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ABSTRACT

An extended least square method for reflection analysis that separates long-crested or
short-crested wave fields into the incident and reflected components from the measured wave
surface elevations and from other wave parameters is presented. This method uses the least
squares technique by minimizing the squared errors between the measured and the estimated
wave heights. This method applies linear wave theory including the linear dispersion relationship
and the transfer functions translating the surface wave elevations and other wave parameters. The
wave parameters are measured simultaneously from several positions, and the wave probe
measurements from three or an arbitrary number of the positions are selected for reflection
analysis.

A probe spacing algorithm is described that determines the total number of the wave
probes and their positions between the wave maker and the reflecting structure and selects three
probes from the pre-arranged probe array for reflection analysis. The algorithm automates the
arrangement of wave probes for a wave basin test involving several wave conditions featuring
the wave period and water depth, and the corresponding wavelength varies according to these
conditions.

New software, named REFANA (reflection analysis), has been written that conducts the
reflection analysis using the extended least square method and determines the number of probes
and their positions and selects three of them for the reflection analysis. The incident wave
heights determined by REFANA approximate the input incident wave heights. The reflection

coefficients computed by REFANA agree well with REFLS, a commercial software for



reflection analysis. Moreover, probe positions can be arranged automatically using REFANA,
which also minimizes the total number of required wave probes.

Experimental measurements of wave reflection on two different breakwaters are
conducted in the laboratory, and the reflection coefficients are evaluated using the software
REFANA. The results from REFANA are compared to the REFLS commercial software. Also,
an empirical function is developed to estimate reflection coefficient in front of breakwaters. The
empirical function is a two sigmoid-curve (s-shaped) function, such as logistic function and error
function, in terms of the surf similarity number. The empirical function with proper coefficients

can approximate the reflection coefficient for a rough, sloped, and permeable breakwater.



DEDICATION

This dissertation is dedicated to my son Jonathan Zhi, my wife Xiaojun (June) Wu, my

parents Dr. Jianyong Li and Jingjie Zhi, and my academic adviser Dr. Robert Randall.



ACKNOWLEDGEMENTS

The author is grateful to Professor Robert E. Randall, academic supervisor; and Professor
Moo-Hyun Kim, co-chair of graduate advisory committee; as well as Professor Kuang-An Chang
and Professor Alejandro H. Orsi, graduate advisory committee members.

The author also wishes to express his appreciation to Mr. Johnnie P. Reed, Technical Lab
Coordinator of Ocean Engineering, who was of great assistance in setting electronic apparatus
for experiments, and to Mr. Kirk Martin, TEES Research Engineer, whose expertise in
LabVIEW improved the data acquisition system and facilitated the wave data collections.

Appreciation is also extended to my fellow graduate students, including Mr. Ryan Burke,
Mr. Ashwin Gadgil, and Mr. Bohdon Wowtschuk, and to student workers, Ms. Madeline
Brisson, Ms. Mckenzie Griffith, Ms. Martina Garcia, and Ms. Hannah Huezo, whose
participation provided great help in the experimental modeling test. Appreciation also goes to
Ms. Altaf Tagi, who allowed me to participate in her laboratory modeling tests gave the author a
chance to study spectrum analysis for directional waves.

Finally, the author wishes to his great appreciation and gratitude to his mother, Jingjie
Zhi, and his father, Jianyong L., for their encouragement and to his wife, Xiaojun Wu, for her

patience and love and to his son, Jonathan Zhi, as the biggest motivation.



CONTRIBUTORS AND FUNDING SOURCES

This work was supported by a dissertation committee consisting of Professor Robert
Randall, advisor, Professor Moo-Hyun Kim, co-advisor, Professor Kuang-An Chang of the
Department of Ocean Engineering, and Professor Alejandro H. Orsi of the Department of
Oceanography.

The sources of funding for this research were the Center for Dredging Studies, Haynes
Coastal Engineering Laboratory, and Bauer Professorship in Dredging Engineering. The
modeling tests were sponsored by SmithGroup JJR under supervision of Mr. Jack Cox and Ms.
Margaret Boshek and the tests were conducted in Haynes Coastal Engineering Laboratory. The
capacitance wave gauges and other electronic instruments were prepared by Mr. Johnnie P.
Reed, Technical Lab Coordinator of Ocean Engineering. Data acquisition using Helios, a
LabView based software was conducted by Mr. Kirk Martin, TEES Research Engineer.

Graduate students, Mr. Ryan Burke, Mr. Ashwin Gadgil, and Mr. Bohdon Wowtschuk,
and student workers, Ms. Madeline Brisson, Ms. Mckenzie Griffith, Ms. Martina Garcia, and
Ms. Hannah Huezo, provided assistance during the physical model tests.

All other work, including the photographs and the figures, conducted for the dissertation

was completed by the student independently.

Vi



Q

Q

G(f,0)

Ynp

NOMENCLATURE

Wave steepness

Extended least squares method

Error between the measured and the estimated wave for the nt* Fourier component
at probe p

Wave frequency

nt" Fourier coefficient of the measured wave at probe p

n" Fourier coefficient of the estimated incident wave

n" Fourier coefficient of the estimated reflected wave

Angle between probe pair orientation and wave direction

Velocity potential

Gravitational acceleration

Goodness function

Direction distribution function

Phase shift due to reflection for the nt"* Fourier component at probe p

Water depth

Wave height

Transfer function for measured wave for the nt"* Fourier component at probe p
Transfer function for estimated incident wave for the nt* Fourier component at

probe p
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Transfer function for estimated reflected wave for the nt* Fourier component at

probe p

Surface elevation

Imaginary number i = v—1

Wave number for the nt"* Fourier component, k,, = 2r/A,,

Reflection coefficient

Least squares method

Wavelength corresponding to the peak frequency f,

Circular frequency w,, = 27f,
Pressure

Probe positionp = 1,2, ..., P

Wave direction

Averaged slope of breakwater

Slope of breakwater beneath the berm
Slope of breakwater above the berm
Still water level

The mt" temporal step for time series
Wave period or duration of recording
Angle between x-axis and probe pair orientation
Particle velocity along the x-axis
Particle acceleration along the x-axis

Particle velocity along the y-axis
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Particle acceleration along the y-axis

Particle velocity along the z-axis

Particle acceleration along the z-axis

Weighting coefficient for the nt" Fourier component at probe p

Surf similarity number (Irribarren number)
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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

Introduction

The measured surface elevations and the corresponding flow fields in front of a physical
model in a laboratory water wave basin test are altered by the interference of incident waves
generated by the wave maker and reflected waves from model and the basin boundaries. The
wave reflections are also inevitable in a harbor basin, which can cause excessive wave elevations
that jeopardize the entry and docking of the ships, increase scouring and beach erosion, and
destabilize the costal structures. Since the levels of reflections are quantified by the reflection
coefficients, which is a ratio of the incident and the reflected wave heights, a reflection analysis
method for separating incident and reflected waves and obtaining reflection coefficients from the
co-existing wave field is necessary.

A review of the methods for reflection analysis is presented chronologically. Based on
the assumption that the profile of water surface elevation is a summation of many sinusoidal
signals, a least squares method minimizing the squares of errors between the measured and
estimated waves using three wave probes proposed by Mansard and Funke (1980) is widely used
in reflection analysis for both regular and irregular waves. The least squares method employs the
measurements from three wave probes positioned parallel to the wave propagation direction and
at specified probe positions are required according to the specific wavelength to eliminate the
impact of singularities and to enhance accuracy and versatility in wider bandwidths. However, a
basin model test may consist of multiple wave conditions featuring the water depth and wave

period with their corresponding wavelengths, and more wave probes may be required. A probe
1



spacing algorithm automatically arranges the wave probe array and selects three of them for
reflection analysis for a specific wavelength is efficient for a basin model test having multiple
wave conditions.

The measurements for estimating the wave spectra that is for practicing reflection
analysis may employs the other wave parameters, such as pressure and particle velocity, instead
of surface elevation, which is according to the instruments used for observation. Also, the waves
may propagate obliquely. An extended least squares method (ELSM) conducting reflection
analysis for the obliquely propagated waves by using surface elevation and the other wave
parameters expressed as the product of surface elevation and the corresponding transfer function
are necessary. The transfer function translating wave parameters from expression of surface
elevation are based on linear wave theory. The reflection from the laboratory basin boundary
such as rock beach for reflection absorbing is inevitable that contaminants the wave field in front
of the model. Removal of the reflections from basin boundary when using ELSM is also
necessary.

The real ocean is three-dimensional and to simulate the real sea, many laboratories are
equipped with wave makers being able to generate multidirectional or short-crest waves. The
multidirectional waves are considered as the superposition of composite waves with variable
amplitudes, frequencies, phases, and directions. The spectrum of the reflection coefficients is
accordingly a function of both frequency and wave direction. The methods for measuring and
estimating directional spectrum is reviewed, which are more complicated than measurements of
long-crested wave, and a simple method using ELSM estimating the incident and reflected

spectra and the spectrum of reflection coefficients is useful.



Objectives

The objectives for this dissertation are listed as follows:

1.

Developing an extended least square method (ELSM) for reflection analysis using
measurements of surface elevation and other wave parameters from an arbitrary
number of probes for both normal and oblique waves.

Developing a probe spacing algorithm that automates the arrangement of the wave
probes, estimates the space between the wave maker and model, and selects three of
the probes for reflection analysis for a laboratory basin test consisting of multiple
wave conditions.

Developing a software REFANA consisting of reflection analysis method for normal
and oblique waves and incorporating probe spacing algorithm

Conducting a breakwater project in Haynes Coastal Engineering Laboratory (Randall,
et al. 2016) and using its data for reflection analysis. The reflection coefficients
computed by REFANA are also compared to REFLS of GEDAP (Miles and Funke
1990), a commercial software.

Empirical equation for estimating reflection coefficients in front of a sloped, rough,
and permeable breakwater is developed, which is based on the experimental data for a

rubble mounded breakwater.



Literature Review

Methods for reflection analysis are generally classified according to the application of
linear or higher order wave theories, and usage of frequency or time domain. Most of the existing
reflection analysis methods are frequency domain methods using small amplitude wave theory.
Isaacson (1991) reviews and simplifies several methods to analyze wave reflection for linear
regular nonbreaking waves. Hughes (1993) discusses methods of reflection analysis for non-
breaking waves in a comprehensive manner including methods using linear waves theory and
some early works employing higher order wave theory. Yu (2010) reviews and introduces
several reflection analysis methods for irregular waves, he uses the reflection coefficient
spectrum and the expression of bulk reflection coefficient. A recent review by Varghese et al.
(2016) discusses techniques for estimation reflection characteristics in front of coastal structures.

The envelope of co-existing wave profiles features uniform extremes, the incident and
reflected wave heights, and the corresponding reflection coefficient are obtained by measuring
these extremes by using one wave probe slowly moving parallel to the wave propagation
direction for one fourth of wave length, or applying two wave probes at the node and anti-node.
This is the node-and-anti-node method that is presented by Dean and Dalrymple (1991), and
Hughes (1993). The incident and reflected wave heights are the summation and subtraction of
extremes of surface elevations, respectively, and the coefficient of reflection is the ratio of
reflected wave height over the incident wave height. The node and anti-node method is for
regular waves only, and knowing the positions of the node and anti-node a-priori is required for
reliability.

The two-point method presented by Thornton and Calhoun (1972), and Goda and Suzuki

(1976) is for both regular and irregular waves. This method employs two wave probes at fixed
4



positions to measure wave heights from both probes and the phase shifts between the two probes.
The measured wave profiles with known amplitudes and phase differences are equated to
theoretical wave profiles consisting of the incident and reflected parts with corresponding
amplitudes to be determined, and the trigonometric manipulation gives expressions of incident
and reflected amplitude spectra in terms of the spectra of measured amplitudes and phase
differences. Spectral densities for incident and reflected waves are then computed. The incident
and reflected wave heights are computed as four times the zeroth moment of their spectra.
Spectrum of reflection coefficients are then the ratio of amplitude spectra of the reflected wave
over incident wave.

Mansard and Funk (1980) showed that the 2-point method has limitations, such as limited
frequency range, critical gauge positions causing singularity, and sensitivity to errors. A least
square method minimizes the squares of errors between measured and theoretical signals. The
errors are assumed to be caused by nonlinear wave interaction, signal noise, etc. and are
represented as a noise term in the expression of the theoretical wave profile. The least squares
method overcomes the limitations of the two-point method, which was initially proposed by
Mansard and Funke (1980) for irregular waves, and the application of this method on
monochromatic waves was discussed by Isaacson (1991). Wave heights are measured from three
probes aligned parallel to the wave propagation direction, and two groups of phase shifts among
these probes with certain distances apart are also measured. Incident and reflected spectral
densities and wave heights, spectrum of reflection coefficients, and averaged reflection
coefficient are obtained and represent the same as for two-point method. The least square method

overcomes limitations of limited frequency range and sensitivities to error, but the limitation of



critical probe spacing that causes singularity remains, which is cumbersome and labor intensive
for analyzing waves with conditions of multiple wavelengths.

Isaacson (1991) proposed a reflection analysis method for linear regular waves via
measuring wave heights from three probes. This method avoids measurements of phases and the
computing of phase shifts for regular wave only. Isaacson (1991) and Hughes (1993) both
indicated that this method gives better accuracy compared with two-point and least square
methods. Isaacson (1991) also extended his three-probe method for oblique reflection by
avoiding alignment of wave gauges parallel to the axis normal to wave maker.

Other reflection analysis methods involving measurements of particle velocities are the
vertical array method and co-located velocities method. The former method employs vertically
distributed wave gauge and velocity gauge measuring surface elevation and horizontal particle
velocity, respectively, at the same location, which was proposed by Guza, et al. (1984) for long
wave and was modified by Hughes (1993) with the introduction of a time lag (t) between two
probes. The latter method measures both horizontal and vertical particle velocities Hughes
(1993). The principle of these methods is equating measured values in terms of Fourier
components to theoretical values. Hughes (1993) showed that methods of vertical and co-located
arrays using the linear assumptions twice on both heights and particle velocities is relatively
inaccurate compared with the least square method involving linear theory only once.

Frigaard and Brorsen (1995) presented a time-domain method employing digital filters to
separate incident and reflected waves in real time. The measurements of wave elevations come
from the two probes parallel to the propagation direction of the waves. This method gives

coefficients of reflection in the form of a time series rather than a spectrum.



There is always nonlinear phenomenon for waves in basin tests. The waves may be
generated using linear wave theory, however the effects from basin bottom or side walls always
cause nonlinearity, and reflection analysis employing the assumption of linear dispersion relation
accordingly introduces inevitable errors. Mansard, et al. (1985) presented a non-linear reflection
analysis technigue using a nonlinear least squares technique that treats waves as a linear
fundamental wave, a bounded second harmonic component, and free harmonic component,
separately. Mansard, et al. (1985) concluded that this method is more accurate than other linear
reflection techniques.

Based on two-point and least square methods, Lin and Huang (2004) proposed a
technique separating incident and reflected higher harmonic waves using four wave gauges. This
method distinguishes and isolates the free and locked modes in the higher harmonics. This
method is used in software WAVELAB (2016).

To measure and estimate the directional spectra, Barber (1961) applied two-dimensional
direct Fourier transform method to transform the cross-covariance function; Longuet-Higgins et
al. (1963) presented a parameterizing method expanding directional spectrum into a Fourier
series; Capon (1968) proposed a method using the maximum likelihood method (MLM) to
estimate the directional spectrum; Panicker, et al. (1974) presented the “locked phase method”
and “random phase method” to estimate directional spectra using measurements from wave-
gauge arrays; Isobe and Kondo (1984) presented the modified maximum likelihood method
(MMLM) to estimate the directional spectrum in a co-existing wave field including both indent

and reflected wave field.



CHAPTER II

LINEAR WATER WAVE THEORY AND BASIN LIMITATION

A Review of Linear Water Wave Theory
Governing equation and boundary conditions

Considering a two-dimensional x-z plane and assuming that the fluid motion is
irrotational and the water is incompressible, the velocity potential exists and satisfies the
continuity, which is expressed as a divergence of gradient deriving the governing equation -

Laplace equation. The governing equation in two-dimensional form is presented in Equation 1.

0%¢p 0%¢
24 — 2 T 7 T 1
Ve 0x? + 0z2 0

where: ¢ is velocity potential and the velocities u and w in terms of velocity potential are

presented in Equation 2

¢ _0¢
ox’ W= 0z

u =
The kinematic boundary conditions characterizing no penetrations or separations on
boundaries, shall be maintained on both bottom and free surface. Mathematically, it is expressed

(Equation 3) such that the total derivative of the boundary is zero for either an impermeable

bottom or to move with free surface.

df of of of
at ot Yax Ve T

0 3

The expressions of boundaries f(x, z,t) = 0, such as bottom and free surface are
expressed in Equations 4

and 5, respectively.



f(x,z)=z+h(x)=0 4
flx,z,t) =z—n(x,t)=0 5
Substituting the expressions of the bottom and free surface boundaries into kinematic
boundary condition to obtain the bottom boundary condition and kinematic free surface

boundary condition expressed in Equations 6 and 7, respectively.

dh
w+u—=0, z=—h(x) 6
dx
dn  0n
S A s R = 7
5t uax 0, z=n(x,t)

The dynamic free surface boundary condition presented in Equation 8 should be held to
support the variation of pressure across the interface, which can be obtained by substituting two-

dimensional irrotationality condition into Euler equation that is a governing equation of motion.

d 1
—a—(f+§(u2+wz)+gz=C(t), z=1(xt) 8

The lateral boundary conditions are held since the waves are periodic both spatially and
temporally. The spatial and temporal lateral boundary conditions are presented in the Equations 9
and 10, respectively.

¢(x,t) = (x,y,t) 9
¢(x,t) = (x,t+T) 10
Linearized governing equation and boundary conditions

Taylor series expansion is usually used to linearize governing equation and boundary
conditions, which transfer boundary conditions from free surface z = n to still water level z = 0
by expansion and then retaining linear terms of parameters n, u, and w only. The definition of

Taylor series expansion is expressed in Equation 11.

9
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Substituting kinematic free surface boundary condition, i.e. Equation 7, into Equation 11,

and categorizing the terms according to their orders to have:
(W‘a‘”a)zzn = (W‘a‘“a)zzo +"&(W‘a‘”a)m o

( 677) on ow 09%n Oudn 0%n 0
Y70, |Mox T "\9z " 9toz” 9zox “oxdz)| -

Canceling all higher order terms to obtain linearized kinematic free surface boundary condition.

¢
, or —
220 0z

_0n

_On
ot

w =
z=0 Ot

Substituting dynamic free surface boundary condition, i.e. Equation 8, into Equation 11,

and categorizing the terms according to their orders to have:

o N u? + w? N
ot 2 9T
z=7
3 6¢+u2+wz+ N 0 6¢+u2+wz+ N
ot T2 T T \Tae T T2 T

<6¢+ ) +u2+wz+ 0 6¢+u2+wz+ b=
ac 9 __, 2 Taz\ "ot 2 T _ T

Canceling all higher order terms to obtain linearized dynamic free surface boundary condition.
Also, notice that C(t) = 0 since n has zero spatial and temporal mean.

o 19
(~Fctom) =cw,  orn=-% IR0

Accordingly, the governing equation and the linearized boundary conditions are tabulated

in Table 1.
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Table 1. Governing equation and linearized boundary conditions

Description Expression
Governing Equation 2.
G.O.V. Vig=0
Bottom Boundary Condition (horizontal) dp 0 _ 4
B.B.C. oz T
Kinematic Free Surface Boundary Condition dp 0n _ 0
K.F.S.B.C. oz ot T
Dynamic Free Surface Boundary Condition _ 13_¢ —0
DF.SB.C. =g %7
Lateral Boundary Condition Pplx, t) = (x+A,t)
L.B.C. d(x,t) = (x,t+T)

Solution of velocity potential and dispersion relationship
The governing equation is a partial differential equation (PDE), which is solved by first
applying method of separation of variables separating the equation into a product of the functions
of each variable and then by substituting the boundary conditions.
let:
¢(x,z,t) = X(x)Z(2)T(¢)
Substituting into governing equation to governing equation to have:

1 d?X(x) 1 dzZ(z)_
X(x) dx? Z(z) dz?

The equation can be held only when each term equal to the same constant, i.e. a, while
with reversed signs, which yield a pair of ordinary differential equation (ODE), such as:

d?X(x)
dx?

+aX(x)=0
11



d?*Z(z)
dz?

—aZ(z)=0

Constant a shall be positive, because the periodicity in X (x) requires positive a, which
could be mathematically proved using energy method to prove that a is non-negative, and then
to prove a is non-zero using proof by contradiction. Using the solution of positive a for the ODE
pair to obtain a general solution for velocity potential that is presented in Equation 12.

¢ = (AcosVax + BsinVax) - (Ce‘/az +De“/az)-T(t) 12

Substituting bottom boundary condition into d¢/0z = 0, on z = —h and letting C =
De?V@h Then, substituting lateral boundary condition to satisfy the periodicity, which requires
that vVad = 2m, and obtained the velocity potential in Equation 13.

¢ = coshk(z + h) [K,(t) cos kx + K,(t) sin kx] 13
Where:
K (t) =24 [cos(\/ax)]De‘/ahT(t)
K, (t) = 2B[sin(vax)]|DeVe"T(t)

Substituting velocity potential (Equation 13) into dynamic free surface boundary
condition, and using sine or cosine function (Equation 14) with amplitude of half of wave height
for the expression of surface elevation on the left side of the equation.

H
n(x,t) = Esin(kx — wt)
14

H
n(x,t) = icos(kx — wt)

12



To get the expression of the derivatives of K, (t) and K, (t). Integrating them with
respective to t, and substituting them into Equation 13 to obtain the velocity potential that is
presented in Equations 15.

_ H g cosh[k(h + 2)]
2w cosh kh

cos(kx — wt)

15
H g cosh[k(h + z)]

¢ = 2w cosh kh

sin(kx — wt)

Substituting the velocity potential into kinematic free surface boundary condition to yield
the dispersion relationship, presented in Equation 16.
w? = gk tanh kh 16
Wave properties and transfer functions
Considering an oblique wave with wave direction 8, the velocity potential for the oblique
wave in polar form may be written as Equation 17.

“H g cosh[k(h + z)]

¢=—iz=

e—i[k(x cos 0+ysin 0)—wt] 17
2 cosh kh

The corresponding surface elevations for the oblique wave is presented in Equation 18,
which is obtained by substituting the velocity potential into dynamic free surface boundary
condition at still water level (z = 0).

19¢ H
_loep _ O

gotl,_, 2

n —i[k(x cos B+y sin 8)—wt] 18

The particle velocities are presented in Equation 19.

13



0p H coshlk(h+ 2)] ; .
_— = —i[k(x cos 8+y sin 0)-wt]
ax = 2% sinnkn coste

B dp H coshlk(h+ 2)]

_r_ [k(x cosO+y sin B)—wt] 19
dy 2 @ sinh kh

sinfe”t

a9

-5 =

sinh[k(h + 2)] o—ilk(x cos 8+y sin 0)-wt]

W= sinh kh

H

_l —
> w
The particle accelerations are presented in Equation 20.

du H _coshlk(h+ z)]
= co

W 0 e—i[k(xc059+ysin6)—wt]

=572 sinh kh
ov H _ cosh[k(h+ z)] . .
— — 2 : —i[k(x cos 8+y sin 8)—wt] 20
T T2 simhkn omoe

ow H _sinh[k(h+2)] _. .
—_ _ 2 —i[k(x cos 8+y sin 6)—wt]
Y =9t T 2% T sinhkn ¢

The pressure under progressive wave are presented in Equation 21.

o]0
p=-—-pgz+ pE
21

Hcosh[k(h + z)] _. .
- _ - —i[k(x cos 8+y sin 8)—wt]
pgz+pg2 cosh kh ¢

The transfer equations equating the surface elevation and other wave parameters, such as

the particle velocities, the particle accelerations, and the pressure under a progressive wave are

tabulated in Table 2.

14



Table 2. Transfer functions.

Wave Parameter Symbol Transfer Function
Surface elevation n 1
Particle velocity (x) u W COShEk(h *2)] cos @
sinh kh
Particle velocity (y) v ) COSh[k(h *2)] sin @
sinh kh
Particle velocity (z) w —iw Smh[_k(h 2l
sinh kh
Particle acceleration (x) Ug iw? COShEk(h +2)] cos 6
sinh kh
Particle acceleration (y) Vg iw? COShEk(h +2)] sin 6
sinh kh
Particle acceleration (z) Wy  Sinhlk(h + )]
sinh kh
cosh[k(h + z)]

Pressure (p + pgz)

=

cosh kh

Wave Generator Breaking Wave Design Curves for Haynes Coastal Engineering
Laboratory

This section introduces the wave generator breaking wave design curves for 3-D shallow
water wave basin in Haynes Coastal Engineering Laboratory. The design curves are bounded by
both breaking criteria and wave generator capacity that is based on the height-to-stroke ratio, which
are plotted and represented as maximum wave heights versus wave periods under specific water
depths. The dispersion relationship, breaking criteria, and height-to-stroke ratio are introduced

successively for convenience of demonstrating wave breaking criteria. The design curves offer an

15



theoretical estimation for the wave height capability of maximum non-breaking wave that can be
generated in the 3-D shallow water basin in Haynes Coastal Engineering Laboratory.
Wavelengths iteration

Wavelength A or wave number k is initially specified for wave classifications that are then
used as indices for the selection of the breaking criteria. The shallow, intermediate, and deep-water

waves can be defined and tabulated as represented in Table 3.

Table 3. Classification of waves according to water depth.

Wave Type Classified By k Classified By 1
Shallow kh < /10 or h/2<1/20
Intermediate n/10 < kh<m or 1/20< h/2A<1/2
Deep kh>m or h/A2<1/20

The corresponding wave length and wave number under the specified water depth and
wave period can be numerically iterated from dispersion relationship using Equation 16. Since the
circular frequency can be defined as ¢ = 2m/T and the relationship between wave number and
wave length isk = 2m /A, the formula for iteration can be derived from dispersion relationship and

represented as Equation 22.

gT? (27Th>
= 22
A o tanh 7

The initial guess for numerical iteration, which is derived from the approximation of

dispersion relationship that was initially proposed by Eckhart (1952) and was later altered by

16



Fenton and McKee (1990) for minimizing errors in wave length estimation for both short and long

waves, can be represented as Equation 23.

23

The wave number is accordingly computed by using the relationship between wave number
and wave length, i.e. k = 2w /A. The wave lengths for wave periods varying up to 10 s and water

depth varying between 0.1 m and 1 m with 0.1 m incremental depth are represented in Figure 1.

35 : : | : | R

30

25

20+

10

10

Figure 1. Wavelength from dispersion relation.
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Breaking criteria

Breaking criteria are generally represented as either limiting steepness &,, that is a ratio of

wave height versus wave length or breaking index k that is a ratio of wave height versus water

depth (Equation 24), the latter criteria is usually used for shallow-water wave. These criteria are

presented in Table 4.

Table 4. Break criteria.

24

Method Equation Applicability
Mt 152 Creper
e 380 | 30 =onh () e o

K = 0.89 Shallow-water wave

Goda (1970)

Kamphuis (1991)

Kamphuis (2000)

K = 0.17’1—0[1 - e‘(l'sﬂhb)l
hyp

27Thb
Oms = 0.095 tanh
Apb

Kk, = 0.56

k=0.78

Plane bottom

General form
Plane bottom

General form
Significant wave height
Peak period wavelength

Shallow-water wave
Significant wave height
Peak period wavelength

Shallow-water wave
Flat bottom

18



Wave generator capacity

The wave generator capacity is based upon the height-to-stroke ratio (H/S), which is for
estimating the heights of waves that are generated by knowing the wave number k (or wave length
A), water depth h, and wave board stroke S. The first-order height-to-stroke ratio (S. A. Hughes
1993) for piston typed wave generator is represented in Equation 25.

H  2[cosh(2kh) — 1]

— = 25
S sinh(2kh) + 2kh

For water depths varying up to 1 m with 0.1 m incremental water depth and wave period
varying up to 10 s, the corresponding maximum wave height that can be generated under the

maximum stroke amplitude 0.988 m is plotted and represented in Figure 2.

2
d=01m
181 d=02m|
d=03m
16F d=04m | -
d=05m
d=08m
1.4+ 4
d=0.7m
d=08m
— 12r d=09m|
E.- d=10m
] 1
I=
0.8}
0.6}
0.4t
0.2 ——
0 - _
0 1 el 3 4 5 6 7 8 9 10

Figure 2. Wave height from height-to-stroke ratio.
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Wave height capacity

The wave height capacity for a shallow water wave basin in Haynes Laboratory is
estimated and plotted as an envelope of the breaking criteria and first-order height-to-stroke ratio.
This design curve is for estimation of maximum non-breaking wave under maximum paddle
stroke. The design curves presenting the non-breaking waves are bounded by Goda (1970)

breaking criteria presented in Figure 3.

d=01m
0.9+ d=02m
d=03m
0.8} d=04m
d=05m
d=06m
0.7 ¢
d=0.7m
d=08m
— 06¢ . d=09m
E N d=1.0m
Il:
0.4t
0.3+
0.2t
0.1
D 1
0 2 4 6 8 10

Figure 3. Design curve for 3-D wave basin in Haynes Coastal Engineering Laboratory.
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CHAPTER Il

REFLECTION ANALYSIS USING EXTENDED LEAST SQUARES METHOD

Assumption and Coordinate System

Airy wave theory (often referred to as linear wave theory) is used and a fully developed
wave filed in front of a reflected structure is linearly superposed by incident wave trains moving
toward the structure and their reflected wave trains moving away from the structure, which
generate a co-existing wave field. Both incident and reflected wave fields are assumed to be
linearly superposed by wave trains from different directions and the wave of each direction is
assumed to be linearly superposed by infinite number of wavelets with variable amplitudes,
frequencies, and initial phases. For long-crest wave, the wave directions to constitute the surface
profile are at a uniform value. In physical modeling experiment, reflection from basin’s side
walls may be assumed to be negligible with properly placed effective absorption material.

Cartesian coordinate is used with x-axis being perpendicular to the toe of reflected
structure and orienting positively away from the structure and with y-axis being orthogonal to x-
axis and orienting to the left of the positive x-axis. The coordinate system is presented in Figure
4. Angle @ is the incident wave angle, i.e. 8, = 6, it is made by the x axis turning counter-clock-
wisely to the incident wave crest orthogonal (orientation of the incident wave component) and,
which ranges from 0 to 7= counter clockwise from the positive x-axis.

Accordingly, to have the relationship between the incident and reflected wave angles,

which are presented in Equation 26 in term of angle theta 6.
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26
9R =T — 0
The corresponding sine and cosine functions are presented in Equation 27.
sinf; = sin@, cos6; = cos @
27
sinfg = sin@, cos B = —cos 6

REFLECTED OBJECT
=
REFLECTED OBIJECT

Figure 4. Coordinate system for incident and reflected wave system.

For long-crest wave, the reflection analysis is usually conducted using least squares
method by minimizing the square errors between the spectra of observed and estimated surface
elevations. This method was proposed by Mansard and Funke (1980), and the author presents an

extended version applied on both normal and oblique waves.

22



Reflection Analysis for Long-Crest Normal or Oblique Wave Using Lest Squares Method
Time series of surface elevation

The observed surface elevation at a fixed point (probe p) can be presented as
superposition of many sinusoid waves, and the trigonometric form of the surface elevation is the

real part of polar form of that can be presented in Equation 28.

N
(nm,p)M = Z Fn,peiwntm 28
n=1

Where: ("m'P)M = 1, (tm) is the observed time series of surface elevation; t,, is cumulative
time with ¢, = mAt, and At is time incremental; F, ,, is the measured Fourier components of
frequency w, at probe p; w,, is circular frequency defined as w,, = 2nf,, = 2mn/T; ay, , is the
initial phase of frequency w,,.Let T be the total record duration, the time incremental is defined
as T = NAt, and accordingly t,, = mT/N.

The estimated surface elevation may be presented as superposition of incident wave and

reflected wave, and each wave is assumed to be the superposition of many sinusoidal waves, the

polar form of which is presented in Equation 29.

N

— i(—k 01—k in@j+wnt
(nm,p)E — Z Fmel( nXp €0S O1—knYp Sin 01+ wntm)
n=1

29
N

+ Z FRnei(—knxp cos Or—knYp Sin Op+wntm)

n=1
Where: (nm'P)E = 1, (xp, ¥p, ) is the estimated time series of surface elevation; Fy,, and Fg,,
are the incident and reflected Fourier components of frequency w,,; k,, is wave number and

related with circular frequency by dispersion relationship; (xp, yp) is the position of probe p
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relative to the first probe; 6 is incident wave angle; 6y is the reflected wave angle having
relationship with incident wave angle as 8; = m — 6. The estimated surface elevation in the

wave field constituted by the incident and reflected waves can be re-written and presented in

Equation 30.
N
(nm P)E — Z H,, meei(—knxp cos 0—knyp Sin 0+wntm)
n=1
30
N
+ Z HRn,pFRnei(knxp cos 0—knYp Sin 0+wntm)
n=1
Fourier transform of time series of surface elevation
The discrete Fourier transformation is defined and presented in Equation 31.
N
F(w,) = Z Ny @ntm 31
m=1

Where: F(w,) = F, is the amplitude spectrum of surface elevation. Substitute Equations
28 into Equation 31 to get the amplitude spectrum of measured wave as presented in Equation

32.

?{(nm,p)M} = Fop 32
Substitute Equations 30. into Equation 31 to get the amplitude spectrum of estimated
wave as presented in Equation 33.
F {(Um,p)E} _ Fmeikn(—xp cos 60—y sin6)

33
+ Fp eikn(xp cos 0—yp sin 0)
n
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LSM to separate incident and reflected waves for obliquely long-crest wave
Using three wave gauges placed parallel to the reflected structure orthogonal or parallel

to x-axis, the sum of squares of errors is accordingly presented as Equation 34.

3

Z(en,p)z =

p:l p=1 34

[FI eikn(—xp cos 0—yp sin 0)
n

NIE

i i 2
+ FRnelkn(xp cosO-ypsin®) _ Fn,p]

Where: €, , is the error between the observed and estimated amplitude spectra.
The minimum square value is assumed to be achieved the partial derivative of sum of
squares of &, ,, with respective to both F, ,, and Fy ,, are zero, such that presented in Equation 35.

d [Z{?’;:l(fn.p)z] _ 0 [Z§=1(‘Sn.p)2]
aFm aFRn

35

To get an equation pair, such that
3
Z[Fmeikn(—xp cos6-ypsin6) 4 FRneikn(xp cosO-ypsinb) _ Fn'p]eik”(_xp cos@-ypsinb) _
p=1

3
Z[Fmeikn(—xp cos 0—yp sin 0) + FRneikn(xp cos0—ypsin) _ Fn‘p]eikn(xp cosO-ypsin®) _ 0

p=1

Rearranging the above equation pair to obtain Equation 36:

3 3
Fp, Z eizkn(—xp cos 0—yp sin 0) + 3F, = Z Fn’peikn(—xp cos 0—yp sin 0)
p=1 pr=1
36
3 3
Fan, Z g i2kn(xp cosO—ypsind) | 4 3F,, = z Fn,peik"(xp cos 0—yp, sin 0)
p=1 r=1

Solving Equation 36 to obtain F;,, and Fg,, presented in Equation 37.

25



0203_304
Fim ==0,0,—9
1Y2
37
_ 0104_303

Fn,, =
kn =" 0,0, -9
The spectrum of reflection coefficients is presented in Equation 38 as a ratio of Fy,, over

Fyy,, such that

_ Frn _ 0,0, —30;

Ky = = 38
K™ Fn,  0,0,-30,
Notice that when the wave direction normal to the reflected structure, the angle & = 0. The
parameters in Equation 37 and Equation 38 are presented in Equation 39.
3
01 — Z e—i2knxp cos @
p=1
3
02 — Z ei2knxp cos 6
p=1
39

3
03 — Z Fp‘ne—Lknxp cos @
p=1

3
04 — Z Fp'nelknxp cos 6
p=1

Reflection Analysis for Long-Crest Normal or Oblique Wave Using Extended Lest Squares
Method (ELSM)

The measurements used for reflection analysis can be other wave parameters that are
expressed as a product of surface elevation and transfer function H,, ,, presented in Table 2
relating the surface elevation and corresponding wave parameter. Also, to practice the reflection

analysis using an arbitary number of probes, Zelt and Skejebreia (1992) introduced the weighted
26



sum of the squares of the errors for each wave gauge with non-uniform weighting coefficient
Whyp-
Time series of a wave parameter

The observed wave variable at a fixed point (probe p) is assumed to be superposition of
many sinusoid waves that is a product of surface elevation (Equation 28) and the corresponding

transfer function according to the types of measurements, and its polar form can be presented in

Equation 40.

N
£ (tw) = Z Hy By e ntm 40
n=1

Where: (fm'P)M = fp () is the observed time series of wave parameter; H,, ,, = Hy, ,(w,, 8) is

transfer function (Table 2) relating the wave parameter and surface elevation and H,,,, = 1 when
the wave parameter is surface elevation.

The estimated surface elevation may be presented as superposition of incident wave and
reflected wave, and each wave is assumed to be the superposition of many sinusoidal waves that
are the products of surface elevation (Equation 30) and the corresponding transfer function, the

polar form of which is presented in Equation 41.

N
= i~k 0—knYp Sin O+wnt
fp(xp' Yo, tm) = Z Hln'meel( nXp COS nYp Sinf+wp m)

n=1

41
N

+ Z Hpn pFRnei(knxp cos 0—knYp Sin 0+wnty)

n=1
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Where: (fm'P)E = f»(Xp, ¥p, tm) is the estimated time series of wave parameter; H,,, ,, =
H, ,(wy, 6) and Hg,,,, = H,, ,(w,, Og) are transfer functions for incident and reflected waves,
respectively, and notice that H;,,,, = Hgy,,, = 1 for surface elevations.

Fourier Transform of time series of wave parameter
Using Fourier transform on time series by substituting Equations 40 and 41 into Equation
31 to have the amplitude spectra of measured and estimated wave variables presented in the

Equations 42 and 43, respectively.

F {(fm.p)M} = Hyphnp

42
F {(fm.p)g} - Hln,pFInelkn(_xp c0s 6-ypsin6)
43
+ Hpp, pFRneikn(xp cos 0—yp, sin 0)
ELSM to separate incident and reflected waves for obliquely long-crest wave
Probes measuring wave parameters are placed parallel to the reflected structure
orthogonal or parallel to x-axis, the error &, ,, between the observed and estimated waves is
accordingly presented as Equation 44.
Enp = Hm’meeikn(—xp cos 0—yp sin 0)
44

+ HRn,pFRneikn(xp cos0-ypsin®) _ HppFop
In order to practice the reflection analysis using any number of gauges, Zelt and
Skejebreia (1992) introduced the weighted sum of the squares of the errors for each wave gauge

with either uniform or non-uniform weighting W;, ,,, which is presented in Equation 45, as

P
— *
En = Z WapEnpénp 45
p=1
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Where: W, ,, is the weighting coefficient for wave gauge p at frequency w,,, which equals to

unity for uniform weighting coefficient, the principle of selecting the weighting coefficient will
be discussed later.

Since the minimum of the weighed sum of squares of errors occurs when E,, is stationary
that holds the criteria, such that in Equation 46 as.

0E, 0E, _
0F,, OFp,

0 46

To further obtain a pair of Equation 47.

P
W pHin p&n peikn(—xp cos@-ypsin®) _
=1

p
47

P
Z Wn,pHRn,pSn,peik”(xp cosO-ypsinb) _ 0
p=1
Substituting Equation 44 into Equation 47 to get an Equation pair.
P
z W, pHIn P(Hln pFlneik"(_xp cos 0—yp sin 6) + Hpp pFRneikn(xp cos 0—yp sin 6)
pr=1
— Hn,pFn,p)eik”(_xP cosO-ypsinf) _ 0
P
Z WanRn P(Hlonlneikn(_xp cos 0—yp sin 0) + Hpp pFRneikn(xp cos —yp sin 0)
pr=1

_ anan)eikn(—xp cos0-ypsin®) _ 0

And rearranging the above equation pair to obtain Equation 48:
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F, Z Wn,pHIn,pHIn,pe i2kn(—xp cos O—yp sin )

—i2k sin @
+ FRn Z Wn,pHIn,pHRn,pe nYp

Z pHmpH onnpelkn(—xp cos 0—yp sin 0)

48
P

—i2kpyp sin 6
Fln Z Wn,pHIn,pHRn,pe n¥p
p=1

i2ky(xy cos 0—y, sin B
+ FRn Z Wn,pHRn,pHRn,pe n( p Ip )
p=1

— ikn(xy, cos -y, sin 6
B Z Wap Hpn,pHnp Frpe (e Ypsin6)
p=1

Parameterizing the equation by letting:

— i2kny(—x, cos8—y, sin @
01= z W pHimpHmpe n(=p Ypsin6)
p=1

— i2kyn(x, cos 8-y, sin 0
0, = Z WapHrnpHrnpe (e Ypsin®)
0; = Z Hlan F Lkn(—xp cos 60—y sin )

0, = Z HRan F Lkn(xp cos -y, sin )

And rewriting the Equation 48 into the Equation 42 to have Equation 49.
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P
FITL01 + FRn Z Wn,pHIn,pHRn'pe_ianyp sin 6 = 03
p=1
49

P
F WopHmpHrnpe Z¥n?p M8 | 4 Fr0, = 0
In n,ptiinp Rn,pe Rn%Y2 — Y4
p=1

Solving Equation 49 and presenting Fy,, and Fgy, in terms of £, ,,. The expression of Fy,,
and Fy,, are expressed in the Equations 50 and 51, respectively.

P —i2k sin@
_ 0205 - (Zp=1 WhpHinpHrnpe 2 0)0,

In — . . 2
P —i2k sin @
0102 - (Zp:l Wn,pHIn,pHRn,pe nYp )

50

P —i2k sin@
_ 0104 - (Zp:l Wn,pHIn,pHRn,pe nYp )03

P —i2knyy, sin 02
0,0, — (Z —1 WapHinpHgnpe =P )
P

51

The corresponding spectrum of reflection coefficients is presented in Equation 52 as a
ratio of Fg,, over Fy,, i.e. Kx = Fpp/Fpn.

P —i2k sin @
_|919s — (Zp=1 WapHinpHrnpe 2P 5" 9) 05

- - : 52
02 03 - (Zgzl Wn,pHIn,pHRn,pe 12knyp sm9)04

R

Notice that this expression become the conventional least square method when using

uniformed weighting coefficients, i.e. W, , — 1, and using measurements of surface elevations,
i.e. H,, = Hppp, = Hgpp, — 1, from three probes, i.e. P = 3. The solution using an arbitrary

number of wave probes (Zelt and Sejelbreia 1992) is also a special solution for this general

expression by using W, ,,, using measurements of surface elevations with transfer functions

equaling to unity, and by using P = P.
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Removal of The Reflection from Laboratory Basin Boundary

The reflection from laboratory basin boundary is inevitable that interferes the co-existing
wave field in front of a model. However, the reflection coefficient of the basin boundary is
usually given in priori, which can be either computed using reflection analysis before the model
test or estimated by multiplying a proper reflection coefficient to the input incident wave spectra.
Let the amplitude spectrum of the basin boundary as Fgg,, the estimated time series of surface

elevation can be presented in Equation 53.

N
— i(—knxycosO—k sin 0+wnt
fo (% Vpr tm) = Z HpppFine (=knxp np ntm)
n=1
N
i(knxp cos 0—knyy sin 0+wpty) 53
+ HpgppFrne p p
n=1
N
+ Z Hpn pFRRnei(knxp cos 0—knyp Sin O+wntm)
n=1

Using Fourier transformation (Equation 31) to obtain the amplitude spectrum of

estimated wave as presented in Equation 54.
= i(—k 0—knyp sin B+wnt
F {(T]m,p)E} = HIn,pFInel( nXp €OS nYp Sin 0+wntm)
+ Hgnyp Fryyei(knXp €08 0=kenyp sin 6+wntm) 54
+ HRonRRnei(knxp cos 0—knyp Sin 0+wntm)

The squares of errors between the measured wave (Equation 32) and the estimated wave

is presented in Equation 55.

32



3

3
Z (En’p)z - Z [HIn’meei(_k"xp c0s 0—knyp Sin 0+wntm)
1

p=1 p=
+ HRn,pFRnel(k”xl’ cos 0—knyp Sin 0 +wntm)

i(knxp cos 0-knyp sinO+wntm) _ [ 2

+ HRn,pFRRne n,p]
Using the extended least squares error method (Equation 35), to get a pair of Equation 56.

P
i2kn(—x, cos 60—y, sin 6
FITl ng,pH[n'len'pe n( 14 Yp )
p=1

P
+ (Frn + Frrn) Z Wy, pHinpHpnpe = 2enYpsiné
p=1
P

= ikp(—x,cosB—y,sinf
= Z Wn,pHIn,pHn,pFn,pe n(=2p Yp )
p=1

P
—i2k sin 6
Fin Z W pHinpHgnpe ™5 m7P
p=1

P
i2kn(xy, cos -y, sin 6
+ (Frn + Frrn) z W pHrnpHgnpe n(xp Ypsin6)
p=1

= ikn(xy,y cos 8-y, sin b
= Z WapHrnpHnpFnpe n(xp Yp )
p=1

Parameterizing Equation 56 using Equation 39 to have Equation 57
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P
Fln01 + (FRn + FRRn) Z Wn,pHIn,pHRn,pe_ianyp sin ) = 03

p=1
57

P
FIn Z Wn,pHIn,pHRn,pe_ianyp sin + (FRn + FRRn)OZ = 04
p=1

Solving Equation 57 to obtain the expressions of the incident and reflected spectra with
removal of the reflection from laboratory boundary, that are presented in Equation 58.

P —i2k sin @
_ 02 03 - (Zp:l Wn,pHIn,pHRn,pe nYp )04

P —i2kpny, sin 02
0,02 = (Zp=1 WapHinpHrnpe 2ersm9)

58

P —i2k sin @
_ 0104 — (Zp=1 WapHinpHrnpe 2m'p 5" 9) 05

— Frg
P —i2k sin )2 n
0,0, — (Zp=1 Wi pHinpHenpe ™ 2n¥p o 0)

The spectrum of the reflection coefficients considering the reflection from basin
boundary is according computed as the ration of Fy,, over Fy,,, which is presented in Equation 59.

P —i2k sin @
_ 9194 — (Zp=1 WapHinpHenpe P57 )05

Rn — P —i2kn Yy Sin 0
0203 - (Zp:l Wn,pHIn,pHRn,pe nYp )04

59
—i . 2
Frrn [0102 - (Zzzl Wn,pHIn,pHRn,pe 2knyp sme) ]
0203 - (Zgzl Wn.pHIn,pHRn,pe_ianyp Sin9)04

Reflection analysis for Short-Crest Waves Using Extended Least Squares Method

The short-crest wave is considered as superposition of many sinusoid waves featuring
different not only the amplitudes, frequencies, and initial phases, but also different directions 6;.
Accordingly, measurement of a directional spectrum requires more probes, rather than obtaining
spectrum of long-crest by measuring the surface elevation at a fixed position. The wave energy

accordingly distributed across both along frequency w, and direction 8;, and to have the
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relationship between an energy density spectrum and its directional spectrum, such that in

Equation 60.

S(w) = j " S(,8) d6 60

-7
Using the relationship between the energy density spectrum and the frequency spectrum,

which is presented in Equation 61.

IR
T
61
|F(wp)|?
— 2
S(an) = @mF—
Where:
nfo = fa
nw, = Wy
w = 2nf
Accordingly, to have the relationships presented in Equation 62.
s
Fy(w) = j F,(,8) df
s
Fi(w) = j Fi(w,0) d6 62

Fo(w) = anR(a),H) do

Reflection analysis for short-crest wave is presented by firstly using least squares method
or the extended least squares method presented in the previous sections in this chapter to

compute F;(w) and Fr(w) and both are in term of E,(w). Then either using parameterize method
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to estimate F,(w, 6,,) and obtain the directional spectra F;(w, 6,,) and Fz(w, 8,), or using the
form of directional spectrum in terms of directional distribution function. The reflection
coefficients are accordingly a ratio of Fx(w, 6,,) over F;(w, 6,,), which is a directional spectrum,
i.e. Kz (w, 6,,). The transfer functions are also directional spectra.
Time series of wave parameter for short-crest wave

The time series of measured wave in terms of measurement from the first probe is

presented in Equation 63.

N M
(fmkp =ZZHTIJP anel(wntm+9jlk) 63
noj

The time series of estimated wave is a superposition of incident and reflected wave,

which is presented in Equation 64.

(fm,k,p)E

N M
— Z Z gl . Fl. l( knXp €0S 0 j—knYp Sin 6 j+wntm+6 jli)
] 64

N M
+ Z Z HR. FR. L(knxp €05 0 j—knYp Sin 6 j+wntm+6 jli)
n j

Where: [, is the orientation of probe array.
Results of the short-crested wave

Using two-dimensional Fourier transformation that:

N M
F(wn' 91') = Z Z f s L) e~ i@ntm+0;l)
m k
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Using the Equations 50, 51, and 52 to obtain F;, ; ,, Fy, .,

and Kjy, respectively. We
notice that these spectra are functions of frequency w when the incident wave propagates along a
unity-direction, i.e. F; = F;(w,), Fr = Fg(w,,), and Kz = Kz (w,,), however, when the
composite waves are multi-directional, these values become a function of both frequency w and

direction 6, that is to say, directional spectrum, i.e. F; = F;(wp, 6;), Fgr = Fg(w,, 6;), and K =

and the reflected FX .

Kr(wy, 6;). The Fourier components of the incident Fy, ; , n.jp

wave are

presented in Equation 67. The reflection coefficient for directional wave is presented in Equation

66.
I _ 0203 - (Zg 1 W HrILJpHr}E]p _lenyp Sinej)04
njp _ ; A2
0102 - (25 1 W Hrll] pHrIl?] p 12kn3’p o 9])
| 65
R, _ 010, = (Xf1 WapHp j pHi jpe ™ 27751 91) 05
Tl,],p - _ i . 2
010, — (Zh_ Wy pHL i JHE e~ P2knYpsinGj)
04 _ (Z W H‘,Il] pH'rIf] . —sznyp sin 9]')03
KR((Un, 977.) = 7 R “i2k o, 66
0,05 — (X5_ Wy pH} L HE e~ Zknyp 500,

The corresponding parameters are

0, = Z W, Hrlljp n]peLan(—xp cos 6 j—ypsinb;)
0, = Z W, Hrilq]p n]pelen(xp cos 6 j—ypsin6 )

1 iky(—xy, cos@i—y,sinf;
03 = Z WopHi . Hnj o jpe (3 €05 0172p Sin6))

R ikny(x, cos@;—y,sinb;
04_ZW pHn,jpHn,jpFnjpe n(xp cos8,;=yp sin b))
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Estimating directional spectrum in terms of directional function

The real ocean is three-dimensional and the corresponding spectrum should be directional
spectrum, the two-dimensional spectrum is a spectrum that the energy concentrates on a specific
direction (usually at & = 0) and the energy will spread along the directions directional spectrum.
The directional spectra may be estimated as a production of frequency spectrum and directional
function, and according the directional spectrum of the reflection coefficients can be presented in

Equation 67.
Kr(w,8) = Kp(w)D(w,0) 67

Where: K (w) is frequency spectrum computed using extended least squares method in previous
section; D (w, 0) is direction distribution function or simply as directional function presenting the
distribution or dissipation of energy along the direction on both sides of main direction, which

satisfies Equation 68.
V3
f D(w,0)do =1 68
-7
Because
V3 s
Kp(w) = f Kip(w,0)do = KR(w)f D(w,0) dé
-7 -1

Determination of frequency spectrum K (w) uses the same pattern of wave probe arrays
applied in least square method. Estimation of directional spectrum for the reflection coefficients
becomes the determination of direction distribution function.

A simple empirical function that is independent from frequency, i.e. D(w, 8) = D(0),

may be used to present the direction distribution function, which is presented in Equation 69.
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D(w,0) = C(s) cos®s 0 69

With:

1 I'(s+1) 2s!!

S N ISV (L]

Where: the gamma function I'(s) has properties of:
I's+1) =sI(s)=(s—1)!

Mo+ 1/2) = (2s — 1)2n3 : 1\52 (252—711)!!

Vi

2sl=2s-...-4-2
2s—DN=2s—1)-..-3-1

The coefficient s is a direction distribution coefficient, which is a constant in simple
empirical function, which need to be determined according to the wave directions. Direction
distribution coefficient s may be a function of frequency w for other direction distribution
functions. Some of the other direction distribution functions include equation presented by
Longuet-Higgins (1963) using direction distribution coefficient presented by Mitsuyasu, et al.
(1975) and Yu and Liu (1994). Measurements are necessary to verify the applicability of these
direction distribution function and to develop new functions being applicable for the spectra of

incident wave, reflected wave and the reflection coefficients.
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Estimating composite wave directions from measurement of probe pairs

The directions of the composite waves may be distributed within an interval of angles 6,,.
The direction of the composite waves can be obtained by computing the phase shifts using
measurement from a pair of probe, the relationship among the wave direction, orientation of the
connecting line of the probe pair and the angle between the wave direction and connecting line of

probe pair is illustrated in Figure 5.

Figure 5. Relationships between wave direction and probe pair orientation.

Considering the time series of surface elevation captured by two wave probes presented

in Equation 70.

N
N1 = Z An 1ei(—knx1 cos Op—knyq sin Op+wntym)
n=1
70
N
Nmo = Z Anzei[—kn(x1+Dx) c0s Op—kn (y1+Dy) sin 6y,
n=1

The Fourier series of the time series are presented in Equation 71.
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T(nm,l) = An'le_i(knxl Cos 9n+knyl sin Gn)
71

T(T[m 2) =4, ze—i[kn(xl +Dy) €0 Op+kn(y1+Dy) sin 6y

Since
D, =Dcose
D, = Dsing
Yn =0~ 9
The equation pair can be written as Equation 72

T(nm,l) = An'le_i(knxl cos Optkny, sin Gn)
72

T(r]m 2) =4, Ze—i[(knxl €0S O +kny1 Sin 07)+ky D cos Py
Using Euler’s formula that is presented in Equation 73.

cos(k,D cosy,,) = T(Tlm,1)7:*(flm,2) + T*(nm.l)?(nm,z)
s 217 (1 1) 7 (12|

73

sin(k,D cosy,) = T(nm'l)T*(nml) — ?*(nm,l)jr(nm,z)
" i i2|3”(77m,1)?*(nm,z)|

Where:
F ()P () = A A 2050 0540

j:*(nm,l)?(nm,z) = An,lAn'Ze_iknD cosp

to have Equation 74.

F F* — F* F
tan(k,,D cosy,) = —i (1) 7" (11m,2) (1m,1)F (11m,2) 24
Fm)F* (mz) + F* () F (mz)

Hence to get the relative angle between the connection line of probe pair and the wave

direction, which is presented in Equation 75.
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T F )T (hmz) + F* (1) F (T2

tan~! [ F (1 )T (m2) = F* (1m,1)F (m,2)
P, = cos™! J l

75
k,.D
\ )

And the directions of one of the composite wave is presented in Equation 76.

-1 _.‘T(nm,l)fp*(nm,z) _T*(nm,l)T(nm,z)

T F )P o)+ F ()P ()
0, = cos™! i km’D i i + 76

n

This gives wave directions 8,,, including the extremes of the wave directions, the distribution of

composite wave directions can be accordingly computed.
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CHAPTER IV

PROBE POSITION CRITERIA

Principles for Probe Arrangement

The principle for probe arrangement is to measure wave parameters with known phase
and time lag, measurements shall be either at the same location with known time lag or at
different locations with known relative probe positions. The techniques for wave measurement
employ direct technique using instrument in the water, including capacitance wave gauge
measuring the surface elevation, current meter measuring particle velocity, free float buoy
measuring particle velocity and wave slope, pressure gauge measuring wave pressure, and so on.
Indirect technique such as stereography using optical methods including camera to capture the
image of surface elevation. The indirect method is usually used for the directional waves

This section emphasizing on introducing a method using five wave probes and three of
them are selected for spectra estimation and reflection analysis (three-of-five), which is based on
the least square technique. The weighted coefficient used in the method employing an arbitrary
number wave gauge is also introduced. Both methods are based on the principles of how to
properly select a set of wave probes and both of them can reduce the labor in relocating wave
probes when the test conditions employing multiple wavelengths. Also, these two methods are
for long-crested waves. A software is developed for automatically arranging and selecting wave
probes and its applicability based on the three-of-five technique are presented with instruction

and sample results.
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For short-crested waves, the methods of probes arrangement for capturing directional
spectrum are introduced and are categorized in to narrow and wide spreading angles of the
composite waves.

Probe Position for Long-Crest Waves

For long-crested waves, probe arrays employing at least two probes or one probe
measuring at least two wave parameters simultaneously is usually used to capture the surface
elevations and other wave parameters for estimating wave spectrum and further used for
reflection analysis, and the probe arrays consist of arrangements such as spatially-spaced array,
vertical array, co-located array, and wave probe matrix. A spatially-spaced array presented in top
left of Figure 6 uses two (Thornton and Calhoun 1972); (Goda and Suzuki 1976), three (Mansard
and Funke 1980), or an arbitrary number of (Zelt and Sejelbreia 1992) wave probes positioned
parallel to wave propagation direction to measure surface elevations. A vertical array (S. A.
Hughes 1993) presented in left middle of Figure 6 uses a wave probe measuring surface
elevation and a current meter positioned vertically at the same horizontal position measuring
particle velocity simultaneously. A co-located array (S. A. Hughes 1993) employs a current
meter measuring the particle velocities of two directions simultaneously, which is presented in
left bottom of Figure 6. Estimating wave spectrum according to the measurement for long-crest
oblique wave may employ a wave probes matrix presented in right of Figure 6, and there is no
need to restrict the positions of wave probes parallel to the orthogonal of reflection object (or
wavemaker). The wave probe matrix technique is an extension of spatially-spaced array
technique, however according to calculation by Issacson (1991) and by the author in the previous
chapter, the offset of wave probes relative to the wavemaker orthogonal may not be necessary

and the spatially spaced technique is still applicable for oblique long-crest wave.
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SPATIALLY-SPACED WAVE PROBE MATRIX
(ISAACSON 1993)

WAVE P1 P2 FP REFLECTED
SOURCE 0BJECT

}\/\H,H\/\H,\/\/L
WAVE
DIRECTION
REFLECTED
WAVE
DIRECTION
VERTICAL ARRAY
WAVE WAVE (HUGHES 1993) REFLECTED
SOURCE  PROBE OBJECT .
- WAVE
PROBES .
e f— — - . ————
CURRENT WAVE REFLECTED
METER DIRECTION OBJECT
CO-LOCATED
WAVE (HUGHES 1993) REFLECTED
SOURCE OBJECT
INCIDENT
WAVE
DIRECTION
—= — -
CURRENT WAVE
METER DIRECTION

Figure 6. Probes array used in reflection analysis for long-crest wave.

For both single wavelength condition, distance between any of the two wave probes shall
never be any integer multiplying half wavelength, and the distances between any wave probe and
the wave source/reflected object shall be at least one wavelength. For a single wave condition
with one wavelength only, a criterion determining the positions of the three wave probes

recommended by Mansard and Funke (1980) is used, which is presented in Equation 77.

2
xlz—lo
77
A_ A A_ 3 34 _ 2
6 M3 =g O g=<Xiz3 <7500 75<X13<3

Where: x;, and x, 5 are the probe distances between probes 1 and 2, and between probes 1 and 3
respectively, and probe 1 is the probe closest to the wave maker; A is the wavelength

corresponding to peak period of the wave spectrum.
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Singularities that causing zero denominator for waves propagating normal to the toe of
structure, i.e. 8 = 0, in Equation 37 for calculating F, and Fg, respectively, happens when the
probe distance between the first and the pt*, i.e. X1p, €quals to an integer multiplied by half

wavelength. This situation presented in Equation 78 needs to be carefully avoided.

2k x yields yields
nti — e =
e P=1—kpXyp = ZpT — X1p = 2

N >

, z, €L 78

A model basin test usually involves one or multiple wave conditions featuring single and
variable wavelengths, respectively. For multiple wave conditions featuring specific wavelength
for each scenario, two methods may be used, one of the methods is applying the weighted
coefficients proposed by Zelt and Skejebreia (1992) and choosing three or more wave gauges
from the wave probe array, the other method is using five probes, and three of the wave probes
are used for reflection analysis for each specific wavelength of each corresponding wave
condition or for several wavelengths of several corresponding wave conditions.

Three-of-five probes method

The breakwater project that let several wave conditions sharing a set of three wave probes
for reflection analysis using least square technique indicates that margins maybe tolerable for the
above probe spacing criterion. Also, the actual probe position may be an approximate to the
probe spacing criteria. Accordingly, in the latter method, sharing three wave probes for several
wavelengths to compute reflection coefficient using least squares method following spacing
criteria above when only five probes are available may be a feasible method in basin test.

Let the five wave probes from the position closest to the wavemaker to the reflected
structure as probes 1, 2, 3, 4, and 5 and the three wave probes used for reflection analysis from

the position closest to the wave maker to the reflected structure as probes A4, B, and C. The probe
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distances relative to probe 1 are x;,, x,3, x14, and x5, and the probe distance relative to probe A
are x,5, and x,.. Also, for conditions of wavelengths with totally M wavelengths, let A™ be each
wave condition and m = 1,2, ..., m, ... M. According to the breakwater project, margin of 1% of
wave length may be added to the probe position criteria by Mansard and Funke (1980) for the
distance between the first and the second wave probes, i.e. x4z, and use the same probe criteria
for the distance between the first and the third wave probes, i.e. x4, the singularities are also
need to be carefully avoided and the distance between the wavemaker to probe A and the toe of
reflected structure to probe C shall be equal or larger than one wave length. Hence, the revised
probe criteria for x,5 and x,, may be presented in Equation 79.

2 < Xypp < ﬂ

100 100

79

A A
g<xAc<§

Accordingly, the conditions that allow two wavelengths A* and 2™ (1™ > A1) to share
wave probes for reflection analysis can be established. The probe space distance between the
probes A and B for A* and ™ are x5 and x7%, respectively; The probe space distance between
the probes 4 and C for A and 2™ are x4 and xJ&, respectively.

A™ and A share the same x4 When the lower limit of probe distance between the probes
A and B for the m*™ wavelength 2™, i.e. xJ% = (9/100)A™, falls between the interval of the
probe distance between the probes A and B for the first wavelength A%, i.e. x15. This condition is

presented in Equation 80.

9 9 11 yields 11
— N <<— "< —N— <M< 2! 80
100 < 100 < 100 < < 9
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A™ and A share the same x4, when the lower limit of probe distance between the probes
A and C for the mt" wavelength A™, i.e. xJ% = (1/6)A™, falls between the interval of the probe
distance between the probes A and C for the first wavelength A%, i.e. x.. This condition is

presented in Equation 81.

11 1y
A< Cam <§,11yi>lds,11 <™ < 2 81

The probe distance between the probes A and B for the m** wavelength 2™, i.e. x7%,
overlaps the probe distance between the probes A and C for the 1t"* wavelength of A1, i.e. x4,
when the lower limit of xJ%, i.e. xJ5 = (9/100)A™, falls between the interval of x3.. This

condition is presented in Equation 82.

1 9 1 . yields 50 100
MN<s—MM"M< AN —s QN < Im<—! 82
6 < 100 < 3 27 < < 27

These relations from Equation 79 to 82 are tabulated in Table 5 below.

Table 5. The conditions for sharing wave probes.

Am Xk N XM | xic N | xic Nl
11
(,11,?,11) £0 £0 =0
11 . 50
5 2o =0 £0 =0
(9 27
50
_,11'2,11) =0 0 0
(27
100
2/11,—,11) —0 ~0 %0
( 27
100
(_,11,00) =0 =0 =0
27
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Based on the conditions tabulated in Table 5, the software can be programed to
automatically determine the number of wave probes and their positions, and three of these probes
will be selected for reflection analysis according to the wavelength used in the test. The
directions are stated as follows:

1. Inputting the wavelengths used in a test and sorting them ascendingly to get an array of
wavelengths A™
A = {24, 22, .., AM}
2. Comparing each wavelength that is larger than the first wavelength, i.e. A™ =

{42, ..., M3}, to the first wavelengths A until there is zero overlapping between x}. and

xJ%. Marking the longest wavelength having its x,5 overlap with x3. as A", and

marking the shortest wavelength that does not have its x,5 overlap with x1. as AM1*1,
and 1 < M; < M. Wavelength A*1*1 and A! have the following relationship derived

from Equation 82.

100
/1M1+1 > _/11
27

A group of the wavelengths (main group 1 — MG (1)) having overlapping to A* can be
formed, such that
MG(1) = {A%, ..., AM1}
3. Comparing each wavelength that is larger than AM:1*+1 je. 2™ = {(AM1%2, | AM} to the

AMi+1 yntil there is zero overlapping between xj{’g“ and x}%. Marking the longest

wavelength having its x,5 overlap with xflwcl“ as AMz and marking the shortest

wavelength that does not have its x5 overlap with xj0 " as 2M2*1 and M; + 1 < M, <
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M. Wavelength 2Mz*1 and AM1+1 have the following relationship derived from Equation

82.

100
AM2+1 > _AM1+1
27

A group of the wavelengths (main group 2 — MG (2)) having overlapping to A* can be
formed, such that
MG(2) = {(AMat1 | AM2}
4. Repeating the steps 2 and 3 until finishing comparing all wavelengths and categorizing
all wavelengths, i.e. 1™ = {11, 12, ..., A}, into the main groups of
MG(1) = {A%, ..., AM1}

MG(2) = {(AMat1, | AMz}

MG (i) = {(AMi-a*1 | AMY
5. Categorizing each main group, the 1% group, i.e. {11, ..., M1}, for example, into the
subgroups SGs

a. Categorizing the wavelengths according to Table 5 into four subgroups: a group
that all wavelengths sharing the same x,5 and the same x4, with those of 11; a
group sharing the same x4, while having zero overlapping of x,5 with those of
AL; a group sharing the same x4, and the x,5 of the longer wavelengths have the
overlap with the x,. of A1; a group that the x,5 of the longer wavelengths have

the overlap with the x,. of 11.

11
A< AP <A
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11 50
1 S1+1 Sz 1
3 A< {4 }<27/1
50 550
__ 11 Sp+1 S3 |
27/1 < {A2*h A }<243/1
550 100
__ 11 S3+1 M, I |
243/1 < {ABFh L AN < 27/1

b. For asubgroup SG (1) sharing the same x,5 and the same x4, i.e. 11 <
{21, ..., A%} < (11/9)AY, three wave probes are needed. The distance between the
first and the second probes, i.e. x;,, are used as distance between the probes A
and B, i.e. x4, and the distance between the first and the third probes, i.e. x5, are

used as distance between the probes A and C, i.e. x4¢.

1""51 _ 1 51
2V {xABl w1 XAB

x50t = {xic, ) Xk
c. Forasubgroup SG(2) sharing the same x4 while having zero overlapping of x,5
with those of A1, i.e. (11/9)At < {A51+1, .., 252} < (50/27)A%, up to five wave
probes are needed. These wavelengths share the same x,. with the previous

subgroup can be categorized into up to three groups, and each group shares the

same x4p.
T = gt X

T = gt Xk

xfjHNSZ = xjgﬂ, ...,xjg

= e
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d. The subgroup, i.e. SG(3), of (50/27)At < {A%52%1, .. 253} < (550/243)A% is re-
written from 15211 < {152+ 253} < (11/9)252%1, and the wavelengths in this
group share the same x4z and the same x,.. Three wave probes are needed. The
distance between the first and the second probes, i.e. x,,, are used as distance
between the probes A and B, i.e. x,5, and the distance between the first and the

third probes, i.e. x;3, are used as distance between the probes A and C, i.e. x¢.

52+1~S3 — 52+1 53
12 = 1XaBp 1 XaB

52+1~S3 — 52+1 53
X13 _{xAC v Xgc

e. The wavelengths in subgroup SG(4) of (550/243)A < {A53%1, .. AM1} <
(100/27)A* share their distance x,5 with the distance between the first and the
third probe of the shortest wavelength A1, i.e. x;.. The interval of this subgroup
can be rewritten as A53%1 < {153%1, | AM1} < (18/11)A53+1 and knowing that
(11/9)25%1 < (18/11)A53%1 < (50/27)A53%1, the wavelengths in this
subgroup share the same distance x,. with that of the shortest wavelength 153%1

in this group, i.e. xjé“. Up to five wave probes are needed in this group.

S3+1~b1 — S3+1 b1
X12 =1Xap 1 X4p
b1+1~b2 — b1+1 bz
X13 =1X4p 1 Xyp
b2+1~M1 — b2+1 M1
X14 = 1X4 1 Xyp

S3+1~M1 — S3+1 M1
Xis = ac 1 Xac
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ap +1~52

e in SG(2) overlaps x15°" in SG(1)

According to Table 5, knowing that x

Also x;3 "™ in SG(4) has overlap with overlap of x{'2**™* in SG(2) and x5

in SG(1). Accordingly Merging can be applied to those subgroups:
i. Merging {x}c, .., x;%} and {x;1", .., x32
51} { 51+1 52+1 S3

.. . S
ii. Merging, {xic, .., e} {e™, . 2} and {x 2™, L a0

To get the result that

_ [.1 S1
xlz == {xAB, ...,xAB

_ 51+1 aq
x13 = {17, xg
_ a1+1 ap
X14 = {xAB I
_ a+1 52
x15 = {xg2, X2

_ [.1 Sz
X16 — {xAc, ...,xAC

Z 52t S

AB 11 X4B
X17 = {x:gﬂ, ...,x:;};
X1g = {xf};l, ...,xff?
X19 = {xfl’gﬂ, ...,xﬁ%

_ (.53 M,
xl,lo = {xAC, ...,xAC

6. Repeating step 5 to complete the other main groups

Accordingly, by using the procedures above, several cases using up to five wave probes

with the corresponding required number of probes and their positions can be obtained and are

presented in Table 6 to Table 18.
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The Case | presented in Table 6 indicating that all the wavelengths fall into the subgroup
SG(1). The wavelengths in this case share the same x,5 and the same x,., and only three wave
probes are required. Distance x,, is for x4z of all wavelengths, and distance x;, is for x,. of all

wavelengths.

Table 6. Cases and required number of probes — Case I.

..., M3 Probe Position P
11 X1, = {Xig, o, x2L}

A<M <=2 O S 3
{ } 9 X13 = {ch, ---;x}l\/’c}

The wavelengths in Case Il fall into two subgroups, including Case 11-1 presented in
Table 7. Cases and required number of probes — Case I1-1. that wavelengths fall into SG(1) and
SG(2), Case 11-2 presented in Table 8 that wavelengths fall into SG(1) and SG(3), and Case 11-3
presented in Table 9 that wavelengths fall into SG (1) and SG(4).

Case II-1 presented in Table 7 that all wavelengths fall into SG (1) and SG(2) indicates
that at least four wave probes and up to six wave probes are needed in this case. All wavelengths
in this case share the same x,.. The wavelengths fall into SG (1) share the same x5 that is
independent from those of the wavelengths fall into SG(2). The wavelengths fall into SG(2) may
need up to three x,5S depending on how many intervals that these wavelengths fall into, and
each interval using the same criteria of SG (1) that guarantees all wavelengths in this interval
share the same x,5 and x,.. When the wavelengths in SG (2) fall into three intervals, six wave

probes are needed and this above the limit of five probe method.
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Table 7. Cases and required number of probes — Case I1-1.

A, ..., AM}

Probe Position

11
M@ AR <A

11 11\?
A< M) < (?) At

_ 1 S1
xlz — {xAB, ...,xAB

_ [.51+1 M
x13 — {xAB ) ...,xAB}

X14 = {xjc: ---'x}ch}

11
A<, AP <
2 1 3

11 1
D) < (S M (—) A
(9) <{ <3

_ 1 S1
xlz — {xAB, ...,xAB

_ [.51+1 M
x13 — {xAB ) ...,xAB}

X14 = {xjc: ---'x}ch}

11

A< AL . 51) < ?,11
1153 50

) A< (A5t My < 2 )1
(9) <t J <37

_ 1 S1
xlz — {xAB, ...,xAB

_ [,51t+1 M
x13 — {xAB ) ...,xAB}

X14 = {xjc: ---'x}ch}

11
A< (A A5) < ?,11
2
%/11 < A5+ A%M) < (%) At

2

11 1143
(3) A< Aatl M) < (?) 21

— [.1 S1
X1 = {xAB, ...,xAB

_ 51+1 aq
x13 = {8, xgd

— [,a1tl M
x14 = {g i o xhG)

X15 = {xjc' ---;xg’c}

11
A< {2 . 251} < ?,11
2
%/11 < A5+ A%} < (%) At
(11)3 ﬂ.l < {/1‘11"_1 /1M} < 50&1
9 T 27

— [.1 S1
X1 = {xAB, ...,xAB

_ 51+1 aq
X13 = {xAB , ""xAB

— [,a1t1 M
x14 —_— {XAB ) ...,xAB}

X15 = {ch, ...,x%;}

11
Ve R
2 3
(E) A< (54 e} < (E) At
9), o 9

11 50
) <t My <2 g
( 9 ) <UL AT <52

— [.1 S1
x12 - {XAB, ...,xAB

_ 51+1 aq
X13 = xAB ""’xAB

— [,a1t1 M
x14 —_— {XAB ) ...,xAB}

X15 = {ch, ...,x%;}
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Table 7. Continued.

(A%, ..., AM} Probe Position P

11
A< A8 <G

11 11 2 x12 = {xj‘lB, ...,xj‘é
< (A5, L a9 < (—) PR xus = (eI L X
9 ) ) 9 +1
e 11\° X14 = {xféﬂ;---'xfé 6
—_— —_— a
(5) <t < () 2 rie = (e85 )
11,3 50 X16 = {ch, ...,x%;}
(— A< {9241, M) < 22 3
9) o 27

Case I1-2 presented in Table 8 that all wavelengths fall into SG (1) and SG(3) indicates
that at only four wave probes are needed in this case. The x,5S of the wavelengths in these
subgroups have no overlap. All wavelengths in this case share the same x, if the wavelengths in
SG(3) are shorter than 241, x,. of SG(1) is independent from that of SG(3) when some
wavelengths in the latter subgroup are longer than 24%, and the x,5 of SG(3) share the probes

with x,¢ of SG(1).

Table 8. Cases and required number of probes — Case I1-2.

{22, ..., 2M} Probe Position P
11
A< A5 <=2t X1 = {x}g, ) X3
9 _ S1+1 M 4
50 ., S1+1 M 1 Xz = {5 e i)
ﬁl < At LAY <22 x14:{xic,___'x£4c}

_ [.1 S1
X1 = {xAB' ...,xAB

11
1 1 S 1
R A X153 = {xhc, 0 Xo0

4
S1+1
5_011 < {Asl+1’ ...,AM} < @Al = {x‘géil' ---;x%}
27 243 x14 = {2,870, )
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Case 11-3 presented in Table 9 that all wavelengths fall into SG (1) and SG (4) indicates
that at least four wave probes and up to six wave probes are needed in this case. The wavelengths
in subcase SG (1) share the same x4 and x,.. The wavelengths in SG (4) share the same x,. and
may need up to three x,5s depending on how many intervals that these wavelengths fall into, and
each interval using the same criteria of SG (1) that guarantees all wavelengths in this interval
share the same x,5 and x,.. The x,5s of SG(4) overlap the x,. of SG(4) and letting one of the
x,5S Of SG(4) share the wave probe with the x,. of SG(4). When the wavelengths in SG(2) fall

into three intervals, six wave probes are needed and this above the limit of five probe method.

Table 9. Cases and required number of probes — Case 11-3.

{22, ..., A1} Probe Position P
1 1 S 11 1 X12 = {ij, ...,x:é
< 1} < — 3
B2 <A x13={x,§c,---.xAé .
+1
< VAR <55—O(£) 1 = {Xab %A}
243 243\ 9 xia = (O LX)
A< AL, 151 < 1131 x12 = {Xdp, ) Xp
. — _ S
+
55_0(£> Al < {151+1, ...,AM} < SS_O(E) Al = {x§§+1, ...,xﬁ”B}
243\ 9 243\ 9 x4 = {ogs o, x
<AL, ., 251) < 1o xiz2 = (¥ip, - Xy
. — _ S
; = ) 9 X13 = {xéc;.l..,xA}: 4
@(E> A< A5 AN < @<§> A = {xééﬂ' ---:xfga}
243\ 9 243\11 xpq = {ogs o, x
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Table 9. Continued.

{22, ..., A1} Probe Position P
A< A, %)< 1o X1z = {Xig, ) Xyh
B , , 9 X = {x XS
550 550 /11 13 ac rrac)
mﬁl < {2.51-'_1 - ,/1b1} < m(g) 1 {x:ll;l, xAB 5)
b{+1
550 /11 550 /11)> xpq = {0, L Xt}
R 1 bi+1 M R 1
243(9)’1 <A }<243<9) A x5 = {ogi ™, X
A< {2,210 < E 1 X12 = {xjg, ---'xgzla
B ’ , 9 X = {x , X
13 AC - AC
@Al < {/1514'1 ’/1171} < @ E 1 {x51+1’ ., 5
243 243\ 9 i 4B AB}
550 /11 550 /18 Xyh s eer XiB
R 1 b1+1 M _ | 1
243 ( 9 ) A<l WA <13 (11)’1 x5 = {ogi ™, X
e < {ll, ___'Asl} < %ll X1 = {ij, ...,xgg
X = {x R ¢
550 /11 550 /11\? |
—— (= At < (25171 Ab) <—<—) At =[xt 5
243 ( 9) ’ 243\ 9 B X
550 (11)2/11 <y <550 (18)/11 v = (g %)
243\ 9 243\11 X15 = {256 s XAC)
11
A< {2 %)< 54 At X3 = {xkp, 0, X3}
S1
550 550 /11 X13 = {xA(;: .- xAC
—ﬂ.l /151+1 . ,lbl _(_) ll
243 <t J<213\5 . = {1t L x 5
55_0<E> A<, abz}<55—0(2) Py x1s = {45 o 25
243\ 9 243\ 9 = (xb2tl M)
550 /11 550 /18 e
243 ( 9 ) A< T 2T < %(H) A e

The wavelengths in Case Il fall into three subgroups, including Case I11-1 presented in

Table 10 and Table 11 that wavelengths fall into SG (1), SG(2), and, SG(3), Case I11-2 presented
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in Table 12, Table 13, and Table 14 that wavelengths fall into SG (1), SG(2), and, SG(4), and
Case 111-3 presented in Table 15 and Table 16 that wavelengths fall into SG (1), SG(3), and,
SG(4).

Case Il1-1 presented in Table 10 for Case Ill-1a and Table 11 for Case Il1-1b that all
wavelengths fall into SG(1), SG(2), and, SG(3) indicates that five wave probes are needed in
this case if the wavelengths in SG (2) fall into only one of its intervals. All wavelengths in this
case share the same x,,. if the wavelengths in SG(3) are shorter than 24, which are presented in
Case lll-1a. x4, of SG(1) and SG(2) is independent from that of SG (3) when some wavelengths
in the subgroup SG(3) are longer than 221, and the x,5 of SG(3) share the probes with x,. of

SG(1) and SG(2), which are presented in Case 111-1b.

Table 10. Cases and required number of probes — Case Il1-1a.

(A%, ..., AM} Probe Position P
11
1 1 s Y
A S{A ,...,A 1}< 9 /1 x12 —{xlg‘B,I XAB
11 11,2 KE L
A< 2% < (?) pe %xg’gﬂ . ;‘i} 5
;—3/11 < {25241 MY} < 221 x15 = {Xic, o Xac)
A <{A, .. A5} < 2/11 S1
= ) weny 9 X1p = {xAB, . xAB
11\2 11\° X1z = {51 L a2
G)wcwom<(g)e | I s
50 14 AC 'IMAC
ﬁll < (1521, M) < 211 X5 = {Xxc, o, X053
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Table 10. Continued.

%, ., a0

Probe Position

11
A< {Al, ...,Asl} < ?Al
3

11 50
) A< (a9 S < ot
< 9 ) <i }<37

50
ﬁ/ll < (A5 MY < 22t

_ f.1 S1
X12 = {xAB, ...,xAB

_ (.S1+1 S,

X13 = {xAB y s Xy
— [, S2t1 M

X14 = {xAC ,...,xAC}

X5 = {Xxc, o, X053

Table 11. Cases and required number of probes — Case 111-1b.

(a1, ..., A

Probe Position

11
A< {2 . 25 < 3,11
2
2/11 < A5+, 2152} < (19—1> A

9
50 550
A< (ASH My < 2
77t <t V<3

_ [ 1 S1
X12 = {xAB, ...,xAB

X153 = {xjgﬂ, ...,xjg
x14 = {Xic, ...,xjé

= {xa2", o, xh5}
X5 = {xjéﬂ, e x40

11
VA RS
2 3
(E) A< (A5 15} < (E) At
9 9
550

50
—_ 1 52+1 M _ 1
27/1 < {A27h A }<243/1

_ [.1 S1
X1 = {xAB' ...,xAB

X153 = {xjgﬂ, ...,xjg
X4 = {Xhc, o X7

= {5 Xh)
x5 = {2 L xh)

11
<@ A <A
3

(E) A< (S 25y < 2

950 52570
—_ 1 52+1 M _ 1
27/1 < {A2*h A }<243/1

_ [.1 S1
X1 = {xAB' ...,xAB

X153 = {xjgﬂ, ...,xjg
X4 = {Xhc, o X7

= {5 Xl
x5 = {2 L xh)
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Case I11-2 presented in Table 12 for Case I11-2a and in Table 13 for Case I11-2b and in
Table 14 for Case Il1-2c that all wavelengths fall into SG(1), SG(2), and, SG(4) indicates that
five wave probes are needed in this case if the wavelengths in SG(2) and SG(4) fall into only
one of their intervals. All wavelengths in SG(1) and SG(2) in this case share the same x,. that is
independent from that of SG(4). x,5 of the wavelengths in SG(4) share the probes with x,. of

the wavelengths in SG(1) and SG(2).

Table 12. Cases and required number of probes — Case 11-2a.

(A%, ..., AM} Probe Position P
S
Al < {/11, ...,/151} < 2/11 X12 = {xéB;'l"'xAll?S
11 9 1132 Xq13 ={xA§ s Xag
?Al < {/151-'_1, ...,/152} < (?) Al X14 = {xic, ...,x:é 5
_ Sp+1 M
550 550 /11 = {x32", . x0t)
A< (A5 MY < —(—) 1 ;s
243 { Y<o; 9 x5 = {2t LX)
A< A, . 25 < E/11 X12 = {x%B;'l"'x:}s’S
1172 9 1103 X13 = {xAzl; ""'SxA123
<?> A< {2.514-1, ...,ASZ} < (?> Al X14 = {ch, ...,XA(Z: 5)
_ Sp+1 M
550 550 /11 = {x32", ., x0t)
2271 < )52+ M e Bl Y |
2437 SWHL AT <opg ( 9 )’1 x5 = {2 . At
A=A A%< B x12 = {Xig, - X
9 X3 = {lel;l xjg
11 3 50 ) )
<?> AL < (A5, A5 < ﬁil X4 = {Xh, o, X5 5
_ Sp+1 M
550 550 /11 = {x32", . x0t)
297 41 < ()S2+1 My 22V (7)1
ot s AT <o ( 9 )’1 x5 = {2t L xi)
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Table 13. Cases and required number of probes — Case 111-2b.

(A%, ..., AM} Probe Position
A< {2, .., 25 < %/11 X12 = {xéB;-l--'xjés
11 1172 X3 = {xAll; , ...,SxAg
?Al < {/151+1, ...,ASZ} < <?> Al X14 = {X%C, .1..,XA(2:
e < <0 |, I
243\9 )" = 243\ 9 X1s = (X485, X4C)
A< {2, .., 25 < %/11 X12 = {xéB;-l--'xjés
112 1133 X3 = {xAll; ,...,SxAg
(?) A< {/151+1, ...,ASZ} < <?> Al X14 = {X%C, .1..,XA(2:
S50 (11 1 _ s 2 590 (1Y = o i)
243(9) e G }<243(9) X1s = {x48 s, X4C)

S
AL < {ll, ...,/151} < %Al X1 = {XjB, ""xALI?

Xq2 = {x51+1 X2
11 ’ 1 S{+1 S 50 1 " ?B ’ ,SzAB
(?) At < {21 ,...,AZ}<ﬁA x14={xAC,...,xAC
So+1
S50 (11 11 _ sen gy o 550 (1Y = (x5 xA)
243 (?) ST AT <o (?) Xi5 = (X8 ) ) XAC)
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Table 14. Cases and required number of probes — Case I1-2c.

(A%, ..., AM} Probe Position P
S
A< {2 .., A5 < 19—1/11 X12 = {xéB;'l"'xAéS
1 1102 X3 = {xAll; s Xag
S <O, < () Y1a = (e o X2 5
S>+1
550 (1)’ _ g quy 550 (18) = {xgp - xd)
ai3o) A< < 2a () x5 = (2", xhE)
S
A< {Al, ...,/151} < %Al X12 = {xéB;.l"’xAég
1172 1123 X13 = {xAzl; yer Xpp
(_> Al < {/151-'_1, ...,ASZ} < (_) /11 x14 = {xﬁc, ...,x:é- 5
9 5 9 _ Sp+1 M
S50 (11\’ 1 _ s quy 550 (18) = {xgp - xd)
ai3o) A< < 2a () x5 = (2", xht)
S
A< {2 . A5 < 19—1/11 X12 = {xéB;'l"'xAll?S
1133 50 X13 = (Xap s Xy
(_> Al < {/151-'_1, ...,ASZ} < _/11 x14 = {xﬁc, ...,x:é- 5
9) 27 — vac o tach
S50 (11\ 1 _ s quy 550 (18) = {xgp i)
ai3o) A< < oa () x5 = (2", xht)

Case I11-3 presented in Table 15 for Case I11-3a and Table 16 for Case 111-3b that all
wavelengths fall into SG(1), SG(3), and, SG (4) indicates that five wave probes are needed in
this case if the wavelengths in SG (4) fall into only one of its intervals. All wavelengths in SG(1)
and SG(3) share the same x,. if the wavelengths in SG(3) are shorter than 24, which are
presented in Case I11-3a, and x,5 of the wavelengths in SG (4) overlaps with the x,. of SG(1)
and SG(3). The x4.s of SG(1) and SG(3) are independent to each other if the wavelengths in
SG(3) are longer than 241, x,5 of the wavelengths in SG (3) share the probes with x,. of SG(1)
and SG(2), and wavelengths in SG(3) and SG(4) share the probes for x,., which are presented

in Case 111-3b.
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Table 15. Cases and required number of probes — Case 111-3a.

{22, ...

,AM}

Probe Position

A<{1 ...,

11
A }<—9/1

_ S1
X12 = {xAB' o Xgp

Si+1
50 X13 = {xAzl; y 1 X4p
ﬁ/ll < {/151+1 .,ASZ} < 2/11 x14 - {xlg‘c;; x:é-
2 M
20 1< s, L) < 550(11)/11 = oo i)
243 243\ 9 x5 = {2 L xh)
S1
Al < {Al, ...,2,51} < Ell X12 = {xAB: . xAB
50 9 X13 = {x51+1, - AB
ﬁal < A5+ 252 <22t Xig = {x,;c;.l. %
550 /11 550 /11\2 = {27, . xhE}
1 S +1 M 1
243(9)’1 =L AT < 243(9) A x15_{52+1; - xi
11 X1, = {xls .., x
B A5 < x12 - % Asfﬂ 4B}
50 i o X
ﬁal < A5+ %2 <22t Xig = {x,;c;.l. %
550 /11 550 /18 = {27, . xhE)
I ll ASZ+1 AM < )ﬂ.l
243(9) <{ Y <om\1a x5 = {2 L xh)

64




Table 16. Cases and required number of probes — Case 111-3b.

{22, ..., A1} Probe Position P
S
21 < {ﬂ.l, ___,Asl} < Ell X1 = {XiB, ...,xlgé
50 9 550 X13 = {Xic, ) Xyt
=A< (A5 A% < =11 = ettt X 5
55 £50 11 x1q = {5 )
2T < A5 M) < —(—) At = Vap e tas
243 ¢ J<72a3\9 x5 = {2t L xh)
1< {Al 151} < Ell X1 = {XjB, ...,xj};
> y ey S
50 ? 550 X13 = {Xic, ) Xyt
AN < A5t 152 < == )1 = {x31t1 | x32
>7 { } 543 2 %x‘éfﬂ' ,xég 5
550 /11 550 /11 X14 = X4p -1 %X4p
R 1 Sp+1 M I 1
243(9)’1 <R }<243(9) A xy5 = {2 xhE)
S
1< {Al 151} < Eﬂ'l X1 = {XjB, ...,XAE
> ) ey S
50 ? 550 X13 = {xéc, ;-,xAéS
— <251t 52 < — N1 = {x 1ttt a2
27 ¢ Y <213 %xfgfﬂ' ab >
550 /11 550 /18 X14 = X4p -1 %X4p
22 (22) A< St M) < —(—) At A
243 ( 9 ) t Y<oi\1 x5 = {27, ., At

The wavelengths in Case IV fall into four subgroups SG(1), SG(2), SG(3), and, SG(4).
In this case, at least six and up to ten wave probes are required, and one of the cases in presented

in Table 17, below.
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Table 17. Cases and required number of probes — Case 1V.

(A%, ..., AM} Probe Position P
11
ZE S U A x5 = {xkp, -, X5}
S1+1 Sz
1 AV xas = o a3
J— 2 - +
9’1<{/11 reerd }<<9)/1 X14 = {x23 ’AB 6
50 -
< < s k)
550 550 (11 ASBH' - X4B
— A <257, L AMY < ! x16 = {27, o, x4t}
243 243\ 9 16 = Wac » - tac

The wavelengths in Case V fall into the first subgroups of two main groups, such as
SG(1) of MG(1) and SG(1) of MG (2) and five wave probes are needed in this scenario. This is

presented in Table 18.

Table 18. Cases and required number of probes — Case V.

(1, ..., AM3} Probe Position P

_ [.1 My
X1 = {xAB' ...,xAB

11
1 1 M _ 1
A S {/1 ) ...,A 1} < 9 /1 x13 = {xAC’ b xziwc:}

11 Mi+1 3
M1+l < {AM1+1 AM} < AMi+1 X14 = {XAB ’ -,XAB}
- y Mq{+1 M
X15 = {xAC , .,xAC}

Software based on the principle stated previously is programed using MATLAB, which is
presented in the Appendix. The input file is the wavelengths used in the test that shall be inputted
in a format of a linear array such as [14, 4,, ... 4,,], and the output files displayed on Command

Window, including a table of the wavelengths and their corresponding x4z, x4, and the
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positions of probes A, B, and C denoted as “PA”, “PB”, and “PC”, and a table of the probe
distances relative to the first probe denoted as “X1P”. Total probe number and the minimum total
distance required from the wavemaker to the toe of probe structure is also displayed. Other

variables and output files can be found in Workspace. A sample of input and output is illustrated

in Figure 7.

Array of Wave Lengths [L1,L2,...,Lmn] = [4.33,5.29,6.24,7.18,8.12,5.05]
NHame L AR HAC BA FB BC
mL1™ 4,33 0.48 1.13 1 2 4
nL2" 5.29 0.48 1.13 1 2 4
mL3™ 6.24 0.e7 1.13 1 3 4
nLam 7.18 0.87 1.13 1 3 4
nLE™ g8.12 1.13 2.11 1 4 L
"Le™ 9.05 1.13 2.11 1 4 5
Name X1iP
nxizn 0.48
nE1i3m 0.7
nElan 1.13
nE1s" 2.11

Prokbe Humer = 5
Total Distance = 20.21m
Figure 7. Sample of automatic probe arrangement.

Using the wavelength in the breakwater project and computing the number of wave

probes required and the corresponding probe positions. The comparison between the probe

position used in the breakwater project and the probe positions computed by the software are
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stated in the Table 19. The total number or required wave probes is 5 and the total distance

between the wavemaker and the toe of breakwater is 20.21 m.

Table 19. Comparison between the probe spaces computed by software and used in project.

A Xap [M] Xac [M]

[m] Computed | Project Diff. Computed | Project Diff.
A | 433 0.48 0.48 0.00 1.13 1.17 0.04
A, | 5.29 0.48 0.48 0.00 1.13 1.17 0.04
A3 | 6.24 0.67 0.67 0.00 1.13 1.67 0.54
Ay | 7.18 0.67 0.67 0.00 1.13 1.67 0.54
As | 812 1.13 0.91 0.22 211 2.26 0.15
As | 9.05 1.13 0.91 0.22 211 2.26 0.15

Using the auto probe spacing arrangement software, the total number of wave probes
required in the project under the same wave condition are reduced from six to five.
Weighting coefficient

The errors between the measurement and the estimation may be primarily caused by the
phase deviations due to the usage of linear dispersion relation, which associate with the relative
phase due to the probe spacing between two probes k(xp — xq), and a goodness function
(Equation 83) proposed by Zelta et al. (1992) quantifies the desirability of the phase difference
associated with probe spacing.

sin® A@y, g

1+ (Apppg/m)

G (A(pn,pq) = 83
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Where:
APppg = Pnp — Png
Pnp = knXp
Pnq = knXq
The goodness function is a function of relative phase change of two probes and the larger
value of the goodness functions the better wave gauge spacing. The weighting coefficient for
wave probe p is defined as the summation of the goodness function of each probe, which is

presented in Equation 84.

P
Wy, = Z G(Apnpg) 84
q=1

Probe spacing criteria for directional wave

The general principle to obtain a directional spectrum of relatively higher resolution is to
place as many probes as possible. For estimating directional spectrum using the ELSM method,
the gauge pattern used for long-crest wave is also applicable. For directional wave with small
spreading angle, a linear array of wave probes is usually used being perpendicular to the main
wave direction. When using parameterizing method or maximum likelihood method Wave-gauge
array with 4 or more wave gauges are used for waves with larger spreading angles and Penicker
and Borgman (1974) and Yu and Liu (2010) presented the directional wave spectrum captured
by several types of probe array patterns that are presented in Figure 8, and tabulated in Table 20.
Goda (1985) gives the general criteria concluded by Yu and Liu (2010) for probe matrix to

capture directional wave spectra using the wave probes capturing surface elevations, such that:
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. The distances and orient of wave instrument-pair shall be identical

. The Euclidean distances of the instrument-pair vectors shall be homogeneously

distributed crossing an extensive range

. The minimum distance of an instrument-pair shall be smaller than half of the shortest

wavelength, and for irregular wave this distance shall be smaller than 0.3 times of peak

wavelength.

Table 20. Types of wave probes for capturing directional spectrum.

Type Number of Probes Note
1 Star-shape 4 (Top left, Figure 8)
2 T-shape 5 (Top left, Figure 8)
3 5-probe Plus 5 (Top left, Figure 8)
4 Pentagon 5 (Mid left, Figure 8)
5 SWOC 6 (Mid left, Figure 8)
6 CERC 5 (Mid left, Figure 8)
7 Hexagon 6 (Bottom center, Figure 8)
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HEXAGON
Figure 8. Types of wave probes for capturing directional spectrum.
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CHAPTER V

WAVE REFLECTION INFRONT OF RUBBLEMOUNDED BREAKWATERS

Introduction

Validation of least square method used in software REFANA applies reflection analysis
on basin test data, since the reflection analysis on this data originally employs a commercial
software REFLS (M. D. Miles 1994). Results from REFLS are reliable and are available for
validating other customized software using the least squares method. Since the reflection
performance of rock beach that is for absorbing wave reflection on the end of model basin is
known and consistently low, the spectra captured in front of the rock beach are considered as
spectra in open water and are compared with the separated spectra in front of the reflected
structures to validate the estimation using the least square method.

Reflection analysis on measurements in Haynes Coastal Engineering Laboratory usually
apply REFLS employing least square method that enable users to input wave data and specify
cutoff frequencies and data truncation points for auto- and cross- spectra analysis. The reflection
analysis using least square method requires the specific probe spacing criteria associated with the
wavelengths corresponding to peak frequencies and for a project having more than one
wavelengths requires multiple probe-spacing combinations. The probe-spacing combinations that
are hand calculated in the breakwater project are compared with the probe-spacing combinations
estimated by a software programed by the author to automatically arrange wave probes and to
select three of them for a certain peak frequency, which indicates a good agreement.

The measurements come from breakwater tests in the 3D shallow water basin, presented

in Figure 9 and Figure 13, with dimensions of 120 ft (36.58 m) in length, 75 ft (22.86 m) in
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width, and 4 ft (1.22 m) in depth. The basin is equipped with a wave maker (No. 1 in Figure 9) of
48 piston typed paddles being able to move independently and to generate monochromatic
waves, irregular waves with provided spectra, short crested waves, and customized wave input
by users. A rock beach with slope of (V:H = 1:6, m = 0.17) is installed for mitigating reflection
on the opposite side of wave maker. A motorized bridge (No. 4 in Figure 9) over the basin
accommodates computers processing and storing signals from wave gauges and other
instruments, details of which are presented in Figure 10.

Capacitance wave gauges made by Reed (2006) are employed for sampling surface
elevation, and the varying volts output is recorded and converted automatically using a
LabVIEW based software Helios programmed by Yeh (2010), Sonne (2012), and Kim (2013).
The conversion from volts to elevation is translated by calibration curves that are linear featuring
slope and intercept, and these curves are obtained from calibration procedures employing a
motorized calibration stand (No. 5 in Figure 9) designed and programmed by Rosas (2007) and
the calibration package of Helios (Sonne 2012). The details of data calibration and acquisition
systems, including a computer installed with Helios, a National Instrument DAQ, and a signal

amplifier are shown in Figure 10.
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Figure 9. Apparatus for wave generation and data acquisition: (1) wave maker, (2) computer for
wave maker, (3) capacitance wave gauge, (4) motorized bridge with data acquisition system, and
(5) calibration stand.

Figure 10. Data acquisition system: (1) computer installed with Helios, (2) National Instrument’s
DAQ, (3) signal amplifier, and (4) manual for Helios (Sonne 2012).

Test Condition and Setups

One of the projects in Haynes Coastal Engineering Laboratory (Randall, et al. 2016) on
rubble mounded breakwaters with both constant-sloped and berm-width types of slope on the
head side subjected to wave conditions with wave height of 0.05 m (0.16 ft), wave periods of

2.24s,2.685s,3.13 s, 3.585, 4.02 s, and 4.47 s. and water depth of 0.43 m (1.41 ft). Two
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channels were constructed to test two breakwaters simultaneously under the same condition in
the wave basin. The layout of the project is represented in Figure 13. The wave conditions and
probe positions for reflection analysis are tabulated in Table 21, and each wave condition is
repeated for three times for each type of breakwater.

In front of each breakwater, three wave probes were positioned parallel to the orthogonal
of the toe of the breakwater and numbered sequentially from the wave maker to the reflected
structures were used to record surface elevations simultaneously for reflection analysis, and the
criteria of the distance between each pair of probes are discussed in previous chapter. To reduce
the labor of moving wave gauges, the distance between the wave maker and the first probe
closest to the wave maker was selected to be larger than the longest wavelength in the test at a
constant value of 9.73 m (31.92 ft), and the wavelengths A (sub-script o present deep-water
wavelength) are computed using equation derived from linear dispersion relationship. For the
probe distance between the probe 1 and probe 2 and between the probe 1 and probe 3, average
values are used for wave conditions I and Il and for wave conditions Il and IV, the larger values

are used for wave conditions V and VI. The probe positions are presented in Table 21.

Table 21. Wave conditions and positions for wave gauges.

Given Condition | Wavelength | Probe Position
Wave Test T h H, Ao A X1 | X132 | X13
Condition | Number | [s] | [m] | [m] | [m] | [m] | [m] | [m] | [m]
I 1-3 |224|043]0.05| 7.83 |4.33|9.73|0.48 | 1.17
I 4-6 |2.68|043|0.05|11.21|5.29|9.73|0.48|1.17
i 7-9 [313/0.43|0.05|15.30|6.24 |9.73|0.67 | 1.67
\Y/ 10-12 | 3.58 | 0.43|0.05|20.01 | 7.18 | 9.73 | 0.67 | 1.67
\Y 13-15 | 4.020.43|0.05|25.23|8.12|9.73|0.91 | 2.26
VI 16-18 | 447 | 0.43|0.05|31.20 | 9.05 | 9.73 | 0.91 | 2.26
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The constant-sloped breakwaters have slopes 1:1.5 and 1:2.5 and the berm-width
breakwaters have the same slopes of 1:1.5 for both above and below the berm. The average slope
presented in Equation 85 and Figure 11 is the slope of connecting line one and half of wave
height above and below the plane of berm. The expression of the average slope is identical to

that of constant slope when the width of berm equals to zero.

o 3H
tant = L. 15H Az 15H¥ Az 85
tanf,; —tan 6y, tan @,

Where: tan 68, and tan 6,, are slopes above and below the berm, B is width of berm, and Az is
vertical distance from the plane of berm to still water level (SWL) and Az has plus or minus
signs when the berm is beyond or below the SWL, respectively. Notice that B = 0, Az = 0 and

0, = 6, = 0 for plain-sloped breakwater. (Shown in Figure 11).

Figure 11. Weighted average slope.
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Three rows of cinderblock walls were constructed to form two channels, i.e. North
Channel (Channel N) and South Channel (Channel S). The breakwaters having the crest heights
(the vertical distance between the crest and the toe of a breakwater) of 0.70 m (2.30 ft) and 0.60
m (1.97 ft) were constructed in the North and the South channels, respectively. The information
on the material is tabulated in Table 22 and a cross-section view of the breakwaters in the first
scenario (Slope 1) is presented in Figure 12. The breakwater in North Channel was composed by
a core covered by an armor layer, and a layer of filter between the core and the armor. The
materials for core, filter cloth, and armor were granule/fine pebble, coarse pebble, and very
coarse pebble, respectively, and their medium diameters D5, varied between 2 mm (0.08 in) and
10 mm (0.39 in), between 20 mm (0.79 in) and 24 mm (0.94 in), and between 44 mm (1.73 in)
and 52 mm (2.05 in), respectively. The breakwater in South Channel was composed by a core
made of fine/medium pebble having D, varying between 4 mm (0.16 in) and 20 mm (0.79 in),
and the core was covered by the armor layer made of medium/coarse pebble having Ds, varying
between 14 mm (0.55 in) and 29 mm (1.14 in). Geotextile filter fabric was applied between the

adjacent layers.
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Table 22. Material information.

Material Information D5, — North Channel

Core Filter Armor
[mm] [in] [mm] [in] [mm] [in]
Min 2 0.08 20 0.79 44 1.73
Max 10 0.39 24 0.94 52 2.05
Type Pebble (Granule/Fine) Pebble (Coarse) Pebble (Very Coarse)
Material Information D5, — South Channel
Core Filter Armor
[mm] [in] [mm] [in] [mm] [in]
Min 4 0.16 - - 14 0.55
Max 20 0.79 - - 29 1.14
Type Pebble (Fine/Medium) - Pebble (Medium/Coarse)
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Figure 12. Cross-section illustrating materials of breakwaters in North Channel (top) and in

South Channel (bottom) in Slope 1
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Three scenarios named as Slope 1, Slope 2, and Slope 3 were involved for both channels.
The characteristics of breakwaters are parameterized and tabulated in Table 23. Notice that the
crest height Cy in the table is the elevation of breakwater crest relative to the seabed at West toe,
and subtraction of still water level may be necessary when calculating overtopping. The cross-
section and the corresponding parameters of the breakwaters for these scenarios are presented in

Figure 15, Figure 16, and Figure 17.

Table 23. Parameters of breakwater.

South Channel North Channel
Slope 1 |Slope 2 |Slope 3|Slope 1 |Slope 2 |Slope 3
Slope m | [-] | 040 | 067 | 0.13 | 0.67 | 0.38 | 0.27
Berm Width| B | [m] | 0.00 | 0.00 | 0.90 | 0.00 | 0.17 | 0.34
Crest Width| €y, | [m] | 090 | 150 | 0.61 | 0.30 | 0.30 | 0.30
Crest Height| Cy | [m] | 0.60 0.60 0.6 0.70 | 0.70 | 0.70

Parameters

For Slope 1 (Figure 15), both of the breakwaters are plane-sloped, and the slopes of the
breakwaters in the North and South Channels are 0.40 (H: V = 1:1.5) and 0.67 (H: V = 1:2.5),
respectively. For Slope 2 (Figure 16), additional armor materials were added for the breakwaters
in both channels, which forms a berm-width breakwater with berm width of 0.17 m (0.56 ft) in
North Channel and forms a plane-slope breakwater in South Channel. The up-slope and the
down-slope of the breakwater in North Channel are both 0.67 (H:V = 1:1.5), which composite
the average slope of 0.38. The slope for the plane-sloped breakwater in South Channel in Slope 2
i 0.40 (H:V = 1:1.5). For Slope 3 (Figure 17), the breakwaters in both channels are berm-width
breakwaters. Additional materials used for armor were added to the breakwater in North Channel

with a wider berm doubled the width, i.e. 0.34 m (1.12 ft), than that of previous scenario in North
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Channel. In South Channel, materials were removed to constitute a berm-width breakwater
having the berm width of 0.90m (2.95 ft). The average slopes for breakwaters of Slope 3 in the
North and South Channels are 0.27 and 0.13, respectively, and their up-slopes and down-slopes
are both 0.67 (H:V = 1:2.5). These breakwaters are constructed and tested in the dual channels
built in wave basin, and their layouts in the basin are presented in Figure 13.

Froude Similarity (Equation 86) was applied such that the temporal scale is the square
root of geometrical scale, and the geometrical scale and temporal scale are 1:20 and 1:4.47

(model versus prototype), respectively.

Vin _ Vp yields Vy,
\/gmLm \/gPLP VP

86

L
N
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Software for Reflection Analysis Using Least Square Method

REFLS that is a software package of GEDAP, and REFANA that is a software package
programmed using MATLAB by the author are employed for reflection analysis. Both software
packages use least squares technique. The results computed by both software are compared to
each other and are compared to the reflection coefficients in front of rock beach that is
considered as open water causing the minimum reflections to further validate the method for
separating the incident and reflected waves. REFANA also has the function for automating the
arrangement and selection of wave probes according to the wave conditions for reflection
analysis. The probe positions and the selections for reflection computed by REFANA are
compared with the wave probe arrangement used in the breakwater project. The reflection
coefficients computed by both software are presented in Table 24, Table 25, and Table 26.
REFLS software for reflection analysis

GEDAP proposed by the National Research Council of Canada is a general software
system for managing and analyzing laboratory data (Miles and Funke, 1989), which is employed
in Haynes Coastal Laboratory for generating waves and reflection analysis. Regular wave signals
are synthesized by specifying wave height, wave period, and propagation angle. Irregular wave
signals could be generated either by input time series of surface elevations or using PARSPEC or
input spectra based on measured data for spectra and then applying RWSYN converting spectra to
time series. The time series of surface elevations are then converted to mechanical drive signals
for each of the paddles of wave maker using DWREP2. After obtaining surface elevations, the
user could use software packages including REFLA, REFLM, and REFLS for refection analysis.
The first and the third software are for irregular waves, and the second software is for regular

waves.
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Besides user input of time series of irregular waves, user could also use PARSPEC, which
provides nine expressions of spectra consisting of Pierson-Moskowitz, JONSWAP, Bretschneider,
Ochi Double Peak, Scott, TMA Shallow Water, Neumann, Mitsuyasu-Bretschneider (1971), and
Mitsuyasu (1972). Depth, significant wave height, and peak frequency are specified for spectra
generation. The user can also input spectra from measured data.

RWSYN is then used for synthesizing time series from spectra employing one of the three
methods, such as random phase (RP) method, random Fourier coefficient (RFC) method, and RFC
method with matched variance. The RP method chooses random phases but determined amplitudes
according to spectra for Fourier components. The RFC method has random Fourier coefficients
according to Gaussian distribution and the corresponding wave records having variance differ
constantly. The third method is a modification of the second method with random variance of each
wave records, which, however, would equal to the variance of target spectrum by multiplying a
scaling factor. The corresponding algorithms are presented extensively by Funke and Mansard
(1984) and Miles (1989).

All of the reflection software provided by GEDAP are based on the least square method
presented by Mansard and Funke (1980) according to measurements of surface elevation from
three probes spaced at a specified distance parallel to the propagation direction and probe
distances are necessary inputs. REFLM is for regular waves without spectra analysis and the
truncated time series for analysis should be integer multiples of the wave period, this method
offers incident and reflect wave heights and averaged reflection coefficient from measurements
of surface elevation. REFLA and REFLS are for reflection analysis for irregular waves. The
former method requires inputs of phase lags of cross-spectra between the probe closest to wave

maker and other probes using XSPEC2 based on Welch method (Welch et al. 1967) and gives
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output of incident wave height and spectrum, peak period, and coherency factor. The latter
method uses fast Fourier transform (FFT) for spectra analysis to convert input of wave elevation
measurements from three probes to output of averaged reflection coefficient.

Input of REFLS and the other GEDAP software packages applies a batch mode command
processor, i.e. GBAT, for the version used in Haynes Coastal Engineering Laboratory, the input
file examples can be found in the user guide (M. D. Miles 1994).

REFANA software for reflection analysis

A software, REFANA, programmed using MATLAB employing the least square method
is developed for reflection analysis on both two-dimensional regular and irregular waves. This
software consists of packages of autospec.m for computing auto-spectrum, crossspec.m for
computing spectrum, wave_itr.m for wave length iteration, and ref_ana_leastsquare.m for
loading wave file and displaying results of reflection analysis. The packages for computing auto-
and cross-spectra employ FFT command in MATLANB. The last package requires inputs of
auto- and cross-spectra and wave length from the previous packages, and test information, such
as probe distances, water depth, and wave period, loaded from file testinfo.m. Computing of
auto- and cross-spectra are based on fast Fourier transform (FFT) function provided by
MATLAB.

A sample of the results for the reflection analysis is displayed Figure 14. Results include
auto spectral densities for measurements from all the three probes (upper panel of Figure 14),
spectral densities of incident and reflect waves, and spectrum of reflection coefficient (lower
panel of Figure 14). Significant wave heights of measured surface elevations, incident waves and

reflect waves, averaged reflection coefficient are displayed in the legends of spectra plots.
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Figure 14 (top) presents spectra of measured signal from the three wave probes, Figure
14 (bottom) presents spectra of incident and reflect waves and the reflection coefficients that are
ratio of reflect over incident wave spectra. The bulk reflection coefficient is 49.84%.
Software comparisons between REFLS and REFANA

Results from this MATLAB-based software are compared with results obtained from
GEDAP’s REFLM and REFLS. The sampling of surface elevation has a duration of 120 s, and a
sampling rate of 25 Hz. Truncation points of time series for reflection analysis are 40 s and 120s.
The results are tabulated in Table 24, Table 25, and Table 26, and the corresponding breakwater
scenarios for the results are presented in Figure 15, Figure 16, and Figure 17, respectively. The
standard deviations of these reflection coefficients under the same test conditions are tabulated in
Table 27. The significant wave heights are also computed and compared with input wave

heights, which are tabulated in Table 28 and presented in Figure 19.
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Table 24. Comparison of reflection coefficients (Slope 1).

Test North Channel South Channel Open Water
REFLS Ky REFLS Ky REFLS Ky

1 |55.00% | 55.43% | 27.40% | 29.90% | 17.50% | 19.70%
2 | 55.10% | 55.28% | 27.50% | 30.08% | 18.20% | 20.15%
3 | 54.80% | 55.03% | 27.70% | 30.03% | 17.80% | 19.85%
4 |63.20% | 64.16% | 36.40% | 36.79% | 8.68% | 13.18%
5 |63.10% | 64.23% | 36.50% | 36.85% | 8.03% | 12.85%
6 |62.90% | 64.26% | 36.70% | 36.79% | 8.45% | 13.58%
7 | 76.70% | 78.54% | 46.80% | 46.72% | 14.50% | 18.44%
8 | 76.40% | 78.19% | 46.60% | 46.54% | 13.20% | 17.84%
9 | 76.50% | 78.37% | 46.70% | 46.76% | 12.20% | 16.22%
10 | 60.60% | 61.07% | 43.70% | 46.17% | 7.97% | 12.20%
11 | 60.60% | 61.16% | 43.60% | 46.22% | 8.05% | 13.28%
12 | 61.00% | 61.41% | 44.30% | 45.29% | 8.81% | 12.44%
13 | 72.20% | 71.64% | 58.90% | 60.41% | 25.50% | 28.09%
14 | 70.80% | 71.82% | 59.30% | 60.00% | 24.30% | 27.29%
15 | 70.70% | 72.00% | 59.60% | 60.11% | 24.10% | 27.38%
16 | 69.80% | 70.72% | 56.60% | 56.18% | 13.10% | 18.62%
17 ]69.70% | 70.45% | 56.10% | 56.32% | 13.60% | 18.71%
18 | 69.20% | 69.52% | 56.10% | 55.51% | 12.00% | 19.47%
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Figure 15. Breakwaters in North Channel (top) and in South Channel in Slope 1
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Table 25. Comparison of reflection coefficients (Slope 2).

Test

North Channel

South Channel

Open Water

REFLS

Kk

REFLS

Kr

REFLS

Kr

[EEN

29.00%

31.36%

45.10%

46.33%

19.40%

21.99%

29.40%

31.75%

44.90%

46.01%

19.00%

20.72%

29.20%

31.95%

45.20%

46.17%

18.90%

20.90%

45.60%

46.89%

52.60%

53.52%

7.32%

13.00%

45.50%

45.89%

52.70%

53.20%

7.41%

10.29%

45.40%

46.92%

52.50%

53.68%

7.64%

13.16%

60.70%

60.92%

63.50%

64.58%

13.20%

15.47%

60.80%

60.21%

63.60%

63.63%

11.30%

13.47%

OO |N|OO|OT B WIN

60.90%

61.24%

63.70%

64.80%

11.40%

14.80%

[N
o

52.30%

53.73%

55.10%

55.41%

7.79%

11.47%

[
[

52.00%

52.65%

55.00%

55.27%

7.62%

11.05%

[E=N
N

51.90%

53.52%

55.00%

55.90%

7.64%

12.83%

[EY
w

61.30%

63.30%

56.80%

58.40%

27.50%

30.55%

[EEN
SN

61.30%

63.95%

56.50%

58.77%

28.30%

32.35%

[N
o1

62.00%

63.51%

57.00%

58.62%

28.50%

31.25%

[EY
»

66.10%

65.93%

62.30%

62.70%

14.90%

18.88%

[N
\l

66.10%

65.74%

62.10%

62.28%

15.00%

20.28%

[EY
(00]

66.00%

66.13%

62.10%

62.64%

14.90%

19.30%

WAVE

150

= (@

FRONT TOE o
(WEST TOE);™=

f

DIRECTION

43m)

1.5
iy

NORTH CHANNEL (SLOPE

1.5
Wl

REAR TOE

t

BASIN FLOOR

WAVE DIRECTION

15"
= (0.43m)

FRONT TOE

(WEST TOE

f

15
1

)

Q17

0'-n"

SOUTH CHANNEL (SLOPE 2)

(EAST TOE)

|

BASIN FLOOR

15
~ 1

BASIN FLOOR

Figure 16. Breakwaters in North Channel (top) and in South Channel in Slope 2

(0.00m}

88

BASIN FLOOR



BASIN FLCOR

Table 26. Comparison of reflection coefficients (Slope 3).

Test

North Channel

South Channel

Open Water

REFLS

Kk

REFLS

Kr

REFLS

Kr

[EEN

48.00%

49.84%

33.60%

35.20%

13.40%

16.54%

47.80%

49.41%

33.60%

35.25%

13.80%

17.31%

48.00%

49.78%

33.80%

35.40%

12.80%

16.74%

53.50%

55.48%

41.10%

41.83%

13.30%

15.06%

53.40%

54.86%

40.80%

41.56%

14.00%

15.85%

53.70%

55.31%

40.80%

41.45%

14.30%

15.10%

64.30%

64.44%
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Both computed reflection coefficients have good consistency under the same wave and
reflected-object condition with averaged standard deviation under 0.60% and increased
proportionally surf similarity parameter ¢ (Equation 43), and most of the relatively large values
(> 0.40%) occur when 8 < & <12 (Figure 18, presenting Table 27 graphically in terms of surf
similarity parameter). Results computed between these two software reach agreements favorably
with average difference of 2.18% and 2.29% for the North and South Channels, respectively, and
differences between two sets of results also indicate consistency with standard deviations under
2.2%. For Open Water condition, with much milder sloped rock beach, both software return
relatively lower reflection coefficients, and both software present good consistency under the
same test condition. Reflection coefficients computed by REFANA are slightly larger on the
average than results from REFLS. Tests are repeatable and the average of reflection coefficient

for every three repeated tests can present the reflection performance of each scenario.

1.00%

0.80%

]

0.60%

Std. of KR

0.40%

0.20%

0.00%

0 2 4 ) 8 10 12 14 16 18
Surf Similarity Parameter (Iibarren Number- §)

BN -REFLS m@N-REFANA @S -REFLS @S5 - REFANA

Figure 18. Standard deviation of reflection coefficients versus surf similarity parameter
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Table 27. Standard deviation of reflection coefficients.

REFLS REFANA
N S ) N S )
1-3 | 0.15% | 0.15% | 0.35% | 0.20% | 0.09% | 0.23%
4-6 | 0.15% | 0.15% | 0.33% | 0.05% | 0.03% | 0.37%
7-9 10.15% | 0.10% | 1.15% | 0.18% | 0.12% | 1.15%
10-12 | 0.23% | 0.38% | 0.46% | 0.18% | 0.52% | 0.57%
13-15 | 0.84% | 0.35% | 0.76% | 0.18% | 0.21% | 0.44%
16-18 | 0.32% | 0.29% | 0.82% | 0.63% | 0.43% | 0.47%
1-3 | 0.20% | 0.15% | 0.26% | 0.30% | 0.16% | 0.69%
4-6 | 0.10% | 0.10% | 0.17% | 0.59% | 0.24% | 1.61%
7-9 ] 0.10% | 0.10% | 1.07% | 0.53% | 0.62% | 1.02%
10-12 | 0.21% | 0.06% | 0.09% | 0.57% | 0.33% | 0.93%
13-15 | 0.40% | 0.25% | 0.53% | 0.33% | 0.19% | 0.91%
16-18 | 0.06% | 0.12% | 0.06% | 0.20% | 0.23% | 0.72%
1-3 |0.12% | 0.12% | 0.50% | 0.23% | 0.10% | 0.40%
4-6 |0.15% | 0.17% | 0.51% | 0.32% | 0.20% | 0.45%
7-9 10.15% | 0.20% | 0.00% | 0.60% | 0.43% | 0.86%
10-12 | 0.65% | 0.20% | 0.15% | 0.51% | 0.15% | 0.48%
13-15 | 0.40% | 0.31% | 0.31% | 0.28% | 0.57% | 4.24%
16-18 | 0.64% | 0.40% | 0.12% | 0.36% | 0.77% | 0.52%
Ave. | 0.28% | 0.20% | 0.42% | 0.35% | 0.30% | 0.89%

Scenario | Test

Slope 1

Slope 2

Slope 3

The comparisons between computed incident wave height and input wave height agree
well with averaged computed wave heights of 0.053 m, 0.050 m, and 0.045 m in North Channel,
South Channel, and Open Water, respectively. The corresponding standard deviations are 0.013
m, 0.009 m and 0.007 m. Accordingly, the estimated incident wave height is £1cm around the
input incident wave height (0.80%~1.20% of the input incident wave height). The comparisons
between the computed wave heights and the input wave height are presented in Figure 19 and are

tabulated in Table 28.
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Figure 19. Comparison of computed and input wave heights.
Table 28. Comparison of computed and input wave heights.

Input Slope 1 (r2) Slope 2 (rr2) Slope 3 (r3)
Test | H | (H)y | (H)s | (H)o | (H)y | (H)s | (H), | (H)y | (H)s | (H),
[m] | [m] | [m] | [m] | [m] | [m] | [m] | [m] | [m] | [m]
1 0.05 | 0.061 | 0.037 | 0.043 | 0.042 | 0.044 | 0.044 | 0.045 | 0.046 | 0.044
2 0.05 | 0.062 | 0.036 | 0.042 | 0.042 | 0.044 | 0.045 | 0.044 | 0.046 | 0.044
3 0.05 | 0.061 | 0.037 | 0.042 | 0.043 | 0.045 | 0.046 | 0.045 | 0.047 | 0.044
4 0.05 | 0.044 | 0.066 | 0.061 | 0.053 | 0.049 | 0.054 | 0.044 | 0.051 | 0.051
5 0.05 | 0.044 | 0.065 | 0.061 | 0.053 | 0.049 | 0.054 | 0.043 | 0.051 | 0.050
6 0.05 | 0.044 | 0.066 | 0.061 | 0.053 | 0.049 | 0.054 | 0.043 | 0.051 | 0.051
7 0.05 | 0.042 | 0.061 | 0.038 | 0.052 | 0.047 | 0.037 | 0.048 | 0.051 | 0.037
8 0.05 | 0.042 | 0.062 | 0.038 | 0.053 | 0.047 | 0.037 | 0.048 | 0.051 | 0.037
9 0.05 | 0.043 | 0.062 | 0.040 | 0.053 | 0.047 | 0.038 | 0.048 | 0.051 | 0.037
10 0.05 | 0.077 | 0.048 | 0.043 | 0.065 | 0.061 | 0.042 | 0.068 | 0.063 | 0.042
11 0.05 | 0.078 | 0.049 | 0.043 | 0.065 | 0.060 | 0.043 | 0.068 | 0.063 | 0.042
12 0.05 | 0.078 | 0.049 | 0.042 | 0.066 | 0.061 | 0.043 | 0.067 | 0.062 | 0.041
13 0.05 | 0.038 | 0.040 | 0.039 | 0.036 | 0.037 | 0.040 | 0.037 | 0.036 | 0.039
14 0.05 | 0.037 | 0.040 | 0.040 | 0.036 | 0.037 | 0.040 | 0.037 | 0.037 | 0.040
15 0.05 | 0.037 | 0.040 | 0.040 | 0.036 | 0.038 | 0.040 | 0.037 | 0.036 | 0.040
16 0.05 | 0.068 | 0.048 | 0.054 | 0.064 | 0.063 | 0.053 | 0.066 | 0.057 | 0.051
17 0.05 | 0.068 | 0.049 | 0.053 | 0.064 | 0.063 | 0.053 | 0.067 | 0.058 | 0.051
18 0.05 | 0.067 | 0.049 | 0.054 | 0.064 | 0.064 | 0.053 | 0.067 | 0.058 | 0.052
Ave. North:  0.053 Ave. South:  0.050 Ave. Open: 0.045
Std. North:  0.013 Std. South:  0.009 Std. Open: 0.007
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Effect of Breakwater Parameters

The effects of breakwater parameters are investigated by varying one parameter while
fixing other parameters to evaluate the performance of a breakwater in reducing the reflection in
front of itself corresponding to the variation of the parameter and further to obtain the ideal
geometric shape of the breakwater that minimizes the reflection, which include the effects of
slope change, crest height change, and berm width change. These effects corresponding to the
parameter change are plotted on a graph (Figure 20, Figure 21, and Figure 22) of reflection
coefficient versus wave period, and the general trend is that reflection coefficients increase
proportionally with the wave period and reach maximum at period of 3.13 s, experience a drop at
4.02 s, and then increase again.

Effect of slope change (Figure 20) is investigated by varying the slope and fixing the
other parameters, and reflection coefficients for Slope 1 and Slope 2 in South Channel are
selected for investigation. It indicates that reflection can be reduced by 10% to 20% using milder
slope, and the difference in the reflection coefficient reduction tends to be smaller for the larger

wave periods and reaches a minimum at 4.02 s.

93



Effect of Slope Change on Kz
80%

@
60% 2

50% @ |
’ @ 2N WS (1:2.5) - REFLS
40%

) -
EAS1 (1:2.5) - REFANA
30% %
@352 (1:1.5) - REFLS
20% 52 (1:1.5) - REFANA
10% @52 (1:1.5) -

0%

K
~l
Q
=

Reflection Coefficient |
S

0 1 2 3 4 5
Wave Period (1) [s]

Figure 20. Effect of slope change.

Effect of crest height change (Figure 21) is investigated by varying crest height and
fixing other parameters, and reflection coefficients for Slope 2 in South Channel and for Slope 1
in North Channel are selected for investigation. It indicates that reflection can be reduced by
10% to 15% using lower crest height, however investigation on overtopping are needed since the

lower crest height may cause more overtopping.

Effect of Crest Height Change on Ky
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Figure 21. Effect of crest height change.
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The effect of berm width change is investigated by varying width of berm and fixing
other parameters, and reflection coefficients for Slope 2 in and Slope 3 in South Channel are
selected for investigating the effect of existence of berm to the reflection, reflection coefficients
for Slope 1, 2, and 3 in North Channel are also selected for investigating the effect of increasing
berm width to reduction of reflection coefficients. The existence of berm (Figure 22 and Figure
23) significantly reduces reflection coefficient by 10% to 30%, however the increase in the width

of berm may cause higher reflection than a narrower berm (Figure 23).

Effect of Berm Width Change on Ky
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Figure 22. Effect of berm width change — South Channel.
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Figure 23. Effect of berm width change — North Channel.

Predicting Reflection Coefficient in Front of a Breakwater

To predict the wave reflection in front of a breakwater without modeling test, one may
use an equation empirically relating the reflection coefficient to the function of the parameters,
including the geometry shape, roughness, and permeability of breakwater and the wave
characters. Overtopping should also be involved into estimating reflection coefficient. For
example, the rubble mound breakwaters in the project are rough and permeable structure with
either plane slope or berm-width slope. To efficiently estimate the reflection coefficient, the
parameters of breakwater and wave may be interpreted as a dimensionless parameter, such as
surf similarity number Battjes (1974). Also, the equation shall be effective that approximates the
trend of reflection coefficient versus the dimensionless parameter and present the physical

bounds, including Ky = 0 when absence of breakwater and Kz — 1 when the breakwater is a

vertical, smooth, and impermeable wall.
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A review of the empirical equations predicting reflection coefficient in front of breakwater
Miche (1951), Battjes (1974), and Seelig and Ahren (1981) considered that the reflection
coefficients are affected by wave transmission and energy dissipation including wave
modification due to reflected structure, wave breaking at toe of a structure or in the surf zone,
and surface roughness and permeability of structure. Miche (1951) presents that reflection
coefficient in front of smooth plane-sloped impermeable breakwater is a function of slope of
breakwater 6 and the critical steepness, i.e. (H,/1,)., as ratio of deep-water wave height over
deep-water wavelength (Equation 87). Additional coefficient may be needed when considering
permeability and surface roughness. This equation overestimates the reflections (Ursell et, al,

1960; Seelig and Ahrens, 1981).

\/27_651n2 0 .
T Vs
=",/

Battjes (1974) present an equation (Equation 88) estimating reflection coefficient as a
function of surf similarity number, &, a dimensionless parameter presented by Battjes (1974) for

plane-sloped breakwater (Equation 89).

Kg = 0.1&2 88

tan @
§= 89

V Hi/ﬂ'o

The above equations are mainly used for smooth and impermeable structure. Seelig and

Ahrens (1981) later revised the equation proposed by Battjes (1974) and presented several
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improved equations considering characters of both breakwater and wave conditions (Equations
90 and 91), which also involve the interpretation of up bound when K — 1.

a&?

KR:EZ‘I‘b 90

91
Kr = tanh(0.1£2)

Where: a and b are empirical coefficients effected by slope, roughness, permeability, and type of
structure. Details of selections of the equations and the corresponding parameters can be found in
their report (Seelig and Ahrens 1981). Seelig and Ahrens (1981) suggested that, Equation 90
with a = 0.6 and b = 6.6 may be used to conservatively estimate reflection coefficient in front
of a rubble mounded breakwater. For the same type of breakwater, Zanuttigh and VVan der Meer
(2006) suggested a = 0.75 and b = 15 when using Equation 90. Zanuttigh and VVan der Meer

(2006) also proposed a formula to predict reflection coefficient for plane-sloped breakwater.
Kz = tanh(aé?) 92

Where: the coefficients a = 0.12 and b = 0.87 are suggested for rock permeable breakwater.
To involve the case of a berm-width breakwater, Zanuttigh and Van der Meer (2007)
revised surf similarity parameter as Equation 93 involving the situation of shallow water depth at

toe and the deeper cases.

[tan6,; (d — 1.5H,) + tan 6 (1.5H,)]

dyHs/ 2,

d > 1.5H,

93

tan @
&= d < 1.5H

JHs/ 2o
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Where: tan 6 (= m) is slope (Equation 85) for either plain-sloped breakwater or weighted
average slope for berm width breakwater; d is water depth; H is significant wave height; 4, is
deep water wave length. Zanuttigh and VVan der Meer (2007) indicates that using the expression
of Equation well estimate the situation when the berm is submerged, over-estimates the situation
when the berm is emerged, and causes large scatter when the berm is at still water level.

The surf similarity number for the breakwater in the project is presented in Table 29 with

subscripts N and S, presenting North Channel and South Channel, respectively.

Table 29. Comparison of computed and input wave heights.

Slope 1 Slope 2 Slope 3
H e Y 7 I P T
1-3 8.34 5.01 7.72 8.34 7.47 7.18
4-6 9.98 5.99 9.23 9.98 8.94 8.59
7-9 11.66 7.000 10.79 11.66 10.44 10.03

10-12 13.34 8.000 1234 1334 11.94 1148
13-15 14.98 8.99 13.85 1498 1340 1289
16 -18 16.65 9.990 1540 16.65 1490 14.33

Reflection coefficients computed by REFANA and REFLS versus surf similarity number
& for constant slope (Equation 89) presented by Battjes (1974) and for berm width breakwater
(Equation 93) presented by van der Zanuttigh, et al. (2008) are presented and are compared with
the estimation curves presented by Seelig and Ahrens (1981), and Zanuttigh and VVan der Meer
(2008). The prediction curve of Seelig and Ahrens (1981) using coefficients presented by the
author with a = 0.80 and b = 50 according to the measured reflection coefficient are also
plotted. The computed reflection coefficient and the estimation curves are represented in the

Figure 24.
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Figure 24. Measured and predicted reflection coefficient for all data.

The curve proposed by Zanuttigh and Van der Meer (2008) using coefficient a = 0.12
and b = 0.87 conservatively overestimate the reflection coefficient; Seelig and Ahrens (1981)
curve using coefficient a = 0.6 and b = 6.6 over estimate at regions with surf similarity smaller
than 8, and estimate the average of the reflection coefficient when surf similarity larger than 8.
Using the estimation curve proposed by Seelig and Ahrens (1981) with the coefficients a = 0.8
and b = 50, the estimation curve passes through the averages of the measured reflection
coefficients.
Prediction curve using sigmoid curve

Considering the shape of the curves approximating the reflection coefficients in front of a
breakwater versus the surf similarity number, and the physical bounds such that passing zero at
zero surf similarity parameter and tend to be one when surf similarity parameter tends to be
infinity, formulae in form of sigmoid curve (“S” function) or logistic curve in terms of surf
similarity parameter may be used to predict reflection coefficients. Formulae having the shape of
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sigmoid function including logistic function (Verhulst 1845), error function, and hyperbolic
tangent function, and so on. Using logistic function presented in Equations 94 or error function
presented in Equation 95 to estimate the reflection coefficients in terms of surf similarity

number.

2
TTve® | 9

gﬁ
Kp = erf <—> 95
14

K

Comparison of the measured reflection coefficients and the predicting curves presented
by the author are presented with coefficients of « = 0.1, § = 1, and y = 20 are presented in
Figure 25, and both of the curves approximate the trend of reflection coefficients relative to the

surf similarity numbers.
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Figure 25. Measured reflection coefficients and the new predicted formulae.
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CHAPTER VI

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary and Conclusions

An extended least squares method (ELSM) for separating the incident and reflected
waves from co-existing wave fields has been developed. A new reflection analysis software,
called REFANA is programed based on the least squares method (LSM). The expressions of
ELSM indicate that the software can be directly used to compute the reflection coefficients for
both normal and oblique long-crested waves, and the software can be further modified to
estimate the reflection coefficients for short-crested waves. According to the expression of the
spectra of incident and reflected waves and the spectrum of the reflection coefficients, only the
positions of the probes along the x-axis affect the results of reflection analysis, and the
placement of the probe positions along the y-axis are not necessary.

Using the transfer functions, the expressions of the measured and estimated wave height
applied in ELSM indicate that the measurement can be either surface elevation or other wave
parameters, such as pressure, velocity, etc. Using the weighting coefficients (Zelt and Sejelbreia
1992), ELSM for reflection analysis can use measurements from an arbitrary number of wave
probes.

For long-crested oblique water waves in a laboratory wave basin, the reflection
coefficient in front of a model can be corrected by adding the reflected wave component from the
basin wave absorber in the expression of the estimated wave before conducting the least squares
method. The expressions of the incident and reflected spectra and the spectrum of reflection

coefficients with the removal of the basin boundary reflection are developed.
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The software REFANA for reflection analysis, based on the ELSM, separates the incident
and reflected waves and calculates the reflection coefficients. The separated incident waves
approximate the input incident wave and gives a reasonable result of the reflection coefficient in
front of the breakwater with known reflection coefficient. The calculated results also agree well
with the commercial software REFLS of GEDAP. The average difference is approximately 2%.

The probe spacing algorithm programed in REFANA using 1% margin of probe criteria
presented by Mansard and Funke (1980) reduces the total number of the wave probes required
for reflection analysis using ELSM when the wave conditions consist of more than one
wavelength. The calculation results show that the algorithm automates the arrangement of wave
probes, including determining the total number of wave probes, selecting three probes for
reflection analysis, and determining the minimum space between the wavemaker and the model
reflecting structure.

Three wave probes are necessary when all wavelengths are smaller than 11/9 of the
shortest wavelength. Four wave probes are necessary when the wavelengths are categorized into
two groups, i.e. {11, ..., 251} and {151%%, ..., 2™}, and the wavelengths of each group is within the
interval between 1 and 11/9 of the shortest wavelength of each group, and the longest wave
length AM is shorter than 100/27 A*. Five wave probes are needed when the wavelengths are
categorized into two main groups, i.e. {11, ..., AM1} and {AM1*1, , AM}, with AM1+1 >
100/27 A%, and the wavelengths of each group are within the interval between 1 and 11/9 of the
shortest wavelength of each group. Five probes are also sufficient when the wavelengths
categorized into three groups and the longest wavelength 2™ is less than 100/27 A1. More than

five probes are needed for other cases.

103



Two s-shaped sigmoid functions that include a logistic function and an error function are
developed by the author to empirically estimate the reflection coefficients in front of a rubble
mound breakwater. These empirical equations evaluate the reflection coefficients relative to the
surf similarity number and estimate the reflection coefficients in front of a sloped, rough, and
permeable rubble mounded breakwater.

Recommendations

The transfer function in this dissertation uses linear wave theory and the linear dispersion
relationship. Using the linear assumptions twice may cause more inaccuracy than using the
measured surface elevations only, which uses linearity once. Using the transfer function based on
measurements enhances the accuracy, but more laboratory data or field data are required to
obtain the transfer function based on the measurements.

Procedures to analyze reflection characteristics for directional (short-crested) waves
using the method developed from the extended least squares method (ELSM) should be verified
by both field and laboratory data in the future and compared with the results using other methods

such as maximum likelihood method.
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APPENDIX |

INSTRUCTION AND CODE FOR CALCULATING BASIN LIMITATION

To use this software:
1. Save wave_itr.m and the software for design curve together
2. Open MATLAB.
3. Run the software for design curve

MATLAB code for wave length iteration:

function [ LEN ] = wave_itr( DEP,PRD )

% INTRO xxE O
% Inputs: %
% DEP = water depth [m]; %
% PRD = wave period [s]; %
% Outputs: %
% LEN = wave length [m]; %

% AEEAAAAAAAXAAAAAAXAXAAAXAAAXAXAAXAAAAXAXAAXAXAAAXAXAAXAAAAXAAAXAAAAAAAXAAAXXX %

% initial wavelength for iteration (Fenton & McKee, 1990)

g = 9.81; % gravitational acceleration [m/s"-2]
EPS = 0.000001; % step length [-1
NMAX = 10000; % maximum step [-1
Lp = (g*(PRD™2)/(2*pi))*(tanh((((2*pi/PRD)"N2)*DEP/g)N(3/4)))™(2/3);

% derive wavelength by applying iteration
for N = 1:NMAX
SUM 0;

LEN = (g*(PRD™M2)/(2*pi))*tanh((2*pi*DEP)/(Lp));
DIF = LEN-Lp;
SUM = SUM+DIF™2;
RMS = sqrt(SUM/(N));
Lp = LEN;
if RMS < EPS
break;
end

end
it (N>0.75*NMAX)

disp("Convergence does not achieved®);
end

MATLAB code for design curve:

% Initialize

clear all; clc;

% Inputs

% Wave characteristics

DEP = linspace(0.1,1,10); % water depth [m]
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PRD = linspace(0.0625,10,160); % wave period [m]
SGM = 2*pi./PRD; % circular frequency [rad/s]
GRV = 9.81; % gravitational acceleration [m/s"2]
% Piston characteristics

STK = 0.494; % stroke amplitude [m]

% lIteration to find wave length
for j = 1:length(DEP);
for i = 1:length(PRD);
[ LENCi,j) 1 = wave_itr( DEP(J),PRD(i));
% Wave number k [rad/m]
KWNCii, §) = 2*pi/LEN(i,j);

% Height to stroke ratio (HSR) [-]

HSR(ii, ) = 2*(cosh(2*KWN(i,j)*DEP(J))-1)/...
(sinh(2*KWN(i, j)*DEP(§))+2*KWN(i , j)*DEP());

% Wave height from HSR [m]

HWM(i, ) = 2*STK*HSR(i,j);
% Wave height limitation for piston type wave maker [m]
HPT(1.3) = HWM(T.§);

% Breaking criterion (Stokes, 1880)
% Deep and intermediate water depth (Michell, 1893 and Miche, 1944)
it KWN(i,J)*DEP() >= pi/10;
HST(i,j) = min(0.78*DEP(J), (LEN(i,j)/7)*tanh(KWN(i,j)*DEP()));
if HST(i,j) > HPT(i,j);
HBKST(i,j) = HPT(i,j);
else
HBKST(i,J) = HST(i,j);
end
% Shallow water depth (McCowan, 1891)
elseif KWN(i,j)*DEP(J) < pi/10;
HST(i,j) = 0.78*DEP(§);
if HST(i,j) > HPT(i,.j):;
HBKST(i,j) = HPT(i,j);
else
HBKST(1,j) = HST(i,j);
end
end

% Breaking criterion (Goda, 1970)
HGD(i,J) = 0.17*LENCi,j)*-..
(1-1/exp(1.5*pi*DEP(J)/LEN(i,j)));
% Scope determination (/bounding)
if HGD(i,j) > HPT(i,j);
HBKGD(i,J) = HPT(i,j):
else
HBKGD(i,J) = HGD(i,j):
end

% Breaking criterion (Kamphuis, 1990a)
% Deep and intermediate water depth
it KWN(i,jJ)*DEP(J) >= pi/10;

HKP(i,J) = min(0.56*DEP(j), - - -
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(0.095*LEN(i , j))*tanh(KWN(i, j)*DEP(§)));
if HKP(i,j) > HPT(i,j);
HBKKP(i,j) = HPT(i,j);
else
HBKKP(i,j) = HKP(i.j);
end
% Shallow water depth
elseif KWN(i,j)*DEP(J) < pi/10;
HKP(i,j) = 0.56*DEP(j);
if HKP(i,j) > HPT(i,j);
HBKKP(i,jJ) = HPT(i.j);
else
HBKKP(i,j) = HKP(i,j);
end
end
end
end

% Plots
% Ledgend lables

LL = {*d = 0.1 m","d = 0.2 m","d = 0.3 m","d = 0.4 m","d = 0.5
*d = 0.6 m","d =0.7m","d = 0.8m","d =0.9m","d = 1.0

% Plot dispersion relationship and wave length

figure(1)

% Plot dispersion relationship

subplot(1,2,1);

SIG = sort(SGM, "descend®);
for j = 1:10;
loglog(SI1G."2,KWN(:,1));
hold on
xlabel ("\sigma™{2} (rad”™2)");
ylabel("k (rad/m)*");
title("Dispersion Relationship®);
grid on
axis square
end
legend(LL);
% Plot wave length
subplot(1,2,2);
for j = 1:10;
plot(PRD,LEN(:,§));
hold on
xlabel (°T (s)");
ylabel("\lambda (m)");
title("Wave Length from Dispersion Relation®);
grid on
axis square
end
legend(LL);
% Plot breaking criteria
figure(2)
for i = 1:3;
for j = 1:10;
subplot(1,3,i1);
ifi==1;
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plot(PRD,HST(:,})):
title("Breaking Wave Height (Stokes, 1880)");
elseif i == 2;
plot(PRD,HGD(:,}));
title("Breaking Wave Height (Goda, 1970)");
elseif i == 3;
plot(PRD,HKP(:,3)):
title("Breaking Wave Height (Kamphuis, 1990a)");
end
hold on
xlabel("T (s)7);
ylabel ("H_{b} (m)");
yhim([0,1]);
grid on
axis square
end
legend(LL);
end
% Plot wave height from height-to-stroke ratio
figure(3)
for j = 1:10;
plot(PRD,HPT(:,})):;
hold on
xlabel (°T (s)");
ylabel ("H_{max} (m)");
title("Wave Height from Height-to-stroke Ratio®);
grid on
end
legend(LL);
% Plot breaking wave design curve
figure(4)
for 1 = 1:3;
for j = 1:10;
subplot(1,3,i1);
ifi==1;
plot(PRD,HBKST(:,})):
title("Design Curve (Stokes, 1880)");
elseif i == 2;
plot(PRD,HBKGD(:,}J));
title("Design Curve (Goda, 1970)%);
elseif i == 3;
plot(PRD,HBKKP(:,})):
title("Design Curve (Kamphuis, 1990a)");
end
hold on
xlabel ("T (s)");
ylabel ("H_{max} (m)");
yhim([0,1]);
grid on
axis square
end
legend(LL);
end
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APPENDIX II

INSTRUCTION AND CODE FOR REFLECTION ANALYSIS SOFTWARE

The software REFANA for reflection analysis, i.e. refana_ref.m, is programmed using
MATLAB based on least squares method (LSM) applying the measurements from three wave
probes positioned perpendicular to the wavemaker. This software is applicable for separating the
co-existing waves for long-crested wave propagating either normally or obliquely. The software
refana_ref.m uses functions of autospec.m and crosspec.m to compute auto- and cross- spectra,
respectively and these files shall be saved together with the data file.

The data file is usually in the format of “.txt” and the sample file has the file name in the
format of “Name of the project prefix” + “Test index and scenario” + “.format”, which is
specified using the code “load measured signal” , such that

% Load measured signal

INDX = 3; % Test index

CHAN = 1; % Channel index (1=north,4=south,7=0pen)

TEST = ["Test”,num2str(INDX)," ", "Slope3"]; % Test index and scenario
PROJ = "CalData_SG_"; % Name of the project (prefix)

FMAT = ".txt"; % Format of the data file

FILE = [PROJ,TEST,FMAT];

FILE = char(FILE); % Name of the data file

WAVE = load(FILE);

The above code is an example to load data file “CalData_SG_Test3 Slope3.txt”, and the
information is used later for the titles of the graphs. The variable “CHAN” is the channel index
specifying Channel North, Channel South, or Open Water, and the datafile contains the columns
of time steps (the first column, in second, every 0.04 s for 25 Hz capturing rate) and the

corresponding surface elevations (in meter) for each time step.
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The information of each test can be either manually specified or using function

“testinfo.m” to extract information consisting of probe spacings, water depth, wave period,

wavelength, circular frequency, and incident wave amplitude, such that

% Test iInformation

[ X1P,
% X1P
% D

% TP
% Al

D,TP,Al ] = testinfo( INDX );

= Distance between the probe P and 1 [m]
= Water depth [m]
= Wave period [s]
= Incident wave amplitude [m]
9.73; % Distance between P1 and WM [m]
12.16; % Distance between Pl and object [m]
wave_itr( D,TP ); % Wavelength [m]
2*pi/TP; % Circular frequency [rad/s]

To use the software:

Save the data file together with “refana_ref.m”, “autospec.m”, and “crosspec.m”.
Modify the name of the data file according to the format in “Load measured signal”, e.g.
“CalData_SG_Test3 Slope3.txt”.

Open MATLAB.

Modify test index, i.e. the variable “INDX”, for example Test 3 INDX = 3.

Modify channel index, i.e. “CHAN”, for example Channel North CHAN = 1. This
variable is used to select the column of the data according to the three probes used for
reflection analysis.

Modify the test scenario, such as “Slopel”, “Slope2”, and “Slope3”

Modify the variable “X1P” by modifying the variable in “testinfo.m”. If the test
information is manually presented, delete “Test information”, otherwise, using
“testinfo.m” and the test information in “testinfo.m” need to be specified (see code of

“Inputting information of the tests for breakwater project”). For example, Test 3, the indx
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= 3, hence the d, Tp, and Al shall be under the scenario T1-T3. To use “testinfo.m” the
function “wave_itr” to compute wavelength should be saved together.

8. Specify the start point for time series, i.e. “TS”, to make sure that the wave field is fully
developed, which excludes the ramping up time (for wave maker) and includes the
reflected waves for all wave gauges.

9. Run the software and save the results
The test results are presented in a two-panel figures (measured and computed spectra)

with one of the plots of the spectra of measured surface elevations from three wave probes and
the corresponding zero moment wave heights; the other plot illustrates the separated spectra of
the incident wave and the reflected wave and the spectrum of the reflection coefficient and the

incident H, and the reflected wave Hy heights and the reflection coefficient Kj.
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% Code
% Init
clc; c

% Load
INDX
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TEST
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WAVE
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for refana_ref
ialization
lear all;

measured signal
3; % Test index
1; % Channel index (1=north
["Test”™,num2str(INDX)," *
"CalData_SG_"; % Name of the

,4=south,7=open)

project prefix

".txt"; % Format of the data file

[PROJ, TEST,FMAT];

char(FILE); % Name of the data Tile

load(FILE);

information
D,TP,Al ] = testinfo( INDX );
Distance between the probe
Water depth
Wave period
Incident wave amplitude
9.73; % Distance between
12.16; % Distance between
%
% Circular

2*pi/TP;

P and 1 [m]
[m]
[s]
[m]
P1 and WM [m]
P1 and object [m]
Wavelength [m]

frequency [rad/s]
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% Total time vector
TIME = WAVE(:,1);
% Parameter for time domain
DT = TIME(2)-TIME(1); % Sampling rate [s]
FS = 1/DT; % Sampling frequency [Hz]
% Wave elevation (total co-existing elevation)
ELEV = zeros(length(TIME),3);
for j = 1:3
ELEV(1: length(WAVE(:,j+CHAN)),j) = WAVE(:,j+CHAN);
ELEV(:,J) = (ELEV(:,jJ)-mean(ELEV(1:5*25,§)))/1000; % z-cross
end

% Extract compsite wave (co-wave)
% TS = Start point of co-wave (re-reflection reach P3)
TS = 40;

% Co-waves (COWV)
for j = 1:3

COW(:,jJ) = ELEV(ceil(TS*FS):end,j);
end
TC = TIME(ceil(TS*FS):end); % time vector (co-wave)
T = TC-TC(1); % time vector (common)
% Spectra analysis
% Auto spectra
for j = 1:3

[ AXX(:,3),SXX(:,3),APH(Z,3),FA(CZ,3),.HMO() 1---

= autospec( T,COW(:,]) );

end
for j = 1:3
[ AXY(:.3),SXY(z,§).XPH(Z,3),FX(Z,5) 1--.
= crosspec( T,COW(:,1),COW(:,]) );
end
for j = 1:length(FA(:,1))
[ LN@) 1 = wave_itr( D,1/FA(,1) );
end
LN = LN";
KN = 2*pi./LN

% Least square method for reflection

for j = 1:3
01(:,J) = expi*KN*X1P(:,}3));
02(:,3) = exp(-21*KN*X1P(:,1));
03(z,4) = AXX(=,1) -*exp(Li*(XPH(z,§)+KN*X1P(:,§)));
04(z,5) = AXX(z,3) -*exp(Li*(XPH(:z,§)-KN*X1IP(:,j)));
end

% Parameterizing

01 = 01(:,1)+01(:,2)+01(:,3);
02 = 02(:,1)+02(:,2)+02(:,3);
03 = 03(:,1)+03(:,2)+03(:,3);
04 = 04(:,1)+04(:,2)+04(:,3);

% Amplitude spectra of incident and reflect wave
NAI = abs((02.*03-3*04)./(01.*02-9));
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NAR = abs((01.*04-3*03)./(01.*02-9));
% Spetra densities of incident and reflect wave

DF = FA(2,1)-FA(1,1);
NSI = (NAI.~2)/(2*DF);
NSR = (NAR.”2)/(2*DF);

% Spectrum of reflection coefficients
KRN = NAR./NAI;
% Incident and reflect wave height

NS = 16;
HI = 4*sqgrt(sum(NSI1(NS:end))*DF);
HR = 4*sqrt(sum(NSR(NS:end))*DF);

% Coherency factor
CF12 SXY(:z,2)./sqrt(SXX(:,1)-*SXX(:,2));
CF13 SXY(z,3)./sqrt(SXX(:,1)-*SXX(:,3));

% Display of reflection analysis
if CHAN ==

CNUM = * - Channel N<;
elseif CHAN ==

CNUM = * - Channel S*;
elseif CHAN ==
CNUM = " - Open Water";

end
% Titles of the plots

TT1 = ["Measured Spectra of *,num2str(TEST),num2str(CNUM)];
TT2 = ["Computed Spectra of *,num2str(TEST),num2str(CNUM)];

% Lables of the Hmo

ML1 = ["P1: H {mol} = " ,num2str(round(HM0(1)*1000)/1000), "
ML2 = ["P2: H {mo2} = " ,num2str(round(HM0(2)*1000)/1000), "
ML3 = ["P3: H_{mo3} = *,num2str(round(HMO(3)*1000)/1000), "
% Lables of HI, HR, and KR

MLT = [*S_1: H {1} = " ,num2str(round(HI1*1000)/1000)," m"];
MLR = ["S R: H {R} = ",num2str(round(HR*1000)/1000)," m"];
MLKR = ["K_R = ",num2str(round(HR/H1*10000)/100)," %"];

% Plot 1: Measured spectra
figure (1)
for j = 1:3
plot(FA(:,3),AXX(:,1));
hold on
end
xhim([0,1]);
ylim([0,0.02]);
xlabel (T [Hz]");
ylabel (S _{\eta\eta} [m"2/Hz]");
legend(num2str(ML1) ,num2str(ML2) ,num2str(ML3));
title(num2str(TT1));
hold off
grid on
pbaspect([1 1 1]) % Equal axis lengths in all directions

% Plot 2: Computed spectra
figure(2)
% Spectra of HI and HR
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yyaxis left % y-axis of HI and HR
title(num2str(772));

plot(FA(:,1),NSI(:,1));

hold on

plot(FA(:,1),NSR(:,1));

xhim([0,1]);

ylim([0,0.02]);

xlabel (T [Hz]");

ylabel (S _{\eta\eta} [m"2/Hz]");

% Spectrum of KR

yyaxis right % y-axis of KR
plot(FA(:,1),KRN*100,"-_");

xhim([0,1]);

ylim([0,100]1);

ylabel("K_ R [%]");
legend(num2str(MLI) , num2str(MLR) , num2str (MLKR)) ;
hold off

grid on

pbaspect([1 1 1]) % Equal axis lengths in all directions
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Inputting information of the tests for breakwater project

function [ x1p,d,Tp,Al ] = testinfo( indx )

% Information of input signal

% Input

% indx = indices of test

% Output

% x1p = relative probe positions
% d = input water depth

% Tp = input peak period

% Al = @nput incident amplitude
% T1-T6

if indx >= 1 && iIndx <= 6;
xlp = [0,0.480,1.170];
if Indx >= 1 && indx <= 3; % T1-T3

d = 0.43;
Tp = 2.24;
Al = 0.025;

elseif indx >= 4 && indx <= 6; %T4-T6
d = 0.43;
Tp = 2.68;
Al = 0.025;

end

% T7-T12

elseif Indx >= 7 && indx <= 12;
xlp = [0,0.670,1.670];
if indx >= 7 && Indx <= 9; % T7-T9

d = 0.43;
Tp = 3.13;
Al = 0.025;

elseif indx >= 10 && indx <= 12; % T10-T12
d = 0.43;
Tp = 3.58;
Al = 0.025;

end

% T13-T18

elseif indx >= 13 && indx <= 18;
x1lp = [0,0.905,2.263];
ifT Indx >= 13 && indx <= 15; % T13-T15

d = 0.43;
Tp = 4.02;
Al = 0.025;
elseif indx >= 16 && indx <= 18; % T16-T18
d = 0.43;
Tp = 4.47;
Al = 0.025;
end
end
end
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Function computing the auto-spectra

function [ Axx,Sxx,Phi,f,Hmo ] = autospec( t,eta )
% Generating single-sided auto amplitude and power spectra

% Input:

% t = time vector

% eta = time series of signal

% Output:

% Axx = 1-sided amplitude spectrum
% Sxx = l-sided power spectrum

% Phi = phase angle

% f = frequency vector

% Hmo = significant wave height

% Parameters for frequency domains

nfft
dt
fs
N
fo

f

% Auto
AXX2
AXX
SXX
Phi
Hmo

end

2*length(t)-1;
t(2)-t();

1/dt;

fs/2;

1/ (nfft*dt);

fo*(0: (nfft+1)/2-1)";

spectra (Axx and Sxx)
fft(eta,nfft)/nfft;
2*abs(Axx2(1: (nfft+1)/2));
Axx."2/(2*fo);
angle(Axx2(1: (nfft+1)/2));
4*sgre(sum(Sxx*fo));

%
%
%
%
%

Length of signal

Sampling rate [s1
Sampling frequency [Hz]
Nyquist frequency [Hz]
Fundmental frequency [Hz]
Frequency vector [HZz]

2-sided Axx(F) (complex)
1-sided Axx(F) (real)
1-sided Sxx(T)

Phase angle

Hmo
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Function computing the cross-spectra

fu
%

nction [ Axy,Sxy,XPh,f ] = crosspec( t,etal,eta2 )
Generating single-sided cross spectra

% Input:

% t = time vector

% etal = time series of signall

% eta2 = time series of signal2

% Output:

% Axy = l-sided amplitude cross spectrum

% Sxy = l-sided power cross spectrum

% XPh = phase shift

% f = frequency vector

% Parameters for frequency domains

nfft = 2*length(t)-1; % Length of signal

dt = t(2)-t(1); % Sampling rate [s1

fs = 1/dt; % Sampling frequency [Hz]

N = fs/2; % Nyquist frequency [Hz]

fo = 1/(nfft*dt); % Fundmental frequency [HZz]

T = fo*(0:(nfft+l)/2-1)"; % Frequency vector [Hz]

% Auto spectra (Axx and Sxx)

Axx1l = fft(etal,nfft)/nfft; % 2-sided Axx(F) for etal (complex)
Axx2 = fft(eta2,nfft)/nfft; % 2-sided Axx(F) for eta2 (complex)
Axy2 = sqrt(Axxl.*conj(Axx2)); % 2-sided Axy(F)

Axy = 2*abs(Axy2(1:(nfft+1)/2)); % 1-sided Axy(F) (real)

Sxy = Axy."2/(2*fo); % l-sided Sxy(T)

XPh = angle(Axx1(1: (nfft+1)/2) . /Axx2(1: (nFft+1)/2)); % Phase shift
end
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Function to iterate the wavelength

function [ LEN ] = wave_itr( DEP,PRD )

% * INTRO ke ek %
% Inputs: %
% DEP = water depth [m]; %
% PRD = wave period [s]; %
% Outputs: %
% LEN = wave length [m]; %

% AEAEAAAAAAAAAAAAAXA XA AAAAAAXAAXAXAAAXAXAAXAXAAAXAAAXAAAAAAAXAAAXAAAAAXAXKXX %

% initial wavelength for iteration (Eckhart, 1951)

g = 9.81; % gravitational acceleration [m/s"™-2]
EPS = 0.000001; % step length [-1
NMAX = 100000; % maximum step [-1
Lp = (g*(PRD"2)/(2*pi))*(tanh((((2*pi/PRD)"2)*DEP/g)N(3/4)))™(2/3);

% derive wavelength by applying iteration
for N = 1:NMAX
SUM = 0;

LEN = (g*(PRD™M2)/(2*pi1))*tanh((2*pi*DEP)/(Lp));
DIF = LEN-Lp;
SUM = SUM+DIF™2;
RMS = sqrt(SUM/(N));
Lp = LEN;
if RMS < EPS
break;
end
end

it (N>NMAX)
disp("Convergence does not achieved®);
end
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APPENDIX I11

INSTRUCTIONS AND CODE FOR PROBE ARRANGEMENT SOFTWARE

To use this software:
1. Open MATLAB.
2. Run “refana_probe.m”
3. Input the wavelengths in a format of linear array, e.g.
[4.33,5.29,6.24,7.18,8.12,9.05]

Sample result

Array of Wave Lengths [L1,LZ,...,Ln] = [4.33,5.29,6.24,7.18,8.12,9.05]
Name L XAR XAC BA FB BC
"L1"™ 4,33 0.48 1.13 1 2 4
nL2" 5.29 0.48 1.13 1 2 4
TL3™ 6.24 0.e7 1.13 1 3 4
L T.18 0.e7 1.13 1 3 4
"LS™ g.12 1.13 2.11 1 4 S
"Le™ 9.05 1.13 2.11 1 4 5
Name X1P
nXizw 0.48
nX1i3m 0.87
nX1l4m 1.13
nX1s™ 2.11

Probe Humer = &

S8
=]
5%
[
=]

Total Distance =
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% Initialization
clc;clear all;

% Input wavelengths and sort ascend
L input(“Array of Wave Lengths [L1,L2,..., Ln] = ");
L sort(L, "ascend");

% Probe spacing criteria
PC = [9/100,11/100,100/600,100/300];

% Empty matrix for writting in the results

XAB = zeros(length(L),1);
XAC = zeros(length(L),1);
PPA = ones(length(L),1);
PPB = zeros(length(L),1);
PPC = zeros(length(L),1);

% Group the wavelengths (MG):
di = 0;
for i = 1:length(L)
if di+l <= length(L)
MICE) = Find(L(:) < (PC(4)/PC(1))*L(di+1), 1, "last” );
di = MI(1);
else
break
end
end

MG = zeros(length(MI),2);
for 1 = 1:length(MI)

ifi==1

MG(E,:) = [1,MI(i)];
else

MG(i,:) = [MIG-D)+1,MI(1)];
end

end

% Catogorise the wavelengths of each group (SG)
SG = zeros(4,max(MG(:,2)-MG(:,1))+1,size(MG,1));
for i = 1:size(SG,3)

SG1 = intersect(find(L(MG(i,1):MG(i,2))>0), ...
Find(LAMG(i,1) :MG(i,2))<...
(PC(2)/PC(1))*L(MG(1,1))));

SG2 = intersect(find(L(MG(1,1):MG(1,2))>...
(PC(2)/PC(1))*L(MG(i,1))),---
Find(LAMG(i,1) :MG(i,2))<...
(PC(3)/PC(1))*L(MG(1,1))));

SG3 = intersect(find(L(MG(1,1):MC(71,2))>...
(PC(3)/PC(L))*L(MG(i,1))),---
Find(LAMG(i,1) :MG(i,2))<...
((PC(2)/PC(1))*(PC(3)/PC(1)))*L(MG(i,1))));

SG4 = intersect(find(L(MG(1,1):MG(T1,2))>...
((PC(2)/PC(1))*(PC(3)/PC(1)))*L(MG(1,1))), - - -
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Find(LMG (i , 1) zMG(i ,2))<. . .
_(PC(4)/PC(1))*L(MG(1,1))));

ifi=1
SG1 = SG1+0; SG2 = SG2+0; SG3 = SG3+0; SG4 = SG4+0;

else
SG1 = SG1+MG(i-1,2); SG2 = SG2+MG(i-1,2); SG3 = SG3+MG(i-1,2);
SG4 = SG4+MG(i-1,2);

end

if isempty(SGl) ==
SG(1,:,i1) = zeros(1,size(SG,2));
elseif isempty(SGl) ==
SG(1,1:1ength(SG1l),i1) = SG1;
end
if isempty(SG2) ==
SG(2,:,1) = zeros(1,size(SG,2));
elseif isempty(SG2) ==
SG(2,1:1ength(SG2),i1) = SG2;
end
if isempty(SG3) == 1
SG(3,:,1) = zeros(1,size(SG,2));
elseif isempty(SG3) == 0
SG(3,1:1ength(SG3),1) = SG3;
end
if isempty(SG4) ==
SG(4,:,1) = zeros(1,size(SG,2));
elseif isempty(SG4) ==
SG(4,1:1ength(SG4),i1) = SG4;
end
end

SGL = L(nonzeros(SG));

% For the singularity values
SS1 = Ffind(not(ismember(L,SGL)));
if isempty(SSl) ==

XAB_ S = zeros(l, length(SSl));

XAC_S = zeros(l, length(SSl));
for i = 1:length(SSl)
XAB_S(i) = L(SSI(i))/10;
XAC_S(i) = L(SSI1(i1))/4;
end
elseif isempty(SSl) ==
XAB_S = [1;
XAC_S = [1;
end
XAB(SS1,1) = XAB_S;
XAC(SS1,1) = XAC_S;

% For the non-sigularity values
PP = zeros(size(SG,1)*size(SG,2),1,si1ze(SG,3));
for 1 = 1:size(SG,3)

N1 = length(nonzeros(SG(1,:,1))); % Length of nonzero SG1
N2 = length(nonzeros(SG(2,:,1))); % Length of nonzero SG2
N3 = length(nonzeros(SG(3,:,1))); % Length of nonzero SG3
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N4 = length(nonzeros(SG(4,:,1))); % Length of nonzero SG4
% Catagories of SG2 to further merge XABs
if isempty(nonzeros(SG(2,:,i))) == 0
d2j = 0;
for j = 1:N2
if d2j+1 <= N2
MN2(jJ) = Find(L(nonzeros(SG(2,:,1))) <...
(PC(2)/PC(1))*L(nonzeros(SG(2,d2j+1,1))), 1, “last™ );
d2j = MN2();
else
break
end
end
MG2 = zeros(length(MN2),2);
for j = 1:length(MN2)

if j ==
MG2(J,:) = [1,MN2()1];
else
MG2(J,:) = [MN2(-1)+1,MN2()1;
end
end
NN2 = 1:size(MG2,1);
end

% Catagories of SG4 to further merge XABs
if isempty(nonzeros(SG(4,:,i))) == 0
d4j = 0;
for j = 1:N4
if d4j+1 <= N4
MN4(jJ) = Find(L(nhonzeros(SG(4,:,1))) <...
(PC(2)/PC(D))*L(nonzeros(SG(4,d4j+1,1))), 1, "last™ );
d4j = MNA():;
else
break
end
end
for j = 1:length(MN4)

if j ==
[1.MN4()] 5

MGAG, 1)
[MN4(G-1)+1,MN4(i)]:

else

MG4(,:)

end
end
NN4 = 1:size(MG4,1);
end

% CASE 1: SG1 <> 0 and SG2,SG3,SG4 = 0
if isempty(nonzeros(SG(1,:,i))) == 0 &&.- ..
isempty(nonzeros(SG(2:4,:,i))) == 1
PP(1,1,1) = mean((1/10)*L(nonzeros(SG(1,:,1))));
PP(2,1,1) =...
(PC(3)*max(L(nonzeros(SG(1,:,1))))---
+PC(4)*min(L(nonzeros(SG(1,:,1)))))/2;
% Write into result
XAB(nonzeros(SG(1,:,1)),1) =
round(ones(Iength(nonzeros(SG(l ,1))),1)*PP(1,1,1),2);
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XAC(nonzeros(SG(1,:,i)),1) =...
round(ones(length(nonzeros(SG(1,:,1))),1)*PP(2,1,1),2);

% CASE 2: SG1,SG2 <> 0 and SG3,SG4 = 0
elseif isempty(nonzeros(SG(1,:,i))) == 0 &&...
isempty(nonzeros(SG(2,:,i))) == 0 &&...
isempty(nonzeros(SG(3:4,:,i))) == 1
PP(1,1,1) = mean((1/10)*L(nonzeros(SG(1,:,1))));
% Write into result
XAB(nonzeros(SG(1,:,i)),1) =...
round(ones(length(nonzeros(SG(1,:,1))),1)*PP(1,1,1),2);
for j = 1:length(NN2)
PP(1+NN2(j),1,1) =...
mean((1/10)*L(nonzeros(SG(2,MG2(jJ,1):MG2(J,2),1))));
% Write into result
XAB(SG(2,MG2(J ,1):MG2(J ,2),1),1) =...
round(ones(length(SG(2,MG2(J ,1):MG2(j,2),1)),)*. ..
PP(1+NN2(j),1,1),2);
end
PP(1+NN2(end)+1,1,i) =...
(PC(3)*max(L(nonzeros(SG(2,:,1))))--.
+PC(4)*min(L(nonzeros(SG(1,:,1)))))/2;
% Write into result
XAC(nonzeros(SG(1:2,:,1)),1) =...
round(ones(length(nonzeros(SG(1:2,:,i))),1)*. ..
PP(1+NN2(end)+1,1,1),2);

% CASE 3: SG1,SG3 <> 0 and SG2,SG4 = 0
elseif isempty(nonzeros(SG(1,:,i))) == 0 &&...

isempty(nonzeros(SG(3,:,i))) == 0 &&...
isempty(nonzeros(SG(2,:,i1))) == 1 &&...
isempty(nonzeros(SG(4,:,i1))) == 1

PP(1,1,1) = mean((1/10)*L(nonzeros(SG(1,:,1))));

PP(2,1,1) =...
(PC(1)*max(L(nonzeros(SG(3,:,1))))---
+PC(4)*min(L(nonzeros(SG(1,:,1)))))/2;

PP(3,1,1) =...
(PC(3)*max(L(nonzeros(SG(3,:,1))))---
+PC(4)*min(L(nonzeros(SG(3,:,1)))))/2;

% Write into result

XAB(nonzeros(SG(1,:,i)),1) =...
round(ones(Iength(nonzeros(SG(l :,1D))),D*PP(1,1,1),2);

XAC(nonzeros(SG(1,:,i))) =
round(ones(Iength(nonzeros(SG(l ,1))),D*PP(2,1,1),2);

XAB(nonzeros(SG(3,:,1))) =
round(ones(Iength(nonzeros(SG(S ,1))),DD*PP(2,1,1),2);

XAC(nonzeros(SG(3,:,1))) =..
round(ones(Iength(nonzeros(SG(3 ,1))),1D*PP(3,1,1),2);

% CASE 4: SG1,SG4 <> 0 and SG2,SG3 = 0

elseif isempty(nonzeros(SG(1,:,i))) == 0 &&...
isempty(nonzeros(SG(4,:,i))) == 0 &&...
isempty(nonzeros(SG(2,:,i))) == 1 &&...
isempty(nonzeros(SG(3,:,i1))) == 1
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PP(1,1,1) = mean((1/10)*L(nonzeros(SG(1,:,1))));
% Write into result
XAB(nonzeros(SG(1,:,1)),1) =
round(ones(Iength(nonzeros(SG(l ,1))),D*PP(1,1,1),2);
if length(nonzeros(SG(4,:,i))) ==1
PP(2,1,1) =...
(PC(1)*L(nonzeros(SG(4,:,1)))--.
+PC(4)*min(L(nonzeros(SG(1,:,1)))))/2;
PP(3,1,1) = (/4)*L(nonzeros(SG(4,:,1)));
% Write into result
XAC(nonzeros(SG(1,:,1))) =..
round(ones(Iength(nonzeros(SG(l :,1))),D*PP(2,1,1),2);
XAB(nonzeros(SG(4,:,1))) =
round(ones(Iength(nonzeros(SG(4 :,1))),DH*PP(2,1,1),2);
XAC(nonzeros(SG(4,:,1))) =..
round(ones(Iength(nonzeros(SG(4 5, 1)), D*PP(3,1,1),2);
elseif length(nonzeros(SG(4,:,1))) > 1
PP(2,1,1) =...
(PC()*min(L(nonzeros(SG(4,:,1))))--.
+PC(4)*min(L(nonzeros(SG(1,:,1)))))/2;
% Write into result
XAC(nonzeros(SG(1,:,1))) =..
round(ones(Iength(nonzeros(SG(l ,1))),1)*PP(2,1,1),2);
XAB(nonzeros(SG(4,1,1))) =
round(ones(Iength(nonzeros(SG(4 1,1))),D*PP(2,1,1),2);
if size(MG4,1) == 1

PP(1+NN4(end),1,i1) =...
mean((1/10)*L(nonzeros(SG(4,2:end,i))));

PP(1+NN4(end)+1,1,1) =...
(PC(B3)*max(L(nonzeros(SG(4,:,1))))--.
+PC(4)*min(L(nonzeros(SG(4,:,1)))))/2;

% Write iInto result

XAB(nonzeros(SG(4,2:end,1))) =
round(ones(Iength(nonzeros(SG(4 2zend,1))),D)*. ..
PP(1+NN4(end),1,i1),2);

XAC(nonzeros(SG(4,:,1))) =..
round(ones(Iength(nonzeros(SG(4 ,1))),1)*. ..
PP(1+NN4(end)+1,1,1),2);

elseif size(MG4,1) > 1 % Re-define NN4
for j = 1:N4-1
if d4j+1 <= N4-1
MN4(jJ) = Ffind(L(nonzeros(SG(4,2:end,i1))) <...
(PC(2)/PC(1))*. ..
L(nonzeros(SG(4,d4j+1,1))), 1, “last™ );
d4j = MNAQ):;
else
break
end

end

for j = 1:length(MN4)
ifj=1

MGA(. ) = [2,MN4(g)+1];
else

MG4(J,:) = [MNA(-1)+2,MNA(G)+1];
end
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PP(1+NN4(),1,i1) =...
mean((1/10)*...
L(nonzeros(SG(4,MG4(J ,1):MGA4(,2),1))));

% Write into result

XAB(SG(4,MG4(J,1):MC4(,2),1),1) =...
round(ones(length(SG(4,MG4(J ,1):MG4(jJ,2),1)),1)*. ..
PP(1+NN4(),1,1),2);

end

NN4 = 1:size(MG4,1);

PP(1+NN4(end)+1,1,i) =...
(PCB3)*max(L(nonzeros(SG(4,:,1))))--.
+PC(4)*min(L(nonzeros(SG(4,:,1)))))/2;

% Write into result

XAC(nonzeros(SG(4,:,1))) =
round(ones(Iength(nonzeros(SG(4 ,1))),1)*. ..
PP(1+NN4(end)+1,1,1),2);

end
end

% CASE 5: SG1,SG2,SG3 <> 0 and SG4 = 0
elseif isempty(nonzeros(SG(1,:,i))) == 0 &&...

isempty(nonzeros(SG(2,:,i))) == 0 &&...
isempty(nonzeros(SG(3,:,i))) == 0 &&. ..
isempty(nonzeros(SG(4,:,i1))) == 1

PP(1,1,1) = mean((1/10)*L(nonzeros(SG(1,:,1))));

% Write into result

XAB(nonzeros(SG(1,:,1)),1) =
round(ones(Iength(nonzeros(SG(l ,1))),1)*PP(1,1,1),2);

for j = 1:length(NN2)
PP(1+NN2(j),1,1) =...

mean((1/10)*L(nonzeros(SG(2,MG2(jJ ,1):MG2(J,2),1))));
% Write into result
XAB(SG(2,MG2(,:),i1),1) =..
round(ones(length(SG(2, MGZ(J ),1)),D*PP(1+NN2(j),1,1),2);

end

PP(1+NN2(end)+1,1,i) =...
(PC(1)*max(L(nonzeros(SG(3,:,1))))---
+PC(4)*min(L(nonzeros(SG(1:2,:,1)))))/2;

PP(1+NN2(end)+2,1,i) =...
(PC3)*max(L(nonzeros(SG(3,:,1))))--.
+PC(4)*min(L(nonzeros(SG(3,:,1)))))/2;

% Write into result

XAC(nonzeros(SG(1:2,:,1))) =..
round(ones(Iength(nonzeros(SG(l 2,:,1))),D*. ..
PP(1+NN2(end)+1 1,i1),2);

XAB(nonzeros(SG(3,:,1))) =
round(ones(Iength(nonzeros(SG(3 ,1))),D)*. ..
PP(1+NN2(end)+1,1,1),2);

XAC(nonzeros(SG(3,:,1))) =..
round(ones(Iength(nonzeros(SG(3 ,1))),D)*. ..
PP(1+NN2(end)+2,1,i),2);

% CASE 6: SG1,SG2,SG4 <> 0 and SG3 = 0
elseif isempty(nonzeros(SG(1,:,i))) == 0 &&...
isempty(nonzeros(SG(2,:,i))) == 0 &&...
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isempty(nonzeros(SG(4,:,i))) == 0 &&. ..
isempty(nonzeros(SG(3,:,i1))) == 1
PP(1,1,1) = mean((1/10)*L(nonzeros(SG(1,:,1))));
% Write into result
XAB(nonzeros(SG(1,:,i)),1) =...
round(ones(length(nonzeros(SG(1,:,1))),1)*PP(1,1,1),2);
for j = 1:length(NN2)
PP(1+NN2(g),1,1) =...
mean((1/10)*L(nonzeros(SG(2,MG2(jJ ,1):MG2(J,2),1))));
% Write into result
XAB(SG(2,MG2(J,1):MC2(J,2),1),1) =...
round(ones(length(SG(2,MG2(j ,1):MGC2(j,2),1)),D)*. ..
PP(1+NN2(),1,1),2);
end
if length(nonzeros(SG(4,:,i))) == 1
PP(1+NN2(end)+1,1,i) =...
(PC(1)*L(nonzeros(SG(4,:,1)))--.
+PC(4)*min(L(nonzeros(SG(1:2,:,1)))))/2;
PP(1+NN2(end)+2,1,i) = (1/4)*L(nhonzeros(SG(4,:,1)));
% Write into result
XAC(nonzeros(SG(1:2,:,1))) =..
round(ones(Iength(nonzeros(SG(l ,1))),D)*. ..
PP(1+NN2(end)+1 1,1),2);
XAB(nonzeros(SG(4,:,1))) =
round(ones(Iength(nonzeros(SG(4 ,1))),D)*. ..
PP(1+NN2(end)+1,1,1),2);
XAC(nonzeros(SG(4,:,1))) =..
round(ones(Iength(nonzeros(SG(4 ,1))),D)*. ..
PP(1+NN2(end)+2,1,1),2);
elseif length(nonzeros(SG(4,:,1))) > 1
PP(1+NN2(end)+1,1,i1) =...
(PC(1)*L(nonzeros(SG(4,:,1)))--.
+PC(4)*min(L(nonzeros(SG(1:2,:,1)))))/2;
% Write into result
XAC(nonzeros(SG(1:2,:,1))) =..
round(ones(Iength(nonzeros(SG(l ,1))),D)*. ..
PP(1+NN2(end)+1,1,1),2);
XAB(nonzeros(SG(4,1,1))) =
round(ones(Iength(nonzeros(SG(4 1,1))),D*. ..
PP(1+NN2(end)+1,1,1),2);
if size(MG4,1) == 1
PP(1+NN2(end)+NN4(end)+1,1,i) =...
mean((1/10)*L(nonzeros(SG(4,2:end,i))));
PP(1+NN2(end)+NN4(end)+2,1,1) =...
(PC(3)*max(L(nonzeros(SG(4,:,1))))--.
+PC(4)*min(L(nonzeros(SG(4,:,1)))))/2;
% Write iInto result
XAB(nonzeros(SG(4,2:end,1))) =
round(ones(Iength(nonzeros(SG(4 2:end,1))),D)*..
PP(1+NN2(end)+NN4(end)+1,1,1),2);
XAC(nonzeros(SG(4,:,1))) =..
round(ones(length(nonzeros(SG(4 ,1))),D)*. ..
PP(1+NN2(end)+NN4(end)+2,1,1),2);
elseif size(MG4,1) > 1 % Re-define NN4
for j = 1:N4-1

133



if d4j+1 <= N4-1

MN4(jJ) = Ffind(L(nonzeros(SG(4,2:end,i1))) <...
(PC(2)/PC(1))*. ..
L(nonzeros(SG(4,d4j+1,1))), 1, “last™ );

d4j = MNAQ):;

else
break

end

end
for j = 1:length(MN4)

ifj=1
MGA(. ) = [2,MN4(g)+1];

else
MG4(,:) = [MNA(G-1)+2,MNA()+1];

end

PP(1+NN2(end)+NN4(§)+1,1,i) =...
mean((1/10)*. ..
L(nonzeros(SG(4,MG4(J,1):MG4(J,2),1))));

% Write into result

XAB(SG(4,MG4(J ,1):MG4(,2),1),1) =

round(ones(1ength(SG(4.MGA(j 1) :MG4( ,2),i)),1)*. . .

PP(1+NN2(end)+NN4(j)+1,1,1),2);

end

NN4 = 1:size(MG4,1);

PP(1+NN2(end)+NN4(end)+2,1,i) =...
(PCB3)*max(L(nonzeros(SG(4,:,1))))--.
+PC(4)*min(L(nonzeros(SG(4,:,1)))))/2;

% Write into result

XAC(nonzeros(SG(4,:,1))) =
round(ones(Iength(nonzeros(SG(4 ,1))),1)*. ..
PP(1+NN2(end)+NN4(end)+2,1,1),2);

end
end

% CASE 7: SG1,SG3,SG4 <> 0 and SG2 = 0
elseif isempty(nonzeros(SG(1,:,i))) == 0 &&...

isempty(nonzeros(SG(3,:,i))) == 0 &&...
isempty(nonzeros(SG(4,:,i))) == 0 &&. ..
isempty(nonzeros(SG(2,:,i1))) == 1

PP(1,1,1) = mean((1/10)*L(nonzeros(SG(1,:,1))));

PP(2,1,1) =...
(PC(1)*max(L(nonzeros(SG(3,:,1))))--.
+PC(4)*min(L(nonzeros(SG(1,:,1)))))/2;

% Write into result

XAB(nonzeros(SG(1,:,1)),1) =
round(ones(Iength(nonzeros(SG(l ,1))),D*PP(1,1,1),2);

XAC(nonzeros(SG(1:3,:,1))) =
round(ones(Iength(nonzeros(SG(l 3,:,1))),D*PP(2,1,1),2);

XAB(nonzeros(SG(3,:,1))) =..
round(ones(Iength(nonzeros(SG(3 ,1))),D*PP(2,1,1),2);

for j = 1:length(NN4)
PP(2+NN4(j),1,1) =...

mean((1/10)*L(nonzeros(SG(4,MG4(jJ,1):MG4(J,2),1))));

% Write into result
XAB(SG(4.,MG4(J ,1):MG4(J ,2),1),1) =...
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end

round(ones(length(SG(4,MG4(J ,1):MG4(j,2),i1)),D*. ..
PP(2+NN4(j),1,1),2);
end
PP(2+NN4(end)+1,1,1) =...
(PC(3)*max(L(nonzeros(SG(3:4,:,1))))--.
+PC(4)*min(L(nonzeros(SG(3:4,:,1)))))/2;
% Write into result
XAC(nonzeros(SG(3:4,:,1))) =
round(ones(Iength(nonzeros(SG(3 4,:,1))),1)*. .
PP(2+NN4(end)+1,1,1),2);

% CASE 8: SG1,SG2,SG3,SG4 <> 0 =0
elseif isempty(nonzeros(SG(1,:,i))) == 0 &&...

end

isempty(nonzeros(SG(3,:,i))) == 0 &&. ..
isempty(nonzeros(SG(4,:,i))) == 0 &&...
isempty(nonzeros(SG(2,:,1))) == 0
PP(1,1,1) = mean((1/10)*L(nonzeros(SG(1,:,1))));
% Write into result

XAB(nonzeros(SG(1,:,i)),1) =...
round(ones(length(nonzeros(SG(1,:,1))),1)*PP(1,1,1),2);

for j = 1:length(NN2)

PP(1+NN2(j),1,1) =...
mean((1/10)*L(nonzeros(SG(2,MG2(jJ,1):MG2(J,2),1))));

% Write into result

XAB(SG(2,MG2(J ,1):MG2( ,2),1),1) =...
round(ones(length(SG(2,MG2(J ,1):MG2(j,2),1)),)*. ..
PP(1+NN2(),1,1),2);

end

PP(1+NN2(end)+1,1,i) =...
(PC(1)*max(L(nonzeros(SG(3,:,1))))--.
+PC(4)*min(L(nonzeros(SG(1:2,:,1)))))/2;

% Write into result

XAC(nonzeros(SG(1:2,:,1))) =..
round(ones(Iength(nonzeros(SG(l 2,:,1))),D*. ..
PP(1+NN2(end)+1 1,i1),2);

XAB(nonzeros(SG(3,:,1))) =
round(ones(Iength(nonzeros(SG(3 ,1))), D> ..
PP(1+NN2(end)+1,1,1),2);

for j = 1:length(NN4)

PP(1+NN2(end)+NN4()+1,1,i) =...
mean((1/10)*L(nonzeros(SG(4,MG4(jJ ,1):MG4(J,2),1))));

% Write into result

XAB(SG(4,MG4(J,1):MC4(,2),1),1) =...
round(ones(length(SG(4,MG4(J ,1):MG4(j,2),i1)),D*. ..
PP(1+NN2(end)+NN4(j)+1,1,1),2);

end

PP(1+NN2(end)+NN4(end)+2,1,1) =...
(PC(3)*max(L(nonzeros(SG(4,:,1))))--.
+PC(4)*min(L(nonzeros(SG(4,:,1)))))/2;

% Write into result

XAC(nonzeros(SG(3:4,:,1))) =
round(ones(Iength(nonzeros(SG(3 4,:,1))),1)*. .
PP(1+NN2(end)+NN4(end)+2,1,1),2);
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if isempty(XAB_S) == 1 && isempty(XAC_S) ==

Probe = sort(nonzeros(PP), "ascend”);
elseif isempty(XAB_S) == 0 && isempty(XAC_S) ==

Probe = sort([nonzeros(PP);XAB S";XAC S"],"ascend");
Probe = unique(Probe);

end
% Minimum required number of wave probes
ProbeNumber = length(Probe)+1;

% Minimum required distance between wave maker and structure
TotalDistance = 2*max(L)+max(Probe);

% Probe for each wavelength

Resultl = [XAB,XAC];

Result2 round(Probe,2);

for i = 1:length(L)
[liaB,B] = ismember(Resultl(i,l),Result2);
[1iaC,C] = ismember(Resultl(i,2),Result2);
PPB(i) = B+1;
PPC(i) = C+1;

end

% Results
Namel = strings(length(L),1);
for i = 1:length(L)
Namel(i,1l) = ["L",num2str(i)];
end
Name2 = strings(length(Probe),1);
for i = 1:length(Probe)
Name2(i,1) = ["X1",num2str(i+1)];
end
TAB1 = table((Namel),L",XAB,XAC,PPA,PPB,PPC);
TABl.Properties.VariableNames = {"Name® "L" "XAB" "XAC" "PA" "PB" "PC"};
TAB2 = table((Name2),round(Probe,2));
TAB2.Properties.VariableNames = {"Name®™ "X1P"};
disp(TAB1)
disp(TAB2)
disp(["Probe Numer = *,num2str(ProbeNumber)])
disp(["Total Distance = ",num2str(round(TotalDistance,2)),"m"])
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