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ABSTRACT 

 

The logistic regression model is the most commonly used analysis method for modeling 

binary data. Unbiased estimation using logistic regressions heavily depends on strong model 

assumptions which are often violated in reality. The classification and regression tree (CART) 

algorithm gains its popularity to replace the logistic regression, because CART does not require 

model assumptions and can model complex relationships automatically. However, only limited 

studies developed multilevel CART (M-CART) algorithms for modeling multilevel data with 

binary outcomes. Therefore, in the first study, a new M-CART algorithm was proposed for 

modeling multilevel data with binary outcomes which combines the multilevel logistic 

regression (M-logit) and the single-level CART (S-CART) using an expectation-maximization 

algorithm. This proposed algorithm allows inclusion of covariates at all levels, depends on no 

model assumptions, and captures interaction and nonlinearity in an automatic way. The 

performance of the proposed M-CART was compared with M-CART, S-CART, and single-level 

logistic regression (S-logit) in terms of prediction accuracy. Results from simulation study 

showed that M-CART lead to higher classification accuracy, sensitivity, specificity and Klecka's 

tau values than all other three methods.   

In the second study, the proposed M-CART algorithm was applied in propensity score 

analysis (PSA) when having multi-site non-randomized control trials (non-RCTs). PSA is the 

most popular statistical technique that estimates the casual effect of a treatment by eliminating 

the systematic differences of pre-treatment covariates between individuals who receive treatment 

and individuals who do not receive treatment. M-logit and S-CART have been applied to 

estimate propensity scores, while no study has explored the performance of using M-CART for 
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estimation. Thus, in the second study, the performance of the proposed M-CART was compared 

with M-logit, S-CART, and S-logit in terms of covariate balance and treatment effect estimation. 

Results indicated that M-CART was more stable than the M-logit, S-CART and S-logit on 

achieving pre-treatment covariate balances and always yielded reasonable covariate balances 

over all conditions. Results further showed that, regardless of the PS conditioning approaches, 

M-CART yielded the least relative biases in the treatment effect estimations across all simulated 

conditions than other methods.  
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CHAPTER I  

INTRODUCTION  

 

During the past few decades, the use of multilevel models (Goldstein, 2011; Hox, 

Moerbeek, & van de Schoot, 2010) becomes an important trend for research in the behavioral 

science. For many situations, data naturally contain multilevel structures, with examples like 

students nested within classrooms and schools, employees within different organizations, and 

repeated test scores nested within individuals. Because observations in the same clusters share 

the same cluster-level characteristics, the assumption of independent observation required for 

single-level models is violated. Therefore, multilevel models are recommended and widely used 

nowadays to address the dependency issue in multilevel data (Aitkin & Longford, 1986). Using 

multilevel models, researchers can examine how covariates measured at each level affect 

outcome variables (Guo & Zhao, 2000). In addition, multilevel models control for clustering 

effects (Goldstein, 2011; Snijders, 2011) and yield more accurate parameter and standard error 

estimations than single-level models (Goldstein, 2011; Hox, 1998; Snijders, 2011). As a result, 

multilevel models provide more accurate confidence intervals and significance tests in general 

(Guo & Zhao, 2000). 

In many situations, multilevel data have binary outcomes, such as binary test results (i.e., 

passing or failing a test) of children who are nested within teachers, college enrollments for high 

school students who are nested within different high schools, and retention status of 

undergraduates nested within various majors. The multilevel logistic regression model (e.g., 

Rumberger, 1995; Sideridis, Antoniou & Padeliadu, 2008) is the most commonly used analysis 

method for this type of data. Unbiased parameter estimation using multilevel logistic regression 
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models heavily depends on very strong model assumptions, such as linearity between log odds of 

outcome variables and predictors, and non-collinearity among predictors (Hox, Moerbeek, & van 

de Schoot, 2010; McMahon, Pouget, & Tortu, 2006; Rodríguez, 2008). However, these 

assumptions are often violated in practice, especially in social and behavioral sciences.  

To overcome drawbacks of traditional statistical models such as logistic regression 

models, the classification and regression tree algorithms (CART, Breiman, Friedman, Olshen, & 

Stone, 1984), one of the most well-known data mining techniques, were recently introduced and 

applied in social and behavioral sciences (Lemon, Roy, Clark, Friedmann, & Rakowski, 2003). 

To apply to technique in multilevel data, several researchers extended single-level CART to 

multilevel CART (M-CART) which do not depend on model assumptions and control for 

clustering effects simultaneously (e.g., Lee, 2005; Zhang, 1998; Zhang & Ye, 2008). However, 

the majority of the existing M-CARTs do not allow the use of first-level covariates as predictors 

for modeling and are only suitable for multilevel data with repeated measures nested individuals  

(Hajjem, Bellavance, & Larocque, 2011; Sela & Simonoff, 2012). A few advanced M-CARTs 

are developed to overcome this limitation, but are only able to model multilevel continuous data 

(e.g., Hajjem, Bellavance, & Larocque, 2011; Sela & Simonoff, 2012). Therefore, the first goal 

of this dissertation is to develop a new M-CART which allows the inclusion of level-one 

covariates for modeling multilevel data with binary outcomes.  

The advantages of the new M-CART developed in this dissertation, such as the ability to 

handle a large number of covariates and minimal assumption requirement, make it a good choice 

for estimating propensity scores in multi-site non-randomized controlled trials (non-RCTs). In 

multi-site non-RCTs, individuals within each cluster are assigned non-randomly to either 

treatment or control groups (Dziak, Nahum-Shani, & Collins, 2012) which yields systematic 
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differences on pretreatment covariates between the two groups. With this systematic differences 

before treatment, it is invalid to conclude that the observed difference between two groups on the 

outcome variable after receiving intervention is only due to treatment effects. Thus, to draw 

causal inferences of treatment effects in such trials, the main issue is how to adjust for the 

pretreatment imbalance on covariates between the treated and controlled groups.  

Propensity score analysis (PSA) is the most popular statistical technique that estimates 

the casual effect of a treatment, policy, or other intervention by accounting for the imbalance of 

pre-treatment covariates between individuals who receive treatment and individuals who do not 

receive treatment (Austin, 2011). When employing PSA in multi-site non-RCTs (M-PSA), 

researchers often adopt either multilevel logistic regressions or single-level CARTs for 

estimating propensity scores (e.g., Thoemmes & West, 2011; Westreich, Lessler, & Funk, 2010), 

and use estimated propensity scores to balance pre-treatment covariates. However, multilevel 

logistic regressions may suffer from assumption violations and single-level CARTs ignore the 

clustering effects, both of which may result in biased propensity score estimations and lead to 

biased treatment effect estimates.  

The proposed M-CART algorithm overcomes the limitations of multilevel logistic 

regression models and single-level CART, therefore it is a good candidate to be considered in 

propensity score estimation in multi-site non-RCTs. Therefore, the second goal of the 

dissertation is to evaluate the performance of the proposed M-CART in propensity score 

estimation in multi-site non-RCT.  

To achieve the two goals, I conduct two studies in the dissertation. In the first study, I 

propose a multilevel CART algorithm for modeling multilevel data with binary outcomes which 

combines the multilevel logistic regression model and the single-level CART using expectation-



 

4 

 

maximization algorithm. This proposed algorithm controls for clustering effects and allows the 

inclusion of covariates at all levels. The performance of the proposed M-CART is compared with 

multilevel logistic regression, single-level CART, and single-level logistic regression in terms of 

prediction accuracy. In the second study, I apply the proposed M-CART to propensity score 

analysis in multi-site non-RCTs, and compare the performance of M-CART with multilevel 

logistic regressions, single-level CART, and single-level logistic regressions in terms of 

covariate balance and treatment effect estimation. 

  



 

5 

 

CHAPTER II  

A NEW MULTILEVEL CART ALGORITHM FOR MULTILEVEL DATA WITH BINARY 

OUTCOMES  

 

Introduction 

As the thrust of data mining, a few well-known data mining techniques have been 

introduced and applied to research in social sciences as alternatives to traditional statistic models 

recently (e.g., Baker, 2010; Finch, 2014). For example, the classification and regression tree 

(CART, Breiman, Friedman, Olshen, & Stone, 1984), a recursive partitioning method, is often 

used as an alternative to logistic regressions when predicting binary outcomes (Lee, Lessler, & 

Stuart, 2010).  

Compared to logistic regressions, CART has several desirable properties when handling 

binary data. First, CART does not require strong assumptions such as linearity between log odds 

of dependent variables and predictors, and non-collinearity among predictors. Second, it is a 

data-driven approach which automatically includes the significant variables and remove non-

significant ones (Timofeev, 2004), and is able to automatically capture non-linear and interaction 

terms (Lee, Lessler, & Stuart, 2010; Steinberg & Colla, 2009).  Third, CART is invariant to 

monotonic transformations of variables, such as logarithm or square root of variables 

(McLachlan, 2004; Steinberg & Colla, 2009). Fourth, CART is able to handle missing data using 

surrogate splits without extra imputation procedure (Deconinck, Hancock, Coomans, Massart, & 

Vander; 2005; Feelders, 1999; Verbyla, 1987).  

However, the majority of existing CART algorithms were developed only for single-level 

binary data. In education and other social sciences, multilevel data with binary outcomes are 
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even more common. For example, when predicting college students’ retention status, the data is 

likely to have a multilevel structure with students nested in various majors. Single-level CARTs 

(S-CARTs) do not take clustering effects in multilevel data into consideration. A limited number 

of studies attempt to extend S-CARTs to multilevel CARTs (M-CARTs) for modeling multilevel 

data with binary outcomes (e.g., Lee, 2005; Zhang, 1998). These existing M-CART algorithms 

mainly work for longitudinal data with repeated binary measures nested within individuals and 

do not allow time-varying (i.e. level-1) covariates (e.g., Lee, 2005; Zhang, 1998; Zhang & Ye, 

2008). This limits the use of the existing M-CARTs in multilevel data with individuals nested 

within groups, because, for person-in-group data, it is often that individual-level (level -1) 

covariates are significant predictors for modeling outcome variables.  

To fill in the gap and allow the use of individual-level covariates for prediction, I propose 

a new M-CART algorithm which combines the features of S-CARTs and multilevel logistic 

models (M-logits) using the expectation-maximization (EM) algorithm. Using Monte Carlo 

simulations, I evaluate the performance of the proposed M-CART algorithm for modeling 

multilevel data with binary outcomes. Specifically I am interested in the following research 

questions:  

1. Does the newly proposed M-CART algorithm yield better prediction than the M-logit, 

S-CART, and S-logit?  

2. How do different intra-class correlations (ICCs), sample sizes, and degrees of non-

linearity and interaction between outcomes and predictors impact the predictive performance of 

the M-CART, M-logit, S-CART, and S-logit?  
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In the following sections of the paper, I first briefly review M-logit, S-CART, and M-

CART algorithms. I then introduce the algorithm of the proposed M-CART and present the 

simulation study. Finally, I discuss the findings, implications, and limitations.  

Theoretical Framework 

Multilevel Logistic Regression  

In a given M-logit, a binary outcome 𝑌 with N observations nested within H clusters 

follows a Bernoulli distribution, conditional on random effects 𝑢. The probability of Y, indexed 

by π, satisfies the function below:  

𝐸(𝑌 |𝑢) = 𝑔(𝜋) = 𝑋𝛽 + 𝑍𝑢,                                                                                        (2.1) 

where 𝛽 is the vector of fixed effects. 𝑋 is the design matrix for 𝛽, 𝑢 is the vector of random 

effects which is assumed to have a multivariate normal distribution with mean (M) 0 and 

variance-covariance matrix Ω, Z is the design matrix for u, and g(.) is the logistic link function. 

In this M-logit, parameters are estimated by maximizing the marginal likelihood function as 

shown below 

𝐿(𝛽, Ω |𝑌) = ∫𝑃(𝑌|𝛽, 𝑢 )𝛷(𝑢| Ω) 𝑑𝑢,                                                                         (2.2) 

where 𝑃(𝑌|𝛽, 𝑢) is the conditional probability distribution of Y, 𝛷(𝑢| Ω) represents the normal 

density function of 𝑢.  

M-logits require strong model assumptions (Hox, Moerbeek, & van de Schoot, 2010; 

McMahon, Pouget, & Tortu, 2006; Rodríguez, 2008): (a) Observations between clusters are 

independent, whereas observations within clusters share auto-correlations. (b) Error terms at all 

levels are uncorrelated with predictors. (c) No multicollinearity exists among predictors. (d) 

Linearity should be found between logit of the outcome variable and predictors.  
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M-logits mathematically constrain probabilities in the [0, 1] range and are easily to be 

interpreted and understood (Kleinbaum & Klein, 2002). However, criticisms of using M-logits 

increase recently. First, as mentioned above, unbiased parameter estimations of fitting M-logits 

are based on strong statistic assumptions (Drake, 1993; McMahon, Pouget, & Tortu, 2006). In 

addition, M-logits are not applicable when the sample size is small, especially when the number 

of predictors are larger than the sample size (Jorgensen, 1983; Moineddin, Matheson, & Glazier, 

2007).  Moreover, researchers need to pre-define M-logit equations by including all considerable 

covariates (Bursac, Gauss, Williams, & Hosmer, 2008; D’Agostino Jr, 1998), which is 

problematic. Researchers who do not know the true models (the true models are never known in 

reality) might overlook significant predictors and potential non-linear and interaction terms when 

they pre-specify model equations. Thus, researchers should repeatedly revise models, which is a 

complex and error-prone process.  

CART  

A CART algorithm makes prediction by recursively partitioning data into groups based 

on a set of covariates. In general, it includes three steps. First, a given CART algorithm searches 

for every allowable splitting covariate and its cut-off value, and then selects the optimal one to 

categorize data into two most homogenous groups (i.e., two child nodes). This optimal splitting 

covariate and its cut-off value are chosen to guarantee that they maximize the similarity within 

nodes. A CART algorithm makes use of impurity-based measures to compute the magnitude of 

within-node similarity. Among various impurity-based measures (e.g., Breiman et al., 1984; 

Kearns & Mansour, 1999; Quinlan, 1987), Gini impurity (Breiman et al., 1984) is the most 

common choice for splitting when the outcome variable is binary (Hastie, Tibshirani & 
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Friedman, 2009; Timofeev, 2004). Gini impurity is based on the Gini gain function (Steinberg & 

Colla, 1995; Breiman et al., 1984) as below.  

𝛥𝑖(𝑡) = 𝑖(𝑡𝑝) − 𝑝𝑙[𝑖(𝑡𝑙)] − 𝑝𝑟[𝑖(𝑡𝑟)],                                                                           (2.3)            

where 𝑖(𝑡) = 1 − ∑ 𝑝1
𝑚=0 (𝑚|𝑡)2. p(m| t) is the conditional probability of outcome class m (m=0 

or 1 for binary data) in node t, 𝑡𝑙 and 𝑡𝑟 are the child nodes of the parent node 𝑡𝑝, 𝑝𝑙 and 𝑝𝑟 are 

probabilities of being assigned into the 𝑡𝑙 and 𝑡𝑟 over the 𝑡𝑝. The covariate and cut-off value that 

maximize the Gini gain function are considered as the optimal ones for node partitioning. 

 Second, the first step above is iteratively reapplied to each of the newly developed child 

nodes, creating a classification tree, until a given stopping criterion is triggered. A tree growing 

phase can stop when observations within every node all share the same outcomes values; the 

maximum tree depth are reached, the number of observations in a node is less than the minimum 

number preset, or the splitting result is not better than a certain error threshold pre-specified 

(Hayes, Usami, Jacobucci, & McArdle, 2015; Rokach & Maimon, 2005). In a classification tree, 

the first node is called the root node and nodes with no further child nodes are called terminal 

nodes or leaves.  

Third, to avoid overfitting, a fully grown tree is often pruned from leaves to the root in 

order to get the most parsimonious tree. The most commonly used pruning method for CART is 

the cost-complexity pruning (Breiman et al., 1984) which estimates the cost of trimming a set of 

subtrees using equation 2.4 and replaces subtrees with simple terminal nodes if trimming reduces 

cost.  

𝑅𝛼(𝑊)=𝑅(𝑊) + 𝛼|𝑊|,                                                                                                 (2.4) 
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where R(W)=∑ 𝑟
|𝑊|
𝑡=1 (𝑡)𝑝(𝑡), 𝑟(𝑡) =

𝐸𝑡

𝑁𝑡
, 𝑝(𝑡) =

𝑁𝑡

𝑁
. In this function, 𝐸𝑡 is the number of 

misclassified observations in node t, 𝑁𝑡 is the number of observations in node t, N is the total 

number of observations in tree W, |W| indicates the number of terminal nodes in tree W, and the 

complexity parameter α represents the cost of adding an extra node. For each observation in the 

final tree, the predicted probability of being assigned into the target class equals to the observed 

proportion of target classes within the terminal node it belongs to.  

Multilevel CART (M-CART)  

As an extension of S-CART, M-CART has a short history and mainly focuses on 

longitudinal data. The key idea of currently available M-CART algorithms is to modify impurity-

based measures by adding corrections for correlated observations within clusters. Segal (1992) 

and Larsen and Speckman (2004) build a M-CART for longitudinal continuous data by using 

Mahalanobis distance within each node as the impurity-based measure to compute within-node 

similarity for node partition. De’Ath (2002) and Abdolell, LeBlanc, Stephens, and Harrison 

(2002) adopt multivariate sum-of-square deviance within each node as the impurity measure in 

their M-CARTs. Zhang and his colleagues utilize log-likelihood of multivariate binary 

distributions as impurity measure for longitudinal binary data modeling (Zhang, 1998; Zhang & 

Ye, 2008). Lee (2005) apply Pearson residuals estimated from fitting marginal regression model 

into the impurity-based measure to find optimal split when having longitudinal binary outcomes.  

An important characteristic of the aforementioned methods is that they adjust auto-

correlations within nodes, which requests the repeated measures (correlated observations) of the 

same individuals being classified into the same nodes and therefore no time-varying covariates 

(level-1 covariates) being allowed (Segal, 1992; Hajjem, Bellavance & Larocque, 2011). That is, 
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repeated measures under the same individuals must be classified into the same nodes and 

assigned the same predicted outcomes. This characteristic severely limits the use of these M-

CART algorithms in modeling person-in-group multilevel data, because it is often necessary to 

predict the outcome using level-1 (i.e., individual-level) covariates and individuals in the same 

clusters are likely have different values on the outcome variable. It is unrealistic to classify all 

persons within the same clusters into the same nodes and assigned the same predicted outcomes.  

To overcome this problem and enable covariates at individual-level to be candidates in 

splitting process, a few researchers proposed M-CARTs that combine S-CARTs and multilevel 

linear models under the EM framework. This idea was initially launched by Hajjem, Bellavance, 

and Larocque (2011), and Sela and Simonoff (2012), and then modified by other researchers who 

replace CARTs with other decision tree algorithms which is beyond the scope of this study 

(detailed information can be found in Eo & Cho, 2014; Hajjem, Bellavance & Larocque, 2014; 

Loh & Zheng, 2013). These M-CARTs are more appropriate for person-in-group multilevel data, 

because person-level predictors can be used for splitting, and persons within the same clusters 

are allowed to be categorized into different nodes. Furthermore, studies have shown that these 

methods outperform multilevel linear regressions (Hajjem, Bellavance, & Larocque, 2011; Sela 

& Simonoff, 2012). However, these M-CARTs can only be applied to multilevel data with 

continuous outcomes. A M-CART algorithm that can overcome the limitation aforementioned 

for person-in-group multilevel data with binary outcomes is yet to be developed.  

The Proposed M-CART Algorithm 

Built on the work of Sela and Simonoff (2012), the proposed M-CART algorithm 

decompose a multilevel binary outcome into the fixed and the random components which are 

estimated using the S-CART and M-logit respectively. The estimated fixed and random 
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components are then combined and updated iteratively under the EM framework until 

convergence. The details of the proposed M-CART algorithm are described below.  

In a two level data set with N (j=1,2,3,…, N) observations nested within H clusters 

(j=1,1,3,…, H), there is a binary outcome 𝑌 that follows a Bernoulli distribution, conditional on 

random effects 𝑢. The probability of Y, π, is modeled as 𝐸(𝑌 |𝑢) = 𝑔−1(𝜋) = 𝑋𝛽 + 𝑍𝑢.  To 

predict Y, the proposed M-CART involves the following steps:  

1) Random effect component 𝑢 is initialized with a vector of values calculated as deviances 

between the grand mean (𝑌̅) and cluster means (𝑌𝑗̅). 

2) Fixed effects 𝑋𝛽 is extracted by subtracting the random effect component u from the 

outcomes, 𝑌 − 𝑍𝑢. Then the isolated 𝑋𝛽 part is modeled using S-CART with all 

covariates X, which creates a categorical indicator, Ind, to represent terminal nodes in the 

S-CART based tree, W. In the S-CART, Gini impurity and cost-complexity pruning are 

adopted.  

3) The Ind estimated in step 2 is used as a new and only covariate in the M-logit (equation 

2.5) to model the probability of y=1. Log-likelihood values are calculated using Laplacian 

approximation (Raudenbush, Yang, & Yosef, 2000). The random effect 𝑢 estimated in this 

step is then used in step 2 to update the fixed effect 𝑋𝛽.  

𝐸(𝑌 |𝑢) = 𝑔−1(𝜋) = 𝐼𝑛𝑑 𝜆 + 𝑍𝑢,                                                                     (2.5) 

4) Step 2 and 3 are iteratively executed until the change of log-likelihood values between two 

iterations is smaller than the pre-set tolerance value or the maximum iteration number is 

achieved. The tree and model parameters estimated in the last iteration, 𝑊′, 𝜆′, and 𝑢′,  are 

finalized as the final parameter estimations.   
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5) When predicting the outcome values of new cases, it needs to distinguish between two 

types of predictions. One type of prediction concerns a new unit in an existing cluster, and 

the other type concerns a new unit in a new cluster. When predicting a new unit in an 

existing cluster, the new case is classified into terminal nodes according to the output tree 

developed in the last iteration, 𝑊′, with a new terminal node indicator, 𝐼𝑛𝑑𝑛𝑒𝑤
′ , for those 

new cases. Then, the probability of being classified into the target class Y =1 for the new 

case is calculated using equation 2.5 with 𝐼𝑛𝑑 = 𝐼𝑛𝑑𝑛𝑒𝑤
′ , 𝜆 = 𝜆′, 𝑎𝑛𝑑 𝑢 = 𝑢′. When 

predicting a new unit in a new cluster, the marginal expectation can be used assuming the 

new cluster is sampled randomly. In this case, the random effect in equation 2.5 is 

replaced with 0 because the population mean of the random effects is zero.  

Simulation Study 

 To compare the performance of the proposed M-CART algorithm with the M-logit, S-

CART, and S-logit, a simulation study was conducted. I generated data based on 32 data 

conditions (4 sample sizes * 2 ICCs * 4 degrees of non-linearity and interaction) with 300 

replications in each condition. For each generated dataset, the 4 methods were employed, 

resulting in a total of 128 conditions (32 data conditions* 4 estimation methods). All data were 

generated and analyzed using R 3.2.4 (R Core Team, 2016).  

Data Generation 

Data sets were generated based on a two level random intercept model with a binary 

outcome variable 𝑌𝑖𝑗 (𝑌𝑖𝑗= 0 or 1), three level-1 predictors 𝑋1, 𝑋2, 𝑋3,  three level-2 predictors 

𝑋4, 𝑋5, 𝑋6, and their squared terms and interaction terms 𝑋1
2, 𝑋1𝑋2 , 𝑋4

2, and 𝑋4𝑋5. The 

relationship between 𝑌𝑖𝑗 and covariates was defined as shown in equation 2.6.  
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𝑙𝑜𝑔𝑖𝑡 (𝑌𝑖𝑗) =  𝛽0𝑗_𝑇 + 𝛽1𝑗_𝑇𝑋1 + 𝛽2𝑗_𝑇𝑋2 + 𝛽3𝑗_𝑇𝑋3 + 𝛽4𝑗_𝑇𝑋1
2 + 𝛽5𝑗_𝑇𝑋1𝑋2            (2.6) 

         𝛽0𝑗_𝑇 = 𝛾00_𝑇 + 𝛾01_𝑇𝑋4 + 𝛾02_𝑇𝑋5 + 𝛾03_𝑇𝑋6 + 𝛾04_𝑇𝑋4
2 + 𝛾05_𝑇𝑋4𝑋5 + 𝑢0𝑗_𝑇 

                     𝛽1𝑗_𝑇 = 𝛾10_𝑇  

         𝛽2𝑗_𝑇 = 𝛾20_𝑇  

⋮ 
         𝛽5𝑗_𝑇 = 𝛾50_𝑇.                                                                                                                                                                                   

Predictors 𝑋1 and 𝑋4 were continuous variables generated from a standard normal 

distribution, N (0, 1). Predictors 𝑋2 and 𝑋5 were also continuous variables and generated from a 

similar normal distribution with a slightly larger variance, N (0, 2). Predictors 𝑋3 and 𝑋6 were 

binary variables generated from a binominal distribution with the expected probability of .5. 

Slightly positive correlations between 𝑋3 and 𝑋6 (𝑟23 = .2) and between 𝑋2 and 𝑋4 (𝑟46 = .2) 

were allowed as Lee, Lessler, and Stuart (2011) set in their study. Level-2 random effects 𝑢0𝑗_𝑇 

was generated from a normal distribution with mean of 0 and variance 𝜎𝑢0𝑗_𝑇
2  of either 0.37 or 

1.41 depending on the different ICCs conditions which are explained in the following section.  

For model parameters (see Table 1), the intercept 𝛾00_𝑇 was fixed to 0 for simplicity. 

Regression coefficients 𝛾01_𝑇, 𝛾02_𝑇, 𝛾03_𝑇, 𝛾10_𝑇, 𝛾20_𝑇, and 𝛾30_𝑇 were set as 0.3 to reflect 

moderate effects on outcome Y (Martin, 2015; Yu, 2012). Regression coefficients for all 

nonlinear and interaction terms, 𝛾04_𝑇, 𝛾05_𝑇, 𝛾40_𝑇, and 𝛾50_𝑇, were set to be the same with 

values ranging from 0 to 0.9 to indicate different degrees of interaction and non-linearity. 
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Table 1 

Model Parameters Used across Different Degrees of Interaction and Non-linearity Scenarios  

Parameter  Scenario 1 Scenario 2 Scenario 3 Scenario 4 

𝛾00_𝑇 0 0 0 0 

𝛾01_𝑇 0.3 0.3 0.3 0.3 

𝛾02_𝑇 0.3 0.3 0.3 0.3 

𝛾03_𝑇 0.3 0.3 0.3 0.3 

𝛾04_𝑇 0 0.3 0.6 0.9 

𝛾05_𝑇 0 0.3 0.6 0.9 

𝛾10_𝑇 0.3 0.3 0.3 0.3 

𝛾20_𝑇 0.3 0.3 0.3 0.3 

𝛾30_𝑇  0.3 0.3 0.3 0.3 

𝛾40_𝑇  0 0.3 0.6 0.9 

𝛾50_𝑇  0 0.3 0.6 0.9 

 

Design Factors 

 Sample size. Sample size was manipulated via the number of clusters (Nc) and cluster 

size (Ns). Nc was set to be 30 or 50 which are commonly used in previous multilevel data 

modeling studies (Finch & French, 2011; Kwok, Luo & West, 2010; Maas & Hox, 2005; Jak, 

Oort & Dolan, 2013). The cluster size was set to be 65 and 125, in which 80% of data was used 

for training purpose (Ns-t was 52 and 100) and 20% for validation purpose (Ns-v was 13 and 25). 

These cluster sizes were chosen based on previous simulation studies (e.g., Finch & French, 

2011; Kwok, Luo & West, 2010; Maas & Hox, 2005) and the requirement of minimum cluster 

size of 50 for M-logits (Moineddin, Matheson, & Glazier, 2007). Combining the 4 sample size 

conditions, the total sample size N ranges from 1950 (65*30=1950) to 6250 (125*50=6250), 

covering a wide range of sample sizes.   

Conditional ICC. Conditional ICC was set to be .10 and .30, representing small and large 

clustering effects in educational settings (Hedges & Hedberg, 2007; Hox, Moerbeek, & van de 
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Schoot, 2010; Luo, Cappaert, & Ning, 2015). Based on the selected ICC values, the level-2 

variance 𝜎𝑢0𝑗_𝑇
2  was computed using the equation 𝐼𝐶𝐶 =  

𝜎𝑢0𝑗_𝑇
2

𝜎𝑢0𝑗_𝑇
2 +𝜎𝑒_𝑇

2  (Maas & Hox, 2005) where 

𝜎𝑒_𝑇
2  = 

𝜋2

3
 for M-logits (Snijders & Bosker, 1999). Therefore, 𝜎𝑢0𝑗_𝑇

2  was set to be 0.37 and 1.41 

for ICC of 0.1 and 0.3 respectively. 

 Degree of non-linearity and interaction. Regression coefficients for the nonlinear and 

non-additive terms, 𝛾04_𝑇, 𝛾05_𝑇, 𝛾40_𝑇, and 𝛾50_𝑇, were set to have four values 0, 0.3, 0.6 to 0.9 

to represent various degrees of nonlinearity and interaction effects (Table 1). When 𝛾04_𝑇 = 𝛾05_𝑇 

= 𝛾40_𝑇 = 𝛾50_𝑇 = 0, the true model was a linear regression model with only main effects. As the 

effects increased, the true model was increasingly dominated by the squared and interaction 

terms.   

Analysis  

     Every generated data set was partitioned into training and validation sets using random 

resampling without replacement within clusters. The training data sets were used for developing 

the M-CART, M-logit, S-CART, and S-logit models. The validation data sets were not exposed 

to model development, but only used to evaluate the output trees and regression models created 

in the training step.  

For all M-CARTs, S-CARTs, M-logits and S-logits, only the first-order terms (i.e., main 

effects) of the 6 predictors were used as independent variables. It means when true data 

generation models contained the nonlinear and interaction effects, the estimation models used for 

analyses were over-simplified models. This was to mimic real data modeling situations in which 

researchers do not have prior knowledge of nonlinear and interaction effects and tend to include 
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main effects only. It also allowed us to examine whether and how much the proposed M-CART 

is able to capture unspecified non-linear and interaction effects in an automatic way.  

For M-CARTs, the tolerance of change on log-likelihood values was set as 0.0001; the 

maximum number of iterations was 1000; the minimum number of observations that must exist 

in a node was 2; the complexity parameter 𝛼 used in pruning procedure was 0.01. These settings 

were also applied to S-CARTs, except for the tolerance of log-likelihood change which is not 

applicable for S-CARTs. For M-logit modeling, a random intercept model was used and 

estimated with Maximum likelihood with Laplacian approximation.   

Evaluation Criteria  

After obtaining the estimated trees and logistic regressions, the validation data sets were 

used for evaluating the performance of the estimated models. Four measures, classification 

accuracy, sensitivity, specificity, and Klecka's tau (τ, Klecka, 1980), were considered. 

Classification accuracy refers to the proportion of correctly classified observations. Sensitivity 

refers to the ability to correctly classify observations with positive outcomes (i.e., y=1). It equals 

the proportion of correctly classified y=1 observations out of all y=1 observations. Specificity 

measures the ability to correctly classify observations having negative outcomes (i.e., y=0). It 

equals the proportion of correctly classified y=0 observations out of all y=0 observations. Finally, 

Klecka's tau, ranging from 0 to 1, measures the degree of improvement on classification accuracy 

over a random allocation. Below is the equation for Klecka's tau: 

τ = 
𝑛𝑐𝑜𝑟−∑ 𝑝𝑚𝑛𝑚

1
𝑚=0

𝑁𝑣−∑ 𝑝𝑚𝑛𝑚
1
𝑚=0

                                                                                                         (2.7) 
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where ncor is the number of observations correctly classified, nm is the number of observations 

belonging to class m (m=0 or 1), 𝑁𝑣 is the number of total observations in the validation data set, 

and pm is the prior probability of class membership by chance which is 0.5 in our study.  

A factorial ANOVA with all main effects and interactions, and the effect size eta-squared 

(𝜂2) were also computed to investigate the impacts of these designed factors on the performance 

of  different estimation models in terms of classification accuracy, sensitivity, specificity, and  

tau. Eta-squared values 0.01, 0.06, and 0.14 were used to indicate small, moderate, and large 

effect sizes respectively (Cohen, 1998).   

Results 

Classification Accuracy 

The distribution of classification accuracy was shown in Figure 1. In total, 66.45% of the 

cases (M = 0.6645) were correctly classified averaging over all data conditions with standard 

deviation (SD) of 0.0619. ANOVA results showed that only the four main effects and the 

interaction between the degree of nonlinearity and interaction factor and the estimation method 

factor had meaningful effect sizes. Specifically, the estimation model factor had the largest effect 

on classification accuracy [F(3, 38268) =  2199.6523, p < 0.001] with effect size 𝜂2 of 0.1213. 

On average, as shown in Table 2, the M-CART algorithm produced higher classification 

accuracy than the M-logit model (accuracyM-CART = 0.6869 > accuracyM-logit = 0.6791), while the 

S-logit had the lowest classification accuracy (accuracyS-logit = 0.6308).  

ICC had a small to medium effect on classification accuracy [F(1, 38268) =  3033.1327, 

p < 0.001, 𝜂2 = 0.0527]. Shown in Table 2, as the increase of ICC, the classification accuracy 

increased for all estimation methods. For instance, when ICC increased from 0.1 to 0.3, the 

classification accuracy based on using the M-CART went up from 0.6728 to 0.7010.  
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The sample size factor yielded a small impact on classification accuracy [F(3, 38268) =  

365.0096, p < 0.001] with 𝜂2 equaled to 0.0190. Generally, the classification accuracy increased 

as the number of clusters and/or the cluster size raised for all estimation models (Table 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The overall performance based on four criteria values. 
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Even though the degree of nonlinearity and interaction factor also only had a small main 

effect [F(3, 38268) =  1656.7281, p < 0.001 with 𝜂2 equaled to 0.0288], but interaction between 

the degree of nonlinearity and interaction factor and the estimation model factor had a moderate 

to large effect size [F(3, 38268) =  2048.7180, p < 0.001, 𝜂2 = 0.1129]. When non-linearity and 

interaction effects were both zero, the M-logit and S-logit produced higher accuracy values on 

average than the corresponding CART algorithms (accuracyM-logit =0.6922 > accuracySlogit 

=0.6614 > accuracyM-CART = 0.6473 > accuracyS-CART = 0.6284). When the true models had small 

 

Table 2  

Classification Accuracy Mean Values by Different Design Factors  

Conditions M-cart  M-logit  S-cart  S-logit  

 M SD M SD M SD M SD 

ICC         

0.1 0.6728 0.0616 0.6659 0.0520 0.6501 0.0582 0.6269 0.0545 

0.3 0.7010 0.0582 0.6924 0.0551 0.6682 0.0587 0.6348 0.0570 
         

Nonlinearity & 

interaction 
        

0 0.6473 0.0606 0.6922 0.0524 0.6284 0.0529 0.6614 0.0501 

0.3 0.6772 0.0544 0.6795 0.0560 0.6413 0.0531 0.6396 0.0500 

0.6 0.7012 0.0561 0.6754 0.0595 0.6755 0.0541 0.6132 0.0530 

0.9 0.7220 0.0497 0.6694 0.0503 0.6915 0.0524 0.6091 0.0537 
         

Sample size         

30-65 0.6759 0.0719 0.6685 0.0697 0.6484 0.0691 0.6259 0.0680 

30-125 0.6897 0.0631 0.6826 0.0517 0.6626 0.0582 0.6329 0.0564 

50-65 0.6854 0.0581 0.6760 0.0505 0.6558 0.0549 0.6283 0.0536 

50-125 0.6967 0.0510 0.6896 0.0438 0.6699 0.0513 0.6362 0.0418 
         

Average 0.6869 0.0618 0.6791 0.0553 0.6592 0.0592 0.6308 0.0558 

 



 

21 

 

nonlinearity and interaction effects (i.e., 0.3), the M-CART and M-logit had similar classification 

accuracy (accuracyM-CART = 0.6772, accuracyM-logit = 0.6795) and both were more accurate than 

the S-CART and S-logit (accuracyS-CART = 0.6413, accuracyS-logit = 0.6396). As the nonlinearity 

and interaction effects increased to the highest level (i.e., 0.9), the M-CART showed higher 

classification accuracy than all the other three estimation methods (accuracyM-CART = 0.7220 > 

accuracyM-logit = 0.6694, accuracyS-CART = 0.6915 and accuracyS-logit = 0.6091).  

Sensitivity  

The distribution of sensitivity was shown in Figure 1. On average, 61.12% of cases 

whose observed outcome were y=1 were correctly predicted as y=1 across all data (M = 0.6112, 

SD = 0.1270). ANOVA results showed that only the four main effects and the interaction 

between the degree of nonlinearity and interaction factor and the estimation method factor had at 

least small effect sizes.  

The impact of the degree of nonlinearity and interaction factor had the largest effect size 

with 𝜂2 = 0.1375 [F(3, 38268) =  7005.5968, p < 0.001]. As the true data generation models 

became more nonlinear and non-additive, the sensitivity increased for all estimation models. For 

example, sensitivityM-CART increased from 0.5617 to 0.7193 and sensitivityM-logit increased from 

0.5822 to 0.6657 when the degree of nonlinearity and interaction increased from 0 to 0.9 (Table 

3).  

The estimation model factor had a moderate effect size on sensitivity with 𝜂2 equaled to 

0.0508 [F(3, 38268) = 834.1415, p < 0.001]. Averaging across all design factors, the M-CART 

had the highest sensitivity, followed by the M-logit, S-CART, and S-logit (sensitivityM-CART = 

0.6446 > sensitivityM-logit = 0.6211 > sensitivityS-CART = 0.6108 > sensitivityS-logit = 0.5703, Table 

3).  
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The sample size [F(3, 38268) = 241.8885, p < 0.001, 𝜂2 = 0.0142] and ICC [F(1, 38268) 

= 913.1552, p < 0.001, 𝜂2 = 0.0179] had only small effect sizes. As the sample size and ICC 

increased, the sensitivity increased slightly across all estimation models (Table 3).  

 

 

 

Table 3  

Sensitivity Mean Values by Different Design Factors  

Conditions M-cart   M-logit   S-cart   S-logit   

  M SD M SD M SD M SD 

ICC         
0.1 0.6237 0.1204 0.6009 0.1166 0.5954 0.1193 0.5580 0.1307 

0.3 0.6656 0.1088 0.6414 0.1136 0.6251 0.1143 0.5825 0.1518 

         
Nonlinearity & 

interaction         
0 0.5617 0.1151 0.5822 0.1243 0.5280 0.1096 0.5425 0.1232 

0.3 0.6133 0.1036 0.6007 0.1087 0.5730 0.1001 0.5516 0.1270 

0.6 0.6842 0.0882 0.6360 0.1128 0.6495 0.0946 0.5709 0.1479 

0.9 0.7193 0.0860 0.6657 0.0979 0.6905 0.0887 0.6161 0.1551 

         
Sample size         
30-65 0.6195 0.1334 0.5899 0.1308 0.5887 0.1332 0.5634 0.1515 

30-125 0.6540 0.1132 0.6316 0.1178 0.6194 0.1238 0.5754 0.1492 

50-65 0.6403 0.1091 0.6247 0.1106 0.6046 0.1071 0.5658 0.1361 

50-125 0.6647 0.1042 0.6384 0.0983 0.6283 0.1004 0.5765 0.1293 

         
Average 0.6446 0.1168 0.6211 0.1168 0.6103 0.1180 0.5703 0.1420 

 

The small interaction effect between the degree of nonlinearity and interaction factor and 

the estimation model factor was found [F(3, 38268) = 241.8885, p < 0.001, 𝜂2 = 0.0142]. When 

the true models had non-linearity & interaction equaled to 0, using the M-logit and S-logit 

produced slightly higher sensitivity means than the M-CART and S-CART respectively 



 

23 

 

(sensitivityM-logit = 0.5822 > sensitivityM-CART = 0.5617; sensitivityS-logit = 0.5425 > sensitivityS-

CART = 0.5280). Once the true relationship contains non-linearity and interaction, the M-CART 

outperformed the M-logit and S-CART, and the S-logit yielded the lowest sensitivity values. 

Specificity  

The distribution of specificity was shown in Figure 1. Across all data sets, around 

69.34% of cases whose observed outcome were y = 0 were correctly predicted as y = 0 (M = 

0.6934, SD = 0.1066). Same as before, only the four main effects and the interaction effect 

between the degree of nonlinearity and interaction factor and the estimation model factor were 

not trivial.   

The sample size, ICC, and estimation method factors affected specificity performance on 

the same way as they impacted classification accuracy (Table 4), but the effect sizes were all 

small [𝜂2 = 0.0190 for sample size,  𝜂2 = 0.0093 for ICC, and 𝜂2 = 0.0248 for estimation 

method]. The impact of the interaction on specificity was also the same as that on classification 

accuracy, but with a larger effect size [F(3, 38268) = 4437.3146, p < 0.001, 𝜂2 = 0.0920].  

The impact of degrees of nonlinearity and interaction on specificity had a moderate effect 

size (F(3, 38268) = 14.5058, p < 0.001, 𝜂2 = 0.0882), but this impact was different from that on 

classification accuracy (Table 4). For specificity, linear and additive models were associated the 

highest specificity values across all estimation models. As the models were increasingly 

dominated by non-linear and non-additive terms, the benefit of using CART algorithms, 

especially M-CART, increased. When having medium and large non-linearity and interaction, S-

CART even had larger specificity means than M-logits. 

Tau  
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The distribution of tau was shown in Figure 1. Averaging over conditions, prediction 

using models improved 35.11% predictive accuracy (M = 0.3511, SD = 0.1104) over using 

random allocations. Same as other criterion, only the main effects and the interaction between 

estimation methods and degrees of non-linearity and interaction had remarkable effect sizes.  

 

Table 4  

Specificity Mean Values by Different Design Factors 

Conditions M-cart   M-logit   S-cart   S-logit   

  M SD M SD M SD M SD 

ICC         
0.1 0.6917 0.0846 0.6981 0.1060 0.6801 0.0766 0.6730 0.1257 

0.3 0.7158 0.0872 0.7150 0.1105 0.6954 0.0885 0.6848 0.1461 

         
Nonlinearity & 

interaction         
0 0.7242 0.0801 0.7834 0.0759 0.6924 0.0821 0.7663 0.0910 

0.3 0.6887 0.0942 0.7148 0.0965 0.6779 0.0794 0.6994 0.1105 

0.6 0.6943 0.0854 0.6805 0.1052 0.6861 0.0832 0.6538 0.1277 

0.9 0.7079 0.0827 0.6476 0.1064 0.6947 0.0866 0.5963 0.1472 

         
Sample size         
30-65 0.6929 0.1062 0.6876 0.1276 0.6775 0.1018 0.6617 0.1495 

30-125 0.7053 0.0903 0.7101 0.1138 0.6919 0.0853 0.6861 0.1439 

50-65 0.6998 0.0787 0.7027 0.1005 0.6826 0.0756 0.6734 0.1326 

50-125 0.7172 0.0645 0.7258 0.0853 0.6991 0.0631 0.6946 0.1137 

         
Average 0.7048 0.0867 0.7066 0.1088 0.6878 0.0831 0.6789 0.1363 

 

Small effect sizes were found for both the sample size factor [F(3, 38268) = 339.8893, p 

< 0.001, 𝜂2 = 0.0188] and the degree of non-linearity and interaction factor [F(3, 38268) = 

1208.3781, p < 0.001, 𝜂2 = 0.0223]; Moderate effect sizes were found for the estimation method 
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factor [F(3, 38268) = 1564.7292, p < 0.001, 𝜂2 = 0.0879] and the ICC factor [F(1, 38268) = 

2234.3002, p < 0.001, 𝜂2 = 0.0418]; the interaction term had a large effect size with𝜂2 equaled 

to 0.1141 [F(3, 38268) = 2031.5126, p < 0.001]. Even though the magnitudes of these effect 

sizes were different from that on classification, the impact of these designed factors on tau (Table 

5) shared the same pattern as that on classification accuracy. 

 

Table 5  

Tau Mean Values by Different Design Factors 

Conditions M-cart   M-logit   S-cart   S-logit   

  M SD M SD M SD M SD 

ICC         
0.1 0.3629 0.1112 0.3362 0.0931 0.3225 0.1056 0.2790 0.0874 

0.3 0.4033 0.1099 0.4123 0.1007 0.3568 0.1082 0.3178 0.1025 

         
Nonlinearity & 

interaction         
0 0.3038 0.1038 0.4012 0.1021 0.2650 0.0907 0.3535 0.0987 

0.3 0.3714 0.0971 0.3746 0.1078 0.3152 0.0900 0.3069 0.0890 

0.6 0.4103 0.1031 0.3646 0.1039 0.3735 0.1023 0.2776 0.0887 

0.9 0.4469 0.0983 0.3567 0.0971 0.4049 0.0978 0.2556 0.0870 

         
Sample size         
30-65 0.3609 0.1282 0.3562 0.1172 0.3203 0.1191 0.2773 0.1020 

30-125 0.3893 0.1143 0.3799 0.1065 0.3447 0.1091 0.3072 0.1058 

50-65 0.3773 0.1071 0.3700 0.1014 0.3318 0.1022 0.2918 0.0921 

50-125 0.4048 0.0936 0.3909 0.0861 0.3619 0.0974 0.3173 0.0821 

         
Average 0.3831 0.1124 0.3742 0.1041 0.3397 0.1081 0.2984 0.0966 
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Discussion 

In this study, I proposed and evaluated a multilevel CART algorithm for predicting 

binary outcomes in the person-within-cluster design. The proposed method can handle covariates 

at all levels, accounts for the clustering effects in multilevel data and automatically captures the 

nonlinearity and interaction, therefore enhances prediction accuracy. 

Results indicated that M-CART outperformed S-CART in terms of classification 

accuracy, sensitivity, specificity, and tau, which is consistent with previous research that 

compared M-logits vs. S-logits (e.g., Guo & Zhao, 2000; Hox, 1998; Wong & Mason, 1985) and 

multilevel regression trees vs. single level regression trees (e.g., Hajjem, Bellavance & Larocque, 

2011; Hajjem, Bellavance & Larocque, 2014; Martin, 2015; Sela & Simonoff, 2012). In 

particular, Hajjem, Bellavance and Larocque (2011) found that multilevel regression trees with 

either random intercepts or random slopes outperformed single level regression trees. All of 

these findings highlight the importance of explicitly modeling higher-level random effects when 

making predictions of outcomes in multilevel data.  

Compared to multilevel logistic regression models, the proposed M-CART accounts for 

omitted nonlinear and interaction effects and has higher prediction accuracy as the degree of 

nonlinearity and interaction becomes high. The new M-CART proposed in this study inherits the 

advantage of CART algorithm which tests all possible nonlinearities and interaction terms, 

identifies significant ones, and prunes away the insignificant ones during the tree building 

process using Gini index and cost-complexity measure (Lee, Lessler, & Stuart, 2010; Steinberg 

& Colla, 2009; Timofeev, 2004). Our findings are corroborated by previous simulation studies 

which focus on continuous outcomes in multilevel data. Sela and Simonoff (2012) found that 

multilevel regression trees fitted multilevel continuous data better than multilevel linear 
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regressions when the data generation process is based on tree structures with non-linear and 

interaction relationship between predictors and outcomes.  Hajjem, Bellavance & Larocque 

(2014) compared random forest algorithm with linear regression models, and found that random 

forest algorithms yielded smaller prediction errors than linear regressions. Furthermore, CART 

algorithms are not only found to yield more accurate predictions than linear regression models, 

but also found to outperform linear regressions with stepwise covariate selection procedure or 

nonlinear regressions (e.g., Lemon, Roy, Clark, Friedmann, & Rakowski, 2003; Razi & 

Athappilly, 2005).    

The ability of CART to capture omitted nonlinearity and interaction effects have some 

ramifications. Our results showed that when the true relationship between covariates and the 

outcome was linear and additive, M-CART and S-CART resulted in worse prediction than the 

corresponding logistic regression models. Similar phenomenon was found in the study of Sela 

and Simonoff (2012) which showed that multilevel linear models had lower prediction error than 

multilevel regression trees when there was no non-linear or interaction effects. However, it is 

worth mentioning that in our study M-CART was close to M-logits in terms of sensitivity (2% 

difference) when the relationship is linear and additive, indicating M-CART can even recover the 

linear and additive true relationship fairly and has very strong capability to identify these cases 

with positive outcome (y =1).  

Implications and Limitations  

Overall, I demonstrated the usefulness of the proposed M-CART algorithm and therefore 

recommended to use this method when data conditions are similar to the ones simulated in this 

study, especially when the true relationships between covariates and outcomes are not as simple 

as linear and additive. Even in situations where the true relationships between covariates and 
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outcomes are more likely to be linear and additive, researchers can still use the proposed M-

CART algorithm because M-CART and M-Logits performed similarly in terms of the accuracy 

in predicting the occurrence of an event (i.e., sensitivity).  

All findings and implications should be considered in light of the limitations. The 

proposed M-CART algorithm has a few drawbacks. First, like all CART algorithms, the 

proposed M-CART has covariates selection bias. Covariates with more potential cut-off points 

are more likely to be chosen as splitting candidates. Hence, continuous covariates are more likely 

to be chosen than categorical covariates. Second, the structure of random effect component 

should be pre-defined. That is, when fitting M-CART, researchers need to make decision about 

the structure of random effect matrix.  
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CHAPTER III  

PROPENSITY SCORE ESTIMATION USING MULTILEVEL CART  

 

Introduction 

Causal inference has been a growing area of educational research. Randomized controlled 

trials (RCTs), the gold standard for drawing casual inference (Austin, 2011; Meldrum, 2000), are 

difficult and sometimes impossible to implement in educational research due to ethical and 

practical reasons. On the contrary, non-randomized controlled trials (non-RCTs), such as 

observational studies, are more widely used. Unlike RCTs, samples in non-RCTs are not 

randomly assigned into treatment and control groups, and therefore systematic difference might 

exist between treated and controlled groups.  

Traditionally, researchers rely heavily on the use of regression models to account for 

imbalances on pretreatment covariates (e.g, Altman, 2005; Pocock, Assmann, Enos, & Kasten, 

2002; Senn, 1989). Since the late 1990s, propensity score analysis (PSA, Rosenbaum & Rubin, 

1983) become the prevalent method for eliminating the imbalances (Thoemmes & Kim, 2011). 

PSA estimates treatment effects by conditioning on propensity scores (PSs) which refer to the 

conditional probabilities of assigning individuals into the treated group given a series of 

observed pretreatment covariates (Rosenbaum & Rubin, 1983). PSA has its advantages over 

using traditional regression models, such as allowing to summarize all covariates imbalances 

simultaneously into one single score (Perkins, Tu, Underhill, Zhou, & Murray, 2000) and 

isolating outcome prediction from modeling treatment assignment mechanism (McCaffrey, 

Griffin, Almirall, Slaughter, Ramchand, & Burgette, 2013; Rickles, 2012).  
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In the past, non-RCT studies where casual inferences are drawn from have been limited 

to single-level settings. Nowadays, increasing researchers are aware that the nature structure of 

data collected in those studies are often multilevel. To apply PSA into multi-site non-RCTs (M-

PSA), it is important to take into account clustering effects of data when estimating PSs. In 

single-level non-RCTs, estimating casual treatment effects via PSA assumes that the given 

treatment effect is stable across individuals regardless of what treatments are received by other 

individuals and how treatments are assigned (Stable-Unit-Treatment-Value assumption, Cox, 

1985; Rubin, 1978, 1980). This assumption becomes inevitably violated under M-PSA. For 

example, in a multi-site non-RCT, the impact of a new teaching strategy on students’ academic 

achievement is affected by not only different teachers who deliver the instruction (i.e., different 

intervention fidelities across teachers), but also students’ classmates due to the collective 

learning process (i.e., peer effects). That is, in multi-site non-RCTs, even though a given 

treatment effect is stable across individuals within the same clusters, it is more than often that the 

treatment effect varies across clusters. Failure to account for clustering effects in such case yields 

biased PSs and treatment effect estimations. However, M-PSA has not received enough attention 

from both a methodological as well as an applied perspective (Bellara, 2013). The estimation of 

PSs in multi-site non-RCTs (M-PSs) remains as using either single level logistic regressions (S-

logits) or multilevel logistic regressions (M-logits) for a long time without much development.  

As data mining techniques become increasingly popular, a few researchers recently 

started to adopt Classification and Regression Tree algorithm (CART, Breiman, Friedman, 

Olshen, & Stone, 1984), a promising data mining approach, for estimating PSs (e.g., Lee, 

Lessler, & Stuart, 2010; Westreich, Lessler, & Funk, 2010). CART overcomes drawbacks of 

logistic regressions (Timofeev, 2004; Westreich, Lessler, & Funk, 2010) and is more appropriate 
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than some other data mining techniques for PSA (Lee, Lessler, & Stuart, 2010). However, the 

use of CART for PSs estimation is still at its infancy. More important, no multilevel CART 

algorithm (M-CART) has been applied for estimating M-PSs. To fill in this research gap, in this 

study, the M-CART algorithm proposed in chapter II is employed for estimating M-PSs and its 

performance is examined. In the following sections, the related theoretical framework is 

presented first, including the treatment effects and PSA in multi-site trials. Then, a simulation 

study is conducted to compare the performance of four M-PS estimation methods, M-CART, M-

logit, single level CART (S-CART), and S-logit, in M-PSA across different simulation 

conditions. This study serves to answer the following questions: 

1. How do M-PS estimation methods interacting with simulated conditions impact the 

balances of covariates for different M-PS estimation methods?  

2. How do M-PS estimation methods interacting with simulated conditions impact the 

estimations of treatment effects conditioning on different types of M-PS estimations?  

Theoretical Framework 

Rubin’s Causal Model in Multi-site Trials   

Rubin’s causal model (Rubin, 1974, 1976, 1978, 1980, 2005) is the most popular model 

for defining casual treatment effects for a wide variety of disciplines including education 

(Rickles & Seltzer, 2014). Based on Rubin’s casual model, the casual treatment effect of a given 

intervention for an individual is measured as the difference of potential outcomes if this 

individual would participate in both treatment (T = 1) and control (T = 0) conditions (assume two 

intervention assignments).  

To extend the Rubin’s casual model to the multi-site trials, I focus on a two-level 

structure where N individuals (i = 1, 2,…, N) are nested within H clusters (j =1, 2,…, H). A 
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individual i nested within j cluster has pretreatment covariates 𝑋𝑖𝑗 measured at both the 

individual level (𝑈𝑖𝑗) and the cluster level (𝑉𝑗) [i.e., 𝑋𝑖𝑗 = (𝑈𝑖𝑗, 𝑉𝑗)], and two potential outcomes 

𝑌𝑖𝑗(1) and 𝑌𝑖𝑗(0) associated with two treatment assignments 𝑇 = 1 and 𝑇 = 0. The population 

average treatment effect (ATE) is expressed as   

𝛿𝐴𝑇𝐸 = 𝐸{𝐸 [𝑌𝑖𝑗(1)| 𝑗 − 𝑌𝑖𝑗 (0)| 𝑗]},                                                                           (3.1)    

where 𝑌𝑖𝑗(1)|𝑗 is the potential outcome value of the i individual nested within cluster j if this 

individual receive the treatment and 𝑌𝑖𝑗  (0)| 𝑗  is the potential outcome value of the same 

individual if he/she do not receive the treatment.  

Since a given individual can only be exposed to one experimental condition, 𝑌𝑖𝑗(1) and 

𝑌𝑖𝑗(0) can never be measured at the same time for any individual, which causes a problem in 

estimation. In multi-site RCTs where the treated and controlled groups are homogeneous on pre-

treatment covariates X due to randomization, 𝐸 [𝑌𝑖𝑗(1)| 𝑗 − 𝑌𝑖𝑗  (0)| 𝑗] can be simply considered 

as the expected difference on outcomes between treatment and control groups within cluster j. So 

in multi-site RCTs, ATE can be defined as  

𝛿𝐴𝑇𝐸 = 𝐸 {𝐸 [𝑌(1)| 𝑗] − 𝐸[𝑌(0)| 𝑗]}.                                                                           (3.2) 

However, in multi-site non-RCTs, individuals in treatment and control groups are heterogeneous 

on X. Therefore, researchers should first adjust for the imbalances of X between groups in order 

to estimate treatment effects using equation 3.2.  

Propensity Score Analysis in Multi-site Non-RCTs  

In multi-site non-RCTs, an M-PS is defined as the conditional probability 𝜋𝑖𝑗 of an 

individual i nested within cluster j receives the treatment intervention, given pretreatment 

covariates 𝑋𝑖𝑗 [𝑋𝑖𝑗 = (𝑈𝑖𝑗, 𝑉𝑗)]. That is, 𝜋𝑖𝑗 = p (T = 1| Xij), where 0 < 𝜋𝑖𝑗 < 1 (Hong, 2004). The 
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estimated M-PSs are considered as balancing scores, meaning that treated and control individuals 

with the same M-PSs are considered as homogeneous given X. M-PSA is built on two 

assumptions. The first assumption is strongly ignorable treatment assignment, indicating that the 

treatment assignment is not a function of that individual’s potential outcome conditional on 

covariates, T⊥ [𝑌(1), 𝑌(0)]|𝑋, (Rosenbaum & Rubin, 1983). The second assumption is 

multilevel exchangeability assumption, assuming that treatment effects are exchangeable not 

only within but also across treatment conditions (Hong, 2004; Hong & Raudenbush, 2006). M-

PSA, following the similar procedure used in single level PSA, includes covariates selection, PS 

estimation, PS conditioning, balance diagnosis, and treatment effect estimation. 

Covariates selection. A PSA can only be as good as the covariates that are presented to 

researchers (Thoemmes & Kim, 2011). Many studies have explored the question of what 

covariates are important to be included in estimating PSs, and the most fundamental suggestion 

they provide is to include all confounding variables which are significantly correlated with both 

outcomes and treatment assignments (e.g., Austin, 2011; Emsley, Lunt, Pickles, & Dunn, 2008; 

Harder, Stuart, & Anthony, 2010; Millimet & Tchernis, 2009; Rosenbaum & Rubin, 1984). 

PS estimation. In existing literature, three types of logistic regression models are 

commonly used for estimating M-PSs. (a) Single level logistic regression models with cluster-

level covariates (e.g., Rosenbaum, 1986). This type of models is widely used in the past but has 

been demonstrated to be ineffective on achieving covariate balances and estimating treatment 

effects because it fails to control for clustering effects (Thoemmes & West, 2011; Kim & Seltzer, 

2007). (b) Fixed effect logistic regressions with dummy-coded cluster memberships as covariates 

(e.g., Leite et al., 2015; Rosenbaum, 1986; Thoemmes & West, 2011). This type of regressions 

accounts for clustering influence and therefore outperforms single level logistic regressions 
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(Arpino & Mealli, 2011; Yu, 2012). However, the increase of cluster numbers causes the degrees 

of freedom to be decreased which would be troublesome (Rosenbaum, 1986). (c) Multilevel 

logistic regressions (e.g., Arpino & Mealli, 2011; Hong & Raudenbush, 2005; Kelcey, 2009; 

Kim & Seltzer, 2007, Yu, 2012). Previous studies show that M-logits produce more accurate M-

PSs and less biased treatment effects than the other two estimation methods (e.g., Kelcey, 2009; 

Li, Zaslavsky, & Landrum, 2013; Rickles, 2012 ; Su & Cortina, 2009; Thoemmes & West, 2011; 

Yu, 2012), because M-logits control for the effect of clustering (Thoemmes & West, 2011), 

adjust standard errors properly (Raudenbush & Bryk, 2002), and allow modeling complex 

treatment assignment mechanisms to reflect realistic study designs (Kelcey, 2009).  

The use of logistic regressions has its attractions of a) mathematically constraining 

probabilities in the range [0, 1] (Kleinbaum & Klein; 2002); b) easily converging on parameter 

estimations (Westreich, Lessler, & Funk, 2010); (c) being implemented in most statistical 

packages (Westreich, Lessler, & Funk, 2010); (d) being widely known and understood by 

researchers. However, using logistic regressions for M-PSA has been criticized. First, logistic 

regressions require strong model assumptions, especially multilevel logistic regressions. For 

example, the log odds of the outcome should be linearly related with covariates; random effects 

should be uncorrelated with covariates at all levels (Hox, Moerbeek, & van de Schoot, 2010; 

McMahon, Pouget, & Tortu, 2006). If any model assumption is violated, covariate balances and 

unbiased treatment effects estimation may not be achieved (Drake, 1993). Second, M-PSA via 

logistic regressions might not be applicable when the number of pretreatment covariates is larger 

than the number of samples (Breiman, 2001). Third, using logistic regressions requires 

researchers to predefine model equations (Bursac, Gauss, Williams, & Hosmer, 2008; 

D’Agostino Jr; 1998; Lee, Lessler, & Stuart, 2010). In other word, when logistic regressions are 
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chosen to estimate M-PSs, researchers need to clearly know the true treatment assignment 

mechanism and correctly specify the relationship between treatment assignment and covariates, 

which are unknown in reality. 

The CART algorithm is a relatively new method for replacing logistic regressions in PSA 

(Westreich, Lessler and Funk, 2010). It does not request strong model assumptions that are 

required for logistic regressions, such as independence of residuals, non-collinearity among 

predictors. Also, it is a data-driven method which automatically includes the significant variables 

and remove non-significant ones (Timofeev, 2004), and is able to automatically capture non-

linear and non-additive terms (Lee, Lessler, & Stuart, 2010; Steinberg & Colla, 2009). Except for 

these well-known advantages of using CART, CART also has its specific merits when estimating 

PSs. First, CART is widely found to outperform logistic models when dealing with a large 

number of covariates, which is an importance feature since PSA typically requires many 

pretreatment covariates (Westreich, Lessler, & Funk, 2010). Second, CART explicitly reports the 

probability (i.e., PS) of an observation being assigned into the treatment group (Westreich, 

Lessler, & Funk, 2010). Not all data mining techniques can export probability values as clear as 

CART.  

So far, only a few simulation studies (e.g., Pirracchio, Petersen, & van der Laan, 2014; 

Setoguchi, Schneeweiss, Brookhart, Glynn, & Cook, 2008; Lee, Lessler, & Stuart, 2010) 

compare the performance of logistic regressions and CART when conducting PSA. These studies 

generally support that logistic regressions outperform CART only when the true association 

between covariates and assignment is additive and linear (i.e., models with only main effects). 

As models become more and more complex, CART results in more accurate estimations of 

treatment effects compared to logistic regressions. In reality, the relationship between treatment 
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assignment and covariates is typically much more complicated than linear and additive 

association due to the complexity of treatment allocation mechanism. While, researchers who 

never know the true relationship tend to create overly simplified models by falsely assuming a 

linear and/or additive relationship between covariates and treatment in PSA (Thoemmes & Kim, 

2011). Therefore, the CART algorithm is considered as a new and promising approach for PSA.  

However, all of these comparison studies are under single-level settings. The comparison on 

performance based on using multilevel CART and multilevel logistic regressions in M-PSA is 

rarely examined.  

PS conditioning. Conditioning is a step of utilizing estimated M-PSs to adjust the 

systematic difference between treatment and control groups on X. There are two main categories 

of conditioning. One is to make an adjustment prior to calculating treatment effects, such as 

matching (Arpino, B., & Mealli, 2011; Rosenbaum & Rubin, 1985) and stratification 

(Rosenbaum & Rubin, 1984; Xiang & Tarasawa, 2015). The other category is to balance 

pretreatment covariates while estimating treatment effects, such as covariates adjustment using 

PS (Rosenbaum & Rubin, 1983) and inverse probability of weighting (IPTW, Rosenbaum, 1987; 

Li, Zaslavsky, & Landrum, 2013). There is no conditioning approach that outperforms others 

across all situations. Propensity score matching excels when the treated group is contained within 

a larger control pool (Hade & Lu, 2014), but any unmatched individuals would be discarded and 

removed from treatment effect estimations. Stratification keeps all individuals, but it has been 

found to have greater biases than matching and IPWT on treatment effect estimations (Austin, 

2009; Austin, Grootendorst, & Anderson, 2007; Austin & Mamdani, 2006; Lunceford & 

Davidian, 2004). Covariate adjustment approach also includes all individuals and is preferred 

only when treated and control groups have narrow overlap on PS distribution (Hade & Lu, 
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2014). IPTW leads to large biases when individuals have extreme low or high PSs (Austin, 

2011). Overall, matching and covariates adjustment using PS are the two most frequently used 

techniques according to reviews (Hade & Lu, 2014; Thoemmes & Kim, 2011).  

M-PS conditioning can be conducted either within (conditioning within clusters, CWC) 

or across clusters (conditioning across clusters, CAC). CWC indicates that the conditioning 

procedure is conducted within each cluster, while CAC allows an individual in a cluster be 

paired with a similar individual from other clusters. Generally, CWC is ideal because it ensures 

covariate balances and unbiased treatment effects within clusters and provides a good control for 

cluster-level covariates simultaneously (Lingle, 2009; Thoemmes, 2009; Thoemmes & West, 

2011).  

Balance diagnosis. After conditioning, it needs to examine whether the balance on every 

covariate between treated and controlled groups is achieved. Balances diagnosis is often assessed 

by measures of effect size. Standard mean difference (Δ, Cohen, 1988), also known as Cohen’s 

d, is the most commonly used effect size measure for diagnosing balance (Rosenbaum & Rubin, 

1985). It is defined as the mean difference of a given covariate between treated and controlled 

groups, divided by standard deviation. Guidelines indicate that Δ = 0.25 represents reasonable 

cut-off for acceptable standardized biases (Bellara, 2013; Rosenbaum & Rubin, 1985; Stuart, 

2010).  

Treatment effect estimation. Treatment effect estimations are various according to the PS 

conditioning approaches chosen. For example, when matching or stratification conditioning 

approaches is used, treatment effects can be estimated directly as the mean difference of outcome 

variable Y between paired treated and controlled individuals (Imbens, 2004). When IPTW is 

selected, the treatment effect is calculated as the weighted mean difference between all treated 
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and controlled individuals (Lanza, Moore, & Butera, 2013). When using covariate adjustment 

approach, the outcome variable is regressed on the estimated M-PSs and an indicator variable 

denoting the treatment assignment, so that the casual effect of treatment effect is estimated 

controlling for M-PSs (Austin, 2011).  

Simulation Study 

In this simulation study, I compared the performance of M-CART algorithm proposed in 

previous chapter with M-logit, S-CART, and S-logit for estimating PSs when having multi-site 

non-RCTs. Data sets were generated to mimic two-level multi-site non-RCTs with 24 data 

generation conditions (2 conditional intra-class correlations * 3 degrees of nonlinearity and non-

additivity relationships between X and T *4 sample sizes). For each generated data set, the four 

M-PS estimation methods combined with 2 different conditioning approaches were applied. So, 

in total, 192 situations (24 data conditions * 4 estimation methods * 2 conditioning approaches) 

with 300 replications in each situation were analyzed. Both data generation and analysis were 

conducted via R 3.2.4 (R Core Team, 2016).  

Models and Fixed Parameters for Data Generation  

Data generation in this study included generating the treatment assignment T, true M-PSs 

π, outcome variable Y, and pretreatment covariates X in multi-site non-RCT design. Parameters 

used in data generation followed the simulation studies of Bellara (2013) and Lee, Lessler, and 

Stuart (2010).  

Treatment assignment. Each simulated dataset contained N number of individuals (i = 

1,2,…, N) who were nested within H number of clusters (j =1,2,…, H). Because in multi-site 

non-RCTs, the treatment assignment should be assigned at individual level, N numbers of T were 

generated from a Bernoulli distribution with expected probability of 0.5 which ensured that, on 
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average, half of samples received the treatment intervention (T =1) and the other half received 

the control intervention (T =0). 

Covariates. 10 covariates were simulated including both individual and cluster level 

variables (Table 6). The individual level covariates contained 6 covariates (U1, U2,…, U6) 

correlated to both treatment and outcome variables, and 1 covariate U7 only associated with the 

 

Table 6  

All Variables Generated in This Simulation Study 

Variable Distribution Covariate  Level Relationship 

T Binominal (p=.5) individual level   

Y Normal (M=0, SD=1) individual level   

𝑈1 Binominal (p=.5) individual level  associated with both T and Y 

𝑈2 Normal (M=0, SD=1) individual level  associated with both T and Y 

𝑈3 Normal (M=0, SD=1) individual level  associated with both T and Y 

𝑈4 Normal (M=0, SD=1) individual level  associated with both T and Y 

𝑈5 Normal (M=0, SD=1) individual level  associated with both T and Y 

𝑈6 Normal (M=0, SD=1) individual level  associated with both T and Y 

𝑈7 Normal (M=0, SD=1) individual level  associated with Y 

𝑉1 Normal (M=0, SD=1) cluster level  associated with both T and Y 

𝑉2 Binominal (p=.5) cluster level  associated with both T and Y 

𝑉3 Normal (M=0, SD=1) cluster level  associated with Y 

 

outcome. The cluster level had 2 covariates (V1, V2) correlated to both treatment and outcome 

variables and 1 outcome-associated covariate (V3). In these 10 covariates, U1 and V2 were 

dichotomous variables generated from a binominal distribution with an expected probability of 

.5. The rest 8 covariates were continuous variables falling into standardized normal distributions. 
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True M-PS. A two-level logistic regression model with random slopes 𝑢 was used for 

generating the true M-PSs, in which main effects, quadratic terms, and interaction terms of U1, 

U2,…,U6, V1, and V2, were used as covariates:  

𝑙𝑜𝑔𝑖𝑡 (𝑇𝑖𝑗) = 𝛽0𝑗_𝑇 + 𝛽1𝑗_𝑇𝑈1𝑖𝑗 + 𝛽2𝑗_𝑇𝑈2𝑖𝑗 + ⋯+ 𝛽6𝑗_𝑇𝑈6𝑖𝑗                                     (3.3) 

+ 𝛽7𝑗_𝑇𝑈2𝑖𝑗
2+ 𝛽8𝑗_𝑇𝑈3𝑖𝑗

2+ 𝛽9𝑗_𝑇𝑈4𝑖𝑗
2    

+𝛽10𝑗_𝑇𝑈1𝑖𝑗𝑈2𝑖𝑗 + 𝛽11𝑗_𝑇𝑈3𝑖𝑗𝑈4𝑖𝑗 + 𝛽12𝑗_𝑇𝑈5𝑖𝑗𝑈6𝑖𝑗 + 𝛽13𝑗_𝑇𝑈2𝑖𝑗𝑈4𝑖𝑗𝑈6𝑖𝑗 

𝛽0𝑗_𝑇 = 𝛾00_𝑇 + 𝛾01_𝑇𝑉1𝑗 + 𝛾02_𝑇𝑉2𝑗 + 𝛾03_𝑇𝑉1𝑗
2+ 𝛾04_𝑇𝑉1𝑗𝑉2𝑗 + 𝑢0𝑗_𝑇 

𝛽1𝑗_𝑇 = 𝛾10_𝑇 + 𝛾11_𝑇𝑉1𝑗 + 𝛾12_𝑇𝑉2𝑗 + 𝛾13_𝑇𝑉1𝑗
2 + 𝑢1𝑗_𝑇    

𝛽2𝑗_𝑇 = 𝛾20_𝑇 + 𝛾21_𝑇𝑉1𝑗 + 𝛾22_𝑇𝑉2𝑗 + 𝛾23_𝑇𝑉1𝑗𝑉2𝑗 + 𝑢2𝑗_𝑇     

𝛽3𝑗_𝑇 =  𝛾30_𝑇 + 𝑢3𝑗_𝑇        

𝛽4𝑗_𝑇 =  𝛾40_𝑇  

 ⋮ 

𝛽13𝑗_𝑇 =  𝛾13 0_𝑇. 

The grand mean 𝛾00_𝑇 was fixed as 0. All coefficients of main effects for level-1 covariates were 

fixed as 0.2 (𝛾10_𝑇 = 𝛾20_𝑇 = 𝛾30_𝑇 = 𝛾40_𝑇 = 𝛾50_𝑇 = 𝛾60_𝑇 = 0.2, Table 7) and coefficients of 

main effects for level-2 covariates were set to be 0.4 (𝛾01_𝑇 = 𝛾02_𝑇 = 𝛾11_𝑇 = 𝛾12_𝑇 = 𝛾21_𝑇 = 

𝛾22_𝑇 = 0.4). Coefficient values of quartic and interaction terms varied to indicate different 

degrees of nonlinearity and interaction between T and X (details are described in the next 

section). The level-2 random effect u was generated from a multivariate normal distribution, 



 

41 

 

MVN ~ (0, 

[
 
 
 
 
𝜎𝑢0𝑗_𝑇

2 = 0.37/1.41 0 0 0

0 𝜎𝑢1𝑗_𝑇
2 = 0.5 0 0

0 0 𝜎𝑢2𝑗_𝑇
2 = 0.5 0

0 0 0 𝜎𝑢3𝑗_𝑇
2 = 0.5]

 
 
 
 

). The 𝜎𝑢𝑜_𝑇
2  was 

set to be either 0.37 or 1.41 to represents different conditional intra-class correlations (ICCs).  

 

Table 7 

Values of Parameters Used in Different Degrees of Non-additivity and Non-linearity 

Parameter  Scenario 1 Scenario 2 Scenario 3 

𝛾00_𝑇 0 0 0 

𝛾01_𝑇 0.4 0.4 0.4 

𝛾02_𝑇 0.4 0.4 0.4 

𝛾03_𝑇 0 0.4 0.6 

𝛾04_𝑇 0 0.4 0.6 

𝛾10_𝑇 0.2 0.2 0.2 

𝛾11_𝑇 0 0.4 0.6 

𝛾12_𝑇 0 0.4 0.6 

𝛾13_𝑇 0 0.4 0.6 

𝛾20_𝑇 0.2 0.2 0.2 

𝛾21_𝑇 0 0.4 0.6 

𝛾22_𝑇 0 0.4 0.6 

𝛾23_𝑇 0 0.4 0.6 

𝛾30_𝑇  0.2 0.2 0.2 

𝛾40_𝑇  0.2 0.2 0.2 

𝛾50_𝑇  0.2 0.2 0.2 

𝛾60_𝑇  0.2 0.2 0.2 

𝛾70_𝑇  0 0.2 0.4 

𝛾80_𝑇  0 0.2 0.4 

𝛾90_𝑇  0 0.2 0.4 

𝛾10 0_𝑇  0 0.2 0.4 

𝛾11 0_𝑇  0 0.2 0.4 

𝛾12 0_𝑇  0 0.2 0.4 

𝛾13 0_𝑇  0 0.2 0.4 
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Outcome variable. The Y was generated from a two-level random slope model to reflect 

the impact of the T and X on the Y. In this model, Y was regressed on 2 covariates that only 

associated with Y, and the true π. The π was included in this model to make sure that all the 

main, quadratic and interaction terms defined in the M-PS generating model (equation 3.3) 

impacted both T and Y and therefore were true confounders.   

𝑌𝑖𝑗= 𝛽𝑜𝑗_𝑇
𝑌 + 𝑇 ∗ 𝛿+𝛽1𝑗_𝑇

𝑌 𝑈7𝑖𝑗+𝛽2𝑗_𝑇
𝑌  𝜋𝑖𝑗 +  𝑒𝑖𝑗_𝑇

𝑌                                                            (3.4) 

𝛽𝑜𝑗_𝑇
𝑌 = 𝛶00_𝑇

𝑌 + 𝛶01_𝑇
𝑌 𝑉3𝑗 + 𝑢0𝑗_𝑇

𝑌    

𝛽1𝑗_𝑇
𝑌 =𝛶10_𝑇

𝑌 + 𝑢1𝑗_𝑇
𝑌  

𝛽2𝑗_𝑇
𝑌 = 𝛶20_𝑇

𝑌  

The grand mean 𝛶00_𝑇
𝑌  was 0. The coefficient for the level-1 pretreatment covariate,𝛶10_𝑇

𝑌 , was set 

as 0.2 and the coefficient for the level-2 pretreatment covariate, 𝛶01_𝑇
𝑌  was 0.4. The impact of M-

PSs on Y was fixed as 0.5 (i.e., 𝛶20_𝑇
𝑌  = 0.5). The true treatment effect 𝛿 was fixed as 0.5. The 

level-1 residual was synthetized from a standard normal distribution. The level-2 random effect 

was generated from a multivariate normal distribution, MVN ~ (0, 

[

𝜎
𝑢0𝑗_𝑇

𝑌
2 

= 0.25 0

0 𝜎
𝑢1𝑗_𝑇

𝑌
2 

= 0.25
]), so that the conditional ICC = .20 indicating moderate 

clustering effects existed in Y. 

Design Factors 

Conditional ICC in the M-PS model. Conditional ICCs in the M-PS model were 

manipulated through the variance of random effects 𝜎𝑢0𝑗
2 . ICCs were set as .10 and .30, which 

represented small and large clustering effects in educational settings (Hedges & Hedberg, 2007; 
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Hox, Moerbeek, & van de Schoot, 2010; Luo, Cappaert, & Ning, 2015). Since 𝐼𝐶𝐶 =  
𝜎𝑢0𝑗

2

𝜎𝑢0𝑗
2 +𝜎𝑒

2 

(Maas & Hox, 2005) and 𝜎𝑒_𝑇
2  = 

𝜋2

3
 which is the default scaling value for all M-logits (Snijders & 

Bosker, 1999), 𝜎𝑢0𝑗_𝑇
2  was set to be 0.37 and 1.41 to guarantee that ICC could be 0.1 and 0.3 

respectively. 

 Degree of nonlinearity and interaction. For the M-PS generation model (equation 3.3), 

three scenarios were considered to indicate three types of relationship between T and X (Table 3). 

The M-PS model used in scenario 1 contained only main effects with all coefficients for 

nonlinear and interaction terms as 0 and coefficients for main effects were defined as mentioned 

before. In scenario 2, small degree of nonlinearity and interaction was allowed. In this scenario, 

coefficients for main effects kept the same, coefficients for level-1 and level-2 nonlinear and 

interaction terms were set to be 0.2 and 0.4 respectively. In scenario 3, large degree of 

nonlinearity and interaction was simulated. Coefficients for main effects were still the same, but 

the coefficients for level-1 and level-2 nonlinear and interaction terms increased to 0.4 and 0.6 

respectively. From scenario 1 to 3, the relationship between X and T was increasingly dominated 

by nonlinear and interaction terms.   

Sample size. Different number of clusters (Nc) and cluster sizes (Ns) were simulated. Nc 

were 15 and 30 to indicate small and moderate number of clusters (e.g., Finch & French, 2011; 

Kwok, Luo & West, 2010; Maas & Hox, 2005).  Ns were 20 and 50 to represent small and 

moderate cluster sizes (e.g., Finch & French, 2011; Maas & Hox, 2005; Jak, Oort & Dolan, 

2013; Peugh & Enders, 2010). Combining Ns and Nc conditions, 4 different sample size 

conditions with total sample size N were used in this study from 300 (20*15=300) to 1500 

(50*30=1500).   
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Analysis Procedure  

Covariates selection. All covariates associated with treatment assignment T were selected 

to estimate M-PSs. That is, 8 pretreatment covariates 𝑈1, 𝑈2, …, 𝑈6, 𝑉1, and 𝑉2 were used.  

M-PS estimation. Every generated data set was fitted using four estimation methods: M-

CART, M-logit, S-CART, and S-logit. For all estimation models, only the first-order terms (i.e., 

main effects) of the 8 selected pretreatment covariates were used as predictors. Only first-order 

terms were used because majority of existing PS studies chose models with only main effects 

(Thoemmes & Kim, 2011) since researchers do not have prior knowledge of nonlinear and 

interaction effects and tend to used over-simplified models. This setting allowed us to examine 

whether and how much the proposed M-CART is able to capture unspecified non-linear and 

interaction effects in M-PS estimation.  

For applying M-CART, the tolerance of change of log-likelihood values was set as 

0.0001; the maximum number of iterations was 1000; the minimum number of observations in a 

node was 2. It should be noticed that no pruning procedure was needed in this case, because 

generalization and overfitting were no longer a concern when estimating M-PSs (Rubin, 1997). 

These settings were also applied to S-CART, except for the tolerance of log-likelihood change 

which was not applicable for S-CART.  

The M-logit also only contained the main effects of 8 predictors as shown below: 

𝑙𝑜𝑔𝑖𝑡 (𝑇𝑖𝑗) = 𝛽0𝑗_𝑀𝑙𝑜𝑔𝑖𝑡 + 𝛽1𝑗_𝑀𝑙𝑜𝑔𝑖𝑡𝑈1𝑖𝑗 + 𝛽2𝑗_𝑀𝑙𝑜𝑔𝑖𝑡𝑈2𝑖𝑗 + ⋯+ 𝛽6𝑗_𝑀𝑙𝑜𝑔𝑖𝑡𝑈6𝑖𝑗       (3.5)                                      

𝛽0𝑗_𝑀𝑙𝑜𝑔𝑖𝑡 = 𝛾00_𝑀𝑙𝑜𝑔𝑖𝑡 + 𝛾01_𝑀𝑙𝑜𝑔𝑖𝑡𝑉1𝑗 + 𝛾02_𝑀𝑙𝑜𝑔𝑖𝑡𝑉2𝑗 +𝑢0𝑗_𝑀𝑙𝑜𝑔𝑖𝑡 

𝛽1𝑗_𝑀𝑙𝑜𝑔𝑖𝑡 = 𝛾10_𝑀𝑙𝑜𝑔𝑖𝑡 + 𝑢1𝑗_𝑀𝑙𝑜𝑔𝑖𝑡     

𝛽2𝑗_𝑀𝑙𝑜𝑔𝑖𝑡 = 𝛾20_𝑀𝑙𝑜𝑔𝑖𝑡 + 𝑢2𝑗_𝑀𝑙𝑜𝑔𝑖𝑡     
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𝛽3𝑗_𝑀𝑙𝑜𝑔𝑖𝑡 =  𝛾30_𝑀𝑙𝑜𝑔𝑖𝑡 + 𝑢3𝑗_𝑀𝑙𝑜𝑔𝑖𝑡        

𝛽4𝑗_𝑀𝑙𝑜𝑔𝑖𝑡 =  𝛾40_𝑀𝑙𝑜𝑔𝑖𝑡  

 𝛽5𝑗_𝑀𝑙𝑜𝑔𝑖𝑡 =  𝛾50_𝑀𝑙𝑜𝑔𝑖𝑡  

𝛽6𝑗_𝑀𝑙𝑜𝑔𝑖𝑡 =  𝛾60_𝑀𝑙𝑜𝑔𝑖𝑡. 

In this two-level random slope logit regression model, intercept and the first three regression 

coefficients were allowed to be random, which was the same as the M-PS generating model. 

Maximum likelihood estimation via Laplacian approximation was used as the estimator. 

Similarly, main effects of 8 predictors were used for fitting S-logits as shown in equation 3.6:  

𝑙𝑜𝑔𝑖𝑡 (𝑇) = 𝛽0_𝑆𝑙𝑜𝑔𝑖𝑡 + 𝛽1_𝑆𝑙𝑜𝑔𝑖𝑡𝑈1 + 𝛽2_𝑆𝑙𝑜𝑔𝑖𝑡𝑈2 + ⋯+ 𝛽6_𝑆𝑙𝑜𝑔𝑖𝑡𝑈6 

+ 𝛽7_𝑆𝑙𝑜𝑔𝑖𝑡𝑉1 + 𝛽8_𝑆𝑙𝑜𝑔𝑖𝑡𝑉2 + 𝑒𝑆𝑙𝑜𝑔𝑖𝑡.                                              (3.6) 

Estimated probabilities from fitting these M-PS models were estimated M-PSs (i.e., 𝜋̂).  

PS conditioning. The estimated M-PSs were then used in matching and covariate-

adjustment using PS. Those two conditioning approaches were chosen because they were the top 

two commonly used methods (Hade & Lu, 2014; Thoemmes & Kim, 2011) and could be good 

representatives of the two types of conditioning methods. One-to-one matching within clusters 

was applied. Each treated individual within cluster j was paired with only one controlled 

individual within the same cluster if their 𝜋̂ were similar or the same. Matching with replacement 

was allowed, meaning one controlled individual would be used for pairing more than one treated 

individuals. For covariate-adjustment using PS, the 𝜋̂ was used as a covariate to predict the Y 

using the model shown in the treatment effect estimation procedure (equation 3.8).  

Treatment effect estimation. Given using matching, the ATE was estimated as the 

average score of estimated within-cluster ATE (𝛿𝐴𝑇𝐸̂𝑗
):  
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 𝛿𝐴𝑇𝐸̂ = ∑ (
𝑁𝑗

𝑁
𝛿𝐴𝑇𝐸̂𝑗

)𝐻
𝑗=1 ,                                                                                                 (3.7) 

where 𝛿𝐴𝑇𝐸̂𝑗
= 𝐸[𝑌(1)|𝑗] − 𝐸[𝑌(0)| 𝑗], 𝑁𝑗 is the cluster size in cluster j. For covariate-

adjustment, 𝛿𝐴𝑇𝐸̂ equaled to the estimated 𝛽1𝑗_𝐴𝑇𝐸 by fitting the following multilevel logistic 

regression model.  

𝑌𝑖𝑗 = 𝛽0𝑗_𝐴𝑇𝐸 + 𝛽1𝑗_𝐴𝑇𝐸𝑇𝑖𝑗 + 𝛽2𝑗_𝐴𝑇𝐸𝑈7𝑖𝑗 + 𝛽3𝑗_𝐴𝑇𝐸𝜋̂𝑖𝑗 + 𝑒𝑖𝑗_𝐴𝑇𝐸                                (3.8)                                      

𝛽0𝑗_𝐴𝑇𝐸 = 𝛾00_𝐴𝑇𝐸 + 𝛾01_𝐴𝑇𝐸𝑉3𝑗 + 𝑢0𝑗_𝐴𝑇𝐸 

𝛽1𝑗_𝐴𝑇𝐸 = 𝛾10_𝐴𝑇𝐸  

𝛽2𝑗_𝐴𝑇𝐸 = 𝛾20_𝐴𝑇𝐸     

Evaluation Criterion  

Two criterion were used to evaluate the performance of applying M-CART, M-logit, S-

CART, and S-logit in M-PSA. The first one was standardized mean difference (Δ) used to 

measure the performance of balancing covariates. Ways of estimating Δ were also determined by 

conditioning methods. For matching within cluster conditioning, standardized mean difference 

for a given continuous covariate x (Δ𝑥) equaled to the average score of within-cluster Δ (Δ𝑥,𝑗),   

Δ𝑥 = 𝐸(Δ𝑥,𝑗) =  𝐸(
𝑋̅𝑇=1|𝑥,𝑗−𝑋̅𝑇=0|𝑥,𝑗

√
(𝑛𝑇=1|𝑥,𝑗)𝑆𝑇=1|𝑥,𝑗 

2 + (𝑛𝑇=0|𝑥,𝑗)𝑆𝑇=0|𝑥,𝑗
2

𝑛𝑇=1|𝑥,𝑗  +  𝑛𝑇=0|𝑥,𝑗

 )                                                  (3.9)   

where 𝑋̅𝑇=1|𝑥,𝑗 and 𝑋̅𝑇=0|𝑥,𝑗 are the mean 𝑥 for treatment and control groups given cluster j 

respectively. The denominator is the pooled standardized deviation. Δ𝑥 for a dichotomous 

covariate x was estimated as  

Δ𝑥 = 𝐸(Δ𝑥,𝑗) =  𝐸(
𝑝𝑟𝑒𝑣𝑇=1|𝑥,𝑗−𝑝𝑟𝑒𝑣𝑇=0|𝑥,𝑗

√𝑝𝑟𝑒𝑣𝑥,𝑗 (1− 𝑝𝑟𝑒𝑣𝑥,𝑗)
 )                                                                   (3.10)   
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where 𝑝𝑟𝑒𝑣𝑇=1|𝑥,𝑗 and 𝑝𝑟𝑒𝑣𝑇=0|𝑥,𝑗 are the prevalence of x = 1 for treated and controlled groups 

within cluster j respectively.  

For covariate-adjustment using PS, Δ𝑥was estimated using a multilevel model (equation 

3.11) in which the x is the outcome and 𝜋̂ and T are predictors.  

𝑓(𝑋𝑖𝑗) = 𝛽0𝑗_Δ + 𝛽1𝑗_Δ𝑇𝑖𝑗 + 𝛽2𝑗_Δ𝜋̂𝑖𝑗 + 𝑒𝑖𝑗_Δ                                                              (3.11)                                      

𝛽0𝑗_Δ = 𝛾00_Δ + 𝑢0𝑗_Δ 

𝛽1𝑗_Δ = 𝛾10_Δ  

𝛽2𝑗_Δ = 𝛾20_Δ     

In this model, f (.) indicate an identity link function when x is continuous and a logit link 

function when x is dichotomous. 𝛾10_Δ measures the unstandardized difference between treated 

and controlled groups on x. Thus, the Δ𝑥 could be defined based on the t statistics of 𝛾10_Δ using 

equation 3.12 (Rosenthal & Rosnow, 1991),   

Δ𝑥 = 
2𝑡

√𝑑𝑓
 ,                                                                                                                    (3.12) 

where t is the t-test score of 𝛾00_Δ, df  is the degree of freedom. Smaller standardized mean 

differences indicate the samples are approaching a state of balance. The value 0.25 was used as 

the cut-off, meaning that Δ𝑥 ≤ 0.25 was considered as achieving balance on x.  

The more important criteria was the relative bias (RB) of 𝛿 used to indicate the accuracy 

of treatment effect estimations which is the goal of conducting PSA. The relative bias was 

defined as 

RB =  
𝛿̂ −𝛿

𝛿
                                                                                                                     (3.13) 
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where 𝛿 is the true treatment effect 0.5. Due to the importance of this criteria, a factorial 

ANOVA with all main effects and interactions, and the effect size eta-squared (𝜂2) were 

furtherly computed to investigate the impacts of the designed factors on RB. Eta-squared values 

0.01, 0.06, and 0.14 were used to indicate small, moderate, and large effect sizes respectively 

(Cohen, 1998).   

Results 

M-PS Estimation 

The distributions of true and estimated M-PSs based on four M-PS estimation methods 

over all replications were shown in Figure 2. The true M-PS distribution for treated and 

controlled groups showed that around one half of treated and controlled individuals had 

overlapped M-PSs. It is similar to the M-PS distribution simulated in Bellara’s study (2013) from 

which the data generation setting of this study was borrowed. As shown in Figure 2, the M-

CART produced nearly identical M-PS distribution to the true M-PS distribution for both 

treatment and control groups. The M-PS distribution based on S- CART was closer to the true 

M-PS distribution than the M-PS distributions based on the M-logit and S-logit. 

Standardized Mean Difference 

In every data set, matching and covariate-adjustment using PS resulted in two 

standardized mean difference values for each of 8 selected covariates (i.e., 𝑈1, 𝑈2, …, 𝑈6, 𝑉1, 

and 𝑉2). For each selected covariates, M and SD were aggregated over replications by M-PS 

estimation methods and design factors in Table 8 to Table 15. All estimated Δ based on matching 

conditioning in Table 14 and Table 15 were 0, because matching was conducted within clusters 

and thus cluster level covariates 𝑉1 and 𝑉2 were the same between two groups. 
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Conditioning approach. Under matching conditioning, notable in these tables was all 

estimated Δ smaller than 0.25, indicating the overall acceptable performance of covariate 

balances for all M-PS estimation methods across design factors. The M-logit yielded the smallest 

Δ scores, followed by the S-logit and M-CART, and the S-CART produced the largest Δ scores.  

Figure 2. Distributions of M-PSs for treated and controlled groups.  
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For example, for covariate U1 when ICC = 0.1, Δ𝑈1| 𝑀−𝑙𝑜𝑔𝑖𝑡 = 0.0331 < Δ𝑈1| 𝑆−𝑙𝑜𝑔𝑖𝑡 = 

0.0809 < Δ𝑈1| 𝑀−𝐶𝐴𝑅𝑇 = 0.1111 < Δ𝑈1| 𝑆−𝐶𝐴𝑅𝑇 = 0.1354 (Table 8). Unlike the results based on the 

matching, covariate-adjustment using PS performed better under the S-logit and M-CART with 

Δ values smaller than 0.25 for all covariates. While the M-logit and S-CART had a few Δ values 

larger than the cut-off value (bold numbers in Table 8 to Table 15). These findings were 

consistent across various ICCs, degrees of nonlinearity and interaction, and sample sizes.  

ICC. Larger ICCs resulted in higher Δ values for all estimation methods across all 6 

individual level covariates. For instance, when using matching conditioning, 

Δ𝑈2| 𝑀−𝐶𝐴𝑅𝑇 increased from 0.0670 to 0.0722 when the ICC increased from 0.1 to 0.3 (Table 9). 

The increase of Δ was strengthen when using covariate-adjustment adjustment using PS 

conditioning approach.  

Sample size. Increasing number of clusters and/or cluster size resulted in smaller Δ values 

generally. For example, when covariate-adjustment using PS conditioning was used, Δ𝑈3 |𝑀−𝐶𝐴𝑅𝑇 

= 0.0568 when Nc= 15 and Ns=20 >  Δ𝑈3 |𝑀−𝐶𝐴𝑅𝑇 = 0.0343 when Nc= 30 and Ns=20; 

Δ𝑈3 |𝑀−𝐶𝐴𝑅𝑇 = 0.0568 when Nc= 15 and Ns=20 >  Δ𝑈3 |𝑀−𝐶𝐴𝑅𝑇 = 0.0087 when Nc= 15 and 

Ns=50 (Table 10). This pattern was found in all conditioning methods and estimation methods 

for individual level covariates. 

Degrees of nonlinearity and interaction. Larger degrees of nonlinearity and interaction 

were associated with higher Δ values. For example, when matching conditioning was used, 

Δ𝑈2 |𝑀−𝐶𝐴𝑅𝑇 increased from 0.0524 to 0.0825 as the degrees of nonlinearity and interaction 
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increased (Table 9). This result was found for all estimation methods and conditioning methods 

across all individual level covariates.  

 

Table 8  

Standardized Mean Difference Values for 𝑈1  

  
M-CART M-logit S-CART S-logit 

M SD  M SD  M SD  M SD 

Matching            

ICC            

0.1 0.1111 0.1063   0.0331 0.0697  0.1354 0.1130  0.0809 0.0700 

0.3 0.1113 0.1102   0.0434 0.0846  0.1439 0.1254  0.0935 0.0780 

Nonlinearity and 

Interaction 
          

0 - 0 0.0520 0.1102   0.0175 0.0802  0.0546 0.1130  0.0372 0.0788 

0.2 - 0.4 0.1109 0.1159  0.0335 0.0740  0.1468 0.1195  0.1005 0.0748 

0.4 - 0.6 0.1709 0.1138  0.0637 0.0772  0.2175 0.1250  0.1239 0.0685 

Sample Size           

15-20 0.1312 0.1167  0.0543 0.1019  0.1664 0.1298  0.1107 0.1056 

15-50 0.0857 0.1177  0.0212 0.0792  0.1210 0.1124  0.0628 0.0783 

30-20 0.0938 0.1086  0.0326 0.0732  0.1385 0.1408  0.0706 0.0688 

30-50 0.0758 0.0801  0.0148 0.0542  0.1127 0.0822  0.0588 0.0433 
             

Covariate-adjustment using PS          

ICC             

0.1 0.0168 0.0923  0.1400 0.1490  0.0869 0.2198  0.0042 0.0120 

0.3 0.0318 0.2600  0.4430 0.2317  0.3406 0.3821  0.0414 0.0594 

Nonlinearity and 

Interaction 
          

0 - 0 0.0071 0.2654  0.2360 0.3274  0.1389 0.3555  0.0036 0.0214 

0.2 - 0.4 0.0097 0.0953  0.2690 0.0968  0.1972 0.1792  0.0144 0.0273 

0.4 - 0.6 0.0160 0.1676  0.4190 0.1469  0.2952 0.3183  0.0504 0.0586 

Sample Size           

15-20 0.0501 0.1440  0.4199 0.2495  0.3648 0.3545  0.0403 0.0704 

15-50 0.0356 0.0551  0.0737 0.0458  0.0599 0.0919  0.0017 0.0072 

30-20 0.0495 0.1305  0.4452 0.2679  0.2930 0.3062  0.0451 0.0533 

30-50 0.0120 0.1750  0.2273 0.1982  0.0574 0.2514  0.0041 0.0121 
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Table 9  

Standardized Mean Difference Values for 𝑈2  

  
M-CART M-logit S-CART S-logit 

M SD M SD M SD M SD 

Matching         

ICC         

0.1 0.0670 0.1074 0.0263 0.0646 0.0817 0.1049 0.0469 0.0635 

0.3 0.0722 0.1169 0.0390 0.0751 0.0888 0.1185 0.0549 0.0737 

Nonlinearity 

and Interaction 
        

0 - 0 0.0524 0.1205 0.0139 0.0779 0.0576 0.1088 0.0382 0.0758 

0.2 - 0.4 0.0719 0.1063 0.0351 0.0683 0.0814 0.1068 0.0586 0.0659 

0.4 - 0.6 0.0825 0.1097 0.0438 0.0633 0.0927 0.1195 0.0560 0.0641 

Sample Size         

15-20 0.0852 0.1484 0.0363 0.0951 0.1392 0.1431 0.0776 0.0792 

15-50 0.0663 0.1073 0.0225 0.0704 0.0895 0.0991 0.0405 0.0684 

30-20 0.0704 0.1133 0.0319 0.0653 0.0914 0.1173 0.0592 0.0598 

30-50 0.0565 0.0797 0.0200 0.0485 0.0690 0.0872 0.0364 0.0469 
         

Covariate-adjustment using PS       

ICC         

0.1 0.0267 0.0992 0.1289 0.1466 0.0692 0.1695 0.0047 0.0124 

0.3 0.1199 0.1626 0.2198 0.1311 0.1537 0.1523 0.0216 0.0405 

Nonlinearity 

and Interaction 
        

0 - 0 0.0541 0.1710 0.1012 0.1366 0.0605 0.1910 0.0054 0.0273 

0.2 - 0.4 0.0738 0.1050 0.1071 0.0873 0.0868 0.1623 0.0078 0.0133 

0.4 - 0.6 0.1019 0.1666 0.2308 0.1126 0.1272 0.1794 0.0262 0.0389 

Sample Size         

15-20 0.1479 0.2558 0.3488 0.2529 0.1476 0.2044 0.0220 0.0356 

15-50 0.0468 0.0554 0.1464 0.0470 0.0532 0.0872 0.0095 0.0098 

30-20 0.1415 0.2390 0.2215 0.2541 0.1551 0.2068 0.0218 0.0586 

30-50 0.0206 0.1734 0.1107 0.2013 0.0281 0.2452 0.0092 0.0019 
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Table 10  

Standardized Mean Difference Values for 𝑈3  

  
M-CART M-logit S-CART S-logit 

M SD M SD M SD M SD 

Matching        

ICC         

0.1 0.0414 0.1010 0.0107 0.0505 0.0553 0.1241 0.0601 0.0605 

0.3 0.0434 0.1157 0.0124 0.0660 0.0592 0.1267 0.0758 0.0789 

Nonlinearity and 

Interaction 
       

0 - 0 0.0420 0.1073 0.0061 0.0660 0.0485 0.1006 0.0129 0.0611 

0.2 - 0.4 0.0466 0.1083 0.0129 0.0710 0.0520 0.1145 0.0250 0.0688 

0.4 - 0.6 0.0476 0.1095 0.0155 0.0850 0.0613 0.1160 0.0460 0.0747 

Sample Size        

15-20 0.0634 0.1376 0.0246 0.1039 0.0874 0.1580 0.0364 0.0999 

15-50 0.0408 0.1046 0.0008 0.0677 0.0447 0.0994 0.0170 0.067 

30-20 0.0554 0.1118 0.0208 0.0777 0.0652 0.1048 0.0212 0.0623 

30-50 0.0322 0.0794 0.0004 0.0467 0.0357 0.0793 0.0124 0.0437 
         

Covariate-adjustment using PS      

ICC         

0.1 0.0283 0.1143 0.1127 0.1520 0.0533 0.2165 0.0025 0.0097 

0.3 0.0606 0.3012 0.1753 0.1990 0.1338 0.5029 0.0065 0.0168 

Nonlinearity and 

Interaction 
       

0 - 0 0.0530 0.1691 0.0990 0.2640 0.0529 0.3734 0.0044 0.0219 

0.2 - 0.4 0.0714 0.1348 0.1160 0.0616 0.0851 0.1921 0.0020 0.0059 

0.4 - 0.6 0.0966 0.2192 0.2869 0.1009 0.1126 0.3136 0.0070 0.0120 

Sample Size        

15-20 0.0568 0.2104 0.2251 0.1923 0.1983 0.3668 0.0064 0.0183 

15-50 0.0087 0.0576 0.0833 0.0409 0.0631 0.2908 0.0019 0.0035 

30-20 0.0343 0.2604 0.1544 0.2578 0.1453 0.2833 0.0091 0.0215 

30-50 0.0079 0.1724 0.0631 0.2109 0.0343 0.0980 0.0006 0.0097 
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Table 11  

Standardized Mean Difference Values for 𝑈4  

  
M-CART M-logit S-CART S-logit 

M SD M SD M SD M SD 

Matching                 

ICC         

0.1 0.0413 0.1132 0.0135 0.0718 0.0499 0.1022 0.0223 0.0614 

0.3 0.0484 0.1101 0.0157 0.0787 0.0571 0.1031 0.0263 0.0713 

Nonlinearity 

and Interaction 
 

 

      

0 - 0 0.0188 0.1074 0.0052 0.0701 0.0289 0.1046 0.0077 0.0657 

0.2 - 0.4 0.0432 0.1176 0.0110 0.0694 0.0493 0.0983 0.0240 0.0652 

0.4 - 0.6 0.0875 0.1101 0.0126 0.0861 0.0923 0.1052 0.0413 0.0682 

Sample Size  
 

      

15-20 0.0649 0.1476 0.0172 0.1059 0.0698 0.1364 0.0415 0.0893 

15-50 0.0442 0.1025 0.0125 0.0708 0.0479 0.0933 0.0220 0.0610 

30-20 0.0552 0.1157 0.0161 0.0708 0.0667 0.1992 0.0324 0.0708 

30-50 0.0361 0.0808 0.0103 0.0533 0.0416 0.0718 0.0213 0.0444 
         

Covariate-adjustment using PS     

ICC         

0.1 0.0619 0.2139 0.1159 0.1229 0.0650 0.1899 0.0024 0.0085 

0.3 0.1485 0.2417 0.2231 0.1500 0.1794 0.4404 0.0081 0.0171 

Nonlinearity 

and Interaction 
        

0 - 0 0.0327 0.1564 0.0596 0.0567 0.0318 0.1596 0.0025 0.0058 

0.2 - 0.4 0.0729 0.2793 0.1038 0.0841 0.0355 0.2757 0.0084 0.0117 

0.4 - 0.6 0.2146 0.5478 0.3451 0.2685 0.2947 0.3102 0.0048 0.0208 

Sample Size         

15-20 0.2232 0.4932 0.2916 0.1772 0.2490 0.4802 0.0102 0.0201 

15-50 0.0778 0.2644 0.1563 0.1792 0.0893 0.2524 0.0022 0.0108 

30-20 0.1093 0.4661 0.1978 0.1564 0.1096 0.4444 0.0080 0.0169 

30-50 0.0167 0.0876 0.0323 0.0329 0.0349 0.0835 0.0005 0.0033 
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Table 12  

Standardized Mean Difference Values for 𝑈5  

  
M-CART M-logit S-CART S-logit   

M SD M SD M SD M SD 

Matching         

ICC         

0.1 0.0604 0.1385 0.0098 0.0838 0.0654 0.1278 0.0146 0.0676 

0.3 0.0603 0.1363 0.0124 0.0840 0.0688 0.1324 0.0140 0.0762 

Nonlinearity and 

Interaction        
0 - 0 0.0513 0.1304 0.0081 0.0806 0.0606 0.1452 0.0108 0.0728 

0.2 - 0.4 0.0630 0.1325 0.0098 0.0845 0.0619 0.1315 0.0150 0.0701 

0.4 - 0.6 0.0675 0.1274 0.0153 0.0866 0.0695 0.1356 0.0194 0.0728 

Sample Size        
15-20 0.0642 0.1859 0.0125 0.1054 0.0684 0.1803 0.0171 0.0994 

15-50 0.0539 0.1379 0.0106 0.0872 0.0630 0.1177 0.0158 0.0694 

30-20 0.0616 0.1232 0.0110 0.0800 0.0643 0.1274 0.0184 0.0696 

30-50 0.0519 0.1026 0.0101 0.0630 0.0626 0.0850 0.0154 0.0491 
         

Covariate-adjustment using PS       

ICC         

0.1 0.0280 0.0538 0.0500 0.0731 0.1555 0.2631 0.0012 0.0058 

0.3 0.0751 0.1145 0.1075 0.1355 0.3000 0.3190 0.0036 0.0149 

Nonlinearity and 

Interaction 
       

0 - 0 0.0230 0.1263 0.0274 0.1854 0.1005 0.2240 0.0009 0.0155 

0.2 - 0.4 0.0465 0.0501 0.0562 0.0471 0.2977 0.2603 0.0018 0.0055 

0.4 - 0.6 0.0852 0.0760 0.1527 0.0805 0.3352 0.2389 0.0047 0.0100 

Sample Size        

15-20 0.0847 0.0904 0.1538 0.142 0.3984 0.2233 0.0059 0.0152 

15-50 0.0390 0.0727 0.0829 0.1284 0.1549 0.3046 0.0010 0.0104 

30-20 0.0710 0.1373 0.0642 0.1144 0.3200 0.2193 0.0023 0.0125 

30-50 0.0115 0.0361 0.0140 0.0326 0.0379 0.1171 0.0004 0.0030 

 

 



 

56 

 

Table 13  

Standardized Mean Difference Values for 𝑈6  

  
M-CART M-logit S-CART S-logit 

M SD M SD M SD M SD 

Matching         

ICC         

0.1 0.1077 0.1111 0.0143 0.0841 0.1203 0.1184 0.0250 0.0635 

0.3 0.1171 0.1190 0.0189 0.0823 0.1281 0.1274 0.0396 0.0749 

Nonlinearity 

and Interaction 
        

0 - 0 0.0794 0.1116 0.0128 0.0863 0.0895 0.1222 0.0290 0.0682 

0.2 - 0.4 0.1100 0.1184 0.0165 0.0821 0.1283 0.1186 0.0337 0.0687 

0.4 - 0.6 0.1477 0.1152 0.0204 0.0812 0.1747 0.1578 0.0342 0.0707 

Sample Size         

15-20 0.1206 0.1543 0.0312 0.1193 0.1276 0.1635 0.0402 0.0958 

15-50 0.1056 0.1177 0.0100 0.0778 0.1229 0.1259 0.0139 0.0642 

30-20 0.1196 0.1041 0.0182 0.0770 0.1275 0.1122 0.0419 0.0714 

30-50 0.1037 0.0843 0.0069 0.0587 0.1127 0.0899 0.0133 0.0454 
         

Covariate-adjustment using PS       

ICC         

0.1 0.1357 0.2622 0.1261 0.1099 0.1574 0.2327 0.0028 0.0078 

0.3 0.2870 0.2980 0.3232 0.1605 0.3843 0.5034 0.0141 0.0240 

Nonlinearity 

and Interaction 
        

0 - 0 0.1247 0.2436 0.2014 0.2265 0.2975 0.2862 0.0035 0.0184 

0.2 - 0.4 0.1699 0.0631 0.2528 0.1875 0.2999 0.1958 0.0047 0.0095 

0.4 - 0.6 0.2293 0.0989 0.3798 0.2263 0.4152 0.2222 0.0171 0.0198 

Sample Size         

15-20 0.2017 0.2700 0.3938 0.1887 0.3563 0.2548 0.0174 0.0271 

15-50 0.0916 0.2115 0.1882 0.1517 0.1186 0.2382 0.0017 0.0081 

30-20 0.2149 0.2438 0.2687 0.1644 0.2501 0.2818 0.0138 0.0247 

30-50 0.0473 0.0950 0.0479 0.0360 0.0585 0.0975 0.0009 0.0038 
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Table 14  

Standardized Mean Difference Values for 𝑉1  

  
M-CART M-logit S-CART S-logit 

M SD M SD M SD M SD 

Matching         

ICC         

0.1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Nonlinearity 

and Interaction 
        

0 - 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.2 - 0.4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.4 - 0.6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Sample Size         

15-20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

15-50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

30-20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

30-50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
         

Covariate-adjustment using PS       

ICC         

0.1 0.0615 0.1779 0.2200 0.2015 0.0513 0.1702 0.0054 0.0159 

0.3 0.1707 0.2477 0.3002 0.2085 0.1574 0.2153 0.0280 0.0607 

Nonlinearity 

and Interaction 
        

0 - 0 0.0366 0.0882 0.1355 0.0961 0.0217 0.1862 0.0062 0.0162 

0.2 - 0.4 0.0709 0.1436 0.2770 0.1714 0.0320 0.2088 0.0112 0.0498 

0.4 - 0.6 0.1408 0.1066 0.3678 0.1974 0.1092 0.2832 0.0328 0.0490 

Sample Size         

15-20 0.1783 0.1906 0.3749 0.2332 0.0735 0.3098 0.0393 0.0818 

15-50 0.0605 0.1593 0.243 0.2777 0.0539 0.2131 0.0206 0.0206 

30-20 0.1051 0.1375 0.2616 0.2555 0.0631 0.2850 0.0157 0.0446 

30-50 0.0206 0.0637 0.0610 0.0535 0.0269 0.0931 0.0012 0.0063 
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Table 15  

Standardized Mean Difference Values for 𝑉2  

  
M-CART M-logit S-CART S-logit 

M SD M SD M SD M SD 

Matching         

ICC         

0.1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.3 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Nonlinearity and 

Interaction 
       

0 - 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.2 - 0.4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

0.4 - 0.6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Sample Size        

15-20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

15-50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

30-20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

30-50 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
         

Covariate-adjustment using PS      

ICC         

0.1 0.0377 0.1726 0.1060 0.1568 0.1015 0.2363 0.0052 0.0274 

0.3 0.0474 0.1989 0.1854 0.2857 0.1569 0.2118 0.0164 0.0676 

Nonlinearity and 

Interaction 
       

0 - 0 0.0877 0.2512 0.2570 0.2050 0.1713 0.2109 0.0159 0.0783 

0.2 - 0.4 0.0236 0.0798 0.1369 0.0983 0.1577 0.2099 0.0130 0.0430 

0.4 - 0.6 0.0163 0.1263 0.0320 0.1603 0.0485 0.2014 0.0035 0.0211 

Sample Size        

15-20 0.0600 0.2447 0.2827 0.2317 0.2594 0.6546 0.0203 0.0672 

15-50 0.0432 0.2503 0.0972 0.2662 0.1269 0.8251 0.0097 0.0658 

30-20 0.0537 0.1865 0.1755 0.2347 0.0893 0.3079 0.0117 0.0461 

30-50 0.0133 0.0616 0.0273 0.0523 0.0411 0.1085 0.0016 0.0108 
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Treatment Effect 

The estimated relative bias by two conditioning methods and three design factors across 

four M-PS estimation methods are listed in Table 16. ANOVA results showed that all main 

effects, and the interaction effect between degrees of nonlinearity and PS estimation methods had 

remarkable effect sizes.  

Estimation method. The impact of PS estimation methods on RB was large with 𝜂2= 

0.1644 [F(3, 57409) = 487.4455, p < 0.001]. On average, M-CART yielded the most accurate 

ATE estimations with smallest RBs under both PS conditioning approaches. For example, when 

using matching approach, RBM-CART = 0.1852 < RBM-logit = 0.1962 < RBS-CART = 0.2440 < RBS-

logit = 0.2843 on average.  

Conditioning approach. The conditioning approach had a small effect size with 𝜂2= 

0.0282 [F(3, 57409) = 65.8610, p < 0.001]. Averaging across simulation conditions, covariate-

adjustment using PS yielded slightly lower RB than using matching approach. For instance, 

when using M-CART for data simulated, RBM-CART estimated based on covariate-adjustment 

using PS conditioning equaled to 0.1169 on average which was smaller than RBM-CART estimated 

based on matching condition method 0.1852; when using M-logit estimation method, mean RBM-

logit = 0.1688 based on covariate-adjustment using PS conditioning was smaller than mean RBM-

logit = 0.1962 based on matching conditioning.  

ICC. Increasing ICCs yielded slightly larger relative biases for all conditioning and 

estimation methods, which was found to have small effect size with 𝜂2= 0.0094 [F(1, 57409) = 

47.8953, p < 0.001]. For instance, RBM-logit increased from 0.1876 to 0.2040 when the ICC went 

up.  
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Table 16  

Treatment Effects for Four Estimation Methods by Conditioning Methods and Simulated 

Conditions 

 

  
M-CART   M-logit   S-CART   S-logit 

Relative Bias Relative Bias Relative Bias Relative Bias 

Matching        

ICC        
0.1 0.1801  0.1876  0.2350  0.2794 

0.3 0.1903  0.2040  0.2530  0.2891 

Nonlinearity 

and Interaction 
       

0 - 0 0.0909  0.0734  0.1516  0.1729 

0.2 - 0.4 0.1686  0.1793  0.2329  0.2652 

0.4 - 0.6 0.2962  0.3447  0.3474  0.4147 

Sample Size        

15-20 0.2107  0.2115  0.2699  0.2988 

15-50 0.1757  0.1912  0.2348  0.2897 

30-20 0.2089  0.2202  0.2660  0.2869 

30-50 0.1386  0.1602  0.2052  0.2616 

Average 0.1852  0.1962  0.2440  0.2843 
        

Covariate-adjustment using PS     

ICC        

0.1 0.1061  0.1559  0.2309  0.2996 

0.3 0.1277  0.1805  0.2447  0.3213 

Nonlinearity 

and Interaction 
       

0 - 0 0.0463  0.0280  0.1608  0.1926 

0.2 - 0.4 0.1084  0.1565  0.2294  0.3008 

0.4 - 0.6 0.1960  0.3301  0.3233  0.4380 

Sample Size        

15-20 0.1443  0.1717  0.2649  0.3093 

15-50 0.1095  0.1853  0.2280  0.3223 

30-20 0.1345  0.1708  0.2489  0.3094 

30-50 0.0792   0.1450   0.2095   0.3008 

Average 0.1169  0.1688  0.2378  0.3105 
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Degree of nonlinearity and interaction. Increasing degrees of nonlinearity and non-

additivity caused larger RBs for four PS estimation methods in both conditioning methods (Table 

16), which had a extremely large effect size with 𝜂2= 0.3430 [F(2, 57409) = 1937.7111, p < 

0.001]. Results also showed that the interaction between this factor and the estimation method 

factor had a small to moderate effect on RB values [F(6, 57409) = 83.7247, p < 0.001, 𝜂2= 

0.0465]. M-logits produced the smallest RBs (Table 16) when the M-PS estimation model was 

linear and additive. M-CART performed closely to M-logits in this condition. While, the two 

singe level estimation methods, especially S-logits, had larger RBs. For example, when using 

covariate-adjustment conditioning, RBM-logit = 0.0280 < RBM-CART = 0.0463 < RBS-CART = 0.1608 

< RBS-logit = 0.1926. When having small nonlinearity and non-additivity (0.2- 0.4 condition), the 

two multilevel M-PS estimation methods still outperformed the corresponding single level M-PS 

estimation methods. However, M-CART started to perform better than M-logits with smaller 

RBs. S-logits, again, lead to the largest RBs. For example, when using matching conditioning, 

RBM-CART = 0.1686 < RBM-logit = 0.1793 < RBS-CART = 0.2329 < RBS-logit = 0.2652. When having 

large nonlinearity and non-additivity, M-CART had the smallest RBs, while S-logits produced 

the largest RBs. It should be noted that, in this case, S-CART performed almost identically to the 

M-logit with similar RBs (Table 16).  

Sample size. For all conditioning and estimation methods, increasing Nc and/or Ns 

yielded lower RBs (Table 16), which had a small effect size with 𝜂2= 0.0243 [F(3, 57409) = 

58.4352, p < 0.001]. For example, when Nc = 30 and covariate-adjustment conditioning was 

applied, RBM-CART decreased from 0.1345 to 0.0792 when Ns went up from 20 to 50; when 

controlling Ns as 50 and using matching conditioning, RBM-logit decreased from 0.1912 to 0.1602 

when Ns went up from 15 to 30. 
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Discussion 

This study contributed to existing literature by using a multilevel CART algorithm for 

estimating PSs when conducting PSA in multi-site non-RCTs. In this study, I compared the 

performance of using the M-CART with the M-logit, S-CART and S-logit to estimate PSs across 

different PS conditioning approaches (i.e., matching and covariate-adjustment using PS) and 

various simulated sample characteristics (i.e., magnitudes of clustering effect, covariate 

relationships to treatment assignment, and sample sizes).  

Overall, M-CARTs achieved good covariate balances with all standardized mean 

difference scores less than the cut-off value 0.25 across all conditions, even though M-CARTs 

did not always yield the smallest standardized mean differences. In addition, M-CART was 

comparable to or better than the other three M-PS estimation methods in term of estimating ATE 

across all conditions. The performances of M-logit, S-CART and S-logit on balancing 

pretreatment covariates differences and estimating ATE were worse and heavily relied on PS 

conditioning approaches and simulated sample characteristics.  

With matching conditioning approach, logistic regression estimation methods, especially 

the M-logit, produced smaller standardized mean differences and achieve better covariate 

balances than two CART algorithms. While, S-logits and M-CARTs performed noticeably better 

than M-logits and S-CARTs when covariate-adjustment using PS conditioning approach was 

employed. This finding was partially supported by Bellara’s study (2013) in which researchers 

claimed that M-logits performed better on balancing covariate differences than S-logits under 

matching conditioning, but S-logits were found to have appreciably better covariate balances 

than M-logits when using covariate-adjustment using PS conditioning. Even though mixed 

performance of using M-CART for covariate balance according to different conditioning 
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approaches, M-CART produced more accurate treatment effect estimations than the other three 

estimation methods on average under both conditioning approaches.  

Increasing ICC values yield slightly worse balance and less accurate ATE estimation for 

all M-PS estimation methods. Within each ICC condition, single level models (S-CART and S-

logit) performed worse in comparison to multilevel models (M-CART and M-logit) in terms of 

balancing covariates and estimating ATE, because overlooking clustering effects when modeling 

multilevel data caused estimation biases (Gelman, 2006; Hox, 1998; ). This finding was proved 

in previous propensity score analysis studies (e.g., Thoemmes, 2009).  

Balance of covariates and ATE estimation accuracy decreased as the model became more 

complex and increasingly dominated by nonlinear and non-additive terms for all four M-PS 

estimation methods, which was consistent with previous studies (e.g., Bellara, 2013; Lee, 

Lessler, & Stuart, 2010). This is intuitive, because the estimation models excluded nonlinear and 

interaction terms which became less fit for data as degrees of nonlinearity and interaction 

increased.  

Additionally, results showed that four estimation methods performed differently on 

estimating ATE according to different degrees of nonlinearity and interaction. When the 

relationship between covariates and treatment assignment is linear and additive, M-logits, not 

surprisingly, produced the most accurate ATE, as it was true models which should obviously 

provide the least biased ATE. However, M-CART functioned almost identically to M-logit and 

outperformed S-CART and S-logit in this case, meaning that M-CART could recover the linear 

and additive model well in terms of estimating ATE. As degrees of nonlinearity and non-

additivity increased, the benefit of using CART algorithms was enlarged. M-CART started to 

yield the most accurate ATE estimations. M-CART worked the best was highly because it had 
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the ability to automatically capture the non-linear and non-addictive terms while controlling for 

the clustering effect in the simulated multilevel data. Even though the performance of using M-

CART for M-PSA has not been explored before, these findings are also indirectly proved in 

existing studies. Previous researchers demonstrated that multilevel linear models produced less 

root-mean squared errors than multilevel CART algorithms for predicting multilevel data with 

continuous data when the true relationship between outcomes and covariates were linear and 

additive (Lingle, 2009; Sela & Simonoff, 2012; Thoemmes, 2009). When the relationship was 

nonlinear and non-additive, researchers found that CART algorithms yield less prediction errors 

than linear regression models for both multilevel (e.g., Sela & Simonoff, 2012; Hajjem, 

Bellavance & Larocque , 2011) and single level settings (e.g., Lee, Lessler, & Stuart, 2010; 

Steinberg & Colla, 2009).   

Increasing number of clusters and cluster sizes assisted to improve balances and ATE 

estimation accuracy for all M-PS estimation methods using either matching or covariate-

adjustment using PS conditioning, because larger sample sizes have been demonstrated to 

associated with less model prediction errors. This finding agreed with many previous research 

(e.g., Bellara, 2013; Lee, Lessler, & Stuart, 2010; Li, Zaslavsky, & Landrum, 2013; Lingle, 

2009; Thoemmes, 2009).  

To sum up, M-logit is recommended only when the linear and additive relationship 

between covariates and treatment assignment was found and matching method was applied, 

otherwise using the proposed M-CART for estimating PSs in multi-site non-RCTs is always a 

better option when conducting M-PSA. However, based on the design of this study, there were 

several generalizability limitations to consider. First, the treated and controlled groups were 

balanced on group size. The performance of using M-CART when having unbalanced groups 
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should be furtherly examined. Second, only two experimental conditions (i.e., treatment and 

control groups) were simulated in this study. Future research can also extend this by having 

multiclass treatment assignment in multi-site non-RCTs. Third, only matching and covariate-

adjustment using PS were applied as conditioning approaches. The usefulness of M-CART under 

other commonly used conditioning approaches such as stratification and inverse probability of 

weighting had not been testified.  
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CHAPTER IV  

CONCLUSIONS  

 

This dissertation proposed and evaluated a new multilevel CART algorithm used for 

modeling multilevel data with binary outcomes and estimating propensity scores in multi-site 

non-RCTs. The new multilevel CART algorithm combines multilevel logistic regression and 

single-level CART using the EM algorithm. It overcomes the disadvantages of single-level 

CART and multilevel logistic regressions alone and inherits the advantages of both methods. 

Specifically, the new multilevel CART controls for clustering effects, allows inclusion of 

covariates at all levels, depends on no model assumptions, and captures interaction and 

nonlinearity in an automatic way. Study one showed that M-CART lead to higher prediction 

accuracy than the M-logit, S-CART, and S-logit in terms of classification accuracy, sensitivity, 

specificity and Klecka's tau. This benefit of applying the proposed M-CART for modeling 

multilevel data with binary outcomes was consistent across different data situations including 

different levels of clustering effects and sample sizes, and strengthened when the relationships 

between outcomes and predictors were nonlinear and non-additive.  

In addition to making predictions, the new M-CART algorithm can also applied in 

propensity score analysis for multi-site non-RCTs. There are two keys for unbiased propensity 

score estimations when conducting M-PSA. First, the model used for estimating propensity 

scores should have the ability of controlling for clustering effects. Second, as a requirement of 

strongly ignorable treatment assignment assumption (Rosenbaum & Rubin, 1983), all 

confounding covariates should be included as predictors for estimating propensity scores. It has 

been suggested in the literature that all observed confounding variables including nonlinear terms 
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and interactions of these variables should be included in the model. Thus, it is favorable to use 

the proposed M-CART algorithm that can account for clustering effects and capture all 

interaction and nonlinearity among the observed covariates. Study Two results indicated that M-

CART was more stable than the M-logit, S-CART and S-logit on achieving pre-treatment 

covariate balance and always yield reasonable covariate balance over all conditions. Simulation 

results furtherly showed that, regardless of the PS conditioning approaches, M-CART yielded the 

least relative biases in the ATE estimates across all simulated conditions. Even when the 

relationship between outcomes and treatment assignment was linear and additive, M-CART still 

outperformed other estimation methods when covariate-adjustment using PS conditioning was 

applied. 
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