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ABSTRACT 

 

 

 The purpose of the in vitro study was to evaluate and compare marginal fit & internal fit of 

digitally designed lithium disilicate crowns manufactured by the computer-aided design/computer-

aided manufacturing (CAD/CAM) technique and the conventional lost-wax heat-pressed 

technique. The method used for analyzing the crowns was based on 3D metrology using advanced 

hardware and software. A high resolution industrial non-contact scanner with an accuracy of 4 

microns was used to generate point cloud data which was converted to a polygonal mesh as a 3D 

surface representation. This data was subsequently analyzed using engineering software with over 

145,000 points of measurement for each sample in both groups.  

 

 A Master Die was scanned with a 3Shape D900 Laboratory Scanner and a ‘Standard 

Tesselation Language’ (STL) crown file was generated using Amann Girrbach’s Ceramill Mind 

design software (Ver 3.6.1). From this crown STL, two groups were milled with Amann Girrbach’s 

Ceramill Motion 2 (5-axis) milling machine: one group consisting of 15 crowns using Ivoclar 

Vivadent’s ProArt CAD Wax Pucks; and the second group consisting of 15 crowns with Ivoclar 

Vivadent’s IPS e.max© CAD blocks. The ProArt CAD Wax crowns were subsequently pressed 

with IPS e.max© Press Ingots and the IPS e.max© CAD block crowns were crystallized per Ivoclar 

Vivadent’s specifications.  

 

 The crowns from the two groups were evaluated using a ‘triple-scan protocol’ described 

by Holst et al. Each sample was scanned 12-13 times with the ATOS III Scanner (GOM, 

Germany), generating 8 million data points per scan. Using an in-built software (ATOS 
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Professional, Germany), macros were designed to separately analyze the marginal fit and internal 

fit. The marginal zone comprised of 63,960 points of measurements, and the remaining internal fit 

comprised of 82,263 points of measurement.  

 

 After calculating the means for each area of each sample, a paired t-test was used to 

determine the differences between the two groups (P<0.05). For the conventional heat-pressed 

technique, the mean values were 93.07 µm (± SD 9.58 mm) for marginal adaptation and 127.20 

µm (± SD 10.44 mm) for the internal fit. For the CAD/CAM milled technique, the mean values 

were 83.13 µm (± SD 7.50 µm) for marginal adaptation and 103.00 µm (± SD 7.45 µm) for the 

internal fit. The results indicated that the marginal adaptation and internal fit were statistically 

significant with the CAD/CAM manufacturing technique when compared to the conventional lost-

wax heat-press technique. The average measurements with the ‘CAD/CAM’ group were smaller 

than those with the ‘Pressed’ Group. The results are consistent with recent publications showing 

that CAD/CAM milling is of greater accuracy.  
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1. INTRODUCTION AND LITERATURE REVIEW 

 

Lithium disilicate has gained wide acceptance in its use for indirect crown restorations.  

This trend is driven by numerous factors ranging from the materials’ excellent optical 

properties, 1 flexural strength, and relatively decreased material costs when compared to high 

noble alloys. Lithium disilicate restorations have become a popular choice for inlays, onlays 

and full coverage crown restorations. 

 

Computer-aided design and computer-aided manufacturing (CAD/CAM) processes 

are available in many dental practices, dental laboratories, and production centers.2 For 

laboratory CAD/CAM milling, there are several companies around the world which 

manufacture various models based on intended use. Amann Girrbach (AG) is a manufacturer 

based out of Austria. They have partners in over 90 countries, and are considered one of the 

leaders in innovation in digital dental prosthetics. AG manufactures 4-axis and 5-axis milling 

machines. The model used in the study is an Amann Girrbach (AG) Ceramill Motion 2 milling 

unit. It is a 5-axis operation design that has a dry and wet drilling mode, enabling a wide array 

of dental materials to be milled within a single unit. The conventional wet drilling is used for 

IPS e.max©, Titanium, and Cr-CO alloys. The dry milling feature enables the use of acrylic 

resin, model resin, polyurethane, and wax.  

 

In the manufacture of indirect restorations, fabricating the wax pattern is usually a time 

consuming step which relies on the experience, knowledge, and skill of the dental technician. 
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Thermal sensitivity, elastic memory, and a high coefficient of thermal expansion of waxes3 

contribute to inaccuracies. Fabricating CAD/CAM wax patterns with modern equipment can 

reduce or eliminate the inaccuracies of the conventional waxing technique.4,5 It is said to be 

faster, more economical, predictable, consistent, and accurate. Ivoclar’s ProArt CAD Wax 

discs are made from a synthetic wax reinforced with a dimensionally stable polyurethane 

material which are specifically designed to suit the lithium disilicate glass ceramic IPS e.max© 

Press. The material does not leave a residue during burnout.  

 

Although dental CAD/CAM technology has improved significantly over the years, 

studies reveal that the accuracy of these restorations remains questionable. Controversies still 

exist on the effect of a milling procedure for a prosthesis. When comparing CAD/CAM 

restorations to pressed restorations, results vary from a better fit,6,7 to no difference,8,9 to a 

greater misfit.10,11,12,13,14,15 Accuracy is affected by many factors including the type of material, 

properties of the material, design of the preparation, scanning device, software design, spacer 

thickness, and accuracy of the milling machine.  

 

Crown adaptation may be determined by measuring marginal gaps and internal gaps of 

the restorations. The fit of many full coverage restorative materials have been extensively 

studied in the dental literature and remains a topic of significant interest due to its high clinical 

relevance. 16,17,18,19   Holmes et al  characterized the internal gap as the perpendicular distance 

from  the internal surface of the restoration to the axial wall of the preparation, whereas the 

marginal gap is the perpendicular distance from the internal surface of the restoration to the 
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finish line of the preparation.20 Holmes also stated that the marginal fit of any dental 

restoration is vital to its long-term success.21 Schwartz et al evaluated unserviceable crowns 

and fixed partial dentures to determine causes of restoration failures and determined that 

11.3% of the restorations failing are the result of defective margins.22 Behrend claims a ring 

of cement is inevitable at the margin and the presence of this cement line must be accepted, 

contributing to marginal discrepancies.23 

 

A range of 39 to 180 μm24,25,26,27 has been proposed in the literature as a clinically 

acceptable value for marginal gap depending on the restoration. However, no consensus has 

been reached regarding a currently acceptable value for all. Several in vitro studies have 

reported the marginal gap of CAD/CAM generated ceramic single tooth restorations to be 

between 64 and 83 μm.28,29,30,31 May et al reported that the marginal fit of the Procera 

CAD/CAM system ranged between 54 and 64 μm.32 

 

Ivoclar Vivadent, recommends a software mill setting that includes a 20 micron 

cement spacer from the margin up to 1mm and then 60 microns from that line up. Nakamura 

et al. reported on the marginal and internal fit of CAD/CAM Vita Mark II ceramic crowns. In 

this study, luting space settings of 10, 30, and 50 μm were tested. It was determined that for 

crowns milled with 30 or 50 μm of luting space, better marginal fit was obtained. 33 In a similar 

in vitro study, Iwai et al. examined the influence of cement space on the adaptation of 

zirconium dioxide ceramic copings. Results indicated that the 60 μm cement space group 
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exhibited statistically smaller marginal discrepancies compared to the other tested groups of 

10 and 30 μm of die spacer. 34  

 

Many methods have been used to evaluate the marginal and internal adaptation of 

crowns. Assif et al compared the tactile method (with the explorer) to the use of radiographs 

and to a technique using an impression material replica.35 The results supported that the 

impression technique was most accurate of the three. The replica technique has been validated 

in the past36 and is a popular method,37,38,39,40 however, it is technique sensitive and possibly 

inaccurate since the impression material used could be easily distorted or damaged.41, 42, 43 

Scanning electron microscopy is a popular technique in the analysis of specimens, with 

methods that involve a non-destructive method,44,45 while other methods involve sectioning 

of the samples being analyzed. 46,47 However, the obvious limitations of this technique are the 

destruction of the samples which creates the need for duplicates, the limited area that is 

evaluated since the sections have a minimum thickness and the additional steps required to 

embed in the resin and section. Another powerful tool in dental research is the computerized 

x-ray micro-tomography (micro-CT),48,49 which produces high-resolution images that can be 

quantitatively analyzed with appropriate software. The disadvantages of this method are the 

low capacity the CT can discriminate in comparison with optical or electron microscopy, 

possible artifacts from refractive radiation, and the compulsory radio-opacity of the material 

being tested. 50  
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A significant drawback of the majority of published studies is the limitation of two 

dimensional analyses. Recent technology, and the use of sophisticated professional 

engineering software have gained popularity.51,52,53,54 Most have been based on non-contact 

scanners and other hardware to capture point data, which are processed by algorithms in the 

software to process this data into useful forms. Thousands of point cloud data are converted 

in to a polygonal mesh as a 3D surface representation which are subsequently analyzed. 

However, best-fit registration algorithms are used for virtual alignment. The principle of this 

technique is adopted from industrial quality control protocols, where the software attempts to 

align the greatest possible contact area of the selected samples, which could skew the results, 

as areas of greater misfit are virtually approximated and not accurately represent the true 

discrepancy.  

 

Holst et al. developed a triple-scan protocol using a non-contact scanner (ATOS III, 

GOM, Germany) for 3D fit assessment of dental restorations.55 The sensitivity of the non-

contact scanner used was 4 microns. Three scans were performed: a) the die; b) the coping; c) 

the coping on the die. The 3 separate scans of the objects were digitized to surface 

tessellation/triangulation language (STL’s). Surfaces were generated from point clouds with 

the scanner software (ATOS system, GOM). Through a combination of best-fit algorithms 

and a subtractive method in the software, the fit assessment was verified by intra-class 

correlation coefficients that revealed an almost perfect coefficient for repeatability (r=0.981, 

p<.001). The same main investigator used this protocol in another study to assess the precision 

of fit of CAD/CAM dental implant superstructures.56 The statistical analysis, again similar to 
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the previous study, resulted in an intra-class correlation of 0.991 and thereby a statistically 

significant repeatability of measurements.  

 

This triple-scan protocol represents a highly reliable method for analyzing marginal 

adaptation and internal fit three dimensionally. The disadvantages of 2D measurements are 

eliminated. This platform delivers the power to streamline the process, allow a non-destructive 

approach, reduce human interaction in measurements and recording, decrease measuring time, 

and enhance results to make this method a superior alternative. Groten et all suggested that 50 

points of measurement are needed for best accuracy.57 With the ATOS scanner and the 

software used, more than 100,000 points of measurements were used. 

 

The purpose of this in vitro study was to evaluate marginal adaptation & internal fit of 

digitally designed lithium disilicate crowns manufactured by computer-aided 

design/computer-aided manufacturing (CAD/CAM), and the conventional heat-press 

technique using Amann Girrbach’s Ceramill Motion 2 milling unit using the triple-scan 

protocol. The null hypothesis was that there would be no difference in marginal adaptation 

and internal fit of the digitally designed lithium disilicate crowns manufactured by computer-

aided design/computer-aided manufacturing (CAD/CAM) and the conventional heat-press 

technique  
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2. MATERIALS AND METHODS 

  

 A Master Die was scanned with a 3Shape D900 Scanner and a ‘Standard Tesselation 

Language’ (STL) Crown File was designed and generated using Amann Girrbach’s Ceramill 

Mind design software (Ver 3.6.1). From this STL Crown, two groups were milled: one group 

consisting of 15 samples with Ivoclar Vivadent’s ProArt CAD Wax (Yellow), specifically 

designed to suit the lithium disilicate glass ceramic IPS e.max© Press; and the second group 

consisting of 15 samples with Ivoclar Vivadent’s IPS e.max© CAD blocks. The ProArt CAD 

Wax crown samples were subsequently pressed and the IPS e.max© CAD block samples were 

crystallized. 

 

 A total of 30 samples were analyzed using a triple-scan protocol with a non-contact 

scanner (ATOS III, GOM, Germany). The scanner generated thousands of point cloud data 

which were converted into a polygonal mesh as a 3D surface representation that was analyzed. 

An in-built macro in the software analyzed the marginal adaptation & internal fit of the 

samples.  

  

2.1 Master Die Fabrication 

 

A milled epoxy resin ‘Master Die’ of a maxillary 1st molar for a full coverage 

restoration/crown was provided by Ivoclar Vivadent. Modifications were made using a high-
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speed handpiece with a round-end tapered diamond bur (5856, Brassler USA, Savanah, GA) 

according to Ivoclar Vivadent’s guidelines for IPS e.max© for posterior crowns (Figure 1). 

 

 

Figure 1. Ivoclar Vivadent’s guidelines for IPS e.max© posterior crowns (Units = mm). 

 

 

The margins were prepared to have a deep chamfer with a width of at least 1 mm with 

rounded internal line angles; occlusal reduction of at least 1.5 mm; buccal and palatal axial 

reduction of at least 1.5mm.  There was a minimum preparation height of 4 mm and total 

occlusal convergence of (TOC) of 4-6 degrees (Figure 2). 
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Figure 2. Milled epoxy resin ‘Master Die’. 

 

2.2 Crown Fabrication 

 

The Master Die was scanned using a 3Shape (Copenhagen, Denmark) D900 Scanner 

(Figure 3) generating a ‘Standard Tessellation Language’ (STL) file of the die. A single unit 

maxillary first molar crown was designed (Figure 4) using Amann Girrbach’s Ceramill Mind 

design software (Ver 3.6.1), ensuring the minimum thickness per Ivoclar Vivadent’s 

guidelines for IPS e.max© were maintained. An STL file of the crown was generated.  
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Figure 3. 3Shape D900 lab scanner. 

 

 

Figure 4. Crown STL using Amann Girrbach Ceramill Mind design software. 
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2.3 Milling of Samples 

 

 Using Amann Girrbach’s Ceramill Motion 2 (Figure 5), a 5-axis milling unit, two 

groups of crowns were milled from the crown STL file. The first group (‘WaxMill’) utilized 

the milling machines’ ‘Dry Mode’ and consisted of 15 crowns using two Ivoclar Vivadent’s 

ProArt CAD Wax 20mm Yellow Discs (Figure 6)(Appendix A). The second group 

(‘CAMMill’) utilized the milling machines’ ‘Wet Mode’ and consisted of 15 crowns using 

Ivoclar Vivadent’s IPS e.max© CAD blocks (Figure 7). 4 boxes of the CAD blocks were 

ordered. They were all Medium Opacity #3 (MO3) Blocks having size C14 which 

corresponded to the size of the crown’s dimensions to be milled (Appendix A). New milling 

burs were used at start. Per Ivoclar Vivadent, the software mill settings involved a 20 micron 

spacer from the margin up to 1mm and then 60 microns from that line up.  

 

 

 

Figure 5. Amann Girrbach Ceramill Motion 2 5-axis milling unit. 
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Figure 6. Ivoclar Vivadent ProArt CAD Wax disc. 

 

 

 

Figure 7. Ivoclar Vivadent’s IPS e.max© CAD blocks. 
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2.4 Preparation of Samples 

 

 The ‘WaxMill’ group (Figure 8) and ‘CAMMill’ group (Figure 9) were visually 

inspected for any voids or gross defects. The milled crowns from Ivoclar Vivadent’s ProArt 

CAD Wax Discs were to be pressed, and the milled Ivoclar Vivadent’s IPS e.max© CAD 

blocks being in the pre-crystalline ‘blue state’ were to be fired.  

 

Figure 8. Ivoclar Vivadent ProArt CAD Wax milled crowns. 
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Figure 9. Ivoclar Vivadent’s IPS e.max© CAD milled crown. 

 

 

 

 

 

2.4.1 Fabrication of Pressed Samples 

 

 Each of the 15 ‘WaxMill’ crowns were seated onto the master die and 2.5x 

magnification was used to visually inspect that the margins were closed circumferentially. It 

was confirmed that all crowns seated completely and no adjustments were necessary. Ivoclar 

Vivadent’s instructions were followed for each step. Each crown was sprued with a 3mm long, 

12-gauge sprue wax (2.77mm in diameter) with a 45-60 degree sprue angle to the ring base. 

Care was taken to ensure that each sprue was attached in the direction of flow of the ceramic 

and at the thickest part of the wax so that smooth flowing of the viscous ceramic during 
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pressing is enabled. The 200g IPS Investment Ring System (Appendix A) was used, hence 

two crowns were sprued with each ring base (Figure 10). A minimum distance of 3mm 

between objects was maintained along with a minimum distance of 10mm from the waxed-up 

objects and silicone ring (Figure 11). A maximum height of the wax objects with sprue did 

not exceed 16 mm.  

 

 

Figure 10. Two Ivoclar Vivadent ProArt CAD Wax milled crowns sprued to a ring base. 
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Figure 11. Clearance between and around wax objects per Ivoclar Vivadent instructions. 

 

The sprued crowns were invested with a phosphate-bonded investment (IPS 

PressVEST Premium, Ivoclar Vivadent) per the manufacturer’s instructions. The IPS 

PressVEST Premium Powder was used (Appendix A) along with the IPS PressVEST 

Premium Liquid (Appendix A). Since the 200g IPS Investment Ring System was used, the 

mixing ratio of 36ml of IPS PressVEST Premium Liquid was mixed with 16ml of distilled 

water. 200g of the IPS PressVEST Premium Powder was premixed by hand for 20-30 seconds 

using a spatula until all the powder was mixed with the liquid. A vacuum mixing device 

(VPM2, Whipmix Corp.) was subsequently used for 90 seconds at 350 rpm. The investing 

was then carried out on a vibrator unit under gentle vibration (Figure 12).  
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Figure 12. Investing the milled wax crowns with IPS PressVEST Premium. 

 

A speed heating procedure (set investment ring placed directly into a furnace which 

has been preheated to the final temperature and then transferred to the press furnace after a 

defined time) was used, and a minimum setting time of 30 minutes was observed. After a 

maximum 45 minute setting time, the set investment was removed from the silicone ring and 

placed in a preheating furnace (Apollo II Whip Mix, Louisville, KY)(Figure 13) for a 

minimum of 60 minutes at a temperature of 1562°F. 
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Figure 13. Preheating furnace (Apollo II Whip Mix, Louisville, KY) at 1562°F. 

 

A Vario Press 300 (Zubler USA Inc., Irving, TX)(Figure 14) furnace was used for 

pressing.  While the investment was preheating, the warm up cycle was executed. The firing 

parameters used were per Ivoclar Vivadent’s recommendations for the 200g IPS Investment 

Ring System and the MO IPS e.max© Press ingots.  
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Figure 14. Vario Press 300 (Zubler USA Inc., Irving, TX). 

  

A Medium Opacity (MO3) Ivoclar Vivadent IPS e.max© CAD block was selected, 

with the same opacity (MO3) as the IPS e.max© Press ingots. During the investing procedures, 

the weight difference between the ring base: with and without the sprued objects was 

determined. This difference was less than 2g and the corresponding ingot size for use with the 

200g IPS Investment Ring System was determined to be a large (L) sized ingot (Figure 15). 

 

 

Figure 15. Ivoclar Vivadent recommendations for selecting ingot size. 58  
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The IPS e.max© Press ingots having medium opacity #3 (MO 3 L) are shown in Figure 

16 (Appendix A).  

 

 

Figure 16. IPS e.max© Press ingots (MO 3 L). 

 

After completing the preheating cycle for a minimum of 60 minutes, the investment 

ring was removed from the preheating furnace. The IPS e.max Press (MO 3 L) ingot was 

inserted in to the investment ring with the non-imprinted side facing down (Figure 17). 
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Figure 17. Investment ring with ingot inserted. 

 

A single-use plunger (13mm, Zubler USA Inc., Irving, TX) was subsequently placed 

into the investment ring over the ingot, all within a maximum of 30 seconds of removing the 

investment ring from the preheating furnace to prevent it from cooling down too much. The 

loaded investment ring was then immediately placed in the center of the hot press furnace 

(Vario Press 300 Zubler USA Inc., Irving, TX) and the press program was initiated as 

recommended by Ivoclar Vivadent (Figure 18). 
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Figure 18. Investment ring with ingot and plunger in center of press furnace. 

 

Following the pressing cycle, the investment was allowed to cool for at least 60 

minutes.  The length of the plunger was measured on the cooled investment ring (Figure 19) 

and sectioned off with a separating disc and plaster knife.  

 

 

Figure 19. Single use plunger used to mark investment ring. 
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The crowns were divested using polishing beads at 60 psi for gross removal of 

investment material (Figure 20) and 30 psi for fine removal of investment material (Figure 

21).  

 

 

Figure 20. Gross removal of investment material at 60 psi with polishing beads. 
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Figure 21. Fine removal of investment material at 30 psi with polishing beads. 

 

Sprues were removed with an aluminum-oxide separating disc (Keystone Industries, 

Gibbstown, NJ) with irrigation. The reaction layer formed during the press procedure was 

removed using IPS e.max Press Invex Liquid (Appendix A). The liquid was poured in to a 

cup, and the crowns were immersed in it and placed in an ultrasonic cleaner for 10 minutes. 

The samples were removed from the liquid and cleaned under running water. The reaction 

layer was carefully removed with Type 100 Aluminium oxide at 15 psi pressure (Figure 22). 

Complete seating of the restorations onto the master die was confirmed visually with 2.5x 

magnification and with an explorer tip (EXPL-5/6, Brasseler USA, Savannah, GA). The 

samples were cleaned with a steam jet (Touchsteam, Kerr Corp USA) and then packaged 

individually and labelled as the “Pressed Group” for shipping (Figure 23).  
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Figure 22. Pressed crowns with reaction layer removed. 

 

 

Figure 23. “Pressed Group” of crowns packaged for shipping. 
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2.4.2 Firing/crystallization of Milled Samples 

 

After milling the 15 ‘CAMMill’ crowns, they were cleaned with a steam jet 

(Touchsteam, Kerr Corp USA). The pre-crystallized crowns were secured with IPS Object 

Fix Putty (Ivoclar Vivadent) on pegs (Figure 24). 3 crowns were fired at a time, centered on 

the crystallization tray of A Vario Press 300 (Zubler USA Inc., Irving, TX). The firing 

parameters used were per Ivoclar Vivadent’s specifications for the medium opacity (MO) 

ingots.  

 

 

Figure 24. Pre-crystallized crowns secured with IPS Object Fix Putty (Ivoclar Vivadent) on 

pegs. 

 

 

After the firing cycle (Figure 25), the cooled CAD restorations were separated from 

the IPS Object Fix Putty and cleaned with a steam jet (Touchsteam, Kerr Corp USA). 

Complete seating of the restorations onto the master die was confirmed visually with 2.5x 
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magnification and with an explorer tip (EXPL-5/6, Brasseler USA, Savannah, GA). The 

samples were cleaned again with a steam jet (Touchsteam, Kerr Corp USA) and then packaged 

individually and labelled as the “Milled Group” for shipping (Figure 26). 

 

 

Figure 25. Cooled CAD crowns after the firing cycle. 

 

 

Figure 26. “Milled Group” of crowns packaged for shipping. 
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2.5 Scanning and Measuring Data 

 

The scanning was performed at Capture 3D Inc. (Michigan, USA) where the non-

contact ATOS III (GOM, Germany) scanner was located. Headquartered in Costa Mesa, 

California, the company was founded in 1997 as the exclusive North American partner for 

GOM Germany. They have an Automated Metrology Solutions Center in Farmington Hills, 

Michigan, where their high quality industrial 3D metrology systems are engineered 

incorporating the latest advanced hardware technologies integrated with intelligent software 

algorithms. The scanner used is the ATOS III (GOM, Germany). GOM develops and 

distributes optical measuring systems with it’s main focus on applications like 3D digitizing, 

3D coordinate measurements, deformation measurements and quality control. GOM systems 

are used for product development and for quality assurance, material and component 

testing.  All over the world GOM systems are used in the automotive industry, aerospace 

industry and consumer goods industry as well as by their suppliers. This also includes 

numerous research centers and universities. 

 

The packaged crowns, totaling 30 units were shipped to Capture 3D, Inc (Michigan, 

USA). The model of the scanner used was the ATOS III (GOM, Germany), which is a high 

resolution, optical digitizer that delivers rapid and precise three dimensional measuring data 

(Figure 27). The protocol used was based on Holst et al. 55 The ATOS III scanner is based on 

blue light technology (Figure 28).   
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Figure 27. (used with permission from 88) ATOS III scanner (GOM, Germany). 

 

 

Figure 28. (used with permission from 88) Blue light technology with the ATOS III scanner 

(GOM, Germany). 
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Print polyester reference markers (Oracal 352, Oralfol, Germany) were used on the 

exterior of the crowns and master die. About 6-7 markers were used for each sample, and were 

50 microns in thickness with a diameter of 0.4mm (Figure 29). These markers were meant to 

facilitate efficient virtual alignment of the samples with ease during post-processing with the 

software.  

 

 

Figure 29. Reference markers. 

 

A “Fringe Pattern” of light is projected onto the surface of the crowns during the 

scanning process, which looks similar to the stripes on a Zebra. The ATOS sensor has two 

sensing cameras that are both watching the striped pattern during the scanning process, and 

valuing 3D data points along the edges of the contrast stripes (Figure 30).  
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Figure 30. (used with permission from 88) “Fringe Pattern” on scanning object. 

 

Each sensor is capable of collecting up to 8 million data points each time a ‘shot’ of 

scan data is acquired. Further, the ATOS sensor was fitted with a 60mm field of view (patch 

size of each shot of data). The estimated level of accuracy for this configuration of the ATOS 

III scanner fitted with a 60mm telescopic field of view is approximately 0.004mm (0.00015”), 

and is tested and certified in accordance with the VDI/VDE 2634 Part 3 standard. This 

standard was defined in December 2008 by a committee of VDI experts as the standard 

method for evaluating multiple view, optical 3D-measuring systems based upon scanning 

area.  

 

The scanner was used to digitize the ‘Master Die’ and the crowns in each group 

(‘Pressed’ and ‘Milled’) generating STL’s using the ATOS Software (ATOS Professional, 

GOM). Three different categories of scans were performed: Master Die (D), Crown (C), and 

Crown on Die (CoD). Prior to scanning each ‘CoD’ setup, in order ensure adequate seating of 
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the crowns, the occlusal surface was first scanned, and a reversion of this was generated from 

which a printed jig was manufactured. This printed jig was secured over the ‘CoD’ setup with 

a metal arm applying 1 lb of force, allowing even pressure on the crown through the printed 

jig (Figure 31).  

 

 

Figure 31. (used with permission from 88) Crown on Die (CoD) setup with a printed 

jig and metal stabilizing arm. 

 

Each sample was scanned 12-13 times and the data was stitched by the ATOS software 

(ATOD Professional, GOM, Germany). Per the triple scan protocol, the STL’s generated from 

each sample were subsequently aligned by using the ‘reference markers’ (Figure 32). In the 

first step, using the reference markers on the Master Die STL and the Crown on Die STL, they 

were registered by manual alignment at the reference markers followed by a best fit algorithm 

in the software. The ‘reference markers’ form a ‘constellation’ that is the basis for the triple 

scan protocol (Figure 33).  
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Figure 32. (used with permission from 88) STL’s of Die (D), Crown (C), and Crown 

on Die (CoD). 

 

 

Figure 33. (used with permission from 88) ‘Constellation’ formed from the ‘reference 

markers’ that was used for the software’s virtual ‘best fit algorithm’. 

 

 

In the second step, the same protocol was used to match the Crown (C) STL with the 

Crown od Die (CoD) STL. The final step was to delete the CoD STL and maintain the 

remaining two STL’s (‘D’ and ‘C’) for fit assessment.  
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To measure the space between the Crown and Master Die, the outer surface of the 

crown was deleted, followed by reversion of the surface of the intaglio of the crown (C) and 

calculation of points of deviations from the Master Die (D). The ATOS software (ATOS 

Professional, GOM) converts the various deviations in the form of a colored histogram based 

on actual measurements (Figure 34). The range varied from 0.000 mm (green) to 0.200 mm 

(red) (Figure 35).  

 

 

Figure 34. Data points represented as a colored histogram. 

 

 

Figure 35. Histogram bar representing range of values. 
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 Using the ATOS Software (ATOS Professional, GOM), two areas were highlighted 

for assessment: a) margins: determined from the outer edge of the scan and then inward for a 

distance of 1mm (Figure 36); and b) internal fit: for the remainder of the data (Figure 37). 

Highlighting the internal fit was a simple inversion option in the software. Thousand’s of 

points of measurement were determined for each sample from each group. Since the scanning 

area and mapping were standardized for each sample using the ATOS Software (ATOS 

Professional, GOM), the total number of points of measurement for the marginal adaptation 

was 63,960, and for the internal fit was 82,263. The software had an in-built macro to calculate 

the mean for all the thousand’s of data points for each of the areas selected within the samples.  

 

 

 

Figure 36. Data map of samples for ‘Marginal Adaptation’. 
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Figure 37. Data map of samples for ‘Internal Fit’. 

 

 Medium opacity (MO) CAD blocks and Ingots were used during manufacture of the 

samples. When scanning was first performed on the crowns, the high intensity of the blue light 

was absorbed through the translucency of the material, versus being reflected for the sensors 

to evaluate. As a result, several dozen additional scans were performed at different angles to 

compensate for this lack of reflectivity. The multiple scans per sample required stitching by 

the software, allowing for potential error. Per the recommendation of the Application 

Engineers, a reflective titanium dioxide spray was used. A 400 grain rutile white titanium 

oxide spray was used (Figure 38). The crowns were sprayed in a booth using an in-house setup 

pointing the nozzle 10” away from the samples with a single pass (Figure 39).  
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Figure 38. (used with permission from 88) 400 grain rutile white titanium oxide spray. 

 

 

Figure 39. (used with permission from 88) In-house booth for reflective spray. 

 

This technique was previously validated by Capture 3D (MI, USA) for a potential error 

of 0.001 mm. An in-house study on a smooth granite surface using 4 different sprays (Figure 
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40) revealed the least error of 1 micron with the 400 grain rutile white titanium oxide spray 

(“airbrush referenz”) (Figure 41).  

 

 

Figure 40. (used with permission from 88) Testing of sprays on a granite slab. 

 

 

Figure 41. (used with permission from 88) Validated study for various sprays. 
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2.6 Statistical Analysis 

 

Two areas of measurement were considered: 1. Marginal Adaptation, which were the 

areas of the margins of all the samples, exactly 1mm from the outer boundary inwards for 

comparing the ‘Pressed Group’ and the ‘Milled Group’ (Table 1); 2. Internal Fit, for 

comparing the remainder of the internal surface area for the ‘Pressed’ Group and the ‘Milled’ 

Group (Table 2). Each value in the table represents the mean from 63,960 points of 

measurement for marginal adaptation; and 82,263 points of measurement for the internal fit.  

The mean for each of the areas measured for both groups was determined by the in-built macro 

in the software (ATOS Professional, GOM, Germany). Hence, the values listed in each cell in 

Table 1 are the mean for 63,960 points of measurement for marginal adaptation, and the values 

listed in each cell in Table 2 are the mean for 82,263 points of measurement for the internal 

fit. This data was then analyzed using a statistical software (SPSS 19.0, SPSS Inc., Chicago, 

IL). A paired t-test was used for comparing the marginal adaptation and internal fit of the two 

groups of samples. The significance level was set at P≤0.05.  
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Table 1. Marginal Adaptation for “Pressed Group” and “Milled Group” of Crowns 

 (Microns). 

 

 

Table 2. Internal Fit for “Pressed Group” and “Milled Group” of Crowns (Microns). 

 

Descriptive statistics for marginal adaptation of the “Pressed Group” is shown in Table 

3, and for the “Milled Group” in Table 4.  
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Table 3. Descriptive Statistics for Marginal Adaptation of the “Pressed Group”. 

 

 

Table 4. Descriptive Statistics for Marginal Adaptation of the “Milled Group”. 

 

Descriptive statistics for internal fit of the “Pressed Group” is shown in Table 5, and 

for the “Milled Group” in Table 6.  
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Table 5. Descriptive Statistics for Internal Fit of the “Pressed Group”. 

 

 

Table 6. Descriptive Statistics for Internal Fit of the “Milled Group”. 
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3. RESULTS 

 

 The mean values for marginal adaptation were 93.07 µm (± SD 9.58 mm) for the 

‘Pressed’ group, and  83.13 µm (± SD 7.50 µm) for the ‘Milled’ group. The mean values for 

the internal fit were 127.20 µm (± SD 10.44 mm) for the ‘Pressed’ group and 103.00 µm (± 

SD 7.45 µm) for the ‘Milled’ group. Statistical significance (P<.05) was found for the 

marginal adaptation as well as internal fit between the two groups. A more statistically 

significant difference in fit was found in the CAD/CAM group than with conventional 

manufacturing for both, the marginal adaptation (P≤0.004) as well as the internal fit 

(P≤0.001).  

 

A bar graph comparing the marginal adaptation of both groups (in microns, including 

SD) is shown in Figure 42, and a bar graph comparing the internal fit of both groups (in 

microns, including SD) is shown in Figure 43.  

 

 

Figure 42. Bar graph comparing marginal adaptation of “Pressed Group” and “Milled 

Group” (microns). 
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Figure 43. Bar graph comparing internal fit of “Pressed Group” and “Milled Group” 

(microns). 
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4. DISCUSSION 

 

 The aim of this study was to evaluate marginal adaptation & internal fit of digitally 

designed lithium disilicate crowns manufactured by the CAD/CAM milling technique and the 

conventional lost wax heat-press technique. Marginal fit and intimate adaption of the crown 

to the tooth is of significant importance with regards to the success and survival of indirect 

restorations. In the present study, CAD was used to generate the STL of a crown, which was 

the starting point for both groups of samples. Using the same milling machine for the 

fabrication of samples for both groups, their accuracy from a technology/manufacturing 

standpoint, is considered identical. After firing one group and pressing the other, the samples 

were scanned and analyzed with a unique technique to potentially overcome the drawbacks of 

previously used methods.  

 

 The results of this study show that marginal adaptation and internal fit of lithium 

disilicate crowns manufactured by the CAD/CAM milling technique were better than the 

conventional lost wax heat-press manufacturing technique. The null hypothesis was rejected. 

These findings provide useful information regarding the applications of CAD/CAM 

technology and the active role that the practitioner or technician needs to assume in the digital 

design and milling of restorations. After analyzing thousands of points for measurement, the 

CAD/CAM group had a mean of 83.13 µm for marginal adaptation and a mean 103.00 µm 

for internal fit. The conventional lost wax heat-press group had a mean of 93.07 µm for 

marginal adaptation and mean of 127.20 µm for internal fit. CAD/CAM manufacturing of 
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lithium disilicate crowns significantly decreased the marginal gap and internal fit when 

compared with the conventional heat-pressed lost wax method of manufacturing. These results 

also support the findings of other authors who have compared digital and traditional 

workflows for the manufacture of crowns and found that the digital workflow allows for the 

fabrication of restorations of equal or superior fit to those fabricated by traditional methods 

(Table 7). 

 

Author Measurements (microns) Focus CAD/CAM Fit 

Pimenta et al60  35 (CAD/CAM) vs. 76 (Pressed) M Better 

Anadioti et al61 145 (CAD/CAM) vs. 211 (Pressed) IF Better 

Alfaro et al62 160 (CAD/CAM) vs. 210 (Pressed) IF Better 

Freire et al63 27 (CAD/CAM) vs. (Not publ.)(Pressed) M Better 

Homsy et al64 24 (CAD/CAM) vs. 33 (Pressed) M Better 

Mostafa et al65 33 (CAD/CAM) vs. 51 (Pressed) M Better 

Real-Voltas et al66 20 (CAD/CAM) vs 109 (Cast) M Better 

Neves et al67 39 (CAD/CAM) vs. 36 (Pressed) M No difference 

Kim et al68 200 (CAD/CAM) vs. 176 (Pressed) M No difference 

Dahl et al69 within 100 for CAD/CAM & Pressed IF No difference 

Zeltner et al70 83.6 (CAD/CAM) vs 90.4 (Pressed) M No difference 

*M = Marginal adaptation; IF = Internal Fit 

Table 7. Publications (2014-2017) comparing CAD/CAM Milling to Conventional 

Manufacturing Methods. 

 

 

The marginal and internal gap have been well documented for complete coverage 

single restorations in pressed glass ceramic, however, from manually fabricated wax patterns 

(Table 8). In the manufacture of indirect restorations, fabricating the wax pattern is usually a 

time consuming step which relies on the experience, knowledge, and skill of the dental 
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technician. Thermal sensitivity, elastic memory, and a high coefficient of thermal expansion 

of waxes3 contribute to inaccuracies. In this study, the starting point for the “Pressed Group” 

and “Milled Group” were from the same crown STL. The ‘WaxMill’ crowns and the pre-

sintered ‘CAMMill’ crowns were both milled by the same milling unit, from the same STL. 

Shamseddine et al showed that CAD/CAM waxing techniques resulted in an improved fit of 

a pressed lithium disilicate crowns when compared to a traditional manual waxing technique. 

Hence, this workflow is perceived to eliminate the limitations of using a manual waxing 

technique. In addition, the material used for the ‘WaxMill’ group was Ivoclar Vivadent’s 

ProArt CAD Wax. This material burns without leaving a residue. It has a dropping point of 

77-86 °C and a flash point greater than 180 °C, and is also stable at room temperature with a 

range of 36-82 °F. 

 

A drawback of the majority of published studies involving the analysis of marginal 

adaptation and internal fit of crowns is the limitation to two dimensional analyses (Table 9). 

This study used a non-destructive method based on 3D metrology with a non-contact scanner 

using sophisticated professional engineering hardware and software. Groten et al suggested 

that 50 points of measurement are needed for best accuracy.57 In this study, point cloud data 

were converted in to a polygonal mesh as a 3D surface representation which were 

subsequently analyzed to produce over 145,000 points of measurement for each sample.  
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Authors (Year) Manual Waxup 

Zeltner et al (2017) 70 ✔ 

Mostafa et al (2017) 65 ✔ 

Kim et al (2016) 68 ✔ 

Alfaro et al (2015) 62 ✔ 

Anadioti et al. (2015) 61 ✔ 

Pimenta et al. (2015) 60 ✔ 

Demir et al. (2015) 71 ✔ 

Ng et al. (2014) 6 ✔ 

Beyari et al. (2014) 72 ✔ 

Mously et al. (2014) 73 ✔ 

Neves et al. (2014) 67 ✔ 

Asavapanumas et al. (2013) 74 ✔ 

Martinez-Rus et al. (2013) 13 ✔ 

Yucel et al. (2013) 13 ✔ 

Cho et al. (2012) 76 ✔ 

Farid et al. (2012) 77 ✔ 

Subasi et al. (2012) 78 ✔ 

Borges et al. (2012) 79 ✔ 

Yüksel et al. (2011) 80 ✔ 

Baig et al. (2010) 14 ✔ 

Holden et al. (2009) 81 ✔ 

Good et al. (2009) 82 ✔ 

Al-Rabab‘ah et al. (2008) 7 ✔ 

Bindl et al. (2005) 47 ✔ 
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Goldin et al. (2005) 83 ✔ 

 

Table 8. Peer-Reviewed Studies on Single Crown Marginal and Internal Fit of Pressed Glass  

    Ceramics involving a Traditional Manual Waxing Technique. 

 

 

 

 

Authors (Year) Measurements Method 

Zeltner et al (2017) 70 Optical Microscope 

Mostafa et al (2017) 65 Micro-CT 

Kim et al (2016) 68 Micro-CT 

Alfaro et al (2015) 62 Micro-CT 

Anadioti et al. (2015) 61 Triple scan 

Pimenta et al. (2015) 60 X-ray micro-CT 

Demir et al. (2015) 71 Micro-CT 

Ng et al. (2014) 6 Stereomicroscope 

Beyari et al. (2014) 72 Stereomicroscope 

Mously et al. (2014) 73 Micro-CT 

Neves et al. (2014) 67 Micro-CT 

Asavapanumas et al. (2013) 74 Stereomicroscope 

Martinez-Rus et al. (2013) 13 SEM 

Yucel et al. (2013) 13 Stereomicroscope 

Cho et al. (2012) 76 Optical Microscope 

Farid et al. (2012) 77 Stereomicroscope 

Subasi et al. (2012) 78 Stereomicroscope 

Borges et al. (2012) 79 Optical Microscope 

Yüksel et al. (2011) 80 Stereomicroscope 

Baig et al. (2010) 14 Computerized image analysis 

Holden et al. (2009) 81 Optical Microscope 

Good et al. (2009) 82 Profilometry 

Al-Rabab‘ah et al. (2008) 7 Stereomicroscope 

Bindl et al. (2005) 47 SEM 

Goldin et al. (2005) 83 Optical Microscope 
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Table 9. Peer-Reviewed Studies on Single Crown Marginal and Internal Fit of Pressed Glass  

    Ceramics involving Traditional Techniques for Analyzing Samples. 

 

 

 

Professional engineering software with non-contact scanning have been used in the 

recent past,51, 52, 53, 54 however, have used a best-fit registration algorithm for virtual alignment. 

The principle of this technique was also adopted from industrial quality control protocols, 

where the software attempts to align the greatest possible contact area of the selected samples. 

This could skew the results, as areas of greater misfit are virtually approximated and do not 

accurately represent the true discrepancy. This study used the triple-scan protocol developed 

by Holst et al. 55 Through a combination of best-fit algorithms and a subtractive method in the 

software, the fit assessment was verified by intra-class correlation coefficients that revealed 

an almost perfect coefficient for repeatability (r=0.981, p<.001). The same main investigator 

used this protocol in another study to assess the precision of fit of CAD/CAM dental implant 

superstructures.56 The statistical analysis, again similar to the previous study, resulted in an 

intra-class correlation of 0.991 and thereby a statistically significant repeatability of 

measurements.  

 

 Holmes et al described the considerations in the measurement of marginal fit. 20 There 

are many different locations between the restoration and the tooth where the measurements 

can be made. This study did not measure a horizontal marginal discrepancy, but measured the 

marginal gap and internal gap (Figure 44). 
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Figure 44. Marginal gap (A) and internal Gap (B) 

 

In this study, the measurements ranged from 1 micron at the margin to 414 microns at 

the occlusal surface of the samples. This finding may be attributed to limitations in the milling 

accuracies due to the dimensions of the burs. 83 The mean of both groups used in this study do 

fall within the range of more recent studies (Table 7). 

 

One of the limitations of this study was the opacity of the material used. Li et al showed 

when using powder free intra-oral scanner, a higher translucency resulted in lower accuracy 

and morphological changes. Although medium opacity #3 (MO 3) CAD blocks and Press 

Ingots were used, during initial scanning of the samples, there were empty spaces in the 

digitized crowns due to the intensity of blue light used in the ATOS III scanner (GOM, 

Germany). To overcome this problem, a reflective titanium oxide spray was used. Although 

the spraying technique was standardized and the in-house study showed a deviation of 1 

micron, variation in the distance of the spray from the object in addition to total duration of 
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spraying could influence variations in the data. High Opacity (HO) CAD blocks or Press 

Ingots could have avoided the need for the reflective spray.  

 

Another limitation of the study is the reaction layer formed during the pressing of the 

lost wax heat-press crowns. Longer holding temperatures are thought to have an effect on the 

reaction layer. The reaction layer formed with the conventional lost wax heat-press group of 

crowns could have influenced the higher average of measurements for the samples. Although 

the recommendations used were per Ivoclar Vivadent, other manufacturer’s have suggested 

alternative durations. Further studies are needed to explore this variation.  

 

Although the results indicate a closer fit with the CAD/CAM group of crowns in the 

marginal area and internal fit, the clinical relevance could be limited. Both manufacturing 

techniques are within an acceptable range of fit. Future studies are needed to evaluate 

variations in firing ovens. The technique described above for analyzing samples could be used 

to evaluate the accuracy of other CAD/CAM milling systems. In addition to lithium disilicate 

used in this study, other materials used in the manufacture of full coverage crowns could be 

evaluated as well. This study has a broad range of applications and could also be used to 

evaluate other restorations and abutments manufactured by CAD/CAM and conventional 

methods.  
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5. CONCLUSION 

 

Within the limitations of this in vitro study, the following conclusions can be drawn:  

1. The CAD/CAM milling technique decreased the marginal gap of lithium disilicate crowns 

when compared with the conventional heat-pressed lost wax method of manufacturing. 

2. The CAD/CAM milling technique decreased the internal fit of lithium disilicate crowns 

when compared with the conventional heat-pressed lost wax method of manufacturing. 
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APPENDIX A 

Material Manufacturer Details 

ProArt CAD Wax 20mm 

Yellow Discs 

Ivoclar Vivadent Ref#:673964; Lot#: TL6394, 

Exp:6/30/2019 

IPS e.max© CAD blocks Ivoclar Vivadent MO 3, Ref #596800, Lot #L03488 

IPS e.max© Press ingots Ivoclar Vivadent MO 3 L, Ref# 596765;Lot# KM0090 

200g IPS Investment Ring 

System 

Ivoclar Vivadent Ref# 597061, Lot# W33445 

The IPS PressVEST 

Premium Powder 

Ivoclar Vivadent 5kg box, Ref#:685586AN; Lot 

#WL1768; Exp:5/31/2019 

IPS PressVEST Premium 

Liquid 

Ivoclar Vivadent 1 Liter, Lot#: 685588; Lot#: WL1832; 

Exp:8/31/2019 

IPS e.max Press Invex 

Liquid 

Ivoclar Vivadent 1 Liter, Ref#:597064; Lot#:VL0251; 

Exp:12/31/2021 

Specifications of Materials used. 

 

 

 
Crystallization Parameters for e.max CAD, per Ivoclar Vivadent (Schaan, Lichtenstein).84 
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Crystallization Parameters for e.max CAD per Zubler USA Inc. (Irving, TX).85 

 

 

 
Press and Firing Parameters for e.max Press per Ivoclar Vivadent (Schaan, Lichtenstein).86 

 

 

 

 
 

 
 

Press and Firing Parameters for e.max Press per Zubler USA Inc. (Irving, TX).87 

 


