
NONPARAMETRIC ESTIMATION AND INFERENCE IN ECONOMETRICS

A Dissertation

by

TA-CHENG HUANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Qi Li
Committee Members, Yonghong An

Dennis W. Jansen
Ursula Müller-Harknett
Ke-Li Xu

Head of Department, Timothy J. Gronberg

May 2018

Major Subject: Economics

Copyright 2018 Ta-Cheng Huang



ABSTRACT

This dissertation includes two essays: The first one is on nonparametric inference in causal

effect models, and the second one is on nonparametric estimation in financial economics.

In the first essay, we propose a nonparametric test for unobserved heterogeneous treatment

effects in a general framework, allowing for self-selection to the treatment. The proposed modified

Kolmogorov-Smirnov-type test is consistent and simple to implement. Monte Carlo simulations

show that our test performs well in finite samples. For illustration, we apply our test to study

heterogeneous treatment effects of the Job Training Partnership Act on earnings and the impacts

of fertility on family income.

In the second essay, we provide an alternative to the existing estimations of implied volatility

in option pricing. The use of state price densities to gather information about market sentiment

and other empirical characteristics that describe important phenomena is popular in literature and

in practice. The estimation of the implied volatility surface to extract these densities is a crucial

intermediate step in the process, and the methods to do so are varied in literature. This essay

proposes an estimation procedure that is relative new in nonparametric literature: `1 trend filtering.

We show its advantages over typically used nonparametric and parametric methods, commonly

used in literature and in practice, to deal with this particular estimation problem. Additionally, the

method maintains smaller prediction errors than the comparison models across different number

of observations and levels of noise.

ii



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Qi Li (Chair)

of the Department of Economics, Professor Yonghong An of the Department of Economics, Pro-

fessor Dennis W. Jansen of the Department of Economics, Professor Ursula Müller-Harknett of

the Department of Statistics, and Professor Ke-Li Xu of the Department of Economics. All com-

mittee members but Professor Xu, who is at Indiana University, Bloomington, are at Texas A&M

University.

The theoretical analyses depicted in the first essay were conducted in part with Professor Yu-

Chin Hsu of the Institute of Economics at Academia Sinica and Professor Haiqing Xu of the

Department of Economics at University of Texas at Austin. In addition, the estimation proce-

dure illustrated in the second essay were conducted in part with Pablo Crespo of Department of

Economics at the Graduate Center of the City University of New York.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by the Department of Economics at Texas A&M University and

the Lynde and Harry Bradley Fellowship from Private Enterprise Research Center at Texas A&M

University.

iii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF TABLES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

1. INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The First Essay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Second Essay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. TESTING FOR UNOBSERVED HETEROGENEOUS TREATMENT EFFECTS IN A
NONSEPARABLE MODEL WITH ENDOGENOUS SELECTION . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Model and Testable Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Consistent Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Case 1: Discrete Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Case 2: Continuous Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Empirical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 The Effect of Job Training Program on Earnings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 The Impact of Fertility on Family Income . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3. IMPLIED VOLATILITY ESTIMATION VIA `1 TREND FILTERING . . . . . . . . . . . . . . . . . . . . . 28

3.1 Theory and Estimation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.1 State Price Densities, Implied Volatility, and Option Prices. . . . . . . . . . . . . . . . . . . . 28
3.1.2 `1 Trend Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.1 Competing Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.2 Monte Carlo Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2.3 Monte Carlo Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 An Empirical Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.1 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3.2 Data Cleanup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

iv



3.3.3 Tail Extrapolation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.3.4 An Example of Extraction with A Single Day . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.3.5 Full Data Set Application and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1 The First Essay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 The Second Essay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

APPENDIX A. PROOFS OF LEMMAS AND THEOREMS IN SECTION 1. . . . . . . . . . . . . . . . . . 70

A.1 Proof of Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.2 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
A.3 Proof of Theorem 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
A.4 Proof of Lemma 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
A.5 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

APPENDIX B. TECHNICAL LEMMAS FOR PROOFS IN APPENDIX A . . . . . . . . . . . . . . . . . . . 80

v



LIST OF FIGURES

FIGURE Page

3.1 Moneyness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Simulation RMSE results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Simulation MAPE results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4 Fitted values of implied volatility cross sections against moneyness for January 5,
2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 Extracted SPD cross sections for January 5, 2007 after using trend filtering . . . . . . . . . . 57

3.6 S&P 500 percentual advantage densities January 1, 2007 to January 1, 2010 . . . . . . . . . 58

3.7 Apple Inc. percentual advantage densities January 1, 2007 to January 1, 2010 . . . . . . . 59

3.8 Kellogg Company percentual advantage densities January 1, 2007 to January 1,
2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.9 Gap Inc. percentual advantage densities January 1, 2007 to January 1, 2010 . . . . . . . . . 61

vi



LIST OF TABLES

TABLE Page

2.1 Rejection probabilities (α = 5%) in the discrete–covariates case. . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Rejection probabilities (α = 5%) in the continuous–covariates case. . . . . . . . . . . . . . . . . . . 22

2.3 Descriptive Statistics for the 1999 and 2000 Censuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 S&P 500 prices from January 2nd, 2007 to January 1st, 2010. . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 RMSE ε ∼ N (0, 0.005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 MAPE ε ∼ N(0, 0.005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 RMSE ε ∼ N (0, 0.010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 MAPE ε ∼ N (0, 0.010) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 RMSE ε ∼ N (0, 0.015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.7 MAPE ε ∼ N (0, 0.015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.8 Percentual advantage distributions of RMSE and MAPE for training set . . . . . . . . . . . . . . 54

3.9 Percentual advantage distributions of RMSE and MAPE for test set . . . . . . . . . . . . . . . . . . . 55

vii



1. INTRODUCTION

This dissertation includes two independent essays. In the first essay, I propose a nonpara-

metric test for unobserved heterogeneity in treatment effects. The test can answer an crucial

policy-relevant research question: Whether the measured treatment effects are also valid for other

subpopluations? The second essay provides an alternative to the existing estimations of implied

volatility in option pricing when usable data is scarce on daily basis.

1.1 The First Essay

Heterogeneous treatment effects due to unobserved latent variables has been emphasized in

the policy evaluation literature. See e.g. Heckman et al. (1997), Heckman and Vytlacil (2001,

2005), Abadie et al. (2002), Abadie (2003), Blundell and Powell (2003) , Matzkin (2003), Chesher

(2003, 2005), Chernozhukov and Hansen (2005), Florens et al. (2008), Imbens and Newey (2009),

Frölich and Melly (2013), D’Haultfœuille and Février (2015), Torgovitsky (2015), and among

many others. The interpretation and credibility of the instrumental variable (IV) approach rely

on the hypothesis that treatment effects are homogeneous across individuals, after controlling for

covariates. In this paper, we develop a nonparametric test for unobserved heterogeneous treatment

effects under the standard instrumental variable framework.

In this essay, we use a nonseparable equation for the structural relationship to model unob-

served heterogeneous treatment effects. Given the nonseparability of the structural relationship,

treatment effects vary across individuals, even after controlling for all observed covariates. (See

e.g. Matzkin, 2003; Chesher, 2003, 2005). In the presence of endogeneity, it is well known that

such heterogeneity of treatment effects brings challenges to estimating e.g. average treatment ef-

fects (ATE). In particular, Imbens and Angrist (1994) show that the conventional IV estimation

only recovers the “Local Average Treatment Effects”(LATE), rather than the ATE. On the other

hand, the homogenous treatment effects assumption substantially simplifies identification and es-

timation of ATE, since it implies the ATE is the same as the LATE, after controlling for observed
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covariates. For instance, Angrist and Krueger (1991) use a two–stage least square approach to esti-

mate treatment effects. Therefore, providing evidence for homogeneous treatment effects justifies

the results and interpretations from the transitional IV estimation.

Though important, there are only a handful of papers on testing for such unobserved hetero-

geneity. In the context of ideal social experiments, Heckman et al. (1997) develop a lower bound

for the variance of heterogeneous treatment effects, thereby providing a test for whether or not

the data are consistent with the identical treatment effects model. Moreover, Hoderlein and Mam-

men (2009) discuss specification tests for endogeneity as well as unobserved heterogeneity in

nonseparable triangular models. Recently, Lu and White (2014) and Su et al. (2015) establish

nonparametric tests for unobserved heterogeneous treatment effects under the unconfoundedness

assumption. In particular, Lu and White (2014) test unobserved heterogeneity in treatments ef-

fects via testing an equivalent independence condition on observables. Mainly motivated by Lu

and White (2014), we show that in the presence of endogeneity, model restrictions arising from

the homogeneous treatment effects hypothesis can also be characterized by an alternative set of

independence conditions, which is constructed by using the LATE estimator.

Another closely related paper is Heckman et al. (2010) who test the absence of self-selection

on the gain to treatment in the generalized Roy model framework, allowing for (unobserved) het-

erogeneous treatment effects. Similar to their work, our testing problem is formulated in a model

allowing for both unobserved heterogeneity and selection into treatment, called as the “essential

heterogeneity” in Heckman et al. (2006).

Nonparametric tests for (conditional) independence restrictions have been well studied in dif-

ferent contexts. See e.g. Andrews (1997); Su and White (2007, 2008, 2014); Bouezmarni et al.

(2012); Hoderlein and White (2012); Linton and Gozalo (2014); Huang et al. (2016), among many

others. When one considers testing independence restrictions of variables that are nonparametri-

cally constructed, however, a key technical issue arises, especially in the case where the nonpara-

metric components are functions of continuous covariates (see e.g. Lu and White, 2014). Motivated

by Stinchcombe and White (1998), we modify the classic Kolmogorov–Smirnov tests by using the

2



primitive function of CDF’s to represent the independence condition. Such a modification is novel

and plays a key role for our approach. Moreover, we establish the asymptotic properties of the

proposed tests under the null and alternative hypotheses.

The essay is organized as follows. In Section 2.1, we introduce the model and derive testable

model restrictions. Section 2.2 discusses our test statistics and their asymptotic results. We dis-

tinguish the cases whether covariates include continuous variables. In Section 2.3, we conduct

Monte Carlo experiments to study the finite-sample performance of the proposed test. Section 3.3

illustrates our testing approach by two empirical applications. Section 2.5 extends our approach to

the Regression Discontinuity design. All proofs are collected in the Appendix.

1.2 The Second Essay

The use of market prices as given to perform analysis on empirical phenomena in securities has

become increasingly prominent in research. In terms of using prices to measure market sentiment,

the state price density (SPD), also known as risk neutral density (RND) has become the tool of

choice. The moments of this distribution possess information about market beliefs on the evolution

of prices for the underlying security. As such, extracting the SPD has importance in practice.

Breeden and Litzenberger (1978) show that SPDs can be extracted from option prices theoretically

via a second derivative with respect to strike prices. For this extraction, using existing theoretical

pricing models for options can reveal good analytical solutions, but it seldom matches data. Thus,

it has become common practice to use a version of the Black and Scholes (1973) and Merton

(1973) pricing formula (BSM) as a transformation from the space of prices to the space of “implied

volatilities.” Estimating implied volatilities can yield to feasible, practical results that can be used

to extract the SPD. However, the usefulness of this exercise depends directly on the magnitude of

the prediction error. The data on option prices tend to be noisy and scarce, which poses a threat to

the accuracy of predicted values. The estimation of implied volatility is thus a non-trivial problem

under which misspecification can yield misleading results and incorrect interpretations.

The literature on the methodology for estimation of implied volatility can be divided into two

broad categories: parametric and nonparametric. Parametric methods carry the advantage of being

3



easy to use, have good inference capabilities and possess extrapolation features beyond the scope

of the dataset. However, the underlying assumption of functional form required for a parametric

method is strong. This is problematic, as there is no guarantee (particularly in the cases of sudden

changes in beliefs of the behavior of a price) that the estimates will work for all days under the

same specification. The nonparametric methods produce flexible fits and do not require for the

researcher to make any specification assumption. The limitations of these methods lie on the fact

that they are slow converging, meaning that the prediction error depends heavily on the number

of observations in the dataset. Goodness of fit suffers in the case of a low number of observa-

tions. Due to the large dataset requirements , particularly in multidimensional models, daily option

data is often inappropriate and at risk of oversmoothing when using it for SPD extraction. It is then

common while using kernel estimators, to also use aggregated data. While this is a reasonable idea,

it becomes problematic when addressing the fact that interpretability is somewhat lost with aggre-

gated data. Namely, since we want to use the main features of the SPD to assess beliefs about risk

on the price of a security, the day to day variation can be important for the researcher. Furthermore,

when using aggregated data, regime changes become a concern as they are no longer identifiable.

We propose to use a nonparametric estimator, `1-trend filtering, which provides a flexible alterna-

tive that can operate with smaller prediction errors than other nonparametric methodology across

different sample sizes. Our review is focused on methods that are comparable to trend filtering.

Curve fitting and kernel smoothing methods are what we use for benchmarks. Jackwerth (2004)

provides an extensive list on methodologies, including those which extract the SPDs directly in his

monograph.

Shimko (1993) takes advantage of the fact that option prices can be separated into cross sec-

tions according to tenor and fits a second order polynomial with a simple regression on a measure of

moneyness at each tenor. Malz (2014) fits quadratic polynomials via interpolating splines. Apari-

cio and Hodges (1998) fit cubic B-Splines, and Hayes et al. (2003) use interpolated cubic splines

to fit implied volatilities. Aït-Sahalia and Lo (1998) use a kernel estimator (Nadaraya-Watson),

and this paper was later used as the base for an extension to fit local linear kernel estimators.
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In order to perform our comparison, we pick Shimko (1993) as its performance is notable

among parametric methods, and two local linear kernel estimators with different bandwidth pa-

rameters as our nonparametric representatives. The choice of the local linear kernel estimators

comes from the popularity of Aït-Sahalia and Lo (1998) methodology, with a simple correction to

avoid poor fits in the extremes of the datasets.1 `1-trend filtering can be compared to a smooth-

ing spline in which knots are selected adaptively. This estimation procedure can handle relatively

smaller datasets than the kernel estimators, but is still limited. In our application at least seven

observations at each tenor cross-section are required to perform the estimation. In addition, note

that as in all nonparametric methods, extrapolation beyond the scope of the dataset is not possible.

This issue limits our ability to observe tail behavior in the SPDs, to solve this problem we use

Figlewski (2008) suggested method for extrapolating tails by grafting them from an extreme value

(GEV) distribution.

In our results we show via Monte Carlo that trend filtering provides better fits than the ker-

nel estimators across different sample sizes and levels of noise. The gap in the prediction error

is reduced under high noise and small sample sizes, but trend filtering continues to show a dis-

tinct advantage over its nonparametric competitiors across the distribution of simulations. These

results are important, as daily observations are likely to be few, thus rendering trend filtering as

a viable estimation strategy. In addition, trend filtering outperforms the Shimko (1993) specifica-

tion regardless of the size of the dataset. This parametric specification is a comfortable choice for

practicioners for small sample sizes. As a final simulation check, we fit the specified simulation

model and show that the nonparametric flexibility of trend filtering overcomes the slight overfitting

prediction errors than even the correct specification can cause.

Moreover, we perform a comparison of trend filtering against Shimko (1993) and a fourth order

polynomial stringwise regression on S&P 500, Apple Inc., Kellog Company and Gap Inc. quotes

for the time period from January 1, 2007 to January 1, 2010. The data is separated randomly

into "training" and "testing" (out of sample) datasets. We see that trend filtering outperforms the

1The Nadaraya-Watson estimator is known to have issues around the boundaries of the dataset. Local linear
performs significantly better in this aspect.
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parametric specifications consistently.

The essay is organized as follows. Section 3.1 presents the background theory on SPDs and

implied volatility surfaces as well as introducing `1-trend filtering formally. The Monte Carlo

experiment and its results are demonstrated in Section 3.2. Section 3.3 summarizes empirical

work and performance assesment. Section 3.4 concludes.
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2. TESTING FOR UNOBSERVED HETEROGENEOUS TREATMENT EFFECTS IN A

NONSEPARABLE MODEL WITH ENDOGENOUS SELECTION

2.1 Model and Testable Restrictions

We consider the following nonseparable treatment effect model:

Y = g(D,X, ε) (2.1)

where Y ∈ R is outcome variable, D ∈ {0, 1} denotes treatment status, X ∈ RdX are covariates,

ε is an unobserved random disturbance of general form (e.g. without invoking any restriction on

the dimensionality of ε), and g is an unknown but smooth function defined on {0, 1} ×SXε.1 In

particular, the treatment variable D is allowed to be correlated with ε so as to allow for selection

to the treatment; see e.g. Heckman et al. (1997). To deal with endogeneity, we introduce a binary

instrumental variable Z ∈ {0, 1}. Throughout the paper, we use upper case letters to denote

random variables, and their corresponding lower case letters to stand for realizations of random

variables.

As is motivated in the seminal paper by Matzkin (1999), the non-additivity of the structural

relationship g in ε captures the idea of unobserved heterogeneous treatment effects in that the

individual treatment effect, g(1, X, ε) − g(0, X, ε), would depend on the unobserved individual

heterogeneity ε, even after controlling for covariates X . Therefore, we have the following propo-

sition.

Proposition 2.1. Suppose (2.1) holds, then the homogeneous treatment effects hypothesis, i.e., for

some measurable function δ0(·) : SX 7→ R,

H0 : g(1, X, ·)− g(0, X, ·) = δ0(X) (2.2)

1For a generic random vector A, We use SA to denote the support of A.

7



holds if and only if the structural relationship g(·, ·, ·) is additively separable in ε (w.r.t. D), i.e.,

g(D,X, ε) = m(D,X) + ν(X, ε), (2.3)

where m : SDX 7→ R and ν : SXε 7→ R.

Proposition 2.1 follows Lu and White (2014). Note that if (2.3) holds, δ0(x) = m(1, x)−m(0, x)

in (2.2), which is the homogenous individual treatment effects across individuals with the same

value of covariates.

A key insight from Lu and White (2014) is that they further show that the equivalence between

the additive separability hypotheses (i.e. eq. (2.3)) and a conditional independence restriction on

observables. In the presence of treatment endogeneity, we derive a similar set of model restrictions.

For each x ∈ SX and z = 0, 1, let p(x, z) = Pr(D = 1|X = x, Z = z) be the propensity score.

Assumption 2.1. Suppose Z ⊥⊥ ε|X and p(x, 0) 6= p(x, 1) for all x ∈ SX . Without loss of

generality, let p(x, 0) < p(x, 1) for all x ∈ SX .

Assumption 2.1 is standard in the literature, which requires the instrumental variable Z to be

(conditionally) exogenous and relevant. See e.g. Imbens and Angrist (1994) and Chernozhukov

and Hansen (2005). Throughout, we maintain Assumption 2.1.

Moreover, let µ(x, z) = E(Y |X = x, Z = z). Under H0 and Assumption 2.1, we have

µ(x, z) = E [g(0, x, ε)|X = x] + δ0(x)p(x, z), for z = 0, 1.

In the above equation system, we treat E [g(0, X, ε)|X = x] and δ0(x) as two unknowns. Solve the

equations, then we identify δ0(x) by:

δ(x) ≡ µ(x, 1)− µ(x, 0)

p(x, 1)− p(x, 0)
=

Cov(Y, Z|X)

Cov(D,Z|X)
. (2.4)

See Imbens and Angrist (1994) for the LATE interpretation of (2.4). Note that δ(x) is well defined
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under Assumption 2.1 and identified as well directly from the data regardless the monotonicity of

the selection.

Let W ≡ Y + (1 −D) · δ(X). Note that the null hypothesis H0 implies that W = g(1, X, ε).

Therefore, under Assumption 2.1, W is conditionally independent of Z given X . The next lemma

summarizes the above discussion.

Lemma 2.1. Suppose (2.1) and Assumption 2.1 hold. Then, H0 implies that W ⊥⊥ Z | X .

The proof of Lemma 2.1 is straightforward, and hence omitted. To provide a consistent test, we

now establish the sufficiency of the conditional independence for testing H0.

Assumption 2.2 (Single–index error term). There exist measurable functions g̃ : SDX × R 7→ R

and ν : SXε 7→ R such that

g(D,X, ε) = g̃(D,X, ν(X, ε)).

Moreover, g̃(d, x, ·) is strictly increasing in the scalar–valued index ν for d = 0, 1 and all x ∈ SX .

Assumption 2.2 imposes the monotonicity of the single–index error term, for which various simpli-

fied assumptions have also been made in the literature for identification and estimation of nonsep-

arable functions. For instance, among many others, Matzkin (2003) and Chesher (2003) assume

the structural function g is strictly increasing in the scalar–valued error term ε. Note that Assump-

tion 2.2 holds under the null hypothesis H0, represented in terms of (2.3). Hence, Assumption 2.2

narrows down the space of alternatives such that the model restrictions derived in Lemma 2.1 is

sufficient to distinguish the null and alternative hypotheses.

Assumption 2.3 (Monotone selection). The selection to the treatment is given by

D = 1 [θ(X,Z)− η ≥ 0] , (2.5)

where θ is an unknown function, and η ∈ R is an error term satisfying Z ⊥⊥ (ε, η) | X .

Imbens and Angrist (1994) first introduce the monotone selection assumption, which is essentially

the “no defier” condition. Moreover, Vytlacil (2002) shows that such a monotonicity condition
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is observationally equivalent to the weak monotonicity of (2.5) in the error term η. Vuong and

Xu (2016) point out Assumption 2.3 can be relaxed to the strict monotonicity of P(Y ≤ y;D =

1|X,Z = 1)− P(Y ≤ y;D = 1|X,Z = 0) in y ∈ S ◦
Y |X,D=1, the interior region of SY |X,D=1.

Note that the second half of Assumption 2.1 implies θ(x, 0) < θ(x, 1) for all x ∈ SX . Let

Cx ≡ {η ∈ R : θ(x, 0) < η ≤ θ(x, 1)} be the “complier group” given X = x (see Imbens and

Angrist, 1994, for the concept “complier group”).

Assumption 2.4. The support of g(d, x, ε) given X = x and the complier group Cx equals to the

support of g(d, x, ε) given X = x, i.e.,

Sg(d,x,ε)|X=x, η∈Cx = Sg(d,x,ε)|X=x.

Assumption 2.4 is a support condition, first introduced by Vuong and Xu (2016) as the effectiveness

of the instrument variable. It implies Sg(d,x,ε)|X=x, η∈Cx = SY |D=d,X=x. Note that the distribution

of g(d, x, ε) given X = x and η ∈ Cx can be identified, see, e.g., Imbens and Rubin (1997). Thus,

Assumption 2.4 is testable. Specifically, for all t ∈ R,

P[g(d, x, ε) ≤ t|X = x, η ∈ Cx] =

Pr(Y ≤ t,D = d|X = x, Z = 1)− Pr(Y ≤ t,D = d|X = x, Z = 0)

Pr(D = d|X = x, Z = 1)− Pr(D = d|X = x, Z = 0)
,

from which we can identify the support Sg(d,x,ε)|X=x,η∈Cx .

Assumption 2.4 allows one to use the data to address questions involving counterfactuals of

outcomes of the “always takers” and the “never–takers” groups. It is possible to provide sufficient

primitive conditions for Assumption 2.4. For instance, if one assumes Sε|X=x, η∈Cx = Sε|X=x, or

even a stronger condition that (ε, η) has a rectangular support conditional onX = x, then Assump-

tion 2.4 holds. It is also worth noting that without imposing Assumption 2.4, our methodology can

be used to test the null hypothesis of (2.2) holding with respect to the subset ε ∈ Sε|X=x, η∈Cx .

Theorem 2.1. Suppose (2.1), and Assumptions 2.1 to 2.4 hold. Then H0 holds if and only if
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W ⊥⊥ Z|X .

From now on, we maintain Assumptions 2.1 to 2.4. By Theorem 2.1, testing the null hypothesis

H0 is equivalent to testing the conditional independence condition W ⊥⊥ Z|X . It is worth pointing

out that Theorem 2.1 is related to Lu and White (2014), who show that H0 holds if and only if [Y −

E(Y |D,X)] ⊥⊥ D|X under the unconfoundedness condition (i.e. D ⊥⊥ ε|X) and Assumption 2.2.

2.2 Consistent Tests

Based on Theorem 2.1, we now propose tests for unobserved treatment effect heterogeneity via

testing the conditional independence restriction. BecauseZ is binary, the conditional independence

restriction in Theorem 2.1 is equivalent to

FW |XZ(·|x, 0) = FW |XZ(·|x, 1), ∀ x ∈ SX .

Note that the variableW needs to be nonparametrically constructed from the data. In the following

discussion, we distinguish the cases whether the covariates X are continuous random variables

because the continuous–covariates case is more difficult to deal with due to the nonparametric

function δ(·) in the construction of W . For expositional simplicity, we assume X ∈ R in the

following discussion. It is straightforward to generalize our results to vector-valued covariates.

2.2.1 Case 1: Discrete Covariates

We first discuss the case where X takes only a finite number of values. Let {(Yi, Di, X
′
i, Zi)

′ :

i ≤ n} be a random sample of (Y,D,X ′, Z)′. By Theorem 2.1, we test H0 via the following model

restrictions:

FW |XZ(· |x, 0) = FW |XZ(· |x, 1), ∀ x ∈ SX ,

where W = Y + (1−D)δ(X) is generated from the observables.
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We estimate δ(Xi) as follows

δ̂(Xi) =∑
j 6=i YjZj1(Xj = Xi)×

∑
j 6=i 1(Xj = Xi)−

∑
j 6=i Yj1(Xj = Xi)×

∑
j 6=i Zj1(Xj = Xi)∑

j 6=iDjZj1(Xj = Xi)×
∑

j 6=i 1(Xj = Xi)−
∑

j 6=iDj1(Xj = Xi)×
∑

j 6=i Zj1(Xj = Xi)
.

Let further Ŵi = Yi + (1−Di)× δ̂(Xi). We are now ready to define our test statistic:

T̂n = sup
w∈R; x∈SX

√
n
∣∣∣F̂Ŵ |XZ(w|x, 0)− F̂Ŵ |XZ(w|x, 1)

∣∣∣ ,
where F̂Ŵ |XZ(w|x, z) =

∑n
i=1 1(Ŵi≤w)1(Xi=x,Zi=z)∑n

i=1 1(Xi=x,Zi=z)
.

Next, we establish the limiting distribution of T̂n. For expositional simplicity, denote 1XZ(x, z) ≡

1(X = x, Z = z) and fWD|XZ(w, d|x, z) ≡ fW |DXZ(w|d, x, z) × Pr(D = d|X = x, Z = z).

Moreover, let

κ(w, x) ≡ −
fWD|XZ(w, 0|x, 1)− fWD|XZ(w, 0|x, 0)

p(x, 1)− p(x, 0)
.

Note that under Assumptions 2.1 and 2.3, κ(w, x) ≥ 0 since it becomes the conditional density of

g(0, x, ε) given the complier group and X = x. Moreover, let

ψwx ≡ [1(W ≤ w)− FW |X(w|x)]×
[ 1XZ(x, 1)

Pr(X = x, Z = 1)
− 1XZ(x, 0)

Pr(X = x, Z = 0)

]
; (2.6)

φwx ≡ κ(w, x)[W − E(W |X = x)]×
[ 1XZ(x, 1)

Pr(X = x, Z = 1)
− 1XZ(x, 0)

Pr(X = x, Z = 0)

]
. (2.7)

By definition, ψwx and φwx are random processes indexed by (w, x).

Assumption 2.5. Let X be a discrete random variable with a finite support. Moreover, the prob-

ability distribution of Y given (D,X,Z) admits a uniformly continuous density function fY |DXZ

and E(Y 2) <∞.

12



Theorem 2.2. Suppose Assumptions 2.1 to 2.5 hold. Then, under H0,

T̂n
d→ sup

w∈R; x∈SX

|Z(w, x)|,

where Z(·, x) is a mean–zero Gaussian process with covariance kernel:

Cov [Z(w, x),Z(w′, x)] = E [(ψwx + φwx)(ψw′x + φw′x)] , ∀w,w′ ∈ R.

Moreover, under H1, we have

n−
1
2 T̂n

p→ sup
w∈R; x∈SX

∣∣FW |XZ(w|x, 0)− FW |XZ(w|x, 1)
∣∣ .

In the covariance kernel Cov [Z(w, x),Z(w′, x′)], φwx and φw′x′ appear due to the estimation of

δ(x). By Theorem 2.2, our test is one–sided: reject H0 at significance level α if and only if T̂n ≥ cα,

where cα is the (1− α)-th quantile of supw∈R; x∈SX
|Z(w, x)|.

Because the asymptotic distribution of supw∈R; x∈SX
|Z(w, x)| is complicated, then we apply

the multiplier bootstrap method to approximate the entire process for the critical value. See e.g.

van der Vaart and Wellner (1996), Delgado and Manteiga (2001) and Barrett and Donald (2003).

Specifically, we simulate a sequence of i.i.d. pseudo random variables {Ui : i = 1, · · · , n} with

E(U) = 0, E(U2) = 1, and E(U4) < +∞. Moreover, the simulated sample {Ui : i = 1, · · · , n}

is independent of the random sample {(Yi, Xi, Di, Zi) : i = 1, · · · , n}. Then, we obtain the

following simulated empirical process:

Ẑu(w, x) =
1√
n

n∑
i=1

Ui × (ψ̂wx,i + φ̂wx,i),
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where ψ̂wx,i + φ̂wx,i is the estimated influence function. Namely,

ψ̂wx,i =

[
1(Ŵi ≤ w)−

∑n
j=1 1(Ŵj ≤ w;Xj = x)∑n

j=1 1(Xj = x)

]
×[

1(Xi = x, Zi = 0)

P̂r(X = x, Z = 0)
− 1(Xi = x, Zi = 1)

P̂r(X = x, Z = 1)

]
;

φ̂wx,i = κ̂(w, x)

[
Ŵi −

∑n
j=1 Ŵj1(Xj = x)∑n
j=1 1(Xj = x)

]
×

[
1(Xi = x, Zi = 0)

P̂r(X = x, Z = 0)
− 1(Xi = x, Zi = 0)

P̂r(X = x, Z = 1)

]
,

where P̂r(X = x, Z = z) = 1
n

∑n
j=1 1(Xj = x, Zj = z) and

κ̂(w, x) = −
f̂WD|XZ(w, 0|x, 1)− f̂WD|XZ(w, 0|x, 0)

p̂(x, 1)− p̂(x, 0)
.

In the definition of κ̂(w, x), f̂WD|XZ(w, 0|x, z) =
∑n
j=1 1(Dj=0,Xj=x,Zj=z)× 1

h
K(

Ŵj−w
h

)∑n
j=1 1(Xj=x,Zj=z)

, where K

and h be a bounded kernel function and a smoothing bandwidth, respectively, and p̂(x, z) =∑n
j=1 1(Dj=1,Xj=x,Zj=z)∑n

j=1 1(Xj=x,Zj=z)
. For a given significant level α, the critical value ĉn(α) is obtained as the

(1− α)–quantile of the simulated distribution of supw∈R, x∈SX

∣∣∣Ẑu(w, x)
∣∣∣.

2.2.2 Case 2: Continuous Covariates

We now consider the case where X ∈ R is continuously distributed with a finite support. To

extend the empirical process argument used in the proof of Theorem 2.2 to this case, we propose

a modified Kolmogorov–Smirnov test statistic. Such a modification allows the generated variable

W to be constructed from the unknown function δ(·) as an infinite–dimensional parameter.

Let λ(t) = −t × 1(t ≤ 0) and Π(w|x, z) = E[λ(W − w)|X = x, Z = z]. By definition,

Π(·|x, z) is the primitive function of the FW |XZ(·|x, z), i.e.,

∂

∂w
Π(w|x, z) = FW |XZ(w|x, z).
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Thus, the model restriction W ⊥⊥ Z | X can be equivalently characterized as follows

Π(w|x, 0) = Π(w|x, 1), ∀(w, x) ∈ R×SX .

It should also be noted that λ(·) is continuous and has a directional derivative. For simplicity, we

assume SW is bounded.

We denote fXZ(x, z) ≡ fX|Z(x|z) × P(Z = z) and 1∗XZ(x, z) ≡ 1(X ≤ x;Z = z). For

z ∈ {0, 1}, let z′ = 1− z and

G(w, x, z) = E [λ(W − w)1∗XZ(x, z)fXZ(X, z′)] .

Motivated by Stinchcombe and White (1998), we represent the above conditional expectation re-

strictions by the following unconditional ones:

G(w, x, 0) = G(w, x, 1), ∀(w, x) ∈ R×SX . (2.8)

To see the equivalence, first note that

G(w, x, z) = E
[
λ(W − w)1(X ≤ x)fX|Z(X|z′)|Z = z

]
P(Z = 0)P(Z = 1).

Moreover, by the law of iterated expectation,

∂

∂x
E[λ(W − w)1(X ≤ x)fX|Z(X|z′)|Z = z] = Π(w|x, z)fX|Z(x|0)fX|Z(x|1).

Therefore, we obtain the conditional expectation restrictions as the derivative of (2.8). Note that the

estimation ofG(w, x, z) avoids any denominator issues, which thereafter simplifies our asymptotic

analysis.

Let K and h be a bounded kernel function and a smoothing bandwidth, respectively. Then, we

15



estimate δ(Xi) by

δ̂(Xi) = ∑
j 6=i YjZjK

(
Xj−Xi

h

)
×
∑

j 6=iK
(
Xj−Xi

h

)
−
∑

j 6=i YjK
(
Xj−Xi

h

)
×
∑

j 6=i ZjK
(
Xj−Xi

h

)
∑

j 6=iDjZjK
(
Xj−Xi

h

)
×
∑

j 6=iK
(
Xj−Xi

h

)
−
∑

j 6=iDjK
(
Xj−Xi

h

)
×
∑

j 6=i ZjK
(
Xj−Xi

h

) .
Moreover, let

f̂XZ(Xi, z) =
1

nh

∑
j 6=i

K
(Xj −Xi

h

)
1(Zj = z);

Ĝ(w, x, z) =
1

n

n∑
i=1

λ(Ŵi − w)1∗XiZi(x, z)f̂XZ(Xi, z
′).

Thus, we define our test statistic as follows:

T̂ cn = sup
(w,x)∈SWX

√
n
∣∣∣Ĝ(w, x, 0)− Ĝ(w, x, 1)

∣∣∣ .
In above definition, the support SWX is assumed to be known for simplicity. In practice, this

assumption can be relaxed by using a consistent set estimator ŜWX of SWX .

We show that the proposed test statistic T̂ cn converges in distribution at the regular parameter

rate. The key step of our proof is to show that

sup
(w,x)∈SWX

∣∣∣Ĝ(w, x, z)− G̃(w, x, z)
∣∣∣ = op

(
n−1/2

)
. (2.9)

where G̃(w, x, z) = 1
n

∑n
i=1(w − Ŵi)1(Wi ≤ w) × 1∗XiZi(x, z)f̂XZ(Xi, z

′). The above result

requires that the nonparametric elements in the estimation of δ̂(·) should converge to the corre-

sponding true values uniformly at a rate faster than n−1/4.

Assumption 2.6. The support SWX ⊆ R is compact. For z = 0, 1, sup(x,z)∈SXZ
fX|Z(x|z) ≤ f <

+∞ and infx∈SX
|fXZ(x, 1)− fXZ(x, 0)| > 0.

Assumption 2.7. For z ∈ {0, 1}, functions fX|Z(x|z), p(x, z) and µ(x, z) are continuous in x.
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Assumption 2.8. The support of K is a convex (possibly unbounded) subset of R with nonempty

interior, with the origin as an interior point. K(·) is a bounded differentiable function such that∫
K(u) = 1,

∫
uK(u) = 0, and K(u) = K(−u) holds for all u in the support.

Assumption 2.9. Let ι > 1
4
. As n→∞, h→ 0 and nι/

√
nh→ 0.

Assumption 2.10. The first-stage estimators satisfy:

sup
(x,z)∈SXZ

∣∣∣E[ 1

nh

n∑
j=1

1(Zj = z)K
(Xj − x

h

)]
− fXZ(x, z)

∣∣∣ = Op(n
−ι),

sup
(x,z)∈SXZ

∣∣∣E[ 1

nh

n∑
j=1

Dj1(Zj = z)K
(Xj − x

h

)]
− p(x, z)fXZ(x, z)

∣∣∣ = Op(n
−ι),

sup
(x,z)∈SXZ

∣∣∣E[ 1

nh

n∑
j=1

Yj1(Zj = z)K
(Xj − x

h

)]
− E(Y |X = x, Z = z)fXZ(x, z)

∣∣∣ = Op(n
−ι).

Assumptions 2.6 to 2.9 are standard in the semiparametric estimation literature, ensuring that the

first–stage nonparametric estimators converge to its expectation at a rate faster than n1/4. Note that

Assumption 2.9 implies that the h� n−1/2. Moreover, Assumption 2.10 is a high-level condition

that requires the nonparametric estimation bias diminishes uniformly at a rate faster than n1/4.

Such a condition on the bias term can be satisfied under additional primitive conditions on K(·)

and h, as well as the smoothness of the underlying structural functions. See e.g. Pagan and Ullah

(1999).

Lemma 2.2. Suppose Assumptions 2.6 to 2.10 hold. Then, (2.9) holds for z = 0, 1.

By Lemma 2.2, it suffices to establish the limiting distribution of G̃(w, x, 1) − G̃(w, x, 0) for the

asymptotic properties of our test statistics. Note that in the definition of G̃(w, x, z), there contains

no nonparametric elements estimated in the indicate function.

To establish asymptotic properties for inference, we make the following assumption.

Assumption 2.11. supx∈SX

∣∣∣E[δ̂(x)]− δ(x)
∣∣∣ = op(n

− 1
2 ) and supxz∈SXZ

∣∣∣E[f̂XZ(x, z)]− fXZ(x, z)
∣∣∣ =

op(n
− 1

2 ).
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Assumption 2.11 strengthens Assumption 2.10 by requiring the bias term in the first–stage non-

parametric estimation to be smaller than op(n−1/2), which can be established by using high order

kernels (see e.g. Powell et al., 1989).

Let F ∗WD|XZ(w, d|x, z) ≡ FW |DXZ(w|d, x, z)× Pr(D = d|X = x, Z = z) and

κc(w, x) = −
F ∗WD|XZ(w, 0|x, 1)− F ∗WD|XZ(w, 0|x, 0)

p(x, 1)− p(x, 0)
.

Moreover, we define two random process indexed by (w, x) as follows:

ψcwx =
{
λ(w −W )− E[λ(w −W )|X]

}[ 1∗XZ(x, 1)

fXZ(X, 1)
− 1∗XZ(x, 0)

fXZ(X, 0)

]
fXZ(X, 0)fXZ(X, 1);

φcwx = κc(w,X)[W − E(W |X)]
[ 1∗XZ(x, 1)

fXZ(X, 1)
− 1∗XZ(x, 0)

fXZ(X, 0)

]
fXZ(X, 0)fXZ(X, 1).

By definition, we have E(ψcwx|X,Z) = E(φcwx|X,Z) = 0 under H0.

Theorem 2.3. Suppose the assumptions in Lemma 2.2 and Assumption 2.11 hold. Then, under H0,

T̂ cn
d→ sup

w∈R; x∈SX

|Zc(w, x)|

where Zc(·, ·) is a mean–zero Gaussian process with the following covariance kernel

Cov [Zc(w, x),Zc(w′, x′)] = E [(ψcwx + φcwx)(ψ
c
w′x′ + φcw′x′)] , ∀(w, x), (w′, x′) ∈ R×SX .

Moreover, under H1, we have

n−
1
2 T̂ cn

p→ sup
w∈R; x∈SX

|G(w, x, 0)−G(w, x, 1)|.

Similar to the discrete–covariates case, we reject H0 at significance level α if and only if T̂ cn ≥

cα. Moreover, we apply the multiplier bootstrap method to approximate the entire process and

therefore to obtain critical values.
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2.3 Monte Carlo Simulations

In this section, we investigate the finite sample performance of our tests with a simulation

study. The data are simulated as follows:

Y = D +X + [γ + (1− γ)D]× ε;

D = 1 [Φ(η) ≤ 0.5× Z] ,

where (ε, η) conforms to a joint normal distribution with zero mean, unit variance and correlation

coefficient ρ = 0.7, and Z ∼ Bernoulli(p) with p = 0.25, 0.5 and 0.75 respectively. Note that we

also try different values for the correlation coefficient and all the results are qualitatively similar.2

For simplicity, X,Z and (ε, η) are mutually independent. Moreover, X is uniformly distributed on

{1, 2, 3, 4} and on [0, 1], respectively, in the discrete covariates and the continuous covariates case.

Furthermore, parameter γ ∈ [0, 1] describes the degree of unobserved heterogeneous treatment

effects in our specification. In particular, H0 holds if and only if γ = 1. Intuitively, smaller

γ, more power we expect from our tests. To investigate size and power of our tests, we choose

γ ∈ {1, 0.75, 0.5}.

We consider sample size n = 1000, 2000, 4000, a nominal level of α = 5%, and 2, 000 Monte

Carlo repetitions. To compute the suprema of the simulated stochastic processes, we use n/10

grids on the support of [minni=1(Ŵi),maxni=1(Ŵi)]. Moreover, we use 500 multiplier bootstrap

samples to simulate the p-values. Regarding the estimation of κ(w, x), we choose the second

order Gaussian kernel function with the bandwidth, hn = c · std(Ŵ ) · n−1/5, and we set c ∈

{0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3} to study the sensitivity of the test to the bandwidth.

Table 2.1 reports rejection probabilities of our simulations in the discrete-covariates case under

the null hypothesis (i.e. γ = 1) and alternative hypotheses (i.e. γ = 0.75, 0.5). From Panel

A, the level of our test is fairly well behaved: It gets closer to the nominal level as the sample

size increases and the rejection probabilities are not sensitive to the constant c for the bandwidth

2Additional Monte Carlo simulation results are available upon request.
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choice. Panels B and C show that the power of the test is reasonable. In particular, when γ is

closer to 1, it is more difficult to detect such a “local” alternative. Therefore, we obtain relatively

small power even when sample size reaches n = 2000 in Panel B. For relatively “small” sample

size, e.g., n = 1000, our results show that our test performs better with a larger bandwidth choice.

Moreover, when p (i.e. the probability of Z = 1) is 0.5, all the results for size and power dominate

the other two cases with p = 0.25, 0.75, which is expected by our asymptotic theory.

Next, we evaluate the performance of our tests in the case where the covariate X is contin-

uous. To compute the suprema, we calculate the test statistic by using n/20 grid points in the

support [minni=1(Ŵi),maxni=1(Ŵi)], as well as in the support [minni=1(Xi),maxni=1(Xi)]. Table 2.2

reports the size and power properties of our test, which are qualitatively similar to the results in the

discrete-covariates case.

2.4 Empirical Applications

2.4.1 The Effect of Job Training Program on Earnings

We now apply our tests to study the effects of the job training program on earnings, i.e., the

National Job Training Partnership Act (JTPA), commissioned by the Department of Labor. This

program began funding training from 1983 to late 1990’s to increase employment and earnings

for participants. The major component of JTPA aims to support training for the economically

disadvantaged. The effects of JTPA training programs on earnings have also been studied by e.g.

Heckman et al. (1997); Abadie et al. (2002) under a general framework allowing for unobserved

heterogeneous treatment effects.3

Our sample consists of 11,204 observations from the JTPA, a survey dataset from over 20, 000

adults and out-of-school youths who applied for JTPA in 16 local areas across the country between

1987 and 1989.4 Each participant was assigned randomly to either a program group or a control

group (1 out of 3 on average). Members of the program group are eligible to participate JTPA ser-

3The data is publicly available at http://upjohn.org/services/resources/employment-research-data-center/national-
jtpa-study.

4JTPA services are provided at 649 sites, which might not be randomly chosen. For a given site, the applicants
were randomly selected for the JTPA dataset.
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Table 2.1: Rejection probabilities (α = 5%) in the discrete–covariates case.

p n c = 0.7 c = 0.8 c = 0.9 c = 1.0 c = 1.1 c = 1.2 c = 1.3
Panel A: rejection probabilities at null hypothesis with γ = 1

1000 0.0025 0.0045 0.0080 0.0105 0.0140 0.0190 0.02500.25
2000 0.0130 0.0160 0.0230 0.0275 0.0330 0.0345 0.0415
4000 0.0265 0.0320 0.0415 0.0460 0.0490 0.0530 0.0575
1000 0.0090 0.0120 0.0160 0.0235 0.0300 0.0395 0.04600.5
2000 0.0250 0.0300 0.0340 0.0410 0.0415 0.0445 0.0490
4000 0.0350 0.0430 0.0500 0.0525 0.0565 0.0610 0.0625
1000 0.0040 0.0075 0.0135 0.0180 0.0270 0.0335 0.03900.75
2000 0.0140 0.0210 0.0245 0.0285 0.0360 0.0415 0.0480
4000 0.0230 0.0280 0.0340 0.0390 0.0455 0.0505 0.0570

Panel B: rejection probabilities at alternative hypothesis with γ = 0.75
1000 0.0125 0.0205 0.0340 0.0490 0.0605 0.0745 0.08850.25
2000 0.0810 0.1065 0.1370 0.1610 0.1805 0.1985 0.2120
4000 0.2610 0.2930 0.3160 0.3385 0.3600 0.3780 0.3935
1000 0.0390 0.0585 0.0775 0.1005 0.1185 0.1340 0.14050.5
2000 0.1590 0.1920 0.2205 0.2485 0.2675 0.2830 0.2970
4000 0.4360 0.4705 0.4945 0.5240 0.5395 0.5510 0.5730
1000 0.0230 0.0395 0.0540 0.0700 0.0855 0.1010 0.11000.75
2000 0.0970 0.1260 0.1525 0.1710 0.1880 0.2050 0.2175
4000 0.3035 0.3300 0.3565 0.3775 0.3955 0.4120 0.4245

Panel C: rejection probabilities at alternative hypothesis with γ = 0.50
1000 0.1975 0.2760 0.3515 0.4145 0.4490 0.4790 0.50300.25
2000 0.7335 0.8010 0.8445 0.8705 0.8870 0.8985 0.9045
4000 0.9985 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990
1000 0.5215 0.5915 0.6445 0.6860 0.7065 0.7155 0.72550.5
2000 0.9630 0.9715 0.9750 0.9780 0.9825 0.9820 0.9835
4000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1000 0.3600 0.4330 0.4815 0.5135 0.5295 0.5370 0.53700.75
2000 0.8645 0.8915 0.9070 0.9180 0.9220 0.9260 0.9265
4000 0.9990 0.9990 0.9990 0.9995 0.9990 0.9990 0.9990
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Table 2.2: Rejection probabilities (α = 5%) in the continuous–covariates case.

p n c = 0.7 c = 0.8 c = 0.9 c = 1.0 c = 1.1 c = 1.2 c = 1.3
Panel A: rejection probabilities at null hypothesis with γ = 1

1000 0.0695 0.0630 0.0595 0.0575 0.0525 0.0540 0.05650.25
2000 0.0620 0.0560 0.0555 0.0590 0.0570 0.0580 0.0590
4000 0.0690 0.0690 0.0630 0.0650 0.0620 0.0570 0.0565
1000 0.0510 0.0520 0.0520 0.0505 0.0515 0.0520 0.05250.5
2000 0.0590 0.0605 0.0575 0.0600 0.0630 0.0635 0.0650
4000 0.0670 0.0620 0.0630 0.0620 0.0630 0.0555 0.0585
1000 0.0495 0.0485 0.0485 0.0480 0.0480 0.0470 0.04900.75
2000 0.0450 0.0450 0.0490 0.0480 0.0470 0.0485 0.0455
4000 0.0540 0.0560 0.0540 0.0510 0.0520 0.0515 0.0535

Panel B: rejection probabilities at alternative hypothesis with γ = 0.75
1000 0.0805 0.0760 0.0730 0.0675 0.0635 0.0585 0.05850.25
2000 0.1820 0.1570 0.1405 0.1210 0.1065 0.0920 0.0890
4000 0.5730 0.5110 0.4550 0.4010 0.3560 0.3035 0.2655
1000 0.0960 0.0935 0.0890 0.0775 0.0720 0.0705 0.06900.5
2000 0.3020 0.2700 0.2285 0.2000 0.1695 0.1490 0.1340
4000 0.8160 0.7630 0.7170 0.6520 0.5940 0.5285 0.4805
1000 0.0585 0.0605 0.0580 0.0575 0.0560 0.0540 0.05200.75
2000 0.1535 0.1400 0.1230 0.1080 0.0910 0.0780 0.0690
4000 0.5450 0.4840 0.4300 0.3730 0.3220 0.2770 0.2410

Panel C: rejection probabilities at alternative hypothesis with γ = 0.50
1000 0.6950 0.6620 0.6295 0.5940 0.5470 0.5200 0.47650.25
2000 0.9925 0.9895 0.9850 0.9805 0.9720 0.9630 0.9525
4000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1000 0.9205 0.8970 0.8700 0.8370 0.8015 0.7560 0.71600.5
2000 1.0000 1.0000 1.0000 0.9990 0.9985 0.9975 0.9970
4000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
1000 0.7150 0.6665 0.6155 0.5685 0.5135 0.4500 0.41350.75
2000 0.9990 0.9970 0.9935 0.9845 0.9705 0.9565 0.9370
4000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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vices, including classroom training, on-the-job training or job search assistance, and other services,

while members of control group are not eligible for JTPA services for 18 months. Following the

literature (see e.g. Bloom et al., 1997), we use the program eligibility as an instrumental variable

for the endogenous individual participation decision.

The outcome variable is individual earnings, measured by the sum of earnings in the 30-month

period following the offer. The observed covariates include a set of dummies for races, for high-

school graduates, and for marriage, for whether the applicant worked at least 12 weeks in the 12

months preceding random assignment, and also 5 age-group dummies (22-24, 25-29, 30-35, 36-44,

and 45-54), among others. Descriptive statistics can be found in Table 1 of Abadie et al. (2002).

For simplicity, we group all applicants into 3 age categories (22-29, 30-35, and 36 and above), and

pool all non-White applicants as minority applicants.

To implement the test, we use the second order Gaussian kernel with several bandwidth choices

for robustness check. For the critical value, we use 10, 000 multiplier bootstrap samples and search

for the suprema by using 5, 000 grid points. We select the smoothing parameter by 1.06 · Std(Ŵ ) ·

n−1/4. The p-value of our test is 0.1204. Therefore, the null hypothesis (i.e. no unobserved

heterogenous treatment effects) cannot be rejected at the 10% significance level. Our results are

robust to the size of bootstrap samples, the number of grid points, and the choice of bandwidth.

2.4.2 The Impact of Fertility on Family Income

The second empirical illustration considers the heterogeneous impacts of children on parents’

labor supply and income. Recently, Frölich and Melly (2013) have studied the heterogeneous

effects of fertility on family income within the general LATE framework. To deal with the endo-

geneity of fertility decisions, Rosenzweig and Wolpin (1980); Angrist and Evans (1998); Bronars

and Grogger (1994); Jacobsen et al. (1999), among many others, suggest to use the twin births as

an instrumental variable.

Our data comes from the 1% and 5% Census Public Use Micro Sample (PUMS) from 1990 and

2000 censuses, consisting of 602,767 and 573,437 observations, respectively.5 Similar to Frölich

5The data is publicly available at https://www.census.gov/main/www/pums.html.
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and Melly (2013), our sample is restricted to 21–35 years old married mothers with at least one

child since we use twin birth as an instrument for fertility. The outcome variable of interest is the

family’s annual labor income.6 The treatment variable is a dummy variable that takes the value 1

to indicate when a mother has two or more children. The instrumental variable is also a dummy

variable and it equals 1 if the first birth is a twin. The covariates include mother’s and father’s

age, race, educational level, and working status. Table 2.3 provides descriptive statistics. Some

covariates, i.e., age, years in education, and working hours per week, are treated as continuous

variables.

Similar to the previous empirical illustration, we use the second kernel Gaussian kernel with

various bandwidth choices for robustness check. For the critical value, we use 5, 000 bootstrapped

samples and search for the suprema by using 1, 000 grids for each of the support ofW andX’s. The

bandwidths are selected by the same manners as those in the JTPA case. The p-values of our tests

are 0.0031 and 0.0004 for the 1990 and 2000 Censuses, respectively. These results suggest that the

null hypothesis, i.e., homogeneous treatment effects, should be rejected at all usual significance

levels.

6It includes wages, salary, armed forces pay, commissions, tips, piece-rate payments, cash bonuses earned before
deductions were made for taxes, bonds, pensions, union dues, etc. See Frölich and Melly (2013) for more details.
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2.5 Extensions

Our analysis naturally extends to the Fuzzy Regression Discontinuity (FRD) design, which has

recently become a popular tool to address causal inference questions in empirical studies (see e.g.

Van der Klaauw, 2008; Imbens and Lemieux, 2008; Lee and Lemieuxa, 2010, for reviews).

Consider a nonparametric FRD design: Let

Y = Y (0)× (1−D) + Y (1)×D,

where Y is the observed outcome variable, (Y (0), Y (1)) ∈ R2 denotes a pair of potential outcomes,

and D is the observed treatment status. Moreover, let X ∈ RdX be a vector of covariates. The

assignment of the treatment is given by

D = 1 [θ(X,R) ≤ η] , (2.10)

whereR is a continuous running variable, and θ(·, ·) is monotone inR, and η ∈ R is an unobserved

error term. Moreover, let R = 0 be the cutoff point of the running variable, and we assume the

probability of receiving the treatment is a continuous function in the running variable, except at

the cutoff point, i.e.,

lim
r↓0

P(D = 1|X = x,R = r) 6= lim
r↑0

P(D = 1|X = x,R = r), ∀x ∈ SX .

In the FRD designs literature, the estimand of interest is

τ(x) =
limr↓0 E[Y |X = x,R = r]− limr↑0 E[Y |X = x,R = r]

limr↓0 E(D|X = x,R = r)− limr↑0E(D|X = x,R = r)
.

Similarly, under homogeneous treatment effects, τ(x) can be interpreted as the average treatment

effect at the threshold R = 0 and given X = x. Hence, the hypotheses for testing homogeneous
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treatment effects can be formulated as

H∗0 : P
[
Y (1)− Y (0) = τ(X)|X,R = 0

]
= 1, a.s.

H∗1 : H∗0 is false.

Similarly, we can test such a hypothesis by testing a conditional independence assumption. Specif-

ically, letW ∗ = Y +(1−D)·τ(X). Under additional weak assumptions and by a similar argument

to Theorem 2.1, it can be shown that H∗0 holds if and only if

lim
r↑0

FW ∗|XR(·|x, r) = lim
r↓0

FW ∗|XR(·|x, r), ∀x ∈ SX .

An important question is then how to test such a model restriction. It is of considerable interest to

provide a theoretic study of this test.
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3. IMPLIED VOLATILITY ESTIMATION VIA `1 TREND FILTERING

3.1 Theory and Estimation Strategy

3.1.1 State Price Densities, Implied Volatility, and Option Prices

Arrow-Debreu securities are one of the fundamental economic objects that provide information

about the nature of equilibrium in the presence of uncertainty. The state price densities (SPDs)

are ultimately defined as the PDFs of the distributions that describe the prices of Arrow-Debreu

securities over a continuum of states. Thus, they describe the pricing kernel or discount factor for

these securities. They have also been called “risk neutral densities” in arbitrage-free models. Based

on the observations of Ross (1976) and Cox and Ross (1976) it is possible to show that the value

of an option is ultimately determined by the state price density in an arbitrage-free environment.

With this theoretical understanding, Breeden and Litzenberger (1978) show that the form of the

SPD can be extracted from option prices via a second derivative with respect to the strike prices.

Their derivation leaves us with the following equation:1

q̃ = exp(rτ)
∂2

∂K2
C (K, τ, S, r, δ)

where q̃ represents the pdf of the state price density, r is the risk free rate, τ is the tenor or time to

expiration,K is the strike price, S is the current spot price, and δ is the dividend yield. C (·, ·, ·, ·, ·)

represents the pricing function of a call option, which is assumed to be smooth and twice differen-

tiable.

Note that most of the determinants for this density can be observed in market data. This has

led to the interest of obtaining the SPD empirically. Yet, while we are able to observe the call

option prices in data, we do not observe an explicit analytical form for the valuation function. This

1This follows easily from the fact that under a risk neutral measure Q we have that the price of the call option is
given by:

C (K, τ) = exp(−rτ)
∫ ∞
K

(s−K) q̃ds
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makes taking the second derivative a difficult task. It is, however, possible to use estimation to

obtain predicted values of the call option price beyond those available in the data and perform a

discrete second derivative. A common practice in the literature is to start from the seminal Black

and Scholes (1973) and Merton (1973) formula:

C(K, τ, S, r, δ, σ) = exp(−rτ) [FΦ (d1)−KΦ (d2)] (3.1)

where

d1,2 =
ln
(
F
K

)
± 1

2
σ2τ

σ
√
τ

,

F = S × exp{(r − δ) τ}, and Φ (·) represents the c.d.f. of the standard normal distribution, and

σ is a structural parameter. If the Black and Scholes (1973) and Merton (1973) formulation were

to be correct, σ would be constant across different values of K and τ . In empirical work, we have

access to data on all the variables in (3.1) except for σ. Hence, inverting the function, it is possible

to obtain values of σ which we denominate implied volatility. Since the assumptions of the Black

and Scholes (1973) and Merton (1973) model are restrictive, implied volatility does not appear as

a constant or near constant across tenor and strikes with real data, giving rise to what is known as

the “volatility smile” in literature. Yet, the consistent divergence of the formulation from the data

allows for using the functional form as an intermediate step for obtaining good predicted values

for the call option price.

Shimko (1993) proposes to use σ as a measurement of the divergence between (3.1) and real

data, and use it as a dependent variable to obtain a function σ (m, τ) in which

m =
K

F

represents a measure of “moneyness.” Hence, a pricing function which can yield good predicted

values of the call option price, is given semiparametrically by what is known as the “practitioner’s
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Black-Scholes”:

C(K, τ, S, r, δ, σ (m, τ)) = exp(−rτ) [FΦ (d1)−KΦ (d2)]

where

d1,2 =
−ln (m)± 1

2
[σ (m, τ)] 2τ

σ (m, τ)
√
τ

The solution to the problem has become one of simply obtaining good estimates and fitted val-

ues for σ (m, τ). This “double transformation” (from the space of prices to volatilities and back)

uses the Black Scholes and Merton model as a tool but does not necessarily assume its canonical

form. However, this procedure lends itself to difficulties in empirical work. On daily basis, obser-

vations of acceptable quality (arbitrage free) are reduced and tend to be susceptible to noise. Hence,

misspecification becomes a threat to the estimation of the implied volatility surface and thus, to

the extraction of an accurate SPD. It is important to note that both of these characteristics of the

data create problems for estimation. Parametric estimation of σ (m, τ) is particularly susceptible

to misspecification, while nonparametric estimation might need a larger number of observations

than easily available to yield results that adequately reflect market sentiment.

3.1.2 `1 Trend Filtering

Trend filtering is a nonparametric estimation technique proposed by Kim et al. (2009). More

recently, Tibshirani et al. (2014) applies it to curve fitting with piecewise polynomials and explores

it in several contexts. We will use a penalized least squares criterion, albeit with the `2 term

being multiplied by a design matrix that is just the identity matrix. This setting is often called

the “signal approximation” case in generalized LASSO problems. This setup interprets the value

of dependent variable to be a realization of an underlying signal with disturbances. Let’s start by

assuming that we have a n× 1 vector σ ∈ Rn of observations which are related to the input points

m1,m2,...,mn ∈ R by a real function g:

σi = g (mi) + ηi for i = 1, 2, · · · , n,
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where ηi are independent errors. It is important to note that we have then a single predictor variable

mi in this case. With the inputs sorted in ascending order (m1 < m2 < · · · < mn), we can think of

them as “positions” of the signal. Kim et al. (2009)’s method is as follows, for some trend filtering

order t ≥ 0, the estimate ĝ of g (mi) can be found by solving the generalized LASSO optimization

problem (Tibshirani et al. (2011))

ĝ = argmin
g∈Rn

‖σ − g‖22
2

+
1

t!
λ
∥∥D(m,t+1)g

∥∥
1

where λ ≥ 0 is the tuning parameter.

D(m,t+1) = D(1) · diag
(

t

mt+1 −m1

, · · · , t

mn −mn−t

)
·D(m,t)

this recursive definition follows that:

D(1) =



−1 1 0 · · · 0 0

0 −1 1 · · · 0 0

...
...

0
...


∈ R(n−t−1)×(n−t)

this last matrix is simply the (n− t− 1)× (n− t) version of a first difference matrix. Thus D(m,1)

is the matrix of discrete first derivatives. Raising the order of t raises the order of the discrete

derivative. Consider for example that our inputs were equally spaced, then mt+i −mi = t so we

would have:

D(m,2) =



1 −2 1 0 · · · 0 0

0 1 −2 1 · · · 0 0

0 0 1 −2 0

...


which is just the difference of differences matrix. Hence, we are penalizing on the t+1th derivative

of g. This means that the penalty goes on changes on the tth derivative and therefore the structure
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of the resulting estimates should approximate the form of a tth-order polynomial.

Tibshirani et al. (2014) refers to the surviving entries on D(m,t+1)ĝ as “knots,” and uses this

nomenclature when making empirical comparisons with smoothing splines. However, unlike

smoothing splines, the `1 penalization selects the knots adaptively. Since only some knots are

selected by the estimation procedure, one can get precise fits with fewer degrees of freedom than

in the smoothing spline case. Furthermore, Tibshirani et al. (2014) provides empirical evidence

that the adaptiveness of trend filtering leads to increased performance in terms of having smaller

input-averaged squared error losses of the form:

1

n

n∑
i=1

[ĝi − g (mi)]
2

Hence, trend filtering is a good candidate as a nonparametric tool, albeit unidimensional. How-

ever, since σ (m, τ) depends on two parameters, we follow the “stringwise” estimation suggested

by Shimko (1993), but do so nonparametrically rather than fitting a quadratic function with no

interaction as he does. This is done for each cross-section defined by values of the tenor, i.e. we

obtain estimates for σ (m|τ). It is important to mention that unlike kernel estimators, when groups

of data are far from each other, trend filtering will adapt the fits within each group instead of over-

smoothing when λ is chosen appropriately. Selection of λ is critical, since if it were to be overly

small overfitting problems would arise from underregularization i.e. too many knots would be se-

lected. Similarly, if λ is too large, overregularization would lead to too few knots being picked and

the result would be oversmoothing.

While the discussion on the selection of an appropriate tuning parameter for LASSO appli-

cations is extensive, we focus on finding an appropriate value for λ in an automatic fashion and

comparable per string such that estimates do not result in overfitting. The first step involves using

five-fold cross validation. As described by Kohavi (1995), increasing the number of folds reduces

bias but increases variance. Many studies using cross validation use either five or ten folds as

a compromise for this tradeoff. To perform five-fold cross validation the data is divided into 5
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roughly equal parts, and for each one fit the model with λ for the other 4 parts. For k = 1, · · · , 5,

we obtain the error:
n∑
i=1

(
σi − ĝ−kλ

)2
where ĝ−kλ indicates the estimates of ĝ ignoring the kth fold. This process yields the cross-

validation error defined as:

CV (λ) =
1

n

5∑
k=1

n∑
i=1

(
σi − ĝ−kλ

)2
(3.2)

The value of λ which minimizes (3.2) is the five-fold cross validation choice for the tuning

parameter. However, since the objective of the LASSO is to select the true model simply using

cross-validation generally means that not enough regularization has been performed. As proposed

by Breiman et al. (1984), an alternative automatic rule consists in selecting the most parsimonious

model which yields an error not higher than one standard deviation away from the minimal cross

validation error. Let λ̂ be the solution to the cross-validation error minimization problem. Then

the one standard error rule searches for a value λ such that:

CV (λ) ≤ CV
(
λ̂
)

+ SE
(
λ̂
)

ceases to be true at some value λ̃. Hence, we move λ in the direction of regularization increasing

its value until we get that λ̃ > λ̂. Here, we have that:

SE
(
λ̂
)

=

√
1

5
· var

(
CV1

(
λ̂
)
, · · · , CV5

(
λ̂
))

With the issue of the selection of the tuning parameter resolved, we are left to pick the order for

the trend filtering estimate. Given the prior literature, particularly Malz (2014), cubic splines have

shown to be particularly stable. Being aware of possible overfitting due to adaptative selection of

knots, we pick t = 2 to fit piecewise quadratic polynomials. This choice enforces two desirable

properties for the estimates we need. First, the estimates will be smooth, which matches the initial

assumption of the estimation for use in extracting SPDs. Second, the quadratic structure ensures
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that we will be able to find second derivatives throughout the domain.

3.2 Monte Carlo Simulations

3.2.1 Competing Models

In order to evaluate the performance of `1 trend filtering, we need to pick representatives from

the major trends in the literature as comparative benchmarks. More specifically, we would like to

make comparisons with both nonparametric and parametric estimators. Much attention has been

given to Aït-Sahalia and Lo (1998) estimation strategy via the Nadaraya-Watson estimator. Par-

ticularly popular extensions include the use of the local linear estimator with different smoothing

parameters included in Aıt-Sahalia and Duarte (2003). Local linear estimates arise from the solu-

tion to the following minimization problem:

min
[a,b]

n∑
i=1

[
σi − a− (mi −m)′ b

]2K(mi −m
h

)

where the estimate of a is a consistent estimator for g (m) and the estimate of b a consistent estima-

tor of g(1) (m), the gradient vector of g (m), and K (·) is a kernel function with h as its respective

bandwidth parameter.

While this strategy yields estimates that are very flexible to functional form and have desirable

statistical properties regarding inference, they have a major flaw for practitioners. The number

of observations must be large to achieve convergence, this problem is compounded when having

mutiple dimensions. The number of quotes per tenor obtained from usable real data in the market

seldom meet this requirement. As such, the researchers working with these methods could decide

to use large bandwidths in their estimation and risk oversmoothing, losing the gains from the

flexibility kernel estimators have as a main feature. Alternatively, and a far more common practice

is to augment their data via aggregation. Hence the quotes obtained are no longer from a single

day, but from a set of days. However effective using the latter option might be, the lack of ability

of assessing market sentiment daily is problematic. In addition of losing interpretative power, the

estimator is then vulnerable to failing to identify regime shifts. Regardless, the flexibility and
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robustness of this approach makes the local linear estimator a good comparison paradigm for trend

filtering in the realm of nonparametric estimation. As far as implementation goes, the choices of

smoothing parameters for our exercise are obtained from least squares cross validation procedure

and using the AICc criterion.

In contrast, the parametric stringwise specification in Shimko (1993) has proven to be a good

benchmark model, and has been proven to work better than stochastic volatility models like Heston

(1993) and factor extensions such as Christoffersen et al. (2009). The specification that Shimko

(1993) uses for each tenor on a single day is:

σ = α0 + α1m+ α2m
2.

The reason why this model is also used as a benchmark on our empirical comparison, is due to

the fact that kernel estimators are not suitable for small datasets. Fair evaluation of trend filtering

would require to also compare it to an estimation methodology which can handle daily data. We

have chosen to evaluate trend filtering against the Shimko (1993) parametric model given its repu-

tation in the literature and its use as a benchmark in similar papers, e.g. Ludwig (2015). Moreover,

in order to provide an extra parametric benchmark, we evaluate fitting the model in our Monte

Carlo design in equation (3.3).

It is in our interest to clarify our objective as it pertains to obtaining good fits and hence

good predicted values. We need to show that trend filtering has comparable performance to the

Aït-Sahalia and Lo (1998) proposed estimation strategy in instances in which large datasets are

available i.e. aggregated data, and show improved performance in the case in which data has a

frequency similar to what it does under typical market conditions, meaning reduced number of

observations per tenor. In addition, we need to compare the Shimko (1993) specification, and the

simulation design specification for both cases. Sample size is not the only concern when dealing

with usable option data, hence we introduce different levels of noise in the simulation for a more

robust comparison. Correspondingly, we perform 500 runs of Monte Carlo simulations for four
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different number of quotes per tenor (7,12, 50, 70) and for three different levels of noise.

3.2.2 Monte Carlo Design

We are interested in generating a volatility surface that can show the L-shaped and U -shaped

properties that volatility cross-sections do in arbitrage-free conditions. The further we move away

from being “at the money” (K = F ) we have that implied volatility is weakly increasing. We want

to generate data that shows “smiles” at every tenor. The specification chosen to do this is a fourth

order polynomial capable of generating the forementioned shapes :

σ = α0 + α1m+ α2m
2 + α3τ + α4τ

2 + α5mτ + α6m
3 + α7m

4, (3.3)

wherem = K/F and F = S×exp{(r − δ) τ} as mentioned before. This model is the "true model"

for which we can make comparisons of prediction error among different methods. However, it

would not be telling nor realistic to not include a noise element when generating the data, which

leads us to use :

σ̃ = α0 + α1m+ α2m
2 + α3τ + α4τ

2 + α5mτ + α6m
3 + α7m

4 + ε

where ε i.i.d∼ N (0, σ2
ε ), with σ2

ε ∈ {0.005, 0.010, 0.015} in which each element is used for each

proposed sample size.

Next, it is necessary to select values of S, δ, τ and K, as initial values for the simulation. Rep-

resentative statistics for variables in the S&P 500 dataset picked for our empirical implementation

are chosen. We obtain some summary statistics from such data in Table 3.1.

The means as the values for S, r and δ for the Monte Carlo. As for the tenors, we use usual

contract expiration times in 30 day intervals: τ ∈
{

30
365
, 60
365
, · · · , 300

365

}
.

The Chicago Board of Options Exchange (CBOE) limits the values of strike prices for S&P

500 options to be between 5 points of the spot price at any given time. In this case this means that

strike prices need to be within five hundred dollars of the spot price per individual contract. Hence,
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Table 3.1: S&P 500 prices from January 2nd, 2007 to January 1st, 2010.

S r δ

First Quantile 909.7 0 0.01961
Median 1097.9 1× 10−5 0.02104
Mean 1146.7 6.089× 10−5 0.02044

Third Quantile 1392.6 9× 10−5 0.02347

we can generate strike prices as:

K = S + u

where u is uniformly distributed in (−500, 500).

The choice of a parameter vector for the specification for the simulation is given by:

(α0, α1, α2, α3, α4, α5, α6, α7) = (0.4,−0.6, 0.28,−0.2, 0.02, 0.17, 0.015,−0.025) .

The reason for this seemingly arbitrary choice of parameters lies in the form of the noiseless

surface it generates. As presented in Figure 3.1, the noiseless surface from the fourth polynomial

specification and the set of chosen parameters has both L and U shapes, making it an appropriate

environment by which to compare goodness of fit between our chosen models. The measures for

goodness of fit we choose for our comparative analysis are the RMSE (root mean square error):

RMSE =

√√√√ 1

n

n∑
i=1

(σi − ĝi)2

and MAPE (mean average percentage error):

MAPE =
1

n

n∑
i=1

∣∣∣∣σi − ĝiσi

∣∣∣∣
These two measures of fit will indicate the variability in distance between our competing mod-
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Figure 3.1: Moneyness

els fit around the noisy data and the "true" model. This setup will not only allow simple compar-

ison, but it will punish overfitting, by making noise inclusion in the estimate create larger values

for both measures.

3.2.3 Monte Carlo Results

We examine the prediction error for the Monte Carlo runs by creating two large groups ac-

cording to number of observations. In the first group we use simulation runs that have 7 and 12

observations per tenor. These simulate daily data frequencies, 7 observations are the minimum

needed to apply five-fold cross validation. We simulate aggregated data by creeating runs with 50

and 70 observations per tenor. Tables 3.2 to 3.7 encompass the results of the Monte Carlo.2 Fig-

ures 3.2 and 3.3 present a visual summary of the table results for the mean of the goodness of fit

measures. The discussion below is based on analyzing the results using both the tables and figures.

Note that from the RMSE quartiles at 7 observations per tenor, under the 0.005 standard devi-

2The table headers indicate the quartiles of the distribution of simulations, and the mean. The rows indicate which
method has been used.
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Table 3.2: RMSE ε ∼ N (0, 0.005)

(7 observations)
0% 25% 50% 75% 100% Mean

Trend Filtering 0.0022 0.0031 0.0034 0.0037 0.0051 0.0034
Local Linear(AICc) 0.0112 0.0184 0.0206 0.0227 0.0290 0.0205

Local Linear(LSCV) 0.0112 0.0185 0.0208 0.0228 0.0290 0.0206
Shimko 0.0149 0.0208 0.0227 0.0247 0.0309 0.0227

Simulation Specification 0.0114 0.0188 0.0210 0.0230 0.0291 0.0209
(12 Observations)

Trend Filtering 0.0020 0.0025 0.0028 0.0030 0.0038 0.0028
Local Linear(AICc) 0.0155 0.0196 0.0212 0.0229 0.0280 0.0212

Local Linear(LSCV) 0.0156 0.0197 0.0212 0.0230 0.0280 0.0213
Shimko 0.0169 0.0213 0.0227 0.0242 0.0292 0.0227

Simulation Specification 0.0154 0.0206 0.0223 0.0239 0.0306 0.0223
(50 Observations)

Trend Filtering 0.0013 0.0016 0.0017 0.0017 0.0038 0.0017
Local Linear(AICc) 0.0187 0.0216 0.0224 0.0232 0.0258 0.0224

Local Linear(LSCV) 0.0187 0.0216 0.0224 0.0232 0.0258 0.0224
Shimko 0.0198 0.0222 0.0229 0.0237 0.0263 0.0230

Simulation Specification 0.0188 0.0217 0.0224 0.0232 0.0259 0.0224
(70 Observations)

Trend Filtering 0.0013 0.0015 0.0015 0.0016 0.0036 0.0016
Local Linear(AICc) 0.0201 0.0217 0.0224 0.0230 0.0250 0.0224

Local Linear(LSCV) 0.0201 0.0217 0.0224 0.0230 0.0250 0.0224
Shimko 0.0203 0.0223 0.0229 0.0235 0.0261 0.0229

Simulation Specification 0.0202 0.0217 0.0224 0.0230 0.0250 0.0224
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Table 3.3: MAPE ε ∼ N(0, 0.005)

MAPE (7 Observations)
0% 25% 50% 75% 100% Mean

Trend Filtering 0.0223 0.0347 0.0384 0.0420 0.0570 0.0388
Local Linear(AICc) 0.1044 0.1727 0.1912 0.2114 0.2785 0.1919

Local Linear(LSCV) 0.1048 0.1740 0.1921 0.2113 0.2788 0.1931
Shimko 0.1578 0.2111 0.2263 0.2448 0.2986 0.2270

Simulation Specification 0.1096 0.1761 0.1953 0.2137 0.2771 0.1954
(12 Observations)

Trend Filtering 0.0211 0.0281 0.0309 0.0340 0.0445 0.0312
Local Linear(AICc) 0.1494 0.1869 0.2020 0.2163 0.2670 0.2021

Local Linear(LSCV) 0.1491 0.1875 0.2027 0.2167 0.2670 0.2026
Shimko 0.1701 0.2151 0.2243 0.2380 0.2805 0.2262

Simulation Specification 0.1556 0.2052 0.2194 0.2353 0.2878 0.2201
(50 Observations)

Trend Filtering 0.0151 0.0176 0.0187 0.0199 0.0249 0.0188
Local Linear(AICc) 0.1882 0.2080 0.2158 0.2227 0.2514 0.2157

Local Linear(LSCV) 0.1885 0.2080 0.2158 0.2227 0.2514 0.2157
Shimko 0.2010 0.2202 0.2276 0.2339 0.2547 0.2272

Simulation Specificationl 0.1880 0.2077 0.2154 0.2224 0.2506 0.2153
(70 Observations)

Trend Filtering 0.0146 0.0166 0.0174 0.0183 0.0295 0.0175
Local Linear(AICc) 0.1953 0.2100 0.2155 0.2222 0.2389 0.2162

Local Linear(LSCV) 0.1953 0.2100 0.2155 0.2222 0.2388 0.2162
Shimko 0.2066 0.2215 0.2267 0.2319 0.2535 0.2268

Simulation Specification 0.1952 0.2095 0.2152 0.2218 0.2384 0.2157
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Table 3.4: RMSE ε ∼ N (0, 0.010)

(7 observations)
0% 25% 50% 75% 100% Mean

Trend Filtering 0.0041 0.0061 0.0068 0.0073 0.0095 0.0067
Local Linear(AICc) 0.0118 0.0186 0.0205 0.0225 0.0287 0.0206

Local Linear(LSCV) 0.0120 0.0188 0.0209 0.0228 0.0288 0.0209
Shimko 0.0151 0.0217 0.0237 0.0256 0.0314 0.0236

Simulation Specification 0.0122 0.0196 0.0215 0.0237 0.0299 0.0216
(12 Observations)

Trend Filtering 0.0037 0.0049 0.0054 0.0059 0.0080 0.0054
Local Linear(AICc) 0.0162 0.0199 0.0217 0.0231 0.0284 0.0215

Local Linear(LSCV) 0.0162 0.0201 0.0218 0.0232 0.0285 0.0217
Shimko 0.0177 0.0219 0.0234 0.0247 0.0293 0.0234

Simulation Specification 0.0165 0.0206 0.0222 0.0236 0.0293 0.0221
(50 Observations)

Trend Filtering 0.0019 0.0025 0.0027 0.0030 0.0042 0.0028
Local Linear(AICc) 0.0193 0.0216 0.0224 0.0231 0.0256 0.0223

Local Linear(LSCV) 0.0194 0.0216 0.0224 0.0231 0.0256 0.0223
Shimko 0.0197 0.0223 0.0231 0.0239 0.0259 0.0230

Simulation Specification 0.0196 0.0217 0.0225 0.0232 0.0256 0.0225
(70 Observations)

Trend Filtering 0.0017 0.0022 0.0023 0.0025 0.0038 0.0024
Local Linear(AICc) 0.0194 0.0217 0.0224 0.0229 0.0254 0.0223

Local Linear(LSCV) 0.0194 0.0217 0.0224 0.0229 0.0254 0.0223
Shimko 0.0199 0.0224 0.0230 0.0236 0.0259 0.0230

Simulation Specification 0.0197 0.0219 0.0225 0.0230 0.0256 0.0225
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Table 3.5: MAPE ε ∼ N (0, 0.010)

(7 observations)
0% 25% 50% 75% 100% Mean

Trend Filtering 0.0458 0.0690 0.0766 0.0839 0.1083 0.0768
Local Linear(AICc) 0.1207 0.1787 0.1958 0.2144 0.2847 0.1970

Local Linear(LSCV) 0.1218 0.1813 0.1986 0.2187 0.2872 0.2000
Shimko 0.1696 0.2249 0.2409 0.2579 0.3157 0.2409

Simulation Specification 0.1321 0.1914 0.2073 0.2273 0.2769 0.2091
(12 Observations)

Trend Filtering 0.0378 0.0538 0.0600 0.0658 0.0928 0.0602
Local Linear(AICc) 0.1547 0.1925 0.2078 0.2221 0.2683 0.2070

Local Linear(LSCV) 0.1562 0.1942 0.2088 0.2233 0.2695 0.2086
Shimko 0.1862 0.2202 0.2350 0.2497 0.2934 0.2354

Simulation Specification 0.1628 0.1993 0.2144 0.2282 0.2786 0.2138
(50 Observations)

Trend Filtering 0.0190 0.0277 0.0304 0.0330 0.0487 0.0305
Local Linear(AICc) 0.1851 0.2088 0.2160 0.2238 0.2487 0.2162

Local Linear(LSCV) 0.1848 0.2088 0.2161 0.2240 0.2491 0.2164
Shimko 0.1991 0.2219 0.2285 0.2364 0.2549 0.2287

Simulation Specification 0.1859 0.2105 0.2168 0.2247 0.2487 0.2171
(70 Observations)

Trend Filtering 0.0195 0.0240 0.0259 0.0281 0.0356 0.0262
Local Linear(AICc) 0.1914 0.2106 0.2162 0.2221 0.2454 0.2164

Local Linear(LSCV) 0.1916 0.2106 0.2164 0.2221 0.2456 0.2165
Shimko 0.2025 0.2224 0.2278 0.2328 0.2507 0.2278

Simulation Specification 0.1925 0.2107 0.2162 0.2225 0.2467 0.2166
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Table 3.6: RMSE ε ∼ N (0, 0.015)

(7 observations)
0% 25% 50% 75% 100% Mean

Trend Filtering 0.0062 0.0093 0.0102 0.0111 0.0141 0.0102
Local Linear(AICc) 0.0128 0.0182 0.0207 0.0229 0.0312 0.0206

Local Linear(LSCV) 0.0128 0.0187 0.0211 0.0233 0.0327 0.0211
Shimko 0.0162 0.0228 0.0247 0.0268 0.0333 0.0248

Simulation Specification 0.0146 0.0204 0.0225 0.0248 0.0328 0.0226
(12 Observations)

Trend Filtering 0.0052 0.0074 0.0080 0.0089 0.0117 0.0081
Local Linear(AICc) 0.0145 0.0194 0.0210 0.0229 0.0293 0.0211

Local Linear(LSCV) 0.0148 0.0196 0.0212 0.0231 0.0299 0.0214
Shimko 0.0173 0.0222 0.0238 0.0251 0.0309 0.0237

Simulation Specificationl 0.0154 0.0206 0.0223 0.0239 0.0306 0.0223
(50 Observations)

Trend Filtering 0.0027 0.0036 0.0039 0.0043 0.0062 0.0039
Local Linear(AICc) 0.0182 0.0214 0.0223 0.0230 0.0257 0.0223

Local Linear(LSCV) 0.0182 0.0214 0.0223 0.0231 0.0257 0.0223
Shimko 0.0193 0.0223 0.0231 0.0240 0.0268 0.0231

Simulation Specification 0.0188 0.0218 0.0226 0.0234 0.0261 0.0226
(70 Observations)

Trend Filtering 0.0022 0.0030 0.0033 0.0036 0.0055 0.0033
Local Linear(AICc) 0.0188 0.0216 0.0223 0.0230 0.0262 0.0223

Local Linear(LSCV) 0.0188 0.0216 0.0223 0.0230 0.0262 0.0223
Shimko 0.0194 0.0224 0.0230 0.0237 0.0262 0.0230

Simulation Specification 0.0192 0.0219 0.0226 0.0232 0.0265 0.0225
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Table 3.7: MAPE ε ∼ N (0, 0.015)

(7 observations)
0% 25% 50% 75% 100% Mean

Trend Filtering 0.0679 0.1045 0.1143 0.1260 0.1669 0.1155
Local Linear(AICc) 0.1062 0.1800 0.2003 0.2205 0.2864 0.2008

Local Linear(LSCV) 0.1305 0.1841 0.2055 0.2270 0.3148 0.2059
Shimko 0.1881 0.2396 0.2565 0.2774 0.3389 0.2583

Simulation Specification 0.1502 0.2057 0.2252 0.2457 0.3035 0.2259
(12 Observations)

Trend Filtering 0.0546 0.0827 0.0894 0.0986 0.1333 0.0905
Local Linear(AICc) 0.1448 0.1904 0.2052 0.2215 0.2701 0.2060

Local Linear(LSCV) 0.1498 0.1928 0.2076 0.2238 0.2803 0.2086
Shimko 0.1838 0.2293 0.2426 0.2560 0.3023 0.2428

Simulation Specification 0.1556 0.2052 0.2194 0.2353 0.2878 0.2201
(50 Observations)

Trend Filtering 0.0297 0.0393 0.0432 0.0476 0.0656 0.0436
Local Linear(AICc) 0.1724 0.2101 0.2171 0.2247 0.2482 0.2175

Local Linear(LSCV) 0.1725 0.2105 0.2179 0.2252 0.2484 0.2178
Shimko 0.1909 0.2242 0.2313 0.2392 0.2672 0.2315

Simulation Specification 0.1800 0.2131 0.2200 0.2274 0.2508 0.2202
(70 Observations)

Trend Filtering 0.0248 0.0333 0.0365 0.0402 0.0546 0.0369
Local Linear(AICc) 0.1928 0.2108 0.2174 0.2249 0.2593 0.2175

Local Linear(LSCV) 0.1929 0.2110 0.2175 0.2250 0.2595 0.2176
Shimko 0.2034 0.2236 0.2293 0.2365 0.2644 0.2297

Simulation Specification 0.1937 0.2125 0.2190 0.2264 0.2627 0.2193

ation of noise that trend filtering is roughly six times smaller than both local linear specifications

and the Shimko specification across the simulation distribution. At a standard deviation of 0.010

we see that the RMSE of trend filtering has reduced its advantage being roughly a third of the local

linear and Shimko specifications. Upon increasing the standard deviation of the noise to 0.015

we see that the ratio of the trend filtering advantage remains similar to that of the 0.010 standard

deviation. The MAPE results exhibit the same tendency as RMSE for 7 observations across the

three noise levels. The results at 12 daily observations show a slightly reduced advantage at the

lowest level of noise with a RMSE value of roughly half of the competing models. However, this

advantage widens as the standard deviation of noise increasing, suggesting slight overfitting issues
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Figure 3.2: Simulation RMSE results
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Figure 3.3: Simulation MAPE results
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at this sample size. MAPE follows a similar trend to RMSE.

The results so far show that under small sample sizes which emulate daily frequencies for con-

tracts, trend filtering can outperform both kernel models and the Shimko specification across our

specified levels of noise. It is also important to note that in the analysis, throughout the distribu-

tion of goodness of fit measures we have that the differences between the AIC criterion and least

squares cross validation kernel local linear estimators are of less than half a percent regardless of

noise level. And that both measures exhibit only a modest advantage to the Shimko specification.

The next step is to evaluate the appropriateness of trend filtering as a method under larger

datasets that approach the sizes of aggregated data. We use the 50 and 70 observations per tenor

datasets for this purpose.

Evaluating the RMSE on ε with a standard deviation of 0.005 the trend filtering values result in

being about a tenth of the competing methods across the distribution in both 50 and 70 observations

per tenor levels. For 0.010 we have trend filtering to have a RMSE value of about a ninth of the

competing methods for the quartiles, and similarl results for the 0.015 standard deviationl of noise

level. This means that while the increase of noise does reduce the advantage of trend filtering

over the other methods, the increased sample size allows this advantage to remain high. MAPE

shows a similar behavior across levels of noise. It is important to note that the advantage of the

kernel methods over the parametric specification is reduced in the aggregated data setting. Yet,

nonparametric methods continue to provide better fits than their parametric counterpart. MAPE

results suggest the same pattern as RMSE results.

As a simple robustness check, we find that the simulation specification underperforms trend

filtering across all of our scenarios. The meaning of this is that the crossvalidation procedure

works as a sensible guard for overfitting, while our model with perfect specification is subject to

inclusion of noise in the fitting process.

The Monte Carlo runs suggest that trend filtering outperforms both non parametric and para-

metric competing models at both the daily and aggregated levels. Since the simulations were

specifically made to be a challenge to all models, the overfitting issues with flexible methodol-
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ogy seems to be diminished in the case of trend filtering, while its flexibility affords it a clear

advantage over the parametric specification commonly used in daily observations as long as the

number of observations is sufficient to allow estimation given the limitation of needing at least

seven observations per tenor.

3.3 An Empirical Application

3.3.1 The Data

The data used in this section comes from OptionMetrics and it encompasses prices for call

options from S&P 500, Apple Inc., Kellogg Company, and Gap Inc. for the period from January

1, 2007 to January 1, 2010. The stocks selected are part of the S&P 500 index but have distinct

levels of market capitalization and vary in number of contracts daily. Only days in which at least

seven quotes per tenor were present were used as this is the minimum size of a data set required

to perform five-fold cross validation. While it may be possible to work with smaller data sets

using less folds, bias will be larger. The data includes bid and ask prices, underlying index prices,

dividend yields, tenors and strikes. The risk free rate is taken as the daily one month treasury bill

rate.

In order to perform comparative analysis, each set of daily observations was split randomly in

two sets. The first set containing 75 percent of the original observations is called the "training set"

in which model fitting is performed. The remaining set is called the "test set" and it is used to

evaluate the accuracy of the model fit in the training set against data from the same population that

was not included in estimation.

3.3.2 Data Cleanup

Given the requirement of being in an arbitrage-free environment, we need to remove any data

that do not fit this assumption. We follow a well known procedure for cleaning out observations

that are not arbitrage free from the data. A full discussion about the motivation of these rules is

explained in Carr and Madan (2005). Following the discussion mentioned and Ludwig (2015), we

use the following conditions avoid arbitrage:
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A Imposition of general price bounds:

max {0, S × exp(−δτ)−K · exp(−rτ)} ≤ C ≤ S × exp(−δτ),

B Avoidance of calendar arbitrage:

σ2 (m, τ ′) τ ′ > σ2 (m, τ ′′) τ ′′ for τ ′ > τ ′′

C The call valuation function, must be convex to the origin:

∂2

∂K2
C ≤ 0 and − exp(−rτ) ≤ ∂C

∂K
≤ 0.

3.3.3 Tail Extrapolation

While good fits on the estimation of implied volatility are desirable for SPD extraction, non-

parametric methods do not allow extrapolation (prediction is strictly confined within the range of

the data). This is problematic, because extreme data of good quality is often hard to find. Thus,

the densities extracted will lack a way to identify tail behavior. Figlewski (2008) proposes grafting

the tails from a GEV distribution on the ends of the computed SPD from the estimated implied

volatilities. The cdf of the GEV distribution is given by3

F (x) = exp
[
− (1 + γx)−

1
γ

]
(3.4)

where we have that:

x = (K − µK)/ηK (3.5)

In order to perform this grafting, two sets of grafting points are picked from the computed

SPD, two interiors and two extremes. Consider for example the 5th and 95th percentile to be the

3And hence the pdf of the GEV distribution is given by: f (x) = (1 + γx)
− 1+γ

γ exp
[
− (1 + γx)

− 1
γ

]
.
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interior points under the computed density. Similarly, the 2nd and 98th percentile are picked as

the exterior points. The choice of these points is flexible, with the only requirement that they must

be relatively close to the ends of the computed SPD. The parameters µK , ηK and γ determine the

shape of the GEV distribution. Thus, the exercise becomes to find the set of parameters of the GEV

distribution that matches the empirically found densities at both the interior and exterior point of

a given tail. For the right tail, this exercise is simple. The GEV distribution is the distribution for

the maximum in a sample, hence the left tail values would not be those of the extreme minima.

For left tail grafting, it’s necessary to find the values of the parameters as the values for a reversed

GEV distribution. We need to solve two different system of equations. Denote the quantiles for

the external points for the right and left tail respectively as ωExtR and ωExtL . Similarly, denote

the quantiles for the internal points as ωIntR and ωIntL . In addition let K (ω) be the strike price

corresponding to the ω-quantile, which we input asK in (3.5) . In addition, let F (.), F̃ (.) represent

the theoretical cdf for the GEV with parameters γ, µK , ηK , and the computed cdf from our SPD

extraction process respectively with corresponding pdfs f (.), f̃ (.). Hence for the right tail we

solve for γ, µK and ηK in:

F
(
K
(
ωIntR

))
= ωIntR

f
(
K
(
ωIntR

))
= f̃

(
K
(
ωIntR

))
f
(
K
(
ωExtR

))
= f̃

(
K
(
ωExtR

))
For left grafting, instead of (3.5) we use:

x = (−K + µK)/ηK (3.6)
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and we solve:

F
(
−K

(
ωIntL

))
= ωIntL

f
(
−K

(
ωIntL

))
= f̃

(
K
(
ωIntL

))
f
(
−K

(
ωExtL

))
= f̃

(
K
(
ωExtL

))
We can then use the parameters on both directions to extend the tails of our computed SPD.

3.3.4 An Example of Extraction with A Single Day

We use graphs of the fitted values from the estimation for January 5, 2007 to demonstrate their

accuracy. In addition, we show a graph of the cross sections of the extracted SPD for that day.

Figure 3.4 shows that our fits are good, and Figure 3.5 that our densities are well behaved. It is

important to note that scaling needs to be taken into account to do fair graphical comparisons. Non-

standarized measures of moneyness will give the impression of the SPD cross sections being flatter

than they are at larger tenors. Thus, for our plots we use a standardized measure of moneyness m?:

m? =
ln
(
K
F

)
σATMV

√
τ

Here σATMV is the at-the-money implied volatility, defined as the implied volatility when K = F .

Figure 3.5 presents the state price density cross sections plotted against strike price and against the

standardized moneyness.

3.3.5 Full Data Set Application and Evaluation

Using the data described at the beginning of this section, we perform a comparative analysis

regarding RMSE and MAPE for trend filtering and competing models. Since we are dealing with

daily data, the comparison benchmarks are parametric. However, since we no longer have perfect

knowledge of the underlying specification, a second benchmark besides the Shimko specification

is necessary. Our choice is a fourth order polynomial version of the stringwise regression per
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Figure 3.4: Fitted values of implied volatility cross sections against moneyness for January 5, 2007

tenor. 4 In order to provide clarity in our measures across the dataset, we use a simple comparative

measure of percentual advantage in goodness of fit for each date and analyze their distribution.

The measures of percentual advantage are defined as:

PARMSETrendF iltering =
RMSECompetitor −RMSETrendF iltering

RMSECompetitor
× 100

and

PAMAPETrendF iltering =
MAPECompetitor −MAPETrendF iltering

MAPECompetitor
× 100

A graphical inspection of the distribution for the percentual advantages per stock for both the

4LÃl’vy process based estimation (for instance using the NIG distribution) would be preferrable, but they become
computationally expensive for fitting due to the large number of parameters and unfeasible for our purposes.
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training set and test set can be found in Figures 3.6 to 3.9 . A quick inspections shows that the

percentual advantage of both goodness of fit measures skews to the right of zero. There are some

distributions that have their mode close to zero, hence a more detailed examination is necessary.

Table 3.8 contains the quartiles and means of the distributions of percentual advantage for

the training set per stock. An interesting observation to be found is that the average percentual

advantages for MAPE are either small or negative when it comes to the fourth order polynomial

specification. Thus, it is not possible to claim superiority of the method when applying in an in-

sample basis. However, this result does not reveal anything about generalizing the result of the fit

when using out of sample observations.

Table 3.9 describes the distribution of percentile advantages when using the test set. Since

the test set comes from a random split, the observations come from the same population as our

training set and since they are not observed by the model during the training stage, goodness

of fit measures work as validation metrics. A consistent level of positive percentual advantage

on the test set describes how well trend filtering generalizes in its advantage to the competing

models. The table shows positive average and median percentual advantages for trend filtering

across our comparison firm. The MAPE advantage for comparing with the Kellogg Company

contracts against the fourth order polynomial specification is modest with a mean of 0.1999 and a

median of 2.2866. We can see from the corresponding graph in Figure 3.8 that we cannot claim that

trend filtering underperforms the fourth order polynomial specification due to relative symmetry

of the density.

3.4 Concluding Remarks

We compare performance of the trend filtering estimator to two versions of kernel estimators

and Shimko (1993)’s estimator, and either a "perfect knowledge" specification or a fourth order

polynomial stringwise regression in terms of goodness of fit. From the evidence obtained from

Monte Carlo simulation, we have the following observations. First, we find that overall trend

filltering outperforms the competing models in terms of goodness of fit. Second, the advantage of

trend filtering is increased with more observations per tenor and higher levels of noise. However
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Table 3.8: Percentual advantage distributions of RMSE and MAPE for training set

S&P 500
RMSE MAPE

Quantile Shimko 4th order polynomial Shimko 4th order polynomial
25% 54.1211 9.1954 23.8502 -22.9682
50% 78.4053 34.6772 56.2479 0.9223
75% 89.4747 64.1643 73.6513 31.6529

Mean 70.2604 30.0964 46.5838 0.4718
Apple Inc.

RMSE MAPE
Quantile Shimko 4th order polynomial Shimko 4th order polynomial

25% 41.9757 11.1899 5.6839 -6.7873
50% 56.3376 23.5776 27.1912 0.7220
75% 67.9064 41.4481 41.8636 8.6704

Mean 54.4150 28.2960 23.2935 -0.1176
Kellogg Company

RMSE MAPE
Quantile Shimko 4th order polynomial Shimko 4th order polynomial

25% 59.3240 20.2901 -0.9930 -12.9284
50% 70.8600 40.2957 19.1101 -0.5575
75% 80.2764 58.8421 37.5626 14.2121

Mean 68.8745 36.8713 15.7883 -1.7913
Gap Inc.

RMSE MAPE
Quantile Shimko 4th order polynomial Shimko 4th order polynomial

25% 65.5188 13.0963 16.2770 -12.7456
50% 76.4344 31.7883 38.6215 -0.1719
75% 82.7293 49.2894 54.9891 12.9152

Mean 73.9159 26.5130 32.9157 -0.8963
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Table 3.9: Percentual advantage distributions of RMSE and MAPE for test set

S&P 500
RMSE MAPE

Quantile Shimko 4th order polynomial Shimko 4th order polynomial
25% 63.7449 12.0730 38.2608 -19.7314
50% 84.8362 43.8842 68.7452 8.0804
75% 91.9428 69.5619 81.1629 41.9497

Mean 76.3139 34.6929 58.2265 7.2678
Apple Inc.

RMSE MAPE
Quantile Shimko 4th order polynomial Shimko 4th order polynomial

25% 62.8778 26.5596 41.0992 1.9144
50% 70.8779 38.5207 50.3692 12.1835
75% 78.0014 52.8872 58.8581 23.0382

Mean 69.8562 39.9126 48.9226 12.9441
Kellogg Company

RMSE MAPE
Quantile Shimko 4th order polynomial Shimko 4th order polynomial

25% 65.9918 27.7396 7.9840 -12.5612
50% 74.0908 46.7744 25.7495 2.2866
75% 83.5004 63.6642 44.1244 18.2726

Mean 73.8970 40.6298 22.8245 0.1999
Gap Inc.

RMSE MAPE
Quantile Shimko 4th order polynomial Shimko 4th order polynomial

25% 67.8673 16.9786 26.0828 -10.6865
50% 77.4128 36.4287 46.4324 3.1611
75% 84.1633 52.1939 61.2893 18.8394

Mean 75.5671 29.7625 40.6970 3.0607
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even when operating at the minimum necessary number of observations and high levels of noise

the advantage makes it a good candidate to use when dealing with daily data. Lastly, the Shimko

(1993) specification approaches the goodness of fit measures of nonparametric kernel methods as

the datasets get more dense.

A validation examination performed with daily data from January 1, 2007 to January 1, 2010

shows that trend filtering is able to consistently outperform Shimko (1993)’ s specification and a

fourth order polynomial variant both when dealing with out of sample observations in most cases.

However, even when the advantages are not completely clear, trend filtering does not underperform

its competitors. These results make trend filtering a desirable candidate for empirical use given its

flexibility, robustness to misspecification and handling of overfitting.

Additionally, the usable quotes from S&P 500 on January 5, 2007 show that trend filtering

adapts itself well to the data. Graphing the SPD per tenor on the same day shows that trend

filtering predicts implied volatilities such the extracted crosssectional densities are well behaved.

Given the results, it is possible to conclude that trend filtering, a newly proposed method to

estimate the implied volatility, provides a better fit than other popular and comparable methods

when we have a relatively small number of quotes (at least seven per tenor). This bridges the

gap in performance between typical nonparametric methods and parametric methods, allowing

reduced datasets to generate flexible estimates without having to make strong functional structure

assumptions on the implied volatility data generating process.
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Figure 3.5: Extracted SPD cross sections for January 5, 2007 after using trend filtering
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Figure 3.6: S&P 500 percentual advantage densities January 1, 2007 to January 1, 2010
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Figure 3.7: Apple Inc. percentual advantage densities January 1, 2007 to January 1, 2010
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Figure 3.8: Kellogg Company percentual advantage densities January 1, 2007 to January 1, 2010
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Figure 3.9: Gap Inc. percentual advantage densities January 1, 2007 to January 1, 2010
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4. CONCLUSIONS

This dissertation includes two independent essays. In the first essay, I propose a nonpara-

metric test for unobserved heterogeneity in treatment effects. The test can answer an crucial

policy-relevant research question: Whether the measured treatment effects are also valid for other

subpopluations? The second essay provides an alternative to the existing estimations of implied

volatility in option pricing when usable data is scarce on daily basis.

Below I summarize these two essays.

4.1 The First Essay

Unobserved heterogeneity in causal effects is an intrinsic feature of nonseparable models and

is also a fundamental aspect in the treatment effect literature. In this paper, we are the first to

propose a nonparametric test for unobserved heterogeneous treatment effects in a nonseparable

triangular model. We show that the null hypothesis is equivalent to testing for an independence

condition of observables. With continuous covariates, we propose a Kolmogorov-Smirnov-type

test that is simple to implement and achieve
√
n-local power. Monte Carlo simulations show that

the proposed test performs very well in small samples. For illustration, we apply our test to study

the heterogeneity in the effects of the Job Training Partnership Act on earnings and the impacts of

fertility on family income.

4.2 The Second Essay

The use of state price densities to gather information about market sentiment and other empir-

ical characteristics that describe important phenomena is popular in literature and in practice. The

estimation of the implied volatility surface to extract these densities is a crucial intermediate step

in the process, and the methods to do so are varied in literature. This paper proposes an estimation

procedure that is relative new in nonparametric literature: `1 trend filtering. We show its advan-

tages over typically used nonparametric and parametric methods, commonly used in literature and

in practice, to deal with this particular estimation problem. Additionally, the method maintains
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smaller prediction errors than the comparison models across different number of observations and

levels of noise.
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APPENDIX A

PROOFS OF LEMMAS AND THEOREMS IN SECTION 1

A.1 Proof of Proposition 2.1

Proof. For the “if” part, under (2.3), we have

g(1, x, ε)− g(0, x, ε) = m(1, x)−m(0, x) ≡ δ0(x), ∀x ∈ SX .

For the “only if” part, (2.2) implies

g(d, x, ε) = d× [g(1, x, ε)− g(0, x, ε)] + g(0, x, ε) = d× δ0(x) + g(0, x, ε).

Therefore, (2.3) holds in the sense m(d, x) = d× δ0(x) and ν(x, ε) = g(0, x, ε). Q.E.D.

A.2 Proof of Theorem 2.1

Proof. Because Proposition 2.1 provides the only if part, then it suffices to show the if part. Sup-

pose W ⊥⊥ Z | X . By the definition of W , we have: for any y ∈ R,

Pr(Y ≤ y,D = 1|X,Z = 1) + P(Y + δ(X) ≤ y,D = 0|X,Z = 1)

= Pr(Y ≤ y,D = 1|X,Z = 0) + P(Y + δ(X) ≤ y,D = 0|X,Z = 0).

It follows that

Pr(Y ≤ y,D = 1|X,Z = 1)− P(Y ≤ y,D = 1|X,Z = 0)

= Pr(Y ≤ y − δ(X), D = 0|X,Z = 1)− P(Y ≤ y − δ(X), D = 0|X,Z = 0). (A.1)
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Denote V ≡ ν(X, ε) and

∆0(τ, x) ≡ Pr(V ≤ τ,D = 0|X = x, Z = 1)− Pr(V ≤ τ,D = 0|X = x, Z = 0);

∆1(τ, x) ≡ Pr(V ≤ τ,D = 1|X = x, Z = 0)− Pr(V ≤ τ,D = 1|X = x, Z = 1).

By Assumptions 2.1 and 2.3, we have

∆0(τ, x) = Pr(V ≤ τ, η ∈ Cx|X = x) = ∆1(τ, x)

which is strictly monotone in τ ∈ SV |X=x, η∈Cx . Moreover, there is SV |X=x, η∈Cx = SV |X=x under

Assumptions 2.2 and 2.4.

Therefore, we have

Pr(Y ≤ y,D = 1|X = x, Z = 0)− P(Y ≤ y,D = 1|X = x, Z = 1)

= ∆1(g̃
−1(1, x, y), x)

= ∆0(g̃
−1(1, x, y), x)

= Pr(Y ≤ g̃(0, x, g̃−1(1, x, y)), D = 0|X = x, Z = 1)

− P(Y ≤ g̃(0, x, g̃−1(1, x, y)), D = 0|X = x, Z = 0),

where g̃−1(1, x, ·) is the inverse function of g̃(1, x, ·) and g̃ is a monotone function introduced in

Assumption 2.2. Note that both sides are strictly monotone in y ∈ Sg̃(1,X,V )|X=x since ∆d(·, x) is

strictly monotone on SV |X=x under Assumption 2.4.

Combine the above result with (A.1), then we have

g̃(0, x, g̃−1(1, x, y)) = y − δ(x), ∀x ∈ SX , y ∈ Sg̃(1,x,V )|X=x.
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Let y = g̃(1, x, τ) for some τ ∈ SV |X=x. Then the above equation becomes

g̃(0, x, τ) = g̃(1, x, τ)− δ(x).

Q.E.D.

A.3 Proof of Theorem 2.2

Proof. Let 1WXZ(w, x, z) = 1(W ≤ w) × 1XZ(x, z) and 1ŴXZ(w, x, z) = 1(Ŵ ≤ w) ×

1XZ(x, z). Let further 1W (δ̃)XZ(w, x, z) = 1(W (δ̃) ≤ w) × 1XZ(x, z), where W (δ̃) = Y + (1 −

D)δ̃(X), be a function indexed by δ̃(·) ∈ RSX . By definition, 1W (δ)XZ(w, x, z) = 1WXZ(w, x, z)

and 1W (δ̂)XZ(w, x, z) = 1ŴXZ(w, x, z).

We first derive the asymptotics of
√
n[F̂W |XZ(w|x, z)− FW |XZ(w|x, z)]. By definition,

FW |XZ(w|x, z) =
E[1WXZ(w, x, z)]

E[1XZ(x, z)]
and F̂W |XZ(w|x, z) =

En[1ŴXZ(w, x, z)]

En[1XZ(x, z)]
.

In the expectation E[1W (δ̂)XZ(·, x, z)] discussed below, we treat δ̂ as an index rather than a random

object. Note that

En[1ŴXZ(·, x, z)] = En[1WXZ(·, x, z)]− E[1WXZ(·, x, z)] + E[1W (δ̂)XZ(·, x, z)]

+
{

En[1W (δ̂)XZ(·, x, z)]− E[1W (δ̂)XZ(·, x, z)]− En[1W (δ)XZ(·, x, z)] + E[1W (δ)XZ(·, x, z)]
}

= En[1WXZ(·, x, z)]− E[1WXZ(·, x, z)] + E[1W (δ̂)XZ(·, x, z)] + op(n
−1/2),

where the last step is by the empirical process theory (see e.g. van der Vaart and Wellner, 2007).

By Taylor expansion,

√
n
{

E[1W (δ̂)XZ(·, x, z)]− FW |XZ(w|x, z)
}

=
∂E[1W (δ)XZ(w, x, z)]

∂δ
×
√
n(δ̂ − δ) + op(1).

Note that ∂E[1W (δ)XZ(w,x,z)]

∂δ(x′)
= 0 for all x′ 6= x and ∂E[1W (δ)XZ(w,x,z)]

∂δ(x)
= −fW |DXZ(w|0, x, z) ×
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Pr(D = 0, X = x, Z = z). Therefore, we have

√
n
{

E[1W (δ̂)XZ(·, x, z)]− FW |XZ(w|x, z)
}

+
√
n {En[1WXZ(·, x, z)]− E[1WXZ(·, x, z)]}− fWDXZ(w, 0, x, z)×

√
n[δ̂(x)− δ(x)] + op(1).

Moreover, En[1XZ(x, z)] = P(X = x, Z = z) +Op(n
−1/2) under the central limit theorem. Thus,

by Slutskyï£¡s theorem, we have

√
n
[
F̂W |XZ(w|x, 1)− F̂W |XZ(w|x, 0)

]
−
√
n
[
FW |XZ(w|x, 1)− FW |XZ(w|x, 0)

]
=

√
n
{

En[1WXZ(w, x, 1)]− E[1WXZ(w, x, 1)]
}
− fWDXZ(w, 0, x, 1)×

√
n[δ̂(x)− δ(x)]

P(X = x, Z = 1)

−
√
n
{

En[1WXZ(w, x, 0)]− E[1WXZ(w, x, 0)]
}
− fWDXZ(w, 0, x, 0)×

√
n[δ̂(x)− δ(x)]

P(X = x, Z = 0)

+

√
nPr(W ≤ w,X = x, Z = 1)

En1XZ(x, 1)
−
√
nPr(W ≤ w,X = x, Z = 0)

En1XZ(x, 0)
+ op(1).

Applying Taylor expansion, we have

√
nPr(W ≤ w,X = x, Z = z)

En1XZ(x, z)
−
√
n FW |XZ(w|x, z)

= −FW |XZ(w|x, z)×
√
n
[
En1XZ(x, z)− P(X = x, Z = z)

]
Pr(X = x, Z = z)

+ op(1).

Moreover, applying Lemma B.1, we have

√
n
[
F̂W |XZ(w|x, 1)− F̂W |XZ(w|x, 0)

]
−
√
n
[
FW |XZ(w|x, 1)− FW |XZ(w|x, 0)

]
=
√
nEn

{
[1(W ≤ w)− FW |XZ(w|x, 1)]× 1XZ(x, 1)

P(X = x, Z = 1)

}
−
√
nEn

{
[1(W ≤ w)− FW |XZ(w|x, 0)]× 1XZ(x, 0)

P(X = x, Z = 0)

}
+ κ(w, x)×

√
nEn

{[
W − E(W |X = x, Z = 0)

]
× 1XZ(x, 1)

P(X = x, Z = 1)

}
− κ(w, x)×

√
nEn

{[
W − E(W |X = x, Z = 1)

]
× 1XZ(x, 0)

P(X = x, Z = 0)

}
+ op(1).
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Under the null hypothesis, there is

√
n
[
F̂W |XZ(w|x, 1)− F̂W |XZ(w|x, 0)

]
=
√
nEn

{
[1(W ≤ w)− FW |X(w|x)]×

[ 1XZ(x, 1)

P(X = x, Z = 1)
− 1XZ(x, 0)

P(X = x, Z = 0)

]}
+ κ(w, x)×

√
nEn

{[
W − E(W |X = x)

]
×
[ 1XZ(x, 1)

P(X = x, Z = 1)
− 1XZ(x, 0)

P(X = x, Z = 0)

]}
+ op(1)

=
1√
n

n∑
i=1

(ψwx,i + φwx,i)

+ op(1)

where ψwx,i and φwx,i are defined by (2.6) and (2.7). Following e.g. Kim and Pollard (1990), we

have T̂n
d→ supw∈R; x∈SX

|Z(w, x)|. Q.E.D.

A.4 Proof of Lemma 2.2

Proof. Fix X = x and w.l.o.g., let z = 1. Note that

Ĝ(w, x, 1)− G̃(w, x, 1)

= En
{

1∗XZ(x, 1)f̂XZ(X, 0)(w − Ŵ )
[
1(Ŵ ≤ w)− 1(W ≤ w)

]}
= En

{
1∗XZ(x, 1)f̂XZ(X, 0)(w − Ŵ )

[
1(Ŵ ≤ w)− 1(W ≤ w)

]
× 1(|W − w| ≤ n−r)

}
+ En

{
1∗XZ(x, 1)f̂XZ(X, 0)(w − Ŵ )

[
1(Ŵ ≤ w)− 1(W ≤ w)

]
× 1(|W − w| > n−r)

}
≡ T1 + T2

where r ∈ (1
4
, ι). It suffices to show both T1 and T2 are op(n−

1
2 ).

First, note that

T1 = En
{

1∗XZ(x, 1)f̂XZ(X, 0)(w −W )
[
1(Ŵ ≤ w)− 1(W ≤ w)

]
× 1(|W − w| ≤ n−r)

}
+ En

{
1∗XZ(x, 1)f̂XZ(X, 0)(W − Ŵ )

[
1(Ŵ ≤ w)− 1(W ≤ w)

]
× 1(|W − w| ≤ n−r)

}
.
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Because

E
∣∣∣1∗XZ(x, 1)f̂XZ(X, 0)(w −W )

[
1(Ŵ ≤ w)− 1(W ≤ w)

]
× 1(|W − w| ≤ n−r)

∣∣∣
≤ E

∣∣∣f̂XZ(X1, 0)× (w −W )× 1(|W − w| ≤ n−r)
∣∣∣ = O(1)×O(n−2r) = o(n−

1
2 ),

where last step holds because r > 1
4
. Moreover,

E
∣∣∣1∗XZ(x, 1)f̂XZ(X, 0)(W − Ŵ )

[
1(Ŵ ≤ w)− 1(W ≤ w)

]
× 1(|W − w| ≤ n−r)

∣∣∣
≤ E

∣∣∣f̂XZ(X1, 0)× (W − Ŵ )× 1(|W − w| ≤ n−r)
∣∣∣ = O(1)×O(n−ι)×O(n−r) = o(n−

1
2 ).

Then, we have T1 = op(n
− 1

2 ).

For term T2, note that

E|T2| ≤
K

h
×
√

E(w − Ŵ )2 ×
√

P
(
|Ŵ −W | > n−r

)
≤ K

h
×
√

EŴ 2 − 2w · E(Ŵ ) + w2 ×
√

P
[
|δ̂(X)− δ(X)| > n−r

]
,

where K is the upper bound of K(·). Because W is a bounded random variable and w belongs to a

compact set, then
√

EŴ 2 − 2w · E(Ŵ ) + w2 = O(1). Moreover, by Lemma B.2, E|T2| ≤ o(n−k)

for any k > 0. Hence, T2 = op(n
− 1

2 ). Q.E.D.

A.5 Proof of Theorem 2.3

Proof. By Lemma 2.2, we have

T̂ cn =
√
n
∣∣∣G̃(w, x, 1)− G̃(w, x, 0)

∣∣∣+ op(1).

Let 1∗WXZ(w, x, z) ≡ 1(W ≤ w,X ≤ x, Z = z). Note that

G̃(w, x, z) = U1(w, x, z) + U2(w, x, z) + op(n
−1/2)
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where

U1(w, x, z) ≡ 1

n

n∑
i=1

1∗WiXiZi
(w, x, z)× f̂XZ(Xi, z

′)× (Wi − Ŵi);

U2(w, x, z) ≡ 1

n

n∑
i=1

1∗WiXiZi
(w, x, z)× f̂XZ(Xi, z

′)× (w −Wi).

Therefore,

√
n
[
G̃(w, x, 1)− G̃(w, x, 0)

]
=
√
n {U1(w, x, 1)− U1(w, x, 0)− [EU1(w, x, 1)− EU1(w, x, 0)]}

+
√
n {U2(w, x, 1)− U2(w, x, 0)− [EU2(w, x, 1)− EU2(w, x, 0)]}

+
√
n [EU1(w, x, 1)− EU1(w, x, 0)] +

√
n [EU2(w, x, 1)− EU2(w, x, 0)] .

We first look at those U2 terms. By definition,

U2(w, x, z) =
1

n(n− 1)

n∑
i=1

∑
j 6=i

{1∗XiZi(x, z)λ(Wi − w)× 1

h
K(

Xj −Xi

h
)1(Zj = z′)}

=
1

n(n− 1)

n∑
i=1

∑
j 6=i

ζn,ij(w, x, z)

where ζn,ij(w, x, z) = 1∗XiZi(x, z)× λ(Wi − w)× 1
h
K(

Xj−Xi
h

)× 1(Zj = z′).

Let ζ∗n,ij(w, x, z) = 1
2

[ζn,ij(w, x, z) + ζn,ji(w, x, z)]. Then, ζ∗n,ij is symmetric in indices i and

j. Therefore,

U2(w, x, z) =
1

n(n− 1)

n∑
i=1

∑
j 6=i

ζ∗n,ij(w, x, z),

which is a U-process indexed by (w, x, z`). By Nolan and Pollard (1988, Theorem 5) and Powell
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et al. (1989, Lemma 3.1),

U2(w, x, z)− EU2(w, x, z)

=
2

n

n∑
i=1

{
E[ζ∗n,ij(w, x, z)|Yi, Di, Xi, Zi]− E[ζ∗n,ij(w, x, z)]

}
+ op(n

−1/2).

where the op(n−1/2) applies uniformly over (w, x). Note that

E[ζ∗n,ij(w, x, z)|Yi, Di, Xi, Zi]

=
1

2

{
1∗XZ(x, z)fXZ(X, z′)λ(W − w) + 1∗XZ(x, z′)fXZ(X, z)Π(w|X, z)

}
+ op(1).

Next, we derive E[ζ∗n,ij(w, x, z)]. Let u1(w, x, z) = E[1∗XZ(x, z)fXZ(X, z′)λ(W−w)] and u2(w, x, z) =

E[1∗XZ(x, z′)fXZ(X, z)Π(w|X, z)]. Note that under H0

u1(w, x, z) = u2(w, x, z) =

∫
1(X ≤ x)Π(w|X)fX|Z(X|1)fX|Z(X|0)dX×P(Z = 1)P(Z = 0),

invariant with z. Therefore, E[ζ∗n,ij(w, x, z)] = 1
2
[u1(w, x, z) +u2(w, x, z)] is also invariant with z.

Let ue(w, x) = E[ζ∗n,ij(w, x, z)]. Moreover, by Powell et al. (1989, Theorem 3.1),

2√
n

n∑
i=1

{
E[ζ∗n,ij(w, x, z)|Yi, Di, Xi]− E[ζ∗n,ij(w, x, z)]

}
= En {1∗XZ(x, z)fXZ(X, z′)λ(W − w)− ue(w, x)}

+ En {1∗XZ(x, z′)fXZ(X, z)Π(w|X, z)− ue(w, x)}+ op(n
− 1

2 ),

where the op(n−1/2) holds uniformly over (w, x). Moreover, under H0, there is Π(w|X, z) =

E(λ(W − w)|X). Thus,

U2(w, x, 1)− U2(w, x, 0)− [EU2(w, x, 1)− EU2(w, x, 0)]

= En

{[ 1∗XZ(x, 1)

fXZ(X, 1)
− 1∗XZ(x, 0)

fXZ(X, 0)

]
fXZ(X, 0)fXZ(X, 1)

[
λ(W − w)− E(λ(W − w)|X)

]}
+op(n

− 1
2 ).
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We now turn to U1(w, x, z). Note that

U1(w, x, z) = − 1

n

n∑
i=1

{
1∗WiXiZi

(w, x, z)fXZ(Xi, z
′)(1−Di)[δ̂(Xi)− δ(Xi)]

}
+ op(n

− 1
2 ),

provided that E
∣∣∣[f̂XZ(Xi, z

′)− fXZ(Xi, z
′)
]
×
[
δ̂(Xi)− δ(Xi)

]∣∣∣ = op(n
− 1

2 ) holds. By a similar

decomposition argument on δ̂(X)− δ(X) in Lemma B.2, we have

U1(w, x, z) = − 1

n(n− 1)

n∑
i=1

∑
j 6=i

ξn,ij(w, x, z) + op(n
−1/2)

where

ξn,ij(w, x, z) =

1∗WiXiZi
(w, x, z)fXZ(Xi, z

′)(1−Di)
[Wj − E(Wj|Xi)]

1
h
K(

Xj−Xi
h

)

p(Xi, 1)− p(Xi, 0)

[
1(Zj = 1)

fXZ(Xi, 1)
− 1(Zj = 0)

fXZ(Xi, 0)

]
.

Moreover, let ξ∗n,ij(w, x, z) = 1
2
[ξn,ij(w, x, z) + ξn,ji(w, x, z)]. By a similar argument for U2,

U1(w, x, z)− EU1(w, x, z)

= − 2

n

n∑
i=1

{
E[ξ∗n,ij(w, x, z)|Yi, Di, Xi, Zi]− E[ξ∗n,ij(w, x, z)]

}
+ op(n

−1/2).

Note that E[ξn,ij(w, x, z)|Yi, Di, Xi, Zi] = 0 and

E[ξn,ji(w, x, z)|Yi, Di, Xi, Zi] = E
{

E[ξn,ji(w, x, z)|Xj, Zj, Yi, Di, Xi, Zi]
∣∣Yi, Di, Xi, Zi

}
= E

{
1∗XjZj(x, z)fXZ(Xj, z

′) Pr(W ≤ w;D = 0|Xj, Zj)[Wi − E(W |Xj)]

×
1
h
K(

Xi−Xj
h

)

p(Xj, 1)− p(Xj, 0)

[
1(Zi = 1)

fXZ(Xj, 1)
− 1(Zi = 0)

fXZ(Xj, 0)

] ∣∣∣Yi, Di, Xi, Zi

}

= F ∗WD|XZ(w, 0|Xi, z)[Wi − E(W |Xi)]
fXZ(Xi, 0)fXZ(Xi, 1)

p(Xi, 1)− p(Xi, 0)

[
1∗Xi,Zi(x, 1)

fXZ(Xi, 1)
−

1∗Xi,Zi(x, 0)

fXZ(Xi, 0)

]
+op(1)
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where the last step comes from the Bochner’s Lemma and uses the fact the integrant equals zero if

Zj = z′.

Thus, we have

U1(w, x, z)− EU1(w, x, z)

= −En

{
[W − E(W |X)]

F ∗WD|XZ(w, 0|X, z)

p(X, 1)− p(X, 0)

[
1∗XZ(x, 1)

fXZ(X, 1)
− 1∗XZ(x, 0)

fXZ(X, 0)

]
fXZ(X, 1)fXZ(X, 0)

}

+ op(n
− 1

2 ),

where the op(n−1/2) holds uniformly over (w, x). It follows that

U1(w, x, 1)− EU1(w, x, 1)− [U1(w, x, 0)− EU1(w, x, 0)] = Enφ
c
wx + op(n

− 1
2 ).

By Assumption 2.11, we have EU1(w, x; z) = op(n
− 1

2 ). Therefore, under H0,

√
n
[
G̃(w, x, 1)− G̃(w, x, 0)

]
=
√
n {U1(w, x, 1)− U1(w, x, 0)− [EU1(w, x, 1)− EU1(w, x, 0)]}

+
√
n {U2(w, x, 1)− U2(w, x, 0)− [EU2(w, x, 1)− EU2(w, x, 0)]}+ op(1)

=
√
n× En(ψcwx + φcwx) + op(1),

which converges to a zero-mean Gaussian process with the given covariance kernel. Q.E.D.
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APPENDIX B

TECHNICAL LEMMAS FOR PROOFS IN APPENDIX A

Let ∆p(x) ≡ p(x, 1)− p(x, 0), which is strictly positive by Assumption 2.1.

Lemma B.1. Suppose Assumptions 2.1 and 2.5 hold. Then, we have

√
n[δ̂(x)− δ(x)] =

1

∆p(x)
×
√
nEn

{[
W − E(W |X = x, Z = 0)

]
× 1XZ(x, 1)

P(X = x, Z = 1)

}
− 1

∆p(x)
×
√
nEn

{[
W − E(W |X = x, Z = 1)

]
× 1XZ(x, 0)

P(X = x, Z = 0)

}
+ op(1). (B.1)

Proof. Fix X = x. For expositional simplicity, we suppress x in the following proof. More-

over, let An(z) = En[Y 1XZ(x, z)], Bn(z) = En[D1XZ(x, z)], Cn(z) = En1XZ(x, z), A(z) =

E[Y 1XZ(x, z)], B(z) = E[D1XZ(x, z)] and C(z) = E1XZ(x, z) = P(X = x, Z = z). By defini-

tion, note that

δ̂ =
An(1)Cn(0)− An(0)Cn(1)

Bn(1)Cn(0)− Bn(0)Cn(1)
and δ =

A(1)C(0)− A(0)C(1)

B(1)C(0)− B(0)C(1)
.

It follows that

δ̂ − δ =
An(1)Cn(0)− An(0)Cn(1)− [A(1)C(0)− A(0)C(1)]

Bn(1)Cn(0)− Bn(0)Cn(1)

+

{
A(1)C(0)− A(0)C(1)

Bn(1)Cn(0)− Bn(0)Cn(1)
− A(1)C(0)− A(0)C(1)

B(1)C(0)− B(0)C(1)

}
≡ I + II.

We first look at the term I. By the Central Limit Theorem and Assumption 2.5, we have
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An(z) = A(z)+Op(n
−1/2), Bn(z) = B(z)+Op(n

−1/2) and Cn(z) = C(z)+Op(n
−1/2). Therefore,

I =
[An(1)− A(1)] C(0) + A(1) [Cn(0)− C(0)]

B(1)C(0)− B(0)C(1)

− [An(0)− A(0)] C(1) + A(0) [Cn(1)− C(1)]

B(1)C(0)− B(0)C(1)
+ op(n

−1/2)

=
An(1)C(0)− A(0)Cn(1)− An(0)C(1) + A(1)Cn(0)

B(1)C(0)− B(0)C(1)

+
2 [A(0)C(1)− A(1)C(0)]

B(1)C(0)− B(0)C(1)
+ op(n

−1/2).

Specifically, we have

I = En
{[
Y − E(Y |X = x, Z = 0)

]
× 1XZ(x, 1)

}
× Pr(X = x, Z = 0)

B(1)C(0)− B(0)C(1)

− En
{[
Y − E(Y |X = x, Z = 1)

]
× 1XZ(x, 0)

}
× Pr(X = x, Z = 1)

B(1)C(0)− B(0)C(1)

+
2 [A(0)C(1)− A(1)C(0)]

B(1)C(0)− B(0)C(1)
+ op(n

−1/2)

=
1

∆p(x)
× En

{[
Y − E(Y |X = x, Z = 0)

]
× 1XZ(x, 1)

P(X = x, Z = 1)

}
− 1

∆p(x)
× En

{[
Y − E(Y |X = x, Z = 1)

]
× 1XZ(x, 0)

P(X = x, Z = 0)

}
− 2δ(x) + op(n

−1/2).

For the term II, by a similar argument we have

II =
−δ(x)

∆p(x)
× En

{[
D − p(x, 0)

]
× 1XZ(x, 1)

P(X = x, Z = 1)

}
+

δ(x)

∆p(x)
× En

{[
D − p(x, 1)

]
× 1XZ(x, 0)

P(X = x, Z = 0)

}
+ 2δ(x) + op(n

−1/2).

By definition of W , we have W − E(W |X = x, Z = z) = Y − E(Y |X = x, Z = z) − [D −

p(x, z)]× δ(x). Summing up I and II, we obtain (B.1).
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Lemma B.2. Suppose Assumptions 2.6, 2.9 and 2.10 hold. Then for any k > 0 and r ∈ (1
4
, ι),

sup
x∈SX

nk × Pr
[
|δ̂(x)− δ(x)| > n−r

]
→ 0.

Proof. First, by a similar decomposition of δ̂(x) − δ(x) as that in the proof of Theorem 2.2, it

suffices to show

sup
x
nk × Pr

{
|an(x, z)− a(x, z)| > λa × n−r

}
→ 0;

sup
x
nk × Pr

{
|bn(x, z)− b(x, z)| > λb × n−r

}
→ 0;

sup
x
nk × Pr

{
|qn(x, z)− q(x, z)| > λq × n−r

}
→ 0,

where λa, λb and λq are strictly positive constants, and

an(x, z) =
1

nh

n∑
j=1

YjK(
Xj − x
h

)1(Zj = z), a(x, z) = E(Y |X = x, Z = z)× q(x, z);

bn(x, z) =
1

nh

n∑
j=1

DjK(
Xj − x
h

)1(Zj = z), b(x, z) = E(D|X = x, Z = z)× q(x, z);

qn(x, z) =
1

nh

n∑
j=1

K(
Xj − x
h

)1(Zj = z).

For expositional simplicity, we only show the first result. It is straightforward that the rest follow

a similar argument.

Let Tnxzj = YjK(
Xj−x
h

)1(Zj = z) and τnxz = h× [λan
−r − |Ean(x, z)− a(x, z)|]. Note that

Pr
[
|an(x, z)− a(x, z)| > λa × n−r

]
≤ Pr

[
|an(x, z)− Ean(x, z)|+ |Ean(x, z)− a(x, z)| > λa × n−r

]
= Pr

{
1

n

∣∣∣∣∣
n∑
j=1

(Tnxzj − ETnxzj)

∣∣∣∣∣ > τnxz

}
.
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Moreover, by Bernstein’s tail inequality,

Pr

{
1

n

∣∣∣∣∣
n∑
i=1

(Txzj − ETxzj)

∣∣∣∣∣ > τnxz

}
≤ 2E

(
− n× τ 2nxz

2Var (Tnxzj) + 2
3
K × τnxz

)
.

where K is the upper bound of kernel K.

By Assumption 2.10, |Ean(x, z) − a(x, z)| = O(n−ι) = o(n−r). Then, for sufficient large n,

there is 0.5λan
−rh ≤ τn(x, z) ≤ λan

−rh. Moreover,

Var (Tnxzj) ≤ ET 2
nxzj ≤ E

[
E(Y 2|X)K2(

X − x
h

)
]
≤ Ch,

where C = supx E[Y 2|X = x]× supx fX(x)×K ×
∫
|K(u)|du <∞. It follows that

Pr

{
1

n

∣∣∣∣∣
n∑
`=1

(Txzj − ETxzj)

∣∣∣∣∣ > τnxz

}
≤ 2E

(
−

λa
4
nhn−2r

2C + 2
3
Kλan−r

)
.

For sufficiently large n, we have 2
3
Kλan

−r ≤ 1. Therefore, for sufficiently large n,

Pr

{
1

n

∣∣∣ n∑
`=1

(Txzj − ETxzj)
∣∣∣ > τnxz

}
≤ 2E

(
− n2ι−2r

2C + 1

)
= o(n−k)

where the inequality comes from Assumption 2.9. Note that the upper bound does not depend on

x or z. Therefore,

sup
x,z

Pr
[
|an(x, z)− a(x, z)| > λa × n−r

]
= o(n−k).

Q.E.D.
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