
TOWARDS UNDERSTANDING RELAXATIONS OF DISTRIBUTED DATA STRUCTURES

A Dissertation

by

EDWARD L. TALMAGE

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Jennifer L. Welch
Committee Members, Nancy Amato

Andreas Klappenecker
Alex Sprintson

Head of Department, Dilma Da Silva

May 2018

Major Subject: Computer Science

Copyright 2018 Edward L. Talmage

ABSTRACT

Since computers are widespread and interconnected, the study of computing has expanded

to encompass problems arising from concurrency and the need for coordinated effort between

different computing entities. Essential among those problems is providing efficient means for

multiple, distributed processes to operate on the same data, while guaranteeing that the results of

their actions make sense and are useful. In this dissertation, we explore a method of improving the

efficiency of operations on shared data.

The method we explore in this work is relaxation of a data type. Intuitively, relaxation consists

of adding a limited amount of non-determinism to the specification of a data type. This allows

multiple legal actions from a particular state. In some cases, we can associate these different actions

with concurrent operations on shared data, allowing multiple processes to act without coordinating

at that step. Since communication between different physical locations is relatively expensive

reducing the need for coordinating communication can significantly increase the rate at which

processes can execute operations on shared data.

After giving practical definitions of a few specific relaxations from the literature, we proceed in

three steps. First, we provide implementations and analysis of algorithms for FIFO queues under

several of these relaxations, showing the performance benefits relaxation provides. We then ana-

lyze the computational power of relaxed queues, to understand what we have given up to achieve

improved performance. Finally, we compare the relaxation model to the study of weakened consis-

tency conditions, a common approach in the literature. We show a partial correspondence between

the models, allowing us to use existing tools to analyze relaxations.

To conclude, we step away from relaxations and provide a set of heuristics for determining

the consensus number of a data type, which is a measure of its computational strength. While

it is an undecidable problem in general, in specific cases our tools may allow system designers

to recognize whether or not a specific type provides the strength they need for their particular

distributed application.

ii

DEDICATION

To Sara

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professors Jennifer Welch

[advisor], Nancy Amato, and Andreas Klappencker of the Department of Computer Science and

Engineering and Professor Alex Sprintson of the Department of Electrical and Computer Engi-

neering.

All other work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by a Graduate Research Assistantship under Dr. Jennifer Welch

funded by NSF grants 1526725 and 0964696, as well as a Graduate Teaching Fellowship from the

Texas A&M University College of Engineering and a Graduate Teaching Assistantship from the

Texas A&M University Department of Computer Science and Engineering.

iv

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

CONTRIBUTORS AND FUNDING SOURCES . iv

TABLE OF CONTENTS . v

LIST OF TABLES. viii

1. INTRODUCTION. 1

1.1 Relaxed Data Types . 1
1.2 Sensitivity . 3

2. DEFINITIONS AND MODEL . 4

2.1 Specifying Data Types . 4
2.1.1 Relaxed Queue Specifications . 6
2.1.2 General Data Type Relaxations . 12

2.2 System Models . 15
2.2.1 Partially Synchronous, Message Passing . 16
2.2.2 Asynchronous, Shared Memory . 17

2.3 Consistency Conditions . 18
2.4 Consensus Numbers. 19

3. IMPLEMENTING RELAXED QUEUES . 22

3.1 Introduction and Related Work . 22
3.2 Correctness Condition . 23
3.3 Worst-Case Lower Bound . 24
3.4 k-Relaxed Algorithms for Queues. 27

3.4.1 Local Variables . 27
3.4.2 Out-of-Order Relaxed Queues . 28

3.4.2.1 Out-of-Order Relaxation Correctness . 30
3.4.2.2 Out-of-Order Relaxation Performance . 37

3.4.3 Restricted Out-of-Order Relaxed Queues . 38
3.4.3.1 Restricted Out-of-Order Relaxation Correctness . 40
3.4.3.2 Restricted Out-of-Order Relaxation Performance 47

3.5 Lower Bounds on Amortized Time Complexity . 48

v

3.5.1 Strict Queue Lower Bound . 49
3.5.2 Out-of-Order Relaxation Lower Bound . 49
3.5.3 Restricted Out-of-Order Relaxation Lower Bound . 51
3.5.4 Relaxed Stacks. 52

3.6 Conclusion. 52

4. CONSENSUS NUMBERS OF RELAXED QUEUES . 54

4.1 Introduction. 54
4.1.1 Related Work . 54

4.2 Characterizing the Space of Relaxed Queues . 55
4.3 Relaxations Are Not All Equivalent . 57
4.4 Some Relaxations Lose all Power . 61
4.5 Filling the Space . 64

4.5.1 RQueue . 65
4.5.2 LQueue. 66
4.5.3 OQueue . 66
4.5.4 Chart of Results. 69

4.6 Conclusion. 69

5. RELAXED DATA TYPES AS CONSISTENCY CONDITIONS . 71

5.1 Introduction and Related Work . 71
5.2 Converting Relaxations to Consistency Conditions . 72
5.3 Consistency Condition to Relaxation . 75

5.3.1 k-Atomicity . 75
5.4 Placing New Consistency Conditions . 77
5.5 Conclusion. 87

6. GENERIC PROOFS OF CONSENSUS NUMBERS FOR ABSTRACT DATA TYPES . . . 88

6.1 Introduction. 88
6.1.1 Summary of Results . 88
6.1.2 Related Work . 90

6.2 Sensitivity . 92
6.3 k-Front-Sensitive Data Types . 93
6.4 Consensus with End-Sensitive Data Types . 95

6.4.1 k-End-Sensitive Types. 96
6.4.2 1- and 2-End-Sensitive Types . 102
6.4.3 Knowledge of Consecutive Operations . 105

6.5 Conclusion. 110

7. SUMMARY AND CONCLUSIONS . 112

7.1 Future Work . 113
7.1.1 Consistency Conditions vs. Relaxations . 113
7.1.2 Practical Implementations of New and Arbitrary Data Types 114

vi

7.1.3 Classifying Operations . 115
7.1.4 Applications of Relaxed Data Types . 115

REFERENCES . 117

vii

LIST OF TABLES

TABLE Page

3.1 Bounds on Dequeue Time Complexity . 24

4.1 Graphical Representation of Relaxation Space for Different Relaxation Types 68

6.1 Summary of Upper and Lower Bounds on Consensus Numbers . 111

viii

1. INTRODUCTION

With the increase in data collection and storage ability of the last decade, computational prob-

lems are growing extremely quickly. To enable the kind of bigger computing required for these

problems, we distribute tasks to large sets of computers, which are often geographically-dispersed.

This allows us to apply large amounts of computational power to a single problem, while balanc-

ing the load of maintenance and upkeep of the computers. However, distributed computation is in

many ways more complex than local and has its own set of unique challenges and foibles.

In this dissertation, we work towards providing tools that make distributed computing practi-

cal and easy to use. Particularly, we explore the properties of distributed data structures, which

are fundamental tools in distributed programming. By abstracting basic tasks of storing, sharing,

and interacting with data needed by multiple processes, we can remove the complications of co-

ordinating concurrent operations from a programmer’s burden. We explore some possibilities of

distributed data structures, from implementation to specification, speed and computational power.

1.1 Relaxed Data Types

Most of this work focuses on relaxed data types. In essence, relaxing a data type adds a precise,

limited amount of non-determinism, which allows different processes to perform some concurrent

operations with less synchronization than is required for fully deterministic data types. Since

communication delays are often vastly larger than those of local computation, this translates to

significant performance improvements. For example, one type of relaxed FIFO queue allows each

Dequeue to return one of the k oldest elements currently in the queue, instead of the exact oldest.

This can allow up to k Dequeues to be performed without any synchronization between processes.

Chapter 3 explores implementations of relaxations of FIFO queues. We present distributed

algorithms to implement two versions of a relaxed queue. We then give lower bounds on the

amortized time of any implementation of an unrelaxed FIFO queue which show our algorithms

have better performance, in an amortized sense, than any possible algorithm for an unrelaxed

1

queue. Following those, we prove lower bounds on algorithms implementing these relaxed queues.

These show, first, that our algorithms were asymptotically optimal and, second, that increasing

the relaxation parameter gives continual improvements to performance. This confirms that we

should be looking for applications which can use relaxed data types, since they can achieve better

performance than the corresponding unrelaxed types.

Intuitively, relaxation gives up some strength to allow greater efficiency. In Chapter 4, we

use the notion of consensus numbers to characterize the amount of computational strength an

augmented queue loses in relaxation. The consensus number of a data type, which is defined as the

largest number of processes which can use objects of that type to solve the consensus agreement

problem (see Section 2.4), is a classic measure of the computational strength of data types in

asynchronous, failure-prone systems. We consider three relaxed versions of augmented queues,

which have a Peek operation as well as Enqueue and Dequeue. Each operation can be relaxed

by an integer parameter, so we have an infinite 3-dimensional space of relaxed queues for each

relaxation. By directly proving the consensus numbers of a few specific relaxations and some

lemmas relating the consensus numbers of different choices of relaxation parameters, we find exact

consensus numbers for every point in these relaxation spaces. Our results show that even a slight

change in relaxation can significantly reduce the computational power of the type. This shows that

it behooves a developer using a relaxed data type to choose a relaxation type and parameters very

carefully to ensure the data type maintains the required computational strength.

Another historically common approach to improving the performance of distributed data struc-

tures is to weaken the required consistency condition. Consistency conditions specify how con-

current behavior relates to sequential data type specifications. By weakening the constraints on

concurrent behavior, more distributed executions are considered acceptable, and more efficient

algorithms become possible. We show that data type relaxations are a subset of consistency condi-

tions. That is, relaxations and some weakened consistency conditions are different ways to express

the same set of allowable behaviors. In Chapter 5, we show correspondences between specific

conditions and use existing tools from the literature to compare the strength of some relaxations

2

by comparing their corresponding consistency conditions. This ability to use whichever model is

more convenient is one direct, practical benefit of the correspondence.

1.2 Sensitivity

One of the primary concerns when working with distributed data types, relaxed or unrelaxed,

is their computational strength, most often represented by the type’s consensus number. In Chap-

ter 6, we define the notion of sensitivity, which captures which part or parts of the prior history

of operations on the data structure a process can learn about in a single operation. We then prove

consensus numbers for data types with operations in one of several classes defined by sensitivity.

This allows a user to find a data type’s consensus number simply by determining its sensitivity

class. This can be much easier than directly finding a consensus number by giving an algorithm to

solve consensus among a certain number of processes and an impossibility proof showing that no

such algorithm exists for any larger number of processes. Our method may thus help a developer

who needs to quickly determine the computational power of a given data type.

3

2. DEFINITIONS AND MODEL ∗

In this chapter, we formally define the concepts of data types and relaxations as we will use

them throughout the dissertation. We also discuss the models of computation in which we will

work.

2.1 Specifying Data Types

An Abstract Data Type specifies an interface for interacting with data, and defines how the

data object will behave. Data type specifications consist of the possible operations which a process

may invoke and a set of sequences of operation instances which specifies all possible return values

an operation response may have, given an invocation and a sequence of past operations. We here

consider only objects which have sequential specifications, as relaxation of tasks without sequential

specifications (see, e.g., [1, 2]) has not yet been defined. We follow the definitions in [3] but

modified to encompass nondeterminism (and thus relaxation).

Definition 1. An Abstract Data Type consists of

1. A set OPS of operations and the sets args(OP) of valid arguments and rets(OP) of valid

return values for each OP ∈ OPS. An instance of an operation OP , denoted OP (arg, ret),

contains the argument(s) arg and the value(s) returned, ret. In a sequential environment,

∗Parts of the material in this chapter are reprinted from the following papers:
E. Talmage and J.L. Welch, “Improving average performance by relaxing distributed data types,” in Distributed

Computing - 28th International Symposium, DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings (F.
Kuhn, ed.), vol 8784 of Lecture Notes in Computer Science, pp. 421-438, Copyright 2014 by Springer.

E. Talmage and J.L. Welch, “Generic proofs of consensus numbers for abstract data types,” in 19th International
Conference on Principles of Distributed Systems, OPODIS 2015, December 14-17, 2015, Rennes, France (E. An-
ceaume, C. Cachin, and M. G. Potop-Butucaru, eds.), vol. 46 of LIPIcs, pp. 32:1-32:16, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015.

E. Talmage and J.L. Welch, “Anomalies and Similarities among consensus numbers of variously-relaxed queues,”
in Networked Systems - 5th International Conference, NETYS 2017, Marrakech, Morocco, May 17-19, 2017, Proceed-
ings (A.E. Abbadi and B. Garbinato, eds.), vol. 10299 of Lecture Notes in Computer Science, pp. 191-205, Copyright
2017 by Springer.

E. Talmage and J.L. Welch, “Relaxed data types as consistency conditions,” in Stabilization, Safety, and Security of
Distributed Systems - 19th International Symposium, SSS 2017, Boston, MA, USA, November 5-8, 2017, Proceedings
(P.G. Spirakis and P. Tsigas, eds.), vol. 10616 of Lecture Notes in Computer Science, pp. 142-156, Copyright 2017 by
Springer.

4

instances are indivisible, but we will consider them as a distinct invocation and matching

response in the distributed setting.

When either args(OP) or rets(OP) contains no values, we write an instance formally

as OP (arg,−) or OP (−, ret) and for convenience condense the notation to OP (ret) or

OP (arg), as appropriate.

2. A set L of legal sequences of operation instances which satisfies two properties:

• Prefix Closure: If a sequence ρ is in L, then every prefix of ρ is also in L.

• Completeness: If a sequence ρ is in L, then for every operation OP ∈ OPS and

every argument arg in args(OP), there is a response ret ∈ rets(OP) such that ρ ·

OP (arg, ret) is in L.

We use state of an object to refer to the equivalence class of operation sequences which allow

the same set of extending sequences as the sequence of instances which have been executed on that

object. That is, we say that two such sequences π and ρ are equivalent, denoted π ≡ ρ, if for any

sequence σ where either π ·σ or ρ ·σ is legal, then ρ ·σ or π ·σ is also legal, respectively, and a state

is an equivalence class of such sequences. We classify operations by whether they change a shared

object’s state, return information about it, or both. Every operation on a shared object must be

either an accessor, which returns some information dependent on the state of the object, a mutator,

which changes the state of the object, or both, which we call a mixed operation. Operations which

are neither accessors nor mutators would be constants or no-ops, and are thus not useful operations

on a shared object.

Definition 2. An operation OP of an abstract data type T is a mutator if there exists a legal

sequence ρ of instances of operations of T and an instance op of OP such that ρ ̸≡ ρ · op. An

operation OP is an accessor if there exist legal sequences ρ, ρ′ of instances of operations of T and

an instance aop of OP such that ρ · aop is legal, but ρ′ · aop is not legal.

An operation which is both an accessor and a mutator is a mixed operation. An operation

5

which is a mutator but not an accessor, or an accessor but not a mutator, is a pure mutator or

accessor, respectively.

For example, in a Read-Modify-Write (RMW) register, Read is a pure accessor, Write is a pure

mutator, and Read-Modify-Write is a mixed operation. In a FIFO queue augmented with Peek,

Enqueue is a pure mutator, Dequeue is a mixed operation, and Peek is a pure accessor. A data

type does not need to have all three kinds of operations, as seen in a Read/Write register or FIFO

queue without Peek.

Note that removing all instances of pure accessors from a sequence of operation instances

π does not change the state represented, so we denote this equivalent sequence containing only

mutator instances as π|m. We similarly use π|args to denote the sequence of arguments to the

operation intances in π.

2.1.1 Relaxed Queue Specifications

We will consider four different types of relaxation introduced in [4] and re-formulated for re-

laxing queues in [5, 6]. Each relaxed operation has a parameter specifying the maximum amount of

relaxation allowed, either for each instance of the operation or bounding the number of consecutive

operation instances which can behave differently than the unrelaxed operation. The Out-of-Order

k-relaxation allows each operation instance to take effect up to k places out of order. For example,

a Dequeue can return any of the first k elements at the head of a queue, instead of only the first.

The Lateness k-relaxation merely requires that at least one in every k instances must behave as the

unrelaxed version, while the other instances may disregard ordering. The Restricted Out-of-Order

k-relaxation is the intersection of the previous two relaxations, requiring that consecutive instances

which behave in an out-of-order fashion are increasingly near to the correct order. The Stuttering

k-relaxation allows some mutator instances to fail to change the state, requiring that at least one in

every k instances must behave as the unrelaxed version.

We will next formally define these relaxations on FIFO queues augmented with a Peek opera-

tion, but first we must note that each type will have three different relaxation parameters, one for

each operation. Each of these parameters may be in the set Z+ ∪ {∗, ∅}, which we will denote as

6

Z∗. A ∅ parameter, equivalent to a 0 in [7], means that the operation is not supported, while we

consider that ∗ > x, ∀x ∈ Z+. That is, ∗-relaxed is infinitely relaxed, and such operations have no

ordering constraints. For technical reasons, we will define ∅ > ∗ > x, ∀x ∈ Z+.

We assume that all arguments to queue operations are unique (accomplishable by timestamps).

We can represent the state of a relaxed queue by the sequence of elements which have been inserted

(by Enqueue) but not yet removed (by Dequeue), denoting one end as the head and the other as

the tail. In an unrelaxed queue, Enqueue(val) appends val to the tail of the queue, while Dequeue

and Peek return the value at the head of the queue, with Dequeue also removing that element from

the queue. Peek and Dequeue may return a special symbol ⊥ if the queue appears to contain no

elements (relaxation may allow the queue to appear empty even when it is not). We assume that ⊥

is not a possible input to any operation. Formally:

Definition 3. A queue over a set of values V is a data type with two operations:

• Enqueue(val,−), val ∈ V ; intuitively, adds element val and has no return value

• Dequeue(−, val), val ∈ V ∪ {⊥}; intuitively, removes an element and returns it, and has

no argument

A sequence of operation instances is legal iff it satisfies the following conditions:

(C1) Every argument to an instance of Enqueue is unique1.

(C2) Every return value of a Dequeue instance is unique.

(C3) Every non-⊥ value which an instance of Dequeue returns is the argument to a previous

instance of Enqueue.

(C4) If ρ is a legal sequence of operation instances, then ρ ·Dequeue(−, val), val ̸= ⊥, is legal iff

Enqueue(val,−) is the first Enqueue in ρ which does not have a matching Dequeue(−, v)

in ρ. Furthermore, ρ·Dequeue(−,⊥) is legal iff every Enqueue(val,−) in ρ has a matching

Dequeue(−, val) in ρ.
1As mentioned previously, this can easily be achieved by timestamping arguments.

7

For the Out-of-Order, Lateness, and Restricted Out-of-Order relaxations, we first give a for-

mal definition with only Dequeue relaxed, then a less formal definition which relaxes all three

operations. The first reason for this is ease of understanding, to minimize potentially confusing

formality. The second reason is that when we give implementations of some of these relaxed

queues in Chapter 3, we only need to relax Dequeue, becuase results in [3] show that Enqueue

can always be fast.

To introduce the notation we need, consider first an unrelaxed FIFO queue. The queues with

relaxed Dequeues use some of conditions (C1)-(C3), but each modifies condition (C4) to give a

different set of legal return values for Dequeue, and one does not use (C2). The altered versions

of (C4) allow a larger set of possible return values.

The Out-of-Order relaxation, instead of requiring a Dequeue to return the oldest element,

allows any of the k oldest elements as a return value for a Dequeue.

Definition 4. An Out-of-Order k-relaxed queue satisfies (C1)-(C3) from Definition 3, and the fol-

lowing condition:

(C4) If ρ is a legal sequence of operation instances, then ρ ·Dequeue(−, val), is legal iff there are

fewer than k distinct val′s such that Enqueue(val′,−) precedes Enqueue(val,−) in ρ and

there is not a matching Dequeue(−, val′) in ρ. Furthermore, ρ ·Dequeue(−,⊥) is legal iff

there are fewer than k Enqueue(val′,−)’s in ρ without matching Dequeue(−, val′)’s in ρ.

Relaxing Peek is exactly the same, with the constraing that Peek never removes an element.

Relaxing Enqueue just considers in what position the operation places its argument, which may

or may not be the tail. We then have the general Out-of-Order relaxation of a queue:

Definition 5. An Out-of-Order relaxed queue with parameters a, b, c ∈ Z∗, which we denote as

OQueue[a, b, c], provides three operations, as follows:

• Enqueue[a](val) adds val to the OQueue such that at most a − 1 elements already in the

OQueue are nearer the tail than val

8

• Dequeue[b]() removes and returns one of the first b elements at the head end of the OQueue;

if there are fewer than b elements in the OQueue, Dequeue[b]() may return ⊥

• Peek[c]() returns, without removing, one of the first c elements at the head end of the

OQueue; if there are fewer than c elements in the OQueue, Peek[c]() may return ⊥

Enqueue[∅], Dequeue[∅] and Peek[∅] are no-ops.

For the next two relaxations, we need the concept of lateness, which is a measure of how many

consecutive operations of a specific type have been out of order. Define lateness(OP [k]) for a

finite sequence ρ of operations instances on a relaxed queue as the number of instances of OP [k]

appearing in ρ after the latest instance of OP [k] that behaved as the unrelaxed version would. That

is, the number of Enqueue[a] instances since the last one which put an element at the tail, the

number of Dequeue[b] instances since the last which removed the head, or the number of Peek[c]

instances since the last which returned the head.

The next relaxation, Lateness, does not impose any restriction on how close to the top an ele-

ment which a Dequeue returns must be, but instead simply enforces that each operation’s lateness

never exceeds that operation’s relaxation parameter. For Dequeue, this means the head is returned

by at most the kth Dequeue after it became head.

Definition 6. A Lateness k-relaxed queue satisfies (C1)-(C3) from Definition 3, and the following

condition:

(C4) If ρ is a legal sequence of operation instances, then ρ · Dequeue(−, val) is legal iff every

Enqueue(val′,−) preceding Enqueue(val,−) has a matching Dequeue(−, val′) in ρ or

there are fewer than k−1 instances Dequeue(−, val′) that follow the first Enqueue(val′′,−)

which does not have a matching Dequeue(−, val′′) in ρ.

Further, ρ·Dequeue(−,⊥) is legal iff there are fewer than k−1 instances Dequeue(−, val′)

that follow the first Enqueue(val′′,−) without a matching Dequeue(−, val′′) in ρ or every

val′ such that Enqueue(val′,−) is in ρ has a matching Dequeue(−, val′) in ρ.

9

Again, the definition of a relaxed Peek is practically identical to that of a relaxed Dequeue

and a relaxed Enqueue is symmetric.

Definition 7. A Lateness relaxed queue with parameters a, b, c ∈ Z∗, denoted LQueue[a, b, c],

provides three operations, as follows:

• Enqueue[a](val) inserts val at an arbitrary location in the LQueue, while maintaining

lateness(Enqueue[a]) < a

• Dequeue[b]() removes and returns any element in the LQueue, or ⊥, while maintaining

lateness(Dequeue[b]) < b

• Peek[c]() returns, without removing, any element in the LQueue or ⊥, while maintaining

lateness(Peek[c]) < c

Enqueue[∅], Dequeue[∅] and Peek[∅] are no-ops.

A Restricted Out-of-Order relaxed queue keeps the requirement of an LQueue that at least one

in every k consecutive instances of a given operation must behave as if unrelaxed, but also requires

every operation instance to approximately respect the ordering of an unrelaxed queue. Thus, it can

be seen as the intersection of the last two definitions. It allows an instance of Dequeue to return

any of the first k elements at the head of the queue, as fixed in time when last the single oldest

element was returned. Thus, at least once every k instances of Dequeue, the true top element must

be returned.

Definition 8. A Restricted Out-of-Order k-relaxed queue satisfies (C1)-(C3) from Definition 3, and

the following condition:

(C4) If ρ is a legal sequence of operation instances, ρ ·Dequeue(−, val), val ̸= ⊥, is legal iff, in

the suffix ρ′ of ρ which starts at the first Enqueue(val′,−) which does not have a matching

Dequeue(−, val′) in ρ, Enqueue(val,−) is among the first k instances of Enqueue.

ρ ·Dequeue(−,⊥) is legal iff there are fewer than k instances Enqueue(val′,−) in ρ′.

10

With all three operations relaxed:

Definition 9. A Restricted Out-of-Order relaxed queue with parameters a, b, c ∈ Z∗, which we

denote as RQueue[a, b, c], provides three operations, as follows:

• Enqueue[a](val) adds val to the queue such that at most (a− 1)− lateness(Enqueue[a])

elements already in the RQueue are nearer the tail than val

• Dequeue[b]() removes and returns one of the first b− lateness(Dequeue[b]) elements at the

head end of the RQueue; if there are fewer than b − lateness(Dequeue[b]) elements in the

RQueue, Dequeue[b]() may return ⊥

• Peek[c]() returns, without removing, one of the first c − lateness(Peek[c]) elements at the

head end of the RQueue; if there are fewer than c − lateness(Peek[c]) elements in the

RQueue, Peek[c]() may return ⊥

Enqueue[∅], Dequeue[∅] and Peek[∅] are no-ops.

Note that if an operation’s relaxation parameter is ∗ then, in each type of relaxation, all ordering

constraints are gone, since at any particular point in time, there will be a finite number of elements

in the queue, and lateness will be finite. Thus, Enqueue[∗] can put its argument in any location

in the queue and Dequeue[∗] and Peek[∗] may return any element of the queue, regardless of the

type of relaxation.

The stuttering relaxation, the last we will define here, has a very different flavor than the other

relaxations. Instead of constraining ordering properties of an operation, it allows mutators to exe-

cute without actually changing the simulated state of the shared queue. Instead, up to k times, the

operation may return as if it completed, in the case of a mixed operation like Dequeue returning a

value, but not changing the state.

Definition 10. A stuttering k-relaxed queue satisfies (C1) and (C3) from Definition 3, and the

following condition:

11

(C4) If ρ is a legal sequence of operation instances, then ρ · Dequeue(−, val), val ̸= ⊥ is legal

iff there is no Dequeue(−, val′) with val′ ̸= val such that either Enqueue(val′,−) is in ρ

after Enqueue(val,−) or val′ = ⊥, and there are fewer than k copies of Dequeue(−, val)

in ρ.

ρ · Dequeue(−,⊥) is legal iff every Enqueue(val′,−) in ρ has at least one corresponding

Dequeue(−, val′).

Again, with all three operations relaxed. Note that pure accessors, like Peek, cannot be

stuttering-relaxed, since they do not affect the object’s state to start with.

Definition 11. A Stuttering relaxed queue with parameters a, b, c ∈ Z∗, denoted SQueue[a, b, c],

provides three operations, as follows:

• Enqueue[a](val) attempts to add val to the tail of the queue such that at most a− 1 consec-

utive Enqueue[a] instances do not change the SQueue’s state

• Dequeue[b]() returns the first element at the head end of the SQueue and at least one in every

b consecutive Dequeue[b] instances removes the element it returns; if there are no elements

in the queue, Dequeue[b]() returns ⊥

• Peek[c]() returns, without removing, the element at the head end of the SQueue, ⊥ if there

is none.

Enqueue[∅], Dequeue[∅] and Peek[∅] are no-ops.

We will use natural reductions of notation to increase readability, such as denoting Enqueue[1]

as Enqueue, etc., since this is an unrelaxed operation. To specify the actual behavior of a particular

Enqueue[a] instance, we will also use the notation Enqueueti(x) to denote an Enqueue instance

executed by process pi which places x immediately head-ward of the tail-most t elements.

2.1.2 General Data Type Relaxations

We here present definitions of the above relaxations for arbitrary data types, not just for queues.

We restate these definitions purely in terms of legal sequences of operation instances, where [4]

12

combined equivalence classes of such sequences to develop a state machine notation. We choose to

focus on these relaxations, comparing them to consistency conditions in Chapter 5, since a number

of authors [5, 8, 7, 9, 10, 11] have considered implementations and analyses of these and similar

relaxations.

First, we consider the Out-of-Order relaxation. The definition of this relaxation does not imme-

diately appear to have anything to do with ordering, but when instantiated on operations in ordered

data structures such as Dequeue in queues and Pop in stacks, it causes those operations to return

an element up to k places out of order. One way to think about this is to imagine that by deleting

operation instances in the past, we are making the current instance act as if it is in a different place

in the permutation of all instances.

Note that [4] defines the k-Out-of-Order relaxation to allow either deleting or inserting up to

k operation instances. Some operations, though, could have arbitrary behavior if arbitrary oper-

ation instances may be added to the history. For example, Dequeue and Pop, if Enqueue(x) or

Push(x), for arbitrary x, is added such that Dequeue or Pop returns x. To avoid this, we restrict

our attention to out-of-order with respect to deleting past instances.

Definition 12 (k-Out-of-Order Relaxed ADT). Given any ADT T and an integer k ≥ 0, a k-Out-

of-Order relaxation of T , called T ′, is defined as follows:

1. OPS(T ′) = OPS(T)

2. A sequence Π is legal if for every instance op where Π = π · op · ρ, there is some sequence

u · v ·w, |v| ≤ k, which is a minimum-length sequence equivalent in T to π, and there exists

a sequence x, where

a. u · w is legal in T and minimum-length among the set of sequences equivalent to it in T ,

b. u · w · op is legal in T , and

c. • u · w · op ≡ x · w and π · op ≡ x · v · w or

• u · w · op ≡ u · x and π · op ≡ u · v · x.

13

Intuitively, an instance op is allowed after some prefix π if some contiguous portion of the

prefix can be ignored. The relaxation does not want to consider past actions which have since been

undone, such as an overwritten write or removed element, so we replace π with a minimum-length

sequence equivalent to it (u · v · w). We then delete up to k consecutive mutator instances (v),

making u · w · op legal in the base type. Now, u · w · op being legal in T means that π · op is legal

in a k-Out-of-Order relaxation T ′ of an ADT T , but we need to specify what effect op had. We do

this by saying that the set of sequences legal in T ′ after π · op is the same set as those legal after

reinserting the deleted sequence of instances (x · v · w or u · v · x, as appropriate).

In this and other relaxations, we refer to T , the type from which the relaxation is defined, as

the base type.

The next relaxation we consider is Lateness. This name comes because one way to view the

relaxed data type is that operations may act as Out-of-Order, each for any finite relaxation pa-

rameter, except that each time an instance does not satisfy the specification of the base type, we

increase a lateness counter. That counter can never exceed k, and resets when an instance acts by

the specification of the base type. Thus, we can have instances arbitrarily far from the base type’s

behavior, but are guaranteed that at least one in every k consecutive instances behaves normally.

For example, a relaxed Dequeue may return and remove any element in the queue, as long as one

in every k Dequeues returns the head.

Definition 13 (k-Lateness Relaxed ADT). Given any ADT T and an integer k ≥ 1, a k-Lateness

relaxation of T , T ′, is defined as follows:

1. OPS(T ′) = OPS(T)

2. A sequence Π of operation instances is legal in T ′ if for every instance op such that Π =

π · op · ρ, there exists l ≥ 0 such that π · op is legal by the semantics of an l-Out-of-Order

relaxed T , and at least one in every k consecutive mutator instances in Π|m must have l = 0.

Finally, we consider a relaxation with a different flavor. Instead of allowing operations to act

slightly incorrectly, this relaxation allows some mutator instances to have no effect on the state

14

of the shared object. That is, some mutators may “stutter” on the current object state, failing to

change it. Here, we only require that some fraction of mutator instances successfully change the

object, while others may fail to take effect. All instances must still return a value that is legal based

on the current state of the object. To do this, we track the subsequence of mutator instances in the

schedule that do not stutter. This subsequence, represented by the π′
is, is the history that determines

the next operation instance’s behavior. For example, a stuttering counter may hold the same value

after up to k consecutive increment() instances before increasing. The π′
i consists only of those

increment instances which actually increased the counter’s value.

Definition 14 (k-Stuttering Relaxed ADT). Given any ADT T and an integer k ≥ 1, a k-Stuttering

relaxation of T , T ′ is defined as follows:

1. OPS(T ′) = OPS(T)

2. A sequence Π = op1 · op2 · · · is legal if every opi, with Π = πi · opi · ρi, opi returns a value

such that π′
i · opi is legal in T , where π′

i is a sequence of mutator instances such that

(a) π′
1 = ε, the empty sequence,

(b) π′
i ∈ {π′

i−1, π
′
i−1 · opi−1} for i > 1, and

(c) π′
i includes at least one of every k consecutive mutators in πi.

2.2 System Models

In this dissertation, we use two different models of computation to investigate different ques-

tions. These models focus attention on the details relevant to each particular problem. Recall that

one of our goals is to hide real-world features of distributed systems, such as messages, from the

end user, so the message-passing and shared-memory models can be seen as the environments be-

low and above, respectively, an implementation of a shared data type. In both models, we assume

a set Π = {p0, . . . , pn−1} of processes, which are arbitrary computing elements.

15

2.2.1 Partially Synchronous, Message Passing

We model each process in Π as a state machine. There are three kinds of events that can trigger

a transition of the state machine for a process: the receipt of a message, a local timer going off, or

the invocation of an operation instance. A step of a process is a 6-tuple (s, T, C,M,R, s′), where

s is a state of the process (the old state), T is a trigger event, C is the local clock value (a real

number), M is a set of messages (to be sent), R is either ∅ or an operation instance response, and

s′ is a state of the process (the new state), such that M , R, and s′ are the result of the transition

function operating on s, T , and C.

A view of a process is a sequence of steps such that

• the old state of the first step is an initial state of the state machine;

• the old state of each step after the first one equals the new state of the previous step;

• each timer in the old state of each step has a value that does not exceed the clock time of the

step;

• if the trigger of a step is xoa timer going off, then the old state of the step has a timer whose

value is equal to the clock time for the step

• clock times of steps are increasing, and if the sequence is infinite then they increase without

bound;

• at most one operation instance is pending at a time

A timed view is a view with a real number, called “real time”, associated with each step. There

must exist a real number c such that, for each step, the difference between the clock time and the

real time is exactly c (the “offset” of the process’ local clock from real time).

A run is a set of n timed views, one for each process, such that every message receipt has

exactly one matching message send, and every message send has at most one matching message

receipt. A run is complete if

16

• every message sent is received; and

• each timed view is either infinite or ends in a state in which no timers are set.

A run is admissible with respect to parameters d, u, and ϵ, if

• every received message has delay in the range [d − u, d] and if a message is sent but not

received, then the recipient’s last step is at real time less than t + d, where t is the real time

when the message is sent;

• for all processes pi and pj , |ci − cj| ≤ ϵ, where ci is the clock offset of pi and cj is the clock

offset of pj .

We assume that any message from a process to itself is simulated as taking the minimum message

delay d− u.

We consider only algorithms which are Eventually Quiescent: Every complete admissible run

with a finite number of operations is finite (i.e., every view is finite).

2.2.2 Asynchronous, Shared Memory

For our second model, consider an asynchronous, shared-memory model of computation on n

processes. We split operation instances into separate invocations and responses. Processes interact

by invoking operations, with arguments, on shared objects. Some time after an invocation, the

object responds, giving the process a return value. Computation takes the form of schedules. A

schedule of a data type T is a collection of sequences, one per process, of alternating invocations

and responses of operations of T , each occurring at some real time and with each response of

the same operation as the previous invocation. Each process’ sequence is either infinite or ends

in an operation response. In a schedule, we call two operation instances at different processes

overlapping if the real time of one instance’s invocation is between the real times of the invocation

and response of the other instance. A schedule implies a partial order, called the schedule order,

on non-overlapping instances, where an instance that returns before a second is invoked, in real

time, precedes it, while overlapping instances are not ordered with respect to each other.

17

2.3 Consistency Conditions

Since data type specifications are inherently sequential, we need some way to relate a schedule

of a distributed system, which is inherently concurrent, to those specifications. A consistency con-

dition specifies what concurrent schedules are legal on a given data type. Formally, a consistency

condition C is the union, over all data types T , of the sets of schedules legal on T under C. When

discussing a consistency condition in conjunction with a particular data type, we will implicitly

consider only the subset of schedules for that type. This definition overloads the term “legal” to

refer to schedules which correspond, by the consistency condition, to legal sequences on the given

data type. Equality of consistency conditions is set equality between sets of legal schedules [12].

As an example, we define Linearizability [13], which is used throughout the literature in com-

bination with relaxed data types, as it is the most intuitive.

Definition 15 (Linearizability). A schedule E on a data type T is legal under linearizability if there

exists a permutation Π of all operation instances in E such that (1) If an instance op precedes

another instance op′ in the schedule order, then op precedes op′ in Π, and (2) Π is legal, according

to the sequential specification of T .

Weaker consistency conditions may allow some reordering with respect to the schedule order.

For example, k-Atomicity for Read/Write registers, introduced in [14], allows Read operations

to get a “stale” value, possibly missing some updates which overlap or even immediately precede

the Read instance in the schedule order. This staleness is bounded by the constant k, ensuring that

the behavior is not arbitrary. In practice, the values “missed” can reflect Write instances which

the process invoking the Read has not yet heard about. [14] gives probabilistic results showing

that only requiring k-Atomicity can lead to implementations with higher proportions of operations

which succeed, meaning that processes do not need to retry as often, improving performance.

All the consistency conditions we consider require liveness: In every complete, admissible run

of an implementation of an abstract data type, every operation invocation has a matching response

and every response has a matching invocation.

18

2.4 Consensus Numbers

To classify the computational power of shared data types, we use the consensus problem [15].

The consensus problem is for each of n processes to either crash or in a finite amount of time,

starting with an input value in {0, 1}, agree on (or decide) and return the same output value as all

other deciding processes, such that the decided value was some process’ input.

Formally, the consensus problem is defined as follows: Every process has an initial input value

v ∈ {0, 1}. After that, if it is correct, it will decide a value d ∈ {0, 1}. Once a process decides a

value, it cannot change that decision. Further, all correct processes must satisfy three conditions:

• Termination: All correct processes eventually decide some value

• Agreement: All correct processes decide the same value d

• Validity: All correct processes decide a value which was some process’ input

An abstract data type T can implement consensus if there is an algorithm in the given model

which uses objects of T (plus registers) to solve consensus. The consensus number, introduced

in [15], of an abstract data type is the largest number of processes n for which there exists an

algorithm to implement consensus among n processes using objects of that data type. If there is

no such largest number, we say the data type has consensus number∞.

To prove a lower bound on a type’s consensus number, we merely exhibit an algorithm which

uses objects of that type to solve consensus among some number of processes. For an upper bound,

we use the technique of valency, as in [15], and its extensions to non-deterministic types from [16].

We here re-state several concepts and lemmas from these papers, as well as [17], which allow us

to streamline our proofs.

A configuration of an algorithm consists of the local states of all processes and the states

of all shared objects. An initial configuration is one where every process is in an initial local

state and every shared object has an initial state, as specified by the algorithm. We say that two

configurations C and D are indistinguishable to a process pi if pi has the same local state and all

shared objects have the same state in C and D.

19

Process pi takes step (C, opi, C
′), where C and C ′ are configurations we call the old and new

configurations of the step, if it executes an atomic operation instance opi on a shared variable V .

V and opi’s operation and argument are specified by pi’s state in C. This is said to be an enabled

step. The resulting configuration C ′ differs from C only in the local state of pi, according to the

algorithm, and V ’s state, according to its type. We call C ′ a child configuration of C and use the

notation C · opi to denote the child configuration C ′. Note that for each configuration C, there is

at least one enabled step for each process. There may be more than one enabled step for a single

process if the algorithm executes a nondeterministic operation. For example, a relaxed Enqueue

may lead to several different child configurations depending on where the argument is placed in

the queue.

An execution of an algorithm A is an infinite sequence of steps, starting from an initial con-

figuration, with the new configuration of each step equal to the old configuration of the next step.

Processes that take only a finite number of steps are said to crash. The requirement that executions

are infinite implies that at least one process does not crash. If a process terminates the algorithm

successfully, we say that it triggers an infinite series of no-op steps at that process. A reachable

configuration is one that appears in some execution.

Let C be a configuration reachable by some prefix E of an execution of a consensus algorithm

A. Consider all executions E ′ which are extensions of E. A must terminate, so in each E ′, some

value is decided. Let vals(C) be the set of values decided in all E ′s. We call C bivalent if

vals(C) = {0, 1}, 1-valent if vals(C) = {1}, and 0-valent if vals(C) = {0}. We call C critical

if it is bivalent, but every child configuration of C is univalent.

Lemma 1 ([15, 16]). Every critical configuration has child configurations with different valencies

which are reached by different processes acting on the same shared object, which is not a register.

Further, every enabled step in a critical configuration must be a mutator.

Lemma 1’s claim that steps leading to different valencies must exist at different processes

is trivial for deterministic types, since each process can have only one enabled step. With non-

deterministic types, a single process may have multiple enabled steps from a single configuration.

20

Here, the lemma follows from the fact that there must be at least one 0-valent child configuration

and at least one 1-valent child configuration. If these are not at different processes but both at the

same process, then the valency of a step by some other process can be neither 0 nor 1, contradicting

the definitions of valency and critical configurations.

Lemma 2 (Extended from [17]). A consensus algorithm

• always has an initial bivalent configuration and

• must have a critical configuration in every execution

Lemma 3 (Univalency Lemma, implicit in [15]). If two univalent configurations are indistinguish-

able to a process, they have the same valency.

21

3. IMPLEMENTING RELAXED QUEUES ∗

3.1 Introduction and Related Work

In this chapter, we explore the possible performance benefits of relaxed data structures. We

focus on the elapsed time for operations when the shared object is implemented in a message-

passing system with bounded message delays and approximately synchronized clocks. In contrast,

[4], which introduced these relaxations, considered shared memory implementations of relaxed

shared objects. To our knowledge, we are the first to consider message-passing implementations

of the relaxations.

First, we prove that for a general class of operations, the worst-case elapsed time must be at

least d, the maximum message delay. We then show that for three of the relaxations we consider

(Lateness, Restricted-Out-of-Order, and Stuttering), the Dequeue operation of the FIFO queue

data type falls into this class and thus must take at least d time. This lower bound indicates that,

with respect to worst-case time for operations, there is marginal gain, at best, from these relax-

ations, as recent work [3] has shown that an unrelaxed FIFO queue can be implemented with

worst-case time for Dequeue at most d+ ϵ, where ϵ is the maximum skew between local clocks.

In light of this negative result regarding worst-case time for Dequeues, we next consider amor-

tized time, in the hope that relaxed data types would require expensive synchronization less fre-

quently. To show this benefit, we use aggregate analysis, dividing the sum of all operation times

by the number of opreations in a run. As a first step, we focus on shared queues. We consider

two relaxations from [4], applied to Dequeue. Each relaxation has an integer parameter k ≥ n,

where n is the number of processes. We present an algorithm for implementing an Out-of-Order

k-relaxed queue in which the amortized time for Dequeue is d/⌊ k
n
⌋ + ϵ. We also present an al-

gorithm for implementing a Restricted-Out-of-Order k-relaxed queue in which the amortized time

∗Parts of the material in this chapter are reprinted from
E. Talmage and J.L. Welch, “Improving average performance by relaxing distributed data types,” in Distributed

Computing - 28th International Symposium, DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings (F.
Kuhn, ed.), vol 8784 of Lecture Notes in Computer Science, pp. 421-438, Copyright 2014 by Springer.

22

for Dequeue is (2d + ϵ)/⌊ k
n
⌋ + ϵ. In both cases, the amortized time for the Dequeue operation

is significantly below the worst-case lower bound of d, and decreases as k increases. In contrast,

we show that the best possible amortized time for Dequeue in an unrelaxed queue must be at least

d(1− 1
n
), indicating that relaxation does pay when considering amortized time.

We further show a lower bound of d/⌊ k
n
⌋ on the amortized time for Dequeue for the same two

relaxations, still for k ≥ n, which indicates that one of our algorithms is optimal while the other

is within a factor of two of optimal. Our upper and lower bounds on amortized Dequeue time

imply that there is an inherent performance benefit achievable by increasing k for these two forms

of relaxation, as the lower bounds for any fixed value of k are larger than the corresponding upper

bounds for sufficiently greater values of k. In contrast, the results in [18],[4] show performance

improvements for shared memory implementations, based on experimental analyses of specific

algorithms; no lower bounds are shown.

Unlike prior work proving lower bounds on the time complexity of operations (e.g., [19, 20,

21, 3]), ours are for nondeterministic data types. Nondeterminism is harder to deal with, as one

cannot always rely on some operation returning a certain value. In our proofs, we take care to

argue that the object can be “boxed into a corner” under certain circumstances, so that there is only

one possible right answer.

Table 3.1 summarizes the known bounds on the elapsed time for Dequeue. Section 3.2 states

some further model assumptions we need in this chapter. In Section 3.3, we prove lower bounds

on the worst-case time for operations. Our two algorithms and their average-cost analyses are

presented in Section 3.4. Section 3.5 contains our lower bounds on the average-cost time for

Dequeues, and we conclude in Section 3.6.

3.2 Correctness Condition

We are interested in developing linearizable algorithms. Recall from Chapter 2, we also require

that algorithms satisfy a liveness conditions, that there is a bijection between operation invocations

and responses in any complete, admissible run.

The worst-case time complexity of operation OP , denoted |OP |, is defined as the the maximum

23

Table 3.1: Bounds on Dequeue Time Complexity

Worst Case Cost Average Cost
Lower Bound Upper Bound Lower Bound Upper Bound

FIFO Queue d+min{ϵ, u, d
3
} [3] d+ ϵ [3]

d(1− 1
n
)

(Sec 5.1) d+ ϵ [3]

Out-of-Order ? d+ ϵ [3]
d

⌊k/n⌋

(Sec 5.2; k < n2)

d
⌊k/n⌋ + ϵ

(Sec 4.2;
heavily-loaded)

Lateness d (Sec 3) d+ ϵ [3] ? ?

Restricted-
Out-of-Order d (Sec 3) d+ ϵ [3]

d
⌊k/n⌋

(Sec 5.3)

2d+ϵ
⌊k/n⌋ + ϵ

(Sec 4.3;
heavily-loaded)

Stuttering d (Sec 3) d+ ϵ [3] ? ?

over every instance of OP in every complete admissible run, of the real time that elapses between

the the invocation of the instance and its response. The amortized time complexity of operation OP

in is the least upper bound, over every complete admissible run R, of the sum over all complete

instances of OP in any prefix of R of the real time that elapses between the invocation and response

of the instance, divided by the total number of instances of OP in the prefix of R.

3.3 Worst-Case Lower Bound

First, we will show a lower bound on the worst case time complexity for a class of operations

which includes some of the relaxed Dequeues defined in Section 2.1.1. This lower bound is nearly

equal to the upper bound given in [3] for arbitrary data types. This shows that there is negligible,

if any, benefit from relaxation, with regard to this complexity measure.

To show this bound, we consider runs carefully structured so that the sequential specification

of the data type gives tight limits on what values are legal to return. By simultaneously invoking

multiple operation instances, we can use an indistinguishability argument to show that at least one

of the instances must delay returning long enough to learn about another instance.

Definition 16. Define an operation OP to be non-repeatable with respect to ρ if there exists a

sequence of operation instances ρ and an instance op = OP (arg, ret) ∈ OP such that ρ · op is

24

legal and no ret′ ̸= ret is a legal return value for ρ ·OP (arg), but ρ · op · op is not legal.

Theorem 1. In any distributed shared memory implementation A, if there is an admissible run with

linearization of its operation instances ρ and operation OP which is non-repeatable with respect

to ρ, then |OP | ≥ d.

Proof. Let ρ and op be a sequence of operation instances and an instance of op, as in Definition 16.

Construct three runs, as follows:

• R: Some process p0 sequentially invokes and returns to each operation in ρ. Let t be the real

time when the last instance returns.

• R0: From time 0 to time t, R0 is identical to R. After time t, all message delays are d. At

time t, have p0 invoke OP (arg). By the definition of non-repeatability, that instance must

return the value ret defined in Definition 16.

• R1: From time 0 to time t, R1 is identical to R. After time t, all message delays are d. At

time t, p1 invokes OP (arg), instead of p0. This instance must return ret to this invocation,

by the definition of non-repeatability.

Finally, define run R exactly as both R0 and R1, except that at time t, both p0 and p1 invoke

OP (arg). Call these two instances op0 and op1, respectively. By the assumption that |OP | < d,

we know that op0 and op1 must both return by real time t + d. Thus, they cannot learn about

each other, since messages caused by either instance take d time in transit. Thus, R0 and R′ are

indistinguishable to p0 through the return of op0 and R1 and R′ are indistinguishable to p1 through

the return of op1. op0’s return value must then be ret, and op1’s also must. But now, the only

linearizations of run R′ are ρ · op0 · op1 and ρ · op1 · op0, since all instances in ρ overlap with

no other instances. But these are both equal to ρ · op · op, which is illegal, by definition. Thus,

|OP | ≥ d.

We next show that several versions of relaxed Dequeue satisfy the hypothesis of Theorem 1.

25

Lemma 4. For any algorithm implementing a queue with a Lateness k-relaxed Dequeue, there is

some admissible run with linearization ρ such that Dequeue is non-repeatable with respect to ρ.

Proof. Consider the following sequence on a Lateness k-relaxed queue: ρ = Enqueue(1,−) ·

Enqueue(2,−) · · ·Enqueue(k+2,−)·Dequeue(−, 2)·Dequeue(−, 3) · · ·Dequeue(−, k). This

sequence is legal, since lateness is always less than k, Enqueue arguments and Dequeue return

values are unique, and Dequeues return the arguments of previous Enqueues. At the end of ρ,

lateness is k − 1, so if the next operation is Dequeue, then it must return 1, to reset lateness.

Thus, ρ · Dequeue(−, 1) is legal and ρ · Dequeue(−, x) is not legal for any x ̸= 1. Further,

ρ · Dequeue(−, 1) · Dequeue(−, 1) is not legal, since every non-⊥ return value of a Dequeue

instance must be distinct, by condition (C2) of the definition of a Lateness k-relaxed queue. Thus,

Dequeue is non-repeatable.

Corollary 1. In any implementation of a Lateness k-relaxed queue, |Dequeue| ≥ d.

Lemma 5. For any algorithm implementing a queue with a Restricted Out-of-Order k-relaxed

Dequeue, there is some admissible run with linearization ρ such that Dequeue is non-repeatable

with respect to ρ.

Proof. As in the proof of Lemma 4, consider the operation instance sequence ρ = Enqueue(1,−)·

Enqueue(2,−) · · ·Enqueue(k+2,−) ·Dequeue(−, 2) ·Dequeue(−, 3) · · ·Dequeue(−, k), but

this time on a Restricted Out-of-Order k-relaxed queue. This sequence is legal, since Enqueue

arguments and Dequeue return values are unique, each Dequeue returns the argument of a pre-

vious Enqueue, and the return value is always among the first k arguments to an Enqueue after

Enqueue(1). At the end of ρ, Enqueue(1) is the first unmatched Enqueue instance, and the only

one of the k Enqueues in the suffix of ρ starting with Enqueue(1) which has not had its argument

returned by a Dequeue. Thus, ρ ·Dequeue(−, 1) is legal, and ρ ·Dequeue(−, x) is not legal for

any x ̸= 1. Further, ρ · Dequeue(−, 1) · Dequeue(−, 1) is not legal, since no two Dequeue in-

stances may return the same value. Thus, Dequeue in a Restricted Out-of-Order k-relaxed queue

is non-repeatable.

26

Corollary 2. In any implementation of a Restricted Out-of-Order k-relaxed queue, |Dequeue| ≥

d.

The arguments used so far in this section to show a lower bound of d on the worst-case time

complexity for relaxed versions of the Dequeue operation of relaxed queues can be generalized to

operations that remove elements from a set of elements. Consider any data type which maintains

a set of current elements and has at least two operations, one to add elements and one to remove.

Suppose further that the remove operation cannot remove any single element more than once.

Finally, constrain the set of legal sequences of operation instances so that repeatedly invoking the

remove operation must eventually remove every element in the set. Then we can show that the

remove operation is non-repeatable with respect to some operation sequence, and thus the remove

operation has worst-case time complexity at least d.

3.4 k-Relaxed Algorithms for Queues

We have shown that, with regard to the metric of worst-case operation time, there is no useful

gain from relaxation of some common data types. This is due to the fact that distributed storage

must still synchronize itself at times. But, in a relaxed data type, the required coordination may not

be quite as close, so synchronization may not be required as often. We give two algorithms which

exploit this lesser synchronization requirement to achieve better amortized operation cost, where

the improvement scales with the degree of relaxation.

3.4.1 Local Variables

We specify the local variables our algorithms will use. Both algorithms use the same local vari-

ables, with the addition of available fields on lQueue elements and headsj arrays for Algorithm

3-4.

• clean: Boolean, initially true

• lQueue: Local copy of data structure, initially empty. Values have two associated fields: a

label field which is initially null and can hold a process id and a Boolean available, initially

true. Behavior is an extensions of a local (non-distributed) FIFO queue. Operations:

27

– enq(val): inserts val

– deqByLabel(pj): removes and returns headmost (oldest) element labeled pj ,⊥ if none

exists

– peekByLabel(pj): returns, without removing, headmost element labeled pj , ⊥ if none

exists

– deqBySet(S): removes and returns headmost element in lQueue which is also in the

set S

– peekBySet(S): returns, without removing, the headmost element in both lQueue and

S

– contains(val): returns true if val is in lQueue, false otherwise

– size(): returns current number of elements

– sizeByLabel(pj): Returns number of elements with label pj

– unlabeledSize(): returns current number of unlabeled elements

– tail(): returns, without removing, the last element added

– remove(val): removes val

– label(pj, val): label val with pj

– labelOldest(pj, x): labels the oldest x elements with pj

• Pending: Priority queue to hold operation instances, keyed by timestamp; initially empty.

Supports standard operations insert(val, ts), min(), extractMin()

• headsj[], 0 ≤ j < n: Arrays of data elements of size n, initially empty

We will use the parameter l, defined as
⌊
k
n

⌋
throughout this section.

3.4.2 Out-of-Order Relaxed Queues

First, we give an algorithm for an Out-of-Order k-relaxed queue. This algorithm introduces

the basic idea behind our later algorithm for Restricted Out-of-Order k-relaxed queues, and is

28

presented in Algorithms 1 and 2. This algorithm assumes k > n, and gives improved amortized

performance over algorithms for unrelaxed queues, increasing as k increases by multiples of n.

The algorithm is designed to gracefully degrade performance as it runs out of elements, since a k-

relaxed Dequeue on a queue with fewer than k elements is not very meaningful. Instead, there will

be an effectively lower k (down to a minimum of n) until the size of the queue grows sufficiently.

This also allows us to use fast Enqueues at all times.

The algorithm is inspired by the algorithm from [3]. To allow quick returns of most operation

instances, giving good amortized performance, we distribute the headmost k elements of the queue,

which are legal to return at any given time, evenly among the processes. Each process can quickly

return those elements assigned to it, then must synchronize to obtain more. When a process needs

to return an element, due to a Dequeue, it returns the headmost element labeled with its own id.

If there are no elements so labeled, then the process will not return until it has waited long enough

to learn about concurrent and recent operations at other processes, effectively synchronizing, as

every Dequeue did in the algorithm of [3].

When a process tries to Dequeue, but has no local elements available and must synchronize, as

part of its operation, it labels more elements for itself. No more than k elements are ever labeled,

and for exactly k to be labeled, each process must have l elements labeled1. Thus, since the current

process has no labeled elements, it is safe to claim more, up to a total of l, since then there will

be at most k elements labeled, so every future operation returning a labeled element will return a

legal element, according to the relaxation.

Before any elements are dequeued (while clean is true), Enqueue operations label up to k

elements in round-robin fashion. This allows the first Dequeue invoked to return quickly, since

it will find elements labeled with its invoking process. After a Dequeue is invoked, we mark the

queue as dirty (clean = false) and no longer label elements during Enqueues, because round-

robin order may not be maintained if Dequeues are not invoked evenly across all processes. This

maintains good average performance in executions which may only perform a few Dequeues.

1Or l + 1 elements when k is not an exact multiple of n, and elements have been labeled by Enqueues.

29

Algorithm 1 Code for each process pi to implement a queue with Out-of-Order k-relaxed
Dequeue, where k ≥ n and l = ⌊k/n⌋.

1: HandleEvent ENQUEUE(val)
2: send (enq, val, ⟨localT ime, i⟩) to all
3: setT imer(ϵ, ⟨enq, val, ⟨localT ime, i⟩⟩, respond)
4: HandleEvent DEQUEUE

5: if lQueue.peekByLabel(pi) ̸= ⊥ then
6: ret = lQueue.peekByLabel(pi)
7: ret.available = false
8: send (deq_f, ret, ⟨localT ime, i⟩) to all
9: setT imer(ϵ, ⟨deq_f, ret, null⟩, respond)

10: else
11: send (deq_s, null, ⟨localT ime, i⟩) to all
12: HandleEvent EXPIRETIMER(⟨op, val, ts⟩, respond)
13: if op == deq_f then Generate response for Dequeue with return value val
14: else Generate response for Enqueue with return value ACK
15: HandleEvent RECEIVE (op, val, ts) FROM pj
16: Pending.insert(⟨op, val, ts⟩)
17: setT imer(u+ ϵ, ⟨op, val, ts⟩, execute)
18: HandleEvent EXPIRETIMER(⟨op, val, ts⟩, execute)
19: while ts ≥ Pending.min() do
20: ⟨op′, val′, ts′⟩ = Pending.extractMin()
21: executeLocally(op′, val′, ts′)
22: cancelT imer(⟨op′, arg′, ts′⟩, execute)

▷ continued

When there are fewer than k elements left in the queue, a synchronizing Dequeue will act as if

k were lQueue.size. This means that it labels fewer elements for itself, allowing even performance

across all processes. This behavior is adopted, as having a k larger than the current size of the queue

means that every element is legal to return.

3.4.2.1 Out-of-Order Relaxation Correctness

Throughout this section, line numbers refer to Algorithms 1 and 2.

Let ts(op) denote the (localT ime, i) pair, called a timestamp, associated with an operation

instance in line 2, 8, or 11.

Construction 1. Define the permutation π of operation instances in a complete, admissible run of

30

Algorithm 2 Continuation of algorithm implementing a queue with an Out-of-Order k-relaxed
Dequeue.

23: function EXECUTELOCALLY(op, val, ⟨∗, j⟩)
24: if op == enq then
25: lQueue.enq(val)
26: if clean == true and lQueue.size() ≤ k then
27: let a = (lQueue.size()− 1) mod n
28: lQueue.label(pa, val)

29: else
30: clean = false
31: if op == deq_f then lQueue.remove(val)
32: else
33: if lQueue.peekByLabel(pj) ̸= ⊥ then
34: ret = lQueue.deqByLabel(pj)
35: else
36: ret = lQueue.deqByLabel(null)

37: labelElements(j)
38: if j == i then Generate response for Dequeue with return value ret

39: if lQueue.size() == 0 then clean = true

40: function LABELELEMENTS(j)
41: y = lQueue.unlabeledSize()
42: lQueue.labelOldest(pj, x), where x = min{l, ⌊lQueue.size()/n⌋, y}

Algorithm 1-2 as the order given by sorting by ts(op) for each instance op.

We first show that all processes execute operation instances on their local copy of the shared

queue in timestamp order and that Construction 1 will respect the real-time partial order of non-

overlapping operation instances. These two facts allow us to prove that timestamp order is a legal

linearization of all instances in a run.

Lemma 6. Each process locally executes all operation invocations (⟨op, arg, ts⟩) in timestamp

order.

Proof. Suppose we have two Enqueue or Dequeue invocations op1 = ⟨opName1, arg1, ts1⟩ and

op2 = ⟨opName2, arg2, ts2⟩, with ts(op1) < ts(op2). If some process pi locally executes op2

before op1, then op1 cannot have been in pi’s Pending queue when it executed op2, by lines 18-22.

But op2 cannot be executed less than d+ ϵ time after it was invoked, by line 17, unless the execute

31

timer for some invocation op3 with timestamp larger than op2 went off. That can only occur at least

d+ ϵ after op3’s invocation.

Because the maximum difference between local clocks is ϵ, op1’s invocation can be at most ϵ

real time after op2’s, since ts(op1) < ts(op2). Then pi will learn about op1, and insert it into its

Pending queue at most d + ϵ real time after op2’s invocation. This would imply that if pi locally

executes op2 at its own execute timer, then it has op1 in its Pending queue, and would locally

execute op1 before op2, by the code in the execute timer handler.

Similarly, if pi locally executes op2 when op3’s execute timer expires, op1 could have been

invoked at most ϵ real time after op3 and still have a smaller timestamp. Thus, pi will learn about

op1 no later than d + ϵ after op3’s invocation, which means that pi has op1 in its Pending queue

when it locally executes op3, which is also when it locally executes op2, contradicting the execute

timer handler. Thus, every process executes op1 before op2.

Since all processes locally execute all invocations in the same order, we can argue that their

local copies of the shared queue, represented by their lQueue variables, take on the same sequence

of states.

Lemma 7. After locally executing a prefix ρ of the sequence π given by Construction 1, the lQueue

variable of every process is identical, excluding available fields.

Proof. The only place the algorithm edits lQueue outside executeLocally is in line 7, which

only changes available fields, and in the labelElements function, which is only called from

inside executeLocally. Every process has the same sequence of calls, including arguments,

to executeLocally, which is itself deterministic, so we need only show that each call to

executeLocally yields the same result at every process, despite possible differences in avail-

able fields.

The only places within a call to executeLocally whose behavior may depend on available

fields are lines 34, 36, and 41, the last in the labelElements function. Lines 36 and 41 do not

actually change behavior based on available fields in this algorithm, since only labeled elements

32

are ever marked unavailable (line 7), and labels are never removed. Since these lines only interact

with unlabeled elements, their behavior is independent of available fields.

Line 34 would have different behavior at different processes if an element labeled pj was

marked unavailable at some processes but not others while the current slow Dequeue, deq, is lo-

cally executed at each process. This could only happen, though, if pj had invoked a fast Dequeue

which marked the element as unavailable. This must have happened since deq was invoked, since

by definition of a slow Dequeue, there could not have been any elements labeled pj at deq’s in-

vocation. But slow Dequeues do not respond until they are locally executed, so pj could have

invoked no such fast Dequeue. Thus, there cannot be an element labeled pj which is marked un-

available at some processes but not others when they each locally execute a slow Dequeue, and

line 34 will behave the same way at every process in the local execution of the same instance.

Since the behavior of executeLocally does not change with the possible variations in

available fields between processes, the lQueue variables of each process will be the same, exclud-

ing available fields, after locally executing the same sequence of operation instances.

Lemma 7 implies that for each Dequeue, every process removes the same return value from

its lQueue, since they must remove the value from their lQueue they percieve the Dequeue as

returning and the lQueues of all processes are in the same state after locally executing the same

sequence of operation instances.

Now, we can consider the parts of the definition of linearizability. We show that our constructed

ordering respects the real-time order of instances, and that it is legal, by the sequential specification

of an Out-of-Order k-relaxed queue to show that the algorithm is a correct, linearizable implemen-

tation.

Lemma 8. Construction 1 respects the real-time order of non-overlapping operation instances.

Proof. Suppose on the contrary that there are two operation instances op1 and op2 with ts(op1) <

ts(op2) but op2 returns before op1’s invocation. By the response timers in lines 3 and 9 and the

message delay assumptions, every instance takes at least ϵ time to respond. Thus, op2 must have

33

been invoked more than ϵ before op1. Since local clocks are within ϵ of each other, the local time

at op2’s invocation must be less than the local time at op1’s invocation, so ts(op2) < ts(op1), a

contradiction.

Theorem 2. For any complete, admissible run of Algorithm 1-2, the permutation π given by Con-

struction 1 is legal by the specification of an Out-of-Order k-relaxed queue.

Proof. By Lemmas 6, 7, the sequence of local executions at each process is the same sequence as

π defined in Construction 1, and Lemma 7 further implies that the lQueues at all processes are

the same after the same prefix of π is locally executed and all processes remove the same value

for each Dequeue instance. Thus, we need only argue that the value which processes choose to

remove and return for a particular Dequeue is legal, in the sense that the prefix of π ending with

that Dequeue instance is legal, by the specification of an Out-of-Order k-relaxed queue.

To do this, we argue that each process’ execution of the algorithm maintains a labeling invari-

ant. We prove that every element x in a process’ lQueue which has a non-null label after locally

executing a prefix ρ of π is an acceptable return value for a Dequeue, meaning ρ ·Dequeue(−, x)

is legal on an Out-of-Order k-relaxed queue.

Our proof is by induction on local execution of π, the sequence of all operation instances in an

arbitrary complete, admissible run. At each step of the induction, we must show two things: first,

that the return value chosen yields a legal sequence; second, that the labeling invariant still holds.

The base case is an empty sequence, which trivially satisfies legality and the labeling invariant. We

then assume that a prefix ρ of π is legal and consider local execution of an instance op, such that

ρ · op is a prefix of π. We proceed by cases on the operation of instance op.

Enqueue: In the sequential specification of the queue, an Enqueue is always legal. We thus

have only to show that the labeling done by Enqueues satisfies the labeling invariant. If clean ==

true when processes locally execute op, this follows, since the code labels in round-robin fashion

(line 27), and only labels while there are no more than k elements in the queue (line 26).

Locally executing a Dequeue will set the clean variable to false at all processes(line 30), so

Enqueues locally executed after a Dequeue will no longer label elements until clean = true

34

again. Since we assumed that after local execution of ρ, for any labeled element x, the extended

sequence ρ·Dequeue(−, x) is legal, and since an Enqueue cannot make a value unacceptable for a

Dequeue to return, by the specification of an Out-of-Order k-relaxed queue, the labeling invariant

holds after ρ · op.

Dequeue: Suppose op is a Dequeue. We first show that when a process locally executes op, it

chooses a return value which satisfies (C2)-(C4) of Definition 4, implying that ρ · op is legal.

(C2) op returns a value that was stored in lQueue and removes it. (Lines 6, 31, 34, 36). Since

elements are only added to lQueue by instances of Enqueue (line 25), (C1) guarantees that

the values in lQueue are unique.

No two Dequeue instances can return the same value. Any value ret chosen as a Dequeue’s

return value is immediately either removed from lQueue (lines 34, 36) or marked as un-

available (line 7) in the lQueue of the process with which ret is labeled, preventing another

Dequeue instance invoked at that process from returning ret. No existing labels are ever

changed, since line 42 only labels unlabeled elements and labels are not set anywhere else,

so no Dequeue at another process pj can return ret, since it only returns elements labeled pj

(lines 6, 34, 36). Thus, the return values of Dequeue instances are unique.

(C3) This follows similarly, since Dequeue will return a value from lQueue, which can only

have been put there by an instance of Enqueue (Line 25) which is previous in π, since each

process executes instances of Enqueue and Dequeue in timestamp order, the order specified

in π.

(C4) If there is an element labeled pi in lQueue when op is invoked at process pi, then op will

return the oldest such element after a delay of only ϵ (Line 9). When op is invoked, pi has

locally executed some prefix ρ′ of ρ. By the labeling invariant, then, every labeled element

can be returned to a Dequeue occurring in π immediately after ρ′. op may not be immediately

after ρ′ in π, but once an element is labeled, its label never changes, since labels are only

35

edited in line 42, which only labels unlabeled elements. Thus, after ρ is locally executed, the

element returned for op will still be labeled, so ρ · op is legal.

If there is no element labeled pi at op’s invocation, it is a slow Dequeue. There are two

possible ways for a slow Dequeue to choose its return value (Lines 34 and 36). In the

first, some other operation has labeled elements between the invocation and execution of this

Dequeue. It will then choose a labeled element as its return value during local execution, so

by the labeling invariant, it returns a legal value.

In the second case, the Dequeue will return an unlabeled element, possibly ⊥. If this hap-

pens, we know there are fewer than k labeled elements, since the algorithm only ever labels

a maximum of k elements (Lines 26 and 42, and the definition of l), including at least one at

each process and there are currently none labeled pi.

To see that returning the headmost unlabeled element in lQueue yields a legal sequence,

note that since instances of Enqueue are locally executed in the order specified by π, the

headmost elements in lQueue will be those whose Enqueues appear earliest in π. Since

instances of Dequeue are also executed in the order given by π and remove their return

values from lQueue, the elements in lQueue are the arguments of Enqueues which appear

previously in π and do not have corresponding Dequeues, in order. Thus, the headmost

k elements in lQueue are legal to return by (C4), so it is legal for the Dequeue to return

the headmost unlabeled element when there are no elements labeled pi. If the headmost

unlabeled element is ⊥, there are fewer than k Enqueue instances without corresponding

Dequeue instances appearing previously in π, so ⊥ is a legal return value.

It only remains to show that Dequeues maintain the labeling invariant. A fast Dequeue does

not label any new elements, and no elements cease to be legal after a Dequeue because it decreases

the number of Enqueues without a matching Dequeue in π, as referenced in (C4) for Out-of-Order

queues. Thus, the labeling invariant continues to hold after a fast Dequeue.

36

For slow Dequeues, we see that when a Dequeue labels elements (line 37), it only labels up to

l elements from lQueue, for itself. Since elements are inserted into lQueue in timestamp order of

Enqueues, which is the order the Enqueues appear in π, and are removed by Dequeues, also in

order matching π, the headmost k elements in lQueue are the first k elements with an Enqueue in

π but no corresponding Dequeue, and are thus legal to return. Since new labels are always applied

to the headmost unlabeled elements of lQueue, if there are fewer than k labels, the headmost

unlabeled element is legal to return. Thus, labeling it maintains the labeling invariant.

Theorem 3. Algorithm 1-2 implements an Out-of-Order k-relaxed queue.

3.4.2.2 Out-of-Order Relaxation Performance

Definition 17. We will call a run heavily loaded if every Dequeue is linearized after a prefix of π

in which there are at least k more instances of Enqueue than instances of Dequeue.

Theorem 4. The amortized time complexity of Dequeue in any heavily-loaded complete, admissi-

ble run of Algorithm 1-2 is no more than d
l
+ ϵ, where l = ⌊k/n⌋.

Proof. Consider the view of a single process pi. When pi first invokes a Dequeue, there are l

elements in pi’s copy of lQueue labeled pi, since the first k elements enqueued are labeled in

round-robin fashion when enqueued. Thus, the first l Dequeues pi performs will be fast, taking ϵ

time each.

The (l+1)th Dequeue will have to synchronize, since there will be no elements in pi’s lQueue

labeled pi. After this slow Dequeue, there will be either l elements labeled pi, or l − 1 if the slow

Dequeue returned an element labeled pi. The pattern of l − 1 or l fast Dequeues, which only

require local computation, followed by one slow Dequeue which synchronizes will then repeat.

The average cost of each repeat of this pattern is no more than

lϵ+ d+ ϵ

l
=

d

l
+ ϵ

We can upper bound the average cost of any prefix of the infinite repetition of this pattern of fast

37

and slow Dequeues by the maximum average cost of a single copy of the pattern, since a prefix

will have the highest average cost when it ends with the slow Dequeue at the end of the pattern.

Since this is an upper bound on the average cost of operations at any process pi, the amortized

cost of operations at all processes will also be bounded above by d
l
+ ϵ.

While the specification of an Out-of-Order k-relaxed queue allows any number of Dequeue

instances to return⊥when there are fewer than k elements in the queue, this may not be practically

very useful. Instead, Algorithm 1-2 provides a stricter guarantee in order to gracefully degrade

performance when the queue is nearly empty. This provides more intuitive behavior, making the

algorithm potentially more useful. We next describe the time complexity of Dequeue in the general

case, when there may be fewer than k elements in the queue.

Definition 18. The effective l, denoted le, of a portion of a time interval in a complete, admissible

run is set to

1. lQueue.size()/n, when a Dequeue locally executes when clean is true (line 30), or

2. min
{
l,
⌊
lQueuei.size()

n

⌋
, lQueuei.unlabelled_size()

}
, when a slow Dequeue labels

elements (line 42)

and remains until a new effective l is set.

Thus, every Dequeue instance in a linearization has an effective l determined by the state of

the simulated queue at its local execution. We next show that each process’ Dequeues maintain

amortized performance determined by their effective l. The proof is very similar to the proof of

Theorem 4, using the fact that there are at most le elements labeled pi at any time.

Theorem 5. Consider a complete, admissible run of Algorithm 1-2. During a time interval in

which the effective l is le, the amortized time complexity of Dequeues is at most d
le
+ ϵ.

3.4.3 Restricted Out-of-Order Relaxed Queues

We now present an algorithm which implements a queue with Restricted Out-of-Order k-

relaxed Dequeues, for k ≥ n. The pseudocode appears as Algorithms 3 and 4. This algorithm

38

uses the idea of locally distributing the oldest elements in the queue to allow processes to return

quickly several times, before they must take time to synchronize their state with other processes. In

addition, the algorithm uses the synchronizing operations to guarantee Dequeues return the head

with sufficient frequency. Doing this imposes extra cost on some operations, because they effec-

tively may be forced to “steal” the head element from another process. The algorithm still has good

amortized performance for sufficiently large k, and performance which improves monotonically as

k increases.

The algorithm assigns elements to different processes by labeling them with process ids. The

correctness argument depends on an invariant of the labeling: every element which has a label in

the local state of a process is legal for an instance of Dequeue by that process to return. Further,

labeled elements will only be returned by the process with whose id they are labeled, unless another

process goes through an expensive synchronization process to steal them. Thus, if a process finds

an element labeled with its own id, it can generally return it quickly without waiting to coordinate

with other processes.

If a Dequeue does not find any elements labeled with its invoking process’ id, then it must find

another element to return, making it a slow Dequeue, since this will be expensive and require syn-

chronization. A slow Dequeue ensures that the head element in the simulated queue is removed,

either by itself or by another, concurrent slow Dequeue. When a process does return the head el-

ement to a Dequeue, by the definition of a Restricted Out-of-Order k-relaxed queue the headmost

k elements in the simulated queue are now legal to return, so the process labels them. Thus, after

a process executes a slow Dequeue, there will be more elements labeled with its id, if there are

enough elements currently in the queue.

To ensure the head is returned, a process pi which invokes a slow Dequeue notifies all other

processes of the operation instance. Each other process pj will mark the element labeled pj which

is nearest the head of the simulated queue (headmost) as unavailable for fast local return and

broadcast it to all, marking it as being relevant to a slow Dequeue invoked at pi. We call this

element the local head for pj . Timers in the algorithm are set such that every process will receive

39

every other process’ local head before it tries to execute the slow Dequeue. Since, if there are any

labeled elements, processes label elements from the head of the queue without skipping, then the

head in the queue will be some process’ local head. Then when a slow Dequeue is executed, it will

return the head of the entire queue, unless another, concurrent slow Dequeue has already returned

it. In this case, the later slow Dequeue need not worry about returning the global head or labeling

elements, and can return any of the local head elements, since they are reserved by their processes.

Since Dequeues synchronize as needed when the simulated queue empties, Enqueues do not

need to synchronize. Thus, we always have fast Enqueues.

3.4.3.1 Restricted Out-of-Order Relaxation Correctness

Throughout this section, line numbers refer to Algorithms 3 and 4.

We must show that the algorithm gives return values for operation instances which allow there

to be a permutation of the instances which respects both the real-time order of instances and the

sequential specification of the relaxed data type. We construct a permutation of the complete

operation instances the algorithm executes and show that it meets these requirements.

Construction 2. Define the sequence π of operation instances in a complete, admissible run of

Algorithm 3-4 as the order given by sorting by ts(op) for each instance op.

First, we will show that Construction 2 respects the real-time order of non-overlapping oper-

ation instances. Then, by showing that all processes locally execute all operation instances in the

order given by π in Construction 2 and that after locally executing the same prefix of π, their local

variables are the same, we show that the algorithm chooses a legal return value for every instance,

implying that the algorithm is correct.

Lemma 9. As defined in Construction 2, the sequence π respects the real-time order of non-

overlapping operation instances.

Proof. Every operation takes at least ϵ time to return, by the timers in lines 3 and 9 and the message

delay, and the difference between any two processes’ local clocks is upper bounded by ϵ. Thus, if

40

Algorithm 3 Code for each process pi to implement a queue with Restricted Out-of-Order k-
relaxed Dequeues for k ≥ n, where l = ⌊k/n⌋.

1: HandleEvent ENQUEUE(val)
2: send (enq, val, ⟨localT ime, i⟩) to all
3: setT imer(ϵ, ⟨enq, val, ⟨localT ime, i⟩⟩, respond)
4: HandleEvent DEQUEUE

5: if lQueue.peekByLabel(pi) ̸= ⊥ then
6: x = lQueue.peekByLabel()
7: x.available = false
8: send (deq_f, x, ⟨localT ime, i⟩) to all
9: setT imer(ϵ, ⟨deq_f, x, ⟨localT ime, i⟩⟩, respond)

10: else send (deq_s, null, ⟨localT ime, i⟩) to all
11: HandleEvent RECEIVE (op, val, ts) FROM pj
12: Pending.insert(⟨op, val, ts⟩)
13: if op = deq_s then
14: clear headsj
15: head = lQueue.peekByLabel(pi)
16: head.available = false
17: send (head, j) to all
18: setT imer(d+ u+ ϵ, ⟨op, val, ts⟩, execute)
19: HandleEvent RECEIVE (val, k) FROM pj
20: headsk[j] = val

21: HandleEvent EXPIRETIMER(⟨op, val, ts⟩, respond)
22: if op == deq_f then Generate Dequeue response with return value val
23: else Generate Enqueue response with return value ACK
24: HandleEvent EXPIRETIMER(⟨op, val, ts⟩, execute)
25: while ts ≥ Pending.min() do
26: ⟨op′, val′, ts′⟩ = Pending.extractMin()
27: executeLocally(op′, val′, ts′)
28: cancelT imer(⟨op′, arg′, ts′⟩, execute)

▷ continued

operation instance op1, invoked at process p1 returns before instance op2 is invoked at process p2,

then op1 is invoked more than ϵ time before op2, so p1’s local clock when op1 is invoked is less

than p2’s when op2 is invoked, and we have ts(op1) < ts(op2). Thus, timestamp order respects the

real-time partial order of operation instances. Since π is sorted by timestamp order, Construction 2

respects the real-time order of non-overlapping operation instances.

41

Algorithm 4 Continuation of algorithm implementing a queue with Restricted Out-of-Order k-
relaxed Dequeue.

29: function EXECUTELOCALLY(op, val, ⟨∗, j⟩)
30: if op == enq then
31: lQueue.enq(val)
32: if clean == true and lQueue.size() ≤ k then
33: let a = (lQueue.size()− 1) mod n
34: lQueue.label(pa, val)

35: else
36: clean = false
37: if op == deq_f then
38: lQueue.remove(val)
39: else if op == deq_s then
40: if lQueue.peekBySet(headsj) ̸= ⊥ then
41: ret = lQueue.deqBySet(headsj)
42: else if lQueue.peekByLabel(pj) ̸= ⊥ then
43: ret = lQueue.deqByLabel(pj)
44: else
45: ret = lQueue.deqByLabel(null)

46: if ∀x ∈ headsj, lQueue.contains(x) == true then
47: labelElements()

48: if ∄deq_s ∈ Pending and ∃headsj[i] for some 0 ≤ j < n then
49: headsj[i].available = true

50: if j == i then Generate Dequeue response with return value ret

51: if lQueue.size() == 0 then clean = true

52: function LABELELEMENTS

53: while lQueue.unlabeledSize() > 0 and
∃j ∈ [0, n− 1] s.t. lQueue.sizeByLabel(pj) < min{l, ⌈lQueue.size()/n⌉} do

54: let m = minj{lQueue.sizeByLabel(pj)}
55: lQueue.label(pm, lQueue.peekByLabel(null))

Theorem 6. Each process running Algorithm 3-4 locally executes all operation instances in times-

tamp order.

Proof. On invocation, each operation instance op1 sends a message to all processes (lines 2, 8, 10).

By our assumptions on message delay, each process receives this message between d−u and d time

later. Each receiving process (including the sender) then adds the operation to the local Pending

priority queue and sets a timer for d+u+ ϵ. When that timer expires, the process will execute op1.

42

Thus, each operation instance is executed at every process no later than 2d+u+ ϵ real time after it

is invoked. An instance can also be executed before that if the execute timer for another instance,

op2, with larger timestamp expires sooner. But the execute timer for op2 cannot go off less than

2d + ϵ time after op2 was invoked, which happens if its message delay was a minimal d − u. By

that time, since the maximum message delay is d, ts(op1) < ts(op2), and we know that op1 could

have been invoked no more than ϵ later in real time than op2, the executing process has op1 and all

instances with smaller timestamps in its Pending queue, and will execute them, before it executes

op2.

Thus, every process locally executes all operation instances in timestamp order.

We continue by showing that the algorithm’s local execution of each operation instances is

correct. That is, we must show that the return value makes the sequence of locally executed in-

stances legal, and that local variables, lQueue, clean, Pending, and the headsj arrays, are left in

a state such that the next operation instance will also return correctly. Since each process executes

instances in the order they appear in π, this will also show that π is a legal sequence of operation

instances.

Lemma 10. After locally executing any prefix π′ of π, in any complete, admissible run E of Al-

gorithm 3-4 where π is the permutation of operation instances in E given by Construction 2,

every process has the same local view of the shared object, as specified by the local variables

lQueue, clean, Pending, and each headsj .

This lemma follows directly from the fact that every process executes operation instances in the

same order and the determinism of the algorithm. We now need only show that the local execution

of each instance returns a correct value and maintains desired invariants on the local variables so

that future instances will also execute correctly.

Theorem 7. In any complete, admissible run of Algorithm 3-4, the permutation π given by Con-

struction 2 is legal by the specification of a queue with a Restricted Out-of-Order k-relaxed

Dequeue.

43

Proof. As before, we construct an inductive argument on local execution of instances in π. To do

this, we again need a labeling invariant, that after any process has locally executed some prefix ρ

of π, for every element x which has a non-⊥ label, ρ · Dequeue(−, x) is legal. We assume that

a prefix ρ of π is legal and satisfies the labeling invariant, and show that the prefix ρ · op of π is

also legal and satisfies the invariant. The base case is the empty sequence, where both claims hold

trivially. Consider the possible operations of which op may be an instance:

Enqueue: Enqueue does not have a return value, so ρ · op is legal.

When an Enqueue is locally executed it places a new element at the tail of lQueue. If clean

is true (i.e. there have been no Dequeues executed since lQueue was last empty) and there are no

more than k elements in the new state of lQueue, then the Enqueue labels the element just en-

queued in round-robin fashion. Since this labeling only occurs as long as no elements are removed

from lQueue, this will result in a maximum of k elements labeled, ⌊k/n⌋ elements labeled for

each process (or ⌈k/n⌉ at some processes, if k is not a multiple of n). Thus, by the specification

of a Restricted Out-of-Order k-relaxed queue, if the next instance is a Dequeue which return a

labeled value, the sequence will be legal, and the invariant holds.

Otherwise, if clean ̸= true, then Enqueue will not change the labeling. Since an Enqueue

cannot make it illegal to return any element in the queue which was previously legal and we as-

sumed the labeling invariant held after local execution of ρ, the invariant holds after local execution

of ρ · op.

Dequeue: We must show that op satisfies (C2)-(C4) in Definition 8. Say that op’s invoking

process is pi.

(C2) Suppose op returns val. There are two cases to consider, depending on whether op is a slow

Dequeue or a fast Dequeue:

If op is fast, then because it marks val as unavailable immediately, no later Dequeue invoked

at pi can return val. Further, no Dequeue invoked at any other process can return val,

because a Dequeue at pj can only return an element labeled pi if pi sends it to pj to place

44

in pj’s headsi array, in line 41. pi will not send val to pj after marking it as unavailable,

because it only sends available values in lQueue (line 15).

If op is a slow Dequeue, then we know that no later fast Dequeue will return val, since pi no

longer has val in its lQueue and a fast Dequeue at any pj could only return an element la-

beled pj in its lQueue which had not been sent to other processes and marked unavailable. A

later slow Dequeue could not return val at any process, because every process executes op-

eration instances in the same order and would have removed val from lQueue when locally

executing op, so val would not be in the executing process’ lQueue when locally executing

the later Dequeue.

(C3) Every element returned by a Dequeue is an element found in lQueue (lines 6, 41, 43, 45).

Since only Enqueues add elements to lQueue, and they only add elements which were

arguments (line 31), every element a Dequeue returns was previously an argument of an

Enqueue, and is unique by the assumption of unique arguments to Enqueues.

(C4) When each process locally executes op, let enq(head) be the first Enqueue in ρ which has

not had a corresponding Dequeue executed. enq(head) is well-defined, since every process

locally executes operation instances in the same order.

If op finds an available element val labeled pi when it is invoked, then it is a fast Dequeue

and quickly returns that element, marking it unavailable in pi’s lQueue. At this time, pi has

locally executed some prefix ρ′ of ρ. By the labeling invariant, ρ′ · op is legal. But once an

element is labeled, it is never unlabeled, so val will still be labeled after ρ and the inductive

hypothesis implies that ρ · op is legal. Processes do not label any elements when locally

executing a fast Dequeue, and a Dequeue does not, by the specification of a queue with

a Restricted Out-of-Order k-relaxed Dequeue, make any element which could previously

have been returned unacceptable to return, so the labeling invariant holds after ρ · op.

If op does not find an element labeled pi, then we have a slow Dequeue. There are three

places the return value for a slow Dequeue may be chosen:

45

Line 41 It may return an available element val labeled pj, j ̸= i from headsi. By the labeling

invariant, returning this value yields a legal sequence of operation instances.

Line 43 By the time op executes, it is possible that another operation has labeled elements, so pi

returns an element val labeled pi. Returning this element also yields a legal sequence,

by the assumption that the execution prior to deq maintains the labeling invariant.

Line 45 In this case, op determines that either there are currently no labeled elements or that

the last time a Dequeue labeled elements, there were fewer than n elements in lQueue

and none were labeled pi. op will then return the headmost unlabeled element in the

queue. In the first case, this is the head of lQueue. This yields a legal sequence,

since the specification always allows returning the head of the relaxed queue. In the

second case, since fewer than k > n elements were labeled, returning the first unlabeled

element in lQueue yields a legal sequence, since it was one of the first k Enqueues

after enq(head). This is also the only time the algorithm may return ⊥, which it will

only do if it is legal, as that only happens if there have been fewer than k Enqueues

since enq(head), because the last time elements were labeled was when a Dequeue

removed the previous head element.

In each case, we have that ρ · op is a legal sequence, by the specification of a queue with

a Restricted Out-of-Order k-relaxed Dequeue. All that now remains for us to prove is that

the labeling invariant holds after local execution of a slow Dequeue by showing that when a

Dequeue labels elements, it labels only elements which yield a legal sequence if a Dequeue

returns them.

A Dequeue only labels elements when every element in headsj , where pj invoked the

Dequeue, is still in lQueue (Line 46). This means that the Dequeue has the headmost

element (in lQueue) with each process’ label. Since the actual head element of lQueue is

always labeled, if any are (Enqueue adds to the bottom of lQueue; Lines 34 and 55), this

means that the Dequeue will return the head of lQueue. Then the headmost k elements in

46

the new state of lQueue are legal to return, since their Enqueues are the first k Enqueues in

π which do not have a corresponding Dequeue. We see that only the headmost k elements in

lQueue are labeled in Lines 52-55. Thus, the labeling invariant is always maintained, since

only clean Enqueues and slow Dequeues label elements.

Theorem 8. Algorithm 3-4 is a correct implementation of a queue with a Restricted Out-of-Order

k-relaxed Dequeue.

3.4.3.2 Restricted Out-of-Order Relaxation Performance

We show the following upper bound on the amortized cost of Dequeues in Algorithm 3-4:

Theorem 9. The amortized time complexity per Dequeue in any heavily loaded, complete, admis-

sible run of Algorithm 3-4 is no more than 2d+ϵ
l

+ ϵ, where l = ⌊k/n⌋.

Proof. Because we consider heavily loaded runs, we know that before any Dequeues are invoked,

each process will have at least l data elements labeled with its id. Because there are no more than l

elements labeled for each process after a Dequeue labels, in some execution at least every (l+1)th

Dequeue invoked at each process must be a deq_s. The l elements labeled for each pi, though,

can each either be removed by deq_fs, or they may be returned at another process by that process’

deq_s.

We use the accounting method of amortized analysis to bound the time complexity as follows:

In counting the time of all Dequeues, we will charge each process ϵ for every element labeled for

that process. We will charge a process 2d + ϵ for a deq_s which is invoked at that process. In

counting the total number of operations, we will count Dequeues at the process whose id is the

label on the returned element. It is possible for a Dequeue to return an unlabeled element, and

this scheme does not count that operation, but since we do count the cost, and are dividing by the

operation count, this does not decrease the upper bound.

Thus, at each process, the average time is low until that process executes a deq_s. At that

point, the average time since the last deq_s at that process is no more than lϵ+(2d+ϵ)
l

, since there

47

have been l elements with that process’ label removed, and the cost to that process is ϵ for the first

l and 2d+ ϵ for the deq_s. Thus, the average cost at every process, and thus the amortized cost of

the algorithm, is no more than 2d+ϵ
l

+ ϵ.

We will later compare this to lower bounds on the performance of algorithms for queues with

unrelaxed Dequeues to show that this relaxation gives better amortized performance. Further, our

bound decreases with increasing k, which shows that stronger relaxation of the data type specifi-

cation allows better performance.

3.5 Lower Bounds on Amortized Time Complexity

For the final results in this chapter, we give lower bounds on the amortized time complexity

of Dequeue operations in queues. We show, first, that both of our algorithms give performance

gains over unrelaxed queues, when we consider amortized time per operation. This verifies our

intuition that a relaxed data type can allow higher performance by reducing the required frequency

of synchronization between processes.

Next, we give lower bounds on the amortized cost of Dequeues for algorithms implementing

queues with relaxed Dequeues. We show that our algorithm for Out-of-Order k-relaxed Dequeue

is approximately optimal (with an extra term of ϵ, the clock skew bound), for reasonable values

of k. We then show a lower bound for the Restricted Out-of-Order k-relaxed Dequeue which

is approximately a factor of two less than the performance of our algorithm. Thus, we see that

we have algorithms that are near-optimal for both of these intuitive relaxations, and implicitly

for Lateness k-relaxed queues, as well, since a Restricted Out-of-Order k-relaxed queue is also

Lateness k-relaxed.

Our proofs rely heavily on the indistinguishability of runs, and the fact that no element can be

returned more than once. We construct runs in which any algorithm with better performance than

the lower bound we wish to show must have multiple processes behave in such a way that more than

one will return the same element, based on the information they have. This contradiction allows

us to conclude that algorithms performing faster than the proposed lower bounds are impossible.

48

Throughout this section, we assume k ≥ n, the range where our algorithms are useful.

3.5.1 Strict Queue Lower Bound

We first consider implementations of unrelaxed queues. Every Dequeue must return the unique

head element in the structure. The proof for the amortized cost is very similar to the proof for the

worst case cost. As we forced one operation instance to wait to make sure that it was not removing

the head a second time, so we can force multiple simultaneous operation instances to wait, giving

a high amortized cost.

Theorem 10. In any linearizable implementation of a (unrelaxed) queue, Dequeue must take at

at least d
(
1− 1

n

)
time, amortized.

Our amortized operation times given by the algorithms for the two relaxations were d
l

and

2d+ϵ
l

+ϵ, respectively. We can see that for l ≥ 1 and n > 2, the first algorithm gives better amortized

performance per operation than the lower bound for unrelaxed queues, and for l ≥ 2, n > 2 and

sufficiently small ϵ, the second algorithm also performs better. Further, as l (and thus k) increases,

the algorithms’ performance will continue to increase, leaving this lower bound farther and farther

behind. This shows that our algorithms give a benefit over prior algorithms for unrelaxed queues,

so we turn our attention to determining how close our algorithms are to optimal.

3.5.2 Out-of-Order Relaxation Lower Bound

Theorem 11. Any algorithm implementing a queue with an Out-of-Order k-relaxed Dequeue with

k < n2 must have an amortized time complexity for Dequeue at least d
l
, where l = ⌊ k

n
⌋.

Proof. Let A be any algorithm implementing an Out-of-Order k-relaxed queue, for k < n2. Sup-

pose that A guarantees that, in any complete, admissible run, the average cost per instance of

Dequeues is strictly less than d
l
.

When Dequeue is invoked, by the definition of the Out-of-Order k-relaxation, it may return

any of the headmost k elements in the queue. This means that as soon as one operation instance

is complete, there is an element that is legal for the next instance to return that was not previously

49

legal, assuming there are more than k elements in the queue. Thus, if a process executes r instances

of Dequeue, without receiving any communication from any other process, all of the elements

returned by those operation instances must have been in the original k + r − 1 headmost elements

in the queue.

Define complete, admissible run E with all message delays d, and p0 initially enqueueing k+ l

elements sequentially, finishing by some real time t. At time t, every process begins invoking

Dequeues as fast as possible (as soon as the previous operation instance returns). They continue

this behavior until time t+ d.

Each process cannot know about the operations being executed at other processes until it re-

ceives a message about them. By our construction, this does not happen until time t + d. Thus,

every process must act as if it is running alone in the interval of time from t to t + d. It must

then complete at least l + 1 operation instances in the interval from time t to t + d, to maintain

the guaranteed average performance of less than d
l
. Further, since no process learns about at least

the first l + 1 Dequeues at any other, the argument in the previous paragraph says that all of these

operation instances must return elements from the original k + (l + 1) − 1 = k + l headmost

elements in the structure.

But we now have at least n(l + 1) instances of Dequeue which must return elements out of a

set of size k + l. Arithmetic shows that if n > l, or n2 > k, then n(l + 1) > k + l. Then, by the

pigeonhole principle, at least two of the operation instances must have returned the same value,

contradicting the assumed correctness of A. Thus, we have the bound.

This bound only holds for l < n, which is equivalent to k < n2, but it is reasonable to think

that at some point, having k significantly larger than the number of available processes ceases to

be as useful in real-world systems, particularly if n is large. Another consideration is that this

relaxation may not be the most useful in practice. When there are fewer than k elements in the

structure, the specification allows returning ⊥, indicating that the structure is empty, even though

it may not be. Thus, there could be algorithms satisfying the specification of this relaxation which

never return every element in the queue. Due to these limitations, we focus our attention next on

50

the Restricted Out-of-Order relaxation, which provides stronger guarantees and, as we have seen,

is not asymptotically more costly to implement.

3.5.3 Restricted Out-of-Order Relaxation Lower Bound

Our last lower bound shows us that Algorithm 3-4 is less than a factor of two above the lower

bound on amortized performance. Because a Restricted Out-of-Order k-relaxed Dequeue satisfies

the conditions of an Out-of-Order k-relaxed Dequeue, we could apply the previous lower bound

to these operations as well. However, we next show a bound without the limitation of k < n2.

Theorem 12. Any algorithm which implements a queue with a Restricted Out-of-Order k-relaxed

Dequeue which guarantees an upper bound c on the amortized time complexity for Dequeue at

all times during any complete, admissible run must have c > d
l
.

Proof. Suppose that some algorithm A implementing a queue with a Restricted Out-of-Order k-

relaxed Dequeue guarantees an average time complexity of c ≤ d
l

in all complete, admissible runs.

We will show that there is a complete, admissible run in which A behaves illegally.

We define a series of complete, admissible runs. In all of the following runs, let all message

delays be d, and assume that all runs begin with an identical sequence of 2k Enqueues invoked at

process p0 and ending before time t− d, which leaves element head at the head of the queue.

Run Ef : Starting at time t, all processes invoke Dequeues as fast as possible as long as they

will finish before time t + d. Because no process can know about what any other process is

doing, each must complete at least l instances by time t + d to meet the guaranteed average time

complexity. Thus, since at least one in every k consecutive Dequeue instances must return the

head, some process returns head to one of its Dequeues.

Run Ehole: Let pi be the process which returned head in Ef . Have all processes pj, j ̸= i

behave exactly as in Ef , while pi does nothing after time t. This run must exist because no pj can

tell the difference between this run and Ef before time t+ d.

Run Eh,a: This run is identical to Ehole up to time t+d, but then an arbitrary process pa invokes

Dequeues as fast as possible starting at time t + d as long as the Dequeue finishes before time

51

t+ 2d. pa must complete at least l Dequeues invoked at or after time t+ d to meet the guaranteed

average time. This means that there are at least k Dequeues in the run, so one must return head.

Because Eh,a is identical to Eh until time t + d, it must be one of the new instances at pa invoked

between t+ d and t+ 2d.

Run Eh,b: Defined exactly as Eh,a, but pa does nothing after t + d and an arbitrary process

pb ̸= pa invokes Dequeues from time t + d to time t + 2d. Here, head must be returned by a

Dequeue at pb between times t+ d and t+ 2d.

Run Ea,b: pa behaves as in Eh,a, pb behaves as in Eh,b, and all other processes behave the same

as they do in both of those runs. By construction, prior to time t + 2d, Ea,b and Eh,a are identical

with respect to pa’s state, steps, and knowledge. Similarly, Ea,b and Eh,b are identical up to t+ 2d

with respect to pb’s state, steps, and knowledge. Thus, both pa and pb will return head to some

Dequeue, which is illegal, contradicting the assumed existence of algorithm A.

3.5.4 Relaxed Stacks

The primary semantic difference between stacks and queues which affects concurrency is that

Push and Pop generally contend with each other, while Enqueue and Dequeue generally do not.

Since our counterexamples do not have concurrent Enqueue and Dequeue instances, all three of

the lower bounds in this section can be straightforwardly adapted to stacks replacing Enqueue with

Push and Dequeue with Pop, relaxing the semantics of Pop analogously to those of Dequeue.

Thus, we achieve analogous results for relaxed stacks as we have shown for relaxed queues.

3.6 Conclusion

We have made an introductory exploration into the benefits of relaxing data types to achieve

higher performance in message-passing systems. Based on the intuition that non-determinism

in a data type could make a lower degree of synchronization between processes sufficient, we

have shown that there is a benefit to be gained by relaxing. First, we showed that the worst-

case operation time is not affected by relaxation for a general class of operations. This follows

from the fact that there are still times when we must have synchronization to enforce coherent

52

behavior. Proceeding from there, we gave two algorithms for queues with relaxed Dequeues

which perform significantly better, in terms of amortized cost, than the worst-case lower bounds

for strict data types, for sufficient levels of relaxation (k ≥ n). These algorithms exploit the non-

determinism in the data type specification to assign different legal elements to different users in

such a way that each user will be able to run locally, and thus quickly, for a time before they

must resynchronize. Even with somewhat more costly synchronizing operations, as in one of

the algorithms, the amortized cost per operation instance is significantly below the worst-case

cost. To formalize this, we show a lower bound on amortized time complexity of Dequeue for

unrelaxed queues. This bound is higher than the performance our algorithms achieve, showing

that there is a strict performance gain from relaxation. We then show lower bounds on amortized

time complexity of Dequeue for relaxed queues. We see that, for moderate relaxation, one of our

algorithms is optimal, and for any level of relaxation, the other is less than twice the lower bound.

Both algorithms have performance which improves as k increases, achieving greater performance

gains from greater relaxation.

53

4. CONSENSUS NUMBERS OF RELAXED QUEUES ∗

4.1 Introduction

Given relaxed data type specifications, as we have presented and implemented so far, we wish

to formally analyze their computational power. In this chapter, we explore the ability of relaxed

data types, exemplified by queues, to solve the asynchronous consensus problem among several

processes which may crash. Solving this problem allows us to implement any other data type

among those processes. Thus, the largest number of processes which can solve consensus using a

given data type, called the consensus number of the type, is a measure of the data type’s computa-

tional strength [15].

We consider the space of possible parameters for three different relaxations of queues: Out-

of-Order, Lateness, and Restricted Out-of-Order. We extend the classical method of bivalency

arguments [15, 17] to handle the non-determinism in relaxed data types. Using this expanded

method, we prove consensus numbers directly for several base classes, and show how these imply

useful bounds on the consensus numbers of other parameter values.

To generalize our results, we show how parameterization of the relaxation of the three opera-

tions on a queue gives a 3-dimensional space. In this space, we give lemmas based on those in [7]

which allow us to extend bounds proved for certain points across infinite areas. This allows us to

totally cover the space of possible relaxations with only a handful of results.

4.1.1 Related Work

Consensus numbers were defined by Herlihy in [15] and are the standard measure of the com-

putational strength of a shared data type. He showed that in an asynchronous system, a consensus

object among a certain number of processes can wait-free implement any other shared data type

∗Parts of the material in this chapter are reprinted from
E. Talmage and J.L. Welch, “Anomalies and Similarities among consensus numbers of variously-relaxed queues,” in

Networked Systems - 5th International Conference, NETYS 2017, Marrakech, Morocco, May 17-19, 2017, Proceedings
(A.E. Abbadi and B. Garbinato, eds.), vol. 10299 of Lecture Notes in Computer Science, pp. 191-205, Copyright 2017
by Springer.

54

among those processes. Thus, if a shared object can implement consensus among n processes, it

is “universal” among n processes and can implement any data type in that system.

Lo and Hadzilacos [16] showed that consensus numbers do not form a robust wait-free hier-

archy, in that multiple types of low consensus number can combine to implement types of high

consensus number, if non-deterministic types are allowed. It remains an open question whether

this is true for any level of non-determinism, or what minimum level of non-determinism causes

the hierarchy to collapse. For single-type implementations, those using objects of a single type

to solve consensus, though, consensus numbers are still useful, even for non-deterministic types,

such as relaxed queues. [16] also set up the mechanisms for proving upper bounds on consensus

numbers of non-deterministic types, which we use here.

Shavit and Taubenfeld [7] began exploring the computational power of relaxed data types by

proving consensus numbers for some relaxed queues. Specifically, they proved a selection of

results for Out-of-Order relaxed queues, one of the relaxations specified in [4] and which we have

considered in this dissertation. We extend their work, showing explicitly how their results extend to

other possible Out-of-Order queues and proving results for Lateness and Restricted Out-of-Order

relaxed queues as well.

Chen et al. [22] explored the edge-condition behavior of several shared objects, with respect

to their consensus numbers. They showed that the consensus power of queues is different if a

Dequeue on an empty queue returns a unique ⊥ value or breaks and can never be used again, and

several other examples. While we do not explore different edge-condition behaviors in depth, we

note that the results we obtain do depend on our assumptions about when a Dequeue or Peek can

see an empty queue.

4.2 Characterizing the Space of Relaxed Queues

We will consider relaxations of augmented queues where any or all of the three operations can

be relaxed. Recall from Section 2.1.1, that the relaxation parameter for each operation is taken

from Z∗, an extension of the positive integers. Thus, we can visualize the space of possible relaxed

queues, for a given relaxation type, as a 3-dimensional lattice. We can thus state the following

55

general version of two lemmas from [7] and then reason about the space of consensus numbers of

relaxed queues.

Lemma 11. For t ∈ {O,L,R} and a, b, c, a′, b′, c′ ∈ Z∗ such that a ≤ a′, b ≤ b′, and c ≤ c′,

CN(tQueue[a, b, c]) ≥ CN(tQueue[a′, b′, c′])

Lemma 11 states that relaxing or increasing the relaxation of an operation, or disabling an

operation, will not increase a type’s consensus number. The less-relaxed version of the oper-

ation satisfies the definition of the more-relaxed version, so any consensus algorithm using the

more-relaxed version will also work with the less-relaxed version of the operation. Similarly, any

algorithm which does not use a particular operation will work if its underlying data type is replaced

by a type which differs only in that it provides additional operations.

Lemma 11 allows us to prove consensus number bounds for a finite number of points in the

relaxation space and immediately have either an upper or lower bound on the consensus strength of

all points in the relaxation space. In the rest of the chapter, we will fill in the consensus numbers of

all relaxations of the three types defined above. We will use standard techniques, with a few novel

twists, to show the consensus numbers of a handful of specific relaxations and apply Lemma 11,

as well as the next two lemmas relating the spaces of different relaxation types, to achieve results

for all relaxation values.

Since we are considering different types of relaxation, we state the next lemma to show some

points where the 3-dimensional spaces of consensus numbers for each relaxation type are the same.

Disabled operations are no different in different types of relaxation and a relaxation parameter of 1

means that the operation is not relaxed. Finally, recall that all relaxation types are equivalent with

parameter ∗, imposing no ordering constraints on the operation.

Lemma 12. For a, b, c ∈ {1, ∗, ∅},

CN(OQueue[a, b, c]) = CN(LQueue[a, b, c]) = CN(RQueue[a, b, c])

Similarly, since an RQueue[a, b, c] satisfies both the definition of an OQueue[a, b, c] and of an

56

LQueue[a, b, c], any algorithm using one of these relaxed queues will be correct if all of its relaxed

queues are replaced with RQueue[a, b, c]s. We thus have the following lemma:

Lemma 13. For a, b, c ∈ Z∗,

CN(RQueue[a, b, c]) ≥ max{CN(OQueue[a, b, c]), CN(LQueue[a, b, c])}

We end this section with the results for unrelaxed queues from [15]. The results stated in [15]

are for Queue[1, 1, 1] and Queue[1, 1, ∅], respectively, but the algorithms apply exactly as stated

to the below versions, which are more useful for determining the values of relaxed queues.

Theorem 13.

• CN(Queue[1, ∅, 1]) =∞, and thus, CN(Queue[1, b, 1]) =∞,∀b ∈ Z∗

• CN(Queue[∅, 1, ∅]) ≥ 2, so CN(Queue[a, 1, c]) ≥ 2,∀a, c ∈ Z∗.

These theorems imply that any relaxation which provides a Dequeue[1] operation will have

consensus number at least 2 and any relaxation which provides Enqueue[1] and Peek[1] will have

infinite consensus number. In the rest of the paper, we will show where the boundaries between

infinite and finite consensus number are, and those between consensus number 1 and 2. This allows

us to understand which relaxations have maximum computational power and which have no more

power than a register.

4.3 Relaxations Are Not All Equivalent

Before we get into the details of exploring every possible relaxation, we draw attention to two

particular interesting results. This also allows us to showcase the extended techniques we use for

proving consensus numbers that are necessary for non-deterministic data types.

A large part of the motivation for determining the consensus number of relaxed queues is to ease

the choice of data type to use in solving a particular problem. However, if the consensus numbers

of relaxed queues were easily predictable, or always the same for every type of relaxation, it would

57

hardly be worth proving them all. However, we here show that different types of relaxation do, in

fact, have different consensus numbers for the same relaxation parameters. This seems an intuitive

result, but is not entirely obvious to verify.

We also observe that it is important to be completely familiar with the consensus numbers

because they change suddenly. In this result, the choice of relaxation type determines whether the

consensus number is 2 or ∞. We will shortly see that even increasing a single parameter by as

little as 1 can have a similarly disastrous effect on the computational strength of a data type. This

leads to the conclusion that it is imperative to fully understand the space of consensus numbers of

relaxed queues.

The proof of the following theorem exemplifies the extra detail that is required for proving

impossibility for non-deterministic data types. The number of cases which we must consider in-

creases, to handle different possible choices for the non-determinism. The proof, particularly in

Case 1b, also shows the extra leverage we get from non-determinism. If one branch of a non-

deterministic possibility is enabled, we can argue that another is as well, and use that to show the

desired result.

Theorem 14. For a > 1 ∈ Z+, CN(RQueue[a, 1, 1]) = CN(OQueue[a, 1, 1]) = ∞, but

CN(LQueue[a, 1, 1]) = 2.

Proof. First, we show that CN(RQueue[a, 1, 1]) = CN(OQueue[a, 1, 1]) = ∞ by giving Al-

gorithm 5, a consensus algorithm for any number of processes using one object of the weaker

type OQueue[a, ∅, 1]. By Lemma 11, this type will have at most as high a consensus number

as OQueue[a, 1, 1]. Then, by Lemma 13, replacing the OQueue[a, 1, 1] with an RQueue[a, 1, 1]

will not affect the algorithm’s correctness, so the result holds for both types of relaxed queue, as

claimed.

Because each Enqueue[a] places its argument in one of the tailmost a positions of the OQueue,

after a instances of Enqueue[a] have completed, the head of the OQueue is unaffected by further

Enqueue[a]s. By executing a instances itself, each process guarantees that it calls Peek() after the

head element is fixed. Thus, every process’ Peek() returns the same value and all process decide

58

Algorithm 5 Consensus algorithm using one (unnamed) object of type OQueue[a, ∅, 1]; code for
process pi with private input input

1: for a iterations do
2: Enqueue[a](input)
3: end for
4: decide(Peek())

the same value in a finite number of steps. Further, the returned value was some process’ input,

because all items put in the OQueue were processes’ inputs.

Next, we note that the consensus algorithm from [15] using unrelaxed queues will also work

using an LQueue[a, 1, 1], since it only requires the Dequeue operation. This implies half our

remaining result, that CN(LQueue[a, 1, 1]) ≥ 2. Finally, we need to show that there is no wait-

free consensus algorithm for n ≥ 3 processes using LQueue[a, 1, 1] objects.

Claim 1. CN(LQueue[a, 1, 1]) ≤ 2

Assume that some algorithm A can solve consensus among n ≥ 3 processes using only reg-

isters and LQueue[a, 1, 1]s. By the lemmas in Section 2.4, we know that there is some critical

configuration in some execution of A. Let C be an arbitrary such critical configuration. We then

know that all enabled steps access the same shared LQueue[a, 1, 1] object and must all be mutators.

We will consider the possibilities for the types of enabled steps. First, note that by the argument for

traditional queues in [15], any two Dequeue[1] instances must lead to the same valency. Thus, at

least one process must have an Enqueue[a] enabled. We consider two cases: either some process

has an enabled Dequeue[1], or all processes have an Enqueue[a] enabled.

1. Some process has a Dequeue enabled. WLOG, call that process p1, its enabled step op1, and

suppose that C ·op1 is 1-valent. Since C is bivalent and Dequeue is deterministic, there must

be another process with an enabled step that leads to a 0-valent configuration. WLOG, call

that step op0 by process p0. Because two enabled Dequeue steps lead to the same valency,

op0 must be an instance of Enqueue[a], op0 = Enqueued0(x), i.e. op0 places element x at

distance d from the tail of the LQueue. We divide the argument into cases based on whether

59

the LQueue on which enabled steps operate is empty in C.

(a) The LQueue is empty in C: Then C ·op1 and C ·op0 ·op1 both leave the LQueue empty,

so these two configurations are indistinguishable to p2. This contradicts the univalency

lemma, since they have different valencies.

(b) The LQueue has size s > 0 in C: We begin by claiming that any 0-valent Enqueue[a],

e.g. op0, must insert x at the head of the LQueue. Assume to the contrary, that op =

Enqueuet(x) is enabled in C with t < s and C ·op is 0-valent. op must also be enabled

in C ·op1, as op1 is a Dequeue, so the lateness of Enqueue[a] is the same in C ·op1 as in

C. Then C · op · op1 is equal to C · op1 · op, since the Enqueue[a] and Dequeue change

different parts of the LQueue and thus do not affect each other. This is a contradiction,

since C · op · op1 is 0-valent, C · op1 · op is 1-valent, and a configuration cannot be both

0-valent and 1-valent.

By this argument, we know that op0 = Enqueued0(x) must insert its element to the head

of the LQueue, so d = s. Consider the possibilities for p2’s enabled step(s) in C. p2

must have either an Enqueue[a] or a Dequeue enabled. If an Enqueue[a] is enabled,

then an Enqueue[a] to the tail (which is not the head because the LQueue is not empty)

must be enabled, by the definition of an LQueue. This Enqueue[a] must lead to a 1-

valent state by the same argument that op0 is to the head. If p2 has a Dequeue enabled,

it must also lead to a 1-valent state, as mentioned above. Let op2 denote whichever of

these two steps is enabled for p2 in C.

The state of the LQueue is equal in C ·op0 ·op1 and in C, since in the first configuration,

op0 inserts its element at the head, so op1 removes it. Then C · op0 · op1 · op2 and

C · op2 are indistinguishable to p2. But this contradicts the univalency lemma, since

C · op0 · op1 · op2 is 0-valent and C · op2 is 1-valent.

2. No process has a Dequeue enabled. We claim that for some process pi, the step opi =

Enqueue0i (x) is enabled and for some pj ̸= pi and d ≥ 0, opj = Enqueuedj (y) is enabled,

60

such that C · opi and C · opj have different valencies. That is, there is an Enqueue[a] to the

tail of the LQueue which leads to a different valency than some other Enqueue[a] instance

to some location (possibly the same). This must be true, because otherwise, an Enqueue[a]

by pj to any location must lead to the same valency as opi, an Enqueue[a] by pi to any

location must lead to the same valency as opj , and since those are the same valency, all

enabled steps by pi and pj lead to the same valency. To invalidate the claim, this must hold

for any pair of processes, so all enabled steps by any of the three processes must lead to the

same valency. But that implies that C is univalent, contradicting our assumption that it is

critical, and therefore bivalent.

WLOG, assume i = 0 and C · op0 is 0-valent, while j = 1 and C · opj is 1-valent. By the

definition of an LQueue[a, 1, 1], lateness will be 0 after op0, since it enqueues to the tail

of the LQueue. Thus, op′1 = Enqueued+1
1 (y) is enabled in C · op0. Since op0 enqueues

an element at the head of the LQueue, it is always enabled. Thus, both C · op0 · op′1 and

C · op1 · op0 are reachable configurations. These two configuration have the same shared

state, but different valencies, so they are indistinguishable to p2 and violate the univalency

lemma.

Thus, in every possible execution from an arbitrary critical configuration C, we reach a contra-

diction, which implies that our assumed algorithm A cannot exist.

4.4 Some Relaxations Lose all Power

Here, we give another example proof to demonstrate the other major technique by which we

prove upper bounds on consensus numbers. The hiding technique used in this proof was introduced

in [23] and is a formal and general version of a technique used to prove bounds for queues with

relaxed Peeks in [7]. Here, we exploit the non-determinism of the relaxed data type to force

certain return values at each process. If each process only sees its own actions after a critical

configuration, then it must conclude that it is running alone. Since different processes’ steps have

different valencies, this leads to erroneous decision values, proving the impossibility result.

61

We also show that even a very slight relaxation, moving from a Peek[1] to a Peek[2], drops

the consensus number of every type of relaxed queue we consider from ∞ to at most 2. This

illustrates the ease with which a developer could use the wrong relaxation and lose all guarantees

on computational power, unless all relaxations’ consensus numbers are known.

Theorem 15. CN(RQueue[1, ∅, c]) = 1,∀1 < c ∈ Z∗.

Proof. Assume there is an algorithm A which solves consensus among 2 processes using only

registers and RQueue[1, ∅, c] objects. From Section 2.4, we know that A must have a critical

configuration. Let C be an arbitrary critical configuration. WLOG, we say that process p0 has step

op0 enabled and C · op0 is 0-valent. Similarly, p1 has op1 enabled and C · op1 is 1-valent. Every

enabled step in a critical configuration must be a mutator, so both op0 and op1 are instances of

Enqueue (since Dequeue is disabled). Say that op0 = Enqueue(x0) and op1 = Enqueue(x1).

Note that Enqueue is not relaxed, so both of these instances will add an element at the tail of the

RQueue.

Configurations C, C · op0, C · op1, C · op0 · op1, and C · op1 · op0 all have different shared

state, so the univalency lemma does not help us. Instead, we argue that there are executions from

C · op0 · op1 and C · op1 · op0 such that all instances of Peek[c] return the same values in both

executions, preventing the two processes from determining which execution they are in. We do

this by exploiting the non-determinism of Peek[c].

Before we consider the specific executions, we claim that the RQueue must be empty in C. If

not, then because there is no way to remove elements from the RQueue, and it is always legal for

a Peek[c] to return the element at the head of the RQueue, there are executions in which every

Peek[c] does return the head. If the RQueue is not empty in C and every Peek[c] returns the head

in an execution from C · op0 and in an execution from C · op1, then neither process can tell which

execution they are in, and will decide the same value in both, violating valency in one or the other.

Consider the following execution prefix from 0-valent configuration C ·op0 ·op1, which we call

E0:

62

1. Repeat the following steps until some process decides. As soon as any process decides,

pause both processes.

2. Allow p0 to run alone until it executes a Peek[c], let that Peek[c] return x0 which is always

legal because it is the head, then continue until it has a second Peek[c] enabled.

3. Next, allow p1 to similarly run alone until it has executed one Peek[c], which returns x1, and

has a second enabled. The Peek[c] can return x1 because x1 is the second element in the

RQueue, c ≥ 2, and p0’s Peek[c] just returned the head, which resets lateness to 0, meaning

that it is legal for a Peek[c] to return the second element in the RQueue.

Consider a second execution prefix from the 1-valent configuration C · op1 · op0, which we call

E1:

1. Repeat the following steps until some process decides. As soon as any process decides,

pause both processes.

2. Allow p1 to run alone until it executes one Peek[c], let that return x1, and continue until it

has a second Peek[c] enabled. x1 is the head element in the RQueue, so it is always legal for

a Peek[c] to return, and doing so resets the lateness.

3. Let p0 then run alone until it executes a Peek[c], returning x0, and continue until it has a

second Peek[c] enabled. Similarly to E0, x0 is the second element and p1 just reset the

lateness, so x0 is a legal return value to Peek[c].

We now need to show that both processes will decide the same values in both executions.

Both processes receive the same return values to all operation instances in E0 and E1, so they

each execute the same series of steps in both execution prefixes. If p0 decides first in E0, say after

executing h instances of Peek[c], then p1 executes at least h − 1 instances of Peek[c] in E0. But

since p1 behaves the same way in both execution prefixes, it must also execute at least h Peek[c]

instances in E1, since p0 decides after at least h. Thus, even if p1 executes exactly h Peek[c]s in E1

and decides first, p0 will only execute one Peek[c] after p1’s last (which resets lateness to 0) before

63

deciding. p0 can then receive the same return value (x0) to that hth Peek[c] instance extending E1

as it did its hth Peek[c] instance in E0. Since p0 will decide before executing another Peek[c], it

will decide the same value in both execution prefixes. That contradicts the fact that the two prefixes

are from univalent configurations with different valencies. Similarly if p1 decides first in E1.

We have shown that p0 cannot decide first in E0, so p1 must decide first in E0, which implies

that p1 executes strictly fewer Peek[c] instances than p0. But we also know that p1 cannot decide

first in E1, so the same argument shows that p0 must execute strictly fewer Peek[c] instances than

p1. This leads to a contradiction, showing that the assumed algorithm A cannot exist.

We can then extend this result, to cover another column in the relaxation space for each type of

relaxation, by the following lemma:

Lemma 14. ∀t ∈ {O,L,R}, CN(tQueue[a, ∗, c]) ≤ CN(tQueue[a, ∅, c]),∀a, c ∈ Z∗

Proof. Suppose a consensus algorithm A exists for some relaxed queue tQueue[a, ∗, c], with t ∈

{O,L,R} and a, c ∈ Z∗ among some number n of processes such that CN(tQueue[a, ∅, c]) < n.

Then A must invoke Dequeue[∗] at some point in its execution, or it would also solve consensus

using objects of type tQueue[a, ∅, c], contradicting the assumption on tQueue[a, ∅, c]’s consensus

number. But with a Dequeue[∗], every instance can return⊥ in each type of relaxation. Thus, from

any initial configuration, there is an execution of A in which Dequeue[∗] is a no-op. If A can suc-

cessfully solve consensus in this execution, then we can replace each instance of Dequeue[∗] with

a constant function to generate an algorithm A′ which can solve consensus using tQueue[a, ∅, c]

from the same initial state, a contradiction.

Theorem 16. ∀t ∈ {O,L,R}, CN(tQueue[a, ∗, c]) = 1,∀a ∈ Z∗, 1 < c ∈ Z∗

4.5 Filling the Space

All we have left to do is to prove upper and lower bounds on boundary cases. These are the

cases where adjusting relaxation parameters changes the consensus number of the relaxed queue.

Most upper bounds we need only to prove for RQueues, since by Lemma 13 an upper bound for

64

RQueues applies to both LQueues and OQueues. On the other hand, algorithms for either LQueues

or OQueues give lower bounds for RQueues as well.

We do not present complete proofs for the impossibility results in this section, as they all

closely follow the templates of the proofs given in Sections 4.3 and 4.4. We present consensus

algorithms for lower bounds, but omit the proofs since they are completely standard. At the end

of the section, we present Table 4.1, a graphical representation of the relaxation spaces for each

relaxation type.

4.5.1 RQueue

For RQueues, we show that any relaxation of Peek results in consensus number at most 2. This

upper bound applies to the entire relaxation space of RQueue[a, b, c]s, except where c = 1. For

that part of the space, we show that when a reaches ∗, then any further relaxation has consensus

number at most 2, and if both a and b reach ∗, then the RQueue is no stronger for consensus than

a register.

The result in Theorem 15 shows that when we have relaxed Peeks (c > 1), we drop from

consensus number 2 to 1 when the relaxation of Dequeue[b] reaches b = ∗. The following theo-

rems, along with the result we will show in the next section for OQueue[∅, b, ∅], completely and

precisely give the consensus numbers of any RQueue[a, b, c] with a, b, c ∈ Z∗.

Theorem 17. CN(RQueue[1, 1, c]) ≤ 2,∀c > 1 ∈ Z∗

This theorem is proved with a hiding proof, similar to the proof of Theorem 15. In construct-

ing the indistinguishable executions, we need only be careful of when the elements Enqueued

immediately after a critical configuration are Dequeued.

The next two bounds both have proofs in the style of Theorem 14. Both bounds involve ar-

guing that if one Enqueue[∗] is enabled, then Enqueue[∗]s to other locations in the RQueue

must also be enabled, and showing that a contradiction arises. To prove the second, show that

CN(RQueue[∗, ∅, 1]) = 1 and use Lemma 14. The third bound in Theorem 18 is implied by an

algorithm for LQueue[∅, b, ∅], which we will show in the section on LQueues as Algorithm 6.

65

Theorem 18.

• CN(RQueue[∗, 1, 1]) ≤ 2

• CN(RQueue[∗, ∗, 1]) = 1

• CN(RQueue[∅, b, ∅]) ≥ 2, 1 < b < ∗ ∈ Z∗

4.5.2 LQueue

By Lemma 13, upper bounds for RQueues also apply to LQueues, so we immediately have:

• CN(LQueue[1, 1, c]) ≤ 2, 1 < c ∈ Z∗

• CN(LQueue[1, ∗, c]) = 1, 1 < c ∈ Z∗

To determine the consensus numbers of all other LQueue[a, b, c]s, we also need the following

two bounds. The proof of the first shows that CN(LQueue[a, ∅, 1]) = 1, using the techniques of

Theorem 14, then expands the result with Lemma 14. To prove the second, we simply demonstrate

a consensus algorithm for 2 processes in Algorithm 6. Intuitively, we can see that the algorithm

is correct since the definition of Dequeue[b] on an LQueue requires that at least one in every b

consecutive Dequeue[b] instances returns the element at the head of the LQueue. Thus, one of the

Dequeue[b] instances will return the initial element, and the process which does not Dequeue[b]

that element will know the other process must have.

Theorem 19.

• CN(LQueue[a, ∗, 1]) = 1, ∀a > 1 ∈ Z∗

• CN(LQueue[∅, b, ∅]) ≥ 2, ∀b > 1 ∈ Z+

4.5.3 OQueue

We have the following results from those for RQueues and the fact that an upper bound on the

consensus number of an RQueue[a, b, c] implies the same upper bound on OQueue[a, b, c].

66

Algorithm 6 Consensus algorithm for process pi, i ∈ {0, 1} with input inputi, using one (un-
named) object of type LQueue[∅, b, ∅], initially containing ⊤, and two registers R0, R1

1: Ri.write(inputi)
2: for b iterations do
3: ret← Dequeue[b]()
4: if ret == ⊤ then decide(inputi)

5: end for
6: decide(R1−i.read())

• CN(OQueue[1, 1, c]) ≤ 2, 1 < c ∈ Z∗

• CN(OQueue[1, ∗, c]) = 1, 1 < c ∈ Z∗

• CN(OQueue[∗, 1, 1]) ≤ 2

• CN(OQueue[∗, ∗, 1]) = 1

The following theorem determines the last of the consensus numbers of relaxed OQueues.

The two bounds have very similar proofs, using the techniques of Theorem 14 applied to both

Enqueue[a] and Dequeue[b], taking advantage of the non-determinism implying that multiple

steps by a single process may be enabled in a single configuration.

Theorem 20.

• CN(OQueue[1, b, c]) = 1, ∀1 < b, c ∈ Z∗

• CN(OQueue[∗, b, 1]) = 1, ∀1 < b ∈ Z∗

67

Ta
bl

e
4.

1:
G

ra
ph

ic
al

R
ep

re
se

nt
at

io
n

of
R

el
ax

at
io

n
Sp

ac
e

fo
rD

iff
er

en
tR

el
ax

at
io

n
Ty

pe
s

..
[∅
,1

,1
]

2
[∅
,b
,1

]
2

[∅
,∗

,1
]

1
[∅
,∅

,1
]

(1
)

[∅
,1

,c
]

2
[∅
,b
,c
]

2
[∅
,∗

,c
]

1
[∅
,∅

,c
]

(1
)

[∅
,1

,∗
]

2
[∅
,b
,∗

]
2

[∅
,∗

,∗
]

1
[∅
,∅

,∗
]

(1
)

[∅
,1

,∅
]

2
[∅
,b
,∅

]
2

[∅
,∗

,∅
]

1
[∅
,∅

,∅
]

(1
)

.
[∗
,1

,1
]

2
(i

m
p)

[∗
,b
,1

]
2

[∗
,∗

,1
]

1
(i

m
p)

[∗
,∅

,1
]

1
[∗
,1

,c
]

2
[∗
,b
,c
]

2
[∗
,∗

,c
]

1
[∗
,∅

,c
]

1
[∗
,1

,∗
]

2
[∗
,b
,∗

]
2

[∗
,∗

,∗
]

1
[∗
,∅

,∗
]

1
[∗
,1

,∅
]

2
[∗
,b
,∅

]
2

[∗
,∗

,∅
]

1
[∗
,∅

,∅
]

(1
)

.

[a
,1

,1
]

∞
[a
,b
,1

]
∞

[a
,∗

,1
]

∞
[a
,∅

,1
]

∞
[a
,1

,c
]

2
[a
,b
,c
]

2
[a
,∗

,c
]

1
[a
,∅

,c
]

1
[a
,1

,∗
]

2
[a
,b
,∗

]
2

[a
,∗

,∗
]

1
[a
,∅

,∗
]

1
[a
,1

,∅
]

2
[a
,b
,∅

]
2

[a
,∗

,∅
]

1
[a
,∅

,∅
]

(1
)

.

[1
,1

,1
]

∞
[1
,b
,1

]
∞

[1
,∗

,1
]

∞
[1
,∅

,1
]

∞
[1
,1

,c
]

2
(i

m
p)

[1
,b
,c
]

2
[1
,∗

,c
]

1
(i

m
p)

[1
,∅

,c
]

1
[1
,1

,∗
]

2
[1
,b
,∗

]
2

[1
,∗

,∗
]

1
[1
,∅

,∗
]

1
[1
,1

,∅
]

2
[1
,b
,∅

]
2

[1
,∗

,∅
]

1
[1
,∅

,∅
]

(1
)

.

R
Q
u
eu

e[
]

.

[∅
,1

,1
]

2
[∅
,b
,1

]
2

[∅
,∗

,1
]

1
[∅
,∅

,1
]

(1
)

[∅
,1

,c
]

2
[∅
,b
,c
]

2
[∅
,∗

,c
]

1
[∅
,∅

,c
]

(1
)

[∅
,1

,∗
]

2
[∅
,b
,∗

]
2

[∅
,∗

,∗
]

1
[∅
,∅

,∗
]

(1
)

[∅
,1

,∅
]

2
[∅
,b
,∅

]
2

(a
lg

)
[∅
,∗

,∅
]

1
[∅
,∅

,∅
]

(1
)

.

[∗
,1

,1
]

2
[∗
,b
,1

]
2

[∗
,∗

,1
]

1
[∗
,∅

,1
]

1
[∗
,1

,c
]

2
[∗
,b
,c
]

2
[∗
,∗

,c
]

1
[∗
,∅

,c
]

1
[∗
,1

,∗
]

2
[∗
,b
,∗

]
2

[∗
,∗

,∗
]

1
[∗
,∅

,∗
]

1
[∗
,1

,∅
]

2
[∗
,b
,∅

]
2

[∗
,∗

,∅
]

1
[∗
,∅

,∅
]

(1
)

.

[a
,1

,1
]

2
(i

m
p)

[a
,b
,1

]
2

[a
,∗

,1
]

1
(i

m
p)

[a
,∅

,1
]

1
[a
,1

,c
]

2
[a
,b
,c
]

2
[a
,∗

,c
]

1
[a
,∅

,c
]

1
[a
,1

,∗
]

2
[a
,b
,∗

]
2

[a
,∗

,∗
]

1
[a
,∅

,∗
]

1
[a
,1

,∅
]

2
[a
,b
,∅

]
2

[a
,∗

,∅
]

1
[a
,∅

,∅
]

(1
)

.

[1
,1

,1
]

∞
[1
,b
,1

]
∞

[1
,∗

,1
]

∞
[1
,∅

,1
]

∞
[1
,1

,c
]

2
[1
,b
,c
]

2
[1
,∗

,c
]

1
[1
,∅

,c
]

1
[1
,1

,∗
]

2
[1
,b
,∗

]
2

[1
,∗

,∗
]

1
[1
,∅

,∗
]

1
[1
,1

,∅
]

2
[1
,b
,∅

]
2

[1
,∗

,∅
]

1
[1
,∅

,∅
]

(1
)

.

L
Q
u
eu

e[
]

.

[∅
,1

,1
]

2
[∅
,b
,1

]
1

[∅
,∗

,1
]

1
[∅
,∅

,1
]

(1
)

[∅
,1

,c
]

2
[∅
,b
,c
]

1
[∅
,∗

,c
]

1
[∅
,∅

,c
]

(1
)

[∅
,1

,∗
]

2
[∅
,b
,∗

]
1

[∅
,∗

,∗
]

1
[∅
,∅

,∗
]

(1
)

[∅
,1

,∅
]

2
(a

lg
)

[∅
,b
,∅

]
1

[∅
,∗

,∅
]

1
[∅
,∅

,∅
]

(1
)

.

[∗
,1

,1
]

2
[∗
,b
,1

]
1

[∗
,∗

,1
]

1
[∗
,∅

,1
]

1
[∗
,1

,c
]

2
[∗
,b
,c
]

1
[∗
,∗

,c
]

1
[∗
,∅

,c
]

1
[∗
,1

,∗
]

2
[∗
,b
,∗

]
1

[∗
,∗

,∗
]

1
[∗
,∅

,∗
]

1
[∗
,1

,∅
]

2
[∗
,b
,∅

]
1

[∗
,∗

,∅
]

1
[∗
,∅

,∅
]

(1
)

.

[a
,1

,1
]

∞
[a
,b
,1

]
∞

[a
,∗

,1
]

∞
[a
,∅

,1
]

∞
[a
,1

,c
]

2
[a
,b
,c
]

1
[a
,∗

,c
]

1
[a
,∅

,c
]

1
[a
,1

,∗
]

2
[a
,b
,∗

]
1

[a
,∗

,∗
]

1
[a
,∅

,∗
]

1
[a
,1

,∅
]

2
[a
,b
,∅

]
1

[a
,∗

,∅
]

1
[a
,∅

,∅
]

(1
)

.

[1
,1

,1
]

∞
[1
,b
,1

]
∞

[1
,∗

,1
]

∞
[1
,∅

,1
]

∞
(a

lg
)

[1
,1

,c
]

2
[1
,b
,c
]

1
[1
,∗

,c
]

1
[1
,∅

,c
]

1
[1
,1

,∗
]

2
[1
,b
,∗

]
1

[1
,∗

,∗
]

1
[1
,∅

,∗
]

1
[1
,1

,∅
]

2
[1
,b
,∅

]
1

[1
,∗

,∅
]

1
[1
,∅

,∅
]

(1
)

.

O
Q
u
eu

e[
]

68

4.5.4 Chart of Results

Finally, we give a graphical presentation of our results in Table 4.1. Recall that for each relax-

ation type, we have a 3-dimensional lattice. In the charts, we use a, b, c to indicate integers greater

than 1, since it happens that within that range, consensus numbers do not change. Moving right

in a grid increases the relaxation of Dequeue, moving down increases the relaxation of Peek, and

moving front-to-back from one grid to the next increases the relaxation of Enqueue.

We mark cells with “(imp)” or “(alg)” to indicate an impossibility result or algorithm proved or

restated in this chapter. Lemma 11 implies that consensus numbers must decrease while moving

to the right or down within a single grid or moving back from one grid to the next. An algorithm,

giving a lower bound on a consensus number, implies the same lower bound for all cells above, to

the left, and in more-forward grids, since those cells have stronger and/or more operations. Cells

containing “(1)” indicate vacuous data structures which do not have both an accessor and a mutator.

4.6 Conclusion

In this chapter, we have explored the space of parameterized relaxations for three related types

of relaxed queues. We used a visualizable description of the three-dimensional parameter space of

each relaxation to allow us to draw conclusions about every point in the space from a handful of

carefully-chosen parameter choices.

Having determined the consensus number of each possible relaxation of these three types, we

can draw interesting conclusions about what effect different amounts and types of relaxation have

on the computational power of a data type. For instance, we note that for every relaxation type,

only queues with an unrelaxed Peek operation have infinite consensus number. Even the slightest

relaxation of Peek reduces the consensus number to 2 or less.

In fact, none of these relaxation types have consensus numbers between 2 and∞. This means

that, as far as computational guarantees are concerned, there is little purpose in using a slightly-

relaxed queue. If performance is the primary concern, the degree of relaxation should be increased

as much as possible, as that leads to the possibility of more efficient implementations of the data

69

type [5].

This work generalizes that in [7], which considers only Out-of-Order relaxed queues, which

we refer to as OQueues. This allows us to see the relationship between the strength of different

relaxations, where the same parameters can lead to different consensus numbers, as shown in

Section 4.3. We do note that we use a slightly different definition of OQueue than that in [7].

They do not allow a non-empty relaxed queue with fewer than k elements to return ⊥, indicating

an empty queue. Under this definition, an OQueue[∗, ∗, ∅] is simply a multiset, allowing them to

use the known fact that multiset’s consensus number is 2.

Unfortunately, this does not match the definitions in the literature ([4, 5]), so the conclusions

about increased performance from those papers do not hold. Intuitively, that definition restricts

the relaxation of an almost-empty queue, making it behave as if it had smaller relaxation parame-

ters. For this reason, we use the previous definitions, which do allow erroneous empty indicators,

which leads to consensus number 1 for certain relaxations, such as OQueue[∗, ∗, ∅], where [7] had

consensus number 2.

70

5. RELAXED DATA TYPES AS CONSISTENCY CONDITIONS ∗

5.1 Introduction and Related Work

It is important to provide the best possible guarantees on the behavior of data types under con-

current access to shared data while maintaining the efficiency of those interfaces. The study of

consistency conditions considers what guarantees may be provided or required on the behavior of

shared data objects under concurrent access. The strongest consistency condition, linearizability

[13], requires that all operations on shared data appear to all processes as if they happened sequen-

tially, in an order respecting the order of operations which do not overlap in real time. This makes

program design and reasoning about program correctness relatively easy, as we are familiar with

sequential program design and analysis. However, linearizability is generally expensive to imple-

ment, in terms of computation and communication delays [21, 20, 19, 5]. To avoid this cost, many

weaker consistency conditions have been proposed (see [12] for a review of consistency conditions

in the literature), allowing more concurrent executions while providing weaker guarantees on the

behavior of shared objects. These can be implemented more efficiently than linearizability (e.g.

[20]). Some work has been done to explore classes of data types which, when implemented under

a weak consistency condition, give stronger behavioral guarantees that those of the consistency

condition, e.g. [24].

In this chapter, we explore the relation of the weakened consistency condition and relaxation

methods for improving the performance of shared data type implementations. We show that the

combination of linearizability and some data type relaxations previously considered in the lit-

erature, namely k-Out-of-Order, k-Lateness, and k-Stuttering [4], can be alternately defined as

consistency conditions. That is, the set of concurrent executions which are considered legal under

∗Parts of the material in this chapter are reprinted from
E. Talmage and J.L. Welch, “Relaxed data types as consistency conditions,” in Stabilization, Safety, and Security of

Distributed Systems - 19th International Symposium, SSS 2017, Boston, MA, USA, November 5-8, 2017, Proceedings
(P.G. Spirakis and P. Tsigas, eds.), vol. 10616 of Lecture Notes in Computer Science, pp. 142-156, Copyright 2017 by
Springer.

71

linearizability when working with the relaxed type is the same as the set of concurrent executions

which are legal under the new consistency condition and the original, unrelaxed type. Conversely,

we show, by the example of k-Atomicity, that some consistency conditions can be separated into

linearizability and a data type relaxation.

This partial equivalence means that for several common relaxations and consistency conditions,

the relaxation and consistency condition definitions are interchangeable. As an example of the use

of this interchangeability, we use ideas from the large body of work comparing the strengths of

different consistency conditions [25, 26, 12, 27] to show that the consistency conditions equivalent

to k-Out-of-Order, k-Lateness, and k-Stuttering are distinct from similar previously known con-

sistency conditions. This means that the relaxations are distinct points in the space of consistency

conditions. For some particular data types, though, we show that k-Stuttering is a strengthening of

k-Atomicity.

5.2 Converting Relaxations to Consistency Conditions

Relaxing data types and weakening consistency conditions have so far been largely separate

methods of improving the performance of shared data types. In the next two sections, we show

by example that some relaxed data types under linearizability can be equivalently defined as their

base types under weaker consistency conditions and vice versa.

The basic idea is to think of both consistency conditions and relaxations as functions. Con-

sistency conditions reduce concurrent schedules to one or more sequences of operation instances,

which can be compared to the legal sequences of a given data type. We can view this as a function

from the space of possible concurrent schedules to the power set of possible operation instance se-

quences. Data type relaxations take a sequence of operation instances and transform it to be legal

by the base type’s specification. This is a function from the space of possible operation instance

sequences to itself.

Since the domain of relaxations is elements of the codomain of consistency conditions, we can

compose the two “functions”. Thus, the consistency condition can map a concurrent schedule to

sequences that may not be legal by the base type, but then we may transform them by the rules of

72

a relaxation to be legal. Thus, both collapsing concurrency and allowing some variance from the

base set of legal sequences can occur in the consistency condition.

Similarly, if a consistency condition requires a global ordering respecting the schedule order,

then adds other conditions, we will show in Section 5.3 that we can split these conditions apart to

have linearizability for the consistency condition and a relaxation of the original data type, while

still allowing the same set of concurrent schedules.

We will now define several consistency conditions which are equivalent to the data type relax-

ations introduced in Section 2.1.2. The equivalence theorems follow from the fact that the set of

linearizable schedules legal for the relaxed version of a data type is the equal to the set of schedules

legal for the original data type and the weaker consistency condition.

First, we discuss the Out-of-Order relaxation. This enables operations to return values which

are not legal by the specification of the base type T , but would be legal if a few other instances

had not occurred. This larger set of possible return values can be accommodated in a consistency

condition by including schedules where instances are not required to be legal by the definition of

T , but are allowed some leeway.

Definition 19 (OutofOrderCC(k)). A schedule of any ADT T satisfies OutofOrderCC(k), for k ≥

0, if

• There exists a permutation Π of all operation instances in the schedule, which respects the

schedule order of non-overlapping instances, and

• For every op ∈ Π, with Π = π · op · ρ, there is some sequence u · v · w, |v| ≤ k, which is a

minimal-length sequence equivalent in T to π, and there exists a sequence x, such that

a) u · w is legal in T and minimum-length among the set of sequences equivalent to it in

T ,

b) u · w · op is legal in T , and

c) either

73

– u · w · op ≡ x · w and π · op ≡ x · v · w, or

– u · w · op ≡ u · x and π · op ≡ u · v · x.

Theorem 21. For k ≥ 0, the set of schedules legal on a k-Out-of-Order relaxation of any ADT T

under linearizability is the same as the set of schedules legal on T under OutofOrderCC(k).

We can similarly define consistency conditions equivalent to k-Lateness or k-Stuttering relaxed

versions of a type T under linearizability. Again, by rolling the relaxation into the consistency

condition, we show by construction that the schedules legal on these relaxed data types under

linearizability are just those legal on the base type under a weaker consistency condition.

Definition 20 (LatenessCC(k)). A schedule of any ADT T satisfies LatenessCC(k), for k ≥ 1, if

• There exists a permutation Π of all operation instances in the schedule which respects the

schedule order of non-overlapping instances, and

• For every op ∈ Π, with Π = π · op · ρ, there exists l ≥ 0 such that π · op is legal by the

semantics of an l-Out-of-Order relaxed T , and at least one in every k consecutive mutator

instances in Π must have l = 0.

Theorem 22. For k ≥ 1, the set of schedules legal on a k-Lateness relaxation of any ADT T under

linearizability is the same as the set of schedules legal on T under LatenessCC(k).

Definition 21 (StutteringCC(k)). A schedule of any ADT T satisfies StutteringCC(k), for k ≥ 1, if

1. There exists a permutation Π = op1 · op2 · · · of all operation instances in the schedule,

respecting the schedule order of non-overlapping instances,

2. For every instance opi in Π, let Π = πi · opi · ρi. opi returns a value that such that π′
i · opi is

legal in T , where π′
i is a sequence of mutator instances such that

(a) π′
1 = ε

(b) π′
i ∈ {π′

i−1, π
′
i−1 · opi−1}, for i > 1, and

74

(c) π′
i includes at least one of every k consecutive mutators in πi

Theorem 23. For k ≥ 1, the set of schedules legal on a k-Stuttering relaxation of any ADT T

under linearizability is the same as the set of schedules legal on T under StutteringCC(k).

Theorems 21, 22 and 23 all hold by construction.

5.3 Consistency Condition to Relaxation

We have shown that we can convert familiar relaxations to consistency conditions. The interest

in relaxed data types is largely founded on their ease of use and understanding, relative to con-

sistency conditions. Ideally, then, any consistency condition would be representable as a relaxed

data type. This does not seem to be true, at least for our current understanding of relaxed data

types, as relaxed data type specifications are sequential, while consistency conditions may be in-

herently concurrent. Sequential specifications cannot use any notion of invoking process, while

many consistency conditions explicitly refer to instances invoked by certain processes.

For example, sequential consistency requires that there exist a permutation of all operation

instances that is legal, and in which all instances invoked at a particular process appear in the order

in which they were invoked. Because a sequential specification does not know about multiple

processes, it is not well-defined to require or guarantee that all instances invoked at a single process

have some desired relation.

Despite this conclusion that the sets of relaxations and consistency conditions are not equiva-

lent, in this section we will show that some consistency conditions can be equivalently expressed

as relaxed data types. We consider a well-established consistency condition from the literature,

and define a generic data type relaxation equivalent to it.

5.3.1 k-Atomicity

Aiyer et al. defined k-Atomicity in [14], however their definition only discusses registers. It

was introduced in literature only concerned with registers and has not, to our knowledge, been

generalized to other types. Since we are interested in arbitrary ADTs, we would like a more

general definition. To do this, we generalize Reads to all pure accessors and Writes to all pure

75

mutators. It is not well-defined how mixed operations should behave under k-Atomicity. They

should be allowed to return a value as if they were out of order, but then the mutations they cause

could seemingly cause previous operation instances to be illegal. Given these issues, we will limit

our definition of k-Atomicity to data types which have only pure operations.

Definition 22 (k-Atomicity). A schedule E on a data type T , which has only pure operations, is

k-atomic, for k ≥ 0, if there exists a permutation Π of all operation instances in E, respecting

the schedule order of non-overlapping instances, such that for every accessor instance op, with

Π = π · op · ρ, there exists a sequence π′ obtained by removing up to k consecutive instances from

the end of π|m such that π′ · op is legal in T .

We can now split this condition into two pieces. The first is the core of linearizability, that

there is an ordering of all operation instances in the schedule that respects the schedule order. The

second condition expands the set of legal sequences beyond the set of legal sequences specified by

T . The consistency condition requires that the sequence of all instances is in the set defined by the

second part. By moving the second part into the data type, relaxing the data type specification, we

are left with linearizability for the consistency condition.

Definition 23 (k-Atomic-Equiv Relaxed ADT). Given any ADT T with no mixed operations and

k ≥ 0, a k-Atomic-Equiv relaxation of T is defined as follows:

1. OPS(T ′) = OPS(T)

2. LT ′ is the set of sequences Π, where for each accessor instance op, with Π = π · op · ρ, there

exists a sequence π′ such that π′ · op is legal in T , where π′ is obtained by removing up to k

consecutive instances from the end of π|m.

Theorem 24. For k ≥ 0, the set of schedules legal on a k-Atomic-Equiv relaxation of any ADT T

with no mixed operations under linearizability is the same as the set of schedules legal on T under

k-Atomicity.

The theorem follows by definition.

76

Definition 23 is very similar to that of k-Out-of-Order, but they are not equivalent. Because

it uses minimal equivalent sequences, a k-Out-of-Order relaxed data type cannot return a value

which has been “deleted” from the data structure. For example, consider the following sequence:

Enqueue(1) ·Enqueue(2) ·Enqueue(3) ·Dequeue(1) ·Dequeue(x). In a 2-Out-of-Order queue,

x could be either 2 or 3. On the other hand, a k-Atomic type can return historical values that

have been deleted or overwritten, so if the sequence in the previous example were executed on a

2-Atomic-Equiv queue, x could also be 1.

In addition to k-Atomicity, [14] also introduces two more consistency conditions for registers,

relaxing multi-writer versions of classic conditions from [28]. (See [29] for a discussion of some

of the many ways to generalize regular and safe registers for multiple writers.) Both k-regular

and k-safe registers distinguish between Read instances which overlap with Write instances and

those which do not, allowing Reads overlapping a Write to return the argument of some such

concurrent Write, in the case of k-regularity, or any value in the domain of the register, in the case

of k-safety.

It is interesting to note that k-Regularity and k-Safety, though very similar to k-Atomicity,

cannot be directly converted into relaxed data types. This is because they allow operation instances

to have different behaviors when they overlap with one or more mutators than when they do not

overlap with any mutators. A sequential specification has no notion of concurrency, or overlapping

operation instances, so cannot differentiate these two possibilities. Recent work, such as [2, 30, 31],

has begun exploring the concept of tasks or objects which do not have sequential specifications.

These more general definitions may be able to represent consistency conditions which sequential

specifications cannot.

5.4 Placing New Consistency Conditions

We have shown that some data type relaxations can be expressed as consistency conditions. We

would like to know how these conditions compare to known consistency conditions. They neither

appear to be any common consistency conditions, nor do any of our new consistency conditions

appear to be related to each other. In this section we prove that these intuitions are correct.

77

Recall that consistency conditions are just sets of legal schedules [12]. Thus, to compare the

strength of different consistency conditions, we can compare the sets of schedules over all data

types.

Definition 24. Given two consistency conditions C and D, we say that C is stronger than D, and

D is weaker than C, if for all data types T , every schedule legal under C and T is also legal under

D and T . That is, the set of legal schedules under C, for all data types, is a subset of the set of

schedules legal under D.

If neither C is stronger than D nor D is stronger than C, we say C and D are incomparable. If

C is stronger than, but not equal to, D, we say that C is strictly stronger than D and D is strictly

weaker than C.

Our conditions are in the “version staleness-based” family of consistency conditions in [12],

since these also have the requirements of linearizability. Thus, we will be comparing them to k-

Atomicity, k-Regularity, and k-Safety, which are also version staleness-based. It is trivial to see

that all of our conditions are weaker than Linearizability, since they start with the conditions of

Linearizability, then allow some sequences that Linearizability does not.

First, we define generalized versions of k-Regularity and k-Safety, as we did for k-Atomicity.

Because k-Regularity and k-Safety may behave exactly as k-Atomicity, we have the same restric-

tion to data types without mixed operations.

Definition 25 (k-Regularity). A schedule E on a data type T with no mixed operations is k-regular,

for k ≥ 0, if there exists a permutation Π of all operation instances in E, respecting the schedule

order of non-overlapping instances, such that for every instance op, Π = π · op · ρ,

• if op is a mutator or overlaps with no mutator instances, π|m ·op is legal by k-Atomicity, and

• if op is an accessor overlapping with at least one other mutator, there exists a sequence π′

such that π′ · op is legal in T , where π′ is constructed either by deleting up to k instances

from the end of π|m or by moving any subset of the mutator instances overlapping with op

from after op in Π to before it and placing them in some order.

78

Definition 26 (k-Safety). A schedule E on a data type T with no mixed operations is k-safe, for

k ≥ 0, if there exists a permutation Π of all operation instances in E, respecting the schedule

order of non-overlapping instances, such that for every instance op of operation OP ,

• if op is a mutator or overlaps with no mutator instances, π|m ·op is legal by k-Atomicity, and

• if op is an accessor overlapping with at least one other mutator, it may return any value in

rets(OP).

First, we state the following theorem relating k-Atomicity, k-Regularity, and k-Safety. This

theorem is well established in the literature for registers, and directly generalizes for our new

definitions.

Theorem 25 ([14, 29, 12]). For all k ≥ 0, k-Safety is strictly weaker than k-Regularity which is

strictly weaker than k-Atomicity, which is strictly weaker than Linearizability, in the domain of

data types which do not have mixed operations.

Theorem 25 claims the following two statements for each pair of consistency conditions C and

D, with C claimed strictly weaker than D: First, for every data type T for which D is defined,

every schedule legal under D and T is legal under C and T . Second, there is some data type S

for which there is a schedule legal under C and S but not under D and S. The proof follows

immediately from the definitions, since linearizable behavior is legal under k-Atomicity, k-atomic

behavior is legal under k-Regularity, and k-regular behavior is legal under k-Safety.

We will next show that none of the three new consistency conditions we have defined are

comparable to any of these three previously known conditions. If we can show that a consistency

condition C does not contain (is not weaker than) k-Atomicity, then we immediately know that C

is not weaker than either k-Regularity or k-Atomicity, because any point in k-Atomicity is also in

the supersets k-Regularity and k-Safety. Conversely, if k-Safety does not contain C, then neither

k-Regularity nor k-Atomicity can either, since they are subsets of k-Safety, so C is not stronger

than any of the three.

79

Thus, by Theorem 25, to show a consistency condition C is incomparable with all of k-

Atomicity, k-Regularity, and k-Safety, we choose a data type T and give a schedule which is

legal under k-Atomicity and T , but not C and T , and a data type T ′ and give a schedule which is

legal under C and T ′ but not under k-Safety and T . The proof of Theorem 26 uses this structure.

Theorem 26. In the domain of data types which do not have mixed operations,

1. For all k, l ≥ 1, OutofOrderCC(k) is incomparable with any of l-Safety, l-Regularity, and

l-Atomicity.

2. For all k ≥ 2 and l ≥ 1, LatenessCC(k) is incomparable with any of l-Safety, l-Regularity,

and l-Atomicity.

3. For all k ≥ 2 and l ≥ 1, StutteringCC(k) is incomparable with any of l-Safety, l-Regularity,

and l-Atomicity.

Proof. Throughout this proof, when we use instances of Enqueue and Peek, we are referring to a

restricted FIFO queue data type, which has no Dequeue, since that is a mixed operation. Enqueue

is a pure mutator, since it has no return value, and Peek is a pure accessor, since it does not change

the shared object.

1. OutofOrderCC(k):

• To show that OutofOrderCC(k) does not contain l-Atomicity, consider the following

sequential schedule of a register: Write(1) ·Write(2) ·Read(1).

For every l ≥ 1, this schedule is legal under l-Atomicity, since the Read can ignore

the presence of the last preceding mutator instance, the Write(2). This schedule is

not legal under OutofOrderCC(k), for any k ≥ 1, as the minimal-length equivalent

sequence to Write(1) ·Write(2) is simply Write(2), and Read(1) is not legal after

any sequence obtained by deleting instances from this one-element sequence.

80

• To show that OutofOrderCC(k) is not contained in l-Safety, consider the following

sequential schedule of a restricted FIFO queue: Enqueue(1) ·Enqueue(2) · Peek(2).

This schedule is legal under OutofOrderCC(k), for every k ≥ 1, since the prefix

sequence Enqueue(1) · Enqueue(2) is a minimal-length sequence equivalent to it-

self, and then Peek(2) is legal after the sequence Enqueue(2) obtained by removing

one mutator instance. This schedule is not legal under l-Safety, for any l ≥ 1, since

none of the instances are concurrent, and Peek(2) is not legal after any sequence ob-

tained by deleting consecutive mutators from the end of the preceding sequence. Thus,

OutofOrderCC(k) is not a subset of l-Safety and is thus not stronger than any of l-

Safety, l-Regularity, and l-Atomicity.

2. LatenessCC(k):

• To show that LatenessCC(k) does not contain l-Atomicity, consider the following se-

quential schedule of a register: Write(1) ·Write(2) ·Read(1).

This schedule is legal under l-Atomicity, for l ≥ 1, since the first two instances are legal

in an unrelaxed register, and the Read(1) is legal after the sequence obtained by ignor-

ing the last previous mutator. This schedule is not legal under LatenessCC(k), k ≥ 2,

since the minimal-length equivalent sequence of Write(1) ·Write(2) is Write(2), so

Read(1) is not legal after any sequence obtained by deleting instances from a minimal

sequence equivalent to the sequence of preceding instances.

• To show that l-Safety does not contain LatenessCC(k), consider the following sequen-

tial schedule of a restricted FIFO queue: Enqueue(1) · Enqueue(2) · Peek(2).

This schedule is legal under LatenessCC(k), for k ≥ 2, since the prefix sequence

Enqueue(1) · Enqueue(2) is legal in a FIFO queue and Peek(2) is legal after the

sequence Enqueue(2) obtained by removing one instance, which is allowed because

Enqueue(1) · Enqueue(2) is a minimal-length equivalent sequence of itself. Under

l-Safety this schedule is not legal, for any l ≥ 1, because Peek(2) is not concurrent

81

with any mutator and not legal after any sequence obtained by deleting instances from

the end of Enqueue(1) · Enqueue(2).

3. StutteringCC(k):

• To show that StutteringCC(k) does not contain l-Atomicity, consider the following

sequential schedule of a register: Write(1) ·Write(2) ·Read(1) ·Read(2).

This schedule is legal under l-Atomicity, l ≥ 1, since the first Read instance may

ignore the last previous mutator, while the second Read may see it. For k ≥ 2, this

schedule is not legal under StutteringCC(k), as the first Read may only return 1 if

Write(2) stuttered, but then no succeeding Read can see the Write(2).

• To show that l-Safety does not contain StutteringCC(k), consider the following sequen-

tial schedule of a restricted FIFO queue: Enqueue(1) ·Enqueue(2) · · ·Enqueue(k −

1) · Enqueue(k) · · ·Enqueue(k + l) · Peek(k).

This schedule is legal under StutteringCC(k), k ≥ 2,1 since the first k − 1 Enqueue

instances in the prefix Enqueue(k) · · ·Enqueue(k + l) may stutter, leaving Peek(k)

legal. This schedule is not legal under l-Safety, l ≥ 1, since the Peek is not concurrent

with any mutator and ignoring up to l of the last previous mutators will not allow Peek

to return any value besides 1.

While our new consistency conditions are all incomparable to these similar existing conditions

in general, we observe that for some specific data types, we may actually be able to compare them.

We next show that for a certain class of data types, StutteringCC(k) is stronger than k-Atomicity.

This class of types are those where all mutators are overwriters. An overwriter OP is an operation

such that every sequence π · op, op ∈ OP , is equivalent to the singleton sequence op [32, 33].

This means that the set of next operation instances which result in a legal sequence is determined

1Recall that StutteringCC(1) is merely linearizability.

82

entirely by the last previous mutator. For example, Write on a register is an overwriter, since

future operations only depend on the value of the most recent Write instance, while Enqueue on

a FIFO queue is not an overwriter, as later operation instances can depend on Enqueue instances

prior to the most recent. At first, it may appear that all data types with an overwriter are essentially

a Read/Write register, but with other mutators and accessors which may only change or return a

portion of the total state, there can many different data types with overwriters.

StutteringCC(k) and k-Atomicity both allow ignoring some recent mutator instances. The

difference, which makes the two consistency conditions distinct, is that a stuttering instance must

be ignored by all subsequent operation instances, while in k-Atomicity, instances may be ignored

by some subsequent instances, but seen by others.

We show the slightly stronger result that, when all mutators are overwriters, StutteringCC(k)

is stronger than (k − 1)-Atomicity. (k − 1)-Atomicity is always stronger than k-Atomicity, since

ignoring up to the last (k − 1) previous mutator instances is a special case of ignoring up to the

last k previous mutator instances. This gives us the immediate corollary that StutteringCC(k) is

stronger than k-Atomicity, for types which only have overwriting mutators.

Theorem 27. If all mutators in a data type T , which has no mixed operations, are overwriters,

then for all k ≥ 1, StutteringCC(k) on T is stronger than (k − 1)-Atomicity on T .

Proof. We show that any schedule which is legal under StutteringCC(k) is also legal under (k−1)-

Atomicity. Consider any schedule E. Let Π be an ordering of all instances in E, which re-

spects the schedule partial order of non-overlapping instances, as specified by the definition of

StutteringCC(k). Let Π = op1 ·op2 · · · . For each π′
i specified by the definition of StutteringCC(k),

let mi be the last mutator instance in π′
i. Because all mutators are overwriters, π′

i ≡ mi. For each

opi ∈ Π, there cannot be more than (k− 1) mutator instances in Π strictly between mi and opi, by

the definition of π′
i and mi. Thus, by deleting up to (k−1) of the last previous mutator instances be-

fore opi in π, mi will be the last mutator instance, and because it is a mutator, op1 · · ·mi ≡ mi ≡ π′
i,

so op1 · · · opi is legal under k-Atomicity. Thus, Π is legal under k-Atomicity.

83

Finally, we show that the three new consistency conditions corresponding to data type relax-

ations we introduced in this chapter are incomparable to one another. This reflects the different

approaches they take to relaxation. Given that they are seemingly orthogonal to one another,

an interesting future direction is combining these conditions. Combining consistency conditions,

and their components, is a common approach (e.g. [26]), and a combination of the Lateness and

Out-of-Order relaxations appears as a distinct relaxation in previous works [4, 5]. It would be

enlightening to compare the ease of definition and analysis for combining conditions either as data

type relaxations or as consistency conditions.

Observe that in the proof of Theorem 28, as in that of Theorem 26, all the schedules we use

as counterexamples are sequential. At first glance, this may appear odd, since the purpose of

different consistency conditions is to handle concurrency in different ways. On further thought,

though, this is actually natural, now that we have shown a correspondence between several of

these consistency conditions and sequential (relaxed) data types. We are, in effect, showing that

the different relaxations are distinct. We did not previously have formal tools for comparing them,

though we could compare their effects on other measures, such as consensus numbers [7, 8]. Even

though we cannot define relaxations equivalent to k-Regularity and k-Safety, because they are

generalizations of k-Atomicity, the counterexamples for k-Atomicity are sufficient for the proof of

Theorem 26.

We no longer restrict the set of data types considered, since these relaxations are defined for all

data types.

Theorem 28. Considered on all data types and for all k ≥ 1 and l,m ≥ 2, OutofOrderCC(k),

LatenessCC(l), and StutteringCC(m) are all incomparable to one another.

Proof. • First, we compare OutofOrderCC(k) and LatenessCC(l), showing that neither con-

dition contains the other.

– The sequential schedule Enqueue(1) · · ·Enqueue(l+2)·Dequeue(2) · · ·Dequeue(l+

2) is legal on a FIFO queue under OutofOrderCC(k), because the prefix sequence

84

Enqueue(1) · · ·Enqueue(l + 2) is legal in the base type, and for each of the fol-

lowing instances Dequeue(x), we can obtain a π′ such that π′ · Dequeue(x) is legal

by deleting Enqueue(1) from the minimal-length equivalent sequence to the preceding

sequence, which consists of all Enqueue instances whose argument has not yet been

returned. The schedule is not legal under LatenessCC(l) because there are l consec-

utive Dequeue(x) instances, for none of which is π′ · Dequeue(x) legal in a FIFO

queue, when π′ is a minimal-length equivalent sequence to the prior history, since

all minimum-length sequences equivalent to some prefix of this schedule start with

Enqueue(1).

– The sequential schedule Enqueue(1) · · ·Enqueue(k + 2) · Dequeue(k + 2) is legal

on a FIFO queue under LatenessCC(l), but not under OutofOrderCC(k). The pre-

fix Enqueue(1) · · ·Enqueue(k + 2) is legal in the base type and of minimum length

among equivalent sequences. By deleting a finite number, k + 1, of consecutive muta-

tors from the preceding sequence, we have Enqueue(k + 2) ·Dequeue(k + 2) which

is legal in the base type. Under OutofOrderCC(k), the schedule is not legal, because

deleting up to k consecutive mutators from the prefix before the Dequeue instance

yields a sequence ending in Enqueue(x) ·Enqueue(k+2), where 1 ≤ x ≤ k+1, and

appending Dequeue(k + 2) to such a sequence cannot give a sequence legal in a FIFO

queue.

• Next, we compare OutofOrderCC(k) and StutteringCC(m):

– The sequential schedule Enqueue(1) · Enqueue(2) · Dequeue(2) ·Dequeue(1) on a

FIFO queue is legal under OutofOrderCC(k), since removing Enqueue(1), which is

already minimal-length, from the preceding sequence gives Enqueue(2) ·Dequeue(2),

which is legal in a FIFO queue. The prefix of the first three instances is then equivalent

to Enqueue(1), and Enqueue(1) ·Dequeue(1) is legal, so the entire sequence is legal.

This schedule is not legal under StutteringCC(m), because π′ for Dequeue(2) must not

85

include Enqueue(1), so no later π′ may include Enqueue(1) and 1 cannot be returned

by a Dequeue. In other words, Enqueue(1) stutters, having no effect, so the second

Dequeue instance cannot return 1.

– The sequential schedule Enqueue(1) ·Dequeue(1) ·Dequeue(1) on a FIFO queue is

legal under StutteringCC(m), but not under OutofOrderCC(k). In StutteringCC(m),

π′ for the first Dequeue instance is Enqueue(1), leaving out no previous instances.

This Dequeue instance stutters, having no effect, so π′ for the second Dequeue is

Enqueue(1), and thus π′ ·Dequeue(1) is legal.

For OutofOrderCC(k), the minimal-length equivalent sequence of the schedule’s prefix

Enqueue(1) · Dequeue(1) is the empty sequence ε, and since ε · Dequeue(1) is not

legal in a FIFO queue, the original schedule is not legal.

• Finally, compare LatenessCC(l) and StutteringCC(m):

– The sequential schedule Enqueue(1) · · ·Enqueue(m + 2) · Dequeue(m + 2) on a

FIFO queue is legal under LatenessCC(l) but not under StutteringCC(m), as above.

For StutteringCC(m), the π′ for the Dequeue instance must contain at least one of

every m consecutive mutator instances in the preceding sequence. This means that it

must contain at least 1 Enqueue(x), where x < m+2, since there are m+1 consecutive

such instances. Thus, π′ · Dequeue(m + 2) is not legal, so this schedule is not legal

under StutteringCC(m).

– The sequential schedule Enqueue(1) ·Dequeue(1) ·Dequeue(1) on a FIFO queue is

legal under StutteringCC(m), as argued above, but is not legal under LatenessCC(l).

The second Dequeue instance must be legal after deleting a minimal-length sequence

equivalent to the prefix Enqueue(1)·Dequeue(1). That is the empty sequence, though,

and ε ·Dequeue(1) is not be legal.

In each case, we have shown that the sets of schedules legal under each pair of consistency

conditions are not related by subset or superset, so the three consistency conditions are pairwise

86

incomparable.

5.5 Conclusion

In exploring the relation between relaxations for abstract data types and consistency conditions,

we have shown that in several cases, the ideas in each may be expressed equivalently by the other.

Specifically, we showed that the k-Out-of-Order, k-Lateness, and k-Stuttering relaxations may be

equivalently expressed as consistency conditions and that the consistency condition k-Atomicity

can be equivalently expressed as a relaxation. For each of these, we define the equivalent consis-

tency condition or relaxation. We then explore how the newly-defined consistency conditions fit

into the space of consistency conditions, related by the conditions’ strength, by showing that they

are distinct from several previously-known similar conditions.

In this work, we did not consider relaxing particular operations in a data type. It is possible,

and common in the literature [4, 5], to relax the behavior of certain operations, while requiring that

others behave as in the base type. In the case of per-operation relaxations, our result in Section 5.4

regarding data types where all mutators are overwriters would extend to all data types where all

overwriting operations were k-Stuttering relaxed, greatly increasing their scope.

In the future, we need to define or quantify the space of possible data type relaxations, and

maybe that of consistency conditions. This would allow more general conclusions about the rela-

tion of the two fields. For example, it seems that every data type relaxation can be expressed as a

consistency condition, while only some consistency conditions can be expressed as relaxations. If

we could formally show this, the space of relaxations would be a subset of the space of consistency

conditions. One possible approach is to use the technique of combining consistency conditions to

obtain stronger conditions to find new data type relaxations.

87

6. GENERIC PROOFS OF CONSENSUS NUMBERS FOR ABSTRACT DATA TYPES ∗

6.1 Introduction

Determining the power of shared data types to implement other shared data types in an asyn-

chronous crash-prone system is a fundamental question in distributed computing. Pioneering work

by Herlihy [15] focused on implementations that are both wait-free, meaning any number of pro-

cesses can crash, and linearizable (or atomic). As shown in [15], this question is equivalent to

determining the consensus number of the data types, which is the maximum number of processes

for which linearizable shared objects of a data type can be used to solve the consensus problem. If

a data type has consensus number n, then in a system with n processes, shared objects of this type

can be used to implement shared objects of any other type. Thus, knowing the consensus number

of a data type gives us a good idea of its computational strength.

We wish to provide tools with which it is easy to determine the consensus number of any

given data type. So far, most known consensus number results are for specific data types. These

are useful, since we know the upper and lower bounds on the strength of many commonly-used

objects, but are of little or no help in determining the consensus number of a new shared data type.

Further, even among the known bounds, there are some that seem similar, and even have nearly

identical proofs of their bounds, but these piecemeal proofs for each data type give no insight into

those relations.

6.1.1 Summary of Results

We define a general schema for classifying data types, based on their sequential specifications,

which we call sensitivity. If the information about the shared state which an operation returns can

be analyzed to extract the arguments to a particular subsequence of past operation instances, we

∗Parts of the material in this chapter are reprinted from
E. Talmage and J.L. Welch, “Generic proofs of consensus numbers for abstract data types,” in 19th International

Conference on Principles of Distributed Systems, OPODIS 2015, December 14-17, 2015, Rennes, France (E. An-
ceaume, C. Cachin, and M. G. Potop-Butucaru, eds.), vol. 46 of LIPIcs, pp. 32:1-32:16, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015.

88

say that the data type is sensitive to that subsequence. For example, a register is sensitive to the

most recent write, since a read returns the argument to that write. A stack is sensitive to the last

Push which does not have a matching Pop, since a Pop will return the argument to that Push. We

define several such classes in this chapter, such as data types sensitive to the kth change to the state,

data types sensitive to the kth most recent change, and data types sensitive to the l consecutive most

recent changes.

We show a number of bounds, both upper and lower, on the number of processes which can

use shared objects whose data types are in these different sensitivity classes to solve wait-free

consensus. Specifically, we begin by showing that information about the beginning of a history of

operation instances of a shared data type allows processes to solve consensus for any number of

processes. This is a natural result, since the ordering of operation instances on the shared objects

allows the algorithm to break symmetry.

An augmented queue, as in [15], using Enqueue and Peek is such a data type, as Peeks can

always determine what value was enqueued first, and all processes can decide that value. Other

examples include a Compare-And-Swap (CAS) object using a function which stores its argument

if the object is empty and returns the contents, without changing them, if it is not. Repeated

applications of this operation have the effect of storing the argument to the first operation instance

executed and returning it to all subsequent instances. There are data types which are stronger

than this class which can learn the first event, such as types with operations which return the

entire history of operation instances on the shared object, but our result shows that that strength is

unneeded for consensus.

Next, we consider what happens if a data type has operations which depend on the last operation

instances executed. We show that if a data type has only operations whose return values depend

exclusively on one instance at a fixed distance back in history, then that data type can only solve

consensus for a small, constant number of processes. If none of such a data type’s operations can

atomically both read and change the shared state, then the type has consensus number 1. If a data

type’s operations reveal some number l of consecutive changes to the shared state, then it can solve

89

consensus for l processes.

These data types model the scenario when there is limited memory. If we want to store a queue,

but only have enough memory to store k elements, we can throw away older elements, yielding a

data type sensitive to recent operations. A cyclical queue has such behavior, and with operations

Enqueue and Peek, where Peek returns the kth-most recent argument to Enqueue, has consensus

number 1. To solve consensus for more processes with a similar data type, we show that knowledge

of consecutive past operations is sufficient. If instead of only one recent argument, we can discern a

contiguous sequence of them, we can solve consensus for more processes. Using the same cyclical

k-queue, if our Peek operation is replaced with a ReadAll which tells the entire contents of the

queue atomically, we show that we can solve consensus for k processes. This parameterized result

suggests a fundamental property of the amount of necessary information for solving consensus.

6.1.2 Related Work

Herlihy[15] first introduced the concepts of consensus numbers and the universality of con-

sensus in asynchronous, wait-free systems. He showed that a consensus object could provide a

wait-free and linearizable implementation of any other shared object. Further, he showed that dif-

ferent objects could only solve consensus for certain numbers of processes. This gives a hierarchy

of object types, sorted by the maximum number of processes for which they can solve consensus.

He also proved consensus numbers for a number of common objects.

Many researchers have worked to understand exactly what level of computational power con-

sensus numbers represent, and when they make sense as a measure of computational power. Jayanti

and Toueg [34] and Borowsky, et al. [35] established that consensus numbers of specific data types

make sense when multiple objects of the type and R/W registers are used, regardless of the ob-

jects’ initial states. Bazzi et al. [36] showed that adding registers to a deterministic data type with

consensus number greater than 1 does not increase the data type’s consensus number. Other work

establishes that non-determinism can collapse the consensus number hierarchy [16, 37], that con-

sensus is impossible with Byzantine faults [38], and what happens when multiple shared objects

can be accessed atomically [39].

90

Ruppert [40] provides conditions with which it is possible to determine whether a data type

can solve consensus. He considers two generic classes of data types, RMW types and readable

types. RMW types have a generic Read-Modify-Write operation which reads the shared state and

changes it according to an input function. Readable types have operations which return at least

part of the state of the shared object without changing it. He shows that for both of these classes,

consensus can be solved among n processes if and only if they can discern which of two groups

the first process to act belonged to. This condition, called n-discerning, is defined in terms of

each of the classes of data types. This has a similar flavor to our first result below, where seeing

what happened first is useful for consensus. We define our conditions more directly as properties

of the sequential specification of a shared object and also consider different perspectives on what

previous events are visible.

Chordia et al. [41] have lower bounds on the number of processes which can solve consensus

using classes of objects with definitions similar to [40]–the duration for which two operation order-

ings are distinguishable affects the objects’ consensus power–using algebraic properties, as we do.

These results are not directly comparable to those in [40], since they have different assumptions

about the algorithms and exact data returned. [41] also does not provide upper bounds, on which

we focus.

In another direction, Chen et al. [22] consider the edge cases of several data types, when

operations’ return values are not traditionally well-defined. An intuitive example is the effect of

a Dequeue operation on an empty queue, where it could return ⊥ or return an arbitrary value,

never return a useful value again, or a number of other possibilities. They consider a few different

possible failure modes, and show that the consensus numbers of objects are different when they

have different behaviors when the object “breaks” in such a case. These results are orthogonal

to ours, as they primarily focus on queues and stacks, and assume that objects break in some

permanent way when they hit such an edge case. We assume that there is a legal return value for

any operation invocation, and that objects will continue to operate even after they hit such an edge

case.

91

6.2 Sensitivity

We introduce the concept of sensitivity to classify operations. The sensitivity of a set of op-

erations is a means of tracking which previous operations on a shared object cause a particular

instance to return a specific value. Intuitively, an operation which has a return value will usually

return a value dependent on some subset of previous operation instances. For example, a Read on

a register will return the argument to the last previous Write. On a queue, an instance of Dequeue

will return the argument of the first Enqueue instance which has not already been returned by a

Dequeue. We categorize operations by which previous instances (first, latest, first not already used,

etc.) we can deduce, or “see”, based on the return value of an instance of an accessor operation.

Definition 27. Let OPS be a subset of the operations of a data type T . Let OPSM denote the

set of all mutators in OPS. Let S be an arbitrary function that, given a finite sequence ρ ∈ LT ,

returns a subsequence of ρ consisting only of instances of mutators.

OPS is defined to be S-sensitive iff there exist an accessor AOP ∈ OPS and a computable

function decode : rets(AOP) →
(

the set of finite sequences over
∪

MOP∈OPSM
args(MOP)

)
such that for all ρ ∈ LT , arg ∈ args(AOP), and ret ∈ rets(AOP) with ρ ·AOP (arg, ret) ∈ LT ,

decode(ret) = S(ρ)|args.

Definition 28. A subset OPS of the operations of a data type T is strictly S-sensitive if for every

ρ ∈ LT , every accessor AOP and every instance AOP (arg, ret) with ρ · AOP (arg, ret) ∈ LT ,

ret = S(ρ)|args. That is, AOP (arg, ret) gives no knowledge about the shared state except for

S(ρ)|args.

An example, for which we will later show bounds on the consensus number, is k-front-sensitive

sets of operations:

Definition 29. A subset OPS of the operations of a data type T is k-front-sensitive for a fixed

integer k if OPS is S-sensitive where S(ρ) is the kth mutator instance in ρ for every ρ ∈ LT

containing only instances of operations in OPS which has at least k mutator instances.

92

In an augmented queue (as in [15]), the operation set {Enqueue, Peek} is k-front-sensitive

by this definition, where k = 1, S returns the first mutator in a sequence of operation instances,

the accessor AOP is Peek, and the decode function is the identity, since the return value of Peek

is the argument to the first Enqueue on the queue. In fact, this operation set is also strictly 1-

front-sensitive, since the return value of an instance of Peek is the argument to the single first

Enqueue.

Note that we do not require that the set of sensitive operations is the entire set of operations

supported by the shared object(s) in the system. There may be other operations. These extra

operations do not detract from the ability of a sensitive set of operations to solve consensus, since

an algorithm may just choose not to use any other operations. This means that our proofs of the

ability to solve consensus are powerful. Impossibility proofs do not get this extra strength, as a

clever combination of operations which are not individually sensitive in a particular way may allow

stronger algorithms.

6.3 k-Front-Sensitive Data Types

We begin by proving a result that generalizes the consensus number of augmented queues. We

observe that if all processes can determine which among them was the first to modify a shared

object, then they can solve consensus by all deciding that first process’ input. For, example, in

an augmented queue, any number of processes can solve consensus by each enqueuing their input

value, then using Peek to determine which Enqueue instance was first [15].

More generally, processes do not need to know which mutator instance was first, as long as they

can all determine, for some fixed integer k, the argument of the kth mutator instance executed on

the shared object. Thus, we have the following general theorem, which applies to either a mutator

and pure accessor or to a mixed operation. An example (for k = 1) is an augmented queue, where

Peek returns the first argument ever passed to an Enqueue, requiring no decoding. Another similar

example is a Compare-And-Swap operation which places a value into a shared register in an initial

state and leaves any other value it finds in the object, leaving the argument of the first operation

instance still in the shared object, and thus decodable at each subsequent operation. Generally,

93

for any k, a mixed operation which stores a value and returns the entire history of past changes

satisfies the definition, since the first argument is always visible to later operations.

Theorem 29. The consensus number of a data type containing a k-front-sensitive subset of oper-

ations is∞.

We give a generic algorithm (Algorithm 7) which we can instantiate for any k-front-sensitive

set of operations (which has a mutator with at least two possible distinct arguments) to solve

consensus among any number of processes and prove its correctness as a consensus algorithm.

The mutator and accessor in the algorithm are not necessarily distinct operations.

Algorithm 7 Consensus algorithm for a data type with a k-front-sensitive subset of operations
OPS, using a mutator OP and accessor AOP , each in OPS

1: for i = 1 to k do
2: OP (input)
3: end for
4: result← AOP (arg) ▷ Arbitrary argument arg
5: val ← decode(result)
6: decide(val)

Proof. We must show that this algorithm satisfies the three properties of a consensus algorithm.

• Termination: Each process performs a finite number of operation instances, never waiting

for another process. Thus, even in a wait-free system, where any number of other processes

may have crashed, all running processes will terminate in a finite length of time.

• Validity: By the definition of sensitivity, the decision value at each process will be an ar-

gument to a past mutator instance, and only processes’ input values are passed as inputs to

mutators on the shared object. Thus, each decision value is some process’ input value, and

is valid.

94

• Agreement: decode(result) will return the argument to the kth mutator instance at all pro-

cesses. Since each process completes k mutator instances before it invokes AOP , there are

guaranteed to be at least k mutator instances preceding the instance of AOP in line 4. Thus,

each process decides the same value.

No part of the algorithm or proof is constrained by the number of participating processes, which

means that this algorithm solves consensus for any number of processes using a k-front-sensitive

data object, so the consensus number of any shared object with a k-front-sensitive set of operations

is∞.

6.4 Consensus with End-Sensitive Data Types

While data types which “remember” which mutator instance was first, or kth as above, are

intuitively very useful for consensus, other data types can also solve consensus, though not neces-

sarily for an arbitrary number of processes. As a motivating example, consider the difference in

semantics and consensus numbers between stacks and queues, shown in [15]. Both store elements

given them in an ordered fashion, and the basic version of each has consensus number 2. However,

adding extra power to a queue in the form of a Peek operation gives it consensus number∞, while

adding a similar operation Top to stacks does not give them any extra power.

If we view the difference between an augmented queue and an augmented stack in terms of

sensitivity, Enqueue and Peek on a queue are front-sensitive, while Push and Top on a stack

are end-sensitive. That is, queues see what operation was first, while stacks see which was latest.

When processes cannot tell how far in the algorithm other processes have gotten, though, due to

asynchrony, knowing what operation was latest is not helpful for consensus, as another mutator

instance could finish after some process decides, and that other process will see a different latest

value. We explore generalizations of this problem and what power still remains in end-sensitive

data types.

Unfortunately, the picture for data types with end-sensitive operations sets is more complex

than that for front-sensitive types. Here, we have variations depending on exactly which part of

95

the end of the previous history is visible or partly visible to an accessor. It is also important that

shared objects have a pure accessor, or some other means of maintaining the state of the object,

or else every operation will change what future operations see, making it difficult or impossible to

come to a consensus.

We begin with a symmetric definition to that in Section 6.3, but for recent operations instead

of initial, and show that it is not useful for consensus. We then show that certain subclasses, which

are sensitive to more than one past operation, have higher consensus numbers.

Definition 30. A subset OPS of the operations of a data type T is k-end-sensitive for a fixed

integer k if OPS is S-sensitive where S(ρ) is the kth-last mutator instance in ρ for every ρ ∈ LT

consisting entirely of instances of operations in OPS and containing at least k mutator instances,

and S(ρ) is a null operation instance ⊥(⊥,⊥), if there are not at least k mutator instances in ρ.

This definition does not lead to as simple a result as that for front-sensitive sets of operations.

As we will show, there is no algorithm for solving consensus for n processes with an arbitrary k-

end-sensitive set of operations, for n > 1. We will give a number of more fine-grained definitions,

showing that different subsets of the class of k-end-sensitive operation sets range in power from

consensus number 1 to consensus number∞.

Consider a set of operations which is S-sensitive, where for all ρ, S(ρ) is the entire sequence

of mutator instances in ρ. This set of operations is both k-end-sensitive and k-front-sensitive, for

k = 1. By the result from Section 6.3, we know that such a set of operations has consensus number

∞. A similar result holds for any k for which an operation set is k-front-sensitive. Thus, in this

section, we will only consider operation sets which are not k-front-sensitive for any k to consider

the strength and limitations of end-sensitivity independently.

6.4.1 k-End-Sensitive Types

Unlike front-sensitive data types, if a set of operations is strictly k-end-sensitive, for some fixed

k, the data type does not have infinite consensus number. This is a result of the fact that the kth-last

mutator instance is a constantly moving target, as processes execute more mutator instances. As we

96

will show, in an asynchronous system, if there are more than one or three processes in the system

(depending on the operations in the set), operations can be scheduled such that the “moving target”

is always obscured for some processes, so they cannot distinguish which process took a step first

after a critical configuration, which prevents them from safely deciding any value. We formalize

this in the following theorems.

Theorem 30. For k > 2, any data type with a strictly k-end-sensitive operation set consisting only

of pure accessors and pure mutators has consensus number 1.

Proof. Suppose we have a consensus algorithm A for at least 2 processes, p0 and p1, using such

an operation set. Consider a critical configuration C of an execution of algorithm A, as per Lem-

mas 1, 2. If p0 is about to execute a pure accessor, p1 will not be able to distinguish C from the

child configuration p0(C) when running alone, by the definition of a pure accessor. Thus, it will

decide the same value in the executions where it runs from either of those states, which contra-

dicts the fact that they have different valencies. If p1’s next operation is a pure accessor, a similar

argument holds.

Thus, both processes’ next operations from configuration C must be mutators. Assume without

loss of generality that p0(C) is 0-valent and p1(C) is 1-valent. Then the states C0 = p1(p0(C)) and

C1 = p0(p1(C)) are likewise 0-valent and 1-valent, respectively.

We construct a pair of executions, extending C0 and C1, in which at least one process cannot

learn which configuration it is executing from. By the Termination condition for consensus algo-

rithms, at least one process must decide in a finite number of steps, and since the two executions

return the same values to the first process to decide, it will decide the same value after p1(p0(C))

as after p0(p1(C)), despite those configurations having different valencies. This is a contradiction

to the supposed correctness of A, showing that no such algorithm can exist.

We construct the first execution, from C0, as follows. Assuming for the moment that both

processes continue to execute mutators (we will discuss below what happens when they don’t), let

p0 run alone until it is ready to execute another mutator. Then pause p0 and let p1 run alone until it

is also ready to execute a mutator, and pause it. Let p0 run alone again until it has completed k− 2

97

mutator instances and is ready to execute another. Next, allow p1 to run until has executed one

mutator instance, and is prepared to execute a second. We then continue to repeat this sequence,

allowing p0 to run alone again for k − 2 mutator instances, then p1 for one, etc.

The second execution is constructed identically from C1 except that after C1, p0 first runs until

it has executed k− 3 mutator instances and is ready to execute another, then p1 executes a mutator

instance. After that, the processes alternate as in the first execution, with p0 executing k−2 mutator

instances and p1 executing one.

We know that each process, running alone from C0 (or C1), must execute at least k− 2 mutator

instances to be able to see what mutator instance was first after C, since we have a strictly k-end-

sensitive set of operations, which means that any correct algorithm must execute at least that many

mutator instances, since it must be able to distinguish p0(C) from p1(C). The way we construct

the executions, though, we interleave the operation instances in such a way that each process sees

only its own operation instances, and cannot distinguish these executions from running alone from

C0 (or C1). It is an interesting feature of this construction that we do not force any processes to

crash. In fact, we need both processes to continue running to ensure that they successfully hide

their own operations from each other.

If we denote any mutator instance by m and any accessor instance by a, with subscripts to

indicate the instance’s invoking process and superscripts for repetition (in the style of regular ex-

pressions), we can represent these two execution fragments, restricted to the shared object operated

on in configuration C, as follows:

m0 ·m1 · ·a∗0 · a∗1 · (m0 · a∗0)k−2 · (m1 · a∗1) · (m0 · a∗0)k−2 · · ·

m1 ·m0 · ·a∗1 · a∗0 · (m0 · a∗0)k−3 · (m1 · a∗1) · (m0 · a∗0)k−2 · · ·

Since the return value of each accessor instance is determined by the kth most recent mutator

instance, all operations are pure, and operations are deterministic, we can see that corresponding

accessor instances will return the same value in the two executions. Thus, neither process can

98

distinguish the two executions. This is true despite the possibility of operations on other shared

objects. To discern the two runs, each process must determine which process executed an operation

first after C, and that can only be determined by operations on this shared object. Thus, as long

as the return values of operation instances on this object are the same, since the algorithm is

deterministic, the processes will continue to invoke the same operations in the two runs, and will

be unable to distinguish the two executions.

This interleaving of operation instances works as long as both processes continue to invoke

mutators. Each process must decide after a finite time, though, so they cannot continue to invoke

mutators indefinitely. When a process ceases to invoke mutators, we can no longer schedule events

as before to continue hiding its past operation instances. There are two possible cases for which

process(es) finish their mutator instances first in the two executions.

First, one process (WLOG p0) may execute its last mutator instance before the other does in

both executions. When p0 executes its last mutator instance in each execution, let it continue to

run alone until it decides. Since configuration C, it has only seen its own mutator instances, and

since the data type is strictly k-end-sensitive and no more mutators are executed, will continue to

see only its own past mutator instances in both executions. Thus, the two executions are identical

for p0 and it will decide the same value in both, contradicting their differing valencies.

Second, it may be that in one execution, p0 executes its last mutator instance before p1 does

and in the other, p1 executes its last mutator instance before p0. Each process will follow the same

progression of local states in both executions, so this case can only arise when p0’s last mutator

instance in the first execution is the last in a block of k − 2 mutator instance it executes while

running by itself, and thus the first instance in such a block in the second execution. In the first

execution, after p0 executes its last mutator instance, let it run alone, as in the first case. In the

second execution, after p1 executes its last mutator instance, pause it, and allow p0 to run alone,

executing its last mutator instance and continuing until it decides. By the same argument as case

1, p0 decides the same value in both executions, contradicting the fact that they have the same

valency.

99

Thus, the assumed consensus algorithm cannot actually exist.

If mixed operations are allowed, the above proof does not hold, as a mixed operation imme-

diately after C will potentially have a different return value than it would in a different execution

where there is an intervening mutator instance. We can show the following:

Theorem 31. For k > 2, any data type with an operation set which is strictly k-end-sensitive has

consensus number at most 3.

Proof. Suppose we have a consensus algorithm A for at least 4 processes, p0, p1, p2, and p3, using

such an operation set. Consider a critical configuration C of an arbitrary execution of algorithm

A. If p0 is about to execute a pure accessor, p1 will not be able to distinguish C from the child

configuration p0(C) when running alone, by the definition of a pure accessor. Thus, it will decide

the same value in the executions where it runs from either of those states, which contradicts the

fact that they have different valencies. If any other process’ next operation is a pure accessor, a

similar argument holds.

Thus, all four processes’ next operations from configuration C must be mutators. Assume

without loss of generality that p0(C) is 0-valent and p1(C) is 1-valent. Then the states C0 =

p2(p1(p0(C))) and C1 = p2(p0(p1(C))) are likewise 0-valent and 1-valent, respectively.

We construct two executions E0 and E1, extending C0 and C1, respectively. We design these

such that p0 and p1 crash, while p2 and p3 cannot distinguish E0 from E1. By the Termination

condition for consensus algorithms, at least one process must decide in a finite number of steps,

and since no running process can tell with execution it is in, they will decide the same value in

both. But since the two executions are of different valencies, this is a contradiction to the supposed

correctness of A, showing that no such algorithm can exist.

We construct execution E0 from C0 as follows. p0 and p1 crash immediately in configuration

C0. Let p2 run alone until it has completed k− 3 mutator instances and is ready to execute another.

If p2 runs alone from either C0 or C1, it must execute at least k − 2 more mutator instances on this

shared object to be able to distinguish these two states, by the assumed sensitivity of the operation

100

set, so we know we can let it run this far. Next, allow p3 to run until it executes one mutator

instance, performs any other operations, and is ready to execute a second mutator instance. Now,

let p2 run alone again, for k − 2 mutator instances and other interleaved operations, until it is

prepared to execute a (k − 1)st mutator instance. We now let p3 execute another mutator instance

and following accessors until it is ready to execute a second mutator. We then continue to repeat

allowing p2 to run alone again for k − 2 mutator instances, then p3 for one, etc.

The second execution is constructed similarly, from C1, with p0 and p1 crashing in configu-

ration C1, except that p2 continues from C1 until it completes k − 4 mutator instances, then p3

executes one, and then they continue as above, with p2 executing k− 2 mutator instances in a row,

followed by p3 executing one, and so on.

If we denote any sequence consisting of a single mutator instance followed by any number

of pure accessor instances by block, with subscripts to indicate the instances’ invoking process

and superscripts for repetition (in the style of regular expressions), we can represent these two

executions, restricted to the shared object operated on in configuration C, as follows:

block0 · block1 · (block2)k−2 · block3 · (block2)k−2 · block3 · · ·

block1 · block0 · (block2)k−3 · block3 · (block2)k−2 · block3 · · ·

Since the return value of each accessor instance is determined by the kth most recent mutator

instance, we can see that each accessor instance will return the same value in each execution.

Thus, neither p2 nor p3 can distinguish the two executions. This is true despite the possibility of

operations on other shared objects as in the proof of Theorem 30.

We now need only to argue that we can schedule the operation instances of any algorithm

in the patterns specified in these executions, until some process decides. Up to n − 1 processes

can crash, and do so at any time, so p0 and p1 can crash as specified. As long as both running

processes continue to invoke mutators, we can schedule them as we wish, because the system

is asynchronous. When one of these processes invokes its last mutator instance, pause the other

101

process. If the process which invoked its last mutator instance runs alone, it must decide in a

finite number of steps, by the Termination requirement of consensus. It can access the shared

object, but since the object state doesn’t change, that will not give it any more ability to discern

which of the two executions it is in. It will then decide the same value in each case, leading to a

contradiction.

6.4.2 1- and 2-End-Sensitive Types

The bounds in the previous section require k > 2, so we here explore what bounds hold when

k ≤ 2. We continue to consider strictly k-end-sensitive operations; we will consider operation sets

with knowledge of additional operation instances (that is, with larger sensitive sequences S(ρ))

later.

We first consider the case k = 1, which implies that accessor operations can see the last

previous mutator instance. If all operations are pure mutators or accessors, then it is intuitive

that consensus would not be possible, since we could schedule operations such that each process

only saw its own mutator instances. We show that this is, in fact, the case. This generalizes the

bound that registers can only solve consensus for one process. If mixed operations are allowed,

then a process can obtain some information about other operation instances, which we will show

is enough to solve consensus for two processes, but no more. We know that this bound of 2 is

tight, that is, no lower bound can be proved for the entire class, since Test&Set, for example, is

sensitive to only the last previous mutator instance and has consensus number 2 [15].

Theorem 32. Any data type with a strictly 1-end-sensitive operation set with no mixed operations

has consensus number 1.

Proof. Suppose there is an algorithm A which solves consensus for such an operation set on at

least 2 processes. Let C be a critical configuration. Assume WLOG that p0(C) is 0-valent and

p1(C) is 1-valent.

If at least one process, say p1, is prepared to execute a pure accessor in configuration C, then

p1(C) and C will only differ in the local state of p1. If p1 crashes immediately, p0 will behave

102

the same in both executions, and decide the same value, which contradicts the fact that p0(C) is

0-valent.

Thus, both p0 and p1 must be ready in C to execute mutators. Consider the configurations

p0(C) and p0(p1(C)). Since the operation set is sensitive to only the last mutator instance, if p0

runs alone from each of these configurations, it will never be able to ascertain the presence of p1’s

operation instance in the second configuration, and will decide the same value in either case. This

again contradicts the different valencies of the configurations.

Thus, there cannot be a critical configuration in the execution of A, which means that there

is an execution in which it will never terminate. Since consensus algorithms must terminate, A

cannot exist.

Theorem 33. Any data type with a strictly 1-end-sensitive operation set has consensus number at

most 2.

Proof. Suppose there is an algorithm A which solves consensus for such an operation set on at

least 3 processes. Let C be a critical configuration. Assume WLOG that p0(C) is 0-valent and

p1(C) is 1-valent.

If at least one process, say p1, is prepared to execute a pure accessor in configuration C, then

p1(C) and C will only differ in the local state of p1. If p1 crashes immediately, p0 will behave

the same in both executions, and decide the same value, which contradicts the fact that p0(C) is

0-valent.

Thus, both p0 and p1 must be ready in C to execute mutators. Unless both processes are about

to execute mixed operations, suppose WLOG that p0 is about to execute a pure mutator. Consider

the configurations p0(C) and p0(p1(C)). Since the operation set is sensitive to only the last mutator

instance and p0’s operation is a pure mutator, if p0 runs alone from each of these configurations, it

will never be able to ascertain the presence of p1’s operation instance in the second configuration,

and will decide the same value in either case. This again contradicts the different valencies of the

configurations.

103

If both p0 and p1 are prepared to execute mixed operations in C, again consider the configura-

tions p0(C) and p0(p1(C)). If we allow a third process p2 to run alone from these two configura-

tions, it will not be able to distinguish them, because the operation set is strictly 1-end-sensitive.

Thus, p2 will decide the same value in both cases, contradicting their different valencies.

Thus, there cannot be a critical configuration in the execution of A, which means that there

is an execution in which it will never terminate. Since consensus algorithms must terminate, A

cannot exist.

Next, we consider k = 2. If the sensitive set of operations includes a pure accessor, we show

that we can solve consensus for 2 processes. Here, unlike our other results, the presence or absence

of a mixed operation does not seem to affect the strength for consensus. Instead, it is important

to have a pure accessor, which can see the 2nd-last mutator without changing it, which makes it

practical for both processes to see the same value.

Data types without a pure accessor seem to have less power than consensus, since it is impos-

sible to check the shared state without changing it. This makes it very difficult for processes to

avoid confusing each other. A similar argument to that for Theorem 31 provides an upper bound

of n ≤ 3 for this data type. We conjecture that it is lower(n = 1), but do not yet have the tools to

prove this formally.

For now, an upper bound on the consensus number of 2-end-sensitive operation types is an

open question, but we conjecture that it will be 2, or perhaps 3 with mixed operations as for k-end-

sensitive types with k > 2, above.

Theorem 34. For k = 2, a data type containing a k-end-sensitive set of operation types which

includes a pure accessor has consensus number at least 2, using Algorithm 8.

Proof. The algorithm has no wait or loop statements, so it will always terminate in a finite number

of steps. Similarly, processes always decide either their own input or a decoded input from the

other process, and they only do the latter when there has actually been such a value put into the

shared object, so the algorithms satisfy validity.

104

To prove agreement, consider the possible decision points in the algorithm. If one process

passed the if statement, then it saw ⊥ when reading the shared state. But one process’ mutator

instance must appear before the other’s in the execution, which means that the second process,

which accesses the object no sooner than it executes its mutator, would see that two operation

instances (including its own) had completed, and would not decode ⊥. Thus, it would fail the if

condition, decoding the argument of the first mutator instance in the execution, which, because

there are only ever two invoked, is that belonging to the first process, and they both decide the first

process’ input.

If both processes were in the else case, then both saw two mutator instances. Since only two

mutator instances are ever invoked on the shared object, and they must appear in the same order to

both processes, the processes would decode, and decide, the same value. Thus agreement is also

satisfied, and this is a correct consensus algorithm for two processes.

Algorithm 8 Consensus Algorithm for 2 processes using 2-end-sensitive set of operations using
mutator OP and pure accessor AOP

1: OP (input)
2: val ← AOP ()
3: if decode(val) = ⊥ then
4: decide(input)
5: else
6: decide(decode(val))

6.4.3 Knowledge of Consecutive Operations

End-sensitive operation sets which only allow a process to learn about one past operation are

generally limited to solving consensus for at most a small constant number of processors. We now

show that knowledge about several consecutive recent operation instances allows more processes

to solve consensus. In effect, we are enlarging the moving target we discussed before. We will

show that this does, in fact, allow consensus algorithms on more processes, as many as the size of

105

the target, or the number of consecutive operation instances we can decode. We will then show

that when we know the last mutator instances that have happened, the bound is tight.

This is interesting because the consensus number is not affected by how old the visible oper-

ations are, as long as they are at a consistent distance in the past. That is, if we always know a

window of history that is a certain fixed number of operation instances old (no matter what that

number is), we can use it to solve consensus. Also interesting is the fact that the bound is param-

eterized. While knowing a single element of history can solve consensus for a constant number of

processes, if we know l consecutive mutator instances in the history, we can solve consensus for

l processes for any natural number l. Thus, knowing more consecutive elements always increases

the consensus number.

We could use this to create a family of data types which solve consensus for an arbitrary number

of processes, with a direct cost trade-off. If we maintain a rolling cache of several consecutive

mutator instances, we trade off the size of the cache we maintain against the number of processes

which can solve consensus. If we only need consensus for a few processes, we know we only need

to maintain a small cache. If we have the available capacity to maintain a large cache, we can solve

consensus for a large number of processes.

We begin by defining the sensitivity of these large-target operation sets and giving a consensus

algorithm for them. In effect, the algorithm watches for the target to fill up, and as long as it is not

full, can determine which process was first. Since we can only see instances as long as the target

“window” does not overflow, this gives the maximum number of processes which can use this

algorithm to solve consensus. We later show this number is tight, if there are no mixed operations.

Definition 31. A subset OPS of the operations of a data type T is l-consecutive-k-end-sensitive

for fixed integers l and k if OPS is S-sensitive where for every ρ ∈ LT , S(ρ) is the sequence of l

consecutive mutator instances in ρ, the last of which is the kth-last mutator instance in ρ. If there

are not that many mutator instances in ρ, the missing ones are replaced by ⊥(⊥,⊥) in S(ρ).

Theorem 35. Any data type with an l-consecutive-k-end-sensitive set of operations has consensus

number at least l, using Algorithm 9.

106

Algorithm 9 Consensus algorithms for l processes using an l-consecutive-k-end-sensitive opera-
tion set. (A) Using mutator OP and pure accessor AOP . (B) Using mixed operation BOP .

(A)
1: for x = 1 to k do
2: OP (input)
3: vals[1..l]← decode(AOP ())
4: let m = argminn∈1..l{vals[n] ̸= ⊥}
5: if m exists then
6: decide(vals[m])

7: end for

(B)
1: for x = 1 to k do
2: vals[1..l]← decode(BOP (input))
3: let m = argminr∈1..l{vals[r] ̸= ⊥}
4: if m exists then
5: decide(vals[m])

6: end for
7: decide(input)

We will show that this is the maximum possible number of processes for which we can give

an algorithm which solves consensus using any l-consecutive-k-end-sensitive operations set. We

do this by considering a special case of that class, l-consecutive-0-end-sensitive with only pure

operations, and showing that the bound is tight for it. As with most end-sensitive classes, a set

of operations which satisfies the definition of l-consecutive-k-end-sensitive may also be sensitive

to more, earlier operations, and thus have a higher consensus number. We will show a particular

example of such an operation set, to show that there is more work to be done to classify end-

sensitive data types.

Theorem 36 below shows an upper bound on the consensus number of strictly l-consecutive-

0-end-sensitive operation sets. That is, operation sets in which accessors can learn exactly the

last l mutator instances. To achieve this bound, we need to restrict ourselves to operation sets

which have no mixed accessor/mutator operations. This is a strong restriction, but we will give an

example showing that a mutator which also returns even a small amount of information about the

state of the shared object can increase the consensus number of an operation set.

Theorem 36. Any data type with a strictly l-consecutive-0-end-sensitive set of operations which

has no mixed accessor/mutators has consensus number at most l.

Proof. Assume we have a set of operations as specified in the theorem and an algorithm A which

uses them to solve consensus for l+1 processes. Let C be a critical configuration, by Lemmas 1, 2,

107

which also imply that all processes must be about to execute an operation on the same shared

object. We consider the possible operations which processes may be about to execute.

• A process pi is about to execute a pure accessor, and pi(C) and pj(C) have different valen-

cies, for some other process pj:

By the definition of a pure accessor, configurations pj(C) and pj(pi(C)) will have the same

shared state, and pj has the same state in both. Thus, if pj runs alone from either of these

configurations, it will decide the same value, contradicting their difference in valency, so this

case cannot occur.

• All processes are prepared to execute mutators:

Assume, WLOG, that p0(C) is 0-valent, and p1(C) is 1-valent. If each process pi, i ∈ {0..l}

takes a step, in order, the resulting configuration is pl(pl−1(...(p1(p0(C))...). However, since

the set of operations is strictly l-consecutive-0-end-sensitive, pl will not be able to distinguish

this configuration from the one in which p0 does not act, but all other processes execute

their operations in the same order: pl(pl−1(...(p1(C)...). Thus, if pl runs alone from either

configuration, it will decide the same value in each case, which contradicts the fact that the

first configuration is 0-valent and the second is 1-valent. Thus, this case cannot occur.

Since every possible set of ready operations at any critical configuration leads to a contradic-

tion, we conclude that there is no such algorithm A to solve consensus for l + 1 processes using

the specified set of shared operations.

There are sets of operations which are strictly l-consecutive-0-end-sensitive, but have a mixed

operation which returns information about the state of the object. We here give an example such

set. Specifically, the mixed operation returns a (limited) count of the number of preceding mutator

instances. Even this small amount of extra information is enough to increase the consensus power

of a set of operations.

Consider an l-element shared cyclic queue with operations Enql(x) and ReadAll(). Enql(x)

is a mixed accessor/mutator which adds x to the tail of the queue, discarding the head element if

108

there are more than l elements in the queue, and returning the number of Enql operation instances

which have previously been executed, up to l. If more than l Enql operation instances have been

previously executed, the return value will continue to be l. ReadAll() is a pure accessor which

returns the entire contents of the l-element queue. This is clearly a strictly l-consecutive-0-end-

sensitive set of operations, since the return values of ReadAll() and Enql depend on the last l

Enql(x) instances, but only the last l are visible to each instance of one of these. We show that it

has consensus number at least l + 1 by giving Algorithm 10.

Algorithm 10 Algorithm for each process i to solve consensus for l+1 processes using a l-element
cyclic queue with Enql and ReadAll

1: Writei(input) ▷ In a shared SWMR register
2: state← Enql(i)
3: l_history ← (ReadAll())
4: if There are state values preceding i in l_history then
5: decide oldest element in l_history
6: else
7: j ← processor id not appearing in l_history
8: decide Readj() ▷ Value from pj’s SWMR register

The intuition for this algorithm is that all processes but one will be able to see which process

was first. The variable state will tell how many previous Enql instances processes have executed.

If this is less than k, all previous Enql instances are visible, and the process can return the input of

the first. If there have been k previous Enql instances, then we cannot see the first, but we know

that there are at most l+1 processes and each executed only one Enql instandce, so the one process

whose Enql instance we cannot see must have been first, and we decide that process’ input.

This algorithm shows that mixed operations can give extra strength for consensus, beyond

sensitivity, which is difficult to quantify. In general, mixed operations can not only give different

return values based on the state of the shared object, but can alter the way they modify the object’s

state based on its previous state. This allows them to preserve any non-empty state, which means

that it can keep a record of which process first modified the state, giving a front-sensitive data type,

109

which can solve consensus for any number of processes. For example, a Read-Modify-Write

operation can exhibit this behavior.

6.5 Conclusion

We have defined a number of classes of operations for shared objects, and explored their power

for solving consensus. First, we generalized, with an intuitive result, the common understanding

that knowing what process acted on a shared object first, or in some fixed position relative to the

start of the execution order, allows a consensus algorithm for any number of processes. We then

considered what might be possible if only knowledge about recent operation instances, instead of

initial instances, is available.

Here, because the set of recent operation instances is constantly changing, we must be more

precise about what knowledge is available. If operations cannot both change and view the shared

state atomically, then the number of processes which can solve consensus is given by the number

of consecutive changes a process can view atomically. Further, these do not need to be the most

recent changes, as long as processes know how old the data they receive is.

If operations can atomically view and change the shared state, then they generally have the

potential for more computational power. We show that if an operation set has a mixed operation

which can see one of the two most recent changes, then it can solve consensus for two processes,

where without a mixed operation, such an operation set could only solve consensus for one process.

In general, though, allowing arbitrary mixed operations allows an arbitrary number of processes

to solve consensus, depending on the power of the mixed operation. Also, mixed operations may

be more expensive to implement than pure accessors or mutators, which would cause a trade-off

between computational power and operation cost.

We summarize our results in Table 6.1. We have results for front-sensitive sets of operations

and several subclasses of end-sensitive operation sets. Several of these classes have different con-

sensus numbers if we allow mixed accessor/mutator operations or only allow pure accessors and

pure mutators, so we separate those results. Note also that all upper bounds further assume a data

type with a strictly sensitive set of operations.

110

Table 6.1: Summary of Upper and Lower Bounds on Consensus Numbers

Operation Set
Lower Bounds Upper Bounds
Pure Mixed Pure Mixed

Front-sensitive ∞ -
End-Sensitive k-end: k > 2 1 ? 1 3

k = 1 1 2 1 ?
k = 2 2 ? ? 3

l-consecutive-k-end l l (k = 0) ?

In future work, we wish to fill missing entries in the above table. In addition, we wish to further

explore conditions on the knowledge of the execution which operations can extract to classify more

operations. More generally, the idea of exploring how information travels through the execution

history of a shared object, affecting the return values of different subsequent operations in different

ways, is fascinating. As currently defined, sensitivity cannot classify all possible operation sets, so

an exploration of classifying and providing generic results for other shared data types is of interest.

Another direction is to consider trade-offs between the implementation costs of shared oper-

ations and their consensus numbers. It would be interesting to develop a metric which balances

an operation’s cost with its computational strength. Finding minima of such a metric would be an

interesting result, potentially showing the optimal cost for solving consensus for any given number

of processes.

111

7. SUMMARY AND CONCLUSIONS

In this dissertation, we have worked to extend our understanding of distributed data structures.

We want to provide simple, efficient mechanisms for distributed programs to access shared data

in an environment without shared hardware. Because communication time is dominant in such

systems, we focus on reducing that aspect of the cost.

Our primary focus has been on data type relaxations, and moving them from a theoretical idea

towards useful and understandable concepts. To do this, we have first given several equivalent

definitions, each useful in a particular context, to make the properties more readily understandable

and usable by humans. From there, we have given some sample implementations to show that

relaxations allow higher-performance implementations. We found that worst-case communication

time per operation does not improve with many relaxations, but the amortized cost can decrease

significantly. Further, there is an inherent increase in performance as relaxation is increased. This

suggests that relaxed data types can provide tunable performance for different applications.

Once we knew that relaxation can improve performance, we wanted to analyze what is sac-

rificed to allow this. Relaxing a data type adds some non-determinism, which could reduce the

usefulness of the data type. We analyzed all possible parameter values for three relaxations of

queues, showing that some computational power was given up. This suggests that, in addition to

performance tuning, a developer can tune the power of their data types by adjusting the relaxation,

and that they must be conscious of the effects of their parameter choices.

The last question about relaxed data types in this work is whether they are a good model for

building high-performance shared data types. To answer this, we explored the relationship be-

tween data type relaxations and weak consistency conditions, which is the standard approach in

the literature for weakening guarantees on concurent behavior. We show that several common data

type relaxations can be equivalently expressed as consistency conditions. In general, our method

could express any data type relaxation as a consistency condition. Conversely, we show that some

known consistency conditions can be expressed as relaxations. This equivalence is partial, though,

112

as some weak consistency conditions use features such as knowledge of concurrency, which does

not exist in a sequential specification, even if is relaxed. We can, however, use tools from the exten-

sive literature on consistency conditions to analyze data type relaxations. We do this, showing that

the relaxations we consider, which are intuitive and fairly common in the literature, are unique and

different from studied consistency conditions. This establishes that data type relaxations are a use-

ful tool, since they allow us to consider behaviors that were not intuitive to specify as consistency

conditions.

To conclude this dissertation, we stepped away from relaxed data types and considered the

broader question of evaluating the computational power of a data type. We gave heuristics to de-

termine a type’s consensus number. While this is generally undecidable, we hope that our heuristics

may allow greater intuitive insight into what properties of data types cause them to have or lack

consensus power.

Overall, we extended our understanding of distributed data types and techniques to increase

their performance. We analyzed the tradeoffs and models we used, and provided some tools for

analyzing data types in general. We hope that these results will lead to application benefits in a

variety of distributed systems.

7.1 Future Work

7.1.1 Consistency Conditions vs. Relaxations

We have only begun exploring the relation of consistency conditions and relaxed data types.

So far, we have shown that relaxations can be equivalently described as consistency conditions,

and some consistency conditions can be expressed as relaxations. We have also taken advantage of

tools in the consistency condition literature to compare the strength of data type relaxation defini-

tions to consistency conditions. In future work, I would like to more fully explore the implications

and uses of this partial equivalence. It may be possible to generalize the definition of data type

relaxations to represent more consistency conditions than the current definition allows. In large

part, the difficulty here is finding a way to represent concurrency in a sequential specification. This

113

begins to approach other work (e.g. [2, 42]) on the specification of problems which cannot be

represented sequentially. Perhaps a broader definition of relaxation could apply to such problems,

as well.

In another direction, an interesting possible method for describing, reasoning about, and imple-

menting weak consistency conditions is to combine relaxations with consistency conditions weaker

than linearizability. One benefit of this approach is that it moves part of the complexity of possible

behaviors to the sequential world, which is typically easier to reason about. It remains open to

explore whether this separation of definition could open the path to more efficient implementa-

tions or easier impossibility and lower bound proofs for data types. Another possible benefit is that

extending relaxations to work with arbitrary consistency conditions could also allow extensions to

the equivalence between the two systems. Ideally, we would be able to express a larger portion

of the space of consistency conditions as data type relaxations, and vice versa. It still seems that

some aspects of concurrent behavior would be impossible to express sequentially, but that leads us

to the question of where the edges of the equivalence are.

7.1.2 Practical Implementations of New and Arbitrary Data Types

In this work, we have almost exclusively considered relaxations of FIFO queues. This is a good

first step, as they are well-known, easy to work with, and relax intuitively. However, the concept of

relaxation can apply to many more data types, potentially giving performance improvements in ap-

plications which rely on different shared-data semantics. We would like to implement relaxations

of a variety of other commonly used data types to work towards a library of high-performance

shared data type implementations which a developer can choose between based on their desired

balance between efficiency and semantic guarantees.

In past work [3], we presented an algorithm for an arbitrary data type in a partially-synchronous

environment. This model approximates a real-world system, but relies on upper bounds on mes-

sage delays that may not be realistic. There are many interesting question involved in continuing

this work in a truly asynchronous message-passing system, attempting to find an optimal imple-

mentation for any data type. Such an implementation should be easy to port to a real-world system,

114

since it assumes very little about the environment. A general implementation which can be instan-

tiated to implement an arbitrary data type is often very difficult to achieve, and may not even be

possible. It thus is probably easiest to start with implementations of various data types of interest,

with the end goal of generalizing implementations as much as possible.

Another direction to take these implementations is to extend in the direction of relaxation.

[3] presents a general algorithm in a partially synchronous system, but also restricts it to only

deterministic operations. If this latter constraint can be removed, then the general implementation

could also be applied to relaxed and other non-deterministic data types.

7.1.3 Classifying Operations

To show that a general implementation of abstract data types is optimal or near-optimal, we

can start with the lower bounds from the partially-synchronous environment, since we are weak-

ening assumptions. Those bounds are not complete, though, covering only operations with certain

algebraic properties. An ongoing task, vital to optimal implementations of arbitrary data types, is

to expand the classification ([32, 3], etc.) of all possible operations on data types, so that we can

prove lower bounds on all operations.

Since there are infinitely many possible operations and interesting classes of operations, we can

start by exploring the properties that characterize operations of particular interest in distributed data

types. An obvious example characteristic is that operations must have some effect, either storing or

reporting information. If we can find features that seem necessary for an operation to be of value,

then we can prioritize the search for new operation classifications.

7.1.4 Applications of Relaxed Data Types

Finding applications that benefit from the increased efficiency of relaxed types but do not suffer

too much from the relaxed guarantees is an area that promises many interesting questions. For

example, task allocation for robot swarms has the potential for increased throughput if some tasks

may be multiply assigned, while others are assigned out of order. With proper tuning, it may be

possible to increase total performance, without sacrificing too much from guarantees on priority

115

ordering. Such problems would be ideal for collaboration with domain experts from a variety

fields, who could identify tasks which do not rely too heavily on deterministic guarantees such as

ordering, but which would benefit from faster distributed execution. This is the ultimate goal of

research on relaxed data types: using these new types to solve new and interesting problems.

116

REFERENCES

[1] G. Neiger, “Set-linearizability,” in Proceedings of the Thirteenth Annual ACM Symposium

on Principles of Distributed Computing, Los Angeles, CA, USA, August 14-17, 1994 (J. H.

Anderson, D. Peleg, and E. Borowsky, eds.), p. 396, ACM, 1994.

[2] A. Castañeda, S. Rajsbaum, and M. Raynal, “Specifying concurrent problems: Beyond lin-

earizability and up to tasks - (extended abstract),” in Distributed Computing - 29th Interna-

tional Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings (Y. Moses,

ed.), vol. 9363 of Lecture Notes in Computer Science, pp. 420–435, Springer, 2015.

[3] J. Wang, E. Talmage, H. Lee, and J. L. Welch, “Improved time bounds for linearizable imple-

mentations of abstract data types,” in 2014 IEEE 28th International Parallel and Distributed

Processing Symposium, Phoenix, AZ, USA, May 19-23, 2014, pp. 691–701, IEEE Computer

Society, 2014.

[4] T. A. Henzinger, C. M. Kirsch, H. Payer, A. Sezgin, and A. Sokolova, “Quantitative relax-

ation of concurrent data structures,” in The 40th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL ’13, Rome, Italy, January 23 - 25, 2013

(R. Giacobazzi and R. Cousot, eds.), pp. 317–328, ACM, 2013.

[5] E. Talmage and J. L. Welch, “Improving average performance by relaxing distributed data

structures,” in Distributed Computing - 28th International Symposium, DISC 2014, Austin,

TX, USA, October 12-15, 2014. Proceedings (F. Kuhn, ed.), vol. 8784 of Lecture Notes in

Computer Science, pp. 421–438, Springer, 2014.

[6] E. Talmage and J. L. Welch, “Relaxed data types as consistency conditions,” in Stabiliza-

tion, Safety, and Security of Distributed Systems - 19th International Symposium, SSS 2017,

Boston, MA, USA, November 5-8, 2017, Proceedings (P. G. Spirakis and P. Tsigas, eds.),

vol. 10616 of Lecture Notes in Computer Science, pp. 142–156, Springer, 2017.

117

[7] N. Shavit and G. Taubenfeld, “The computability of relaxed data structures: Queues and

stacks as examples,” in Structural Information and Communication Complexity - 22nd

International Colloquium, SIROCCO 2015, Montserrat, Spain, July 14-16, 2015, Post-

Proceedings (C. Scheideler, ed.), vol. 9439 of Lecture Notes in Computer Science, pp. 414–

428, Springer, 2015.

[8] E. Talmage and J. L. Welch, “Anomalies and similarities among consensus numbers of

variously-relaxed queues,” in Networked Systems - 5th International Conference, NETYS

2017, Marrakech, Morocco, May 17-19, 2017, Proceedings (A. E. Abbadi and B. Garbinato,

eds.), vol. 10299 of Lecture Notes in Computer Science, pp. 191–205, Springer, 2017.

[9] C. M. Kirsch, M. Lippautz, and H. Payer, “Fast and scalable k-fifo queues,” Tech. Rep. 2012-

04, Department of Computer Sciences, University of Salzburg, June 2012.

[10] H. Rihani, P. Sanders, and R. Dementiev, “Brief announcement: Multiqueues: Simple relaxed

concurrent priority queues,” in Proceedings of the 27th ACM on Symposium on Parallelism

in Algorithms and Architectures, SPAA 2015, Portland, OR, USA, June 13-15, 2015 (G. E.

Blelloch and K. Agrawal, eds.), pp. 80–82, ACM, 2015.

[11] M. Wimmer, J. Gruber, J. L. Träff, and P. Tsigas, “The lock-free k-lsm relaxed priority

queue,” in Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, PPoPP 2015, San Francisco, CA, USA, February 7-11, 2015 (A. Co-

hen and D. Grove, eds.), pp. 277–278, ACM, 2015.

[12] P. Viotti and M. Vukolic, “Consistency in non-transactional distributed storage systems,”

ACM Comput. Surv., vol. 49, no. 1, pp. 19:1–19:34, 2016.

[13] M. Herlihy and J. M. Wing, “Linearizability: A correctness condition for concurrent objects,”

ACM Trans. Program. Lang. Syst., vol. 12, no. 3, pp. 463–492, 1990.

[14] A. Aiyer, L. Alvisi, and R. A. Bazzi, “On the availability of non-strict quorum systems,” in

Distributed Computing (P. Fraigniaud, ed.), vol. 3724 of Lecture Notes in Computer Science,

pp. 48–62, Springer Berlin Heidelberg, 2005.

118

[15] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program. Lang. Syst., vol. 13, no. 1,

pp. 124–149, 1991.

[16] W. Lo and V. Hadzilacos, “All of us are smarter than any of us: Nondeterministic wait-free

hierarchies are not robust,” SIAM J. Comput., vol. 30, no. 3, pp. 689–728, 2000.

[17] M. J. Fischer, N. A. Lynch, and M. Paterson, “Impossibility of distributed consensus with

one faulty process,” J. ACM, vol. 32, no. 2, pp. 374–382, 1985.

[18] Y. Afek, G. Korland, and E. Yanovsky, “Quasi-linearizability: Relaxed consistency for im-

proved concurrency,” in Principles of Distributed Systems - 14th International Conference,

OPODIS 2010, Tozeur, Tunisia, December 14-17, 2010. Proceedings (C. Lu, T. Masuzawa,

and M. Mosbah, eds.), vol. 6490 of Lecture Notes in Computer Science, pp. 395–410,

Springer, 2010.

[19] R. J. Lipton and J. S. Sandberg, “PRAM: A scalable shared memory,” Tech. Rep. CS-TR-

180-88, Princeton University, Department of Computer Science, September 1988.

[20] H. Attiya and J. L. Welch, “Sequential consistency versus linearizability,” ACM Trans. Com-

put. Syst., vol. 12, no. 2, pp. 91–122, 1994.

[21] H. Attiya, R. Guerraoui, D. Hendler, P. Kuznetsov, M. M. Michael, and M. T. Vechev, “Laws

of order: expensive synchronization in concurrent algorithms cannot be eliminated,” in POPL

(T. Ball and M. Sagiv, eds.), pp. 487–498, ACM, 2011.

[22] W. Chen, G. Hu, and J. Zhang, “On the power of breakable objects,” Theor. Comput. Sci.,

vol. 503, pp. 89–108, 2013.

[23] E. Talmage and J. L. Welch, “Generic proofs of consensus numbers for abstract data types,”

in 19th International Conference on Principles of Distributed Systems, OPODIS 2015, De-

cember 14-17, 2015, Rennes, France (E. Anceaume, C. Cachin, and M. G. Potop-Butucaru,

eds.), vol. 46 of LIPIcs, pp. 32:1–32:16, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

2015.

119

[24] M. Shapiro, N. M. Preguiça, C. Baquero, and M. Zawirski, “Conflict-free replicated data

types,” in Stabilization, Safety, and Security of Distributed Systems - 13th International Sym-

posium, SSS 2011, Grenoble, France, October 10-12, 2011. Proceedings (X. Défago, F. Petit,

and V. Villain, eds.), vol. 6976 of Lecture Notes in Computer Science, pp. 386–400, Springer,

2011.

[25] D. Bermbach and J. Kuhlenkamp, “Consistency in distributed storage systems - an overview

of models, metrics and measurement approaches,” in Networked Systems - First Interna-

tional Conference, NETYS 2013, Marrakech, Morocco, May 2-4, 2013, Revised Selected

Papers (V. Gramoli and R. Guerraoui, eds.), vol. 7853 of Lecture Notes in Computer Science,

pp. 175–189, Springer, 2013.

[26] R. Friedman, R. Vitenberg, and G. V. Chockler, “On the composability of consistency condi-

tions,” Inf. Process. Lett., vol. 86, no. 4, pp. 169–176, 2003.

[27] R. Vitenberg and R. Friedman, “On the locality of consistency conditions,” in Distributed

Computing, 17th International Conference, DISC 2003, Sorrento, Italy, October 1-3, 2003,

Proceedings (F. E. Fich, ed.), vol. 2848 of Lecture Notes in Computer Science, pp. 92–105,

Springer, 2003.

[28] L. Lamport, “On interprocess communication. part II: algorithms,” Distributed Computing,

vol. 1, no. 2, pp. 86–101, 1986.

[29] C. Shao, J. L. Welch, E. Pierce, and H. Lee, “Multiwriter consistency conditions for shared

memory registers,” SIAM J. Comput., vol. 40, no. 1, pp. 28–62, 2011.

[30] N. Hemed and N. Rinetzky, “Brief announcement: concurrency-aware linearizability,” in

ACM Symposium on Principles of Distributed Computing, PODC ’14, Paris, France, July

15-18, 2014 (M. M. Halldórsson and S. Dolev, eds.), pp. 209–211, ACM, 2014.

[31] N. Hemed, N. Rinetzky, and V. Vafeiadis, “Modular verification of concurrency-aware lin-

earizability,” in Distributed Computing - 29th International Symposium, DISC 2015, Tokyo,

120

Japan, October 7-9, 2015, Proceedings (Y. Moses, ed.), vol. 9363 of Lecture Notes in Com-

puter Science, pp. 371–387, Springer, 2015.

[32] M. J. Kosa, “Time bounds for strong and hybrid consistency for arbitrary abstract data types,”

Chicago J. Theor. Comput. Sci., vol. 1999, 1999.

[33] J. Wang, J. L. Welch, and H. Lee, “Time bounds for shared objects in partially synchronous

systems,” in Proceedings of the 30th Annual ACM Symposium on Principles of Distributed

Computing, PODC 2011, San Jose, CA, USA, June 6-8, 2011 (C. Gavoille and P. Fraigniaud,

eds.), pp. 347–348, ACM, 2011.

[34] P. Jayanti and S. Toueg, “Some results on the impossibility, universality, and decidability of

consensus,” in Distributed Algorithms, 6th International Workshop, WDAG ’92, Haifa, Israel,

November 2-4, 1992, Proceedings (A. Segall and S. Zaks, eds.), vol. 647 of Lecture Notes in

Computer Science, pp. 69–84, Springer, 1992.

[35] E. Borowsky, E. Gafni, and Y. Afek, “Consensus power makes (some) sense! (extended

abstract),” in Proceedings of the Thirteenth Annual ACM Symposium on Principles of Dis-

tributed Computing, PODC ’94, (New York, NY, USA), pp. 363–372, ACM, 1994.

[36] R. A. Bazzi, G. Neiger, and G. L. Peterson, “On the use of registers in achieving wait-free

consensus,” Distributed Computing, vol. 10, no. 3, pp. 117–127, 1997.

[37] O. Rachman, “Anomalies in the wait-free hierarchy,” in Distributed Algorithms, 8th Inter-

national Workshop, WDAG ’94, Terschelling, The Netherlands, September 29 - October 1,

1994, Proceedings (G. Tel and P. M. B. Vitányi, eds.), vol. 857 of Lecture Notes in Computer

Science, pp. 156–163, Springer, 1994.

[38] P. C. Attie, “Wait-free byzantine consensus,” Inf. Process. Lett., vol. 83, no. 4, pp. 221–227,

2002.

[39] E. Ruppert, “Consensus numbers of multi-objects,” in Proceedings of the Seventeenth An-

nual ACM Symposium on Principles of Distributed Computing, PODC ’98, Puerto Vallarta,

Mexico, June 28 - July 2, 1998 (B. A. Coan and Y. Afek, eds.), pp. 211–217, ACM, 1998.

121

[40] E. Ruppert, “Determining consensus numbers,” SIAM J. Comput., vol. 30, no. 4, pp. 1156–

1168, 2000.

[41] S. Chordia, S. K. Rajamani, K. Rajan, G. Ramalingam, and K. Vaswani, “Asynchronous

resilient linearizability,” in Distributed Computing - 27th International Symposium, DISC

2013, Jerusalem, Israel, October 14-18, 2013. Proceedings (Y. Afek, ed.), vol. 8205 of Lec-

ture Notes in Computer Science, pp. 164–178, Springer, 2013.

[42] A. Castañeda, S. Rajsbaum, and M. Raynal, “Long-lived tasks,” in Networked Systems -

5th International Conference, NETYS 2017, Marrakech, Morocco, May 17-19, 2017, Pro-

ceedings (A. E. Abbadi and B. Garbinato, eds.), vol. 10299 of Lecture Notes in Computer

Science, pp. 439–454, Springer, 2017.

122

