 
 
 
Test Condition and Setups 

One of the projects in Haynes Coastal Engineering Laboratory (Randall, et al. 2016) on 

rubble mounded breakwaters with both constant-sloped and berm-width types of slope on the 

head side subjected to wave conditions with wave height of 0.05 m (0.16 ft), wave periods of 

2.24 s, 2.68 s, 3.13 s, 3.58 s, 4.02 s, and 4.47 s. and water depth of 0.43 m (1.41 ft). Two 
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channels were constructed to test two breakwaters simultaneously under the same condition in 

the wave basin. The layout of the project is represented in Figure 13. The wave conditions and 

probe positions for reflection analysis are tabulated in Table 21, and each wave condition is 

repeated for three times for each type of breakwater. 

In front of each breakwater, three wave probes were positioned parallel to the orthogonal 

of the toe of the breakwater and numbered sequentially from the wave maker to the reflected 

structures were used to record surface elevations simultaneously for reflection analysis, and the 

criteria of the distance between each pair of probes are discussed in previous chapter. To reduce 

the labor of moving wave gauges, the distance between the wave maker and the first probe 

closest to the wave maker was selected to be larger than the longest wavelength in the test at a 

constant value of 9.73 m (31.92 ft), and the wavelengths 𝜆𝜆 (sub-script 𝑜𝑜 present deep-water 

wavelength) are computed using equation derived from linear dispersion relationship. For the 

probe distance between the probe 1 and probe 2 and between the probe 1 and probe 3, average 

values are used for wave conditions I and II and for wave conditions III and IV, the larger values 

are used for wave conditions V and VI. The probe positions are presented in Table 21. 

 
 

Table 21. Wave conditions and positions for wave gauges. 

 Given Condition Wavelength Probe Position 
Wave 

Condition 
Test 

Number 
𝑇𝑇 
[s] 

ℎ 
[m] 

𝐻𝐻𝐼𝐼 
[m] 

𝜆𝜆𝑚𝑚 
[m] 

𝜆𝜆 
[m] 

𝑥𝑥1 
[m] 

𝑥𝑥12 
[m] 

𝑥𝑥13 
[m] 

I 1 – 3 2.24 0.43 0.05 7.83 4.33 9.73 0.48 1.17 
II 4 – 6 2.68 0.43 0.05 11.21 5.29 9.73 0.48 1.17 
III 7 – 9 3.13 0.43 0.05 15.30 6.24 9.73 0.67 1.67 
IV 10 – 12 3.58 0.43 0.05 20.01 7.18 9.73 0.67 1.67 
V 13 – 15 4.02 0.43 0.05 25.23 8.12 9.73 0.91 2.26 
VI 16 – 18 4.47 0.43 0.05 31.20 9.05 9.73 0.91 2.26 
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The constant-sloped breakwaters have slopes 1:1.5 and 1:2.5 and the berm-width 

breakwaters have the same slopes of 1:1.5 for both above and below the berm. The average slope 

presented in Equation 85 and Figure 11 is the slope of connecting line one and half of wave 

height above and below the plane of berm. The expression of the average slope is identical to 

that of constant slope when the width of berm equals to zero. 

 tan𝜃𝜃 =
3𝐻𝐻

𝐵𝐵 + 1.5𝐻𝐻
tan𝜃𝜃𝑑𝑑

± ∆𝑧𝑧
tan𝜃𝜃𝑑𝑑

+ 1.5𝐻𝐻 ∓ ∆𝑧𝑧
tan𝜃𝜃𝑢𝑢

 85 

Where: tan𝜃𝜃𝑑𝑑  and tan𝜃𝜃𝑢𝑢 are slopes above and below the berm, 𝐵𝐵 is width of berm, and ∆𝑧𝑧 is 

vertical distance from the plane of berm to still water level (SWL) and ∆𝑧𝑧 has plus or minus 

signs when the berm is beyond or below the SWL, respectively. Notice that 𝐵𝐵 = 0, ∆𝑧𝑧 = 0 and 

𝜃𝜃𝑑𝑑 = 𝜃𝜃𝑢𝑢 = 𝜃𝜃 for plain-sloped breakwater. (Shown in Figure 11). 

 
 

 
Figure 11. Weighted average slope. 
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Three rows of cinderblock walls were constructed to form two channels, i.e. North 

Channel (Channel N) and South Channel (Channel S). The breakwaters having the crest heights 

(the vertical distance between the crest and the toe of a breakwater) of 0.70 m (2.30 ft) and 0.60 

m (1.97 ft) were constructed in the North and the South channels, respectively. The information 

on the material is tabulated in Table 22 and a cross-section view of the breakwaters in the first 

scenario (Slope 1) is presented in Figure 12. The breakwater in North Channel was composed by 

a core covered by an armor layer, and a layer of filter between the core and the armor. The 

materials for core, filter cloth, and armor were granule/fine pebble, coarse pebble, and very 

coarse pebble, respectively, and their medium diameters 𝐷𝐷50 varied between 2 mm (0.08 in) and 

10 mm (0.39 in), between 20 mm (0.79 in) and 24 mm (0.94 in), and between 44 mm (1.73 in) 

and 52 mm (2.05 in), respectively. The breakwater in South Channel was composed by a core 

made of fine/medium pebble having 𝐷𝐷50 varying between 4 mm (0.16 in) and 20 mm (0.79 in), 

and the core was covered by the armor layer made of medium/coarse pebble having 𝐷𝐷50 varying 

between 14 mm (0.55 in) and 29 mm (1.14 in). Geotextile filter fabric was applied between the 

adjacent layers.  
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Table 22. Material information. 

Material Information 𝐷𝐷50 – North Channel 
 Core Filter Armor 
 [mm] [in] [mm] [in] [mm] [in] 

Min 2 0.08 20 0.79 44 1.73 
Max 10 0.39 24 0.94 52 2.05 
Type Pebble (Granule/Fine) Pebble (Coarse) Pebble (Very Coarse) 

Material Information 𝐷𝐷50 – South Channel 
 Core Filter Armor 
 [mm] [in] [mm] [in] [mm] [in] 

Min 4 0.16 - - 14 0.55 
Max 20 0.79 - - 29 1.14 
Type Pebble (Fine/Medium) - Pebble (Medium/Coarse) 

 
 
 

 
Figure 12. Cross-section illustrating materials of breakwaters in North Channel (top) and in 

South Channel (bottom) in Slope 1 
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Three scenarios named as Slope 1, Slope 2, and Slope 3 were involved for both channels. 

The characteristics of breakwaters are parameterized and tabulated in Table 23. Notice that the 

crest height 𝐶𝐶𝐻𝐻 in the table is the elevation of breakwater crest relative to the seabed at West toe, 

and subtraction of still water level may be necessary when calculating overtopping. The cross-

section and the corresponding parameters of the breakwaters for these scenarios are presented in 

Figure 15, Figure 16, and Figure 17. 

 
 

Table 23. Parameters of breakwater. 

Parameters South Channel North Channel 
Slope 1 Slope 2 Slope 3 Slope 1 Slope 2 Slope 3 

Slope 𝑚𝑚 [-] 0.40 0.67 0.13 0.67 0.38 0.27 
Berm Width 𝐵𝐵 [m] 0.00 0.00 0.90 0.00 0.17 0.34 
Crest Width 𝐶𝐶𝑊𝑊 [m] 0.90 1.50 0.61 0.30 0.30 0.30 
Crest Height 𝐶𝐶𝐻𝐻 [m] 0.60 0.60 0.6 0.70 0.70 0.70 

 
 
 
For Slope 1 (Figure 15), both of the breakwaters are plane-sloped, and the slopes of the 

breakwaters in the North and South Channels are 0.40 (𝐻𝐻:𝑉𝑉 = 1:1.5) and 0.67 (𝐻𝐻:𝑉𝑉 = 1:2.5), 

respectively. For Slope 2 (Figure 16), additional armor materials were added for the breakwaters 

in both channels, which forms a berm-width breakwater with berm width of 0.17 m (0.56 ft) in 

North Channel and forms a plane-slope breakwater in South Channel. The up-slope and the 

down-slope of the breakwater in North Channel are both 0.67 (𝐻𝐻:𝑉𝑉 = 1:1.5), which composite 

the average slope of 0.38. The slope for the plane-sloped breakwater in South Channel in Slope 2 

is 0.40 (𝐻𝐻:𝑉𝑉 = 1:1.5). For Slope 3 (Figure 17), the breakwaters in both channels are berm-width 

breakwaters. Additional materials used for armor were added to the breakwater in North Channel 

with a wider berm doubled the width, i.e. 0.34 m (1.12 ft), than that of previous scenario in North 
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Channel. In South Channel, materials were removed to constitute a berm-width breakwater 

having the berm width of 0.90m (2.95 ft). The average slopes for breakwaters of Slope 3 in the 

North and South Channels are 0.27 and 0.13, respectively, and their up-slopes and down-slopes 

are both 0.67 (𝐻𝐻:𝑉𝑉 = 1:2.5). These breakwaters are constructed and tested in the dual channels 

built in wave basin, and their layouts in the basin are presented in Figure 13.   

Froude Similarity (Equation 86) was applied such that the temporal scale is the square 

root of geometrical scale, and the geometrical scale and temporal scale are 1:20 and 1:4.47 

(model versus prototype), respectively. 

 
𝑉𝑉𝑚𝑚

�𝑔𝑔𝑚𝑚𝐿𝐿𝑚𝑚
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Figure 13. Layout of wave basin and dual breakwater channels. 
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Software for Reflection Analysis Using Least Square Method 

REFLS that is a software package of GEDAP, and REFANA that is a software package 

programmed using MATLAB by the author are employed for reflection analysis. Both software 

packages use least squares technique. The results computed by both software are compared to 

each other and are compared to the reflection coefficients in front of rock beach that is 

considered as open water causing the minimum reflections to further validate the method for 

separating the incident and reflected waves. REFANA also has the function for automating the 

arrangement and selection of wave probes according to the wave conditions for reflection 

analysis. The probe positions and the selections for reflection computed by REFANA are 

compared with the wave probe arrangement used in the breakwater project. The reflection 

coefficients computed by both software are presented in Table 24, Table 25, and Table 26. 

REFLS software for reflection analysis 

GEDAP proposed by the National Research Council of Canada is a general software 

system for managing and analyzing laboratory data (Miles and Funke, 1989), which is employed 

in Haynes Coastal Laboratory for generating waves and reflection analysis. Regular wave signals 

are synthesized by specifying wave height, wave period, and propagation angle. Irregular wave 

signals could be generated either by input time series of surface elevations or using PARSPEC or 

input spectra based on measured data for spectra and then applying RWSYN converting spectra to 

time series. The time series of surface elevations are then converted to mechanical drive signals 

for each of the paddles of wave maker using DWREP2. After obtaining surface elevations, the 

user could use software packages including REFLA, REFLM, and REFLS for refection analysis. 

The first and the third software are for irregular waves, and the second software is for regular 

waves.  
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Besides user input of time series of irregular waves, user could also use PARSPEC, which 

provides nine expressions of spectra consisting of Pierson-Moskowitz, JONSWAP, Bretschneider, 

Ochi Double Peak, Scott, TMA Shallow Water, Neumann, Mitsuyasu-Bretschneider (1971), and 

Mitsuyasu (1972). Depth, significant wave height, and peak frequency are specified for spectra 

generation. The user can also input spectra from measured data. 

RWSYN is then used for synthesizing time series from spectra employing one of the three 

methods, such as random phase (RP) method, random Fourier coefficient (RFC) method, and RFC 

method with matched variance. The RP method chooses random phases but determined amplitudes 

according to spectra for Fourier components. The RFC method has random Fourier coefficients 

according to Gaussian distribution and the corresponding wave records having variance differ 

constantly. The third method is a modification of the second method with random variance of each 

wave records, which, however, would equal to the variance of target spectrum by multiplying a 

scaling factor. The corresponding algorithms are presented extensively by Funke and Mansard 

(1984) and Miles (1989). 

All of the reflection software provided by GEDAP are based on the least square method 

presented by Mansard and Funke (1980) according to measurements of surface elevation from 

three probes spaced at a specified distance parallel to the propagation direction and probe 

distances are necessary inputs. REFLM is for regular waves without spectra analysis and the 

truncated time series for analysis should be integer multiples of the wave period, this method 

offers incident and reflect wave heights and averaged reflection coefficient from measurements 

of surface elevation. REFLA and REFLS are for reflection analysis for irregular waves. The 

former method requires inputs of phase lags of cross-spectra between the probe closest to wave 

maker and other probes using XSPEC2 based on Welch method (Welch et al. 1967) and gives 
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output of incident wave height and spectrum, peak period, and coherency factor. The latter 

method uses fast Fourier transform (FFT) for spectra analysis to convert input of wave elevation 

measurements from three probes to output of averaged reflection coefficient. 

Input of REFLS and the other GEDAP software packages applies a batch mode command 

processor, i.e. GBAT, for the version used in Haynes Coastal Engineering Laboratory, the input 

file examples can be found in the user guide (M. D. Miles 1994).    

REFANA software for reflection analysis 

A software, REFANA, programmed using MATLAB employing the least square method 

is developed for reflection analysis on both two-dimensional regular and irregular waves. This 

software consists of packages of autospec.m for computing auto-spectrum, crossspec.m for 

computing spectrum, wave_itr.m for wave length iteration, and ref_ana_leastsquare.m for 

loading wave file and displaying results of reflection analysis. The packages for computing auto- 

and cross-spectra employ FFT command in MATLANB. The last package requires inputs of 

auto- and cross-spectra and wave length from the previous packages, and test information, such 

as probe distances, water depth, and wave period, loaded from file testinfo.m. Computing of 

auto- and cross-spectra are based on fast Fourier transform (FFT) function provided by 

MATLAB.  

A sample of the results for the reflection analysis is displayed Figure 14. Results include 

auto spectral densities for measurements from all the three probes (upper panel of Figure 14), 

spectral densities of incident and reflect waves, and spectrum of reflection coefficient (lower 

panel of Figure 14). Significant wave heights of measured surface elevations, incident waves and 

reflect waves, averaged reflection coefficient are displayed in the legends of spectra plots.   
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Figure 14. Sample of reflection analysis – measured spectra (top), the spectra of incident wave, 

reflected wave, and the spectrum of reflection coefficients (bottom). 
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Figure 14 (top) presents spectra of measured signal from the three wave probes, Figure 

14 (bottom) presents spectra of incident and reflect waves and the reflection coefficients that are 

ratio of reflect over incident wave spectra. The bulk reflection coefficient is 49.84%. 

Software comparisons between REFLS and REFANA 

Results from this MATLAB-based software are compared with results obtained from 

GEDAP’s REFLM and REFLS. The sampling of surface elevation has a duration of 120 s, and a 

sampling rate of 25 Hz. Truncation points of time series for reflection analysis are 40 s and 120s. 

The results are tabulated in Table 24, Table 25, and Table 26, and the corresponding breakwater 

scenarios for the results are presented in Figure 15, Figure 16, and Figure 17, respectively.  The 

standard deviations of these reflection coefficients under the same test conditions are tabulated in 

Table 27. The significant wave heights are also computed and compared with input wave 

heights, which are tabulated in Table 28 and presented in Figure 19. 
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Table 24. Comparison of reflection coefficients (Slope 1). 

Test North Channel South Channel Open Water 
REFLS 𝐾𝐾𝑅𝑅 REFLS 𝐾𝐾𝑅𝑅 REFLS 𝐾𝐾𝑅𝑅 

1 55.00% 55.43% 27.40% 29.90% 17.50% 19.70% 
2 55.10% 55.28% 27.50% 30.08% 18.20% 20.15% 
3 54.80% 55.03% 27.70% 30.03% 17.80% 19.85% 
4 63.20% 64.16% 36.40% 36.79% 8.68% 13.18% 
5 63.10% 64.23% 36.50% 36.85% 8.03% 12.85% 
6 62.90% 64.26% 36.70% 36.79% 8.45% 13.58% 
7 76.70% 78.54% 46.80% 46.72% 14.50% 18.44% 
8 76.40% 78.19% 46.60% 46.54% 13.20% 17.84% 
9 76.50% 78.37% 46.70% 46.76% 12.20% 16.22% 
10 60.60% 61.07% 43.70% 46.17% 7.97% 12.20% 
11 60.60% 61.16% 43.60% 46.22% 8.05% 13.28% 
12 61.00% 61.41% 44.30% 45.29% 8.81% 12.44% 
13 72.20% 71.64% 58.90% 60.41% 25.50% 28.09% 
14 70.80% 71.82% 59.30% 60.00% 24.30% 27.29% 
15 70.70% 72.00% 59.60% 60.11% 24.10% 27.38% 
16 69.80% 70.72% 56.60% 56.18% 13.10% 18.62% 
17 69.70% 70.45% 56.10% 56.32% 13.60% 18.71% 
18 69.20% 69.52% 56.10% 55.51% 12.00% 19.47% 

 
 
 

 
Figure 15. Breakwaters in North Channel (top) and in South Channel in Slope 1 
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Table 25. Comparison of reflection coefficients (Slope 2). 

Test North Channel South Channel Open Water 
REFLS 𝐾𝐾𝑅𝑅 REFLS 𝐾𝐾𝑅𝑅 REFLS 𝐾𝐾𝑅𝑅 

1 29.00% 31.36% 45.10% 46.33% 19.40% 21.99% 
2 29.40% 31.75% 44.90% 46.01% 19.00% 20.72% 
3 29.20% 31.95% 45.20% 46.17% 18.90% 20.90% 
4 45.60% 46.89% 52.60% 53.52% 7.32% 13.00% 
5 45.50% 45.89% 52.70% 53.20% 7.41% 10.29% 
6 45.40% 46.92% 52.50% 53.68% 7.64% 13.16% 
7 60.70% 60.92% 63.50% 64.58% 13.20% 15.47% 
8 60.80% 60.21% 63.60% 63.63% 11.30% 13.47% 
9 60.90% 61.24% 63.70% 64.80% 11.40% 14.80% 
10 52.30% 53.73% 55.10% 55.41% 7.79% 11.47% 
11 52.00% 52.65% 55.00% 55.27% 7.62% 11.05% 
12 51.90% 53.52% 55.00% 55.90% 7.64% 12.83% 
13 61.30% 63.30% 56.80% 58.40% 27.50% 30.55% 
14 61.30% 63.95% 56.50% 58.77% 28.30% 32.35% 
15 62.00% 63.51% 57.00% 58.62% 28.50% 31.25% 
16 66.10% 65.93% 62.30% 62.70% 14.90% 18.88% 
17 66.10% 65.74% 62.10% 62.28% 15.00% 20.28% 
18 66.00% 66.13% 62.10% 62.64% 14.90% 19.30% 

 
 
 

 
Figure 16. Breakwaters in North Channel (top) and in South Channel in Slope 2 
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Table 26. Comparison of reflection coefficients (Slope 3). 

Test North Channel South Channel Open Water 
REFLS 𝐾𝐾𝑅𝑅 REFLS 𝐾𝐾𝑅𝑅 REFLS 𝐾𝐾𝑅𝑅 

1 48.00% 49.84% 33.60% 35.20% 13.40% 16.54% 
2 47.80% 49.41% 33.60% 35.25% 13.80% 17.31% 
3 48.00% 49.78% 33.80% 35.40% 12.80% 16.74% 
4 53.50% 55.48% 41.10% 41.83% 13.30% 15.06% 
5 53.40% 54.86% 40.80% 41.56% 14.00% 15.85% 
6 53.70% 55.31% 40.80% 41.45% 14.30% 15.10% 
7 64.30% 64.44% 53.70% 54.20% 10.30% 12.81% 
8 64.40% 65.40% 54.10% 55.06% 10.30% 14.17% 
9 64.60% 65.53% 53.90% 54.68% 10.30% 14.40% 
10 57.10% 57.41% 38.90% 39.95% 8.46% 12.71% 
11 56.40% 56.78% 38.70% 39.65% 8.56% 12.28% 
12 55.80% 56.40% 39.10% 39.78% 8.27% 11.75% 
13 63.70% 66.37% 52.00% 52.97% 24.30% 27.15% 
14 63.00% 65.97% 51.60% 53.93% 24.10% 35.56% 
15 63.00% 65.82% 52.20% 53.99% 23.70% 32.29% 
16 66.10% 66.25% 52.90% 53.71% 16.60% 21.19% 
17 65.00% 65.63% 52.60% 53.33% 16.60% 20.15% 
18 65.00% 65.64% 52.10% 52.22% 16.80% 20.60% 

 
 
 

 
Figure 17. Breakwaters in North Channel (top) and in South Channel in Slope 3 
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Both computed reflection coefficients have good consistency under the same wave and 

reflected-object condition with averaged standard deviation under 0.60% and increased 

proportionally surf similarity parameter 𝜉𝜉 (Equation 43), and most of the relatively large values 

(> 0.40%) occur when 8 < 𝜉𝜉 < 12 (Figure 18, presenting Table 27 graphically in terms of surf 

similarity parameter). Results computed between these two software reach agreements favorably 

with average difference of 2.18% and 2.29% for the North and South Channels, respectively, and 

differences between two sets of results also indicate consistency with standard deviations under 

2.2%. For Open Water condition, with much milder sloped rock beach, both software return 

relatively lower reflection coefficients, and both software present good consistency under the 

same test condition. Reflection coefficients computed by REFANA are slightly larger on the 

average than results from REFLS. Tests are repeatable and the average of reflection coefficient 

for every three repeated tests can present the reflection performance of each scenario. 

 
 

 
Figure 18. Standard deviation of reflection coefficients versus surf similarity parameter 
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Table 27. Standard deviation of reflection coefficients. 

Scenario Test REFLS REFANA 
N S O N S O 

Slope 1 

1-3 0.15% 0.15% 0.35% 0.20% 0.09% 0.23% 
4-6 0.15% 0.15% 0.33% 0.05% 0.03% 0.37% 
7-9 0.15% 0.10% 1.15% 0.18% 0.12% 1.15% 

10-12 0.23% 0.38% 0.46% 0.18% 0.52% 0.57% 
13-15 0.84% 0.35% 0.76% 0.18% 0.21% 0.44% 
16-18 0.32% 0.29% 0.82% 0.63% 0.43% 0.47% 

Slope 2 

1-3 0.20% 0.15% 0.26% 0.30% 0.16% 0.69% 
4-6 0.10% 0.10% 0.17% 0.59% 0.24% 1.61% 
7-9 0.10% 0.10% 1.07% 0.53% 0.62% 1.02% 

10-12 0.21% 0.06% 0.09% 0.57% 0.33% 0.93% 
13-15 0.40% 0.25% 0.53% 0.33% 0.19% 0.91% 
16-18 0.06% 0.12% 0.06% 0.20% 0.23% 0.72% 

Slope 3 

1-3 0.12% 0.12% 0.50% 0.23% 0.10% 0.40% 
4-6 0.15% 0.17% 0.51% 0.32% 0.20% 0.45% 
7-9 0.15% 0.20% 0.00% 0.60% 0.43% 0.86% 

10-12 0.65% 0.20% 0.15% 0.51% 0.15% 0.48% 
13-15 0.40% 0.31% 0.31% 0.28% 0.57% 4.24% 
16-18 0.64% 0.40% 0.12% 0.36% 0.77% 0.52% 

 Ave. 0.28% 0.20% 0.42% 0.35% 0.30% 0.89% 
 
 
 
The comparisons between computed incident wave height and input wave height agree 

well with averaged computed wave heights of 0.053 m, 0.050 m, and 0.045 m in North Channel, 

South Channel, and Open Water, respectively. The corresponding standard deviations are 0.013 

m, 0.009 m and 0.007 m. Accordingly, the estimated incident wave height is ±1cm around the 

input incident wave height (0.80%~1.20% of the input incident wave height). The comparisons 

between the computed wave heights and the input wave height are presented in Figure 19 and are 

tabulated in Table 28.  
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Figure 19. Comparison of computed and input wave heights. 
 
 
 

Table 28. Comparison of computed and input wave heights. 

Test 
Input Slope 1 (r2) Slope 2 (rr2) Slope 3 (r3) 
𝐻𝐻 (𝐻𝐻)𝑛𝑛 (𝐻𝐻)𝑚𝑚 (𝐻𝐻)𝑚𝑚 (𝐻𝐻)𝑛𝑛 (𝐻𝐻)𝑚𝑚 (𝐻𝐻)𝑚𝑚 (𝐻𝐻)𝑛𝑛 (𝐻𝐻)𝑚𝑚 (𝐻𝐻)𝑚𝑚 

[m] [m] [m] [m] [m] [m] [m] [m] [m] [m] 
1 0.05 0.061 0.037 0.043 0.042 0.044 0.044 0.045 0.046 0.044 
2 0.05 0.062 0.036 0.042 0.042 0.044 0.045 0.044 0.046 0.044 
3 0.05 0.061 0.037 0.042 0.043 0.045 0.046 0.045 0.047 0.044 
4 0.05 0.044 0.066 0.061 0.053 0.049 0.054 0.044 0.051 0.051 
5 0.05 0.044 0.065 0.061 0.053 0.049 0.054 0.043 0.051 0.050 
6 0.05 0.044 0.066 0.061 0.053 0.049 0.054 0.043 0.051 0.051 
7 0.05 0.042 0.061 0.038 0.052 0.047 0.037 0.048 0.051 0.037 
8 0.05 0.042 0.062 0.038 0.053 0.047 0.037 0.048 0.051 0.037 
9 0.05 0.043 0.062 0.040 0.053 0.047 0.038 0.048 0.051 0.037 
10 0.05 0.077 0.048 0.043 0.065 0.061 0.042 0.068 0.063 0.042 
11 0.05 0.078 0.049 0.043 0.065 0.060 0.043 0.068 0.063 0.042 
12 0.05 0.078 0.049 0.042 0.066 0.061 0.043 0.067 0.062 0.041 
13 0.05 0.038 0.040 0.039 0.036 0.037 0.040 0.037 0.036 0.039 
14 0.05 0.037 0.040 0.040 0.036 0.037 0.040 0.037 0.037 0.040 
15 0.05 0.037 0.040 0.040 0.036 0.038 0.040 0.037 0.036 0.040 
16 0.05 0.068 0.048 0.054 0.064 0.063 0.053 0.066 0.057 0.051 
17 0.05 0.068 0.049 0.053 0.064 0.063 0.053 0.067 0.058 0.051 
18 0.05 0.067 0.049 0.054 0.064 0.064 0.053 0.067 0.058 0.052 

Ave. North: 0.053  Ave. South: 0.050  Ave. Open: 0.045 
Std. North: 0.013  Std. South: 0.009  Std. Open: 0.007 
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Effect of Breakwater Parameters 

The effects of breakwater parameters are investigated by varying one parameter while 

fixing other parameters to evaluate the performance of a breakwater in reducing the reflection in 

front of itself corresponding to the variation of the parameter and further to obtain the ideal 

geometric shape of the breakwater that minimizes the reflection, which include the effects of 

slope change, crest height change, and berm width change. These effects corresponding to the 

parameter change are plotted on a graph (Figure 20, Figure 21, and Figure 22) of reflection 

coefficient versus wave period, and the general trend is that reflection coefficients increase 

proportionally with the wave period and reach maximum at period of 3.13 s, experience a drop at 

4.02 s, and then increase again. 

Effect of slope change (Figure 20) is investigated by varying the slope and fixing the 

other parameters, and reflection coefficients for Slope 1 and Slope 2 in South Channel are 

selected for investigation. It indicates that reflection can be reduced by 10% to 20% using milder 

slope, and the difference in the reflection coefficient reduction tends to be smaller for the larger 

wave periods and reaches a minimum at 4.02 s. 
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Figure 20. Effect of slope change. 

 
 
 

Effect of crest height change (Figure 21) is investigated by varying crest height and 

fixing other parameters, and reflection coefficients for Slope 2 in South Channel and for Slope 1 

in North Channel are selected for investigation. It indicates that reflection can be reduced by 

10% to 15% using lower crest height, however investigation on overtopping are needed since the 

lower crest height may cause more overtopping. 

 
 

 
Figure 21. Effect of crest height change. 
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The effect of berm width change is investigated by varying width of berm and fixing 

other parameters, and reflection coefficients for Slope 2 in and Slope 3 in South Channel are 

selected for investigating the effect of existence of berm to the reflection, reflection coefficients 

for Slope 1, 2, and 3 in North Channel are also selected for investigating the effect of increasing 

berm width to reduction of reflection coefficients. The existence of berm (Figure 22 and Figure 

23) significantly reduces reflection coefficient by 10% to 30%, however the increase in the width 

of berm may cause higher reflection than a narrower berm (Figure 23). 

 
 

 
Figure 22. Effect of berm width change – South Channel. 
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Figure 23. Effect of berm width change – North Channel. 

 
 
 
Predicting Reflection Coefficient in Front of a Breakwater 

To predict the wave reflection in front of a breakwater without modeling test, one may 

use an equation empirically relating the reflection coefficient to the function of the parameters, 

including the geometry shape, roughness, and permeability of breakwater and the wave 

characters. Overtopping should also be involved into estimating reflection coefficient. For 

example, the rubble mound breakwaters in the project are rough and permeable structure with 

either plane slope or berm-width slope. To efficiently estimate the reflection coefficient, the 

parameters of breakwater and wave may be interpreted as a dimensionless parameter, such as 

surf similarity number Battjes  (1974). Also, the equation shall be effective that approximates the 

trend of reflection coefficient versus the dimensionless parameter and present the physical 

bounds, including  𝐾𝐾𝑅𝑅 = 0 when absence of breakwater and 𝐾𝐾𝑅𝑅 → 1 when the breakwater is a 

vertical, smooth, and impermeable wall. 

  



 

97 

 

A review of the empirical equations predicting reflection coefficient in front of breakwater 

Miche (1951), Battjes (1974), and Seelig and Ahren (1981) considered that the reflection 

coefficients are affected by wave transmission and energy dissipation including wave 

modification due to reflected structure, wave breaking at toe of a structure or in the surf zone, 

and surface roughness and permeability of structure. Miche (1951) presents that reflection 

coefficient in front of smooth plane-sloped impermeable breakwater is a function of slope of 

breakwater 𝜃𝜃 and the critical steepness, i.e. (𝐻𝐻𝑚𝑚 𝜆𝜆𝑚𝑚⁄ )𝑐𝑐, as ratio of deep-water wave height over 

deep-water wavelength (Equation 87). Additional coefficient may be needed when considering 

permeability and surface roughness. This equation overestimates the reflections (Ursell et, al, 

1960; Seelig and Ahrens, 1981). 

 𝐾𝐾𝑅𝑅 =
�2𝜃𝜃
𝜋𝜋

sin2 𝜃𝜃
𝜋𝜋

(𝐻𝐻𝑚𝑚 𝜆𝜆𝑚𝑚⁄ )  87 

Battjes  (1974) present an equation (Equation 88) estimating reflection coefficient as a 

function of surf similarity number, 𝜉𝜉, a dimensionless parameter presented by Battjes  (1974) for 

plane-sloped breakwater (Equation 89). 

 𝐾𝐾𝑅𝑅 = 0.1𝜉𝜉2 88 

 

 𝜉𝜉 =
tan𝜃𝜃

�𝐻𝐻𝑖𝑖 𝜆𝜆𝑚𝑚⁄
 89 

The above equations are mainly used for smooth and impermeable structure. Seelig and 

Ahrens (1981) later revised the equation proposed by Battjes (1974) and presented several 
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improved equations considering characters of both breakwater and wave conditions (Equations 

90 and 91), which also involve the interpretation of up bound when 𝐾𝐾𝑅𝑅 → 1. 

 
𝐾𝐾𝑅𝑅 =

𝑎𝑎𝜉𝜉2

𝜉𝜉2 + 𝑏𝑏
 

𝐾𝐾𝑅𝑅 = tanh(0.1𝜉𝜉2) 

90 

91 

Where: 𝑎𝑎 and 𝑏𝑏 are empirical coefficients effected by slope, roughness, permeability, and type of 

structure. Details of selections of the equations and the corresponding parameters can be found in 

their report (Seelig and Ahrens 1981). Seelig and Ahrens (1981) suggested that, Equation 90 

with 𝑎𝑎 = 0.6 and 𝑏𝑏 = 6.6 may be used to conservatively estimate reflection coefficient in front 

of a rubble mounded breakwater. For the same type of breakwater, Zanuttigh and Van der Meer 

(2006) suggested 𝑎𝑎 = 0.75 and 𝑏𝑏 = 15 when using Equation 90. Zanuttigh and Van der Meer 

(2006) also proposed a formula to predict reflection coefficient for plane-sloped breakwater. 

 𝐾𝐾𝑅𝑅 = tanh(𝑎𝑎𝜉𝜉𝑏𝑏) 92 

Where: the coefficients 𝑎𝑎 = 0.12 and 𝑏𝑏 = 0.87 are suggested for rock permeable breakwater. 

To involve the case of a berm-width breakwater, Zanuttigh and Van der Meer (2007) 

revised surf similarity parameter as Equation 93 involving the situation of shallow water depth at 

toe and the deeper cases. 

 

𝜉𝜉 =
[tan𝜃𝜃𝑑𝑑 (𝑑𝑑 − 1.5𝐻𝐻𝑚𝑚) + tan𝜃𝜃 (1.5𝐻𝐻𝑚𝑚)]

𝑑𝑑�𝐻𝐻𝑚𝑚 𝜆𝜆𝑚𝑚⁄
, 𝑑𝑑 > 1.5𝐻𝐻𝑚𝑚 

𝜉𝜉 =
tan𝜃𝜃

�𝐻𝐻𝑚𝑚 𝜆𝜆𝑚𝑚⁄
, 𝑑𝑑 ≤ 1.5𝐻𝐻𝑚𝑚 

93 
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Where: tan𝜃𝜃 (= 𝑚𝑚) is slope (Equation 85) for either plain-sloped breakwater or weighted 

average slope for berm width breakwater; 𝑑𝑑 is water depth; 𝐻𝐻 is significant wave height; 𝜆𝜆𝑚𝑚 is 

deep water wave length. Zanuttigh and Van der Meer (2007) indicates that using the expression 

of Equation well estimate the situation when the berm is submerged, over-estimates the situation 

when the berm is emerged, and causes large scatter when the berm is at still water level.  

The surf similarity number for the breakwater in the project is presented in Table 29 with 

subscripts 𝑁𝑁 and 𝑆𝑆, presenting North Channel and South Channel, respectively. 

 
 

Table 29. Comparison of computed and input wave heights. 

Test Slope 1 Slope 2 Slope 3 
𝜉𝜉𝑁𝑁 𝜉𝜉𝑆𝑆 𝜉𝜉𝑁𝑁 𝜉𝜉𝑆𝑆 𝜉𝜉𝑁𝑁 𝜉𝜉𝑆𝑆 

1 – 3 8.34 5.01 7.72 8.34 7.47 7.18 
4 – 6 9.98 5.99 9.23 9.98 8.94 8.59 
7 – 9 11.66 7.00 10.79 11.66 10.44 10.03 

10 – 12 13.34 8.00 12.34 13.34 11.94 11.48 
13 – 15 14.98 8.99 13.85 14.98 13.40 12.89 
16 – 18 16.65 9.99 15.40 16.65 14.90 14.33 

 
 
 
Reflection coefficients computed by REFANA and REFLS versus surf similarity number 

𝜉𝜉 for constant slope (Equation 89) presented by Battjes  (1974) and for berm width breakwater 

(Equation 93) presented by van der Zanuttigh, et al. (2008) are presented and are compared with 

the estimation curves presented by Seelig and Ahrens (1981), and Zanuttigh and Van der Meer 

(2008). The prediction curve of Seelig and Ahrens (1981) using coefficients presented by the 

author with 𝑎𝑎 = 0.80 and 𝑏𝑏 = 50 according to the measured reflection coefficient are also 

plotted.  The computed reflection coefficient and the estimation curves are represented in the 

Figure 24. 
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Figure 24. Measured and predicted reflection coefficient for all data. 

 
 
 

The curve proposed by Zanuttigh and Van der Meer (2008) using coefficient 𝑎𝑎 = 0.12 

and 𝑏𝑏 = 0.87 conservatively overestimate the reflection coefficient; Seelig and Ahrens  (1981) 

curve using coefficient 𝑎𝑎 = 0.6 and 𝑏𝑏 = 6.6 over estimate at regions with surf similarity smaller 

than 8, and estimate the average of the reflection coefficient when surf similarity larger than 8. 

Using the estimation curve proposed by Seelig and Ahrens (1981) with the coefficients 𝑎𝑎 = 0.8 

and 𝑏𝑏 = 50, the estimation curve passes through the averages of the measured reflection 

coefficients. 

Prediction curve using sigmoid curve 

Considering the shape of the curves approximating the reflection coefficients in front of a 

breakwater versus the surf similarity number, and the physical bounds such that passing zero at 

zero surf similarity parameter and tend to be one when surf similarity parameter tends to be 

infinity, formulae in form of sigmoid curve (“S” function) or logistic curve in terms of surf 

similarity parameter may be used to predict reflection coefficients. Formulae having the shape of 
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sigmoid function including logistic function (Verhulst 1845), error function, and hyperbolic 

tangent function, and so on. Using logistic function presented in Equations 94 or error function 

presented in Equation 95 to estimate the reflection coefficients in terms of surf similarity 

number. 

 

𝐾𝐾𝑅𝑅 =
2

1 + 𝑒𝑒−𝛼𝛼𝛼𝛼
− 1 

𝐾𝐾𝑅𝑅 = erf�
𝜉𝜉𝛽𝛽

𝛾𝛾
� 

94 

95 

Comparison of the measured reflection coefficients and the predicting curves presented 

by the author are presented with coefficients of 𝛼𝛼 = 0.1, 𝛽𝛽 = 1, and 𝛾𝛾 = 20 are presented in 

Figure 25, and both of the curves approximate the trend of reflection coefficients relative to the 

surf similarity numbers. 

 
 

 
Figure 25. Measured reflection coefficients and the new predicted formulae. 
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CHAPTER VI  

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

 

Summary and Conclusions 

An extended least squares method (ELSM) for separating the incident and reflected 

waves from co-existing wave fields has been developed. A new reflection analysis software, 

called REFANA is programed based on the least squares method (LSM). The expressions of 

ELSM indicate that the software can be directly used to compute the reflection coefficients for 

both normal and oblique long-crested waves, and the software can be further modified to 

estimate the reflection coefficients for short-crested waves. According to the expression of the 

spectra of incident and reflected waves and the spectrum of the reflection coefficients, only the 

positions of the probes along the 𝑥𝑥-axis affect the results of reflection analysis, and the 

placement of the probe positions along the 𝑦𝑦-axis are not necessary. 

Using the transfer functions, the expressions of the measured and estimated wave height 

applied in ELSM indicate that the measurement can be either surface elevation or other wave 

parameters, such as pressure, velocity, etc. Using the weighting coefficients (Zelt and Sejelbreia 

1992), ELSM for reflection analysis can use measurements from an arbitrary number of wave 

probes.  

For long-crested oblique water waves in a laboratory wave basin, the reflection 

coefficient in front of a model can be corrected by adding the reflected wave component from the 

basin wave absorber in the expression of the estimated wave before conducting the least squares 

method. The expressions of the incident and reflected spectra and the spectrum of reflection 

coefficients with the removal of the basin boundary reflection are developed.   
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The software REFANA for reflection analysis, based on the ELSM, separates the incident 

and reflected waves and calculates the reflection coefficients. The separated incident waves 

approximate the input incident wave and gives a reasonable result of the reflection coefficient in 

front of the breakwater with known reflection coefficient. The calculated results also agree well 

with the commercial software REFLS of GEDAP.  The average difference is approximately 2%. 

The probe spacing algorithm programed in REFANA using 1% margin of probe criteria 

presented by Mansard and Funke (1980) reduces the total number of the wave probes required 

for reflection analysis using ELSM when the wave conditions consist of more than one 

wavelength. The calculation results show that the algorithm automates the arrangement of wave 

probes, including determining the total number of wave probes, selecting three probes for 

reflection analysis, and determining the minimum space between the wavemaker and the model 

reflecting structure. 

Three wave probes are necessary when all wavelengths are smaller than 11/9 of the 

shortest wavelength. Four wave probes are necessary when the wavelengths are categorized into 

two groups, i.e. {𝜆𝜆1, … , 𝜆𝜆𝑆𝑆1} and {𝜆𝜆𝑆𝑆1+1, … , 𝜆𝜆𝑀𝑀},  and the wavelengths of each group is within the 

interval between 1 and 11/9 of the shortest wavelength of each group, and the longest wave 

length 𝜆𝜆𝑀𝑀 is shorter than 100 27⁄ 𝜆𝜆1. Five wave probes are needed when the wavelengths are 

categorized into two main groups, i.e. {𝜆𝜆1, … , 𝜆𝜆𝑀𝑀1} and {𝜆𝜆𝑀𝑀1+1, … , 𝜆𝜆𝑀𝑀}, with 𝜆𝜆𝑀𝑀1+1 >

100 27⁄ 𝜆𝜆1, and the wavelengths of each group are within the interval between 1 and 11/9 of the 

shortest wavelength of each group. Five probes are also sufficient when the wavelengths 

categorized into three groups and the longest wavelength 𝜆𝜆𝑀𝑀 is less than 100 27⁄ 𝜆𝜆1. More than 

five probes are needed for other cases. 
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Two s-shaped sigmoid functions that include a logistic function and an error function are 

developed by the author to empirically estimate the reflection coefficients in front of a rubble 

mound breakwater.  These empirical equations evaluate the reflection coefficients relative to the 

surf similarity number and estimate the reflection coefficients in front of a sloped, rough, and 

permeable rubble mounded breakwater. 

Recommendations 

The transfer function in this dissertation uses linear wave theory and the linear dispersion 

relationship.  Using the linear assumptions twice may cause more inaccuracy than using the 

measured surface elevations only, which uses linearity once. Using the transfer function based on 

measurements enhances the accuracy, but more laboratory data or field data are required to 

obtain the transfer function based on the measurements.  

Procedures to analyze reflection characteristics for directional (short-crested) waves 

using the method developed from the extended least squares method (ELSM) should be verified 

by both field and laboratory data in the future and compared with the results using other methods 

such as maximum likelihood method. 
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APPENDIX I  

INSTRUCTION AND CODE FOR CALCULATING BASIN LIMITATION 

 

To use this software: 
1. Save wave_itr.m and the software for design curve together 
2. Open MATLAB. 
3. Run the software for design curve 

MATLAB code for wave length iteration: 

function [ LEN ] = wave_itr( DEP,PRD ) 
% ************************* INTRO *************************** % 
% Inputs:                                                     % 
%     DEP = water depth [m];                                  % 
%     PRD = wave period [s];                                  % 
% Outputs:                                                    % 
%     LEN = wave length [m];                                  % 
% *********************************************************** %  
% initial wavelength for iteration (Fenton & McKee, 1990) 
g     = 9.81;            % gravitational acceleration  [m/s^-2] 
EPS   = 0.000001;        % step length                      [-] 
NMAX  = 10000;           % maximum step                     [-] 
Lp    = (g*(PRD^2)/(2*pi))*(tanh((((2*pi/PRD)^2)*DEP/g)^(3/4)))^(2/3);  
% derive wavelength by applying iteration 
for N = 1:NMAX 
    SUM = 0; 
    LEN   = (g*(PRD^2)/(2*pi))*tanh((2*pi*DEP)/(Lp)); 
    DIF = LEN-Lp; 
    SUM = SUM+DIF^2; 
    RMS = sqrt(SUM/(N)); 
    Lp  = LEN; 
    if RMS < EPS 
        break; 
    end 
end 
if (N>0.75*NMAX) 
    disp('Convergence does not achieved'); 
end 

 

MATLAB code for design curve: 

% Initialize 
clear all; clc; 
% Inputs 
% Wave characteristics 
DEP = linspace(0.1,1,10);       % water depth                    [m] 
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PRD = linspace(0.0625,10,160);  % wave period                    [m] 
SGM = 2*pi./PRD;                % circular frequency         [rad/s] 
GRV = 9.81;                     % gravitational acceleration [m/s^2] 
% Piston characteristics 
STK = 0.494;                    % stroke amplitude               [m] 
  
% Iteration to find wave length 
for j = 1:length(DEP); 
    for i = 1:length(PRD); 
        [ LEN(i,j) ] = wave_itr( DEP(j),PRD(i)); 
        % Wave number k [rad/m] 
        KWN(i,j)     = 2*pi/LEN(i,j); 
         
        % Height to stroke ratio (HSR) [-] 
        HSR(i,j)     = 2*(cosh(2*KWN(i,j)*DEP(j))-1)/... 
                       (sinh(2*KWN(i,j)*DEP(j))+2*KWN(i,j)*DEP(j)); 
        % Wave height from HSR [m] 
        HWM(i,j)     = 2*STK*HSR(i,j); 
        % Wave height limitation for piston type wave maker [m] 
        HPT(i,j)     = HWM(i,j); 
         
        % Breaking criterion (Stokes, 1880) 
        % Deep and intermediate water depth (Michell, 1893 and Miche, 1944) 
        if KWN(i,j)*DEP(j) >= pi/10; 
            HST(i,j) = min(0.78*DEP(j),(LEN(i,j)/7)*tanh(KWN(i,j)*DEP(j))); 
            if HST(i,j) > HPT(i,j); 
                HBKST(i,j) = HPT(i,j); 
            else 
                HBKST(i,j) = HST(i,j); 
            end 
        % Shallow water depth (McCowan, 1891) 
        elseif KWN(i,j)*DEP(j) < pi/10; 
            HST(i,j) = 0.78*DEP(j); 
            if HST(i,j) > HPT(i,j); 
                HBKST(i,j) = HPT(i,j); 
            else 
                HBKST(i,j) = HST(i,j); 
            end 
        end 
         
        % Breaking criterion (Goda, 1970)                
        HGD(i,j)     = 0.17*LEN(i,j)*... 
                       (1-1/exp(1.5*pi*DEP(j)/LEN(i,j))); 
        % Scope determination (/bounding) 
        if HGD(i,j) > HPT(i,j); 
            HBKGD(i,j) = HPT(i,j); 
        else 
            HBKGD(i,j) = HGD(i,j); 
        end 
         
        % Breaking criterion (Kamphuis, 1990a) 
        % Deep and intermediate water depth 
        if KWN(i,j)*DEP(j) >= pi/10; 
            HKP(i,j) = min(0.56*DEP(j),... 
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                       (0.095*LEN(i,j))*tanh(KWN(i,j)*DEP(j))); 
            if HKP(i,j) > HPT(i,j); 
                HBKKP(i,j) = HPT(i,j); 
            else 
                HBKKP(i,j) = HKP(i,j); 
            end 
        % Shallow water depth 
        elseif KWN(i,j)*DEP(j) < pi/10; 
            HKP(i,j) = 0.56*DEP(j); 
            if HKP(i,j) > HPT(i,j); 
                HBKKP(i,j) = HPT(i,j); 
            else 
                HBKKP(i,j) = HKP(i,j); 
            end 
        end 
    end 
end 
 
% Plots 
% Ledgend lables 
LL = {'d = 0.1 m','d = 0.2 m','d = 0.3 m','d = 0.4 m','d = 0.5 m',... 
      'd = 0.6 m','d = 0.7 m','d = 0.8 m','d = 0.9 m','d = 1.0 m'}; 
% Plot dispersion relationship and wave length 
figure(1) 
% Plot dispersion relationship 
subplot(1,2,1); 
SIG = sort(SGM,'descend'); 
for j = 1:10; 
    loglog(SIG.^2,KWN(:,j)); 
    hold on 
    xlabel('\sigma^{2} (rad^2)'); 
    ylabel('k (rad/m)'); 
    title('Dispersion Relationship'); 
    grid on 
    axis square 
end 
legend(LL); 
% Plot wave length 
subplot(1,2,2); 
for j = 1:10; 
    plot(PRD,LEN(:,j)); 
    hold on 
    xlabel('T (s)'); 
    ylabel('\lambda (m)'); 
    title('Wave Length from Dispersion Relation'); 
    grid on 
    axis square 
end 
legend(LL); 
% Plot breaking criteria   
figure(2) 
for i = 1:3; 
    for j = 1:10; 
        subplot(1,3,i); 
        if i == 1; 
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            plot(PRD,HST(:,j)); 
            title('Breaking Wave Height (Stokes, 1880)'); 
        elseif i == 2; 
            plot(PRD,HGD(:,j)); 
            title('Breaking Wave Height (Goda, 1970)'); 
        elseif i == 3; 
            plot(PRD,HKP(:,j)); 
            title('Breaking Wave Height (Kamphuis, 1990a)'); 
        end 
        hold on 
        xlabel('T (s)'); 
        ylabel('H_{b} (m)'); 
        ylim([0,1]); 
        grid on 
        axis square 
    end 
    legend(LL); 
end 
% Plot wave height from height-to-stroke ratio 
figure(3) 
for j = 1:10; 
    plot(PRD,HPT(:,j)); 
    hold on 
    xlabel('T (s)'); 
    ylabel('H_{max} (m)'); 
    title('Wave Height from Height-to-stroke Ratio'); 
    grid on 
end 
legend(LL); 
% Plot breaking wave design curve 
figure(4) 
for i = 1:3; 
    for j = 1:10; 
        subplot(1,3,i); 
        if i == 1; 
            plot(PRD,HBKST(:,j)); 
            title('Design Curve (Stokes, 1880)'); 
        elseif i == 2; 
            plot(PRD,HBKGD(:,j)); 
            title('Design Curve (Goda, 1970)'); 
        elseif i == 3; 
            plot(PRD,HBKKP(:,j)); 
            title('Design Curve (Kamphuis, 1990a)'); 
        end 
        hold on 
        xlabel('T (s)'); 
        ylabel('H_{max} (m)'); 
        ylim([0,1]); 
        grid on 
        axis square 
    end 
    legend(LL); 
end 
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APPENDIX II  

INSTRUCTION AND CODE FOR REFLECTION ANALYSIS SOFTWARE 

 

The software REFANA for reflection analysis, i.e. refana_ref.m, is programmed using 

MATLAB based on least squares method (LSM) applying the measurements from three wave 

probes positioned perpendicular to the wavemaker. This software is applicable for separating the 

co-existing waves for long-crested wave propagating either normally or obliquely. The software 

refana_ref.m uses functions of autospec.m and crosspec.m to compute auto- and cross- spectra, 

respectively and these files shall be saved together with the data file.  

The data file is usually in the format of “.txt” and the sample file has the file name in the 

format of “Name of the project prefix” + “Test index and scenario” + “.format”, which is 

specified using the code “load measured signal”, such that 

% Load measured signal 
INDX = 3; % Test index 
CHAN = 1;  % Channel index (1=north,4=south,7=open) 
TEST = ['Test',num2str(INDX),' ','Slope3']; % Test index and scenario 
PROJ = 'CalData_SG_'; % Name of the project (prefix) 
FMAT = '.txt'; % Format of the data file 
FILE = [PROJ,TEST,FMAT]; 
FILE = char(FILE); % Name of the data file 
WAVE = load(FILE); 

 

The above code is an example to load data file “CalData_SG_Test3 Slope3.txt”, and the 

information is used later for the titles of the graphs. The variable “CHAN” is the channel index 

specifying Channel North, Channel South, or Open Water, and the datafile contains the columns 

of time steps (the first column, in second, every 0.04 s for 25 Hz capturing rate) and the 

corresponding surface elevations (in meter) for each time step. 
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The information of each test can be either manually specified or using function 

“testinfo.m” to extract information consisting of probe spacings, water depth, wave period, 

wavelength, circular frequency, and incident wave amplitude, such that 

% Test information 
[ X1P,D,TP,AI ] = testinfo( INDX ); 
% X1P = Distance between the probe P and 1        [m] 
% D   = Water depth                               [m] 
% TP  = Wave period                               [s] 
% AI  = Incident wave amplitude                   [m] 
X1  = 9.73;      % Distance between P1 and WM     [m]  
X1R = 12.16;     % Distance between P1 and object [m] 
L   = wave_itr( D,TP );           % Wavelength    [m] 
W   = 2*pi/TP;           % Circular frequency [rad/s] 
 

To use the software: 

1. Save the data file together with “refana_ref.m”, “autospec.m”, and “crosspec.m”. 

2. Modify the name of the data file according to the format in “Load measured signal”, e.g. 

“CalData_SG_Test3 Slope3.txt”. 

3. Open MATLAB. 

4. Modify test index, i.e. the variable “INDX”, for example Test 3 INDX = 3. 

5. Modify channel index, i.e. “CHAN”, for example Channel North CHAN = 1. This 

variable is used to select the column of the data according to the three probes used for 

reflection analysis. 

6. Modify the test scenario, such as “Slope1”, “Slope2”, and “Slope3” 

7. Modify the variable “X1P” by modifying the variable in “testinfo.m”. If the test 

information is manually presented, delete “Test information”, otherwise, using 

“testinfo.m” and the test information in “testinfo.m” need to be specified (see code of 

“Inputting information of the tests for breakwater project”). For example, Test 3, the indx 
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= 3, hence the d, Tp, and AI shall be under the scenario T1-T3. To use “testinfo.m” the 

function “wave_itr” to compute wavelength should be saved together. 

8. Specify the start point for time series, i.e. “TS”, to make sure that the wave field is fully 

developed, which excludes the ramping up time (for wave maker) and includes the 

reflected waves for all wave gauges.   

9. Run the software and save the results 

The test results are presented in a two-panel figures (measured and computed spectra) 

with one of the plots of the spectra of measured surface elevations from three wave probes and 

the corresponding zero moment wave heights;   the other plot illustrates the separated spectra of 

the incident wave and the reflected wave and the spectrum of the reflection coefficient and the 

incident 𝐻𝐻𝐼𝐼 and the reflected wave 𝐻𝐻𝑅𝑅 heights and the reflection coefficient 𝐾𝐾𝑅𝑅. 
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% Code for refana_ref 
% Initialization 
clc; clear all; 
  
% Load measured signal 
INDX = 3; % Test index 
CHAN = 1;  % Channel index (1=north,4=south,7=open) 
TEST = ['Test',num2str(INDX),' ','Slope3']; % Test index and scenario 
PROJ = 'CalData_SG_'; % Name of the project prefix 
FMAT = '.txt'; % Format of the data file 
FILE = [PROJ,TEST,FMAT]; 
FILE = char(FILE); % Name of the data file 
WAVE = load(FILE); 
  
% Test information 
[ X1P,D,TP,AI ] = testinfo( INDX ); 
% X1P = Distance between the probe P and 1        [m] 
% D   = Water depth                               [m] 
% TP  = Wave period                               [s] 
% AI  = Incident wave amplitude                   [m] 
X1  = 9.73;      % Distance between P1 and WM     [m]  
X1R = 12.16;     % Distance between P1 and object [m] 
L   = wave_itr( D,TP );           % Wavelength    [m] 
W   = 2*pi/TP;           % Circular frequency [rad/s] 
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% Total time vector 
TIME = WAVE(:,1); 
% Parameter for time domain 
DT   = TIME(2)-TIME(1);     % Sampling rate      [s] 
FS   = 1/DT;                % Sampling frequency [Hz] 
% Wave elevation (total co-existing elevation) 
ELEV = zeros(length(TIME),3); 
for j = 1:3 
    ELEV(1:length(WAVE(:,j+CHAN)),j) = WAVE(:,j+CHAN); 
    ELEV(:,j) = (ELEV(:,j)-mean(ELEV(1:5*25,j)))/1000; % z-cross 
end 
  
% Extract compsite wave (co-wave) 
% TS = Start point of co-wave (re-reflection reach P3) 
TS = 40; 
     
% Co-waves (COWV) 
for j = 1:3 
    COWV(:,j) = ELEV(ceil(TS*FS):end,j); 
end 
TC = TIME(ceil(TS*FS):end); % time vector (co-wave) 
T  = TC-TC(1);              % time vector (common) 
  
% Spectra analysis 
% Auto spectra 
for j = 1:3 
    [ AXX(:,j),SXX(:,j),APH(:,j),FA(:,j),HMO(j) ]... 
        = autospec( T,COWV(:,j) ); 
end 
for j = 1:3 
    [ AXY(:,j),SXY(:,j),XPH(:,j),FX(:,j) ]... 
        = crosspec( T,COWV(:,1),COWV(:,j) ); 
end 
  
for j = 1:length(FA(:,1)) 
    [ LN(j) ] = wave_itr( D,1/FA(j,1) ); 
end 
LN = LN'; 
KN = 2*pi./LN; 
  
% Least square method for reflection 
for j = 1:3 
    O1(:,j) = exp(2i*KN*X1P(:,j)); 
    O2(:,j) = exp(-2i*KN*X1P(:,j)); 
    O3(:,j) = AXX(:,j).*exp(1i*(XPH(:,j)+KN*X1P(:,j))); 
    O4(:,j) = AXX(:,j).*exp(1i*(XPH(:,j)-KN*X1P(:,j))); 
end 
% Parameterizing 
O1 = O1(:,1)+O1(:,2)+O1(:,3); 
O2 = O2(:,1)+O2(:,2)+O2(:,3); 
O3 = O3(:,1)+O3(:,2)+O3(:,3); 
O4 = O4(:,1)+O4(:,2)+O4(:,3); 
% Amplitude spectra of incident and reflect wave 
NAI = abs((O2.*O3-3*O4)./(O1.*O2-9)); 
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NAR = abs((O1.*O4-3*O3)./(O1.*O2-9)); 
% Spetra densities of incident and reflect wave 
DF  = FA(2,1)-FA(1,1); 
NSI = (NAI.^2)/(2*DF); 
NSR = (NAR.^2)/(2*DF); 
% Spectrum of reflection coefficients 
KRN = NAR./NAI; 
% Incident and reflect wave height 
NS = 16; 
HI = 4*sqrt(sum(NSI(NS:end))*DF); 
HR = 4*sqrt(sum(NSR(NS:end))*DF); 
% Coherency factor 
CF12 = SXY(:,2)./sqrt(SXX(:,1).*SXX(:,2)); 
CF13 = SXY(:,3)./sqrt(SXX(:,1).*SXX(:,3)); 
  
% Display of reflection analysis 
if CHAN == 1 
    CNUM = ' - Channel N'; 
elseif CHAN == 4 
    CNUM = ' - Channel S'; 
elseif CHAN == 7 
    CNUM = ' - Open Water'; 
end 
% Titles of the plots 
TT1 = ['Measured Spectra of ',num2str(TEST),num2str(CNUM)]; 
TT2 = ['Computed Spectra of ',num2str(TEST),num2str(CNUM)]; 
% Lables of the Hmo 
ML1 = ['P1: H_{mo1} = ',num2str(round(HMO(1)*1000)/1000),' m']; 
ML2 = ['P2: H_{mo2} = ',num2str(round(HMO(2)*1000)/1000),' m']; 
ML3 = ['P3: H_{mo3} = ',num2str(round(HMO(3)*1000)/1000),' m']; 
% Lables of HI, HR, and KR 
MLI = ['S_I: H_{I} = ',num2str(round(HI*1000)/1000),' m']; 
MLR = ['S_R: H_{R} = ',num2str(round(HR*1000)/1000),' m']; 
MLKR = ['K_R = ',num2str(round(HR/HI*10000)/100),' %']; 
  
% Plot 1: Measured spectra 
figure (1) 
for j = 1:3 
    plot(FA(:,j),AXX(:,j)); 
    hold on 
end 
xlim([0,1]); 
ylim([0,0.02]); 
xlabel('f [Hz]'); 
ylabel('S_{\eta\eta} [m^2/Hz]'); 
legend(num2str(ML1),num2str(ML2),num2str(ML3)); 
title(num2str(TT1)); 
hold off 
grid on 
pbaspect([1 1 1]) % Equal axis lengths in all directions 
  
% Plot 2: Computed spectra 
figure(2) 
% Spectra of HI and HR 
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yyaxis left % y-axis of HI and HR 
title(num2str(TT2)); 
plot(FA(:,1),NSI(:,1)); 
hold on 
plot(FA(:,1),NSR(:,1)); 
xlim([0,1]); 
ylim([0,0.02]); 
xlabel('f [Hz]'); 
ylabel('S_{\eta\eta} [m^2/Hz]'); 
% Spectrum of KR 
yyaxis right % y-axis of KR 
plot(FA(:,1),KRN*100,'-.'); 
xlim([0,1]); 
ylim([0,100]); 
ylabel('K_R [%]'); 
legend(num2str(MLI),num2str(MLR),num2str(MLKR)); 
hold off 
grid on 
pbaspect([1 1 1]) % Equal axis lengths in all directions 
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Inputting information of the tests for breakwater project 

function [ x1p,d,Tp,AI ] = testinfo( indx ) 
% Information of input signal 
% Input 
% indx = indices of test 
% Output 
% x1p = relative probe positions 
% d   = input water depth 
% Tp  = input peak period 
% AI  = input incident amplitude 
  
% T1-T6 
if indx >= 1 && indx <= 6;  
    x1p = [0,0.480,1.170];    
    if indx >= 1 && indx <= 3; % T1-T3 
        d  = 0.43; 
        Tp = 2.24; 
        AI = 0.025; 
    elseif indx >= 4 && indx <= 6; %T4-T6 
        d  = 0.43; 
        Tp = 2.68; 
        AI = 0.025; 
    end 
% T7-T12     
elseif indx >= 7 && indx <= 12; 
    x1p = [0,0.670,1.670];    
    if indx >= 7 && indx <= 9; % T7-T9 
        d  = 0.43; 
        Tp = 3.13; 
        AI = 0.025; 
    elseif indx >= 10 && indx <= 12; % T10-T12 
        d  = 0.43; 
        Tp = 3.58; 
        AI = 0.025; 
    end 
% T13-T18     
elseif indx >= 13 && indx <= 18;  
    x1p = [0,0.905,2.263];    
    if indx >= 13 && indx <= 15; % T13-T15 
        d  = 0.43; 
        Tp = 4.02; 
        AI = 0.025; 
    elseif indx >= 16 && indx <= 18; % T16-T18 
        d  = 0.43; 
        Tp = 4.47; 
        AI = 0.025; 
    end 
end 
end 
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Function computing the auto-spectra 

function [ Axx,Sxx,Phi,f,Hmo ] = autospec( t,eta ) 
% Generating single-sided auto amplitude and power spectra 
% Input: 
% t   = time vector 
% eta = time series of signal 
% Output: 
% Axx = 1-sided amplitude spectrum 
% Sxx = 1-sided power spectrum 
% Phi = phase angle 
% f   = frequency vector 
% Hmo = significant wave height 
  
% Parameters for frequency domains 
nfft = 2*length(t)-1;             % Length of signal 
dt   = t(2)-t(1);                 % Sampling rate        [s] 
fs   = 1/dt;                      % Sampling frequency   [Hz] 
fN   = fs/2;                      % Nyquist frequency    [Hz] 
fo   = 1/(nfft*dt);               % Fundmental frequency [Hz] 
f    = fo*(0:(nfft+1)/2-1)';      % Frequency vector     [Hz] 
  
% Auto spectra (Axx and Sxx) 
Axx2 = fft(eta,nfft)/nfft;        % 2-sided Axx(f) (complex) 
Axx  = 2*abs(Axx2(1:(nfft+1)/2)); % 1-sided Axx(f) (real) 
Sxx  = Axx.^2/(2*fo);             % 1-sided Sxx(f) 
Phi  = angle(Axx2(1:(nfft+1)/2)); % Phase angle 
Hmo  = 4*sqrt(sum(Sxx*fo));       % Hmo 
  
end 
  



 

124 

 

Function computing the cross-spectra 

function [ Axy,Sxy,XPh,f ] = crosspec( t,eta1,eta2 ) 
% Generating single-sided cross spectra 
% Input: 
% t    = time vector 
% eta1 = time series of signal1 
% eta2 = time series of signal2 
% Output: 
% Axy = 1-sided amplitude cross spectrum 
% Sxy = 1-sided power cross spectrum 
% XPh = phase shift 
% f   = frequency vector 
  
% Parameters for frequency domains 
nfft = 2*length(t)-1;             % Length of signal 
dt   = t(2)-t(1);                 % Sampling rate        [s] 
fs   = 1/dt;                      % Sampling frequency   [Hz] 
fN   = fs/2;                      % Nyquist frequency    [Hz] 
fo   = 1/(nfft*dt);               % Fundmental frequency [Hz] 
f    = fo*(0:(nfft+1)/2-1)';      % Frequency vector     [Hz] 
  
% Auto spectra (Axx and Sxx) 
Axx1 = fft(eta1,nfft)/nfft;       % 2-sided Axx(f) for eta1 (complex) 
Axx2 = fft(eta2,nfft)/nfft;       % 2-sided Axx(f) for eta2 (complex) 
Axy2 = sqrt(Axx1.*conj(Axx2));    % 2-sided Axy(f) 
Axy  = 2*abs(Axy2(1:(nfft+1)/2)); % 1-sided Axy(f) (real) 
Sxy  = Axy.^2/(2*fo);             % 1-sided Sxy(f) 
XPh  = angle(Axx1(1:(nfft+1)/2)./Axx2(1:(nfft+1)/2)); % Phase shift 
  
end 
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Function to iterate the wavelength 
 
function [ LEN ] = wave_itr( DEP,PRD ) 
% ************************* INTRO *************************** % 
% Inputs:                                                     % 
%     DEP = water depth [m];                                  % 
%     PRD = wave period [s];                                  % 
% Outputs:                                                    % 
%     LEN = wave length [m];                                  % 
% *********************************************************** %  
% initial wavelength for iteration (Eckhart, 1951) 
g     = 9.81;            % gravitational acceleration  [m/s^-2] 
EPS   = 0.000001;        % step length                      [-] 
NMAX  = 100000;          % maximum step                     [-] 
Lp    = (g*(PRD^2)/(2*pi))*(tanh((((2*pi/PRD)^2)*DEP/g)^(3/4)))^(2/3);  
% derive wavelength by applying iteration 
for N = 1:NMAX 
    SUM = 0; 
    LEN   = (g*(PRD^2)/(2*pi))*tanh((2*pi*DEP)/(Lp)); 
    DIF = LEN-Lp; 
    SUM = SUM+DIF^2; 
    RMS = sqrt(SUM/(N)); 
    Lp  = LEN; 
    if RMS < EPS 
        break; 
    end 
end 
if (N>NMAX) 
    disp('Convergence does not achieved'); 
end 
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APPENDIX III  

INSTRUCTIONS AND CODE FOR PROBE ARRANGEMENT SOFTWARE 

 

To use this software: 
1. Open MATLAB. 
2. Run “refana_probe.m” 
3. Input the wavelengths in a format of linear array, e.g. 

[4.33,5.29,6.24,7.18,8.12,9.05] 
 
Sample result 
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% Initialization 
clc;clear all; 
  
% Input wavelengths and sort ascend 
L = input('Array of Wave Lengths [L1,L2,...,Ln] = '); 
L = sort(L,'ascend'); 
  
% Probe spacing criteria 
PC = [9/100,11/100,100/600,100/300]; 
  
% Empty matrix for writting in the results 
XAB = zeros(length(L),1); 
XAC = zeros(length(L),1); 
PPA = ones(length(L),1); 
PPB = zeros(length(L),1); 
PPC = zeros(length(L),1); 
  
% Group the wavelengths (MG): 
di = 0; 
for i = 1:length(L) 
    if di+1 <= length(L) 
        MI(i) = find(L(:) < (PC(4)/PC(1))*L(di+1), 1, 'last' ); 
        di = MI(i); 
    else 
        break 
    end 
end 
  
MG = zeros(length(MI),2); 
for i = 1:length(MI) 
    if i == 1 
        MG(i,:) = [1,MI(i)]; 
    else 
        MG(i,:) = [MI(i-1)+1,MI(i)]; 
    end 
end 
  
% Catogorise the wavelengths of each group (SG) 
SG = zeros(4,max(MG(:,2)-MG(:,1))+1,size(MG,1)); 
for i = 1:size(SG,3) 
    SG1 = intersect(find(L(MG(i,1):MG(i,2))>0),... 
        find(L(MG(i,1):MG(i,2))<... 
        (PC(2)/PC(1))*L(MG(i,1)))); 
    SG2 = intersect(find(L(MG(i,1):MG(i,2))>... 
        (PC(2)/PC(1))*L(MG(i,1))),... 
        find(L(MG(i,1):MG(i,2))<... 
        (PC(3)/PC(1))*L(MG(i,1)))); 
    SG3 = intersect(find(L(MG(i,1):MG(i,2))>... 
        (PC(3)/PC(1))*L(MG(i,1))),... 
        find(L(MG(i,1):MG(i,2))<... 
        ((PC(2)/PC(1))*(PC(3)/PC(1)))*L(MG(i,1)))); 
    SG4 = intersect(find(L(MG(i,1):MG(i,2))>... 
        ((PC(2)/PC(1))*(PC(3)/PC(1)))*L(MG(i,1))),... 
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        find(L(MG(i,1):MG(i,2))<... 
        (PC(4)/PC(1))*L(MG(i,1)))); 
    if i == 1 
        SG1 = SG1+0; SG2 = SG2+0; SG3 = SG3+0; SG4 = SG4+0; 
    else 
        SG1 = SG1+MG(i-1,2); SG2 = SG2+MG(i-1,2); SG3 = SG3+MG(i-1,2); 
        SG4 = SG4+MG(i-1,2); 
    end         
    if isempty(SG1) == 1 
        SG(1,:,i) = zeros(1,size(SG,2)); 
    elseif isempty(SG1) == 0 
        SG(1,1:length(SG1),i) = SG1; 
    end 
    if isempty(SG2) == 1 
        SG(2,:,i) = zeros(1,size(SG,2)); 
    elseif isempty(SG2) == 0 
        SG(2,1:length(SG2),i) = SG2; 
    end 
    if isempty(SG3) == 1 
        SG(3,:,i) = zeros(1,size(SG,2)); 
    elseif isempty(SG3) == 0 
        SG(3,1:length(SG3),i) = SG3; 
    end 
    if isempty(SG4) == 1 
        SG(4,:,i) = zeros(1,size(SG,2)); 
    elseif isempty(SG4) == 0 
        SG(4,1:length(SG4),i) = SG4; 
    end 
end 
  
SGL = L(nonzeros(SG)); 
  
% For the singularity values 
SSI = find(not(ismember(L,SGL))); 
if isempty(SSI) == 0 
    XAB_S = zeros(1,length(SSI)); 
    XAC_S = zeros(1,length(SSI)); 
    for i = 1:length(SSI) 
        XAB_S(i) = L(SSI(i))/10; 
        XAC_S(i) = L(SSI(i))/4; 
    end 
elseif isempty(SSI) == 1 
    XAB_S = []; 
    XAC_S = []; 
end 
XAB(SSI,1) = XAB_S; 
XAC(SSI,1) = XAC_S; 
  
% For the non-sigularity values 
PP = zeros(size(SG,1)*size(SG,2),1,size(SG,3)); 
for i = 1:size(SG,3) 
    N1 = length(nonzeros(SG(1,:,i))); % Length of nonzero SG1 
    N2 = length(nonzeros(SG(2,:,i))); % Length of nonzero SG2 
    N3 = length(nonzeros(SG(3,:,i))); % Length of nonzero SG3 
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    N4 = length(nonzeros(SG(4,:,i))); % Length of nonzero SG4 
    % Catagories of SG2 to further merge XABs 
    if isempty(nonzeros(SG(2,:,i))) == 0 
        d2j = 0; 
        for j = 1:N2 
            if d2j+1 <= N2 
                MN2(j) = find(L(nonzeros(SG(2,:,i))) <... 
                    (PC(2)/PC(1))*L(nonzeros(SG(2,d2j+1,i))), 1, 'last' ); 
                d2j = MN2(j); 
            else 
                break 
            end 
        end 
        MG2 = zeros(length(MN2),2); 
        for j = 1:length(MN2) 
            if j == 1 
                MG2(j,:) = [1,MN2(j)]; 
            else 
                MG2(j,:) = [MN2(j-1)+1,MN2(j)]; 
            end 
        end 
        NN2 = 1:size(MG2,1); 
    end 
    % Catagories of SG4 to further merge XABs 
    if isempty(nonzeros(SG(4,:,i))) == 0 
        d4j = 0; 
        for j = 1:N4 
            if d4j+1 <= N4 
                MN4(j) = find(L(nonzeros(SG(4,:,i))) <... 
                    (PC(2)/PC(1))*L(nonzeros(SG(4,d4j+1,i))), 1, 'last' ); 
                d4j = MN4(j); 
            else 
                break 
            end 
        end 
        for j = 1:length(MN4) 
            if j == 1 
                MG4(j,:) = [1,MN4(j)]; 
            else 
                MG4(j,:) = [MN4(j-1)+1,MN4(j)]; 
            end 
        end 
        NN4 = 1:size(MG4,1); 
    end 
     
    % CASE 1: SG1 <> 0 and SG2,SG3,SG4 = 0 
    if isempty(nonzeros(SG(1,:,i))) == 0 &&... 
            isempty(nonzeros(SG(2:4,:,i))) == 1 
        PP(1,1,i) = mean((1/10)*L(nonzeros(SG(1,:,i)))); 
        PP(2,1,i) =... 
            (PC(3)*max(L(nonzeros(SG(1,:,i))))... 
            +PC(4)*min(L(nonzeros(SG(1,:,i)))))/2; 
        % Write into result 
        XAB(nonzeros(SG(1,:,i)),1) =... 
            round(ones(length(nonzeros(SG(1,:,i))),1)*PP(1,1,i),2); 
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        XAC(nonzeros(SG(1,:,i)),1) =... 
            round(ones(length(nonzeros(SG(1,:,i))),1)*PP(2,1,i),2); 
     
    % CASE 2: SG1,SG2 <> 0 and SG3,SG4 = 0 
    elseif isempty(nonzeros(SG(1,:,i))) == 0 &&... 
            isempty(nonzeros(SG(2,:,i))) == 0 &&... 
            isempty(nonzeros(SG(3:4,:,i))) == 1 
        PP(1,1,i) = mean((1/10)*L(nonzeros(SG(1,:,i)))); 
        % Write into result 
        XAB(nonzeros(SG(1,:,i)),1) =... 
            round(ones(length(nonzeros(SG(1,:,i))),1)*PP(1,1,i),2); 
        for j = 1:length(NN2) 
            PP(1+NN2(j),1,i) =... 
                mean((1/10)*L(nonzeros(SG(2,MG2(j,1):MG2(j,2),i)))); 
            % Write into result 
            XAB(SG(2,MG2(j,1):MG2(j,2),i),1) =... 
                round(ones(length(SG(2,MG2(j,1):MG2(j,2),i)),1)*... 
                PP(1+NN2(j),1,i),2); 
        end 
        PP(1+NN2(end)+1,1,i) =... 
            (PC(3)*max(L(nonzeros(SG(2,:,i))))... 
            +PC(4)*min(L(nonzeros(SG(1,:,i)))))/2; 
        % Write into result 
        XAC(nonzeros(SG(1:2,:,i)),1) =... 
            round(ones(length(nonzeros(SG(1:2,:,i))),1)*... 
            PP(1+NN2(end)+1,1,i),2); 
     
    % CASE 3: SG1,SG3 <> 0 and SG2,SG4 = 0 
    elseif isempty(nonzeros(SG(1,:,i))) == 0 &&... 
            isempty(nonzeros(SG(3,:,i))) == 0 &&... 
            isempty(nonzeros(SG(2,:,i))) == 1 &&... 
            isempty(nonzeros(SG(4,:,i))) == 1 
        PP(1,1,i) = mean((1/10)*L(nonzeros(SG(1,:,i)))); 
        PP(2,1,i) =... 
            (PC(1)*max(L(nonzeros(SG(3,:,i))))... 
            +PC(4)*min(L(nonzeros(SG(1,:,i)))))/2; 
        PP(3,1,i) =... 
            (PC(3)*max(L(nonzeros(SG(3,:,i))))... 
            +PC(4)*min(L(nonzeros(SG(3,:,i)))))/2; 
        % Write into result 
        XAB(nonzeros(SG(1,:,i)),1) =... 
            round(ones(length(nonzeros(SG(1,:,i))),1)*PP(1,1,i),2); 
        XAC(nonzeros(SG(1,:,i))) =... 
            round(ones(length(nonzeros(SG(1,:,i))),1)*PP(2,1,i),2); 
        XAB(nonzeros(SG(3,:,i))) =... 
            round(ones(length(nonzeros(SG(3,:,i))),1)*PP(2,1,i),2); 
        XAC(nonzeros(SG(3,:,i))) =... 
            round(ones(length(nonzeros(SG(3,:,i))),1)*PP(3,1,i),2); 
     
    % CASE 4: SG1,SG4 <> 0 and SG2,SG3 = 0 
    elseif isempty(nonzeros(SG(1,:,i))) == 0 &&... 
            isempty(nonzeros(SG(4,:,i))) == 0 &&... 
            isempty(nonzeros(SG(2,:,i))) == 1 &&... 
            isempty(nonzeros(SG(3,:,i))) == 1 
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        PP(1,1,i) = mean((1/10)*L(nonzeros(SG(1,:,i)))); 
        % Write into result 
        XAB(nonzeros(SG(1,:,i)),1) =... 
            round(ones(length(nonzeros(SG(1,:,i))),1)*PP(1,1,i),2); 
        if length(nonzeros(SG(4,:,i))) == 1 
            PP(2,1,i) =... 
                (PC(1)*L(nonzeros(SG(4,:,i)))... 
                +PC(4)*min(L(nonzeros(SG(1,:,i)))))/2; 
            PP(3,1,i) = (1/4)*L(nonzeros(SG(4,:,i))); 
            % Write into result 
            XAC(nonzeros(SG(1,:,i))) =... 
                round(ones(length(nonzeros(SG(1,:,i))),1)*PP(2,1,i),2); 
            XAB(nonzeros(SG(4,:,i))) =... 
                round(ones(length(nonzeros(SG(4,:,i))),1)*PP(2,1,i),2); 
            XAC(nonzeros(SG(4,:,i))) =... 
                round(ones(length(nonzeros(SG(4,:,i))),1)*PP(3,1,i),2); 
        elseif length(nonzeros(SG(4,:,i))) > 1 
            PP(2,1,i) =... 
                (PC(1)*min(L(nonzeros(SG(4,:,i))))... 
                +PC(4)*min(L(nonzeros(SG(1,:,i)))))/2; 
            % Write into result 
            XAC(nonzeros(SG(1,:,i))) =... 
                round(ones(length(nonzeros(SG(1,:,i))),1)*PP(2,1,i),2); 
            XAB(nonzeros(SG(4,1,i))) =... 
                round(ones(length(nonzeros(SG(4,1,i))),1)*PP(2,1,i),2); 
            if size(MG4,1) == 1 
                PP(1+NN4(end),1,i) =... 
                    mean((1/10)*L(nonzeros(SG(4,2:end,i)))); 
                PP(1+NN4(end)+1,1,i) =... 
                    (PC(3)*max(L(nonzeros(SG(4,:,i))))... 
                    +PC(4)*min(L(nonzeros(SG(4,:,i)))))/2; 
                % Write into result 
                XAB(nonzeros(SG(4,2:end,i))) =... 
                    round(ones(length(nonzeros(SG(4,2:end,i))),1)*... 
                    PP(1+NN4(end),1,i),2); 
                XAC(nonzeros(SG(4,:,i))) =... 
                    round(ones(length(nonzeros(SG(4,:,i))),1)*... 
                    PP(1+NN4(end)+1,1,i),2); 
            elseif size(MG4,1) > 1 % Re-define NN4 
                for j = 1:N4-1 
                    if d4j+1 <= N4-1 
                        MN4(j) = find(L(nonzeros(SG(4,2:end,i))) <... 
                            (PC(2)/PC(1))*... 
                            L(nonzeros(SG(4,d4j+1,i))), 1, 'last' ); 
                        d4j = MN4(j); 
                    else 
                        break 
                    end 
                end 
                for j = 1:length(MN4) 
                    if j == 1 
                        MG4(j,:) = [2,MN4(j)+1]; 
                    else 
                        MG4(j,:) = [MN4(j-1)+2,MN4(j)+1]; 
                    end 
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                    PP(1+NN4(j),1,i) =... 
                        mean((1/10)*... 
                        L(nonzeros(SG(4,MG4(j,1):MG4(j,2),i)))); 
                    % Write into result 
                    XAB(SG(4,MG4(j,1):MG4(j,2),i),1) =... 
                        round(ones(length(SG(4,MG4(j,1):MG4(j,2),i)),1)*... 
                        PP(1+NN4(j),1,i),2); 
                end 
                NN4 = 1:size(MG4,1); 
                PP(1+NN4(end)+1,1,i) =... 
                    (PC(3)*max(L(nonzeros(SG(4,:,i))))... 
                    +PC(4)*min(L(nonzeros(SG(4,:,i)))))/2; 
                % Write into result 
                XAC(nonzeros(SG(4,:,i))) =... 
                    round(ones(length(nonzeros(SG(4,:,i))),1)*... 
                    PP(1+NN4(end)+1,1,i),2); 
            end 
        end 
     
    % CASE 5: SG1,SG2,SG3 <> 0 and SG4 = 0 
    elseif isempty(nonzeros(SG(1,:,i))) == 0 &&... 
            isempty(nonzeros(SG(2,:,i))) == 0 &&... 
            isempty(nonzeros(SG(3,:,i))) == 0 &&... 
            isempty(nonzeros(SG(4,:,i))) == 1 
        PP(1,1,i) = mean((1/10)*L(nonzeros(SG(1,:,i)))); 
        % Write into result 
        XAB(nonzeros(SG(1,:,i)),1) =... 
            round(ones(length(nonzeros(SG(1,:,i))),1)*PP(1,1,i),2); 
        for j = 1:length(NN2) 
            PP(1+NN2(j),1,i) =... 
                mean((1/10)*L(nonzeros(SG(2,MG2(j,1):MG2(j,2),i)))); 
            % Write into result 
            XAB(SG(2,MG2(j,:),i),1) =... 
                round(ones(length(SG(2,MG2(j,:),i)),1)*PP(1+NN2(j),1,i),2); 
        end 
        PP(1+NN2(end)+1,1,i) =... 
            (PC(1)*max(L(nonzeros(SG(3,:,i))))... 
            +PC(4)*min(L(nonzeros(SG(1:2,:,i)))))/2; 
        PP(1+NN2(end)+2,1,i) =... 
            (PC(3)*max(L(nonzeros(SG(3,:,i))))... 
            +PC(4)*min(L(nonzeros(SG(3,:,i)))))/2; 
        % Write into result 
        XAC(nonzeros(SG(1:2,:,i))) =... 
            round(ones(length(nonzeros(SG(1:2,:,i))),1)*... 
            PP(1+NN2(end)+1,1,i),2); 
        XAB(nonzeros(SG(3,:,i))) =... 
            round(ones(length(nonzeros(SG(3,:,i))),1)*... 
            PP(1+NN2(end)+1,1,i),2); 
        XAC(nonzeros(SG(3,:,i))) =... 
            round(ones(length(nonzeros(SG(3,:,i))),1)*... 
            PP(1+NN2(end)+2,1,i),2); 
         
    % CASE 6: SG1,SG2,SG4 <> 0 and SG3 = 0 
    elseif isempty(nonzeros(SG(1,:,i))) == 0 &&... 
            isempty(nonzeros(SG(2,:,i))) == 0 &&... 
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            isempty(nonzeros(SG(4,:,i))) == 0 &&... 
            isempty(nonzeros(SG(3,:,i))) == 1 
        PP(1,1,i) = mean((1/10)*L(nonzeros(SG(1,:,i)))); 
        % Write into result 
        XAB(nonzeros(SG(1,:,i)),1) =... 
            round(ones(length(nonzeros(SG(1,:,i))),1)*PP(1,1,i),2); 
        for j = 1:length(NN2) 
            PP(1+NN2(j),1,i) =... 
                mean((1/10)*L(nonzeros(SG(2,MG2(j,1):MG2(j,2),i)))); 
            % Write into result 
            XAB(SG(2,MG2(j,1):MG2(j,2),i),1) =... 
                round(ones(length(SG(2,MG2(j,1):MG2(j,2),i)),1)*... 
                PP(1+NN2(j),1,i),2); 
        end 
        if length(nonzeros(SG(4,:,i))) == 1 
            PP(1+NN2(end)+1,1,i) =... 
                (PC(1)*L(nonzeros(SG(4,:,i)))... 
                +PC(4)*min(L(nonzeros(SG(1:2,:,i)))))/2; 
            PP(1+NN2(end)+2,1,i) = (1/4)*L(nonzeros(SG(4,:,i))); 
            % Write into result 
            XAC(nonzeros(SG(1:2,:,i))) =... 
                round(ones(length(nonzeros(SG(1,:,i))),1)*... 
                PP(1+NN2(end)+1,1,i),2); 
            XAB(nonzeros(SG(4,:,i))) =... 
                round(ones(length(nonzeros(SG(4,:,i))),1)*... 
                PP(1+NN2(end)+1,1,i),2); 
            XAC(nonzeros(SG(4,:,i))) =... 
                round(ones(length(nonzeros(SG(4,:,i))),1)*... 
                PP(1+NN2(end)+2,1,i),2); 
        elseif length(nonzeros(SG(4,:,i))) > 1 
            PP(1+NN2(end)+1,1,i) =... 
                (PC(1)*L(nonzeros(SG(4,:,i)))... 
                +PC(4)*min(L(nonzeros(SG(1:2,:,i)))))/2; 
            % Write into result 
            XAC(nonzeros(SG(1:2,:,i))) =... 
                round(ones(length(nonzeros(SG(1,:,i))),1)*... 
                PP(1+NN2(end)+1,1,i),2); 
            XAB(nonzeros(SG(4,1,i))) =... 
                round(ones(length(nonzeros(SG(4,1,i))),1)*... 
                PP(1+NN2(end)+1,1,i),2); 
            if size(MG4,1) == 1 
                PP(1+NN2(end)+NN4(end)+1,1,i) =... 
                    mean((1/10)*L(nonzeros(SG(4,2:end,i)))); 
                PP(1+NN2(end)+NN4(end)+2,1,i) =... 
                    (PC(3)*max(L(nonzeros(SG(4,:,i))))... 
                    +PC(4)*min(L(nonzeros(SG(4,:,i)))))/2; 
                % Write into result 
                XAB(nonzeros(SG(4,2:end,i))) =... 
                    round(ones(length(nonzeros(SG(4,2:end,i))),1)*... 
                    PP(1+NN2(end)+NN4(end)+1,1,i),2); 
                XAC(nonzeros(SG(4,:,i))) =... 
                    round(ones(length(nonzeros(SG(4,:,i))),1)*... 
                    PP(1+NN2(end)+NN4(end)+2,1,i),2); 
            elseif size(MG4,1) > 1 % Re-define NN4 
                for j = 1:N4-1 
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                    if d4j+1 <= N4-1 
                        MN4(j) = find(L(nonzeros(SG(4,2:end,i))) <... 
                            (PC(2)/PC(1))*... 
                            L(nonzeros(SG(4,d4j+1,i))), 1, 'last' ); 
                        d4j = MN4(j); 
                    else 
                        break 
                    end 
                end 
                for j = 1:length(MN4) 
                    if j == 1 
                        MG4(j,:) = [2,MN4(j)+1]; 
                    else 
                        MG4(j,:) = [MN4(j-1)+2,MN4(j)+1]; 
                    end 
                    PP(1+NN2(end)+NN4(j)+1,1,i) =... 
                        mean((1/10)*... 
                        L(nonzeros(SG(4,MG4(j,1):MG4(j,2),i)))); 
                    % Write into result 
                    XAB(SG(4,MG4(j,1):MG4(j,2),i),1) =... 
                        round(ones(length(SG(4,MG4(j,1):MG4(j,2),i)),1)*... 
                        PP(1+NN2(end)+NN4(j)+1,1,i),2); 
                end 
                NN4 = 1:size(MG4,1); 
                PP(1+NN2(end)+NN4(end)+2,1,i) =... 
                    (PC(3)*max(L(nonzeros(SG(4,:,i))))... 
                    +PC(4)*min(L(nonzeros(SG(4,:,i)))))/2; 
                % Write into result 
                XAC(nonzeros(SG(4,:,i))) =... 
                    round(ones(length(nonzeros(SG(4,:,i))),1)*... 
                    PP(1+NN2(end)+NN4(end)+2,1,i),2); 
            end 
        end 
         
    % CASE 7: SG1,SG3,SG4 <> 0 and SG2 = 0 
    elseif isempty(nonzeros(SG(1,:,i))) == 0 &&... 
            isempty(nonzeros(SG(3,:,i))) == 0 &&... 
            isempty(nonzeros(SG(4,:,i))) == 0 &&... 
            isempty(nonzeros(SG(2,:,i))) == 1 
        PP(1,1,i) = mean((1/10)*L(nonzeros(SG(1,:,i)))); 
        PP(2,1,i) =... 
            (PC(1)*max(L(nonzeros(SG(3,:,i))))... 
            +PC(4)*min(L(nonzeros(SG(1,:,i)))))/2; 
        % Write into result 
        XAB(nonzeros(SG(1,:,i)),1) =... 
            round(ones(length(nonzeros(SG(1,:,i))),1)*PP(1,1,i),2); 
        XAC(nonzeros(SG(1:3,:,i))) =... 
            round(ones(length(nonzeros(SG(1:3,:,i))),1)*PP(2,1,i),2); 
        XAB(nonzeros(SG(3,:,i))) =... 
            round(ones(length(nonzeros(SG(3,:,i))),1)*PP(2,1,i),2); 
        for j = 1:length(NN4) 
            PP(2+NN4(j),1,i) =... 
                mean((1/10)*L(nonzeros(SG(4,MG4(j,1):MG4(j,2),i)))); 
            % Write into result 
            XAB(SG(4,MG4(j,1):MG4(j,2),i),1) =... 
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                round(ones(length(SG(4,MG4(j,1):MG4(j,2),i)),1)*... 
                PP(2+NN4(j),1,i),2); 
        end 
        PP(2+NN4(end)+1,1,i) =... 
            (PC(3)*max(L(nonzeros(SG(3:4,:,i))))... 
            +PC(4)*min(L(nonzeros(SG(3:4,:,i)))))/2; 
        % Write into result 
        XAC(nonzeros(SG(3:4,:,i))) =... 
            round(ones(length(nonzeros(SG(3:4,:,i))),1)*... 
            PP(2+NN4(end)+1,1,i),2); 
         
    % CASE 8: SG1,SG2,SG3,SG4 <> 0 = 0 
    elseif isempty(nonzeros(SG(1,:,i))) == 0 &&... 
            isempty(nonzeros(SG(3,:,i))) == 0 &&... 
            isempty(nonzeros(SG(4,:,i))) == 0 &&... 
            isempty(nonzeros(SG(2,:,i))) == 0 
        PP(1,1,i) = mean((1/10)*L(nonzeros(SG(1,:,i)))); 
         % Write into result 
        XAB(nonzeros(SG(1,:,i)),1) =... 
            round(ones(length(nonzeros(SG(1,:,i))),1)*PP(1,1,i),2); 
        for j = 1:length(NN2) 
            PP(1+NN2(j),1,i) =... 
                mean((1/10)*L(nonzeros(SG(2,MG2(j,1):MG2(j,2),i)))); 
            % Write into result 
            XAB(SG(2,MG2(j,1):MG2(j,2),i),1) =... 
                round(ones(length(SG(2,MG2(j,1):MG2(j,2),i)),1)*... 
                PP(1+NN2(j),1,i),2); 
        end 
        PP(1+NN2(end)+1,1,i) =... 
            (PC(1)*max(L(nonzeros(SG(3,:,i))))... 
            +PC(4)*min(L(nonzeros(SG(1:2,:,i)))))/2; 
        % Write into result 
        XAC(nonzeros(SG(1:2,:,i))) =... 
            round(ones(length(nonzeros(SG(1:2,:,i))),1)*... 
            PP(1+NN2(end)+1,1,i),2); 
        XAB(nonzeros(SG(3,:,i))) =... 
            round(ones(length(nonzeros(SG(3,:,i))),1)*... 
            PP(1+NN2(end)+1,1,i),2); 
        for j = 1:length(NN4) 
            PP(1+NN2(end)+NN4(j)+1,1,i) =... 
                mean((1/10)*L(nonzeros(SG(4,MG4(j,1):MG4(j,2),i)))); 
            % Write into result 
            XAB(SG(4,MG4(j,1):MG4(j,2),i),1) =... 
                round(ones(length(SG(4,MG4(j,1):MG4(j,2),i)),1)*... 
                PP(1+NN2(end)+NN4(j)+1,1,i),2); 
        end 
        PP(1+NN2(end)+NN4(end)+2,1,i) =... 
            (PC(3)*max(L(nonzeros(SG(4,:,i))))... 
            +PC(4)*min(L(nonzeros(SG(4,:,i)))))/2; 
        % Write into result 
        XAC(nonzeros(SG(3:4,:,i))) =... 
            round(ones(length(nonzeros(SG(3:4,:,i))),1)*... 
            PP(1+NN2(end)+NN4(end)+2,1,i),2); 
    end 
end 
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if isempty(XAB_S) == 1 && isempty(XAC_S) == 1 
    Probe = sort(nonzeros(PP),'ascend'); 
elseif isempty(XAB_S) == 0 && isempty(XAC_S) == 0 
    Probe = sort([nonzeros(PP);XAB_S';XAC_S'],'ascend'); 
    Probe = unique(Probe); 
end 
% Minimum required number of wave probes 
ProbeNumber   = length(Probe)+1; 
% Minimum required distance between wave maker and structure 
TotalDistance = 2*max(L)+max(Probe); 
  
% Probe for each wavelength 
Result1 = [XAB,XAC]; 
Result2 = round(Probe,2); 
for i = 1:length(L) 
    [liaB,B] = ismember(Result1(i,1),Result2); 
    [liaC,C] = ismember(Result1(i,2),Result2); 
    PPB(i) = B+1; 
    PPC(i) = C+1; 
end 
  
% Results 
Name1 = strings(length(L),1); 
for i = 1:length(L) 
    Name1(i,1) = ['L',num2str(i)]; 
end 
Name2 = strings(length(Probe),1); 
for i = 1:length(Probe) 
    Name2(i,1) = ['X1',num2str(i+1)]; 
end 
TAB1 = table((Name1),L',XAB,XAC,PPA,PPB,PPC); 
TAB1.Properties.VariableNames = {'Name' 'L' 'XAB' 'XAC' 'PA' 'PB' 'PC'}; 
TAB2 = table((Name2),round(Probe,2)); 
TAB2.Properties.VariableNames = {'Name' 'X1P'}; 
disp(TAB1) 
disp(TAB2) 
disp(['Probe Numer = ',num2str(ProbeNumber)]) 
disp(['Total Distance = ',num2str(round(TotalDistance,2)),'m']) 
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