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ABSTRACT 

 

Atmospheric aerosols profoundly impact human health, visibility, the ecosystem, 

and the climate. Some aerosols are directly emitted, but a majority are formed in the 

atmosphere by the oxidation of gaseous precursors. However, there are considerable 

uncertainties concerning the aerosol formation, transformation, and properties at the 

molecular level.  

In my doctoral research, a series of laboratory measurements were conducted to 

investigate scientific questions, including the relation between the ambient aerosol mass 

concentration and light extinction, the sulfate formation under polluted environments, the 

light-absorption by organic aerosols under aqueous environments, the aerosol reactivity in 

surface reactions, and the aerosol physicochemical properties. To investigate them a series 

of analytical techniques were used in several scales.  

For the field study, the aerosol mass concentration and aerosol light extinction were 

chemically apportioned with the carbonaceous aerosols being the dominant species for 

both. Moreover, due to the high concentration of ammonium cations relative to nitrate and 

sulfate anions, the low visibility, and the high relative humidity, chamber experiments 

were conducted to study the sulfate formation by mimicking the polluted conditions in 

China. It turns out that the secondary inorganic sulfate is formed by the oxidation of sulfur 

dioxide by nitrogen dioxide under aqueous phase. Additionally, under aqueous phase, 

secondary organic aerosols could be formed as showed by the bulk mixtures of α-

dicarbonyls and amines model, which subsequently alter the optical properties. 

Furthermore, the uptake of gaseous amines and solid organic diacids reactions is studied 
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using a flow reactor. The results reveal that this type of heterogeneous reactions is driven 

by an interplay between the steric effect and the acidity/basicity strength of both the 

diacids and the amines. 

Overall, the results indicate that atmospheric processes can efficiently alter the 

chemical composition, and the physical and optical properties. Detailed discussion and the 

further implications to the air quality and climate are presented in this dissertation. 

Reducing the gap in knowledge on the atmospheric aerosol process has significant 

implications for the development and improvement of climate-related policies and risk 

assessments worldwide. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

The world is changing at a fast pace. An increase in global population and 

redistribution to urban areas have led to an increase in energy and agricultural demands—

that have, in turn, led to changes in emissions and have altered the composition of the 

atmosphere [National Academies of Sciences and Medicine, 2016]. These changes have 

provoked significant societal challenges including climate change and air pollution [Jacob 

and Winner, 2009]. The fifth Intergovernmental Panel on Climate Change (IPCC) 

Assessment Report states that climate change is happening and recognizes the dominant 

cause as human influence [IPCC, 2013]. Air pollution is a significant threat to human 

health, being responsible for one of eight deaths globally [Fenger, 2009]. 

Recently, to mitigate climate change and air pollution, there has been increased 

awareness of short-lived climate pollutants (SLCPs), such as black carbon, tropospheric 

ozone, methane, and hydrofluorocarbons. SLCPs may have a short lifetime relative to 

greenhouse gases, but they can contribute globally to warming and chronic illness 

[Ramanathan and Feng, 2009; von Schneidemesser et al., 2015]. Taking measures to 

mitigate SLCP emissions can help achieve many of the Sustainable Development Goals 

(SDGs) proposed by the United Nations [Haines et al., 2017]. To understand and respond 

to these environmental and societal challenges, atmospheric chemistry research is critical. 

Atmospheric chemistry is concerned with describing the fundamental process that 

controls the chemical composition of the atmosphere, as well as how the chemical and 

physical properties of the atmosphere change due to human activities [Heard and Saiz-
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Lopez, 2012]. Atmospheric chemistry research leads to discoveries about the air we breathe 

and environmental issues such as climate change, air pollution, photochemical smog, 

acidic deposition, stratospheric ozone depletion, biogeochemical cycles, etc. [Abbatt et al., 

2014; Burkholder et al., 2017]. Moreover, atmospheric chemistry research findings have 

supported policy and diplomatic decisions that have significantly improved climate, human 

health, and welfare. For example, when the chemicals responsible for stratospheric ozone 

depletion became understood at a molecular level, they were banned under the Montreal 

Protocol, a diplomatic- scientific agreement. 

 

 
Figure 1: Schematic diagram connecting fundamental chemistry to different research 

approaches (branches) in the atmospheric chemistry field and to societal challenges 

and sustainable policy. 

 

 

The atmospheric chemistry field combines knowledge from theory, laboratory 

experiments, field measurements, and atmospheric models to unify the understanding of 

the atmospheric chemical process. Therefore, a modified version of the traditional three-

legged stool approach is presented in Figure 1 [Abbatt et al., 2014]. The theory of chemical 

mechanisms underpins each branch (or stool leg), and the resulting branch combination 
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could help solve current societal challenges and establish sustainable environmental 

policies. This dissertation places particular emphasis on discussing field and laboratory 

studies. 

Laboratory studies are an essential bridge between field measurements and models 

[Burkholder et al., 2017]. Laboratory studies provide the techniques for field 

measurements and the parametrization inputs necessary for atmospheric models. However, 

laboratory studies are used to verify field observations and the mechanism used in models. 

Analogously, atmospheric models are mainly evaluated against field measurements. 

During laboratory studies, several tools are used to simulate atmospheric chemical 

and physical transformation (aging) including chambers, bulk reactions, and flow reactors. 

These techniques allow chemical reactions to be made under a variety of timescales and 

conditions (e.g., temperature, humidity, light source, oxidant, and concentration). On one 

hand, chambers allow simulation of aging from hours to days, but they often are unable to 

achieve the degree of oxidation observed in the atmosphere. On the other hand, flow 

reactors could simulate the observed ambient aging within seconds or minutes by using a 

high concentration of oxidant (several orders of magnitude relative to ambient). Each 

method has its unique advantages and limitations regardless of the detailed mechanism and 

ambient representation, as shown in Figure 2. However, combining these tools leads to a 

better understanding of the formation mechanism and implications of atmospheric 

processes. Furthermore, the field of atmospheric chemistry is increasingly focused on 

much more complex chemical systems, like aerosols, than the comparatively simple gas-

phase processes studied in the past [Andreae and Crutzen, 1997; Burkholder et al., 2017; 

Ravishankara, 1997]. 
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Figure 2: Two-dimensional representation of some experimental approaches 

currently used for chemical analyses of aerosols and their ambient representation. 

 

 

Atmospheric aerosols are liquid or solid particles suspended in the air with 

diameters from 1 nm to 10 m [Finlayson-Pitts and Pitts Jr, 2000; Pöschl, 2005; Seinfeld 

and Pandis, 2006]. Aerosols are formed by physical and chemical processes or are directly 

emitted into the atmosphere from both natural and anthropogenic sources [Zhang et al., 

2015b]. Due to their small size, they have little inertia and, as a consequence, may stay in 

the air for several days. Because of this lifetime, aerosols can undergo long-range transport 

and be transformed chemically via sunlight, cloud processing, and reactions, altering their 

physical properties [IPCC, 2013].  
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Depending on context, atmospheric aerosols are interchangeably called particles, 

atmospheric nanoparticles, and/or particulate matter (PM), as seen in this text. PM is used 

together with a description of aerosol size. For example, aerosols with diameters of less 

than 10 m, 2.5 m, and 1 m are denoted by PM10, PM2.5, and PM1, respectively. When 

referring to aerosols smaller than 0.5 m, i.e., 500 nm, the term atmospheric nanoparticles 

is often used. Atmospheric aerosols influence the earth’s radiative balance, impact cloud 

nucleation processes, reduce visibility, alter global biogeochemical cycles, reduce air 

quality, and negatively affect human health [IPCC, 2013; McNeill, 2017; Pöschl, 2005; 

Zhang et al., 2015b].  

Atmospheric aerosols have direct effects on public health from aggravating 

allergies to development of chronic diseases, to premature death [Correia et al., 2013; 

Gauderman  et al., 2004; Pope and Dockery, 2006]. These effects are dependent on factors 

like particle size (whether particles can penetrate the lower airways of the human 

respiratory system), the intensity of the exposure, retention time of particles in the 

respiratory tract, the concentrations, the nature of the particles and their interaction with 

human tissue, and the presence/absence of pre-existing conditions, especially, diseases of 

the respiratory tract. Epidemiological and toxicological studies have been linked to a wide 

range of acute and chronic diseases, from increase morbidity and mortality, to respiratory, 

cardiovascular, reproductive, and mental health issues [Burnett et al., 2014; Drakaki et al., 

2014; Oudin et al., 2016; Schlesinger et al., 2006; Srám, 1999]. Long-term exposure to 

aerosols in the most polluted urban areas has been linked to an increased risk of premature 

death and mortality from lung cancer [Pope et al., 2002], a health risk comparable to long-

term exposure to second-hand smoke [Pope and Dockery, 2006].  
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Moreover, aerosols play a critical role in climate—directly by scattering and 

absorbing solar radiation and indirectly through modifying cloud properties by acting as 

cloud condensation nuclei and ice nuclei, modulating photochemistry, promoting 

multiphase chemistry, altering the precipitation patterns and influencing the clouds’ albedo 

[Finlayson-Pitts and Pitts Jr, 2000; Seinfeld and Pandis, 2006]. A recent study, using 

measurements and modelling techniques, shows that the aerosols, no matter the particle 

size, invigorated convective clouds [Fan et al., 2018; Rosenfeld et al., 2008]. Currently, 

aerosols' direct and indirect effects represent the largest uncertainty in climate predictions 

using global climate models [Fan et al., 2007; Fan et al., 2008]. A full understanding of 

aerosols and their role in the atmosphere requires a detailed physicochemical 

characterization. 

Determining the chemical composition of ambient aerosols has been a great 

challenge for chemists [Prather et al., 2008]. Depending on the source, the aerosol mass is 

composed of inorganic, biogenic, and chemically complex carbonaceous material [Seinfeld 

and Pandis, 2006]. The inorganic component consists mainly of sulfate, ammonium, 

nitrate, sodium, chloride, trace metals, and crustal elements [Zhang et al., 2015b]. The 

carbonaceous fraction is mainly composed of black carbon (BC) aerosols and organic 

carbon aerosols (OCs or OAs). Secondary organic aerosols (SOAs), which are produced by 

chemical reactions, new particle formation, and gas-to-particle conversion of volatile 

organic compounds (VOCs) in the atmosphere, dominate the global OA burden [Hallquist 

et al., 2009; Kanakidou et al., 2005; Shrivastava et al., 2017]. OAs represent a diversity of 

104 – 105 distinct compounds, and because of their chemical complexity, it is impossible to 

use a single analytical technique to identify all these compounds [Nozière et al., 2015]. 



 

7 

 

Recent technological advances, though, such as mass spectrometry [Laskin et al., 2018], 

optical spectroscopy, and microscopy, [Ault and Axson, 2017] have allowed recognizing 

thousands of organic species, but only about 30% of OAs have been identified [Andreae, 

2009].  

The aerosols can undergo chemical reactions in the atmosphere via sunlight, cloud 

processing and reactions with gas phase species like oxidation and acid-base. The most 

important oxidants in the atmosphere are OH radicals, ozone (O3), and nitrate (NO3) 

radicals. Those chemical process could happen via gas-phase, multiphase (gas-liquid), and 

heterogeneous (gas-solid) reactions [Finlayson-Pitts and Pitts Jr, 2000; Seinfeld and 

Pandis, 2006]. Those reactions depend on the particle phase state, which can change with 

the relative humidity [Kuwata and Martin, 2012; Shiraiwa et al., 2011; Shiraiwa et al., 

2017]. The mass transport of gasses and bulk phase diffusion can vary from seconds to 

years, depending if the particle is solid, semi-solid, or liquid [Shiraiwa et al., 2012]. 

Additionally, the chemical transformation has an impact on the physical properties, which 

are not well understood [Zhang et al., 2015b]. For example, when the organic material is 

oxidized, it becomes less volatile, more hygroscopic and alters the optical properties 

[McNeill, 2015; Zhang et al., 2008].  

Considering the ubiquity of OAs, understanding their optical properties is 

extremely important [Moise et al., 2015]. The optical properties relevant to the aerosols 

include the scattering (bsca) and absorption (babs) coefficients. They are expressed as a 

number proportional to the number of photons scattered or absorbed per unit distance (m-

1).  The sum of both is equal to the extinction coefficient (bext = bsca + babs). Scattering and 

absorption are determined by the particle size, structure, and chemical composition. 
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Typically, bsca, babs and bext are normalize to the number particle concentration, giving the 

scattering (Csca), absorption (Cabs) and extinction (Cext) cross sections (m2). The mass 

absorption cross section (MAC) is the babs normalize by the mass (m2g-1), which is 

commonly used to quantify the light absorption of BC. Another parameter is the single 

scattering albedo (SSA), the dimensionless ratio of the scattering to the extinction. A SSA 

value of 1 indicates a purely scattering particle. A decrease in the SSA indicates an 

increase in the absorption. An increase in the bext is related to a decrease in visibility 

(Figure 3). 

 

 

Figure 3: An example of visibility degradation due to the aerosol light extinction. The 

photo on the left was taken on a polluted day (PM2.5 = 448 μg m-3), and the photo on 

the right was taken on a clean day (PM2.5 = 15 μg m-3). The photos were taken on 

Peking University in Beijing, China during January 2015.  

 

 

The absorption properties of carbonaceous aerosols have not been well 

characterized. Light-absorbing carbonaceous aerosols include BC and brown carbon (BrC). 

BC is produced by incomplete combustion and has the ability to absorb light over a broad 

range of the solar spectrum [Bond and Bergstrom, 2006]. BrC, the light absorbing fraction 
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of OAs, exhibits enhanced light absorption at shorter wavelengths due to the presences of 

organic chromophores. Therefore, some OAs can be significant climate-forcing agents via 

its absorption optical properties [Moise et al., 2015]. However, the overall contribution of 

SOA to BrC and the related climate forcing are poorly understood and are not currently 

included in atmospheric model studies. Additionally, the light extinction by OAs stabilize 

the atmosphere, leading to a negative impact on air quality and the inhibition of cloud 

formation [Wang et al., 2013b]. Also, the chemical characterization of BrC has proven to 

be complex and therefore remains incomplete [Laskin et al., 2015]. Such incomplete 

understanding is due in part to the chemical complexity of SOA, and the lack of clarity 

regarding SOA formation, transformation, and optical properties [Hallquist et al., 2009].  

The growing realization of the importance of OAs is making them a central 

research area in current atmospheric chemistry research. Given the large number and 

variability of chemical constituents, sources, and possible chemical transformations of 

OAs, a chemical characterization including reactivity, oxidation level, molecular weight, 

hygroscopicity, volatility, and optical properties presents a significant challenge for both 

experiments and models [Jimenez et al., 2009; Kroll et al., 2011]. The lack in 

understanding of the formation and transformation of aerosols hinder the development of 

predictive models and further mitigations. Reducing the gap in knowledge would improve 

atmospheric models and have significant implications for the development and 

enhancement of climate-related policies and risk assessments worldwide. 

This dissertation explores different scientific questions by varying the scale of the 

experimental approach. Chapter II describes field measurements taken in the winter of 

2015 in Beijing, China, with the purpose of investigating the optical properties and 
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formation mechanism of haze development episodes. Chapter III considers the 

heterogeneous aqueous conversion of sulfur dioxide to sulfate in polluted environments by 

coupling part of the field measurement data with new chamber experiments. The 

importance of the relative humidity (RH) and the role of aqueous reactions are discussed. 

Chapter IV presents a study on the formation of light-absorbing products by small -

dicarbonyls and amines under aqueous bulk reactions, focusing on optical properties and 

chemical composition. Chapter V examines the uptake and heterogeneous kinetics of 

gaseous amines on solid dicarboxylic acids using a flow reactor. A detailed discussion of 

the acid-base reaction and the multifunctional groups is provided. Lastly, Chapter VI 

presents an integrated summary of the findings and provides some perspective for future 

research directions. 
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CHAPTER II 

 MEASUREMENTS OF AEROSOL CHEMICAL AND OPTICAL PROPERTIES IN 

BEIJING DURING WINTER 2015: A FIELD STUDY 

 

Introduction 

 

The poor air quality in China is linked with the rapid economic development [Chan 

and Yao, 2008; Fang et al., 2009; Zhang et al., 2013]. Recently, China has experienced 

severe haze pollution with fine particulate matter smaller than 2.5 µm (PM2.5). The PM2.5 

had reached unprecedented high levels, exceeding the World Health Organization (WHO) 

limit of 10 µg m-3. For example, the U.S. embassy in Beijing reported a PM2.5 annual mean 

of 102 µg m-3 for 2013 [U.S. Department of State, 2018]. Furthermore, this pollution 

undergoes long-range transport across the Pacific Ocean into the western U.S., making it a 

global problem [Lin et al., 2014]. In September 2013, the Chinese government stated that 

they will significantly improve the air quality by the end of 2017, and committed almost 

300 billion USD to address it. Their goal is to reduce the annual average PM2.5 mass 

concentrations in Beijing to 60 μg m-3 by 2017; by reducing coal consumption, updating 

vehicle fleet, and enforcing environmental laws, taxation and subsidies. Based on 

preliminary results from the early news report of this year 2018, the Chinese government 

accomplished their goal. Lie Baoxian, deputy director of the Beijing Municipal 

Environmental Monitoring Center, indicated that they reduced PM2.5 levels by 35 %, i.e., 

from 90 μg m-3 in 2013 to 58 μg m-3 in 2017. The information is relatively consistent with 

the data from the U.S. embassy data in Beijing, which shows a PM2.5 reduction of 31%, 
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i.e., from 102 μg m-3 in 2013 to 70 μg m-3 in 2017 (Figure 4) [U.S. Department of State, 

2018].  

 

 

Figure 4: Comparison of the annual and winter PM2.5 mass concentration between 

2010 and 2017 in Beijing measured at the U.S. Embassy. For comparison, the green 

and blue line represent the average annual limits by the U.S. EPA and the WHO, 

respectively [U.S. Department of State, 2018]. 

 

 

However, the formation mechanisms leading to haze episodes remain uncertain. 

The abundance and chemical constituents of PM2.5 vary considerably, depending on the 

meteorology, primary pollution sources, and secondary chemical processes [Guo et al., 

2014; Huang et al., 2014; Sun et al., 2013; Zhang et al., 2017; Zhang et al., 2015b; Zheng 

et al., 2015]. The haze in Beijing occurs in all seasons, but with a higher frequency during 

the winter. Moreover, its formation mechanism is different from other well-known polluted 

regions, such as Houston, Los Angeles, and Mexico City, which typically exhibit a diurnal 

trend instead of the few days period observed in Beijing [Zhang et al., 2015b]. Another 

remarkable distinction is the fast transition between clean to polluted conditions since the 
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PM2.5 in China could easily increase over 100 μg m-3, in less than 24 hours, which have not 

been observed in other urban regions [Zhang et al., 2017; Zhang et al., 2015b]. 

Most of the primary PM in China is emitted from road dust and combustion 

sources, such as emissions from vehicles, industries, coal and residential fuel combustion, 

biomass burning, and cooking [Zhang et al., 2017]. However, secondary PM fraction 

dominates the fine PM, since primary PM contributes less than 50% of the total PM for all 

seasons [Guo et al., 2013]. The major precursors for secondary PM are volatile organic 

compounds (VOCs), nitrogen oxides (NOx), sulfur dioxide (SO2), and ammonia (NH3) 

[Zhang et al., 2015b]. Their sources in urban areas are mainly from anthropogenic origins, 

except the VOCs and NH3 which could vary depending on the season. 

The secondary PM formation process often occurs by aerosol nucleation and 

subsequent growth with a periodic cycle of 4 to 7 days [Guo et al., 2014]. New particle 

formation (NPF) events are usually comprised of three phases. First the aerosol nucleation 

process, which leads to a rapid increase in the particle number concentration of small 

particles (<20 nm); second the aerosol growth, where the particles increase their size due to 

condensation of gaseous species; third the decrease in particle number concentration due to 

coagulation and dilution [Guo et al., 2014]. Gaseous sulfuric acid and organic vapors have 

been shown to play an essential role in the nucleation process [Wang et al., 2015; Wang et 

al., 2011; Yue et al., 2010]. NPF events occur frequently, and during all seasons in Beijing, 

however, most of the studies have been conducted during the summer and autumn, while 

not many during the winter, remembering that meteorological conditions drive the 

pollution episodes in Beijing [Wang et al., 2017b; Wu et al., 2007; Zheng et al., 2015]. 
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The physical and chemical properties of PM can provide crucial information on the 

primary emission, atmospheric evolution, and environmental implications [Zhang et al., 

2015b]. For example, the chemical composition provides information about the primary 

and secondary aerosol sources; the effective density distinguishes between fresh primary 

and aged aerosol; the hygroscopicity reveals the aerosol potential to serve as a CCN; the 

optical properties suggest the aerosols ability to alter the visibility, radiative budget, and 

climate forcing. It is important to note that the aerosol properties are commonly 

interrelated. In Beijing during the autumn season, Guo et al. [Guo et al., 2014] show that 

during the transition from a clean to a polluted period, the contribution from organics 

decreases (from 75% to 38%) and the secondary inorganics increases (from 25% to 62%). 

Similarly, the effective density and hygroscopicity increase from clean to polluted period, 

indicating the formation of an internal mixture of secondary species more hydrophilic 

[Guo et al., 2014]. Likewise, Lee et al. [Lee et al., 2007] observed an increase in the light 

extinction in polluted periods relative to clean. 

The chemical composition of PM has been widely reported; however, the optical 

properties of PM are rarely explored in Beijing [Tao et al., 2017]. There is an interplay 

between the PM chemical composition and its impact on aerosols optical properties [Wang 

et al., 2006b]. For example, the light extinction is controlled not only by the mass 

concentration, but also by the chemical composition, size distribution, and hygroscopicity 

[Cao et al., 2012; Ma et al., 2012; Meier et al., 2009]. Moreover, the light extinction could 

be apportioned using the mass concentration of the chemical species into the IMPROVE 

(Interagency Monitoring of Protected Visual Environments) model [Malm and Hand, 

2007; Pitchford et al., 2007]. A detailed understanding of the aerosol optical properties, 
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scattering, and absorption, could reveal the potential impact of the haze on the visibility 

and direct climate forcing [Andreae and Ramanathan, 2013; Moise et al., 2015; Wang et 

al., 2013b]. A collaboration between Texas A&M University (TAMU) and Peking 

University (PKU) was established to conduct ambient measurements of aerosol properties 

(chemical and optical) in Beijing, China during the winter of 2015.  

 

Methodology 

 

Ambient measurements were conducted on the campus of Peking University (PKU, 

39°59'21" N, 116°18'25' E), located in northwestern Beijing, from January 20th to 

February 4th, 2015. The site is representative of an urban area which is heavily influenced 

by mobile sources, such as vehicles (a major highway is located 200 m east of the 

measurement site), with no significant stationary sources [Wu et al., 2008]. A suite of 

instruments, located in an air-conditioning room on the roof of a building about 15 m 

above ground level, was used simultaneously to measure several aerosol properties, such 

as mass concentrations, chemical composition, and optical properties. Moreover, the 

mixing layer height (MLH), as a surrogate of the planetary boundary layer (PBL), was 

retrieved by using a ceilometer and a radiosonde, and following the protocol by Tang et al. 

2016.  

For the ambient mass concentration, a Tapered Element Oscillating Microbalance 

(TEOM, 1400a, Thermo, USA) with a PM2.5 cyclone inlet was used by introducing an 

ambient aerosol sampling flow of 1 LPM. The TEOM measures the mass collected on a 

filter by monitoring the corresponding frequency changes of a tapered element. The mass 
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concentration was determined from the change in the oscillation frequency. The tube's 

natural frequency of oscillation decreased as the mass concentration increased on the 

exchangeable filter. 

The chemical composition of size-resolved submicron particles was detected by an 

Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). 

The HR-ToF-AMS operates in 5 minutes cycles to obtain the mass concentration of non-

refractory species such as organics, nitrate, sulfate, chloride, and ammonium. The 

instrument was calibrated at the beginning, middle and end of the measurements for inlet 

flow, ionization efficiency, and particle sizing as suggested in the protocol [Hu et al., 

2016]. The detection limits of the HR-ToF-AMS is determined by passing filtered ambient 

air through the system and measuring the species signals for three five-minute intervals. 

The detection limits were 0.033, 0.004, 0.008, 0.004, and 0.026 μg m-3, for organics, 

nitrate, sulfate, chloride, and ammonium respectively. Additional details about the 

instrument are given by DeCarlo et al. [DeCarlo et al., 2006]. 

The optical properties were measured using a Photoacoustic Extinctometer (PAX, 

Droplet Measurement Technologies) at 405, 532, and 870 nm. The PAX uses in-situ 

photoacoustic technology and reciprocal nephelometry to measure the particle absorption 

and scattering, respectively. In the absorption cell, a laser beam directed through the 

aerosol stream is modulated at the resonant frequency of the acoustic chamber. The energy 

absorbed by particles is thermally transferred to the surrounding air, and the subsequent air 

expansion produces a sound wave, which is recorded by a microphone. In the scattering 

cell, the standard nephelometer is used, but the locations of the light source and detectors 

are reversed. The instrument was calibrated with polystyrene latex spheres and Aquadag 
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soot particles. An ambient aerosol sampling flow of 1 LPM passed through a series of 

Nafion driers (Perma Pure, Inc.) to reduce the relative humidity of the aerosols to less than 

10% before passing by the PAX. Therefore, the instrument measured the dry aerosol 

absorption and scattering coefficients. The extinction is calculated from the sum of the 

absorption and scattering. Additionally, other instruments were used concurrently to 

measure the black carbon (BC) mass concentration, such as the aethalometer, the multi-

angle absorption photometer (MAAP), and the single particle soot photometer (SP2). More 

details about those instruments are provided by Moosmüller et al. [Moosmüller et al., 2009]. 

The light extinction of ambient aerosols could be apportioned using the revised 

IMPROVE model. IMPROVE relates the light-extinction to the mass concentration of 

each component and its water uptake, as shown in equation 1, assuming externally mixed 

aerosols. However, the water uptake functions are not taken into consideration in this study 

since the measured optical properties are from the dry aerosols. 

 

 

𝑏𝑒𝑥𝑡(550𝑛𝑚) ≈ 2.2 × 𝑓𝑆(𝑅𝐻) × [𝑆𝑚𝑎𝑙𝑙 (𝑁𝐻4)2𝑆𝑂4]      

+ 4.8 × 𝑓𝐿(𝑅𝐻) × [𝐿𝑎𝑟𝑔𝑒 (𝑁𝐻4)2𝑆𝑂4]        

+ 2.4 × 𝑓𝑆(𝑅𝐻) × [𝑆𝑚𝑎𝑙𝑙 𝑁𝐻4𝑁𝑂3]    

+ 5.1 × 𝑓𝐿(𝑅𝐻) × [𝐿𝑎𝑟𝑔𝑒 𝑁𝐻4𝑁𝑂3]                                  

+ 2.8 × [𝑆𝑚𝑎𝑙𝑙 𝑂𝑟𝑔𝑎𝑛𝑖𝑐𝑠] + 6.1 × [𝐿𝑎𝑟𝑔𝑒 𝑂𝑟𝑔𝑎𝑛𝑖𝑐𝑠]      

+ 10 × [𝐵𝑙𝑎𝑐𝑘 𝐶𝑎𝑟𝑏𝑜𝑛] + 1.7 × 𝑓𝑆𝑆(𝑅𝐻) × [𝑆𝑒𝑎 𝑆𝑎𝑙𝑡]                        

+ 0.33[𝑁𝑂2]

+ 𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ 𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔.                                                                       (1) 
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[𝐿𝑎𝑟𝑔𝑒 𝑋] =  [𝑇𝑜𝑡𝑎𝑙 𝑋]2 20⁄  , 𝑓𝑜𝑟 [𝑇𝑜𝑡𝑎𝑙 𝑋] < 20                                       (2) 

[𝐿𝑎𝑟𝑔𝑒 𝑋] =  [𝑇𝑜𝑡𝑎𝑙 𝑋] , 𝑓𝑜𝑟 [𝑇𝑜𝑡𝑎𝑙 𝑋] ≥ 20                                                (3) 

[𝑆𝑚𝑎𝑙𝑙 𝑋] =  [𝑇𝑜𝑡𝑎𝑙 𝑋]  −  [𝐿𝑎𝑟𝑔𝑒 𝑋]                                                            (4) 

 

Mass concentrations of each component were taken from the mass concentration 

measured by the HR-ToF-AMS and summarized in Table 1. A detailed description of the 

IMPROVE equation is given by Pitchford et. al. [Pitchford et al., 2007]. Sulfate and nitrate 

are assumed to be fully neutralized with ammonium, and chloride to be a sea salt surrogate. 

The IMPROVE model suggests a concentration apportioned in small and large size modes 

(equation 2-4), with a threshold value of 20 μg m-3. If the total concentration of a 

component exceeds this threshold, all of it is assumed to be in the large mode. Black 

Carbon (BC) concentration was determined from the absorption measured by the PAX 870 

and divided by the MAC value of 4.74 m2 g-1 [Bond and Bergstrom, 2006].  

 

Table 1: PM variables proposed by IMPROVE 

Component Specification 

Ammonium Sulfate, (NH4)2SO4 1.375[SO4
2-] 

Ammonium Nitrate, NH4NO3 1.29[NO3
-] 

Organics [organics] 

Sea Salt 1.8[Cl-] 

EC [BC] 
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Results and Discussion 

 

During the measurement period, the PM2.5 mass concentration, chemical 

composition and optical properties of ambient aerosols are analyzed to understand the haze 

formation mechanism and its implication in the optical properties. The PM2.5 mass 

concentration time series is shown in Figure 5a, along with the chemical composition 

obtained from the HR-ToF-AMS. In the two-week period, four pollution cycle events are 

observed, and the dominant chemical constituents are organics (47%), nitrate (18%), 

sulfate (14%), chloride (2%), ammonium (13%) and black carbon (6%). The highest mass 

concentration observed was about 275 μg m-3, which is considered hazardous according to 

the US Air Quality Index, but overall it is not as high as same months from previous years 

episodes. This decrease in mass concentration could be due to the implementation of new 

regulations and mitigation strategies. The pollution episodes could occur overnight or last 

for several days, depending on the meteorological conditions.  

The meteorological conditions such as wind speed, wind direction, relative 

humidity, and planetary boundary layer (PBL) height could affect the length and severity 

of the haze events [Guo et al., 2014]. Figure 5b shows the anticorrelation between the 

MLH and the PM2.5 mass concentration. When the MLH is low, the vertical mixing 

decreases, trapping the PM and increasing the mass concentration. The MLH is at its 

maximum over noon time and could decrease by almost 1,500 m reaching its minimum 

around midnight. Therefore, it is not surprising that the highest concentrations were often 

observed around midnight when the MLH is compressed.  
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Figure 5: Time series of the PM2.5 with chemical composition (a), mixing layer height 

(b) and light extinction (c) 
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However, some days like January 23, the MLH remains low during the daytime, 

which in turn will compress the particles and increase the mass concentration.  

The light extinction of the submicron particles is important because their particle 

size is close to the wavelength of the visible solar spectrum. Figure 5c shows a time series 

of the light extinction coefficient at three different wavelengths. The light extinction 

follows the same trend as PM2.5 mass concentration, implying a proportional behavior. It is 

important to clarify that the extinction at 405 nm is for PM1, while the 532 nm and 870 nm 

are for PM2.5. Also, the light extinction is higher at 405 nm than 532 nm and 870 nm, 

indicating a higher sensitivity at shorter wavelengths. The light extinction could be 

decomposed into the scattering and the absorption fractions. In Figure 6 the contribution of 

the absorption and scattering to the extinction for each wavelength are shown, including 

the Single Scattering Albedo (SSA), which is the scattering divided by the extinction. The 

dominant contributor to the light extinction, with almost 80-90%, is the scattering 

component. Interestingly, the contribution of the absorption and the scattering remains 

relatively constant, even under haze events. 
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Figure 6: Time series of the scattering (clear) and absorption (dark) to the total light 

extinction for 870 nm (a), 532 nm (b), and 405 nm (c). 
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Figure 7: Comparison between the Absorption Angstrom coefficient (AAC) and the 

Scattering Angstrom coefficient (SAC) calculated in Beijing. The straight lines are 

the average and the dotted the standard deviation. 

 

 

The angstrom coefficient is used to quantify the wavelength dependence of the 

absorption and scattering component. The scattering angstrom coefficient (SAC) is 

influenced by the particle size, while the absorption angstrom coefficient (AAC) depends 

more on the relative contribution of BC, BrC, and non-absorbing components. A 

comparison of the AAC and SAC is shown in Figure 7 using only 532 nm and 870 nm 

wavelengths. The straight lines are the average values of 0.690.26 and 1.210.34 for 

AAC and SAC, respectively. A significant deviation of the average values for SAC and 

AAC is not observed when comparing clean and polluted periods, which is consistent with 

the relative constant SSA for all wavelengths (Figure 6). The SAC values range from 0, for 

very large particles, to 4, for very small particles [Zhu et al., 2015]. A SAC value higher 

than 1 suggests a dominance of anthropogenic fine particles. The AAC value is used to 
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identify non-BC contributors to the light absorption. In this study, the AAC values lower 

than 1 indicate the abundance of BC coated and aged [Bahadur et al., 2012]. Therefore, the 

results indicated the contributors to the light extinction are from the anthropogenic 

influence. Even though the AAC is lower than 1 [Yuan et al., 2016], the estimation of the 

BC mass concentration based on optical measurements (assuming 7.5 m2g-1 at 550 nm with 

AAC = 1) does not deviate from the values obtained by the SP2 as shown in Figure 8. On 

average, the Aethalometer slightly underestimates the BC mass concentration, while the 

MAAP overestimate it.  

 

 

Figure 8: Times series of Black Carbon mass concentration obtained by different 

instruments. 
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function of the PM2.5 mass concentration, is shown in Figure 9a. Each data point is the 

average value for each 25 μg m-3 incremental interval. The average MSC and MAC values 

are 5.351.40 and 0.550.16 m2 g-1, respectively. The MSC values slightly decrease with 

the increase in the mass concentration. This contrasts with previous studies that had found 

a direct correlation between the MSC and the mass concentration [Jung et al., 2009]. The 

MSC values obtained are within the ranges of the values typically observed in Chinese 

urban areas (3.5 to 5.9 m2 g-1), being higher for the winter season and northern China [Tao 

et al., 2017]. The MAC decreases with an increase of the mass concentration until 150 μg 

m-3, when then the MAC value starts to increase [Peng et al., 2016]. At the low mass 

range, the large uncertainties in MSC and MAC is due to the extremely low light 

extinction. Based on the MSC and MAC values we can calculate the SSA 

[SSA=MSC/(MSC+MAC)] again. As presented in Figure 9b, the SSA as a function of the 

mass concentration follows the opposite trend of the MAC. The SSA increases with the 

mass concentration until 150 μg m-3 (same minimum as for MAC) and then starts 

decreasing. A similar trend was observed by Jung et al., for PM10. The average SSA value 

is 0.91 which is higher than the values previously reported in Beijing.  

The visual range (VR) parameter is used as a surrogate for the ambient visibility. 

VR is estimated by using the 532 nm light extinction coefficient on the Koshmeider 

equation (VR = -ln(0.02)/bext) [Koschmieder, 1924]. The VR decrease dramatically as the 

mass concentration increases with a parametrization of VR = 593.65  [PM2.5]
-0.96 (Figure 

10). The high VR is characterized by a low ambient RH and PM mass concentration lower 

than 50 μg m-3. Additionally, when the ambient relative humidity is higher than 35%, the 

mass concentration is over 50 μg m-3 and with VR lower than 15 km. Those results are 
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similar to those previously reported in Beijing [Chen et al., 2014; Jung et al., 2009; Zhang 

et al., 2010]. 

 

 
 

Figure 9: Optical properties as a function of the PM2.5 mass concentration. (a) Dry 

Mass Absorption Coefficient (MAC) and Dry Mass Scattering coefficient (MSC). (b) 

Single Scattering Albedo (SSA). 
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Figure 10: Visual Range as a function of the PM2.5 mass concentration. The difference 

in relative humidity are presented by the blue circles (RH less than 35%) and purple 

circles (RH higher than 35%). 
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same wavelength 550 nm, using the previous assumption of sulfate and nitrate, and the 

externally mixed aerosol. To get the light extinction "measured" at 550 nm, an 

interpolation between the 532 nm and 870 nm, similar to the Angstrom exponent, is used. 

The comparison between the light extinction measured and the light extinction calculated 

(Figure 11b) indicates that the IMPROVE model is able to apportion the light extinction 

with a slope close to 1 from the period of January 21st until 29th. A time series of the 

apportioned light extinction coefficient for each PM component compared with the 

measured one is presented in Figure 12. The mismatch in the February measurements is 

due to the uncertainties in the mass concentration measured by the HR-ToF-AMS similar 

to Figure 4a. 

 

Figure 11: IMPROVE Results. (a) Molar ration between cations (ammonia) and 

anions (Nitrate + 2Sulfate). (b) Light scattering comparison between the measured 

and the IMPROVE calculated. 
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Figure 12: Time series of the light extinction coefficient and the contribution by each 

chemical specie. 
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light extinction. The average light extinction during the transition period was 645 Mm-1 

and reached to 983 Mm-1 during the polluted period. In the polluted period, during the 

daytime, the MHL remains low (figure 5b) providing stagnant conditions and provoking an 

increase in the mass concentration and light extinction. During the early morning of 

January 24, the mass concentration decreased because a weak front passed, increasing the 

MLH and dilution. After the front passed, the wind shifted, and MLH decreased, therefore, 

the second polluted period peak appears but with similar contributions to the first one. 

Hence, January 21-26 corresponds to a single haze episode instead of two small ones. 

Figure 14 shows the air mass backward trajectories estimated by the HYSPLIT model 

[Stein et. al., 2015]. During the clean period, the wind comes from the north (shown in 

purple) which is surrounded by mountains, then the wind changes direction coming from 

the southwest (shown in turquoise), a region that is influenced by multiple coal power 

plants. Later, the wind direction moves from the northwest (shown in green), however, the 

PBL is low trapping the pollutants and leading to the transition period in which the PM2.5 

mass concentration increases. Subsequently, the pollution peak period (shown in red) 

corresponds to a combination of low MLH and a wind direction change from the southeast 

area, passing by the local emission sources near downtown Beijing. As a summary, the 

meteorological conditions influence the haze development, and thus the optical properties. 
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Figure 13: Variation of PM2.5 mass concentration and light extinction budget as the haze develop.
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Figure 14: Air mass backward trajectories observed during the haze episode from 

January 21st – 24th. The red, green and magenta lines correspond to the polluted, 

transition and clean periods, respectively. 

 

 

Atmospheric Implications 

 

Field measurements were conducted in Beijing during the winter of 2015 to study 

the chemical and optical properties of the aerosols during severe haze events. The anti-

correlation between the PM2.5 mass concentration and the MLH indicates that the 

meteorological conditions drive the accumulation process through the polluted period. 

During the haze episodes, an increase of the secondary inorganic component is observed as 

the haze develops, while the organics decrease. The mass concentration and the light 
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extinction are directly proportional, similar to the VR. However, the SSA on average 

remains invariant, with a slight increase when the mas concentration increases. Therefore, 

during this period, the components leading to the absorption remained constant (BC), 

while the components leading the scattering increased (mainly inorganics). This trend is 

further confirmed by using the IMPROVE model. Additionally, combining the apportion 

of the light extinction with the SAC and AAC, the dominant species leading to absorption 

is BC. No evidence of other absorbing components, such as light-absorbing organics, was 

detected. The light extinction lead to stabilization of the atmosphere, restricting the vertical 

transport, trapping the pollutants close to the surface and emission sources, negatively 

affecting the air quality. From the pollution control perspective, the mitigation of PM 

(especially BC) and gaseous precursors could potentially contribute to the improvement of 

the air quality and climate.  
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CHAPTER III 

 CONVERSION OF SULFUR DIOXIDE TO SULFATE UNDER POLLUTED 

ENVIRONMENTS: A FIELD AND CHAMBER STUDY* 

 

Introduction 

 

Sulfur dioxide (SO2) is a major pollutant in the atmosphere generated by biogenic 

sources (volcanic emissions and dimethyl sulfide oxidation) and anthropogenic sources 

(fossil fuel burning, industry, transoceanic shipping, and power plants) [Finlayson-Pitts 

and Pitts Jr, 2000; Seinfeld and Pandis, 2006; Zhang et al., 2015b]. Gaseous SO2 is 

converted to particulate sulfate (SO4
2–) through gas-phase oxidation or aqueous reactions, 

but the detailed chemical mechanisms remain debatable. Sulfate aerosols constitute a large 

fraction of fine particulate matter around the globe. As part of atmospheric particulate 

matter, sulfate aerosols may exert direct and indirect effects on climate [IPCC, 2013]. 

Furthermore, a major fraction of regional acid deposition is attributed to sulfate content, 

altering ecosystems [Chang et al., 1987]. 

OH radicals dominate the gas phase oxidation of SO2 with a reaction rate constant 

of 1.5×10–12 cm3 molecule–1 s–1. The typical tropospheric OH radical concentration is 

~1×106 molecules cm–3; therefore, the oxidation lifetime of SO2 is approximately 1 week. 

The aqueous phase oxidations of SO2 may occur faster, including reactions with dissolved  

___________________ 

*Portions of this chapter are reprinted and adapted with permission from “Persistent sulfate 

formation from London Fog to Chinese haze” by Wang, G., et. al. including Marrero-Ortiz, W. & 

Zhang, R. (2016) Proceedings of the National Academy of Sciences, 13 (48), 13630-13635. 

Copyright 2016 National Academy of Sciences, USA. 
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ozone, hydrogen peroxide, organic peroxides, OH radicals, and nitrogen dioxide (NO2) via 

catalytic or noncatalytic pathways involving mineral oxides [Seinfeld and Pandis, 2006; 

Zhang et al., 2015b]. However, the aqueous pathway occurs in a two-step process: first the 

SO2 must be dissolved (Henry’s Law Constant = 1.23 M atm–1) and later the main reaction 

occurs [Seinfeld and Pandis, 2006]. It is important to note that the SO2 dissolution is pH-

dependent [Finlayson-Pitts and Pitts Jr, 2000]. Most recently an interfacial SO2 oxidation 

mechanism involving O2 on acidic microdroplets has been suggested [Hung and 

Hoffmann, 2015]. 

Typically, atmospheric measurements show high sulfate production during severe 

haze events in China, but they cannot be explained by current atmospheric models [Wang 

et al., 2014]. Moreover, high sulfate production occurred concurrently with high RH, 

nitrogen oxides (NOx = NO + NO2), and ammonia (NH3), suggesting an aqueous oxidation 

pathway [Quan et al., 2015; Xie et al., 2015]. SO2 and NOx are coemitted products from 

fossil fuels, and NH3 occurs because of agricultural activities. Under urban conditions, 

aqueous SO2 oxidation by NO2 pathways has been hypothesized as being important in the 

presence of a sufficient neutralizing agent such as NH3 [Clifton et al., 1988; Lee and 

Schwartz, 1983; Seinfeld and Pandis, 2006]. Normally, this pathway has been neglected in 

atmospheric models due to the limited water solubility of NO2 (Henry’s Law Constant = 

1.0×10–2 M atm–1) without a neutralizing agent [Sarwar et al., 2013]. Lee and Schwarz 

studied the oxidation of S(IV) by NO2 in the liquid phase and reported a bulk reaction rate 

constant proportional to pH.   

Recent studies have pointed out that the aqueous oxidation of SO2 by NO2 is 

unlikely due to low particle acidity estimates using thermodynamic models [Guo et al., 
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2017; Liu et al., 2017]. However, in thermodynamic models, recent studies have treated 

the PM as a mixture dominated of inorganic salts [Cheng et al., 2016; Guo et al., 2017; Liu 

et al., 2017] and neglected the contribution of organics since those thermodynamic models 

are incapable of representing multicomponent aerosols. In addition, the model is highly 

dependent on aerosol water content (AWC), but since they neglected the organic aerosol 

contribution [Guo et al., 2017], their values for AWC might not be accurate, due to the 

organic-rich environment in Beijing, and some organics are water soluble. However, 

previous studies have reported that a significant portion of organic aerosols in China are 

water-soluble, such as organic acids, which in turn could react with basic species (like NH3 

and amines) and consequently enhance particle hygroscopicity [Wang et al., 2009; Wang et 

al., 2006a; Wang et al., 2013a; Yao et al., 2016; Zhang et al., 2015a].  

 Using data from the previous chapter, a correlation among SO2, NOx, PM, and RH 

levels during the haze events in China was noted, which is in agreement with previous 

studies [Guo et al., 2014]. In this chapter, a more detail discussion about the ambient 

measurements results and chamber experiments, aimed to explore the conversion of sulfur 

dioxide into sulfate under the presence of NO2 and NH3 using oxalic acid seeds as a 

surrogate for an organic-rich environment [Meng et al., 2014; Wang et al., 2010a]. Such 

experiments may help explain haze formation and PM growth in highly polluted 

environments such as Beijing, China. 
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Methodology 

 

Ambient measurements in Beijing 2015 

Ambient measurements were conducted on the campus of Peking University (PKU) 

located in northwestern Beijing from January 20 to February 4, 2015 [Wang et al., 2016]. 

The site is representative of an urban area that is heavily influenced by mobile sources with 

no significant stationary sources. A suite of instruments was deployed to simultaneously 

measure several gaseous species and aerosol chemical composition. Online monitors were 

used for measuring ambient gas concentration. NOx and SO2 were measured using the 

chemiluminescence NOx analyzer (Ecotech EC9841) and SO2 analyzer (Ecotech EC9852), 

respectively. The chemical composition of submicron particulate matter (PM1) was 

measured by an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer 

(HR-ToF-AMS). The HR-ToF-AMS operated in 5-minute cycles to obtain the mass 

concentrations of nonrefractory species such as ammonium (NH4
+), sulfate (SO4

2–), nitrate 

(NO3
–), chloride (Cl–), and organics [DeCarlo et al., 2006]. The instruments were located 

in an air-conditioned room on the roof of a building about 15 m above ground level.  

 

Chamber studies 

Chamber experiments were conducted by exposing oxalic acid seed particles to 

SO2, NO2, and NH3 at high RH to later measure the dry size variation of the particles, 

assumed to be from the sulfate formation [Wang et al., 2016]. For the experimental setup 

(Figure 15), a 1-m3 Plexiglass with a Teflon film covered by aluminum foil was used. The 

chamber was equipped with a humidifier and differential mobility analyzer (DMA) with a 
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condensation particle counter (CPC) to control the relative humidity and measure the size 

distribution and concentration, respectively.  The humidifier consists of flowing 2-SLPM 

(standard liters per minute) nitrogen flow through a 5-gallon water reservoir with a heater 

set to 307 K, which produces a humidified nitrogen flow that was subsequently introduced 

into the chamber. The RH was monitored by using an RH probe located downstream of the 

chamber.  

The chamber setup was operated in two modes: seeding and scanning. For the 

seeding mode, the particles moved from the atomizer to the DMA to the chamber. An 

aqueous solution of oxalic acid (1 wt%) was atomized using dry nitrogen to generate 

polydisperse particle. The particles were diluted with a dry nitrogen flow, heated to 343 K 

to remove excess humidity, and further dried using two Nafion tubes. Later, the particles 

were size-selected using a DMA to produce a monodisperse distribution, which was 

injected into the chamber. Typically, the size-selected particle number concentration inside 

the chamber was elevated to 5 ×104 cm–3 before gases were injected. For scanning mode, 

the flow lines were modified using three-way valves to change the direction of the aerosol 

flow from the chamber to the DMA and CPC. The humidified nitrogen flow was set at 2 

SLPM to push the particles in the chamber into the DMA and CPC to determine the size 

distribution from 10 to 400 nm. Similar to the seeding mode, the particle flow was heated 

and dried before entering to the DMA. 
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Figure 15: Schematic representation of the reaction chamber. The seeding mode is 

illustrated in the red-arrow process, while the scanning mode is in blue. 

 

 

For the gases, SO2 was obtained from Sigma-Aldrich, and NO2 and NH3 were 

obtained from Matheson. Gas samples of SO2 and NO2 were injected into the chamber 

from pressurized lecture bottles using a mass flow controller to monitor the gas flow into 

the chamber. The concentrations in the lecture bottles were prepared by a two-step dilution 

of SO2 or NO2 with dry nitrogen. Ammonia (2 ×103 ppm) was used as received without 

dilution. SO2, NO2, and NH3 were introduced separately into the chamber with an initial 

concentration of 250 ppb, 250 ppb, and 1 ppm, respectively. The time to inject the gases 

was extended when a higher concentration was desired, and the controlled mass flow was 

kept constant. The particles and gas mixtures were allowed to react for at least 40 minutes 

before setting the instruments to scanning mode to measure the size distribution of the 

particles after exposure to the gases. 
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Results and Discussion 

 

Field measurements 

The sulfur oxidation mechanism and its role in severe haze formation by combining 

field measurements and laboratory experiments is investigated. For the field 

measurements, the PM2.5 mass concentration and the sulfate concentration in PM1 follows 

a similar trend. Figure 16 shows the temporal evolution of the mass concentrations of 

sulfate, showing the increases from less than 10 g m–3 to greater than 20 g m–3. In this 

chapter, the periods of clean, transition, and polluted correspond to the SO4
2– mass 

concentration in PM1 of less than 10 (blue), 10 to 20 (orange) and greater than 20 

(black/dark gray). 

For each period, the mass fractions of the five PM1 main nonrefractory constituents 

are shown in Figure 17. The sulfate mass fraction increases during the transition and 

polluted periods, while there is a slight decrease in the organic mass fraction. This 

behavior of increasing the inorganic mass fraction and decreasing the organic mass 

fraction, from clean to transition and polluted periods, is typical in urban areas like Beijing 

[Guo et al., 2014; Huang et al., 2014; Sun et al., 2013]. However, organics still represent a 

large portion of the total PM1 constituents, so it is considered an organic-rich environment. 

Note that during the polluted periods, sunlight is limited; therefore, the increase in sulfate 

mass fraction is unlikely to follow a photochemical oxidation pathway [Tie et al., 2003]. 

 



 

41 

 

 

Figure 16: Time series of the sulfate (SO4
2–) mass concentration measured in Beijing, 

China from January 21 to February 4, 2015. The dates on the x-axis correspond to 

midnight local time. The clean, transition, and polluted periods correspond to sulfate 

mass concentrations of <10 g m–3, 10–20 g m–3, >20 g m–3, respectively. Reprinted 

and adapted with permission from the National Academy of Science [Wang et. al., 

2016]. 

 

 

Figure 17: Mass fraction of the five main nonrefractory constituents in PM1 in 

Beijing, China. An organic-dominant environment undergoes a slight decrease in 

contribution from clean to polluted, while the contribution of secondary inorganic 

component increases. Reprinted and adapted with permission from the National 

Academy of Science [Wang et. al., 2016]. 
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Also, the molar ratio of sulfate to sulfur dioxide was quantified, reflecting sulfur 

partitioning between the particle and gas phase. The range of this ratio is from less than 0.1 

to 1.2, exhibiting an exponential increase as a function of RH (Figure 18). Therefore, 

efficient conversion of SO2 to SO4
2– occurs at high RH, implicating a possible aqueous 

reaction pathway. Moreover, the mixing ratio of SO2 decreases in the polluted period as 

RH increases (Figure 19), indicating a conversion from the gas to particle phase. 

Additionally, the equivalent ratio of NH4
+ to the sum of SO4

2–, NO3
–, and Cl– was 

calculated (Figure 19d). The equivalent ratio was closed to unity in the polluted period, 

indicating a neutralizing behavior. It is important to note that the equivalent ratio is only 

useful to evaluate inorganic aerosol neutralization (i.e., close to unity), but is not suitable 

to interpret aerosol acidity [Hennigan et al., 2015; Liu et al., 2017; Murphy et al., 2017]. 

 

 

Figure 18: Molar ratio of sulfate to sulfur dioxide (SO4
2– to SO2) as a function of the 

RH. The exponential fit line is y = 0.05 + [(7.0×10–3) e(x/15)] with R2=0.88. Reprinted 

and adapted with permission from the National Academy of Science [Wang et. al., 

2016]. 
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Figure 19: Mixing ratios of SO2 (a), NO2 (b), RH (c), and equivalent ratios (d) during 

the field campaign in Beijing, China. The blue, orange, and dark gray colors 

correspond to the clean, transition, and polluted period. The top and bottom vertical 

lines for each box correspond to the 95th and 5th percentiles, respectively, and the top, 

middle, and bottom horizontal lines of the box mark are the 75th, 50th, and 25th 

percentiles of the data range. Reprinted and adapted with permission from the 

National Academy of Science [Wang et. al., 2016]. 
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parametrizing the particle growth factor (GF) using the DMA-CPC system coupled to the 

chamber. The GF is defined as the measured ratio of the dry particle sizes (Dp/Do), where 

Dp and Do are the values after and before exposure, respectively. The growth rate (GR) is 

defined as the increase of particle size per minute of reaction. Table 2 describes the 

experimental conditions, noting that the particles grow only during the inclusion of all 

components. Such results suggest that the growth of PM due to the conversion of SO2 to 

SO4
2– is synergetic; thus, sulfate requires the combined presence of all components (i.e., 

NO2, SO2, NH3, and high RH).  

 

Table 2: Experimental conditions for particle growth detection in the reaction 

chamber. The symbols ✔ and ✖ indicate whether a species is included in or excluded 

from the exposure, respectively. 

Experimental 

Run 

SO2 

(250 ppb) 

NO2 

(250 ppb) 

NH3 

(1 ppm) 

Water 

Vapor 

(65% RH) 

Growth 

Factor 

1 ✔ ✖ ✖ ✔ 1.0 

2 ✔ ✖ ✔ ✔ 1.0 

3 ✔ ✔ ✔ ✔ 1.3 

4 ✔ ✔ ✖ ✔ 1.0 

5 ✔ ✔ ✔ ✖ 1.0 

 

The normalized size distributions of aqueous sulfate formation in the reaction 

chamber are shown in Figure 20. When the oxalic acid particles, with an initial dry 

diameter of 43 nm, are exposed to SO2, NO2, NH3, and 65% RH for 40 minutes, the size 

distribution shifts to larger sizes, indicating a particle growth attributable to sulfate 

production [Wang et al., 2016]. At high RH, oxalic acid particles uptake water and 

subsequently react acid-base with NH3, forming ammonium oxalate. Later, the SO2 is 

dissolved in ammonium oxalate-water containing particles and oxidized by NO2 into SO4
2, 
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which subsequently is neutralized by NH3 to produce ammonium sulfate ((NH4)2SO4).  

 

 

Figure 20: Evolution in the size of oxalic acid particles after exposure to SO2, NO2, 

and NH3 at 65% RH. (a) Normalized size distribution of 43-nm size-selected oxalic 

acid particles before and after being exposed to SO2, NO2, NH3, and 65% RH for 40 

minutes. The green color represents the standard concentration of 250 ppb of SO2, 

250 ppb of NO2, and 1 ppm of NH3. The purple conditions were three times higher 

than the standard concentrations (i.e., 750 ppb of SO2, 750 ppb of NO2, and 3 ppm of 

NH3). (b) Normalized size distribution of 43-nm size-selected oxalic acid particles 

before and after being exposed to 750 ppb of SO2, 750 ppb of NO2, 3 ppm of NH3, and 

65% RH at several reaction time frames. 

 

 

For standard conditions, the concentration of gases was 250 ppb, 250 ppb, and 1 

ppm for SO2, NO2, and NH3, respectively. The GF for standard conditions is about 1.3 

with a GR of 0.4 nm min–1. However, when the gas concentrations were three times higher 

(i.e., 750 ppb of SO2, 750 ppb of NO2, and 3 ppm of NH3), the resulting GF was about 1.6 

with a GR of 0.6 nm min–1. The particles grow because the formation of the aqueous phase 

promotes SO2 oxidation by NO2 with NH3 neutralization, resulting in a continuous increase 

in dry particle size with increasing reaction time. At higher concentrations, the GF is less 
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than 1.3 for 30 minutes and 1.8 for 60 minutes; noting that not only the particle size shifts 

but also the distribution broadens, as shown in Figure 20b. 

Combining the field and laboratory measurements, we established the occurrence 

of an overall aqueous reaction between SO2 and NO2:  

 

SO2(g)  +  2NO2(g)  +  2H2O(aq) ⟶ 2H+(aq)  +  SO4
2−(aq) +  2HONO(g) 

 

noting that the reaction rate stoichiometricaly depends on the gaseous NO2 concentration. 

Also, the solubility is inversely proportional to the temperature [Gomez et al., 2015]. 

Moreover, the reaction is also dependent on pH, which governs not only the solubility but 

also the aqueous reaction rate [Seinfeld and Pandis, 2006]. For example, when the pH 

value varies from 6 to 4, the SO2 effective Henry’s Law Constant decreases about two 

orders of magnitude, leading to a decreased oxidation rate for about two orders of 

magnitude [Seinfeld and Pandis, 2006]. Furthermore, this reaction increases the acidity in 

the aqueous phase but then reduces the solubility and reaction rate, making it self-limiting 

because of the acidity effect. The nitrous acid (HONO) generated from this reaction is 

released into the gas phase due to its low water solubility. However, HONO provides an 

additional photochemical OH source that enhances the atmospheric oxidizing capability 

during polluted periods [Levy et al., 2014]. 

The results indicate that aqueous SO2 oxidation by NO2 is favored in two 

atmospheric scenarios: under cloud/fog conditions and on fine aerosols with high RH and a 

sufficient neutralization agent [Wang et al., 2016]. The latter was shown in our chamber 

studies. Since the acidity effect inhibits the oxidation of fine aerosols, the presence of a 

basic species (NH3 in this case) is necessary to maintain the oxidation:  
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2NH3(g)  +  SO2(g)  +  2NO2(g)  +  2H2O(aq)

⟶ 2NH4
+(aq)  +  SO4

2−(aq) +  2HONO(g) 

 

The formation of various secondary organic and inorganic constituents in fine 

aerosols is mutually promoting, and severe haze development involves a transition from 

photochemical to aqueous phase pathway (Figure 21). During the early stage or clean 

period, efficient photochemical oxidation of VOCs leads to SOA formation, which 

provides an aqueous medium for subsequent sulfate formation. Later, during the late stage 

(polluted), the large aerosol growth is maintained by aqueous chemistry due to high RH 

and low photochemical activity [Guo et al., 2014; Wang et al., 2016]. However, it should 

be pointed out that severe haze formation in China is characterized by a complex interplay 

between meteorological, thermodynamic, and chemical processes [Guo et al., 2014; RenHe 

et al., 2014; Zheng et al., 2015].  

 

 

Figure 21: Anticorrelation between the photochemistry and aqueous chemistry 

during the severe haze evolution from a clean to polluted period in China. Reprinted 

and adapted with permission from the National Academy of Science [Wang et. al., 

2016]. 
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Atmospheric Implications 

 

Sulfur chemistry under atmospheric conditions has remained debatable. The results 

show that SO2 oxidation by NO2 into SO4
2– is facilitated by high RH, low temperature, and 

large concentrations of NO2 and NH3. Significant sources of VOCs, NOx, SO2, and NH3 

include industry, traffic, and nitrogen fertilizer [Liu et al., 2013; Pan et al., 2016; Zhang et 

al., 2015b]. High emissions of these organic and inorganic aerosol precursors lead to a 

large secondary production of SOA, NO3
–, SO4

2–, and NH4
+ in China, combining 

photochemical and aqueous process.  

In this chapter, evidence of ambient sulfate concentration is provided, as well as its 

dependence on RH. Additionally, laboratory experiments offer more evidence of the 

multiphase oxidation of SO2 into SO4
2– by NO2 under high RH, leading to significant 

secondary growth. The sulfate production process is enhanced by NH3 and high levels of 

RH and led to the particle growth of pre-existing aerosols. Although the chamber 

experiment used higher gaseous concentration than typically found in ambient conditions 

(due to the experimental setup), the results are relatively analogous to the organic-rich 

ambient conditions.  

The results indicate that sulfate production is key to the formation of severe haze in 

China. Even though current efforts have been focused on minimizing SO2 emissions, 

significant haze reduction may only be achievable with NH3 and NO2 emission controls as 

well. The synergetic sulfate formation pathway from this work is likely widespread 

globally because of the increase in emissions of SO2, NOx, VOC, and basic species (NH3 

and amines) in many developing countries [Liu et al., 2013; Zhang et al., 2015b]. Those 
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emission increases in turn contribute not only to air quality problems but also to enhanced 

nitrogen or acid deposition with major implications to ecosystems. 
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CHAPTER IV 

FORMATION AND OPTICAL PROPERTIES OF BROWN CARBON FROM SMALL 

DICARBONYLS AND AMINES: A BULK STUDY 

 

Introduction 

 

The optical properties of aerosols are important not only to the direct radiative 

forcing on climate but also relevant to air quality and weather [IPCC, 2013]. Light 

absorption and scattering by aerosols stabilize the atmosphere by retarding vertical 

transport, resulting in a negative feedback on air quality and inhibition of cloud formation 

[Wang et al., 2013b]. For example, black carbon (BC) particles, a SLCP, affect radiative 

transfer in the atmosphere because of their strong ability to absorb light over a broad range 

of the solar spectrum, representing the second most important climate-warming agent after 

carbon dioxide [Andreae and Ramanathan, 2013; IPCC, 2013; Pöschl, 2005]. The 

magnitude of BC direct radiative forcing depends on the mixing state (i.e., whether 

particles are externally or internally mixed with other aerosol types) and atmospheric aging 

by coating with secondary aerosol constituents (such as organics and sulfate), thereby 

enhancing the mass absorption cross-section [Khalizov et al., 2009a; Khalizov et al., 

2009b; Peng et al., 2016]. There is growing evidence that light-absorbing organic aerosols, 

known as brown carbon (BrC), also represent a significant climate-forcer [Laskin et al., 

2015]. Typically, BC absorption is wavelength independent, while BrC exhibits the 

strongest light absorption at shorter wavelengths [Kirchstetter et al., 2004]. BrC is 

produced from various primary and secondary sources. The main sources of primary BrC 
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include biomass burning [Ramanathan et al., 2007], fossil fuel combustion [Bond, 2001], 

and biogenic releases [Andreae and Crutzen, 1997]. Additionally, light-absorbing 

secondary organic aerosols (SOA) are generated by a variety of atmospheric chemical 

processes, such as multiphase reactions or cloud processing, yielding high molecular 

weight light-absorbing organic compounds [De Haan et al., 2009a; De Haan et al., 2011; 

De Haan et al., 2009b; Nguyen et al., 2012; Nozière et al., 2007; Powelson et al., 2014]. 

Atmospheric measurements have shown that BrC exists throughout the tropospheric 

column and its prevalence relative to BC is proportional to the altitude, indicating the 

contribution of SOA to BrC formation [Liu et al., 2014]. However, light absorption by BrC 

has yet to be accounted for in estimation of the aerosol direct radiative forcing, since global 

climate models typically have assumed that SOA is purely scattering (non-absorbing) 

[Corr et al., 2009; Feng et al., 2013]. The light absorption by organics depends on their 

molecular structures [Laskin et al., 2015; Laskin et al., 2014] and is influenced by 

supramolecular interactions [Phillips and Smith, 2014]. Currently, the understanding of 

formation, chemical composition, and optical properties of BrC is limited.  

Recent studies have shown the importance of particle-phase chemistry in producing 

light-absorbing high molecular weight oligomeric species [Ervens et al., 2011; Herrmann 

et al., 2015; Lim et al., 2010]. Those earlier studies of aqueous chemistry have focused on 

water-soluble volatile organic compounds (VOC), such as small α-dicarbonyls, particularly 

glyoxal (GL) and methylglyoxal (MG) [McNeill, 2015]. As the important SOA precursors, 

GL and MG are produced by the photo-oxidation of anthropogenic aromatics and biogenic 

terpenes and isoprene [Spaulding et al., 2003; Volkamer et al., 2007; Zhao et al., 2005]. 

Despite their high volatility, GL and MG undergo hydration and polymerization to produce 
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low-volatility oligomers [Jang et al., 2002; Zhao et al., 2006]. In the troposphere, 

particularly in urban areas, the small α-dicarbonyls likely co-exist with amines at 

comparable concentrations [Munger et al., 1995; Zhang and Anastasio, 2003]. Low 

molecular weight aliphatic amines, such as methylamine (MA), dimethylamine (DA), and 

trimethylamine (TA), are the most abundant. Amines are emitted from various biogenic 

sources (e.g., ocean organisms, protein degradation, and biomass burning) and 

anthropogenic sources (e.g., animal husbandry, automobiles, industry, and treatment of 

sewage and waste) [Ge et al., 2011; Qiu and Zhang, 2013]. The small α-dicarbonyls react 

irreversibly with ammonium salts and primary amines, forming imidazoles and other 

nitrogen-containing and light absorbing products, but their chemical identities have yet to 

be characterized [De Haan et al., 2009a; De Haan et al., 2011; Loeffler et al., 2006; Yu et 

al., 2011].  

Previous studies by De Haan and coworkers have investigated cloud processing of 

GL and MG via the reactions with amino acids and MA in evaporating aqueous droplets 

and bulk solutions leading to the formation of BrC using nuclear magnetic resonance 

(NMR), electron spray ionization - mass spectrometry (ESI-MS), and aerosol mass 

spectrometry (AMS) [De Haan et al., 2009a; De Haan et al., 2011; De Haan et al., 

2009b]. The products were identified as imidazoles, and the imine formation was 

recognized as the rate-limiting step, as later confirmed by theoretical calculations [Kua et 

al., 2011]. Laskin and coworkers have studied the bulk-phase and chemical aging of 

biogenic SOA in the presence of ammonia to form BrC. Using nano-desorption electron 

spray ionization (nano-DESI), the authors concluded that the light-absorbing properties of 

SOA are determined by trace amounts of strong BrC chromophores [Laskin et al., 2014]. 
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In another recent study, Lin et al. [Lin et al., 2015] have identified a relationship between 

the optical properties and chemical composition, showing that all chromophores are 

nitrogen-containing compounds. It has been hypothesized that the chromophores 

responsible for the browning are highly conjugated nitrogen-containing compounds such 

as N-heterocycles [Kampf et al., 2016; Kampf et al., 2012; Kua et al., 2011; Laskin et al., 

2015; Yu et al., 2011]. Most previous studies have focused on primary amines, although 

tertiary amines are the most abundant in the atmosphere [Ge et al., 2011]. Most recently, it 

has been suggested that formation of brown carbon from aqueous- and aerosol-phase 

reactions involving methylglyoxal occurs at rates that are orders of magnitude faster than 

that in bulk solutions [De Haan et al., 2017].  

In this work, particles containing BrC oligomers were synthesized from the 

mixtures of small α-dicarbonyls (i.e., GL and MG) and amines (i.e., MA, DA, TA). The 

optical properties (i.e., absorption, scattering, and extinction) were measured using a 

combination of photoacoustic spectrometer, nephelometer, and cavity ring-down 

spectrometer, and the chemical composition was measured by two complementary mass 

spectrometric techniques. Also, the refractive indexes at the 405 nm wavelength were 

derived, including the real and imaginary parts. Additionally, the relative radiative forcing 

of those BrC particles was estimated. 

 

Methodology 

 

 The unbuffered model reaction systems in our study included 6 different mixtures, 

i.e., MG-MA, MG-DA, MG-TA, GL-MA, GL-DA, and GL-TA. All reagents were used as 
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received and purchased from Sigma Aldrich except for DA, which was purchased from 

Sinopharm Chemical Reagent. An aqueous solution of 1 M of each reagent was prepared, 

and 1 mL of the α-dicarbonyl (MG or GL) was combined with 1 mL of the amine (MMA, 

DMA, or TMA) and sonicated for about 5 hours in small vials. The resulting colored 

products were dried using nitrogen for several hours to yield 0.5 mL of the solution, which 

was then redissolved in up to 12 mL of Mill-Q water for optical and chemical composition 

analysis. The procedure to synthesize the samples and the concentration used in our work 

were similar to those used previously by De Haan and coworkers [De Haan et al., 2009a; 

De Haan et al., 2011; De Haan et al., 2009b; Zarzana et al., 2012].  

Aliquots of 1 mL were used for determination of chemical composition using two 

complementary techniques, i.e., thermal desorption-ion drift-chemical ionization mass 

spectrometry (TD-ID-CIMS) and orbitrap-mass spectrometry (Orbitrap-MS, Thermo 

Scientific Inc.). The TD-ID-CIMS operated in the positive mode using the hydronium ions 

(H3O
+) for analysis of a 2 μL sample. The Orbitrap-MS employed electrospray ionization 

in the positive mode (ESI+). In the Orbitrap-MS, the sample was diluted 10 times with 

Mill-Q water before injection at a flow rate of 5 μL min-1 [Wang et al., 2017a].  

The experimental setup for measuring optical properties is shown in Figure 22. The 

main components included an atomizer (DMT portable aerosol generator), differential 

mobility analyzer (DMA, TSI 3081), condensation particle counter (CPC, TSI 3775), and 

photo-acoustic extinctometer (PAX, DMT 405). The procedures for aerosol production and 

processing have been described elsewhere and are described here only briefly [Khalizov et 

al., 2009a]. Aqueous solutions of the mixtures were atomized using pre-purified nitrogen 

to generate poly-disperse aerosols. The particles were diluted with a dry, particle-free 
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nitrogen flow and passed through a silica gel diffusion dryer to reduce the relative 

humidity to less than 10%. The aerosols were size-selected using a DMA to produce a 

mono-disperse distribution. The mono-disperse aerosol flow was then split between the 

CPC and the PAX to measure the aerosol concentration and the optical properties, 

respectively.  

 

 

Figure 22: Experimental setup for the optical properties and chemical composition 

analysis. 

  

 

The PAX used in-situ photoacoustic technology to measure absorption and 

reciprocal nephelometry to measure scattering [Arnott et al., 2003]. In the absorption cell, 

a laser beam directed through the aerosol stream was modulated at the resonant frequency 

of the acoustic chamber. The energy absorbed by particles was thermally transferred to the 

surrounding air, and subsequent air expansion produced a sound wave, which was recorded 

by a microphone. In the scattering cell, the standard nephelometer was used, but the 

locations of the light source and detectors were reversed. The instrument was calibrated 

with polystyrene latex spheres and Aquadag soot particles. The extinction was calculated 

from the sum of the absorption and scattering.  



 

56 

 

The effective densities (ρ) of aerosols were measured by using a DMA-APM 

(aerosol particle mass APM 3600, Kanomax) analyzer [Khalizov et al., 2009a]. The 

effective density is defined as the ratio of the measured mass to the volume, which is 

determined by the measured size by assuming spherical particles. Measurements were 

repeated for a range of particle diameters between 150 nm and 350 nm and at different 

concentrations. For each diameter, the optical properties (extinction, scattering and 

absorption), the density, and the particle concentration were determined. The data was 

corrected for doubly charged particles.   

For a cell containing only particles in nitrogen gas, the absorption coefficient (babs) 

depends on the particle size (Dp) and concentration (N). The absorption cross section (Cabs) 

is calculated by normalizing babs with N. Cabs is a function of Dp, the wavelength of 

incident radiation (λ), and the complex refractive index (RI). Mass absorption cross-

sections (MAC) is calculated using ρ measured, 

 

MAC =
6Cabs

ρ × π × Dp
3  (5) 

 

The complex refractive index (RI) is defined by RI = n +ik, where the real part n represents 

the scattering and the imaginary part k represents the absorbing component. Since RI is 

independent of the particle size, it is calculated by using a range of different particle sizes 

and concentrations. To determine RI, the absorption efficiency at each size is calculated for 

a given value of n and k using the Mie code for spherical particles, on the basis of the 

FORTRAN code from Bohren and Huffman [Bohren and Huffman, 2004]. The calculated 



 

57 

 

absorption cross-section value is determined by summing the absorption from both the 

doubly and singly charged particles for a given RI. The calculated total absorption is 

compared to the measured absorption. The best-fit refractive index is determined by 

minimizing the reduced cumulative fractional difference (CFD) [Zarzana et al., 2012],  

 

CFDr =
1

N
∑

|Cabs(theory)−Cabs(measured)|

Cabs(measured)

N
i=1           (6) 

 

The CFD is calculated for a wide range of n and k values, and the lowest CFD value is 

taken to be the refractive index for the mixture. The uncertainty in the retrieved n and k is 

determined by varying Cabs with the uncertainty of the measurements [Washenfelder et al., 

2013]. To estimate direct radiative forcing due to the presence of our particles, the 

modified version of the Bond and Bergstrom equation by Chylek and Wong is used [Bond 

and Bergstrom, 2006; Chylek and Wong, 1995]. To compare the direct radiative effect as a 

function of size, the relative forcing equation (ΔFrel) is chosen for simplicity: 

 

∆Frel = −[(1 − a)2βQsca − 2aQabs]  (7) 

 

where a is surface albedo, β is the backscatter fraction, Qsca is the scattering efficiency, and 

Qabs is the absorption efficiency. The surface albedo is set to 0.15, and the scattering and 

absorption efficiencies are calculated using the RI from the Mie Theory. 
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Results and Discussion 

 

Optical Properties 

The resulting mixtures of α-dicarbonyls and amines are shown in Figure 23. The 

optical properties of particles at the 405 nm wavelength were measured using the PAX at 

five concentrations and five diameters. Figure 24a shows the absorption coefficient (babs) 

as a function of the particle number concentration (N) for different particles sizes from the 

MG-DA mixture. The measured babs increases with particle number concentration and 

particle size, in accordance with the Beer Law. In addition, the results for all sizes and 

mixtures exhibit a high linearity (R2  0.99) and an intercept close to zero. The similar 

behaviors of babs are observed for all 6 mixtures, i.e., MG-MA, MG-TA, GL-MA, GL-DA, 

and GL-TA. For each diameter, the Cabs value is determined from the slope of the lines in 

Figure 24a, and the results for MG-DA are plotted as a function of size in Figure 24b. The 

values for Cext and Cabs increase with particle size, as is shown for the MG-DA mixture. In 

contrast, the single scattering albedo (SSA = Csca/Cext) decreases as a function of size, 

which is explained by a relatively larger increase in Cabs than in Csca. Figure 25 shows a 

comparison of the Cext, Cabs, and SSA values for all 6 mixtures. The trend of the SSA 

variation with particle size for MG-MA is similar to that of MG-DA, except with SSA 

lower values. On the other hand, the SSA is invariant with particle size for other mixtures, 

because of the much smaller Cabs values. 
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Figure 23: Picture of the solutions before and after mixing. 

 

 

To compare the SSA values between the different mixtures, the size average SSA is 

shown in Figure 26a. At the 405 nm wavelength, the SSA values increase from MA, DA, 

to TA (ranging from 0.75 for MG-MA to near unity for MG-TA), but is nearly invariant 

for the GL mixtures (i.e., close to unity). For the MG mixtures, the SSA variation is 

consistent with the darkness of the solutions, i.e., the darkest for the primary amines and 

the lightest for the tertiary amines. This trend is explained by the chemical reactivity and 

steric effects [Qiu and Zhang, 2013]. The MG mixtures exhibit lower SSA than those for 

the GL mixtures with the respective amines, consistent with the previous studies showing 

that the MG reactions form light-absorbing materials more efficiently than the analogous 

GL reactions [Sareen et al., 2010; Shapiro et al., 2009].  
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Figure 24: Measured optical properties for MG-DA at the 405 nm wavelength. (a) 

Absorption coefficient (babs) as a function of particle concentration. (b) Single 

scattering albedo (SSA), absorption cross section (Cabs), and extinction cross section 

(Cext) as a function of particle size. 
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Figure 25: Summary of the optical properties measurements as a function of particle 

size. The left axis corresponds to the extinction cross section (blue circles) and the 

absorption cross section (red circles). The right axis corresponds to the single 

scattering albedo (green squares). The error bars correspond to the uncertainties of 

the measurements. The left column corresponds to the MG mixtures with MA (a), DA 

(c) and TA (e), while the right column corresponds to the GL mixtures with MA (b), 

DA (d) and TA (f). 
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Figure 26: Dependence of the optical properties on amines. (a) Size average of SSA at 

405 nm wavelength. (b) MAC values for the MG-amine mixtures for 250 nm particle 

size. 
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The wavelength dependence of MAC for 250 nm particle size is shown in Figure 

26b for the MG samples. Note that measurements at the 532 nm wavelength are obtained 

using both PAX and a combination of a nephelometer and a custom-made cavity ring-

down spectrometer [Khalizov et al., 2009a]. There is an enhancement of light absorption 

by a factor of more than 2 at the shorter wavelength (i.e., 405 nm), which is characteristic 

of BrC. The sized averaged MAC values for all mixtures are also listed in Table 4, in the 

range of 0.079 to 4.83 g m-2. Noting that the MAC value is inversely proportional to the 

density, according to equation (5). We measured the effective density for each particle size 

(table 3) and our average densities were considerably lower than those used for organic 

aerosols under ambient conditions (1.40 to 1.65 g cm-3) [Flores et al., 2014; Nakao et al., 

2013], therefore higher values from MAC are expected.  

 

 

Table 3: Size-selected effective densities measurement for each mixture. The 

uncertainties correspond to the standard deviation. 

Size 

(nm) 
MG-MA MG-DA MG-TA GL-MA GL-DA GL-TA 

150 1.24 1.33 1.35 1.18 0.93 1.24 

200 1.29 1.35 1.39 1.22 0.97 1.30 

250 1.30 1.37 1.40 1.23 1.01 1.28 

300 1.29 1.35 1.37 1.23 1.02 1.28 

350 1.28 1.35 1.35 1.23 0.96 1.29 

Average 
1.28 ± 

0.02 

1.35 ± 

0.01 

1.37 ± 

0.02 

1.22 ± 

0.02 

0.98 ± 

0.04 

1.28 ± 

0.02 

Average 1.25 ± 0.14 
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The RI values at 405 nm are determined according to equation (6), and the results 

are summarized in Table 4. The contour of the CFD values for the MG-MA mixture is 

plotted against n and k in Figure 27a. The reddest colors correspond to the lowest (best fit) 

CFD values. All CFD values are less than 0.01 (as shown in Figure 27a for MG-MA), 

indicating that the derived n and k values agree with the measured data within 1%. Both 

the real part (n, scattering) and the imaginary part (k, absorption) of the RI values are 

higher for the MG mixtures than for the analogue GL mixtures (Table 4). For example, the 

retrieved RI is 1.64 (±0.1) + 0.195i (±0.023) for MG-MA and 1.53 (±0.05) + 0.004i 

(±0.001) for GL-MA. The k values follow the same trend as the SSA values, similarly to 

the darkness of the solutions. The best-fit RI is employed to calculate Cabs as a function of 

particle size and is compared with the experimental data. Figure 27b shows a good 

agreement between the measured and calculated values of Cabs for MG-MA. Figure 28 

shows a comparison of the Cabs values for all 6 mixtures. The Cabs values for the MG 

mixtures decrease with the methyl substitution (i.e., from primary to tertiary amines), and 

the values for the GL mixtures are about an order of magnitude lower. Some of the 

differences between the measured and calculated Cabs values may be explained by the 

assumption of monodisperse particles and doubled charged particles. Note that the Cabs 

values for GL-DA are larger than those for GL-MA. Interestingly, our measurements for 

the particle density also show the smallest density for GL-DA (0.98 g cm-3), compared to 

the averaged value of 1.25 g cm-3 for all mixtures.  
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Figure 27: Derived refractive index and calculated absorption cross section using Mie 

theory. (a) Contour plot of CFD as a function of n (real part) and k (imaginary part) 

for MG-MA. The reddest color corresponds to the lowest CFD. (b) Comparison 

between the experimental and calculated Cabs as a function of particle size. 
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Figure 28: Absorption cross section experimental measurements (circles) and the 

MIE theory calculation fit (lines) for the MG mixtures (a) and the GL mixtures. The 

colors correspond to the different amines, MA (red), DA (green), and TA (orange). 
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Table 4: Summary of the refractive indexes retrieved together with the measured 

effective density and mass absorption cross section for each of the system. All values 

are for λ = 405 nm. For comparison we include the calculated bulk properties. 

 MIE Theory Experimental 
Bulk 

Comparison c 

Mixturesa n k ρ (g m-3) b 
MAC  

(m2 g-1) 
kc 

MACc  

(m2 g-1) 

MG-MA 1.64 ± 0.1 0.195 ± 0.023 1.28 ± 0.02 4.72 ± 0.3 0.195 4.73 

MG-DA 1.60 ± 0.01 0.032 ± 0.006 1.35 ± 0.01 2.39 ± 0.2 0.104 0.74 

MG-TA 1.58 ± 0.07 0.009 ± 0.001 1.37 ± 0.02 0.71 ± 0.1 0.031 0.20 

GL-MA 1.53 ± 0.05 0.004 ± 0.001 1.22 ± 0.02 0.129 ± 0.04 0.005 0.10 

GL-DA 1.44 ± 0.06 0.010 ± 0.002 0.98 ± 0.04 0.366 ± 0.12 0.012 0.32 

GL-TA 1.41 ± 0.01 0.002 ± 0.001 1.28 ± 0.02 0.077 ± 0.01 0.003 0.02 

 

a Mixture abbreviations correspond to MG-MA (methylglyoxal – methylamine), MG-DA 

(methylglyoxal – dimethylamine), MG-TA (methylglyoxal – trimethylamine), GL-MA (glyoxal – 

methylamine), GL-DA (glyoxal – dimethylamine), and GL-TA (glyoxal – trimethylamine). 
b Size average of the measured effective densities. Average between systems is 1.25. 
c Calculated using MAC = 4πk/ρλ. 

 

 

The measurements show a large range of values for RI, i.e., 1.41 to 1.64 for the real 

part and 0.002 to 0.195 for the imaginary part for the various mixtures of α-dicarbonyls 

and amines. Except for MG-MA, the uncertainty for the real part of RI ranges from 0.01 to 

0.07. The large uncertainty (0.1) for the real part of RI for MG-MA may be attributable to 

the fact that only absorption was employed in determining RI in our calculation. Zarzana 

et. al. [Zarzana et al., 2012] reported the RI value of (1.55 + 0.114i) for MG-MA at 532 

nm on the basis of extinction measurements, which is smaller than our values at 405 nm 

wavelength. Such a difference is explainable because absorption is enhanced at shorter 

wavelengths (Figure 26b). For ambient humic-like substances (HULIS), Dinar et al. [Dinar 

et al., 2008] derived the RI values at 532 nm and 390 nm, which are within the ranges of 

our k values at 405 nm. For comparison, we also calculated the k using the equation for 
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bulk relationship (MAC = 4πk/ρλ) and the MAC values obtained experimentally. Similarly, 

we calculate MAC using the k obtained via the MIE Theory Calculations. The values of 

MAC and k shown in table 4 are comparable to the ones obtained experimentally and MIE 

theory, respectively. 

Because the reactions between the α-dicarbonyls and the amines lead to multiple 

products, the RI values determined from these experiments represent those of the various 

products within each mixture. However, errors likely occur when the RI for a mixture is 

determined from the RI of the individual components when k is not equal to zero [Abo 

Riziq et al., 2007; Freedman et al., 2009]. Most previous studies used the extinction data to 

retrieve RI, likely leading to large uncertainty, particularly for k [Zarzana et al., 2014]. 

Additionally, the uncertainty in the n values is large because the real component for 

absorbing aerosols is difficult to retrieve, especially at larger sizes [Washenfelder et al., 

2013].  

 

Chemical Composition 

In the present work, two complementary mass spectrometer techniques were used 

for the chemical composition analysis. The MG-MA and GL-MA spectra from the TD-ID-

CIMS and the Orbitrap-MS are shown in Figure 29. The detail peak assignments are 

presented in Tables 5 – 10. For the same chemical composition, the spectra obtained with 

both techniques show similar peaks in the low mass range, i.e., 111 and 125 m/z for MG-

MA and 143 m/z for GL-MA corresponding to the N-heterocycles. The TD-ID-CIMS 

shows well-defined peaks typically at the lower mass range, possible because of thermal 

decomposition. In contrast, the spectra from the Orbitrap-MS technique exhibit many 
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peaks in the high mass range, because the ionization method does not rely on thermal 

desorption. For the results of MG-MA using Orbitrap-MS, all the products with more than 

20% relative intensity contain 6 to 8 carbon atoms for the estimated chemical formula; the 

product distribution corresponds mainly to dimers, instead of a combination of dimers and 

trimers.  In general, the GL spectra are much cleaner than the MG spectra (Figure 29, 31 

and 33), indicating lower reactivity of GL with amines.  

 The likely pathways leading to the identified products for MG-MA and GL-MA are 

illustrated in Figure 30 (see also Figures 32 and 34). The reactions likely involve 

nucleophilic attack of amines at the reactive carbonyl site, followed by dehydration 

before/after intermolecular cyclization of dimers or trimmers [Kampf et al., 2016]. The 

dehydration likely regulates the kinetics for the reactions between α-dicarbonyls and 

amines [Sedehi et al., 2013]. MG reacts quickly with the amines, leading to the formation 

of chromophores, which are identified as nitrogen-containing heterocycles (N-

Heterocycles) by both the TD-ID-CIMS and Orbitrap-MS techniques. However, during 

drying, GL-dihydrate is converted into GL-monohydrate, yielding a carbonyl reactive site 

[Galloway et al., 2009; Loeffler et al., 2006]. For GL, there is a competing reaction 

between the hydration process and the nucleophilic attack of amines at the carbonyl site. 

For MG, the N/C ratio is higher for the primary amines than for the tertiary amines, 

but the O/C ratio is higher for the tertiary amines (Table 11). These ratios are explained by 

the reactivity and steric effect of amines at the reactive carbonyl site. The Double Bond 

Equivalent (DBE) is proportional to the N/C ratio for MG. However, between α-

dicarbonyls, the DBE is nearly identical, suggesting that the optical properties depend not 

only on the molecular structure but also on the supramolecular interaction. 
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Figure 29: Mass spectra from two complementary methods for MA mixtures. TD-ID-

CIMS spectra for (a) GL-MA and (b) MG-MA. Orbitrap-MS spectra for (c) GL-MA 

and (d) MG-MA. 

 
Figure 30: Proposed chemical mechanism for methylamine (MA) reaction with (a) 

methylglyoxal (MG) and (b) glyoxal (GL). The numbers correspond to the m/z. 
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Table 5: Peaks detected for MG-MA mixture with their corresponding mass to 

charge ratio (m/z), chemical formula, nitrogen to carbon ratio (N/C), oxygen to 

carbon ratio (O/C), hydrogen to carbon ratio (H/C), double bond equivalent (DBE) 

and aromaticity. The structures identified were in color red. 
TD-ID-

CIMS 

Orbitrap-

MS 
m/z Formula N/C O/C H/C DBE Aromaticity 

✔   73 C3H5O2 0.00 0.67 1.67 1.5 0.3 

✔   104 C4H10O2N 0.25 0.50 2.50 0.5 -0.8 

✔ ✔ 111 C6H11N2 0.33 0.00 1.83 2.5 0.1 

  ✔ 124 C7H10ON 0.14 0.14 1.43 3.5 0.4 

✔ ✔ 125 C7H13N2 0.29 0.00 1.86 2.5 0.1 

  ✔ 137 C8H13N2 0.25 0.00 1.63 3.5 0.3 

✔   140             

  ✔ 153 C8H13ON2 0.25 0.13 1.63 3.5 0.2 

  ✔ 155 C8H15ON2 0.25 0.13 1.88 2.5 0.0 

  ✔ 170 C8H16ON3 0.38 0.13 2.00 2.5 -0.2 

  ✔ 232 C13H18ON3 0.23 0.08 1.38 6.5 0.3 

 Average 0.24 0.18 1.78 2.90 0.06 

 

 

Table 6: Peaks detected for GL-MA mixture with their corresponding mass to charge 

ratio (m/z), chemical formula, nitrogen to carbon ratio (N/C), oxygen to carbon ratio 

(O/C), hydrogen to carbon ratio (H/C), double bond equivalent (DBE) and 

aromaticity. The structures identified were in color red. 
TD-ID-

CIMS 

Orbitrap-

MS 
m/z Formula N/C O/C H/C DBE Aromaticity 

✔   77 C2H5O3 0.00 1.50 2.50 0.5 -2.00 

✔   83             

✔   90 C3H8O2N 0.33 0.67 2.67 0.5 -1.50 

✔   97 C5H9N2 0.40 0.00 1.80 2.5 0.17 

✔   111             

✔   125 C6H9ON2 0.33 0.17 1.50 3.5 0.29 

✔ ✔ 143 C6H10O2N2 0.33 0.33 1.67 3.0 0.00 

  ✔ 214 C9H15O3N3 0.33 0.33 1.67 4.0 -0.11 

  ✔ 227 C10H18O2N4 0.40 0.20 1.80 4.0 -0.20 

  ✔ 245 C10H20O3N4 0.40 0.30 2.00 3.0 -0.56 

  ✔ 246 C10H20O3N4 0.40 0.30 2.00 3.0 -0.56 

 Average 0.33 0.42 1.96 2.67 -0.50 
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Figure 31: Mass spectra from the TD-ID-CIMS for GL-DA (a) and MG-DA (b), and 

with the mass spectra from the Orbitrap-MS for GL-DA (c) and MG-DA (d). 

 

 
Figure 32: Proposed chemical mechanism for dimethylamine (DA) reaction with 

methylglyoxal (a) and glyoxal (b). The numbers correspond to the m/z. 

 

 



 

73 

 

Table 7: Peaks detected for MG-DA mixture with their corresponding mass to charge 

ratio (m/z), chemical formula, nitrogen to carbon ratio (N/C), oxygen to carbon ratio 

(O/C), hydrogen to carbon ratio (H/C), double bond equivalent (DBE) and 

aromaticity. The structures identified were in color red. 
TD-ID-

CIMS 

Orbitrap-

MS 
m/z Formula N/C O/C H/C DBE Aromaticity 

✔   73 C3H5O2 0.00 0.67 1.67 1.5 0.3 

✔   89 C3H5O3 0.00 1.00 1.67 1.5 0.0 

  ✔ 101 C5H13N2 0.40 0.00 2.60 0.5 -0.5 

✔ ✔ 102 C5H12ON 0.20 0.20 2.40 0.5 -0.3 

✔   112             

  ✔ 116 C6H14ON 0.17 0.17 2.33 0.5 -0.2 

✔ ✔ 118 C5H12O2N 0.20 0.40 2.40 0.5 -0.5 

  ✔ 119 C5H15ON2 0.40 0.20 3.00 -0.5 -1.2 

✔   143 C8H19N2 0.25 0.00 2.38 0.5 -0.3 

  ✔ 148 C6H14O3N 0.17 0.50 2.33 0.5 -0.6 

  ✔ 162 C7H16O3N 0.14 0.43 2.29 0.5 -0.4 

  ✔ 163 C7H19O2N2 0.29 0.29 2.71 -0.5 -0.9 

  ✔ 174 C8H16O3N 0.13 0.38 2.00 1.5 -0.2 

  ✔ 229 C11H21O3N2 0.18 0.27 1.91 2.5 -0.1 

  ✔ 246 C11H20O5N 0.09 0.45 1.82 2.5 -0.1 

  ✔ 271 C13H23O4N2 0.15 0.31 1.77 3.5 -0.1 

  ✔ 292 C12H22O7N 0.08 0.58 1.83 2.5 -0.3 

 Average 0.18 0.37 2.19 1.13 -0.34 

 

 

Table 8: Peaks detected for GL-DA mixture with their corresponding mass to charge 

ratio (m/z), chemical formula, nitrogen to carbon ratio (N/C), oxygen to carbon ratio 

(O/C), hydrogen to carbon ratio (H/C), double bond equivalent (DBE) and 

aromaticity. The structures identified were in color red. 

TD-ID-

CIMS 

Orbitrap-

MS 
m/z Formula N/C O/C H/C DBE Aromaticity 

✔   77 C2H5O3 0.00 1.50 2.50 0.5 -2.00 

✔ ✔ 104 C4H9O2N 0.25 0.50 2.25 1.0 -0.50 

✔ ✔ 131 C6H14ON2 0.33 0.17 2.33 1.0 -0.43 

  ✔ 149 C6H16O2N2 0.33 0.33 2.67 0.0 -1.00 

 Average 0.23 0.63 2.44 0.63 -0.98 
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Figure 33: Mass spectra from the TD-ID-CIMS for GL-TA (a) and MG-TA (b), and 

with the mass spectra from the Orbitrap-MS for GL-TA (c) and MG-TA (d). 

 

 
Figure 34: Proposed chemical mechanism for trimethylamine (TA) reaction with 

methylglyoxal (a) and glyoxal (b). The numbers correspond to the m/z. 
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Table 9: Peaks detected for MG-TA mixture with their corresponding mass to charge 

ratio (m/z), chemical formula, nitrogen to carbon ratio (N/C), oxygen to carbon ratio 

(O/C), hydrogen to carbon ratio (H/C), double bond equivalent (DBE) and 

aromaticity. The structures identified were in color red. 
TD-ID-

CIMS 

Orbitrap-

MS 
m/z Formula N/C O/C H/C DBE Aromaticity 

✔   73 C3H5O2 0.00 0.67 1.67 1.5 0.3 

  ✔ 76 C3H10ON 0.33 0.33 3.33 -0.5 -1.3 

✔   89 C3H5O3 0.00 1.00 1.67 1.5 0.0 

✔   97             

✔   111             

  ✔ 115 C6H15N2 0.33 0.00 2.50 0.5 -0.4 

  ✔ 131 C6H11O3 0.00 0.50 1.83 1.5 0.0 

  ✔ 132 C6H14O2N 0.17 0.33 2.33 0.5 -0.4 

✔   180             

  ✔ 199 C9H11O5 0.00 0.56 1.22 4.5 0.3 

  ✔ 207 C9H23O3N2 0.22 0.33 2.56 -0.5 -0.7 

  ✔ 217 C9H13O6 0.00 0.67 1.44 3.5 0.1 

  ✔ 260 C12H22O5N 0.08 0.42 1.83 2.5 -0.1 

  ✔ 276 C12H22O6N 0.08 0.50 1.83 2.5 -0.2 

  ✔ 292 C12H22O7N 0.08 0.58 1.83 2.5 -0.3 

  ✔ 332 C15H26O7N 0.07 0.47 1.73 3.5 -0.1 

  ✔ 348 C15H26O8N 0.07 0.53 1.73 3.5 -0.2 

 Average 0.10 0.49 1.97 1.93 -0.21 

 

 

 

Table 10: Peaks detected for GL-TA mixture with their corresponding mass to charge 

ratio (m/z), chemical formula, nitrogen to carbon ratio (N/C), oxygen to carbon ratio 

(O/C), hydrogen to carbon ratio (H/C), double bond equivalent (DBE) and 

aromaticity. The structures identified were in color red. 
TD-ID-

CIMS 

Orbitrap-

MS 
m/z Formula N/C O/C H/C DBE Aromaticity 

✔   77 C2H5O3 0.00 1.50 2.50 0.5 -2.00 

  ✔ 115.12 C6H15N2 0.33 0.00 2.50 0.5 -0.38 

✔   136 C5H14O3N 0.20 0.60 2.80 -0.5 -1.20 

 Average 0.18 0.70 2.60 0.17 -1.19 
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Table 11: Summary of the average nitrogen to carbon ratio (N/C), oxygen to carbon 

ratio (O/C), hydrogen to carbon ratio (H/C), double bond equivalent (DBE), 

aromaticity, and single scattering albedo (SSA) per mixture 

 N/C O/C H/C DBE Aromaticity SSA 

MG-MA 0.24 0.18 1.78 2.90 0.06 0.73 

MG-DA 0.18 0.37 2.19 1.13 -0.34 0.90 

MG-TA 0.10 0.49 1.97 1.93 -0.21 0.97 

GL-MA 0.33 0.42 1.96 2.67 -0.50 0.99 

GL-DA 0.23 0.63 2.44 0.63 -0.98 0.98 

GL-TA 0.18 0.70 2.60 0.17 -1.19 0.99 

 

 

 

Atmospheric Implications 

 

BrC represents an important component of atmospheric fine aerosols and affects 

the Earth’s radiative balance, directly by interfering with solar and terrestrial radiation and 

indirectly by altering cloud formation and microphysics. In this work, BrC particles 

containing the mixtures of small α-dicarbonyls and amines were synthesized, and the 

optical properties of BrC particles were measured. The single scattering albedo for MG is 

smaller than that of GL and increased with methyl substitution of amines. The extinction 

and absorption cross-sections increase with the particle size from 150 nm to 350 nm. The 

mass absorption cross-section for MG are two times higher at 405 nm wavelength than that 

at 532 nm wavelength. The refractive indexes at the 405 nm wavelength are in the range of 

1.40-1.64 for the real part and 0.002-0.195 for the imaginary part. The analysis of the 

chemical composition of the α-dicarbonyl-amine mixtures with two complementary 

techniques reveals that N-heterocycles are the dominant chemical composition. 
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To evaluate the impact of the optical properties and radiative forcing of BrC 

particles, a modified version of the Chylek and Wong equation [Bohren and Huffman, 

2004; Zarzana et al., 2012] is used to estimate the relative forcing (ΔFrel). The ΔFrel values 

for the six α-dicarbonyl-amine mixtures as a function of the particle size are shown in 

Figure 35, with the positive and negative values representing warming and cooling, 

respectively. Also, for comparison, four additional cases are considered using the RI values 

previously reported at the 405 nm wavelength, including ambient nucleation (1.55 + 0i) 

[Peng et al., 2016], chamber nucleation of α-pinene-OH photo-oxidation (1.40 + 0i) 

[Lambe et al., 2013], suwanee river fulvic acid (SRFA, 1.68 + 0.05i) [Washenfelder et al., 

2013], and BC (1.95 + 0.79i) [Bond et al., 2013]. All results examined in this study are 

within the range of BC (most absorbing) and nucleation of organic aerosols (less 

absorbing, mainly scattering).  

The MG mixtures exhibit significantly less cooling than that for the GL mixtures. 

The MG-MA mixture shows a warming effect similar to that of BC, whereas the other five 

cases show a cooling effect. For particles size less than 300 nm, the magnitude of cooling 

is similar for most of the α-dicarbonyl-amine mixtures (except for MG-MA), but for 

particle larger than 500 nm, the ΔFrel values are distinct for the various mixtures. SRFA 

and MG-DA show a cooling effect for small sizes but a warming effect for larger sizes. 

Hence, the results indicate that BrC aerosols formed from MG-MA likely contributes to 

significant atmospheric warming. The results may be more applicable to urban areas 

because of high concentrations of the aerosol gaseous precursors, i.e., those for the aged 

pollution plume [Flowers et al., 2010], HULIS (urban and rural) [Dinar et al., 2008], 

biomass burning [Lack et al., 2012], urban plume [Cappa et al., 2012; Guo et al., 2014], or 
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for newly formed SOA [Lambe et al., 2013]. While a full radiative transfer atmospheric 

model is needed to accurately determine the direct radiative forcing for BrC particles, the 

results provide the key optical properties (i.e., size-dependent SSA, MAC, and RI) for 

incorporation of the α-dicarbonyl-amine mixtures into atmospheric models.  

 

 

 

Figure 35: Relative forcing ratios (solid lines) calculated from the complex refractive 

index at 405 nm wavelength as a function of particle size. Positive and negative values 

indicate net warming and cooling effects, respectively. MG-MA (orange), MG-DA 

(red), MG-TA (purple), GL-MA (blue), GL-DA (green), and GL-TA (olive). The 

dashed lines represent published values for BC (black), SRFA (gray), ambient NPF 

(light blue), and chamber NPF (light pink). 



 

79 

 

CHAPTER V 

 UPTAKE OF AMINES WITH DICARBOXYLIC ACIDS RELEVANT TO 

SECONDARY ORGANIC AEROSOLS: A FLOW TUBE STUDY 

 

Introduction 

 

 Heterogeneous reactions of volatile organic compounds (VOCs) lead to the 

formation of secondary organic aerosols (SOAs) and aerosol growth, which are not well 

understood [Abbatt et al., 2012; George and Abbatt, 2010; Ravishankara, 1997; Shen et 

al., 2013]. This type of reaction could alter physical and chemical properties such as 

hygroscopicity, thermal stability, nucleation ability, and optical properties—resulting in 

different implications to the climate. Moreover, the inability to account for complex 

heterogeneous chemistry may lead to an underprediction of ambient SOA by atmospheric 

models [Heald et al., 2005; Volkamer et al., 2006]. 

Amines are important organic components of atmospheric aerosols globally and 

account for up to 20% of organic aerosols [Docherty et al., 2011; Qiu and Zhang, 2013]. 

Amines are emitted from various biogenic sources (e.g., ocean organisms, protein 

degradation, and biomass burning) and anthropogenic sources (e.g., animal husbandry, 

automobiles, industry, and sewage/waste treatment) [Ge et al., 2011]. Low-molecular-

weight aliphatic amines, such as methylamine (MA), dimethylamine (DA), and 

trimethylamine (TA), are the most abundant, with global emissions of 83±26, 33±19, and 

169±33 Gg N y–1, respectively [Cornell et al., 2003; Ge et al., 2011]. Based on field 

measurements, laboratory measurements, and theoretical studies, amines are involved in 
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the nucleation and growth of aerosols [Qiu and Zhang, 2013; Wang et al., 2010b; Zhang et 

al., 2012]. For example, amines can enhance aerosol nucleation in the sulfuric acid-water 

system more effectively than ammonia by forming more stable clusters [Kurtén et al., 

2008]. Additionally, organic aminium salts found in ambient particles explain 23% and 

47% of observed new-particle-formation events in the cities of Hyytiala, Finland and 

Tecamac, Mexico, respectively [Smith et al., 2010]. The very presence of aminium salts in 

newly formed particles provides evidence of organic acid-amine interactions and also 

indicates that they may play an integral role in the early development of secondary 

aerosols. Moreover, because of their volatility, amines undergo heterogeneous reactions 

(gas-solid interaction) faster than multiphase reactions (gas-liquid interaction) [Abbatt et 

al., 2012; Davidovits et al., 2006; Ravishankara, 1997]. Also, due to their basicity, amines 

can participate in acid-base reactions with acidic aerosols. Thus, gaseous amines undergo 

heterogeneous reactions with particle-phase acids (organic and inorganic) to form salt 

particles. 

 Dicarboxylic acids (diacids) are the most abundant type of organic acid in the 

atmosphere and have been found in several regions around the world [Kawamura et al., 

1996; Limbeck et al., 2005]. The general formula for diacids is HOOC— (CHx)n—COOH, 

where x is the number of hydrogens and n is the number of carbons in the chain length. 

Several structural types of diacids have been detected with additional functional groups, 

such as hydroxyls [Bilde et al., 2015]. Diacids also play an important role in the nucleation 

and growth of aerosols. Although diacids are classified as water-soluble organic 

compounds, the most abundant diacids have a deliquescence point higher than 70% RH 

[Bilde et al., 2015; Prenni et al., 2001]. Thus, diacids are likely to exist in the aerosol 
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particle phase, allowing them to serve as available sites for heterogeneous reactions in dry 

conditions.  

The acid-base neutralization of prevalent diacids by low-molecular-weight amines 

results in the formation of low-volatility aminium carboxylate salts in atmospheric 

particles [Barsanti et al., 2009; Gomez-Hernandez et al., 2016; Lavi et al., 2015]. 

Therefore, it is expected that diacid ions often coexist with aminium ions in the aerosol 

particle phase [Schlag et al., 2017; Smith et al., 2010]. As a consequence, a deeper 

understanding of the diacid-amine interaction at a molecular level is imperative. Also, 

heterogeneous acid-base reactions have been understudied in the atmospheric chemistry 

field when compared with oxidations.  

In 2012, Lui et al. [Liu et al., 2012] investigated the heterogeneous uptake of MA, 

DA, and TA at 298 K by citric and humic acid utilizing a Knudsen cell reactor coupled to a 

quadrupole mass spectrometer. The acid-base reactions were confirmed, resulting in 

observed uptake coefficients ranging from (6–7) ×10−3, and (5–15) ×10−6 for citric and 

humic acid, respectively. However, the uptake coefficients for citric acid showed a sample-

mass-independent behavior, while the uptake coefficient for humic acid increased linearly 

with sample mass. While steric effects governed the reactivity between amines and organic 

acids, citric acid demonstrated a higher reactivity than humic acid because it had a stronger 

acidity. Recently, Fairhurst and coworkers  [Fairhurst et al., 2017a; Fairhurst et al., 

2017b] studied the reaction of gaseous amines (methylamine, ethylamine, dimethylamine, 

trimethylamine) with a series of solid dicarboxylic acids (malonic acid, succinic acid, 

glutaric acid, adipic acid, pimelic acid), and their uptake coefficients ranged from 0.7 to 

less than 10–6. Their studies also revealed an odd-even carbon dependence, being larger for 
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the odd carbon diacid, and their increase was related to the formation of ionic liquid layers 

in the surface. Moreover, they explained the importance of the diacid crystal structure 

since neither basicity nor structure is enough to explain the effect of amine uptake. 

However, no previous study has assessed systematically the role of multifunctional groups, 

like hydroxyl and carbon chain lengths, in the diacid behavior in heterogeneous reactions. 

In this study, the growth of SOAs was investigated by measuring the heterogeneous 

uptake of amines (MA, DA, and TA) by particle-phase Tartaric (TarAc), Succinic (SucAc), 

and Adipic (AdiAc) acids employing an ion drift chemical ionization mass spectrometer 

(ID-CIMS). The acidic species were chosen because of their atmospheric prevalence, 

solubility, and low vapor pressures, as well as to systematically asses the role of the 

functionality groups (hydroxyl vs. chain length) [Bilde et al., 2015]. Relevant physical 

properties of the diacids and amines used for this study are in table 12 and 13. The 

heterogeneous reaction kinetics were expressed as uptake coefficients, γ, describing the 

probability in which gas phase amines will be lost due to collisions with the stationary acid 

particles [Abbatt et al., 2012; Davidovits et al., 2006]. The resulting kinetic data provides 

insight into whether the proposed acid-base neutralization reactions are feasible and occur 

at a rate that expedites the growth of new and existing aerosols.  
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Table 12: Physical properties of the Dicarboxylic Acids (diacids). 

 

 

 
 

 

 
 

 

 
 

Molecular 

Weighta 
150.087 g mol-1 118.089 g mol-1 146.141 g mol-1 

Densitya 1.79 g cm-3 1.57 g cm-3 1.36 g cm-3 

pKa
a 2.98 (4.34) 4.21 (5.64) 4.41 (5.41) 

Water Solubilityb 150 g L-1 83.5 g L-1 23 g L-1 

a, from CRC handbook 

b, from Sigma Aldrich 

 

 

 

 

 

Table 13: Physical properties of the Aliphatic Alkylamines (amines) 

 

 

 
 

 

 
 

 

 
 

Molecular 

Weighta 
31.058 g mol-1 45.084 g mol-1 59.110 g mol-1 

Densitya 0.656 g cm-3 0.6804 g cm-3 0.627 g cm-3 

pKb
a 3.34 3.27 4.20 

a, from CRC handbook 
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Methodology 

 

Heterogeneous reactions were studied using a low-pressure, fast-flow reactor 

coupled to an ID-CIMS (Figure 36) [Qiu et al., 2011; Zhang and Zhang, 2005]. As 

depicted in Figure 36, a sandblasted glass cylinder tube coated with 5 to 40 mg of acid is 

inserted into a 33-cm-long Pyrex flow reactor for heterogeneous uptake measurements. 

The independent uptake experiments were performed under dry conditions at 298 K at an 

average flow reactor pressure between 1.4 and 1.6 torr with a total flow velocity of 490 to 

560 cm s–1.  

 

 

Figure 36: Schematic representation of the laminar fast-flow reactor coupled to the 

ID-CIMS. 

 

 

The organic acid coatings were prepared with 10 – 30 wt% aqueous organic acid 

solution, either TarAc (Sigma-Aldrich, ≥99.5%), SucAc (Sigma-Aldrich, ≥99.0%), or 

Adipic (Sigma-Aldrich, ≥99%). Briefly, the sandblasted glass cylinder tube was held 

vertically in the small beaker containing the acid solution, and only about 0.5 cm was 
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immersed [Qiu et al., 2011]. A vacuum line with a critical orifice was connected to the 

other opening of the tube. The coating solution was drawn up to about 12 cm into the tube 

and allowed to drain back into the beaker. This process was repeated multiple times, 

depending on the final coating mass desire. Then, the coated tube was oriented 

horizontally, externally wiped to remove any excess solution, and dried with a particle-free 

N2 flow. The dried tube resulted in a crystalline acid layer from 5 to 40 mg. 

Anhydrous MA (Sigma-Aldrich, ≥98%), DA (Sigma-Aldrich, ≥99%), and TA 

(Sigma-Aldrich, ≥99%) anhydrous gases were diluted with ultrahigh-purity helium by a 

two-step dilution, and the final pressure was about 800 torr. The final dilution resulted in a 

mixing ratio of ~100 to 150 ppm. The concentration of the amine gas within the flow 

reactor was maintained on the order of 10–10 molecules cm3 and a partial pressure of about 

10–7 torr. Because the alkylamine gases did not stream from an online source, signal loss 

could be observed over the course of a single trial. To keep this loss at a minimum, the 

amine bulbs were replenished following nine independent experiments. Compressed 

helium was employed as the carrier gas, and all gas flows were monitored using calibrated 

electronic mass flow meters (Millipore Tylan 260 series). The combined gas flows 

exhibited flow velocities within 490 to 560 cm s–1.  

The ID-CIMS system has been previously described [Fortner et al., 2004]. Two 

complementary ionization schemes were employed to evaluate the kinetics and mechanism 

of the heterogeneous reactions. Single-ion monitoring of the protonated amine signals was 

performed using a proton transfer ionization and protonated acetone monomer: 

A + H3O+ → AH+ +  H2O 

A + (C3H6O) ∙ H+ → (C3H6O) ∙ A ∙ H+ 
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where A represents the unprotonated and AH+, and (C3H6O)AH+ represents the 

protonated forms of the amine. The reagent ions were produced by flowing charcoal-

filtered ambient air into a corona discharge ionization source. The hydronium ions then 

reacted with the amine molecules in the drift tube, followed by analyses using a 

quadrupole mass spectrometer. The signal intensities of the protonated MA, DA, and TA 

were monitored at protonated peaks of 32, 46, and 60 m/z, respectively. The H3O
+ ions 

were monitored at 19 m/z in order to account for any fluctuations in the amine signal due 

to an unstable reagent ion flow. Sometimes the use of the protonated acetone monomer 

signal (59 m/z) was employed to obtain a better signal-to-noise ratio on the MA detection 

(90 m/z). To create the acetone reagent ion, a similar method for the hydronium ion was 

used, but with a bubbler containing acetone between the charcoal filter and the ionization 

source. 

The flow reactor utilized a moveable injector, which facilitated amine exposure to 

the organic acid samples. The selectively monitored amine signal was used to measure the 

heterogeneous kinetics of the amine loss expressed as the initial-state, γ0, and steady-state, 

γss, uptake coefficients by employing the equation [Qiu et al., 2011; Zhang et al., 1994]: 

 

𝛾 =
2𝑟𝑘𝑟

𝜔+𝑟𝑘𝑟
                                                                  (8) 

 

where r is the radius of the sample tube, ω is the mean thermal speed, and kr is 

the pseudo-first-order rate constant. The pseudo-first-order rate constant (kr) was 

calculated from the equation: 
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1

𝑘𝑜𝑏𝑠
=

1

𝑘𝑟
+

1

𝑘𝑑𝑖𝑓𝑓
                                                              (9) 

 

where kobs is the observed first-order rate constant, and kdiff is the rate constant due to the 

gas phase diffusion of amines to the flow reactor wall [Gershenzon et al., 1995; Hanson et 

al., 1992] and is calculated using a diffusion coefficient (Damine/He) estimate [Fuller et al., 

1966]: 

 

𝑘𝑑𝑖𝑓𝑓 =
3.66×𝐷𝑎𝑚𝑖𝑛𝑒/𝐻𝑒

𝑟2                                                          (10) 

 

The observed first-order rate constant (kobs) is given by Equation 11: 

 

𝑘𝑜𝑏𝑠 =
𝑢

𝑙
𝑙𝑛 (

𝐼𝑜

𝐼𝑡
)                                                             (11) 

 

where u is the total carrier flow velocity, l is the distance that the injector is moved toward 

the sample tube, Io is the initial signal intensity of the amine, and It is the intensity at a 

given time [Qiu et al., 2011]. The total amine signal was corrected for background and 

unstable amine flow before performing the calculations. 
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Results and Discussion 

 

Uptake experiments were performed by exposing the solid acid surface to the 

amine vapor while monitoring the protonated amine signal using the ID-CIMS. Figure 37 

shows an example of the temporal profile behavior depending on the distance that the 

injector was moved inside the acid coating tube. Once a stable signal of the amines was 

achieved, the movable injector was withdrawn to expose the acid coating. Upon immediate 

exposure to the diacid surface, the amine signal decreased and gradually followed a 

recovery of the signal until reaching a steady state. The initial amine signal loss is 

indicative of the presence of easily accessible sites on the diacid surface, such as steps, 

edges, and defects. The asymptotic recovery to reach steady state after the initial signal 

loss indicates that the diacid coating was not completely saturated with amines. After a 

steady-state signal was achieved, the exposure was terminated by returning the movable 

injector to its initial position, resulting in an abrupt increase (desorption peak) of the amine 

signal and gradually decreasing to about the original intensity. Because the 

accommodation of gas molecules on a solid surface comprises both physical adsorption 

and surface reaction, the observation suggests a slower surface reaction rate than that of 

accommodation. Because physical adsorption is reversible, the desorption peak indicates 

the release of the adsorbed amines on the surface back to the gas phase. However, the 

desorption peaks have a smaller area than that of the uptake curve. Therefore, a significant 

fraction of the gas phase amines is irreversibly lost due to reactive uptake, while the 

remaining fraction of the lost amine signal was a result of the physical adsorption. 

Moreover, as the injector distance increases (i.e., moves toward the inside of the tube), the 
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more solid acid surface is available to react with the amines; therefore, a lower initial 

signal was observed. Also, it takes more time to reach a stable steady-state signal as the 

distance increases. Likewise, since the signal loss of each amine increases with the injector 

distance, it could be assumed that the acid-base interactions are time-dependent. 

 

 

Figure 37: Normalized methylamine (C3H6O[MA]H+) signal loss when exposed to 8-

mg coating of succinic acid at several distances. As the exposure distance increases, 

the initial loss is greater and takes longer time to reach the steady state. 

 

 

At the same distance, Figure 38 depicts the loss in amine signal intensity upon 

exposure to the diacid coating, with each row and column representing a different amine 

and diacid, respectively. All of the systems shared similar features with the signal loss and 

recovery, but the intensities varied. The initial loss for the TA signals was lower than the 

DA and MA signals with their respective acids. Also, the AdiAc samples showed a small 
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loss and rapid recovery, indicating a lower reactivity with all the amines compared with 

TarAc and SucAc.  

To assess the kinetics of the acid-base neutralization reactions at steady state, the 

exposure distance was converted into a contact time between the amines and diacids. The 

decay of the amine signal was plotted as a function of the contact time (Figure 39). The 

purple circles, orange squares, and green diamonds correspond to TarAc, SucAc, and 

AdiAc, respectively, under similar experimental conditions with the same amine. The 

slope of the linear regression (forcing the intercept on zero) determines the observed first-

order rate constant (kobs) for each reaction. All decays follow the first-order kinetics, and 

the reaction rate increases with the O/C ratio for the same amine. The steady-state uptake 

coefficients were calculated from the first-order rate constants (kr) with the gas diffusion 

corrections (kdiff). The gas diffusions (kdiff) were orders of magnitude larger than kobs; 

therefore, this type of gas-solid interaction is not diffusion-controlled. The heterogeneous 

reaction rate is dependent on several factors such as mass transfer of the gas to the solid 

surface, adsorption of the gas on the surface, and chemical reaction rate [Abbatt et al., 

2012; Davidovits et al., 2006]. Similar calculations were made for the kinetics of the initial 

exposure; however, this is more dependent on the experimental conditions rather than the 

identity and reactivity of the acid-base reaction. 
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Figure 38: Normalized selected ion mass spectral profiles of amine signal loss when exposed to 5 cm of solid diacids at 

298 K. The first (a, d, g), second (b, e, f), and third (c, f, i) columns represent tartaric acid, succinic acid, and adipic acid, 

respectively. The first (a, b, c), second (d, e, f), and third (g, h, i) rows represent methylamine, dimethylamine, and 

trimethylamine, respectively. The total helium/amine carrier gas flow velocities (u) were maintained between 490 and 

560 cm s–1 and the flow reactor pressure between 1.4 and 1.6 torr
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Figure 39: Steady-state amine signal loss as a function of the contact time when 

exposed to different diacids at 298 K. Panels a, b, and c, correspond to methylamine, 

dimethylamine, and trimethylamine, respectively. 
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The reactions studied here are fast acid-base reactions. The initial and steady-state 

uptakes are summarized in Table 14. At 293 K, the initial uptake coefficients are in the 

range of 10–3 and the steady state in the 10–4 range. For MA and DA, the values for the 

initial and steady-state uptake are largest for TarAc and smallest for AdiAc, indicating 

again an increasing rate with the O/C ratio. This O/C ratio is due to the multifunctional 

groups on the diacids relative to the carbon chain length. The increase in hydrophobicity of 

the diacids has an inverse correlation with the amine uptake coefficient. Although all of the 

diacids have comparable physical properties at room temperature, they differ in acidity 

(table 12). The pKa1 of TarAc, SucAc, and AdiAc are 2.98, 4.2, and 4.40, respectively. 

Because low pKa1 corresponds to high acidity, it is not surprising that TarAc is more 

reactive with a higher uptake coefficient relative to SucAc and AdiAc. By contrast, TarAc 

and SucAc are C4, and the additional OH groups in TarAc attract electronic density by 

induction, making the H from the carboxylic group more acidic, comparable to SucAc. 

SucAc and AdiAc both are aliphatic straight chains with a two-carbon-atom difference. 

SucAc is C4, and AdiAc is C6; thus, the extra two carbons in AdiAc provide electronic 

density by induction to the carboxylic groups, making it less acidic and more stable. 

Another reason could be that the strong hydrophobicity of AdiAc makes the penetration of 

the amines disrupt the structure of the AdiAc and makes it energetically less favorable 

compared to TarAc and SucAc. Interestingly, the lowest uptake for TA is TarAc, a fact 

likely due to a competition between the steric effect of both the acid and the amine. 

However, the uptake differences between the diacids are rather insignificant due to 

uncertainties. 
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In terms of amine dependence, there is an interplay between the basicity strength 

and the steric effect as well. For SucAc, the steady-state uptake trend was MA > DA > TA, 

likely describing a dependence on the steric effect of the amines. However, for TarAc the 

uptake trend was DA > MA > TA, similar to the basicity strength in solution since TarAc 

also has higher acidity. Interestingly, the AdiAc uptake trend was TA > MA > DA, noting 

that the uptake values were low and had high uncertainties. 

 

 

Table 14: Measured initial and steady-state uptake coefficients for amines and diacids 

 Methylamine (MA) Dimethylamine (DA) Trimethylamine (TA) 

 ss (10–4) 0 (10–3) ss (10–4) 0 (10–3) ss (10–4) 0 (10–3) 

Tartaric 

Acid 

(TarAc) 
5.68  1.43 5.99  0.31 8.68  2.71 7.13  0.97 2.39  0.95 4.77  0.33 

Succinic 

Acid 

(SucAc) 
4.44  1.24 4.84  0.50 4.13  1.89 5.28  1.38 3.51  1.42 7.07  0.87 

Adipic 

Acid 

(AdiAc) 
1.96  1.26 3.99  0.77 1.03  1.58 2.75  0.85 3.18  1.90 3.80  1.05 

 

 

The acidity dependence and the order of magnitude of the initial uptake coefficients 

are similar to those reported by Liu et al. with citric acid, but much higher than humic acid. 

The uptake values obtained in this study are similar to those obtained by Qiu et al. for DA 

and TA on ammonium sulfate in a displacement reaction (not acid-base). However, 

Fairhurst et al. showed that pKa alone cannot explain acidity behavior. For example, their 

uptake coefficient with DA was about 0.27, 0.7×10–4, and 0.03 for malonic (pKa = 2.83), 
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succinic (pKa = 4.16), and glutaric (pKa = 4.31) acids, respectively. Nevertheless, both 

studies used a Knudsen cell reactor while this study used a flow reactor. 

If the interactions between the base and the acid were gas-liquid (instead of gas-

solid), the uptake coefficients would be smaller than those observed because more time is 

required for gaseous species to diffuse into the solution to react with the acidic proton. 

Moreover, our uptake coefficients for all amines are independent of the mass of the diacid 

coating onto the sample tube, as shown in Figure 40. Therefore, the available area for 

reaction of the diacids may not be considerably different from its geometric area; 

otherwise, the uptake coefficient would increase with a larger coating mass. For a tube 

coated with 5 mg of diacid (like TarAc) there are ~×1019 active sites, which is one order of 

magnitude higher that all the amine filled in one bulb (~×1018). Therefore, only a fraction 

of the diacid coating (outer layer) is consumed during the experimental exposures. 

Additionally, under the time scale of the experimental setup, the uptake coefficients do not 

decrease as a function of time; therefore, no surface passivation was observed [Fairhurst et 

al., 2017a]. Also, since all our diacids were even (C4 and C6), they form a more stable 

crystal structure, and when they react with a base, a solid salt is produced; thus, no 

formation of ionic liquid was observed [Fairhurst et al., 2017b; Thalladi et al., 2000]. 

Since the reaction kinetics between diacids and amines are comparable to those of sulfates 

and nitrates, which are very important components to atmospheric aerosols, neutralization 

of organic acids could serve as an important mechanism for the formation of particulate 

nitrogen in SOA. 
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Figure 40: Initial and steady-state uptake coefficient as a function of the diacid 

coating mass on the tube. 

 

 

Atmospheric Implications 

 

Aerosols play a critical role in climate, directly by scattering and absorbing solar 

radiation and indirectly by altering cloud formation, but substantial uncertainties remain 

about their formation and growth mechanisms [Zhang, 2010; Zhang et al., 2015b]. Organic 

acids are often found in the aerosol phase; therefore, the acid-base neutralization by 

gaseous amines produces low-volatility aminium salts that could contribute to the growth 

of aerosols, altering their physical and chemical properties [Gomez-Hernandez et al., 2016; 

Lavi et al., 2015; Qiu and Zhang, 2013]. A laminar fast-flow reactor coupled to an ID-

CIMS was used to assess the uptake of gaseous amine on solid-phase diacids. The 
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heterogeneous uptake of amines on each acid occurred rapidly, resulting in uptake 

coefficients that denote comparable reactivity to common atmospheric aerosol 

components. The results demonstrate that the acid-base neutralization, under dry 

conditions, is governed by the steric effect and the acidity-basicity strength of both the 

diacids and the amines.  

The findings from this work, along with the recent results by Fairhurst et al. and 

our previous works of uptake of amines on sulfuric acid and ammonium sulfate, suggest 

that amines contribute to neutralization and particle growth. The amines more efficiently 

neutralize the acidic aerosols than ammonia by orders of magnitude. However, the 

neutralization is dominated by ammonia due to it is abundance at ambient conditions, 

except close to the amine emission sources. Moreover, based on the uptake coefficients of 

amines with any diacids, MA dominates due to its low steric effect and DA dominates due 

to its strong basicity; however, under ambient conditions, TA concentration is higher by 

orders of magnitude.  

The data suggest that multiple factors at the molecular level affect the gas-solid 

interactions and have implications for how atmospheric models treat the uptake. Highly 

oxidized organic acids are more common in the atmosphere than solid diacid salts. 

Therefore, further studies of multifunctional acids are needed to assess the steric effect and 

reactivity behaviors in the reaction kinetics. Accurate kinetic information will contribute to 

a better understanding of the sinks and evolution of the amines and organic acids leading to 

SOA formation. 
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CHAPTER VI 

 CONCLUSIONS AND FURTURE DIRECTIONS 

 

Atmospheric aerosols profoundly impact human health, visibility, the ecosystem, 

and the climate. However, there are considerable uncertainties concerning their formation, 

transformation, and properties. In this doctoral research, a series of laboratory 

measurements were conducted to investigate various scientific questions, including the 

relation between the ambient aerosol mass concentration and light extinction, the oxidation 

of SO2, the light absorption by organic aerosols, the aerosol reactivity, and the aerosol 

physiochemical properties. A series of analytical techniques were employed, from field to 

flow reactor, to understand those aerosol processes.  

In chapter II, field measurements are presented during winter 2015 in Beijing to 

study the chemical and optical properties of aerosols during severe haze events. During the 

haze development, the contribution of the secondary inorganic components (NO3
-, SO4

2-, 

and NH4
+) increases for both the PM2.5 mass concentration and light-extinction. Moreover, 

BC is the dominant light absorber component, and there is no evidence for brown carbon 

formation. The anti-correlation between the PM2.5 mass concentration and the MLH 

indicates that the meteorological conditions drive the accumulation process through the 

polluted period. The light extinction leads to the stabilization of the atmosphere that affects 

negatively to air quality. Future studies using ambient chamber will be helpful to 

distinguish the contribution of primary from secondary aerosols in the optical properties at 

wavelength smaller than 532 nm. 
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In chapter III, evidence of ambient sulfate concentration is provided, as well as its 

dependence on RH. The results from the field measurements, in combination with the 

laboratory chamber experiments, show that SO2 oxidation by NO2 into SO4
2- is facilitated 

by high RH, low temperature, and large concentrations of NO2 and NH3, leading to 

significant secondary particle growth of pre-existing aerosols. The formation of various 

secondary organic and inorganic constituents in fine aerosols is mutually promoting, and 

severe haze development involves a transition from photochemical to aqueous phase 

pathway. The synergetic sulfate formation pathway from this work is likely widespread 

globally. The increase in emissions of SO2, NOx, VOC, and basic species (NH3 and 

amines) contribute not only to deteriorated air quality but also to enhanced nitrogen or acid 

deposition with implications to ecosystems. Future studies to determine the particle phase-

state and pH are needed to determine the dominant oxidation pathway in specific regions. 

The mechanism for brown carbon formation and optical properties are explored in 

the chapter IV. BrC particles are formed from bulk reactions between small α-dicarbonyls 

and amines, and the compositional analyses reveal N-heterocycles as the dominant 

chromophore. In addition to alter the chemical composition, browning reactions have a 

pronounced effect on the optical properties. The extinction and absorption cross-sections 

increase with the particle size, and SSA for methylglyoxal is smaller than that of glyoxal 

and increases with the methyl substitution of amines. The refractive index retrieved by 

using the MIE theory can be used as upper and lower limit inputs of BrC in atmospheric 

models to refine estimates of organic aerosols radiative forcing for specific source regions. 

Further studies are needed to determine the exact chemical mechanism of the chromophore 

formation, as well as a radiative transfer model to determine the forcing efficiency. 
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Moreover, it is uncertain whether the optical properties are due to a mix of all the 

chromophores or due to supramolecular interactions.  

In chapter V, kinetics measurements from organic acids and amines are presented. 

A laminar fast-flow reactor coupled to an ID-CIMS is used to measure the uptake of the 

gaseous amine on solid-phase diacids. The results demonstrate that the acid-base 

neutralization is governed by an interplay between the steric effect and the acidity/basicity 

strength of both the diacids and the amines. The data suggest that multiple factors at the 

molecular level affect the gas-solid interactions and have implications for how atmospheric 

models treat the uptake and particle growth. Future studies of multifunctional organic acids 

are needed to assess the steric effect and reactivity behaviors in the reaction kinetics. 

Accurate kinetic information is essential to better understand the sinks and evolution of the 

amines and organic acids leading to SOA formation.  

In summary, this dissertation addresses several scientific questions regarding the 

aerosol formation and physicochemical properties using several advanced analytical 

methods. The field measurements lead to chemical apportionment between the mass 

concentration and light extinction. Moreover, the field data evaluate the SO4
2- formation, 

the high concentration of NH4
+, and the relation between low visibility and RH. Chambers 

experiments are conducted to mimic the polluted conditions in China, and the importance 

of aqueous reactions is revealed. A detail study is conducted to explore the aerosol aqueous 

formation (in bulk reactions) and the implications on the aerosol physical and optical 

properties. The model used for the bulk aqueous reactions is a mixture of α-dicarbonyls 

and amines; however, due to the amines high volatility and basicity, they are most likely to 
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react to react in the atmosphere on gas phase with solid organic acids. The last research 

project evaluates the uptake and heterogeneous kinetics by using a flow reactor. 

The experiments presented in this dissertation provide a better understanding on 

how the atmospheric aerosol processes alter the physical, optical and chemical properties 

of aerosols and their implications to air quality and climate. Reducing the gap in 

knowledge on the aerosol processes has significant implications for the development and 

improvement of climate-related policies and risk assessments worldwide. 

. 
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