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ABSTRACT

We develop a non-perturbative microscopic approach to study the quark-gluon plasma

(QGP), which treats all partons (light, heavy and static) in a unified framework. The start-

ing point is a relativistic effective Hamiltonian using a universal color force. Employing a

many-body T -matrix approach to solve the Hamiltonian non-perturbatively, we calculate

three sets of lattice QCD (lQCD) “observables": the equation of state (EoS), the heavy

quark (HQ) free energy (FQQ̄), and quarkonium correlator ratios, to compare with cor-

responding lQCD data. Newly developed methods are introduced to calculate both FQQ̄,

using a static T -matrix, and EoS, using a resummed Luttinger-Ward functional. The lQCD

benchmarks constrain the inputs to the Hamiltonian. We find that the solution describing

the lQCD data is not unique. In order to determine the physical implications of the so-

lutions, two limiting cases are explored: a weakly coupled solution (WCS), which has

a weak color potential (close to free energy), resulting in sharp spectral functions (quasi-

particle spectral functions), and weak but sharp resonances near Tc; and a strongly coupled

solution (SCS), which has a strong color potential (much larger than free energy), resulting

in broad (non-quasi-particle) parton spectral functions, and strong broad resonances near

Tc. For a final determination of the microscopic picture of the QGP, these two solutions

are used to evaluate the HQ transport coefficients and the QGP viscosity. The transport

coefficients generated by the SCS are more consistent with phenomenological applications

to heavy-ion collisions. Particularly, we implement HQ transport coefficients in the HQ

Langevin simulations to generate heavy-meson spectra and compare with experimental

results. We find that the SCS is consistent with experimental results.
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1. INTRODUCTION∗

The last few hundred years have been an era of accelerated advancement in physics.

As a result, present-day experiments using particle colliders allow us to explore distances

many orders of magnitude smaller than the radius of a proton (near 10−15 m). This has

led to the development of the Standard Model—a theory that describes the fundamental

building blocks of nature (quarks, leptons, gauge bosons, Higgs boson) and their inter-

actions. With these building blocks, one of the most important tasks for our generation

is to use them to reconstruct the complex phenomena in our universe. However, this has

proved to be a highly non-trivial task. As Anderson emphasizes, “The ability to reduce

everything to simple fundamental laws does not imply the ability to start from those laws

and reconstruct the universe” [9]. Toward this end, we are faced with challenges and

difficulties no less than those of discovering new fundamental principles. Research in con-

densed matter physics works toward these goals, reconstructing the many-body emergent

phenomena part of the Standard Model—quantum electrodynamics (QED), resulting in an

understanding of the properties of crystals, superconductivity in metals, and many other

complex phenomena. Similarly, research in the many-body problem of quantum chromo-

dynamics (QCD), which is QCD matter physics, attempts to understand how phenomena

such as chiral symmetry breaking, confinement and deconfinement, and phase structures

of QCD matter, are emergent from QCD—another part of the Standard Model. This dis-

sertation is an attempt (in the campaign of reconstructing our universe) to provide insights

into how marvelous features of quark-gluon plasma (QGP), as one phase of QCD matter,

are emergent from underlying microscopic physics.

In the remainder of this introduction, we briefly introduce the fundamental theory of

∗Part of section 1.4 is reprinted with permission from “T -matrix approach to quark-gluon plasma” by
Shuai Y. F. Liu and Ralf Rapp, 2018, Phys. Rev. C 97, 034918, Copyright 2018 by APS.
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the strong force (QCD) in Sec. 1.1, the main features of QCD—asymptotic freedom and

confinement—in Sec. 1.2, and the QGP—a many-body system governed by QCD—in

Sec. 1.3. In Sec. 1.4, we briefly discuss the motivation, objective and the outline of this

dissertation.

1.1 QCD as a Fundamental Theory for Strong Force

The fundamental theory describing the strong interactions between quarks is QCD, for

which the force carrier is the gluon. These fundamental particles obey SU(3) non-Abelian

gauge symmetry and their dynamics are described by the Lagrangian [10]

L = −1

4
(F a

µν)
2 +

Nf∑
f

ψ̄f (iγ
µDµ −mi)ψf , (1.1)

where ψf is the field operator for different quark flavors, and Nf is the number of flavors

included. Usually, we only consider the 3 light flavors, which are up (u), down (d) and

strange (s) quarks. In the studies of heavy quarks, the charm (c), bottom (b) and top (t)

quarks are also included. The covariant derivative in Eq. (1.1) is

Dµ = ∂µ − igAaµtar , (1.2)

where ta = λa/2 is the group generator in the SU(3) fundamental representation, and

λa is the 3 × 3 Gell-Mann matrix that acts on the color index of the quarks. More

explicitly, (ta)ij(ψf )j describes an interaction in which a gluon “a” flips the color vec-

tor {(ψf )1, (ψf )2, (ψf )3} of a quark to another vector using the matrix (ta)ij . The field

strength tensor F a
µν for gluon “a” is given by

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAaµA

b
ν . (1.3)

2



The structure constant fabc is defined by the commutator [ta, tb] = ifabctc, which is non-

vanishing, and, therefore, defines a non-Abelian group. Defining (tbG)ac = ifabc, the tbG

obeys the same Lie algebra [taG, t
b
G] = ifabctcG as the ta. Thus, taG is just another repre-

sentation of the Lie group which is called adjoint representation. The “a” has 8 choices

a ∈ (1 . . . 8), so that the gluon has 8 colors (combinations). The third term in Eq. (1.3)

represents the gluon (force carrier) self-interaction in non-Abelian gauge theory, which

generates many new features, when compared to Abelian gauge theory. Gauge invariance

requires a universal coupling constant g for quark-gluon and gluon-gluon interactions.

However, the matrix structures in ta and fabc lead to different interactions between color

states, fully constrained by these matrices. The QCD Lagrangian Eq. (1.1) may be ex-

pressed more explicitly as

L =L0 + gAaλψ̄iγ
λtaψi − gfabc(∂κAaλAκbAλc)− g2f eabAaκA

b
λf

ecdAcκA
d
λ

− fabcc̄a∂λAbλc̄c, (1.4)

where

L0 = ψ̄i(iγ
µ∂µ −mi)ψi +

1

2
Aµ(∂2gµν − (1− 1

ξ
)∂µ∂ν)Aν + c̄(−∂2)c. (1.5)

Two terms in this equation are related with the gauge fixing for non-Abelian gauge theory.

The 1/ξ is an artificial gauge parameter generated by using a Gaussian to average for the

gauge fixing condition where ξ is useful for checking the gauge invariance of the final re-

sults. The ghost field c arises when representing the determinant by a Grassmann integral.

Thus, the c field is an anti-commuting scalar field. With this gauge fixing procedure, the

theory is quantized and provides gauge-invariant amplitudes, even with loop corrections.

There are other ways to quantize the theory, but this method is manifestly Lorentz invariant
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and is usually referred to as the Faddeev-Popov method. The free term, Eq. (1.5), defines

the propagators, and the interaction term in Eq. (1.4) specifies the vertex structures that

generate the Feynman rules that are used to investigate many-body processes, including

virtual excitations from vacuum or a thermal medium. In the perturbative context, all the

physical amplitudes can be generated by Feynman rules with proper treatment of renor-

malization. The Feynman rules define the color interaction (force) between two particles

in different color channels. However, for the two-body case, we usually need only the total

amplitude of the sum of 8 colors of gluons, resulting in a much simpler description. This

simpler description is used throughout this dissertation and is discussed in more details

below.

The matrix coupling with summed “a” proportional to the tensor product (ta)ij(t
a)kl

for quark-quark interactions has a compact form,

(ta)ij(t
a)kl =

1

2
(δilδkj −

1

N
δijδkl), (1.6)

which specifies color index i to j for particle 1 and color index k to l for particle 2, ex-

changing all 8 gluons. Here i, j, k, l ∈ {1, 2, 3} for Nc = 3. For the quark-antiquark

interaction, this tensor product becomes (ta)ij(t
a)∗kl. With the help of (ta)∗kl = (ta)lk,

the expression for (ta)ij(t
a)∗kl can be obtained by exchanging k and l in Eq. (1.6). For

gluons, the representation (taG)eh is real since (taG)∗eh = −(taG)eh. Thus, no complex con-

jugate is needed. For the coupling constant matrix, the gluon-quark interaction is pro-

portional to (taG)cd(t
a)lk, and the gluon-gluon interaction is proportional to (taG)cd(t

a
G)eh,

where c, d, e, h ∈ {1 . . . 8}. For this case, there is no compact formula available to my

knowledge. We need to look up the tables for fabc and (ta)ij in the literature and express

every element of the tensor product by definition. However, these tensor products of two

generators have a diagonal representation (with eigenvalues shown in Table. 1.1) which
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simplifies the calculations in many cases. Since for any Lie Algebra [tar , t
b
r] = ifabctc,

qq qq̄ (q/q̄)g gg
(-2/3, 3) (-4/3, 1) (-3/2, 3 ) ( -3, 1 )
( 1/3, 6) ( 1/6, 8) (-1/2, 6 ) (-3/2, 16)

( 1/2, 15) ( 1, 27)

Table 1.1: Casimir factorsCa and degeneracy factors for different color channels organized
as (Casimir factor, degeneracy) where q, q̄, g are quark, antiquark, and gluon. Adapted
from [8]

its unitary transformation U−1tarU obeys the same Lie algebra but usually has a different

matrix structure. Therefore, the matrix is not unique under the transformation. However,

the eigenvalues of the matrix, as shown in Table 1.1, do not change under unitary trans-

formation, which suggests that they contain non-trivial gauge-invariant information of the

theory. Regarding the degeneracy, we usually call (qq̄) with degeneracy 1 the color-singlet

channel and with degeneracy 8 the color-octet channel. The same naming scheme applies

to other channels.1 The scattering amplitude in channel “a” (qq̄ singlet, octet, etc.) is

proportional to

Caαs
−1

q2
0 − q2

, (1.7)

which is one use of Table. 1.1. In the singlet channel, it is proportional to −4
3
αs

−1
q20−q2 .

Here, αs = g2

4π
.

In QCD, each flavor of quarks has 3 colors and 2 spins. Combined with antiquarks,

there are Nf × 2× 3× 2 degrees of freedoms for quarks. The gluon has 8 colors and 2 po-

larizations, which in total yields 2×8 degrees of freedoms. The gauge invariance informa-

1gluon-gluon channel with degeneracy 16 is actually two octet channels with same Casimir factor; also
two (10 degeneracy) representations have coupling 0 which are not listed [8].
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tion for the interactions between any two color charges is better specified by the Casimir

factors in specific channels listed in Table. 1.1, rather than by a full tensor product. A

first-principles QCD calculation is usually very challenging in the low-momentum region

due to strong coupling. Instead, we need to construct models to study the corresponding

physics. However, these essential features of QCD are what we need to incorporate into

our effective model for QCD.

1.2 Asymptotic Freedom and Confinement

The non-Abelian gauge theory has several features that are different from the Abelian

gauge theory. The electric charge in Abelian gauge theory is always screened at large

distance due to the polarization of the medium, so that the bare charge is surrounded by a

cloud of charge with opposite sign (screening). On the other hand, at smaller distances, we

observe more charge since we penetrate through the “screening cloud”. More specifically,

this picture is described by a renormalization group technique using the β function, which

is positive for QED

β(g) =
e3

12π2
. (1.8)

Using the renormalization group equation dg/d ln(q/u) = β(g) (u is the renormalization

scale), we get the running coupling as

α(q) =
α(µ)

1− α
3π

ln(q2/u2)
. (1.9)

As momentum increases, which means probing shorter distance, the coupling constant

will increase.
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However, QCD is very different due to a negative beta function

β(g) = − g
3

4π
[
11

3
C2(G)− 4

3
NfC(r)]. (1.10)

Here, the Casimir factors C(r) = 1
2
, and C2(G) = 3. The self-interaction of the force car-

rier (gluon) changes the sign of the beta function which leads to a strong running coupling

constant αs

αs(q) =
αs(µ)

1 + as
4π

(11
3
Nc − 2

3
Nf ) ln(q2/u2)

=
1

β0 ln(q2/Λ2
QCD)

. (1.11)

Here β0 = [(11/3)N − (2/3)Nf ]/(4π) and ΛQCD = ue−1/(2αsβ0). The (strong) αs(q) is

asymptotically free for large momentum transfer, which means the coupling constant de-

creases as momentum increases (distance decreases). This is the opposite case of QED.

On the other hand, at small momentum and large distance, αs increases, which means

the QCD vacuum is anti-screening. Indeed, for leading loop results, using αs = 0.17 at

u = 10 GeV with Nc = 3 and Nf = 2, we can estimate ΛQCD ≈ 0.2 GeV. The classi-

cal QCD Lagrangian (massless case) is scale invariant, but the cut-off scale introduced

here breaks this scale invariance at the quantum level. At the momentum k = ΛQCD, the

coupling constant is infinite (one loop). This large coupling pushes the gauge theory into

the strongly coupled region, where non-trivial vacuum effects become important. This

introduces another important feature of QCD, confinement of color charge.

One way to picture the confinement2 is using the Cornell potential in the color singlet

channel for a heavy quark-antiquark pair [13, 14, 15, 11]

Ṽ (r) = −4

3
αs

1

r
+ σr, (1.12)

2Confinement is a general feature of gauge theory at strong coupling and is even true for abelian gauge,
as discussed in Refs. [11, 12].
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which is plotted in Figure 1.1. In addition to the color Coulomb term, there is a linearly

increasing confining term, also referred to as the string term or linear term. The Cornell

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

r(fm)

V˜
(G
e
V
)

Figure 1.1: Cornell potential with as = 0.27 and σ = 1 GeV/fm.

potential has been successfully used to calculate the charmonium spectrum [13], serving

as one verification of the existence of confining potentials in nature. Similar approaches

result in unexpected success for light hadron spectroscopy [16, 17]. Lattice QCD (lQCD)

simulations realize Wilson’s idea [11] and calculate this potential using the first principles

path integral formalism in imaginary time. See Ref. [18] and references therein.

The name confinement implies that it takes infinite energy to separate two static charges

to infinite distance in the pure gauge field case without dynamic quarks. In reality, since

the energy at large distance is larger than a pair creation threshold, there will be light

quark-antiquark pairs emerging from the vacuum to break the “string” and screen the color

potential by forming two heavy-light mesons. The topological nontrivial configurations of

the gauge field, such as color magnetic monopoles, are suspected to be responsible for

this string term. In a dual-superconductor picture, this string term is formed by the dual

Meissner effect. For the normal Meissner effect in superconductors with electric charge

condensation, the magnetic fields get expelled. In the dual-superconductor picture, the
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dual Meissner effect will expel the electric field lines into a flux tube which generates a

linearly rising potential (for more details see Ref. [12] and references therein). At high

temperature, the condensate of magnetic monopoles starts melting and the excited quarks

and gluons will screen the string potential. Therefore, QCD matter at high temperature

will enter a deconfined phase, which will be discussed in the next section.

1.3 Quark-Gluon Plasma Observed in Real-Time and Imaginary-Time

The quark-gluon plasma (QGP) is a deconfined phase of ordinary hadronic matter

expected to exist at extremely high temperatures where the quarks and gluons are no longer

localized/confined in hadrons and become the degrees of freedom that characterize the

dynamics of the system. In the real world (real time), it is widely accepted that this high

temperature phase exists in the first few microseconds of the Big Bang and in heavy-ion

collisions (HICs) at RHIC and the LHC for sizes of the order of (10 fm)3 and lasting

approximately several 10−23 s.3 Also, with the development of modern computational

technology, many properties of QGP can be studied with the lQCD formalism using first

principles calculations in imaginary time. These are two important sources for us to study

the properties of QGP and starting points to pursue the microscopic physics of the QGP.

In this paragraph, we discuss several important experimental observations for the QGP

and their implications that are relevant to the main topic of this dissertation. First, the

temperature of the medium can be measured using the dilepton spectra in the intermediate

invariant mass region [20, 21]. The QGP created by HICs reaches the temperature around

nine order of magnitude higher than the surface temperature of the sun. Second, the color

deconfinement was indicated by measuring the suppression of the J/ψ (charm/anti-charm

bound state) in the QGP [22, 23, 24]. The original idea [25] is that the screening of the

confining force mentioned in Sec 1.2 can lead to deconfinement and dissociation, which

3There are QGP-like behaviors found in high-multiplicity events in small systems, see Ref. [19] and
references therein.
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manifests as J/Ψ suppression that can be observed in experiments. However, compre-

hensive studies using phenomenological models [26, 27, 28, 29, 30] suggest there are

other processes besides screening effects—such as quasi-free [26] and gluon dissocia-

tion [31, 32, 33, 34] and their reverse regeneration process—that are important to under-

stand observations in experiments [22, 23, 24]. (These processes are also important in the

Bottomonium case [35, 36].) All these models require a deconfinement/screened color

potential, so that experimental results still support a deconfinement phase—the QGP is

created by HICs. Third, the QGP created in HICs is a liquid-like state, rather than the

weakly coupled gas expected by theoretical models in the early days. This is evidenced

by the successful description of the flows of light hadrons observed by experiments [37]

with hydrodynamic models [38, 39]. Using a viscous hydrodynamics model [40, 41],

the viscosity-to-entropy-ratio of QGP is found to be close to the quantum lower bound

of 1/(4π) [42]. Thus, the QGP is believed to be the most perfect liquid ever observed.

Lastly, there are heavy-light meson observables [43, 44, 45, 46] that are especially useful

for determining the coupling strength of the medium [47]. This is because experimen-

tal observables are manifestations of the underlying Brownian motion of the heavy quark

[48, 49, 50, 51, 47, 52], which is controlled by a set of transport coefficients that are sen-

sitive to the coupling strength of heavy quarks to the QGP medium.

Besides the experiments, the thermodynamics and imaginary time current-correlator

functions in QCD matter are widely studied in lQCD, which carry out the path integral

in imaginary time from first principles. These lQCD studies provide valuable information

concerning the properties of the QGP. The studies of Equation of State (EoS) and chiral

susceptibilities by lQCD reveal that the transition of degrees of freedom (hadronic mat-

ter to QGP) is a rapid crossover [53] with a pseudo-critical temperature of approximately

0.155 GeV [54, 5]. Also, this EoS is used in hydrodynamic simulations, resulting in satis-

factory phenomenological results. The interaction strength of the medium is also encoded
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in lQCD data for the static quark free energy [55, 56], which quantifies the increase of

the free energy by adding two static quarks at distance r. In vacuum, this free energy is

just the potential between two color charges. In medium, it is closely related to the po-

tential [57]. The screening or “string breaking” of the free energy around the temperature

0.17 GeV suggests the medium becomes deconfined. Moreover, the lQCD data for Eu-

clidean correlator ratio [58, 59, 3] encode information for spectral functions of J/Ψ and

other quarkonium states. This is closely related to the dissociation rates of the quarkonium

states and provides extra constrains for the in-medium potential [60, 61]. Besides these

lQCD results, there are many other lQCD observables, such as various susceptibilities [62]

and spatial correlators [63] that provide more information about QGP physics. Presently,

however, lQCD can only reliably calculate quantities in imaginary time. Analytic con-

tinuation to real time is usually rather challenging due to the loss of information in the

imaginary time computation.

1.4 Motivation, Objective and Outline

As discussed in the previous section, many macroscopic properties of the QGP can

be inferred from experiments and lQCD studies, raising questions concerning the mi-

croscopic physical mechanisms responsible for these unique features. However, the mi-

croscopic physics is not readily captured by the widely used perturbative or quasipar-

ticle approaches;, see, e.g., Refs. [64, 65] for reviews. On the other hand, the use of

lQCD motivated potentials, specifically the heavy-quark (HQ) internal energy, has led

to the idea of a bound-state QGP [8, 66] as a “transition" medium, with essential con-

tributions from nonperturbative interactions, i.e., remnants of the confining force. For

heavy quarks these ideas have been implemented within a thermodynamic T -matrix ap-

proach [60, 67, 68, 69, 70], thereby connecting the open and hidden heavy flavor (HF)

sectors. This framework has met fair success in understanding pertinent low-momentum
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HF observables in ultra-relativistic heavy-ion collisions (URHICs), and has reinforced the

need for a more rigorous determination of the underlying 2-body interaction, rather than

bracketing it by the free and internal energies which roughly correspond to a weakly and

strongly coupled scenario, respectively. In a lQCD-based extraction [71], it was found that

the static potential is close to the free energy, while the associated imaginary part is near

expectations from hard-thermal-loop perturbation theory. In Ref. [57] the HQ free energy

was calculated within a T -matrix formalism, where the underlying potential was defined

as the driving kernel in the corresponding integral equation. It was found that, in the pres-

ence of large imaginary parts of the static quarks, the lQCD data support a solution where

the potential rises well above the free energy. Furthermore, implementing this potential

in a selfconsistent quantum many-body framework (the Luttinger-Ward-Baym (LWB) for-

malism) [72, 73, 74], a description of the EoS of the QGP was achieved where parton

spectral functions become very broad, losing their quasiparticle nature at low momenta,

and the degrees of freedom change to broad hadronic states as the transition temperature

is approached from above [75].

In this dissertation, we expand on our previous studies by setting up a unified T -matrix

approach to investigate the microscopic properties of light, heavy and static degrees of

freedom of the QGP, and firmly root it in information available from thermal lQCD as

well as vacuum spectroscopy [16, 17, 76]. Our starting point is an effective Hamiltonian

in quark and gluon degrees of freedom with a color interaction of Cornell-type includ-

ing relativistic corrections. We determine this input by systematically constraining the

interaction through the static HQ free energies, Euclidean correlators for charmonia and

bottomonia, and the EoS in the light sector with 2 additional effective-mass parameters

for light quarks and gluons. As mentioned above, a key feature of this approach is to

retain the full off-shell properties of one- and two-body spectral functions (and scatter-

ing amplitudes), which renders the emerging micro-structure of the QGP a prediction of
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the formalism. Since the latter is directly formulated in real time, transport coefficients

(η/s or the HF diffusion coefficients, Ds) and other quantities of experimental interest

(e.g., photon and dilepton production rates) can be readily computed. As it turns out, the

self-consistent solution to the 3 sets of lQCD data is not unique. We will therefore discuss

limiting cases of the underlying force strength and elaborate on the pertinent consequences

for QGP structure. Lastly, we apply these solutions to calculate the transport coefficients.

Inserting these into a HQ transport approach in HICs, the comparison of resulting heavy

meson spectra with experimental results allows us to finally find the “correct” scenario.

The outline of the dissertation is as follows. In Chapter 2, we introduce the T -matrix

approach and the basic microscopic setup of the model. In Chapter 3, we introduce the

theoretical development of the T -matrix approach in order to compare to various lQCD

results. In chapter 4, we compare the T -matrix approach to lQCD data and discuss the

real-time microscopic physics extracted from this comparison. In Chapter 5, we apply

our results to calculate HQ transport coefficients. Using simulations provided by our col-

laborator, Min He, we compare our results to experimental data. Chapter 6 contains our

conclusions and outlook.

Most contents in Sec. 1.4, Chapter 2-4, Chapter 6, Appendix A are taken from the

paper [1]. The results in Sec. 5.4 are partly taken from [77]. Professor Ralf Rapp is

the coauthor of these two papers. The simulation results and part of the text in 5.3.3 is

contributed by our collaborator Professor Min He.
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2. REVIEW OF T -MATRIX FORMALISM∗

Bound states are key entities of the nonperturbative physics of a quantum system, es-

pecially in QCD where the hadrons encode the phenomena of confinement and mass gen-

eration. In diagram language, bound states require an infinite resummation of (ladder)

diagrams, represented by an integral equation such as the 4D Bethe-Salpeter (BS) equa-

tion (BSE) [78] or a 3D reduced T -matrix equation [79, 80, 81]. Both equations allow for

a simultaneous and straightforward treatment of scattering states. As a resummed series,

the solution of the integral equation analytically continues to the strongly coupled region.1

This equation is therefore well suited to study the strongly coupled QGP (sQGP) near Tc

where both bound and scattering states are expected to be important and entangled with

each other in the presence of strong quantum effects, i.e., large scattering rates. Applica-

tions of the T -matrix approach in media has been carried out in various contexts, mostly

in non-relativistic many-body systems [84, 85, 86] but also in systems where relativis-

tic effects are relevant [87], e.g., the nuclear many-body problem [88, 89], hot hadronic

matter [90] or the QGP [66, 77, 91, 92].

In this chapter, the 4D full relativistic BSE and its reduction to a 3D relativistic T -

matrix equation are briefly introduced in Sec. 2.1. In Sec 2.2, we discuss the thermody-

namic T -matrix approach used in the rest of this paper. The (center of mass) CM transform

used by the approach is elaborated in Sec. 2.3.

∗Part of this chapter is reprinted with permission from “T -matrix approach to quark-gluon plasma” by
Shuai Y. F. Liu and Ralf Rapp, 2018, Phys. Rev. C 97, 034918, Copyright 2018 by APS.

1The series 1 +α+α2 · · · = 1/(1−α) is convergent for strong coupling. Divergence at strong coupling
is different from the N ! divergence of a perturbative series at small coupling [82, 83].

14



2.1 Bethe-Salpeter Equation and Its 3D Reduction

The BSE is a relativistic two-body integral equation that can be obtained by resumming

two-body ladder-like diagrams [78]. It can also be obtained from the infinite tower of

the coupled Schwinger-Dyson equations with proper truncation scheme. With the kernel

K(p1 − p′1), the BSE in momentum space is expressed as

T (p1, p2, p
′
1, p
′
2) = K(p1 − p′1)+∫

d4k1

(2π)4
K(p1 − k1)G(k1)G(p1 + p2 − k1)T (k1, p1 + p2 − k1, p

′
1, p
′
2), (2.1)

where the p and k are 4D energy-momenta. Note that p1 + p2 is an external (conserved)

quantity and is not being integrated over. This may, alternatively, be expressed in terms of

explicit 3 momentum and energy,

T (E,ω1, ω
′
1,P,p1,p

′
1) = K(ω1 − ω′1,p1 − p′1)+∫

dνd3k
(2π)4

K(ω1 − ν,p1 − k)G(ν,k)G(E − ν,P− k)T (E, ν, ω′1,P,k,p
′
1). (2.2)

From here on, the 3D notation is used with the replacements: p1 → (ω1,p1), k1 → (ν,k);

and p1 + p2 → (E,P), where E = ω1 + ω2 and P = p1 + p2.

The solution to the 4D BSE is usually difficult, especially in real-time Minkowski

space. A straightforward treatment predicts abnormal solutions due to extra relative en-

ergy besides the total energy [93]. Also, the poles in the exchange propagator complicate

the numerical approach to find a solution in Minkowski space (real time). A more feasi-

ble approach to solving the 4D relativistic equation is to use a 3D reduction [79, 80], in

which the full 4D effects can be corrected order by order. This 3D relativistic equation

is widely used to study nucleon scattering and the associated many-body physics [94, 88]
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and hadronic many-body system [95, 96].

The method of 3D reduction is illustrated by expressing the BSE in formal notation,

T = K +KGGT. (2.3)

This equation can be re-expressed as two coupled integral equations [79],

T = W +WE(2)T (2.4)

W = K +K[GG− E(2)]T. (2.5)

The key to simplifying the problem is from the freedom to choose a singular two-body

propagator E(2), which can include a delta function for the energy transfer as an example.

This results in a trivial integration over energy in Eq. (2.4), thereby completing the 3D

reduction. The resulting 3D equation can be solved non-perturbatively and without the

difficulties of the 4D problem mentioned before. The full 4D features of the equation can

be corrected perturbatively to the kernel W order by order through Eq. (2.5). For most

purposes, it is enough to keep only the first-order correction in Eq. (2.5). Different choice

for E(2) result in different reduction schemes, as is illustrated in detail in Ref. [81] and ref-

erences therein. In the present work, we choose the Thompson scheme [80] as the starting

point for our many-body physics. In the remainder of this section, we propose a general

scheme that is suitable for the off-shell case which can also extend to the imaginary time

BSE at finite temperature with Matsubara frequencies. This may be useful in the future

for systematically including dynamical screening effects. It also provides an example for

a 3D reduction calculation.
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In this scheme, we choose the singular propagator

E(2)(E, ν,P,k) = 2π[δ(f)/f ′]G(2)(E,P,k), (2.6)

where δ is the Dirac-delta function and f is a abbreviation of the function f(ν,k, ω1,p1, ω
′
1,p′1,

E,P) in general. Different choices for f can lead to different reduction schemes. The δ(f)

results in a trivial integration over energy in Eq. (2.4). The G(2)(E,P,k) is

G(2)(E,P,k) =

∫
dν

2π
G(ν,k)G(E − ν, ν,P− k) =

∫
dν

2π
E(2)(E, ν,P,k). (2.7)

Substituting E(2)(E, ν,P,k) into Eq. (2.4) results in

T (E,ω1, ω
′
1,P,p1,p

′
1) = W (E,ω1, ω

′
1,P,p1,p

′
1)+∫

dνd3k
(2π)4

W (E,ω1, ν,P,p1,k)2π[δ(f)/f ′]G(2)(E,P,k)T (E, ν, ω′1,P,k,p
′
1). (2.8)

For an arbitrary f , the result after integration over the δ-function is

T (E,ω1, ω
′
1,P,p1,p

′
1) = W (E,ω1, ω

′
1,P,p1,p

′
1)+∫

d3k
(2π)3

W (E,ω1, ν(f),P,p1,k)G(2)(E,P,k)T (E, ν(f), ω′1,P,k,p
′
1) (2.9)

Note that this is a 3D (rather than 4D) integral equation—containing only 3 momenta.

ν(f) is the solution of ν for the equation f(ν,k, ω1,p1, ω
′
1,p′1, E,P) = 0. If we choose

f = ω1 − ν, W (E,ω1, ω
′
1,P,p1,p′1) = W (ω1 − ω′1,p1 − p1) and define V (p1 − p′1) =
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W (0,p1 − p′1), we can get the equation

T (E,ω1, ω
′
1,P,p1,p

′
1) = W (ω1 − ω′1,p1 − p′1)+∫

d3k
(2π)3

V (p1 − k)G(2)(E,P,k)T (E,ω1, ω
′
1,P,k,p

′
1). (2.10)

The integral equation can be understood as a matrix equation after discretization of its

momentum variables p1, p′1 and k. Suppressing the explicit dependence on conserved

variables E, P and the matrix indices p1, p′1 and k, the solution can be expressed as

T (ω1, ω
′
1) = [1− V G(2)]

−1W (ω1 − ω′1). (2.11)

In CM frame for the on-shell case, we have ω1 = ω′1 = ε(pcm) so that W (ω1 − ω′1) = V .

Therefore, the solution reduces to the usual T -matrix solution:

T = [1− V G(2)]
−1V. (2.12)

For the general case, the solution can be formally expressed as

T (ω1, ω
′
1) = W (ω1, ω

′
1) +W (ω1, ν(f))V −1{[1− V G(2)]

−1 − 1}W (ν(f)′, ω′). (2.13)

Here, W = W (E,ω1, ω
′
1,P,p1,p′1) and V = W (E, ν(f), ν(f)′,P,k,k′), where ν(f)′ is

the solution of ν for the equation f(ν,k′, ω1,p1, ω
′
1,p′1, E,P) = 0. Similarly, the abbrevia-

tion W (ω, ν(f)) and W (ν(f)′, ω′) denotes W (E,ω1, ν(f),P,p1,k) and W (E, ν(f)′, ω′1,

P,k′,p′1) respectively. Note that the matrix operation over the kernel V G(2) in Eq. (2.13)

is 3D, and the matrix operations only act on the indices k and k′. Thus, the numerical

difficulties are significantly less than those in the pure 4D equation. However, the solu-

tion can regain relativistic effects through corrections to W and V using Eq. (2.5) (usually

18



perturbatively). Indeed, with a proper choice of f , the equation to leading order in W and

V (usually a potential kernel) already includes several important relativistic effects. Thus,

this coupled equation is an example of how to expand a full relativistic solution around

its potential solution. The equation after this reduction procedure is usually called 3D rel-

ativistic equation that can help us to study the properties of light partons in the QGP. A

further discussion for this point can be found in App. A.

2.2 Thermodynamic T -Matrix Approach

In the present work our starting point is a Hamiltonian with relativistic dispersion

relations and potential, which maps onto the Thompson scheme [80] for the 3D reduction

from the BSE to the T -matrix equation (as employed earlier in the HQ sector [68]). It can

be written in the form

H =
∑

εi(p)ψ†i (p)ψi(p) +
1

2
ψ†i (

P
2
− p)ψ†j(

P
2

+ p)V a
ijψj(

P
2

+ p′)ψi(
P
2
− p′) (2.14)

where ψi is the field operator of parton i and εi(p) =
√
M2

i + p2 and P is the total mo-

mentum of the 2-particle state. The summations over i, j include momentum, spin, color,

and particle species (3 quark flavors and gluons for the bulk matter description, or charm,

bottom, static flavors for pertinent correlation functions). The index “a" specifies the two-

body color channels. In this work, we do not account for spin-dependent interactions,

which are expected to be subleading but can be included in the future. For the poten-

tial, V , we include both color-Coulomb (VC) and (remnants of the) confining (“string")

interactions (VS),

V a
ij(p,p′) = RCijFCa VC(p− p′) +RSijFSa VS(p− p′). (2.15)
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Relativistic effects in the vertices of the 4D theory are included by introducing relativistic

factorsR [97, 68]

RCij =

√
1 +

p2

εi(p)εj(p)

√
1 +

p′2

εi(p′)εj(p′)
(2.16)

RSij =

√
MiMj

εi(p)εj(p)

√
MiMj

εi(p′)εj(p′)
, (2.17)

and FC,S are color factors in diagonal representation; specifically, the Coulomb factors,

FC , are the standard Casimir coefficients [8, 68] collected in Table 2.1, while for the string

factors, FS , we take the absolute values of the Casimir coefficients, to ensure a positive

definite string tension, which appears to be weaker in colored channels [55]. The precise

form of VC , VS and the parton mass values, Mi, are inputs to the Hamiltonian that need to

be constrained by the lQCD data to be discussed in the following sections.

qq qq̄ (q/q̄)g gg
( 1/2, 3) ( 1, 1) ( 9/8, 3 ) ( 9/4, 1 )
(-1/4, 6) (-1/8, 8) ( 3/8, 6 ) ( 9/8, 16)

(-3/8, 15) (-3/4, 27)

Table 2.1: Casimir and degeneracy factors for different color channels quoted as (Casimir
factor, degeneracy).

T = + +T

Figure 2.1: T -matrix resummation for ladder diagrams
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The finite-temperature calculations are carried out in the Matsubara formalism where

the “bare" propagators for both quarks and gluons are taken as

G0
i (iωn,p) =

1

iωn − εi(p)
. (2.18)

We resum the ladder diagrams of the Hamiltonian by the T -matrix equation, pictorially

displayed in Fig. 2.1. In the CM frame it can be written as

T aij(z,p,p
′) = V a

ij(p,p′) +

∫ ∞
−∞

d3k
(2π)3

V a
ij(p,k)G0

ij(z,k)T aij(z, k,p
′) (2.19)

where z = iEn is the two-body Matsubara frequency (or analytical energy variableE±iε),

and p,p′ are the incoming and outgoing 3-momenta, respectively, for each parton in the

CM frame, i.e., for total momentum P = ~0; T aij(z,p,p′) denotes the T -matrix between

particle type i and j in color channel a. The two-body propagator is defined in Matsubara

representation as

G0
ij(iEn,k) = −β−1

∑
ωn

Gi(iEn − iωn,k)Gj(iωn,k) , (2.20)

and, using a spectral representation, can be written in terms of single-particle spectral

functions as

G0
ij(z,k) =

∫ ∞
−∞

dω1dω2
(1± ni(ω1)± nj(ω2))

z − ω1 − ω2

ρi(ω1,k)ρj(ω2,k) (2.21)

with the single-particle propagators

Gi(z) =
1

[G0
i (z, k)]−1 − Σi(z, k)

=
1

z − εi(p)− Σi(z, k)
, (2.22)
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and pertinent spectral functions,

ρi(ω,k) = − 1

π
ImGi(ω + iε) . (2.23)

In Eq. (2.21) the ± sign refers to bosons (upper) and fermions (lower), and ni is the Bose

or Fermi distribution function for parton i. The in-medium selfenergies, Σi(z, k), will be

self-consistently computed through the 2-body T -matrix, as detailed below.

In vacuum it is sufficient to solve the T -matrix in the CM frame due to Lorentz invari-

ance. However, in medium, Lorentz invariance is in general broken, although usually not

by much for the scattering amplitude at total momenta comparable to the thermal scale

in non-degenerate media. Thus, a standard approximation is to assume the in-medium

T -matrix to be independent of P [68, 69], which leads to a major simplification of the

calculations. We thus write

T aij(ω1 + ω2,p1,p2| p′1,p′2) = T aij(Ecm, pcm, p
′
cm, xcm), (2.24)

whereEcm, pcm, p′cm and xcm ≡ cos(θcm) are functions expressed via ω1 +ω2,p1,p2, p′1,p′2

using momentum conservation p1 + p2 = p′1 + p′2 to define the transformation to the CM

frame 2:

Ecm =
√

(ω1 + ω2)2 − (p1+p2)2

son = (ε1(p1) + ε2(p2))2 − (p1+p2)2 (2.25)

pcm =

√
(son −M2

i −M2
j )2 − 4M2

iM
2
j

4son

cos(θcm) =
pcm · p′cm

pcmp′cm
.

2P/2± p and P/2± p′ in Eq.(2.14) are shorthand notations that should be understood in this context.
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For p′cm, we simply change son(p1,p2) to son(p′1,p′2). The reason for using the on-shell s for

pcm is to keep the analytical properties of the T -matrix after the transformation. Also, this

transformation recovers Galilean invariance in the non-relativistic limit for the off-shell

case. The relation for pcm can be derived by solving the equations originating from Lorentz

invariants ε1(p1)2 − p2
1 = M2

1 , ε2(p2)2 − p2
2 = M2

1 and (ε1(p1) + ε2(p2))2 − (p1+p2)2 =

(ε1(pcm) + ε2(pcm))2 in the CM and the moving frame. We note that this procedure does

not work for the CM angle in the off-shell case. The general transformations involving the

CM angle are discussed in Sec. 2.3.

Rotational symmetry in the CM frame implies that a partial-wave expansion remains

intact, given by

X(p,p′) = 4π
∑
l

(2l + 1)X l(p, p′)Pl(cos(θ)), (2.26)

where X = V, T . The partial-wave expanded scattering equation becomes

T l,aij (z, p, p′) = V l,a
ij (p, p′) +

2

π

∫ ∞
−∞

k2dkV l,a
ij (p, k)G0

ij(z, k)T l,aij (z, k, p′) , (2.27)

where l denotes the angular-momentum quantum number. The set of now 1D integral

equations can be solved by discretizing the 3-momenta p, p′, k,

Vmn ≡ V (km, kn), Ĝ0
(2)(z)mn ≡

2∆k

π
k2
mG

0
(2)(z, km)δmn, (2.28)

and invert the pertinent matrix equation [98],

T(z)mn = T (z, km, kn), T(z) = [1− VĜ0
(2)(z)]−1V . (2.29)

The integral over k in Eq. (2.27) is encoded in a matrix multiplication with measure dk.

Here and in the following, we (occasionally) use the subscript “(2)" as an abbreviation for
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“ij" to denote two-body quantities.

Once the T -matrices have been computed, we calculate the single-particle selfenergies

by summing over all partial waves and the pertinent two-body flavor and color channels

in interactions of two light medium partons. Closing the T -matrix with an in-medium

single-parton propagator ( “±” for boson/fermion) in the Matsubara formalism,

Σ(iwn) = ±−1

β

∑
νn

T (iωn + iνn)G(iνn), (2.30)

one can use spectral representations to carry out the summation over discrete frequencies

to obtain

Σi(z, p1) =

∫
d3p2

(2π)3

∫ ∞
−∞

dω2
dE

π

−1

z + ω2 − E
1

di

∑
a,j

dijs d
ij
a

× ImT aij(E,p1,p2|p1,p2)ρj(ω2,p2)[nj(ω2)∓ nij(E)] (2.31)

which involves the forward-scattering amplitude, i.e., p′1 = p1 and p′2 = p2 and thus

xcm = x = 1; nij refers to the Bose or Fermi distribution appropriate for the two-body

state ij, and the “−/+" sign refers to the bosonic/fermionic single-parton state i. The dija,s

are color and spin degeneracy factors of the two-body system, summarized in Table 2.1.

Here, we enforce two physical polarizations for the gluons; di is the spin-color degeneracy

of the single parton i. The z is taken to be retarded, ω + iε, in this work. Within the CM

transformation defined via Eqs. (2.25), the integrations in Eq. (2.31) are restricted to the

timelike 2-body phase, i.e., real values for Ecm (we have verified that ImT aij(
√
E2 − P 2)

is strongly suppressed when approaching the spacelike region).3 The above selfenergy

expression does not include the purely real thermal Fock term [99] which we add explicitly

3For x < 0 the n(x) is regulated as n(x) ≡ sign(x)n(|x|) as in Refs. [95, 96]. Also, imaginary part of
bosonic T -matrix is enforced to be odd in E. The contributions from ω2 < 0 or E < 0 are small.
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by calculating

Σi(p1) = ∓
∫

d3p2

(2π)3

∫ ∞
−∞

dω2V
1
īi (p1 − p2)ρi(ω2,p2)ni(ω2) . (2.32)

Finally, we recall that Eq. (2.31) can be expressed as a functional equation of Σ,

Σ = T (Σ)G(Σ) = T (Σ)
1

(G0)−1 − Σ
. (2.33)

It is equivalent to an integral equation for the full Green function,G, as Σ = (G0)−1−G−1.

The T -matrix depends on the selfenergy, T (Σ), through the two-body propagator, see

Eq. (2.21), in which the spectral function depends on the single-parton selfenergy, see

Eq. (2.23). Although it is a non-linear functional equation, it usually can be solved self-

consistently by numerical iteration. The selfenergy as the solution of Eq. (2.33) satisfies

conservation laws for the Green function [73].

2.3 Center of Mass Transformation

In this section, we detail the CM transformation implemented in this work. Firstly, we

discuss the CM transformation in a nonrelativistic system. Then we discuss the relativistic

version. The nonrelativistic T -matrix can be expressed as

T (E,P,p1,p
′
1) = V (p1 − p′1)+∫ ∞

−∞

d3k1

(2π)3
V (p1 − k1)G

(2)
(0)(E,k1,P− k1)T (E,P,k1,p′1). (2.34)
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Here P = p1 +p2, E = ω1 +ω2 + iε. In a non-relativistic system, the two-body propagator

is

G
(2)
(0)(E,k) =

1

E − k2
1

2M1
− (P−k1)2

2M2

. (2.35)

The CM transformation can be expressed as

vcm =
P

M1 +M2

,pxcm = px1 −M1vcm, (2.36)

where the px represent pi, p′i, etc. Therefore, the transformations for the momenta are

p1 = pcm + M1vcm,p′1 = p′cm + M1vcm,k1 = kcm + M1vcm. Substituting these into

Eq. (2.34) and noting that V (p1−p′1) = V (pcm−p′cm), we construct an equivalent equation

that only depends on E and P implicitly through Ecm = E − P2/(2Mt),

T (Ecm,pcm,p
′
cm) = V (pcm − p′cm) +

∫ ∞
−∞

d3kcm

(2π)3

V (pcm − kcm)
1

Ecm − (kcm)2

2u

T (Ecm,kcm,p′cm), (2.37)

where the total mass is Mt = M1 +M2, and the reduced mass is u = M1M2/(M1 +M2).

The solution to the original equation, Eq. (2.34), is calculated using the reverse CM trans-

formation,

pcm = p1 −
M1P

M1 +M2

=
p1M2 − p1M1

M1 +M2

p′cm = p′1 −
M1P

M1 +M2

=
p′1M2 − p′1M1

M1 +M2

. (2.38)

In vacuum, solving the equation in the CM frame and then transforming back to the arbi-

trary frame (as described above) results in the same solution as that obtained from solving

26



the original equation—due to Galilean invariance. No approximations are necessary when

using this transformation method of solution. In medium, neglecting the blocking factor

and using the two-body selfenergy to include medium effects, the T -matrix equation is

T (Ecm,pcm,p
′
cm) = V (pcm − p′cm) +

∫ ∞
−∞

d3kcm

(2π)3
V (pcm − kcm)

1

Ecm − (kcm)2

2u
− Σ(2)(E,P,pcm)

T (Ecm,kcm,p′cm). (2.39)

The CM approximation assumes that the two-body selfenergy only depends on P and E

through Ecm, so that Σ(2)(E,P,pcm) ≈ Σ(2)(Ecm, 0,pcm) ≡ Σ(2)(Ecm,pcm). However,

in both vacuum and medium, the CM transformations have the same form, although it

is an approximation for the in-medium case. Thus, the CM transformation can be un-

derstood as expressing pcm as a function of {M1,M2,p1,p2} (and p′cm as a function of

{M ′
1,M

′
2,p′1,p′2}). This motivates us to define the relativistic transformation for the in

medium off-shell case.

In the relativistic formalism, transformations to an arbitrary frame are achieved using

Lorentz transformations (parallel ‖ and perpendicular ⊥ to velocity)

E ′px = γ(Epx − v px‖), px′‖ = γ(p‖ − vEpx),px′⊥ = px⊥

px‖ = px · v̂,px⊥ = px− px‖v̂, (2.40)

where the “hat” denotes a unit vector in this context. Relativistic CM transformations,

analogous to Eq. (2.38), are realized using the quantities

vcm =
p1 + p2

Ep1 + Ep2

, γvcm =
Ep1 + Ep2√

s

s = (Ep1 + Ep2)
2 − (p1 + p2)2. (2.41)
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After obtaining the solution in the CM frame, it is necessary to express {Ecm,pcm,p′cm} in

terms of {p1,p2,p′1,p′2, E} to obtain the solution in the arbitrary frame. The relativistic

CM transformation for energy is simply
√
s ≡ Ecm =

√
E2 − P 2. It is more complicated

for pcm and is expressed in terms of components parallel ‖ and perpendicular ⊥ to the CM

velocity vcm,

p‖cm = γvcm(p‖ − vcmEp) =
Ep2p1‖ − Ep1p2‖√

s

p⊥cm = p⊥ = p− p‖v̂cm =
p1p2‖ − p2p1‖

|p1 + p2|
. (2.42)

Similarly, the transformation for p′cm is obtained with the replacements {p1 → p′1,p2 →

p′2}, together with the constraint on total momentum conservation p1 + p2 = p′1 + p′2. The

cos(θcm) in Eq. (2.38) can be obtained using Eq. (2.42). The Galilean CM transformations

are recovered in the nonrelativistic limit. In the on-shell limit, the relativistic CM trans-

formation used in Ref. [68] is recovered. Also, pcm does not depend on energy, as in the

nonrelativistic case; thus better analyticity properties are achieved, when compared to the

scheme used in [95, 69]. In practice, the imaginary part of selfenergies calculated by the

new scheme tends to be 10% larger at its peak value.
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3. FORMALISM TO CONSTRAIN INPUTS BY LATTICE QCD∗

The Hamiltonian given in Eq. (2.14) is the input to our approach that needs to be

constrained by independent information. To achieve this, we will make extensive use of

first-principles lQCD computations, where we treat the pertinent data as “observables" in

imaginary time. Specifically, we will utilize the QGP EoS [54, 5], HQ free energies [55,

56, 2], and Euclidean quarkonium correlators [58, 59, 3, 4]. In this chapter, we elaborate

on the concrete procedure to do that, which includes theoretical developments to best

take advantage of the comparisons within the T -matrix approach. In Sec. 3.1 we briefly

recapitulate the LWB formalism [72, 73, 74] to compute the in-medium single- and two-

body interaction contributions to the EoS for the effective Hamiltonian and lay out the

corresponding matrix-log technique to resum the pertinent skeleton diagrams [75, 77].

In Sec. 3.2 we recall the formalism to calculate the static-quark free energy from the T -

matrix, where large imaginary parts turn out to play a critical role [57]. In Sec. 3.3 we

briefly review the formalism to calculate quarkonium correlator ratios based on Refs. [60,

68, 69], thereby introducing an effective way to account for interference effects in the

complex potential for quarkonium spectral functions.

3.1 Equation of State

The equation of state (EoS) of a medium usually refers to the pressure as a function en-

ergy density, or, alternatively, as a function of temperature and chemical potential, P (T, µ).

It characterizes the macroscopic dynamics of the bulk which are ultimately driven by the

relevant microscopic degrees of freedom of the medium. Although the EoS depends on

the interactions in the system, it is usually most sensitive to the masses of the prevalent de-

∗Part of this chapter is reprinted with permission from “T -matrix approach to quark-gluon plasma” by
Shuai Y. F. Liu and Ralf Rapp, 2018, Phys. Rev. C 97, 034918, Copyright 2018 by APS.
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grees of freedom in the medium (which, however, may be generated dynamically through

the interactions, e.g., via bound-state formation). Therefore, comparing the calculated

EoS with lQCD results is expected to primarily constrain the “bare” parton masses in the

Hamiltonian, Eq. (2.14).

For a homogeneous grand canonical ensemble, the EoS is encoded in the grand poten-

tial (per unit volume), Ω = −P , which can be calculated using diagrammatic techniques

within the LWB formalism [72, 73, 74] (for recent applications to QCD matter, see also

Refs. [100, 64, 101]) as spelled out in Sec. 3.1.1. Since the QGP near Tc can be expected

to be a mixture of interacting partons and their bound states, a nonperturbative ladder re-

summation for the two-body amplitudes is in order. Some care needs to be exerted since

the ladder resummation to calculate Ω is not the same as for the T -matrix, due to a double-

counting when closing the external legs of the latter. This will be carried out using a

matrix-logarithm resummation technique [75, 77] detailed in Sec. 3.1.2. In Sec. 3.1.3,

we discuss several generalized thermodynamic relations for the LWB formalism when the

“bare” masses and potential depend on the temperature and chemical potential.

3.1.1 Properties of the LWB Formalism

The diagram language of the LWB formalism leads to the following expression for

grand potential,

Ω = ∓−1

β

∑
n

Tr{ln(−G−1) + [(G0)−1 −G−1]G} ± Φ (3.1)

where we combined spin, color, flavor and momentum summations in the trace operation,

“Tr", while explicitly writing the Matsubara frequency sum,
∑

n. Here,

Φ =
∞∑
ν=1

Φν (3.2)
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denotes the Luttinger-Ward functional (LWF), and

Φν =
−1

β

∑
n

Tr{ 1

2ν
(
−1

β
)ν [(−β)νΣν(G)]G} (3.3)

and Σν(G) are the LWF and selfenergy at ν th order of the potential in the “skeleton"

expansion [72]. These three quantities should be understood as functionals of the full

single-particle propagator, G. The full selfenergy is the sum of all selfenergies of order

ν, Σ(G) =
∑

ν Σν(G). The extra factor 1/ν in Eq. (3.3) complicates the resummation of

Φ(Σν) for ladder diagrams, to be discussed in the next section. The factor (−1/β)ν(−β)ν

aims to separate out the −1/β temperature dependence from loop integrals in the self-

energy, such as −1/β
∑

nX1(ωn)X2(zm − ωn). At ν th order, there are ν loops, with

the pertinent factor (−1/β)ν . After this separation, [(−β)νΣν(G)] only has a tempera-

ture dependence stemming from G and the interaction kernel, V . This separation proce-

dure is convenient for proving thermodynamic relations involving temperature derivatives,

cf. Sec. 3.1.3.

The skeleton diagram expansion for the selfenergy can be obtained via a functional

derivative of Φ,

Σ(G) =
δΦ

δG
. (3.4)

The functional derivative is equivalent to cut open one G line in a closed loop [72]. Since

there are ν equivalent G lines at ν th order, this cancels the factor 1/ν and recovers the full

selfenergy. With the help of Eq. (3.4) one finds the thermodynamic potential to reach an

extremum,

δΩ

δG
= 0 , (3.5)
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when the functional relation

Σ(G) = (G0)−1 −G−1 (3.6)

is satisfied. In this sense, G acts like a functional order parameter for the thermodynamic

potential to reach an extremum.

In a slight variation of the standard LWB formalism, the “bare" masses (or dispersion

relations, ε(p)) and potential of our effective Hamiltonian depend on temperature T and

chemical potential µq of the medium. These dependences represent a macroscopic av-

erage over the micro-physics that we do not treat explicitly (such as remaining gluonic

condensates in the QGP that can induce mass terms and the nonperturbative string term

in the potential). This leads to modified expressions for several thermodynamic relations,

e.g., more complicated relations for energy and entropy to reconstruct the pressure; this is

elaborated in Sec. 3.1.3.

3.1.2 Matrix Logarithm Resummation of Skeleton Diagrams

The main challenge in calculating the grand potential, Ω, is to evaluate the LWF, Φ.

In our derivation we limit ourselves to the case of a 3D reduced T -matrix, rather than the

more general 4D BSE discussed in Ref. [77], expanding on what we indicated earlier in

Ref. [75].

Using the notation
∫
dp̃ ≡ −β−1

∑
n

∫
d3p/(2π)3 with p̃ ≡ (iωn,p), the ν th order of

the selfenergy appearing in Eq. (3.1) in ladder approximation can be formally written as

Σν(G) =

∫
dp̃ [V G0

(2)V G
0
(2) · · ·V ]G (3.7)
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containing ν factors of V . Thus, the LWF functional Φ can be expressed as

Φ =
1

2

∑
Tr
{
G

[
V +

1

2
V G0

(2)V + . . .+
1

ν
V G0

(2)V G
0
(2) . . . .V + . . .

]
G

}
(3.8)

where “Tr" denotes, as before, a 3-momentum integral and the summation over discrete

quantum numbers, while
∑

denotes the sum over Matsubara frequencies including β fac-

tors. The part in brackets, [· · · ], has a structure very similar to the T -matrix resummation,

T = V + V G0
(2)V + . . .+ V G0

(2)V G
0
(2) . . . V + . . .

=

[
∞∑
ν=0

(
V G0

(2)

)ν]
V

= [1− V G0
(2)]
−1V , (3.9)

except for the extra coefficients 1/ν. However, we can write

V +
1

2
V G0

(2)V + . . .+
1

ν
V G0

(2)V G
0
(2) . . . V + ...

=

[
∞∑
ν=1

1

ν

(
V G0

(2)

)ν]
[G0

(2)]
−1

= − ln[1− V G0
(2)][G

0
(2)]
−1

≡ LogT (3.10)

where the (natural-base) logarithm is to be understood as a general matrix operation (in

a discrete space of quantum numbers, including spin, color, flavor as well as energy-

momentum), defined through its power series.1 It can also be tested in the case of a

separable potential for which the analytical result is known [95].

The similarity between the T -matrix and the LogT operation further allows to migrate

1A similar expression is known for the ground-state energy at zero temperature [102] and for cold-atom
systems [103].
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the partial-wave expansion, Eq. (2.27), and CM approximation, Eq. (2.19), from the T -

matrix to the LWF. With the numerical discretization of the 3-momentum integrals as in

Eqs. (2.28) and (2.29), we can define LogT l,aij in a given channel as

LogT(z)mn ≡ LogT (z, km, kn)

LogT(z) = −Log[1− VĜ0
(2)(z)][Ĝ0

(2)(z)]−1 . (3.11)

Compared to the T -matrix equation (2.29), the only change is replacing the inverse ma-

trix (with an extra factor V) by the “matrix-Log" operation, LogT (with an extra factor

[Ĝ0
(2)(z)]−1). Standard software like Mathematica can compute this matrix function at a

speed similar to a matrix inversion. With the result in a given channel, we first sum over

partial waves using Eq. (2.26) and then transform back from the CM to an arbitrary frame

using Eq. (2.24) with Ecm, pcm, p′cm, and x′cm defined in Eq. (2.25),

LogT aij(ω1 + ω2,p1,p2| p′1,p′2) = LogT aij(Ecm, pcm, p
′
cm, xcm) . (3.12)

Upon closing two external lines of this quantity with a thermal single-particle propagator,

G, and, in resemblance of Eq. (2.31), defining

Log Σ ≡
∫
dp̃ LogT G , (3.13)

we obtain

LogΣi(z, p1) =

∫
d3p2

(2π)3

∫ ∞
−∞

dω2
dE

π

−1

z + ω2 − E
1

di

∑
a,j

dijs d
ij
a

× Im[LogT aij(E,p1,p2|p1,p2)]ρj(ω2,p2)(nj(ω2)∓ nij(E)) . (3.14)
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Recalling Eq. (3.8) and the definition of LogΣ and LogT , we can express the LWF as

Φ =
1

2

∫
dp̃ G LogΣ =

1

2

∑
j

dj

∫
dp̃ Gj(p̃) LogΣj(p̃) . (3.15)

Therefore, the grand potential in Eq. (3.1) can be expressed in closed form as

Ω =
∑
j

∓dj
∫
dp̃
{

ln(−Gj(p̃)
−1) + [Σj(p̃)−

1

2
LogΣj(p̃)]Gj(p̃)

}
. (3.16)

The final sum over Matsubara frequencies in Eq. (3.16) can be carried out with usual

contour techniques utilizing a spectral representation of the expression in “{ }" as a whole.

Through this resummation we include the contributions of the diagrams shown in Fig. 3.1

to the grand potential Ω.

+ + + +

Figure 3.1: Examples of diagrams that are resummed by the generalized T -matrix for EoS.

3.1.3 Generalized Thermodynamic Relations for the LWB Formalism

The LWB formalism implies several thermodynamic relations for particle, energy and

entropy densities [72, 74]. However, these relations will be modified when using an effec-

tive Hamiltonian whose “bare" single-particle masses (encoded in the dispersion relation

ε(p)), and potential, V , depend on temperature (T ) and chemical potential (µ). In this

section we illustrate these modifications.
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The strategy for the derivation is to start from the usual relations without T or µ depen-

dence in the dispersion relation and potential and then generalize them to the case with T

and µ dependences. For derivatives with respect to (w.r.t.) T or µ any implicit dependence

through G will vanish. For ε and V independent of T and µ, one has

N = −δΩ
δµ

= ±−1

β

∑
n

Tr{G} , (3.17)

since the dependence of µ through (δΩ/δG)(δG/δµ) will vanish according to Eq. (3.5),

and the only µ dependence figures from G−1
(0) = iωn − (ε− µ).

For the derivation of the energy density from the grand potential one can adopt a

method in time space given in Ref. [74]. In frequency space, with a separation of the β

dependence arising from the loop as in Eq. (3.1), the entropy contribution can be derived

as

TS = β
∂Ω

∂β
= −Ω∓ −1

β

∑
n

Tr{(−iωnG) +
1

2
Σ(G)G} . (3.18)

Still, the implicit dependence on β through G will vanish. The first term comes from the

derivative w.r.t. (−1/β) in the frequency sum in obtaining Ω and Φ. The second term

comes from the derivative w.r.t. (−1/β) of ωn in G−1
(0). The third term comes from the

(−1/β)ν dependence of the loop integrals in the selfenergy and gives a factor ν that cancels

the 1/ν factor in the skeleton expansion. With the entropy contribution, the (internal)

energy U is

U = Ω + TS + µN = ±−1

β

∑
n

Tr{[ε+
1

2
Σ(G)]G} (3.19)

where G−1 = iωn − (ε − µ) − Σ by use of Eq. (3.6). We can derive Eq. (3.19) from

Eqs. (3.18) and (3.17) using GG−1 = 1 and −1
β

∑
n e

iωnε1 = 0 with an ε regulation tech-
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nique [99]. This completes the derivation of the standard thermodynamic relations within

the LWB formalism.

If the “bare" single-particle dispersion relation ε and the potential V of the Hamiltonian

are functions of β and µ, the particle number, N , and internal energy, U , receive extra

contributions,

N = ±−1

β

∑
n

Tr{[1− ∂ε

∂µ
− 1

2
Σ(G,

∂V

∂µ
)]G} (3.20)

U =± −1

β

∑
n

Tr
{

[ε+ β
∂ε

∂β
− µ∂ε

∂µ

+
1

2
Σ(G) +

1

2
Σ(G, β

∂V

∂β
)− 1

2
Σ(G, µ

∂V

∂µ
)]G

}
(3.21)

where Σ(G,X) ≡
∑

ν Σν(G,X), and Σν(G,X) is defined to replace one of the V ’s

in evaluating Σν(G) by X at each order. It can be shown that, at least for ladder and

ring diagrams, it does not matter which V is replaced in the diagram because every V

in the connected diagram for Φν is equivalent. Thus, for the T -matrix resummation the

selfenergy can be schematically written as

Σ(G,X) = T (G,X)G, T (G,X) = (1− V GG)−1X (3.22)

where X is µ∂V
∂µ

or β ∂V
∂β

. Since T (G, V ) = (1 − V GG)−1V , the new logarithm can be

adapted from the original T -matrix logarithm without increasing the complexity.

3.2 Color Singlet Static QQ̄ Free Energy

The HQ free energy, FQQ̄(r, T ), is commonly defined as the change in free energy of

a system when adding to it a static quark and antiquark, separated by a distance r (not
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including the (infinite) HQ masses). In the vacuum, this simply corresponds to the poten-

tial energy between them. In medium, the free energy and the potential are still related to

each other, but no longer identical [8, 104, 57], as the former includes the response of the

medium to the static charges, encoded in the generally complex HQ selfenergies. However,

one can calculate the free energy from an underlying potential within the same T -matrix

approach that we discussed for the EoS above, by taking the limit MQ → ∞ [57]. This

opens the possibility to extract (or at least constrain) the driving kernel of the Hamiltonian

through a fit to high-precision lQCD data for FQQ̄(r, T ). In particular, since the free en-

ergy incorporates the response of the medium to the external source, we need to couple

the static quarks with the light partons of the QGP medium consistently. This is achieved

by the HQ selfenergy in the QGP which we compute from the in-medium heavy-light

T -matrix with the same underlying driving kernel. In the following, we first recall some

basic relations for the free energy, in particular how it is related to the driving kernel of the

static T -matrix (Sec. 3.2.1). Second, we discuss the selfconsistent extraction of the poten-

tial which makes contact with the QGP bulk medium (Sec. 3.2.2). In Sec. 3.2.3 we collect

several additional relations implied by the formalism; and in Sec. 3.2.4, we elaborate on

the connection between interference effects and the “imaginary part of potential".

3.2.1 Heavy-Quark Free Energy and Potential

In this section, we derive a relation of FQQ̄(r, T ) with the color-singlet potential in

the static limit, V (r, T ) [57] where we suppress color-flavor indices for simplicity in this

section.

The static limit introduces simplifications which renders the relation between free en-

ergy and the potential rather straightforward. The source of this simplification is the one-
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particle propagator in the infinite-mass limit [105],

GQ (z, r′) =

∫
d3p′

(2π)3
eip

′·r′ 1

z − εp′ − ΣQ (z, p′)

≈
∫

d3p′

(2π)3
eip

′·r′ 1

z −M − ΣQ (z)
= δ (r′)GQ (z) . (3.23)

The δ-function signifies that the particle is static andGQ(z) = 1/(z−M−ΣQ(z)) is simply

the propagator in momentum space in the static limit, i.e., it is localized at its position. At

vanishing quark chemical potential, GQ = GQ̄. The two-body (4-point) Green’s function

inherits the δ-function structure [105],

G>
QQ̄

(−iτ, r1, r2|r′1, r′2) ≡ δ (r1 − r′1) δ (r2 − r′2)G>
QQ̄

(−iτ, r) , (3.24)

where r = |r1 − r2|. Here, G>
QQ̄

(−iτ, r) denotes the reduced Green function with the

spatial δ-functions factored out. The static QQ̄ free energy, FQQ̄, can be defined in terms

of the QQ̄ Green function as [105]

FQQ̄(r, β) = − 1

β
ln
(
G>
QQ̄

(−iβ, r)
)
. (3.25)

The remaining task is to calculate the Euclidean time Green function, G>
QQ̄

(−iτ, r), in

Eq. (3.24) using the T -matrix, Eq. (2.19), with the propagatorsGQ(z) and potential V (z,p1−

p′1), which in coordinate space is denoted as V (z, r). We here keep a dependence of the

potential on the total energy, z, of the 2-particle system, which can arise, e.g., from inter-

ference effects as illustrated in Sec. 3.2.3.

To proceed, we first use GQ,Q̄(z) to obtain the non-interacting two-body propagator
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figuring in the T -matrix,

G0
QQ̄(z) =

∫ ∞
−∞

dω1dω2

ρQ(ω1)ρQ̄(ω2)

z − ω1 − ω2

. (3.26)

where ρQ/Q̄(ω1) are the spectral functions of the static quark/antiquark, as before. Inserting

this propagator together with V (z,p1 − p′1) into Eq. (2.19), one has

TQQ̄(z,p,p′) = V (z, p− p′) +

∫
d3k

(2π)3
V (z, p− k) G0

QQ̄(z) TQQ̄(z,k,p′) . (3.27)

SinceG0
QQ̄

(z) is independent of momentum, Fourier transforming the above equation from

p→ r and p′ → r′ where r = r1 − r2, and r′ = r′1 − r′2, one arrives at

TQQ̄(z, r, r′) = V (z, r)δ(r− r′) + V (z, r)G0
QQ̄(z)TQQ̄(z, r, r′) . (3.28)

This is an algebraic equation with a solution TQQ̄(z, r, r′) = TQQ̄(z, r)δ(r− r′) explicitly

given by

TQQ̄(z, r) =
V (z, r)

1− V (z, r)G0
QQ̄

(z)
. (3.29)

We have factored out the δ function as was done in Eq. (3.24).2 The Green function in

frequency space in the static limit can be expressed as

GQQ̄ (z, r) = G0
QQ̄(z) +G0

QQ̄(z)TQQ̄(z, r)G0
QQ̄(z). (3.30)

While in the non-static case, additional convolution integrals in coordinate space appear,

the simple form in the static limit is due to the “δ(r)" functions that can been integrated out

2Only one δ-function here is related to stripping off δ(p1 + p2 − p′1 − p′2). Note that X(p1 − p2)δ(p1 +
p2 − p′1 − p′2) Fourier-transforms into the form X(r1 − r2)δ(r1 − r′1)δ(r2 − r′2).
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(or stripped off). Upon inserting Eq. (3.29) into Eq. (3.30) we arrive at our final expression

for GQQ̄ in energy-coordinate space,

GQQ̄(z, r) =
1

[G0
QQ̄

(z)]−1 − V (z, r)
. (3.31)

To obtain G> (−iτ, r), we need to transform back to imaginary time using

(−β)−1
∑

nGQQ̄(iEn, r)e
−τ(iEn); employing a spectral representation and contour tech-

nique the Matsubara sum can be carried out yielding

G>
QQ̄

(−iτ, r) =

∞∫
−∞

dE ′ρQQ̄ (E ′, r)
eE

′(β−τ)

eβE′ − 1
. (3.32)

Since the strength of the two-particle spectral function, ρQQ̄ (E ′, r), is located in the vicin-

ity of the large-mass two-particle threshold, 2MQ, we can approximate eβE′ � 1 and

eE
′(β−τ)/(eβE

′ − 1) = e−E
′τ , to obtain

G>
QQ̄

(−iτ, r) =

∞∫
−∞

dE ′ρQQ̄ (E ′, r) e−E
′τ . (3.33)

The quantityG> (−iτ, r) still depends on the infinitely large mass,MQ (numerically taken

as 2 · 104 GeV), which needs to be “renormalized". This can be done by multiplying

G> (−iτ, r) with a factor e2MQβ and redefining the energy arguments of the propaga-

tors and spectral functions by a shift of 2MQ. For simplicity, we will keep the same

notation, i.e., from here on, unless otherwise noted, the static limits of G>
QQ̄

(−iτ, r),

GQ(z), GQQ̄(z) and ρQQ̄(z) will refer to the original ones shifted as G>
QQ̄

(−iτ, r) e2βMQ ,

GQ(z + MQ), GQQ̄(z + 2MQ), and ρQQ̄(z + 2MQ). Inserting Eqs. (3.31) and (3.33) into

Eq. (3.25) with τ = β establishes our basic relation between the HQ potential and the free

energy within the T -matrix formalism.
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To be more explicit, we specify [G0
QQ̄

(z)]−1 as

[G0
QQ̄(z)]−1 = z − 2∆MQ − ΣQQ̄(z) (3.34)

with medium-induced Fock mass term ∆MQ (for each quark) determined by V (r) as fur-

ther discussed in Sec. 3.4, and an analytic selfenergy part, ΣQQ̄(z), labeled as a two-body

selfenergy in this work. In practice, we can use Im[[G0
QQ̄

(E+ iε)]−1] = −ImΣQQ̄(E+ iε)

to find the imaginary part and reconstruct ReΣQQ̄(E + iε) by a dispersion relation. The

energy dependent potential, V (z, r), can also be decomposed into a static non-analytic

part, V (r), and an analytic part, VA(z, r), so that V (z, r) = V (r) + VA(z, r). As elab-

orated in Sec. 3.2.4, V (r) is the input potential and VA(z, r) is related to interference

effects induced by many-body physics, similar to ΣQQ̄(z). Therefore, we separate the in-

put static potential V (r) and regroup VA(z, r) into an “interfering" two-body selfenergy as

ΣQQ̄(z, r) ≡ ΣQQ̄(z) + VA(z, r) (note that ΣQQ̄(z,∞) ≡ ΣQQ̄(z) since VA(z,∞) = 0),

i.e.,

V (z, r) = V (r) + [ΣQQ̄(z, r)− ΣQQ̄(z)] . (3.35)

Equation (3.31) can then be recast as

GQQ̄(z, r) =
1

z − 2∆MQ − V (r)− ΣQQ̄(z, r)
. (3.36)

With this expression, ΣQQ̄(z, r) is analytic and 2∆MQ+V (r) is a non-analytic static part.

In this scheme, the final compact form for the free energy reads

FQQ̄(r, β) =
−1

β
ln

[ ∫ ∞
−∞

dE e−βE
−1

π
Im[

1

E + iε− Ṽ (r)− ΣQQ̄(E + iε, r)
]

]
(3.37)
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where Ṽ (r) ≡ 2∆MQ + V (r) is introduced for brevity.

3.2.2 Self-Consistent Extraction of the Potential

In order to use Eq. (3.37) to extract the potential, V (r), we need to evaluate ΣQQ̄(z, r).

Toward this end, we first calculate the one-body selfenergy, ΣQ(z). Taking the heavy-light

T -matrix in Eq. (2.31) in the “half-static" limit where the p1 dependence in Eq. (2.24) is

suppressed due to an infinite mass of particle-1, we obtain

ΣQ(z) =

∫
d3p2

(2π)3

∫ ∞
−∞

dω2
dE

π

−1

z + ω2 − E
1

dQ

∑
a,j

dQjs dQja

× T aQj(E,p2|p2)ρj(ν,p2)nj(ν) . (3.38)

The CM transformation in the static limit, ω1 + ω2 � |p1 + p2|, can be derived as

Ecm = ω1 + ω2, pcm = p2, cos(θcm) = cos(θ) . (3.39)

The nij in Eq. (2.31) is suppressed due to infinite mass of two-body states. The selfcon-

sistent Eq. (2.33) also applies in the static limit. For the two-body selfenergy, ΣQQ̄(z), we

first use Eq. (3.26) to obtain the two-body propagator, G0
QQ̄

(z), and then use the procedure

laid out after Eq. (3.34) to arrive at ΣQQ̄(z).

In the Brueckner type setup of our approach, the r-dependent part of the two-body

“interfering" selfenergy, ΣQQ̄(z, r), is not selfconsistently generated, as this would require

to include 3-body interactions 3 For now, we model ΣQQ̄(z, r) with a factorizable ansatz,

ΣQQ̄(z, r) = ΣQQ̄(z,∞)φ(xer) ≡ ΣQQ̄(z)φ(xer) (3.40)

which preserves the analyticity of ΣQQ̄(z, r). The function φ(xer) is motivated by the

3Ideas to selfconsistently generate this part are presented in Sec. 3.3.2.
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imaginary part of the potential in a perturbative approximation [106, 105] and will be

constrained in our context by a functional fit (within its short- and long-distance limits of

one and zero, respectively). Here, xe is a dimensionless parameter acting as a screening

mass that shrinks the range of φ(xer) as temperature increase (our pivot point at the lowest

temperature considered here is set to xe = 1). Inserting Eq. (3.40) into Eq. (3.37) gives

FQQ̄(r, β) =
−1

β
ln

[ ∫ ∞
−∞

dE e−βE×

−1

π
Im
[

1

E + iε− Ṽ (r)− ΣQQ̄(E + iε)φ(xer)
]

]
(3.41)

where the input functions V (r) and φ(xer) are to be tuned to reproduce lQCD data. In our

initial work [57] ΣQQ̄(E + iε) was modeled by a functional ansatz with few parameters

and as such was the major source of the uncertainties in the approach. Here, ΣQQ̄(E + iε)

is controlled selfconsistently by the single heavy-quark/antiquark selfenergy, ΣQ/ΣQ̄, as

outlined above.

3.2.3 Additional Relations for the Static HQ Free Energy

Based on the setup in Sec. 3.2, we discuss additional useful relations that follow from

this formalism.

First, we prove that a relation FQQ̄(∞, β) = 2FQ(β) is implicit in our formalism for

the Polyakov loop defined as

FQ(β) =
−1

β
ln[
−1

β

∑
νn

GQ̄(iνn)e−iνnβ] . (3.42)

If we express Eq. (3.25) in frequency space,

FQQ̄(r, β) =
−1

β
ln

[
−1

β

∑
En

GQQ̄(iEn, r)e
−iEnβ

]
, (3.43)
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use the fact that G̃QQ̄(iEn,∞) = G0
QQ̄

(iEn) = −β−1
∑

νn
GQ(iEn − iνn)GQ̄(iνn) and

iEn = iωn + iνn with the identity

−1

β

∑
En

−1

β

∑
νn

GQ(iEn − iνn)GQ̄(iνn)e−iEnβ

=

(
−1

β

∑
ωn

GQ(iωn)e−iωnβ

)(
−1

β

∑
ωn

GQ̄(iνn)e−iνnβ

)
, (3.44)

and plug this into Eq. (3.43), one indeed finds FQQ̄(∞, β) = 2FQ(β), which is also satis-

fied in our numerical implementations.

Second, we found the following identity,

Ṽ (r) =

∫
dE(EρQQ̄(E, r)) = lim

t→0
i
∂

∂t
G>(t, r) , (3.45)

which can be proved using a contour integral (over the large upper half circle) and the fact

that ΣQQ̄(z, r) is analytic (reaching 0 at large z) for

Ṽ (r) =
−1

π
Im

[∫
dz

z

z − Ṽ (r)− ΣQQ̄(z, r)

]
. (3.46)

We note that Ṽ (r) is different from the definition in Ref. [104], where it is for the long-

time limit. In our approach, V (r) = Ṽ (r) − 2∆MQ is the fundamental potential figuring

in the Hamiltonian which does not contain an imaginary part and reaches 0 for r →∞.

Third, we propose a possible way to obtain further constraints on the potential from

lQCD data for the Wilson line, GQQ̄(τ, r) [104, 71, 107], which in our context is given by

GQQ̄(−iτ, r) =

∫ ∞
−∞

dE ρQQ̄(E, r) e−τE . (3.47)

These data sets can in principle provide information beyond the free-energy data. Ideally,
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ρQQ̄(E, r) can be obtained by inverting the e−τE kernel. This leads to

G0
QQ̄(z) =

∫
dE

ρQQ̄(E,∞)

z − E

V (z, r) = [G0
QQ̄(z)]−1 − [

∫
dE

ρQQ̄(E, r)

z − E
]−1 . (3.48)

From V (z, r), we can separate the input static potential V (r). However, a direct inversion

of the kernel e−τE in Eq. (3.47) is challenging. In our approach, we can instead calculate

the spectral function ρQQ̄ based on quantum many-body physics with a potential ansatz

just as in Sec. 3.2.1 and Sec. 3.2.2. This extra information may help to further constrain

the uncertainties. However, since currently the lQCD data on GQQ̄(τ, r) is not available,

we only fit to lQCD free energy data as explained in Sec. 3.2.1 and Sec. 3.2.2.

3.2.4 Interference Effects and ImV

In this section, we illustrate the origin of the r-dependent imaginary part of the po-

tential in terms of interference effects at the 3-body level and discuss future directions to

define ΣQQ̄(z, r) selfconsistently embedded in the T -matrix approach. We illustrate po-

tential conceptual problems for “ImV " and outline how they may be handled within the

T -matrix framework.

The interference effects are diagrammatically illustrated in the first row of Fig. 3.2. A

medium parton (top line) can scatter with either of the heavy quarks (lower two lines) inter-

acting with each other. Therefore, the diagram equation can be schematically represented

by (MQ +MQ̄)(M†
Q +M†

Q̄
). In analogy to squaring the usual coherent supposition of

two quantum amplitudes, it can be separated into a non-interfering term, |MQ|2 + |M†
Q̄
|2,

and an interfering term, MQM†
Q̄

+MQ̄M†
Q. Moreover, the amplitude squared of the

three-body diagram corresponds to the imaginary part of the two-body diagram by cutting

the internal loops, which is the optical theorem. Thus, in the second row of Fig. 3.2 we can
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T

T T

T

Figure 3.2: The first row depicts M ·M† including interference effects that can be ob-
tained by cutting the diagrams as shown in the second row. The third row is the T -matrix
generalization of the diagrams in the second row.

identify the first two cuts in the selfenergy diagram corresponding to the non-interfering

term and the two cuts in the screening diagram corresponding to the interference term. The

r-independent “ImV " is the imaginary part of selfenergy while the r-dependent “ImV "

(proposed by in Ref. [106]) is the interference term.

The originally proposed “ImV " is based on perturbative diagrams. Motivated by the

correspondence between the diagrams in the first two rows of Fig. 3.2, and calculating the

selfenergies from the T -matrix by the first two diagrams in the third row of Fig. 3.2, the

interference term should correspond to the third diagram in the third row. The T -matrix

configuration, TGGT , in the HQ t-channel interaction form a BSE (i.e., energy-transfer

dependent) kernel

K(p̃− p̃′) =

∫
d̃k TQq(k̃, k̃ + p̃− p̃′)Gq(k̃ + p̃− p̃′)TQq(k̃ + p̃− p̃′, k̃)Gq(k̃) , (3.49)
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where p̃ − p̃′ denotes the 4-momentum exchange which introduces complications in the

implementation. Taking advantage of the static quarks, we can formulate it in a practically

usable form. Transforming the kernel K(p̃ − p̃′) to frequency and coordinate space as

K(ωn − ω′n, r), the BSE decouples in coordinate space due to the static limit and forms a

matrix equation in frequency space,

T (iEn, iωn, iω
′
n, r) = K(iωn − iω′n, r)−

1

β

∑
λn

K(iωn − iλn, r)

×G(iEn − iλn)G(iλn)T (iEn, iλn, iω
′
n, r) . (3.50)

Its solution can be obtained using matrix inversion in analogy to Eq. (2.29). The continu-

ation to real time is involved due to the complicated analytical structure of the T -matrix,

T (iEn, iωn, iω
′
n, r), and will not be discussed here. Instead, working in imaginary time is

enough for our purpose. The BSE solves the equation for an interfering two-body propa-

gator with r dependence:

G
(0)

QQ̄
(iEn, r) = G0

QQ̄(iEn) + (
−1

β
)2
∑
ωn,ω′

n

GQ(iωn)GQ̄(iEn − iωn)

× T (iEn, iωn, iω
′
n, r)GQ(iω′n)GQ̄(iEn − iω′n). (3.51)

The full four-point Green’s function is solved by a T -matrix using this propagator with a

bare V (r) as kernel:

GQQ̄(iEn, r) =
1

[G0
QQ̄

(iEn, r)]−1 − V (r)

=
1

iEn − 2∆MQ − V (r)− ΣQQ̄(iEn, r)
. (3.52)

Therefore, ΣQQ̄(z, r) in Eq. (3.36) is defined and calculated by the above setup in terms of

V (r), too. With this setup, the evaluation of FQQ̄(r, β) only depends on V (r). Everything
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else will be generated through the selfconsistent many-body field theory framework. With

Eq. (3.43), the theoretical formalism for the potential is in a closed form, where the only

input is the potential V (r), defining a fully constrained functional equation for V (r). This

is the example that was referred to after Eq. (3.31), showing how to start from the bare

V (r) to obtain a dispersive V (z, r) or, equivalently, ΣQQ̄(z, r).

T

T T

T T

T T

T

Figure 3.3: The left panel shows the diagram corresponding to the BSE implementation of
loop effects in the potential, while the right panel is based on a Faddeev equation for the
QQ̄+light-parton interaction with the thermal light-parton line being closed off.

The incorporation of loop effects in the t-channel exchange “potential" via a selfcon-

sistent evaluation of the selfenergy is more rigorous than just forming a closed two-body

equation as discussed in this section. The proper procedure should be based on a con-

serving approximation [73, 74] formed by the Φ derivative. This is not guaranteed for the

kernel K, and this is why in the main part of this paper we have only used it to investigate

the four-point Green’s function, not to implement it to calculate the selfenergy. As we have

illustrated in Fig. 3.2, interference effects are inherently three-body processes. Therefore,

the selfconsistent treatment of interference effects requires a three-body equation, e.g., a

Faddeev equation [108]. However, the loop corrections to the in-medium potential are in

general different when generating them through a BSE kernel compared to starting from a

3-body Faddeev approach and then contracting the in-medium light-parton line, which is
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illustrated in Fig. 3.3. However, one can prove that in the Faddeev-based approach, there

is an approximate 4-point Green’s function that can be cast into a 2-body propagator of

the form of Eq. (3.36) or (3.52). The more rigorous treatment of the 3-body equation is

computationally involved and provides an interesting topic for future investigations.

3.3 Quarkonium Correlator Ratios

The Euclidean correlator can be understood as a “Fourier transform” of the spectral

function to imaginary-time space, where it is computable in lattice QCD. Usually, its ratio

to a correlator with a vacuum reference function is utilized to highlight the medium mod-

ifications in the spectral functions, and it also has the advantage of reducing systematic

lattice uncertainties. Since the quarkonium correlator is defined by a local operator, the

two-body Green function/spectral function is proportional to the wave function overlap at

the origin, Gij(E) =
∑

n |φEn(0)|2/(E − En). Thus, the correlator is quite sensitive to

short-range physics, which is useful to, e.g., constrain the strong coupling constant αs in

the Coulomb term. The spectral function and the correlator can be readily calculated in the

T -matrix approach with heavy quarks. There are several previous studies of these quan-

tities in this approach [60, 68, 69] which we will briefly review. Here, we are now able

to significantly go beyond those by consistently coupling the heavy quarks to an off-shell

light-parton plasma.

3.3.1 Review of Established Formalism

The correlator in Euclidean time that can be computed in lQCD [58, 59, 3] is defined

by

G>(−iτ,P) =

∫
d3r eiP·r〈JM(−iτ, r), J†M(0, 0)〉 (3.53)
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and usually evaluated at vanishing total 3-momentum, P, of the QQ̄ pair,

G>(−iτ) ≡ G>(−iτ,P)|P=0 . (3.54)

The mesonic states are created by the local operator

JM(−iτ, r) = ψ̄(t, r)ΓMψ(t, r) , (3.55)

where ψ (ψ̄) denotes the (conjugate) Dirac spinor field operator. The Dirac matrix ΓM ∈

{1, γµ, γ5, γµγ5} projects the operators into scalar, vector, pseudoscalar and pseudovector

channels, respectively. In a fully relativistic treatment, ψ can create an anti-particle or

annihilate a particle. However, in the context of this work, we separately treat particle

annihilation and antiparticle creation (and vice versa) by two field operators ψQ and ψ†
Q̄

,

respectively, schematically written as ψ = ψQ + ψ†
Q̄

(here and in the following, we also

use Q to denote c and b quarks). Inserting this into Eqs. (3.55) and (3.53) (suppressing the

ΓM structure and pertinent relativistic corrections), a leading term of the 16 possibilities

for this correlator is the 4-point Green function

G>
QQ̄

(−iτ,P) =

∫
d3r eiP·rG>

QQ̄
(−iτ, r, r|0, 0)

=

∫
d3r eip·r〈ψQ̄(−iτ, r)ψQ(−iτ, r)ψ†Q(0, 0)ψ†

Q̄
(0, 0)〉 , (3.56)

which characterizes the propagation of a two-body state and can be solved by the T -matrix

as shown in the previous section. Another important term for the same correlator is the

density-density correlation function,

〈nQ(−iτ, r)nQ(0, 0)〉 = 〈ψ†Q(−iτ, r)ψQ(−iτ, r)ψ†Q(0, 0)ψQ(0, 0)〉, (3.57)
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which is usually referred to as the zero-mode contribution (or Landau cut) and closely

related to the transport properties of the medium [69]. Other terms are either included

automatically through the Matsubara formalism as hole excitations, or they are suppressed

in the HQ limit. For the purpose of this work, we choose the simplest quantity to be com-

pared with lQCD data, i.e., the pseudoscalar channel, ΓM = γ5, which does not develop a

zero mode. It corresponds to the mesonic ηc and ηb channels (including, of course, their

full excitation spectrum).

Since we focus on the Euclidean time correlator at total momentum P = 0, it simply

corresponds to the T -matrix in the CM frame. The additional locality in the relative co-

ordinate leads to one integration over 3-momentum4. Thus, the 4-point Green function in

frequency space for the pseudoscalar channel takes the form

GQQ̄(z) = dQ

∫
d3p

(2π3)
G0
QQ̄(z, p)+

dQ

∫
dpdp′

π3
RSQQ̄ G

0
QQ̄(z, p) T lQQ̄(z, p, p′) G0

QQ̄(z, p′) . (3.58)

It includes the relativistic effects due to the projector ΓM , encoded in the RSij defined in

Eqs. (2.15), (2.16) and (2.17), cf. Refs. [60, 68, 69] for more details (in those works theR

factor is part of the propagator, but the expressions are equivalent to the ones used here);

dQ = 6 denotes the spin-color degeneracy of a heavy quark. The spectral function for this

Green function is defined as

ρQQ̄(E, T ) = − 1

π
ImGQQ̄(E + iε) , (3.59)

4f(r1 − r2) =
∫

d3p
(2π)3 e

ip·(r1−r2)f(p)→ f(0) =
∫

d3p
(2π)3 f(p).
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and the pertinent correlator is given by

G>
QQ̄

(−iτ, Tref, T ) =

∫ ∞
0

dEρQQ̄(E, Tref)K(τ, E, T ) , (3.60)

with the kernel

K(τ, E, T ) =
cosh[E(τ − β/2)]

sinh[E(β/2)]
, (3.61)

which can be obtained using the contour techniques with proper treatment of the retarded

symmetry for the spectral function at negative E. Finally, the correlator ratio is defined as

RQQ̄(τ, Tref, T ) =
G>
QQ̄

(−iτ, T, T )

G>
QQ̄

(−iτ, Tref, T )
. (3.62)

In this ratio the denominator and the numerator carry the exact same kernel, K(τ, E, T ) so

that the only difference is the spectral function, thus exhibiting the medium effects relative

to a reference spectral function (usually taken as one at small temperature).

3.3.2 Interference Effect for Two-Body Spectral Function

As discussed in Sec. 3.2.4, the r-dependent imaginary part of the potential is a mani-

festation of interference effects between the two quarks when interacting with the medium;

e.g., in the color-singlet channel a small size QQ̄ state will effectively become colorless

thus suppressing any interaction with the colored medium partons. Therefore, this effect

is expected to become significant for deeply bound heavy quarkonia with a tight wave

function. Although a full many-body treatment will require nontrivial 3-body diagrams,

we will suggest a way to include the effects in the T -matrix approach which seems viable

for the case of two-body spectral functions and correlators. However, we will only include

the interference effects for heavy-heavy and static-static channels.
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We start from the non-relativistic Schrödinger equation,

(−∂
2
r

M
+ Ṽclx(r))ϕ(r) = Eϕ(r) . (3.63)

In previous works [106, 109], an energy-independent complex “potential" has been intro-

duced; in our context we write it as Ṽclx(r) = V (r) + iΣI
QQ̄
φ(xer), where we introduced

the generic notation ΣI ≡ ImΣ. Transforming it to momentum space leads to

Ṽclx(p− p′) = iΣI
QQ̄(2π)3δ(p− p′) + iΣI

QQ̄φN(p− p′) + V (p− p′) (3.64)

where φN(p− p′) is the Fourier transform of φ(xer)− 1,

φN(p) =

∫
d3r eip·r(φ(xer)− 1) . (3.65)

The Schrödinger equation in momentum space then reads

∫
d3p′

(2π)3

{[ p2

M
+ iΣI

QQ̄

]
(2π)3δ(p− p′)+

iΣI
QQ̄φN(p− p′) + V (p− p′)

}
ϕ(p′) = Eϕ(p) . (3.66)

One can now follow the standard track to derive the Lippmann-Schwinger equation (LSE).

The terms in the brackets “[ ]" figure in H0, which is combined with E on the right-hand

side as (E − H0)ϕ = V ϕ. Then, inverting the left-hand side and adding a free solution,

we obtain the general solution as ϕ = ϕ0 + (E − H0 + iε)−1V ϕ. Multiplying it by V ,

we arrive at the T -matrix equation T = V + (E −H0 + iε)−1V T using V φ = Tφ0. The

part local in momentum with a δ-function in Eq. (3.64) enters the free propagator, while

the part nonlocal in momentum space becomes the true potential.

To generalize the Schrödinger framework to be compatible with the T -matrix approach
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discussed in previous sections (in particular in Sec. 3.2.1), a few extensions are required.

Specifically, the energy-momentum dependence and analytic properties of the uncorre-

lated in-medium two-particle propagator need to be accounted for. Toward this end, moti-

vated by the relation (3.34) in the static limit, we augment the constant imaginary part to

an energy-dependent complex quantity, ΣQQ̄(z, p), whose local part (with a 3-momentum

δ-function) encodes the dynamical single-quark selfenergies, while its non-local part ac-

counts for interference effects (as a coefficient to the “interference" function, φ),

Ṽclx(z,p− p′) =(2π)3δ(p− p′)ΣQQ̄(z, p)+

ΣQQ̄(z, p′)φN(p− p′) + V (p− p′) . (3.67)

Thus, the modified potential figuring as a kernel in the T -matrix equation takes the form

Vclx(p− p′) = ΣQQ̄(z, p′)φN(p− p′) + V (p− p′) , (3.68)

which is then subjected to a standard partial-wave expansion. The resulting spectral func-

tion does not depend on using ΣQQ̄(z, p) or ΣQQ̄(z, p′) in the above equation since φN is

symmetric under the exchange of p and p′. With this setup, the T -matrix is still analytic

but no longer positive-definite. The latter feature causes complications when utilized in

many-body calculations of single-particle selfenergies. It is indicative of a non-conserving

approximation [73]. However, when restricted to the calculation of the quarkonium spec-

tral functions and correlators, the former remains strictly positive definite. In addition,

this scheme precisely recovers the implementation of VI in the static limit. In Sec. 4.2.2,

we will elaborate on the interference effects for the spectral functions obtained from this

implementation.
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3.4 Potential Ansatz and Numerical Procedure

3.4.1 Screened Cornell Potential and Bare Parton Masses

For the Hamiltonian introduced in Eq. (2.14), the inputs are the 2-body potential and

bare particle masses which both depend on temperature. As an ansatz for the potential, we

employ a generalized in-medium Cornell potential [110, 111]:

V (r) = VC + VS = −4

3
αs
e−mdr

r
− σe−msr−(cbmsr)2

ms

, (3.69)

which recovers the well-established vacuum form while implementing in-medium screen-

ing of both the short-range Coulomb and long-range confining interaction (“string term")

in a transparent and economic way. The respective screening masses are denoted by md

and ms. An additional quadratic term, −(cbmsr)
2, in the exponential factor of the string

term accelerates the suppression of the long-range part, mimicking a string breaking fea-

ture. It can also be considered as the next term in a power expansion in r.

Since the screening originates from the coupling of the bare interaction to medium

partons, both ms and md are functions of the parton density, and thus they are not totally

independent. The 1/r and r dependence of the potential leads to static propagators in

momentum space, Dc(q) = 1/q2 and Ds = 1/q4, respectively, which, upon multiplication

with the respective coupling constants, −4/3αs and −8πσ in the color-singlet channel,

constitutes the bare potential in the Hamiltonian. The screening effects at leading order

can therefore be expected to be of a generic form,

Dc(r) =
1

p2 + AαsΠ
(3.70)

Ds(r) =
1

p4 +BσΠ
, (3.71)
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with a medium-induced polarization tensor Π representing light-parton loops5 which are

only related to medium properties. Thus, they are the same for Coulomb and string terms.

However, the same Π can lead to different screening behavior since Coulomb and string

potentials couple to Π differently. Here, we simply assume that this difference can be

represented by temperature-independent parameters A and B related to spin/color and

relativistic structures which are not precisely known in our context. From dimensional

analysis a “propagator" of the form 1/(pn + mn
x) = m−nx /[(p/mx)

n + 1] has a screen-

ing mass proportional to mx. Thus, we have md ∝ (AαsΠ)1/2 and ms ∝ (BσΠ)1/4.

This yields the constraint ms = (csm
2
dσ/αs)

1/4 where cs is depending on A and B and

other temperature-independent constants. In a Debye-Hückel approach [109] one obtains

the same temperature scaling relation for string and Debye masses except for the coeffi-

cient cs. However, the resulting screening behavior of the above model and the Debye-

Hückel approach can be different. Thus, we do not directly use the above propagators or

the Debye-Hückel approach as our ansatz but simply use scaling rules with cs as a pa-

rameter for the Coulomb or string screening masses, which show indications of model

independence. The above potential is in the quark-antiquark color-singlet channel, while

the potentials in other channels will be modified according to Eqs. (2.16) and (2.17) and

Table. 2.1.

In our fit procedure, we first constrain the infinite-distance limit of the input potential

Ṽ (r) by using FQQ̄(∞, β) (Ṽ (∞) and FQQ̄(∞, β) are not the same). Then, the “inter-

ference function", φ(xer) defined in Eq. (3.40), is constrained via Eq. (3.41), which is a

functional fit. The solution for φ(xer) is unique once V (r) is fixed (it will turn out to have

a shape similar to the perturbative limit in Ref. [106], as will be shown in Figs. 4.2 and

4.13 in Secs. 4.1.1 and 4.2.1).

For the in-medium quark mass correction, we have previously defined Ṽ (r) by adding

5The leading order polarization is just a particle-hole loop.
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twice the Fock term, ∆MQ = Ṽ (∞)/2, to the genuine interaction part of V (r), i.e.,

Ṽ (r) = VC(r) + VS(r) + 2∆MQ (3.72)

where

∆MQ = −1

2

∫
drρ(r)V (r) =

1

2
(−4

3
αmd + σms) (3.73)

is the classical static in-medium selfenergy of a point charge, ρ(r) = δ(r), in its own

field, subtracting the divergent vacuum term. The minus sign can be verified using the

perturbative calculation. Similar physics is discussed in Ref. [112] in the perturbative

context. Using Eq. (3.73) in momentum space with explicit indices, the Fock mass can

be obtained by the selfenergy from a potential including the relativistic and color factors,

Eqs.(2.16) and (2.17),

Mq = −1

2

∫
d3p

(2π)3
V 1
qq̄(p) +Mfit

Mg = −1

2

∫
d3p

(2π)3
V 1
gg(p) +

3

2
Mfit (3.74)

where Mfit is a residual mass (utilized as a fit parameter to the lQCD data for the EoS),

which encodes physics that we do not treat explicitly here (e.g., perturbative selfenergies or

gluon condensate effects)6. The non-perturbative gluon-quark mass ratio in the static limit

is Mg/Mq = CA/CF = 9/4, while in the perturbative limit at high T one has Mg/Mq =

3/2. The above implementation gives a smooth transition from the non-perturbative to the

perturbative regime. However, the mass dependence in the relativistic factor still requires

a selfconsistent procedure. We have checked that our default mass fitting scheme, using

Eq. (3.74), and enforcing only the perturbative limit (described in the footnote. (6)) give

6Neglecting the relativistic factor in Eq. (3.74), the relation isMq = Ṽ (∞)
2 +Mfit,Mg = 9

4
Ṽ (∞)

2 + 3
2Mfit.
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very similar results, with a maximum difference of 1% for the resulting quark masses,

up to 15% for the gluon masses, 10% for the selfenergy near T ≈ 0.2 GeV, and at the

5% level for gluon masses and selfenergies at T ≈ 0.3 GeV. In either case the influence

on the emerging spectral properties is not significant. Preliminary results show that the

quark-number susceptibilities are rather sensitive to the masses and can provide additional

constraints; this will be elaborated in future work.
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Figure 3.4: Flow chart of the procedure. “T” means the result agrees with the correspond-

ing lQCD data and “F” means it fails to describe the lQCD data.
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3.4.2 Numerical Fit Procedure for lQCD Data

Let us briefly lay out the numerical procedure we use to search for solutions of our

approach that are compatible with the lQCD data for the QGP EoS, quarkonium correla-

tors and static QQ̄ free energies. The flow chart of the procedure is shown in Fig .3.4. At

each temperature, we start with trial values for the potential and two light parton masses,

and use them to calculate the non-perturbative off-shell scattering matrices (T -matrices)

for light partons. Within the formalism laid out in Sec. 2.2, we keep 6 partial waves to

include two-body channels with angular momentum up to l=5 (which is more than suffi-

cient for convergence); with four color channels in the qq and qq̄, three in the qg and three

in the gg sector [8], a total of 6×10=60 different light-parton T -matrices are computed.

These T -matrices are then used to calculate the selfenergies and spectral functions for sin-

gle partons. Next, the parton propagators are reinserted back into the T -matrices, forming

a selfconsistency problem (recall Eq. (2.33)) which is solved by numerical iteration; this

forms the “inner” light-parton selfconsistency loop of the overall procedure. In this pro-

cedure, we exit the “inner” loop after 5 iterations where a convergent solution is usually

found within a few percent accuracy. The pertinent outputs are then used to compute the

EoS and LWF as discussed in Sec. 3.1. If the resulting pressure disagrees with the lQCD

value at the given temperature, the light-parton masses (Mfit) are retuned, the inner self-

consistency loop carried out, and repeated until the pressure agrees with lQCD data within

2%, constituting the “intermediate" mass fitting loop of the overall procedure. After ob-

taining the masses to reproduce the lQCD EoS, we proceed to the selfconsistent calculation

of the selfenergy of a static quark (again a selfconsistency loop), which involves another

42 static-light T -matrices (6 partial waves and a total of seven color channels for Qq, Qq̄

and Qg). These are input to the formalism laid out in Sec. 3.2 to compute the static-quark

free energy, FQQ̄, and compare it to pertinent lQCD data. If the calculated free energy dis-

61



agrees with the lQCD data, we retune the potential (most notably md), recalculate the EoS

with retuned light-parton masses, and recompute the free energy, which corresponds the

“outer" potential fitting loop of the procedure. The criterion to end this “outer" loop is that

the calculated FQQ̄(∞) agrees with lQCD data within 5%. These loops involve automated

(numerical) adjustments of Mfit and md to best reproduce the EoS and free-energy data

while other parameters are tuned manually. After obtaining a solution, we proceed to the

selfconsistent calculations of charm- and bottom-quark properties which involve another

42 heavy-light T matrices each. With the full off-shell HQ spectral functions, we proceed

to evaluate two more T -matrices to compute charmonium and bottomonium spectral func-

tions and correlator ratios in the pseudoscalar color-singlet S-wave channel, and compare

the latter to lQCD data as discussed in Sec. 3.3. If they do not match, i.e., if the maximum

deviation is significantly larger than 10%, we manually retune the potential (mostly the

Coulomb term) and redo the whole process until a satisfactory result is obtained. Usually,

the fits to the correlator ratio is automatically “satisfactory" with the assumption that αs

does not strongly depend on temperature. The numerical machinery is carried out with

Mathematica software and typically takes several hundreds of CPU hours to arrive at a

solution for four temperatures.
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4. NUMERICAL RESULTS AND UNDERLYING PHYSICS∗

In this chapter, we discuss the results and insights from the formalism described in

the previous chapters. For each solution at a given temperature, all quantities in both HQ

and light-parton sectors, i.e., the QGP EoS, HQ free energy, one- and two-body spectral

functions and T -matrices, are calculated from a single Hamiltonian, Eq. (2.14), with the

potential ansatz described in Sec. 3.4, and then using the T -matrix approach with one

set of parameters. The interference effect discussed in Sec. 3.3.2 is only included when

evaluating static-static and heavy-heavy spectral functions and correlators/free energies.

As it turns out, the constraints provided by the currently used set of lQCD data (free

energies, quarkonium correlators and EoS) does not yet allow for a unique solution. To

explore this feature, we will focus on two putatively limiting cases, which we denote by a

weakly coupled solution (WCS) where the potential is close to the free energy (Sec. 4.1)

and which has already been discussed in the literature in perturbatively inspired frame-

works [105, 71], and a strongly coupled solution (SCS) which is characterized by a long-

range potential which “maximally" rises above the free energy (Sec. 4.2), first pointed

out in Ref. [57]. Although both solutions can explain the chosen set of lQCD data, they

predict, as we will see, a rather different microscopic structure of the QGP at moderate

temperatures.

A similar discussion has been presented before in phenomenological applications heavy-

flavor observables, both for HQ diffusion [68, 113] and quarkonium transport [114, 115,

116, 117, 29, 30]. In these instances the internal and free energies have been employed

as potential proxies for strongly and weakly coupled scenarios of the in-medium QCD

force. A general tendency for preferring the internal energy was found. Such studies can,

∗Part of this chapter is reprinted with permission from “T -matrix approach to quark-gluon plasma” by
Shuai Y. F. Liu and Ralf Rapp, 2018, Phys. Rev. C 97, 034918, Copyright 2018 by APS.
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of course be repeated with our more rigorously deduced potential solutions.

One of the virtues of our approach is that it is carried out in real-time, allowing us

to retain and keep track of the microscopic quantum many-body information of the sys-

tem in a direct way while being intimately connected to the macroscopic properties of the

QGP. This includes the predicted spectral functions of all involved partons (static, heavy

and light quarks as well as gluons) and the more than one-hundred in-medium two-body

T -matrices, fully off-shell. This information readily allows to calculate transport coeffi-

cients, Wigner functions for one- or two-body states, etc., in a nonperturbative framework,

and to make contact with experimental observables. Thus, the approach is not only rooted

in lQCD data, but also unravels real-time microscopic physics which leads to a wide va-

riety of phenomena that can be tested by experiments in a transparent, quantitative and

interpretable way.

4.1 Weakly Coupled Solution

In this section we first report and discuss the results of our fits for a weakly coupled so-

lution (WCS), starting from the HQ free energy and the extraction of the underlying poten-

tial, which is the key quantity determining the interaction strength in the QGP (Sec. 4.1.1)

and pivotal for calculating essentially all other quantities. In Sec. 4.1.2 we elucidate the

extra information that can be gained by the fits of Euclidean quarkonium correlators, and

discuss the resulting charmonium and bottomonium spectral functions. We then proceed

to our fit to the QGP EoS which involves the two light-parton masses as additional fit pa-

rameters (Sec. 4.1.3). We finally give a comprehensive overview of the emerging light and

heavy-parton spectral functions and their two-body T matrices (Sec. 4.1.4) and a discus-

sion of the pertinent QGP structure, including its degrees of freedom.
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Figure 4.1: Results of a weakly coupled solution for the temperature dependence of the
fitted screening masses (left panel) and the scale factor, xe (right panel), figuring in the
interference function. Reprinted from [1].

4.1.1 Free Energy, Potential and Static Selfenergies

When searching for a WCS, we start by using the free energy as potential. The strength

of the potential slightly increases in the iteration procedure, mostly due to relatively small

imaginary parts that develop and figure in the staticQQ̄ spectral function, Eq. (3.41). Thus,

the solution found in this way can be regarded as a lower limit of the potential. The param-

eters of the potential for the converged solution are given by αs = 0.27, σ = 0.21 GeV2,

cb = 1.3 and a temperature dependent Coulomb Debye mass,md, as shown in the left panel

of Fig. 4.1. With cs = 0.1 the screening mass of the string term, ms = (csm
2
dσ/αs)

1/4,

also follows as shown in the Fig. 4.1. The fit of the interference function, shown in the

lowest row of Fig. 4.2 and Fig. 4.3 is quite similar to the perturbative function found in

Ref. [106]; it shrinks in range as a result of the increase in screening with temperature.

The resulting potential is displayed in the third row of Fig. 4.2 and indeed found to exceed

the free energy, by up to 0.07 GeV at T = 0.194 GeV and 0.16 GeV at T = 0.4 GeV. The

calculated free energy fits the lQCD data well.
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With this potential, the selfconsistent selfenergy and spectral function of a static quark

follow from T -matrix approach as shown in the first two rows of Fig. 4.2, respectively.

In practice, the static limit has been calculated with a numerically large bare HQ mass

(2 · 104 GeV), and the energy scales for the one- (and two-) body quantities have been

plotted relative to (twice) that bare mass. At low T = 0.194 GeV, the peak value of

ImΣQ ≈ −0.05 GeV coresponds to a width of the spectral function which is around

0.1 GeV. For comparison, the hard-thermal-loop (HTL) perturbative width [106, 105, 112]

is 4
3
αsT ≈ 0.07 GeV. For the QQ̄ quantities, the peak value of ImΣQQ as defined in

Eq. (3.34) and (3.40) is approximately 2 times of the peak value of ImΣQ, and the width

of the two-body spectral function is around 2 times that of the single static-quark spectral

function. The peak value of ImΣQ and the width of the static quark spectral functions

increase with temperature at an approximately linear rate.
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Figure 4.2: Results of a weakly coupled solution for the self-consistent fit to extract the

static HQ potential: single-quark and QQ̄ selfenergies, ΣX(ω,∞) (first row), and spectral

functions, ρX(z,∞) (second row), potential Ṽ (r) and free energies (third row), and inter-

ference function, φ(xer) (fourth row). Reprinted from [1]. The free-energy lQCD data are

from Ref. [2].
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T=0.320 GeV T=0.400 GeV
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Figure 4.3: Same as Fig 4.2 for different temperature. Reprinted from [1].
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4.1.2 Quarkonium Correlators and Spectral Functions

Next we turn to the Euclidean quarkonium correlators for realistic bottom- and charm-

quark masses, concentrating on the pseudoscalar channel where extra complications due

to zero modes do not figure. The bare masses of charm and bottom quarks (Q=c, b) are

determined as in Ref. [68], by fitting the vacuum charmonium and bottomonium ground-

state masses using mQ = mbare
Q + Ṽ (∞)/2 with the vacuum value of Ṽ at a typical string

breaking scale of r=1-1.1 fm, resulting in mbare
c,b =1.264, 4.662 GeV. The results for this

section are collected in Fig. 4.4 and Fig. 4.5.

The widths of the quarkonium spectral functions are caused by collisions of individual

heavy quarks within the bound state with medium partons (the so-called quasifree pro-

cess [26]), as encoded in the HQ selfenergies. Since the potential is relatively weak, these

selfenergies are small, and so is the width of quarkonium. The ηc is still a well-defined

state at T=200 MeV, but is essentially dissolved at T=260 MeV. The ηb(1S) survives to

significantly higher temperatures, beyond 260 MeV, and even to 400 MeV when interfer-

ence effects are included (as described in Sec. 3.3.2). The latter generally reduce the

quarkonium widths, more so the tighter the states are bound (by up to 75%). The width

reduction is consistent with simple estimates using the φ(xer) function (Fig. 4.2) with per-

tinent size estimates. Even for the case without interference, the width of the QQ̄ states is

smaller than 2 times the HQ width at vanishing momentum, due to the energy-momentum

dependence of the HQ selfenergies as obtained from the heavy-light T -matrices. As usual,

the dissolution of the quarkonia is due to a combination of the increasing screening and

collision widths.

The correlator ratios are generated by using the reference (or “reconstructed") corre-

lator at the lowest temperature considered (T=194 MeV), as was done in the lQCD cal-

culations that we compare to [3, 4]. Without interference effects the calculated correlator
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ratios deviate from the lQCD data by up to ∼10%. Despite the melting of the bound

states, the increase in width effects (over-) compensates the loss of low-energy strength

in the spectral functions and leads to a 5-10% increase in the correlators ratios with in-

creasing Euclidean time, τ . This increase is tamed by the inclusion of interference effects,

which, as discussed above, reduce the bound-state widths; the resulting correlator ratios

agree within ∼5% with the lQCD data. This deviation could be further reduced by im-

plementing an αs which decreases with temperature (in our fits we did not explore such a

dependence). However, due to other uncertainties that can affect the correlator ratios at a

few-percent level (e.g., spin-dependent interactions), we do not further pursue this option

here.
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Legends: T=0.194GeV T=0.256GeV T=0.320GeV T=0.400GeV
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Figure 4.4: Weakly coupled solution for charmonium (ηc) spectral functions (upper panels)

and correlators ratios (middle panels) with (first column) and without (second column)

interference effects in the imaginary part of the potential. The lQCD data for ηc correlator

ratios [3] are shown in the first bottom panel, while the second bottom panel displays the

temperature dependence of the charm-quark mass. Reprinted from [1].
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Figure 4.5: Same as Fig. 4.4 for bottomonium (ηb) with lQCD data [4]. Reprinted from [1].

4.1.3 QGP Equation of State

Next, we turn to the selfconsistent results for the QGP bulk properties, i.e., our fit to

the lQCD data for the pressure. Here, the two main fit parameters are the bare light-parton

masses in the Hamiltonian (including the Fock term, recall Eq. (3.74)), which are shown

in the left panel of Fig. 4.6. The resulting masses are rather stable with temperature, with a

slight increase toward Tpc dictated by the decreasing pressure (not unlike in quasiparticle

models, but less pronounced, especially for quarks). The quark-to-gluon mass ratio is

different from the perturbative thermal mass ratio due to the nonperturbative ingredients
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of the interaction as discussed in Sec. 3.4. The fitted mass parameter, Mfit, starts to exceed

Mq for temperatures above 300 MeV due the negative Coulomb contribution to the Fock

term (which is also enhanced by relativistic corrections); the string term gives a strictly

positive contribution (which is, however, suppressed by relativistic corrections).
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Figure 4.6: Weakly coupled solution for the QGP bulk medium: we show the fit results

of the input masses for quarks and gluons (left panel), the resulting fit to the QGP pres-

sure in comparison to lQCD data [5] (middle panel; solid line: total, dashed line: LWF

contribution), and the ratio of LWF contribution to total pressure (right panel). Reprinted

from [1].

The lQCD data for the pressure can be well reproduced; see the middle panel of

Fig. 4.6. It is interesting to decompose the pressure into contributions from quasiparti-

cles (Ωqp ∝ ln(−G−1) + ΣG) [95] and the two-body interaction characterized by the

resummed LWF (Φ ∝ 1/2 log(1 − V GG)). The latter turns out to be generally small, no

more than 15% of the total and slightly increasing with the temperature; cf. right panel

of Fig. 4.6. This suggests that there are no marked changes in the interaction strength or

degrees of freedom in the WCS for the QGP in the considered temperature range.
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4.1.4 Spectral Structure of the QGP

Finally, let us inspect the spectral structure of the QGP within the WCS. The spectral

properties of single partons are summarized in Fig. 4.7, Fig. 4.8, Fig. 4.9 and Fig. 4.10 in

terms of their selfenergies (real and imaginary parts) and spectral functions. The widths (or

scattering rates) of the partons, Γ = −2ImΣ, are significantly smaller than their masses,

implying that they remain well-defined quasiparticles at all momenta and over the full tem-

perature range. At the lowest temperature, T=194 MeV, the light-parton width is around

0.11 GeV which is larger than the perturbative expectation, 4
3
αsT ≈ 0.07 GeV, but lower

than, e.g., the most recent dynamical quasiparticle model results [118] which are around

0.2 GeV. Similar to the static case, the width rises slightly stronger than linear with temper-

ature, which is closer to the perturbative than the dynamical quasiparticle approach. The

3-momentum dependence of the width is quite strong at low temperature and quite weak

at high temperature. This is probably so because partons at different thermal momenta

will probe different regimes of the potential, in particular since at high temperature the

string term (which is responsible for an appreciable long-range force) is heavily screened.

In the infrared region, the confining interaction behaves as 1/m4
s while the Coulomb one

as 1/m2
d. Thus, the increase of ms implies a larger decrease of the strength of the string

relative to the Coulomb force (the latter is also augmented by the relativistic Breit correc-

tion that reduces the momentum dependence). The width of the different quark species are

quite similar whereas the gluon width is almost twice larger due to the color Casimir fac-

tor. The quark width first increases with mass and then decreases again. Usually a larger

mass has a stronger scattering amplitude in the CM frame (cf. Fig. 4.11), but the CM trans-

formation, Eq. (2.25), effectively shrinks the phase space. This competition leads to the

non-monotonic behavior.

The underlying two-body correlations are illustrated by the (imaginary part of the)
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pertinent T -matrices, used to calculate the single-parton selfenergy, in Fig. 4.11. They ex-

hibit a sequential dissociation according to the reduced mass of the bound state. If we use a

vanishing binding energy (relative to the constituent 2-body mass threshold) to distinguish

bound and scattering states (for total momentum P=0), light mesons are melted at T =

0.194 GeV while the heavy-light meson, glueball, and quarkonium still survive. The D-

meson and first-excited bottomonium state (Υ2S) melt near T = 0.258 GeV, the charmo-

nium around T = 0.320 GeV and the ground-state bottomonium Υ1S at T = 0.400 GeV.

Even after melting, a resonance structure can still survive to somewhat higher tempera-

tures, albeit with typically much reduced strength in the T matrix. As an alternative way

to characterize the resonance correlation one can inspect their robustness with increas-

ing single-parton CM momentum (essentially going off-shell), the light, heavy-light and

first-excited bottomonium states disintegrate for pcm ≥ 1 GeV. We finally note that the qq̄

bound-state mass at the lowest temperature, Mqq̄ ' 1 GeV, is significantly larger than the

vacuum mass of the light vector mesons, mρ,ω ' 780 MeV (we recall that we do not in-

clude spin-spin or topologically induced interactions, e.g., instanton-induced ones, which

are believed to play a key role for dynamical chiral symmetry breaking and its associated

Goldstone bosons).
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Legends: p=0GeV p=1GeV p=2GeV p=3GeV
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Figure 4.7: Weakly coupled solution for parton spectral properties of the QGP at T =

0.194 GeV. 4 rows corresponding to different parton species (light quarks (q), gluons

(g), charm quarks (c) and bottom quarks (b) in the first, second, third and fourth row

of each panel, respectively). Each row contains 3 panels showing (from left to right) the

energy dependence of the pertinent real and imaginary part of the selfenergy and the result-

ing spectral functions, for 4 different values of the parton’s 3-momentum (p). Reprinted

from [1].
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Figure 4.8: Same as Fig. 4.7 at T=0.258 GeV. Reprinted from [1].
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Figure 4.9: Same as Fig. 4.7 at T=0.320 GeV. Reprinted from [1].
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Figure 4.10: Same as Fig. 4.7 at T=0.400 GeV. Reprinted from [1].
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Legends: pcm=0.0GeV pcm=0.5GeV pcm=1.0GeV pcm=1.5GeV
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Figure 4.11: Weakly coupled solution for the imaginary part of the color-singlet S-wave

T -matrices (without interference effects) in the bottomonium (bb̄; first row), charmonium

(cc̄; second row), D-meson (cq̄; third row), light-quark (qq̄; fourth row), and glueball (gg,

last row) channels. The 4 columns correspond to different temperatures, T = 0.194 GeV,

T = 0.258 GeV, T = 0.320 GeV and T = 0.400 GeV from top down; in each panel, the

T -matrix is displayed for 4 different values of the single-parton 3-momentum (pcm) in the

two-body CM frame. Reprinted from [1].
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4.2 Strongly Coupled Solution

In this section we discuss our selfconsistent set of results for a strongly coupled so-

lution (SCS). The section structure parallels the one of the WCS, namely starting from

the determination of the underlying potential through fits of lQCD results for the static

QQ̄ free energy (Sec. 4.2.1), followed by the quarkonium correlator analysis (Sec. 4.2.2),

the fit to the QGP EoS (Sec. 4.2.3) and a discussion of the one- and two-body spectral

properties (Sec. 4.2.4).

4.2.1 Free Energy, Potential and Static Selfenergies

When searching for a SCS within our framework, we start from a trial potential sig-

nificantly larger than the free energy, together with large imaginary parts in the static-

quark selfenergies. The converged selfconsistent parameters take the values αs = 0.27,

σ = 0.225 GeV2, cb = 1.3 and cs = 0.01. The strong coupling constant and the “string-

breaking" coefficient, cb, are essentially the same as for the WCS, and the string tension
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Figure 4.12: Results of a strongly coupled solution for the temperature dependence of the
fitted screening masses (left panel) and the scale factor, xe (right panel), figuring in the
interference function. Reprinted from [1].
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is only about ∼5% larger. The key difference lies in the coefficient, cs, for the screening

mass of the string term, which is a factor of ∼10 smaller. Consequently, the temperature

dependent screening mass, ms = (csm
2
dσ/αs)

1/4, turns out to be smaller than in the WCS,

mostly at low temperatures, by up to about 1/3, cf. left panel of Fig. 4.12. At the same

time, the Coulomb Debye mass, md, for the SCS is comparable to the one in the WCS

at low temperature, but increases more strongly (and essentially linear) with temperature.

The key feature of the SCS in-medium potential is thus a rather long-range remnant of the

confining force, as shown by the red lines in the third row of Fig. 4.13 and Fig. 4.14. In

particular, at intermediate and large distances, the potential rises markedly over the free

energy (green lines), by up to 0.6 GeV at the lowest temperature (T=0.194 GeV) and by

up to 0.3 GeV at T=0.400 GeV. The latter is not far anymore from the WCS. The fit to

the lQCD data (black dots) is of the same quality as for the WCS. The scale factor of the

interference function shown in the right panel of Fig. 4.12 is also very similar to the WCS,

although its magnitude is smaller at higher temperatures.

With the extracted potential, the selfenergies and spectral functions of the static quark

generated from the static-light T -matrices are shown in the first two rows of Fig. 4.13 and

Fig. 4.14. At low T = 0.194 GeV, the peak value of ImΣQ ≈ −0.26 GeV implies a width

of the spectral function in excess of 0.5 GeV. In fact, the full-width of half-maximum of

the pertinent spectral function amounts to about 0.7 GeV, due to additional effects from the

real part of the static-quark selfenergy. This is almost an order of magnitude larger than the

leading order HTL result [106, 105, 112], (4
3
αsT ) ≈ 0.07 GeV. In addition, the peak value

of the single-quark width, -2ImΣQ, increases only slightly with T at lower temperatures,

and even decreases between 0.320 and 0.400 GeV. This remarkable feature is due to the

marked loss of long-range interaction strength which can over-compensate the increase in

parton density with temperature. For the two-body quantities, the peak value of ImΣQQ̄

defined in Eqs. (3.34) and (3.40) is less than twice the peak value of ImΣQ, and the width
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of the two-body spectral function is less than twice that of the single static-quark spectral

function. This is different from the WCS case and caused by large off-shell effects.

Let us also comment on a comparison of the SCS to our previous work in Ref. [57].

The general shape and temperature behavior of the SCS potential are quite similar to the

result with our previous fit ansatz [57]. However, the SCS potential shown in Fig. 4.13

has a significantly smaller force at large distances compared to the earlier result. Due to

the increasing shell volume, ∝ r2, a long-range force interacts with increasingly more

medium particles, which in principle can generate (very) large scattering widths. How-

ever, the selfconsistency requirement ties the width to the potential as the latter generates

the selfenergies through the T -matrix. Large widths generated by long-distance forces

can therefore easily lead to free energies which fall below the lQCD data. In this way,

the selfconsistency much augments the control over the properties of the force which are

especially effective in generating large widths (in particular its large-distance behavior).

We cannot prove that our SCS constitutes an upper limit for the coupling strength of

the QGP, given the lQCD data that we incorporate in our fit. However, there are several

limiting factors (in addition to the one described above) which prevent us from construct-

ing more strongly coupled solutions. In particular, we limited ourselves to scenarios where

the string tension does not significantly exceed the vacuum value. We also refrained from

using “unnaturally" small Coulomb Debye masses which could provide a long-range force

but would be in conflict with the expected approach toward perturbative behavior at high

temperatures. Within these constraints the presented SCS is the “strongest" solution we

could find upon varying our input and ansätze for the initial potential. As one would ex-

pect from a selfconsistent quantum framework, we have evidence that our calculations

respect lower quantum bounds for transport coefficients, as has been conjectured, e.g., for

the ratio of shear viscosity to entropy density. For example, if we attempt to push for an

extremely long-range force ansatz (which, as explained above, leads to very large scat-

83



tering widths), the selfconsistent iteration procedure in fitting the free energy will push

back toward a more weakly coupled solution. When neglecting the requirements to agree

with lQCD data and deliberately increasing the interaction strength in the calculation of

the EoS, the selfconsistent T -matrix iteration ultimately leads to a zero-mass color-singlet

glueball, which signals condensation and at that point goes beyond our current setup (re-

call that our parton fit masses encode possible condensate gaps). Quantum selfconsistency

clearly plays a key role as a limiting mechanism.
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Figure 4.13: Results of a strongly coupled solution for the self-consistent fit to extract the

static HQ potential: single-quark and QQ̄ selfenergies, ΣX(ω,∞) (first row), and spec-

tral functions, ρX(z,∞) (second row), potential Ṽ (r) and free energies (third row), and

interference function, φ(xer) (fourth row). The free-energy lQCD data are from Ref. [2].

Reprinted from [1].
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Figure 4.14: Same as Fig. 4.13 for two higher temperatures. Reprinted from [1].

86



4.2.2 Quarkonium Correlators and Spectral Function

The selfconsistent charmonium and bottomonium spectral functions and pertinent Eu-

clidean correlators ratios (normalized to the lowest-temperature one) are collected in Fig. 4.15

and Fig. 4.16 together with lQCD data for the latter and the temperature dependence of

the effective charm- and bottom-quark masses.

The large scattering rates of charm and bottom quarks in the SCS induce significantly

larger widths of the quarkonium states than in the WCS. As before, interference effects

lead to a marked reduction of the bound-state widths. The stronger binding compared to

the WCS is counteracted by the significantly larger heavy-quark masses in medium as to

generate an ηc mass that is remarkably stable with temperature. This leads to Euclidean

correlator ratios which are within 2% of unity, which agrees even better with the lQCD

data than in the WCS (although this is not necessarily significant, as we argued in the

context of the WCS results). The correlator ratios without interference effects deviate

somewhat more from the lQCD data, possibly indicating that a moderately broadened

charmonium ground state that survives to higher temperatures (here about T=0.320 GeV

when including interference) may be favored by lQCD data.1 For example, the inelastic

width of the ηc at T=0.194 GeV is around 0.1 GeV for the SCS and 0.02 GeV for the WCS

(including interference). Appreciable charmonium reaction rates with the ground state

surviving over an extended interval in temperature are favored by the phenomenology of

transport models in describing J/ψ production at RHIC and the LHC [30], in particular to

regenerate a sufficient number of J/ψ’s at the LHC.

In the Υ sector, the first excited state still survives at the lowest temperature; even with-

out interference effects, a pertinent maximum structure in the spectral function is visible

1There is a small overall shift of the ground states’ peak position to higher masses when including
interference effects as compared to neglecting them; this may depend on our specific implementation of
the interference effects which requires further investigation. On the other hand, the reduction of the width
by interference is a robust mechanism independent of the implementation.
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below the nominal bb̄ threshold of 2mb, but its width is comparable or even larger than

the binding energy so that it appears as being dissolved. The ground-state Υ(1S) clearly

survives up to the highest temperature, T=0.400 GeV (it is smeared out at much lower tem-

perature without interference effects). The pertinent correlator ratio is in line with lQCD

data within a few percent, which again is the closest agreement between all four scenarios

considered in this work (SCS and WCS with and without interference effects). The slight

increase of the calculated ratio is in part caused by the lowering of the bound-state mass,

implying that the decrease in the constituent bottom-quark masses is more relevant than

the decrease in binding energy.
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Legends: T=0.194GeV T=0.256GeV T=0.320GeV T=0.400GeV
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Figure 4.15: Strongly coupled solution for charmonium (ηc) spectral functions (upper

panels) and correlators ratios (middle panels) with (first column) and without (second

column) interference effects in the imaginary part of the potential. The lQCD data for

ηc correlator [3] ratios are shown in the first bottom panel, respectively, while the second

bottom panel display the temperature dependence of the charm-quark mass. Reprinted

from [1].
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Figure 4.16: Same as Fig. 4.15 for bottomonium (ηb) with lQCD data [4]. Reprinted

from [1].

4.2.3 QGP Equation of State

Next, we turn to the SCS for QGP bulk properties. The fitted light-parton masses

are qualitatively similar to the WCS, cf. left panel of Fig. 4.17. Most notably, the gluon

mass is quite a bit larger due to the larger string-induced Fock term contribution, recall

Eq. (3.74), implying a much increased infinite-distance limit relative to the WCS. This

contribution is also active for the effective quark mass. The underlying fit mass, Mfit, is

actually appreciably smaller than in the WCS, with values of 0.16 GeV and 0.49 GeV at
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T = 0.194 GeV and T = 0.400 GeV, respectively. These values are not far from what

one expects from the perturbative (Coulomb) thermal masses,
√

1/3gT = 0.2 GeV and√
1/3gT = 0.42 GeV, respectively.
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Figure 4.17: Strongly coupled solution for the QGP bulk medium: we show the fit results

of the input masses for quarks and gluons (left panel), the resulting fit to the QGP pres-

sure in comparison to lQCD data [5] (middle panel; solid line: total, dashed line: LWF

contribution), and the ratio of LWF contribution to total pressure (right panel). Reprinted

from [1].

The resulting EoS fits lQCD data well, and encodes the most important difference be-

tween SCS and WCS, namely that the two-body contribution to the pressure is much more

prominent at low temperatures, reaching more than 50% at T = 0.194 GeV, compared

to ∼10% in the WCS. Also, the LWF contribution shows a more intuitive temperature

behavior, in that its fraction relative to the total appreciably decreases with increasing T

(cf. right panel of Fig. 4.17); here, the decrease in interaction strength surpasses the in-

crease in parton density, which can be interpreted as a gradual melting of the light-parton

bound states with T (this interpretation will become even clearer upon inspection of the

spectral functions in the next section). However, at T=0.400 GeV, the interaction contri-
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bution still amounts to ∼20%, indicating that even at this temperature the QGP contains

a significant nonperturbative component (possibly driven by the gluonic sector through

glueball contributions). As before, the gluon sector largely decouples at small tempera-

tures due to the large gluon masses.

4.2.4 Spectral Structure of QGP

We finally turn to the examination of the single-parton spectral functions (shown in

Fig. 4.18, Fig. 4.19, Fig. 4.20, Fig. 4.21) and their in-medium scattering amplitudes in the

SCS (shown in Fig. 4.22). The width of the partons, Γ = −2ImΣ, is large, especially

at low temperatures and small 3-momenta, p . T , see the 4 plots in the second column

of Fig. 4.18, Fig. 4.19. The quark (gluon) width reaches up to 0.6 (1.1) GeV right around

its on-shell energy, which is larger than its effective mass and thus implies the loss of a

well-defined quasiparticle excitation. Inspection of the pertinent p = 0 light-parton spec-

tral functions (third column of Fig. 4.18 and Fig. 4.19) confirms this notion, as the quark’s

(gluon’s) spectral strength is spread over an energy range of about 1(2) GeV. In fact, the

rather large and attractive real part of the selfenergy at small (off-shell) energies (first col-

umn of Fig. 4.18 and Fig. 4.19) also plays an important part in the quark (gluon) spectral

distribution, as it generates a rather prominent collective mode at ω ' 0.15(0.7) GeV, sit-

ting on top of the broad distribution associated with the dissolved quasiparticle mode. The

low-temperature widths are almost an order of magnitude larger than the HTL value of

4
3
αsT ≈ 0.07 GeV, and much larger than the most recent dynamical quasiparticle model

result which is around 0.2 GeV [118]. Interestingly, the temperature dependence of the par-

ton widths is non-monotonic with increasing temperature (as was found for static quarks

discussed in Sec. 4.2.1), which has important consequences for the temperature depen-

dence of transport coefficients [77]. This is qualitatively different from both perturba-

tive and dynamical quasiparticle approaches. The 3-momentum dependence of the width
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is quite strong especially at low temperatures (less so at high temperature), being sub-

stantially reduced with increasing p. This implies that at higher momenta well-defined

quasiparticle excitations re-emerge at any temperature, as to be expected from a generic

transition to a weak coupling. However, since the string term at high temperature is not

screened as much as in the WCS, the momentum dependence of selfenergy at high temper-

ature differs from the WCS. The widths of the charm and bottom quarks are quite similar

to the light quarks, implying that bottom quarks remain well-defined quasiparticles at all

momenta and temperatures, while the situation is borderline for low-momentum charm

quarks close to Tc.

Selfconsistent T -matrices are compiled in Fig. 4.22. At low temperatures appreciably

bound quark-antiquark states emerge in all channels (glueballs, light mesons, heavy-light

mesons, charmonia and bottomonia). The light qq̄ resonance mass is close to the vacuum

mass of light vector mesons, reflecting a realistic vacuum limit as encoded in the potential

model (instanton effects are subleading in the vector channel). This is, however, nontrivial

given its embedding in the QGP EoS (in particular through the fitted light-quark mass).

Note that the off-shell behavior of the parton widths, i.e., their decrease away from the

on-shell peak (recall 2. column in Fig. 4.18), plays an important role in the formation of

bound states; e.g., the light-meson width of ∼0.6 GeV at the lowest temperature is well

below twice the light-quark width, mostly because of the∼0.3 GeV binding relative to the

nominal qq̄ threshold of 1.1 GeV. Compared to the WCS (recall Fig. 4.11), the strength of

the T -matrices in the SCS is much increased (e.g., the peak value in the pcm=0 light-meson

channel is ∼25/GeV2 in the latter compared to ∼6 /GeV2 in the former; also, the mass of

the qq̄ bound state is smaller, ∼0.8 GeV vs. ∼1 GeV). This, in particular, makes a large

difference in their contributions to the EoS (recall Fig. 4.17 vs. Fig. 4.6). At the same time,

the much larger widths in the spectral functions of light partons in the SCS relative to the

WCS causes their thermodynamic weight to be much suppressed in the former relative to
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the latter. In this sense, the SCS predicts a transition from broad parton quasiparticles to

broad hadronic states in the thermodynamics of the QGP as Tc is approached from above.

The re-emergence of parton quasiparticles and suppression of their bound states not only

occurs with increasing temperature (note the reduction in the y-axis scale when going

down in temperature column by column in Fig. 4.22), but also with increasing parton CM

momentum within the bound-state (not to be confused with the total momentum, P , of

the bound state in the heat bath, which is zero throughout this work) and delayed with

increasing constituent parton mass.
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Legends: p=0GeV p=1GeV p=2GeV p=3GeV
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Figure 4.18: Strongly coupled solution for parton spectral properties of the QGP at

T=0.194 GeV. 4 rows corresponding to different parton species (light quarks (q), glu-

ons (g), charm quarks (c) and bottom quarks (b) in the first, second, third and fourth row

of each panel, respectively). Each row contains 3 panels showing (from left to right) the

energy dependence of the pertinent real and imaginary part of the selfenergy and the result-

ing spectral functions, for 4 different values of the parton’s 3-momentum (p). Reprinted

from [1].
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Figure 4.19: Same as Fig. 4.18 at T=0.258 GeV. Reprinted from [1].
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Figure 4.20: Same as Fig. 4.18 at T=0.320 GeV. Reprinted from [1].
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Figure 4.21: Same as Fig. 4.18 at T=0.400 GeV. Reprinted from [1].
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Legends: pcm=0.0GeV pcm=0.5GeV pcm=1.0GeV pcm=1.5GeV
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Figure 4.22: Strongly coupled solution for the imaginary part of the color-singlet S-wave

T -matrices (without interference effects) in the bottomonium (bb̄; first row), charmonium

(cc̄; second row), D-meson (cq̄; third row), light-quark (qq̄; fourth row), and glueball (gg,

last row) channels. The 4 columns correspond to different temperatures, T = 0.194 GeV,

T = 0.258 GeV, T = 0.320 GeV and T = 0.400 GeV from top down; in each panel, the

T -matrix is displayed for 4 different single-parton momenta (pcm) in the two-body CM

frame. Reprinted from [1].
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5. TRANSPORT PROPERTIES OF THE QGP∗

5.1 Introduction

In previous chapters, using a unified T -matrix approach for the bulk and microscopic

properties of the QGP and its excitations, we have found multiple solutions, characterized

by different potentials, that are consistent with the three sets of lattice data. The existence

of multiple solutions may indicate information loss when calculating in imaginary time,

leading us to seek additional constraints from other sources. In particular, HQ transport

approaches [113, 52, 6, 119] demonstrate that the heavy-meson spectra, nuclear modi-

fication factor RAA and elliptic flow v2, are quantitatively sensitive to the HQ transport

coefficients (relaxation rates)—which are governed by the strength of the underlying color

interactions. Also, hydrodynamic studies [40, 41] provide information on the viscosity

of the QGP. Therefore, calculating transport coefficients and using them in comparison to

either experimental data or phenomenological results may help us to better determine the

microscopic structure of the QGP.

Along these lines, several pioneering works [68, 70] include calculations of the HQ

transport coefficients using the HQ free energy F and internal energy U for the poten-

tial kernel. However, both F and U are not the self-consistent solutions discussed in the

previous chapter. Therefore, in this chapter we mainly focus on the transport properties

predicted by two self-consistent solutions—SCS and WCS. Since the width of the par-

tons’ spectral functions in the SCS are large, the HQ transport coefficients are evaluated

in an off-shell scheme based on the Kadanoff-Baym equations [73]; these equations are

derived using the non-equilibrium Green functions [120], which go beyond the T -matrix

∗Part of section 5.4 is reprinted with permission from “Non-perturbative approach to equation of state
and collective Modes of the QGP” by Shuai Y. F. Liu and Ralf Rapp, 2018, EPJ Web Conf. 172, 05001,
Copyright 2018 by EDP Sciences.
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approach [67, 68, 70] using the conventional on-shell approximation. The viscosity is

evaluated using a Kubo formula, which also fully accounts for off-shell effects. Also,

we will briefly discuss an improvement to the partial-wave summation used in previous

works [67, 68, 70].

This Chapter is organized as follows. In section 5.2, we recollect several features and

differences of the WCS and SCS. In section 5.3.1, we introduce the off-shell formalism to

calculate HQ transport coefficients, including a correction to a formula used in previous

works [67, 68, 70]. In section 5.3.2, we analyze the features of HQ transport coefficients

that are calculated using these two types of potentials. In section 5.3.3, we discuss the

implementation of these transport coefficients in Langevin simulations to obtain the re-

sults for heavy flavor RAA and v2 observables for these potentials and the implications for

discriminating them.

5.2 In-Medium Potentials Based on Lattice QCD

In addition to the potentials of the SCS and WCS, the thermal quantities F and U

have been used as potentials to study a large variety of physics, such as transport coeffi-

cients [67, 68, 69], quarkonium physics [60], and even light parton properties [66]. These

potentials are compared in Fig 5.1; we plot Ṽs (Ṽ of SCS), Ṽw (Ṽ of WCS), internal en-

ergy U , and free energy F . The Ṽw and Ṽs both lie between U and F , and both potentials

tend to be closer to U as temperature increases. The Ṽw is close to F , especially at low

temperature. However, at high temperature, it is significantly larger than the free energy.

On the other hand, the Ṽs is close to U except at T = 0.194 GeV, where it is approximately

in the middle. The Ṽs is much higher than the Ṽw at large distance, but they are close to

each other at short distance. Also, the gap between Ṽs and Ṽw gets smaller as temperature

increases.

Taking the derivative of the “potentials”, −dV (r)/dr, yields the forces. These forces
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Figure 5.1: The potential of the SCS (solid lines), of the WCS (dashed lines), the internal
energy U (crosses) and free energy F (dots) for four temperatures.

are compared in Fig. 5.2 (left). The force for the SCS at large distances is much higher

than that for the WCS. At T = 0.194 GeV, the force for the SCS is around 0.5 GeV/fm at

1 fm, approximately half of the vacuum string force; at the same distance the force for the

WCS is approximately 0.1 GeV/fm. This remnant of the string force is the key difference

between the WCS and the SCS, especially since many physical quantities are proportional

to r2, such as the number of particles in the unit volume of a spherical shell. Multiplying

the force by 3
4
r2, the dimensionless quantity 3

4
r2dV/dr can be regarded as an“effective

coupling” 1 and is plotted for both the SCS and the WCS in Fig. 5.2 (right). (The factor

of 3/4 is included to reach the coupling constant at a short distance.) Again, the WCS and

1Due to different origins of the Coulomb and confining terms (different relativistic and color structure),
we should be careful about the concept of “effective coupling".
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SCS are similar at short distances, but the SCS gives a significantly stronger “coupling” at

large distances. The SCS reaches a peak of approximately 2 at r ≈ 0.8 fm. This infrared

enhancement is due to a remnant of the confining force—as mentioned earlier.
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Figure 5.2: In-medium forces−dV/dr (left) and 3
4
r2dV/dr (right) for the SCS (solid lines)

and the WCS (dashed lines) for different temperatures (different colors).
.

5.3 Heavy-Quark Transport

5.3.1 Off-Shell Transport Coefficients

Since the partons’ spectral functions in the SCS have large widths, as shown in Chap-

ter 4, it is desirable that the Boltzmann and Langevin equations incorporate these large

off-shell quantum effects. To realize this goal, we start from the Kadanoff-Baym equa-

tions, then use a minimal set of approximations to reduce them to a Boltzmann equation,

where quantum effects are encoded in the transition rates. Subsequently, this Boltzmann

equation is expanded into a Fokker-Planck equation, which can be converted to Langevin

dynamics—wherein quantum effects are encoded in the transport coefficients.

In this paper, we closely follow the formalism for non-equilibrium quantum field the-

ory described in Ref. [120]. For illustrative purposes, we first provide a formal derivation

of the relations for the non-relativistic case. However, our final formula for the transport

103



coefficients account for relativistic effects as discussed in previous chapters. In relative

energy-momentum space, with a macroscopic time denoted as t,2 the equation for the

non-equilibrium HQ Green functions, Eq. (4.1), can be expressed as3

∂

∂t
[

∫
dωG<

Q(ω,p, t)] =

∫
dω{iΣ<

Q(ω,p, t)G>
Q(ω,p, t)

− iΣ>
Q(ω,p, t))G<

Q(ω,p, t)}. (5.1)

The G<,>
Q (ω,p, t) are the Fourier transforms of the Green functions,

G<
Q(t2, x2, t1, x1) = i〈ψ†Q(t2, x2)ψQ(t1, x1)〉 (5.2)

G>
Q(t2, x2, t1, x1) = −i〈ψQ(t1, x1)ψ†Q(t2, x2)〉, (5.3)

where δt = t1 − t2, δx = x1 − x2, t = (t1 + t2)/2, x = (x1 + x2)/2 are defined by the

Wigner transformation. A uniform medium is assumed, so that the G<,>
Q do not depend

on x. Σ<,>
Q is the selfenergy in the real-time formalism, in which it can be calculated

diagrammatically from the underlying scattering processes between the heavy quark and

the partons in medium. The Fourier transform of Σ<,>
Q uses the same convention as that

for G<,>
Q . The T -matrix approach is used to derive the expressions for these selfenergies

in Ref. [120], Appendix F. For Σ>
Q, the expression is

Σ>
Q(ω,p, t) =∓

∑∫
dνd3q
(2π)4

dν ′d3q′

(2π)4

dω′d3p′

(2π)4
(2π)4δ(4)

|T (E,P,p,p′)|2G>
Q(ω′, p′)G<

i (ν, q)G>
i (ν ′, q′), (5.4)

2Use the same approximation T ± t/2 ≈ T as in Ref. [120], but use t to denote T = (t1 + t2)/2.
3For our purpose, translation invariance is enforced—all terms with a gradient of coordinates vanish, so

that the Boltzmann equation used to evaluate the transport coefficients can be derived as in Ref. [48].
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and for Σ<
Q the expression is

Σ<
Q(ω,p, t) =∓

∑∫
dνd3q
(2π)4

dν ′d3q′

(2π)4

dω′d3p′

(2π)4
(2π)4δ(4)

|T (E,P,p,p′)|2G<
Q(ω′, p′, t)G>

i (ν, q)G<
i (ν ′, q′). (5.5)

Here, δ(4) is shorthand for off-shell energy-momentum conservation, and
∑

represents the

summation over internal degrees of freedom, such as color, spin, flavor (divided by one

HQ degeneracy dQ = 6). P and E are the total momentum and energy. T (E,P,p,p′) is

the retarded T -matrix. The G<,>
i are the Green functions for the light partons in medium.

The classical Boltzmann equation is recovered from Eq. (5.1) using the on-shell approxi-

mations: G<
x = ∓i(2π)δ(ω−εx(p))fx(p, t)), andG>

x = −i(2π)δ(ω−εx(p))(1±fx(p, t)),

where x = Q or i including the G’s in the expressions for Σ>
Q and Σ<

Q implicitly. These ap-

proximations are derived in Ref. [120].4 However, these approximations neglect off-shell

quantum effects. For describing HQ diffusion in a local-equilibrium QGP, not all these

approximations are necessary. We have found that the minimal (quasiparticle) approxima-

tions required for obtaining a HQ Boltzmann equation are

G<
Q(p, ω, t) = ∓iδ(ω − εQ(p))fQ(p, t), G>

Q(ω, p) = −i(2π)ρQ(ω, p)(1− nQ(ω)), (5.6)

G<
i (ω, p) = ∓i(2π)ρi(ω, p)ni(ω), G>

i (ω, p) = −i(2π)ρi(ω, p)(1± ni(ω)), (5.7)

where the quasiparticle approximation is only applied to G<
Q(ω,p, t), and all of the other

G<,> are taken to be off-shell equilibrium Green functions—in which ρi,Q and ni,Q are

the spectral and distribution functions, respectively, for {light, heavy} partons in equilib-

rium. Substituting these functions into Eqs. (5.1), (5.4), and (5.5), results in the Boltzmann

4Our convention for “∓” (upper/lower denotes boson/fermion) is opposite of that in Ref. [120].
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equation

∂

∂t
f(p, t) =

∫
d3k

(2π)3
[w(p+k,k)f(p+k, t)− w(p,k)f(p, t)], (5.8)

where the rate w(p+k,k) is5

w(p,k) =

∫
dνd3q
(2π)3

dν ′d3q′

(2π)3
dω′(2π)4δ(4)|T (E,P,p,k− p)|2

ρQ(ω′, |k− p|)ρi(ν, q)ρi(ν ′, q′)ni(ν)(1∓ ni(ν ′))(1∓ nQ(ω′)), (5.9)

and k = p′ − p is the momentum exchange. Since we use equilibrium T -matrices, spec-

tral and distribution functions, the rate w(p,k) does not depends on the dynamical non-

equilibrium distribution function f(p, t). So far, our discussion does not include relativis-

tic effects; several modifications are necessary for a relativistic treatment of the problem—

as detailed in the following calculation of the HQ transport coefficients.

Expanding the full Boltzmann equation with momentum transfer k results in the Fokker-

Planck equation, which can be converted to a Langevin approach for heavy quarks. This

approach provides a direct connection between HQ transport coefficients and the observed

heavy-meson spectra. The Fokker-Planck equation is expressed as

∂

∂t
f(p, t) =

∂

∂pi
{Ai(p)f(p, t) +

∂

∂pj
[Bij(p)f(p, t)]} (5.10)

(using the notations of Ref. [119]). The HQ transport coefficients are defined as weighted

5Note that iΣ>(p, ε(p), t)f(p, t) =
∫

d3k
(2π)3 [w(p,k)f(p, t)]. Also, when converting the gain term Σ<QG

>
Q

to Boltzmann form, it is necessary to use T (E,P,p,p′) = T (E,P,p′,p).
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averages over the momentum function,

Ai(p) =

∫
d3k

(2π)3
w(p,k)ki

Bij(p) =

∫
1

2

d3k
(2π)3

w(p,k)kikj. (5.11)

In the local equilibrium medium, the HQ transport coefficients, such as drag coefficients

A(p) and transverse/longitudinal diffusion coefficients B0/B1, are defined through

Ai(p) = A(p)pi

Bij(p) = B0(p)P⊥ij +B1(p)P
‖
ij, (5.12)

with the projectors defined as: P⊥ij = δij − pipj/p2, and P ‖ij = pipj/p2. These scalar

transport coefficients are weighted integrals

〈X(p′)〉 ≡
∫

d3k

(2π)3
w(p,k)X(p′) (5.13)

with the coefficients A(p),B0(p),B1(p) given by

A(p) = 〈1− p · p′

p2
〉

B0(p) =
1

2
〈p′2 − (p · p′)2

p2
〉

B1(p) =
1

2
〈(p · p′)2

p2
− 2p · p′ + p2〉 (5.14)

and the correspondingly 〈X(p′)〉. Using the expression for w(p,k) in Eq. (5.9) with the

replacement k− p→ p′, and switching the integration variable to p′, we express 〈X(p′)〉

in T -matrix form
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〈X(p′)〉 =
∑
i

1

2εQ(p)

∫
dp′dω′

(2π)32εQ(p′)

dνd3q
(2π)32εi(q)

dν ′d3q′

(2π)32εi(q)

× δ(4) (2π)4

dQ

∑
a,l,s

|M |2ρQ(ω′, p′)ρi(ν, q)ρi(ν
′, q′) (5.15)

× (1− nQ(ω′))ni(ν)(1± ni(ν ′))X(p′).

The
∑

i is over all light flavors u, ū, d, d̄, s, s̄ and g, where the light and strange quarks

are taken to have the same mass. We include the relativistic phase factor with the single-

particle on-shell energy, denoted by εQ,i(P ). The matrix elements |M |2 in Eq. (5.15) are

related to the T -matrix in the center of mass (CM) frame as

∑
a,l,s

∣∣M2
∣∣ = [2εQ(pcm)][2εi(pcm)][2εQ(p′cm)][2εi(p

′
cm)]dQis

×
∑
a

dQia

∣∣∣∣∣4π∑
l

(2l + 1)T a,lQ,i(Ecm, pcm, p
′
cm)Pl (cos θcm)

∣∣∣∣∣
2

, (5.16)

where T a,lQ,i(Ecm, pcm, p
′
cm) is the T -matrix calculated in the CM frame in color channel a

and partial-wave channel l. The CM energy Ecm, incoming momentum pcm, outgoing mo-

mentum p′cm, and angle cos θcm are expressed as functions of E, p, q, p′, q′, as discussed

in Sec. 2.3. The two-body color/spin degeneracy factor is denoted as dQia,s. The Pl (cos θcm)

are Legendre polynomials, but the partial-wave resummation is different from that de-

scribed in Ref. [67], Eq. (8), and in Refs. [68, 70].6 We can express the square of a partial

wave summation as a partial wave expansion: |
∑

l(2l + 1)clPl(x)|2 =
∑

l(2l+ 1)blPl(x),

where each bl is a function of the {cl}.7 In this work, we include 9 partial-wave ampli-

6 64π2 = dQis (4π)2, and (s−m2
q +m2

Q)2(s+m2
q −m2

Q)2)/s2 = 16εQ(pcm)εq(pcm)εQ(pcm)εq(pcm).
7It is possible to derive these relations with a large number of partial waves using Mathematica or other

computer algebra system (CAS).
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tudes, c0, . . . , c8 for the evaluation of transport coefficients. However, for the partial waves

of the amplitude squared, keeping only the first few coefficients b0, b1 and b2, is sufficient

for convergence.

Figure 5.3: An example of a many-body diagram.

5.3.2 Charm Quark Transport Coefficients

In this section, we discuss the resulting transport coefficients, in particular, the drag

coefficient A(p) that characterizes the relaxation rate for the charm quark at each mo-

mentum. We focus on the results for the SCS and WCS. In Sec. 5.3.4, drag coefficients

calculated using free energy as the potential kernel are compared to those calculated using

the internal energy as the potential kernel.

As shown in Fig 5.4 (upper left), for small momentum, the drag coefficients of the

SCS, As(p), are approximately three times larger than those of the WCS, Aw(p), at T =

0.194 GeV, while As(p) is only 15 percent larger than Aw(p) at T = 0.400 GeV. A key

reason for this large enhancement at low momentum and low temperature is the remnant

of the long-range confining force—as shown in Figs. 5.1 and 5.2. It allows the charm

quark to interact with more neighboring partons. At higher temperatures, the confining
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Figure 5.4: Friction coefficients A(p), as a function of the incoming HQ 3-momentum,
for four temperatures. First row: (left) the full off-shell cases for the SCS and WCS are
compared; (right) the full off-shell case of the SCS is compared to the on-shell light-parton
case. In the second row, two off-shell SCS cases are compared: those using full off-shell
and those using off-shell light parton with outgoing on-shell charm quarks.

potential is much more screened, and the higher thermal momentum probes the force at

shorter distances, similar for the WCS and SCS, so that the difference between As(p) and

Aw(p) is reduced. Another reason for the enhancement are large off-shell effects due to

the large widths of the spectral functions. This is a genuine many-body effect, since the

width of the parton is caused by many-body collisions—as illustrated in Fig. 5.3. To elu-

cidate the effects, we compare the drag coefficients with and without off-shell physics in

the upper right panel of Fig. 5.4, where the off-shell effects almost double the transport

coefficients in the small momentum and low temperature region. This large effect is partly

due to a thermal enhancement, since a broadening of the spectral functions allows to probe
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off-shell energies in the low energy region where the thermal factor is enhanced exponen-

tially. Besides the thermal enhancements, the broad spectral functions allow the integral to

probe the strong bound state significantly below the threshold in the off-shell T -matrices,

which also significantly enhances the transport coefficients. This extends the original find-

ings discussed in Refs. [50, 67, 68]—the resonance near the threshold is very efficient in

thermalizing the heavy quark. The lower panel of Fig. 5.4 is a plot comparing full off-shell

results to results that only include off-shell effects for light quarks (with on-shell outgoing

charm quark), which demonstrate the effects of using an off-shell outgoing charm quark.

This additional off-shell effect results in a 20% enhancement of transport coefficients at

low temperature, since the further enlargement of phase space accesses more contributions

from deeply-bound resonance states. However, if resonance states are close to threshold

(or melt) so that the “on-shell” or “off-shell for light partons” setup already includes this

resonance contribution, further off-shell treatment does not provide significant enhance-

ment; this is indicated in the high temperature regions of the A(p) plots—upper right and

lower panels of Fig. 5.4. In the case of including the outgoing off-shell charm quarks, the

thermal “enhancement” is actually a blocking effect that would otherwise cause the As(p)

of the full off-shell case to be smaller than that of the “off-shell for light partons” case at

high temperature and low momentum. For the WCS, results from the full off-shell case

agree well with results from the quasi-particle case, since the widths of spectral functions

are small.

At high momentum, the HQ drag coefficients are dominated by the Coulomb term,

which are intensified by relativistic corrections (Breit enhancement for the Coulomb term

and suppression for the string term). Since the Coulomb screening mass for the WCS at

high temperatures is smaller, for large momentum the Aw(p) is larger than As(p). For

large momentum, the As(p) of the full off-shell case tends to be closer to its quasi-

particle case, since the spectral functions become more like those of quasi-particles for
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Figure 5.5: Temperature dependences of the relaxation rate, γ = A(p)|p→0 (left), and the
spatial diffusion coefficient, Ds = T/(γMc) (right, in units of the thermal wave length
Ds(2πT )). For pQCD results, we use g = 2.24, a Debye and thermal parton masses of
gT , and a charm mass of 1.5 GeV. The pQCD cross sections are multiplied by 5 in order
to present all curves on a similar scale.

large momentum—as discussed in Chapter 4.

Figure 5.5 illustrates the temperature dependence of the relaxation rate γ and spatial

diffusion coefficient, Ds(2πT ), for the WCS and SCS. As a reference, we show the 5

times the perturbative QCD (pQCD)8 relaxation rate and its corresponding spatial diffu-

sion coefficients. The temperature behavior of the relaxation rates and spatial diffusion

coefficients for the WCS is closer to the perturbative scenario, wherein γ increases mono-

tonically with temperature, and Ds(2πT ) does not have a large temperature dependence.

However, for the SCS, γ exhibits non-monotonic behavior; this can be understood as a

competition between decreasing interaction strength and increasing density. The increase

of Ds(2πT ) with temperature demonstrates that the coupling strength of the medium de-

creases as temperature increases. According to the plots of Ds(2πT ), at T = 0.2 GeV the

strongly coupled solution is approximately 15 times stronger than the pQCD solution. In

the SCS, the confining string term is crucial for the properties of the medium. Since the

string tension carries a non-trivial dimension, the temperature behavior of γ and Ds(2πT )

8Born amplitudes with αs = 0.4.
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are different than results of a scale-invariant approach—such as pQCD or AdS/CFT.

5.3.3 Langevin Simulation and Comparison to Experiments

The above transport coefficients have been implemented in Langevin simulations de-

scribed in [113, 52] to obtain the D meson observables by our collaborator Min He [121].

Since our current calculations are limited to temperatures 0.194–0.400 GeV and momenta

0–10 GeV, an extrapolation is required for the implementation into the Langevin approach.

Since the behavior of quasi-particle results is similar to full results at high momentum, as

discussed in previous section, we extrapolate A(p) to high momentum using its quasi-

particle results and multiply them by a constant (with respect to momentum) to smoothly

connect them. For extrapolation to lower and higher temperatures, we first extrapolate for

Ds(2πT ) and Mc, as shown in Fig. 5.6. Then, we use A(0) = T/(DsMc) for the extrapo-

lation of A(0) to lower and higher temperatures. The momentum dependence of A(p) in

this temperature region is taken to be the same as for A(p) at T = 0.194 GeV (0.400 GeV)

for low (high) temperature as shown in the two right panels of Fig. 5.6
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Figure 5.6: Extrapolation results for Ds(2πT ), Mc, As(p) and Aw(p) (from left to right).

After extrapolation, the transport coefficients are inserted into the Langevin equa-
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tions [122]

dx =
p
εc
dt (5.17)

dp = Γ(p) pdt+
√

2dtD(p)ρ, (5.18)

where the relaxation rate Γ(p) and diffusion coefficient D(p) are taken to be Γ(p) = A(p)

and D(p) = B0(p) = B1(p) = Tεc(p)Γ(p), and ρ is a random number determined from

the Gaussian distribution function P (ρ) = (2π)−3/2e−ρ/2. Using the Langevin equations,

we simulate Brownian motion of the charm quark in a background provided by hydrody-

namic evolution of the QGP fireball. As shown in Fig. 5.7, the large drag slows down the

heavy quarks which enhances the low-momentum spectra as demonstrated in the nuclear

modification factor, RAA (left panel). The drag force also pushes the heavy quarks to flow

together with the medium, which generates the elliptic flow, v2, of the heavy quarks (right

panel).
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Figure 5.7: The RAA (left panel) and v2 (right panel) charm quarks.

As the fireball expands, the system approaches the pseudo-critical temperature. Charm
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Figure 5.8: Comparison of the calculated D-meson RAA and v2 by a hydrodynamic simu-
lation for Pb-Pb collision at the LHC [6].

quarks hadronize into D mesons through recombination with surrounding light quarks

or independent fragmentation [123, 6]; this provides D-meson observables, as shown in

Fig. 5.8. Recombination, acting as another interaction between charm quarks and the

medium, drives D-meson spectra closer to equilibrium, thereby resulting in a depletion

at very low pT to develop a flow “bump" in the D-meson RAA in the low pT region. At

high pT , recombination yields to fragmentation, and consequently theD-mesonRAA tends

toward that of the charm quark (modulo further suppression due to D-meson diffusion in

hadronic-phase diffusion). Coalescence also enhances the D-meson v2 by adding the ther-

malized light quark flow. These effects can be seen by comparing the v2 of the charm

quarks in Fig. 5.7 to the final D-meson v2 in Fig. 5.8.

Comparing to experimental results [43, 44], we find that the observations prefer the

SCS results and reject the WCS results, suggesting that the microscopic picture for QGP is

closer to those described by the SCS. However, the predictions for the SCS are still below

the experimental results—especially at high momentum, which indicates that radiative

processes are important for the high momentum region [124]. It could also mean that the

potential Ṽs needs to be still larger than its current value. The RAA and v2 of the SCS
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qualitatively agree with previous U results [70], even though the underlying physics is

somewhat different i.e., drawing from different ranges of the underlying force. Also, as

we have checked, the U result is not a self-consistent solution of the procedure described

in the previous chapters. Therefore, in order to finally determine the underlying physics of

QGP, we need information from both experiments and lQCD.

5.3.4 Comparing V, F, and U

The weakly coupled limit, F , and strongly coupled limit, U , of the potential have been

utilized as limiting cases in various studies of HQ and quarkonium interactions in URHICs.

Thus, it is necessary to illustrate the difference between our potentials V extracted from

the self-consistent fit and the F , U . As shown in Fig. 5.4, we plot the force −dV/dr in

Fig. 5.9 and 3
4
r2dV/dr in Fig. 5.10. The internal energy is strongest at short distances, the

Vs (strong) is the largest at moderately long range. The weakly coupled solution Vw (weak)

and F are quite similar at low temperature, but at high temperature Vw has a significantly

stronger force than the free energy. In this section, transport coefficients will be calcu-

lated using the on-shell quasiparticle formalism, in order to isolate potential effects from

off-shell effects. As shown in Fig. 5.11, the charm-quark mass is different, due to different

infinite distance limits of the potentials, but the light-parton masses are chosen to be the

same, obtained by a quasiparticle fit to EoS using the Fock mass ansatz [1] with Vs.

The results of the drag coefficients are shown in Fig. 5.12. At low momentum and low

temperature, Vs and U both lead to large drag coefficients, when compared to F and Vw.

As shown in Figs. 5.9 and 5.10, the force of Vs at long distance is comparable to that of U ;

their A(p) at low momentum are also comparable, since low-momentum A(p) probes the

long range force. At high momentum, the A(p) calculated using internal energy is much

larger than others, which is due to its large force at short distances. Since Vs, Vw, and F

have similar forces at short distances, they approach each other at high momentum. The
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Figure 5.9: Force for Vs (solid line), Vw (dashed line), U (crosses) and F (dots) at different
temperatures.

relaxation rate γ = A(p)|p→0 and the spatial diffusion coefficients for all on-shell cases

are shown in Fig. 5.13.

5.3.5 Perturbative vs Nonperturbative

Even though the QGP is a strongly coupled system that requires non-perturbative

methods, there are some regions that may be studied perturbatively. In the calculation

of the transport coefficients, there are three areas that require non-perturbative techniques:

(1) the potential has a confining term with a long range force; (2) the resummation of the

T -matrix that leads to the resonance contributions to the transport coefficients; (3) the

off-shell effects from the large widths of the partons. In this section, we compare the full

calculation of the drag coefficients with the coefficients that only include part of the above
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Figure 5.12: On-shell friction coefficients for Vs (solid line), Vw (dashed line), U (crosses)
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non-perturbative physics, to highlight their effects.

As shown in Fig. 5.14, the “On-shell Born” and “On-shell” curves approach each other
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Figure 5.14: Comparison of the effects of different ingredients on the HQ transport coeffi-
cients. “Full” denotes full off-shell results for the SCS. “Coulomb only” describes on-shell
results using only the Coulomb term in the potential. “Born” results only use the Born po-
tential term without resummation (including the confining potential). Here, we use the
quasi-particle mass shown in Fig. 5.11.

at high momentum. The reason for this may be related with the reason that Born approxi-

mation coincides with full solution and classical solution in non-relativistic Coulomb scat-

tering. However, at low temperature the “Coulomb only” results are approximately 1/2 of

the “On-shell" and “On-shell Born" results. This suggests that even for high momentum

charm quarks, there is still enough phase space from the soft momentum exchange to al-

low the confining force to contribute significantly to the friction coefficients. Therefore,

the perturbative calculation ofA(p) (elastic) that does not effectively include the confining

term may be unreliable at low temperatures—even at p = 10 GeV. However, the drag co-

efficients for the full results are significantly larger than others, even at high momentum,

when the temperature is low. This difference at high momentum may be due the different
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medium parton properties in the off-shell case and the on-shell case at high momentum.

The on-shell Born results are surprisingly close to full results within a few 10’s of percents.

This is, however, deceptive. If we include a second Born contribution, the drag coefficients

will be five/two times larger at low/high momentum, indicating poor convergence of the

perturbative series—in agreement with the findings of Ref. [125]. This is another reminder

that a proper resummation in the nonperturbative region is mandatory.

5.4 Viscosity for Hydrodynamics

Besides the spatial diffusion coefficients, the shear viscosity is another important trans-

port coefficients of the QGP. In the AdS/CFT approach [42], it is conjectured that the shear

viscosity to entropy ratio has a lower bound, 4πη/s = 1. Here, we calculate the viscosity

η in our approach using the Kubo formula for the energy-momentum tensor. Using the

leading-density energy-momentum tensor [126] with relativistic extension, the viscosity

is expressed as

η = lim
ω→0

∑
i

πdi
ω

∫
d3pdλ
(2π)3

p2
xp

2
y

ε2
i (p)

ρi(ω + λ, p)ρi(λ, p)[ni(λ)− ni(ω + λ)] , (5.19)

where di denotes the partons’ degeneracies, and ni(ω) denotes their thermal distribution

functions. Higher-order corrections are expected to be small [127, 128, 129, 130], which

we have verified within our approach.

The dimensionless quantitiesDs(2πT ) and 4πη/s characterize the interaction strength

of the bulk medium, which are shown in the left panel of Fig 5.15. The SCS has a

small transport coefficient that increases as temperature increases, which demonstrates

a strongly coupled medium at low temperature slowly transitioning into a more weakly

coupled medium. The WCS has quite a large value for the transport coefficient, and it is

almost constant with respect to temperature, which is not favored by the phenomenologi-
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cal extraction of the transport coefficients from experiments [131, 132]. The ratio of these

two dimensionless transport coefficients has been suggested to characterize the medium

[133] and is shown in the right panel of Fig 5.15. This ratio is believed to be close to 1

in the strongly coupled limit [42, 134] and 5/2 in a weakly region accessible through per-

turbation theory [135]. The tendency of the SCS is a smooth transition between these two

regions as temperature increases. On the other hand, the WCS has a ratio close to 5/2 over

the entire temperature range, in agreement with the above insights.
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6. CONCLUSION AND PERSPECTIVE∗

We have set up a selfconsistent thermodynamic T -matrix approach to study the bulk

and microscopic properties of the QGP in a unified framework, encompassing both light-

and heavy-flavor degrees of freedom. Starting from an effective partonic Hamiltonian with

a universal color force, including remnants of the confining force and relativistic correc-

tions, we have computed one- and two-body thermodynamic Green’s and spectral func-

tions selfconsistently, treating bound and scattering states on an equal footing. Compared

to earlier works, a full off-shell treatment is implemented to account for quantum many-

body effects more rigorously, in particular the collisional widths of the QGP constituents.

Moreover, our approach enables systematic constraints on the inputs to the Hamiltonian,

i.e., the two-body potential and two effective light-parton mass parameters, by comparing

to a variety of lattice-QCD data.

Our calculation of the equation of state has been carried out in the LWB formalism

with selfconsistently computed light-parton selfenergies and T -matrices. Importantly, we

managed to resum the Luttinger-Ward functional using a matrix-log technique, which is

critical to account for the dynamical formation of bound (or resonance) states in the ther-

modynamics of the system. The main constraints on the two-body driving kernel are de-

rived from the HQ free energy, FQQ̄, which we have also computed selfconsistently from

the T -matrix for static quarks embedded in the QGP. Based on a parametric ansatz for an

in-medium Cornell potential, we have fitted lattice-QCD data for FQQ̄ and further checked

our results against euclidean correlator ratios in the bottomonium and charmonium sectors.

Together with the EoS, for which the fit of pertinent lQCD data can be largely controlled

through the two bare light-parton masses in the Hamiltonian, this constitutes a compre-

∗Part of this chapter is reprinted with permission from “T -matrix approach to quark-gluon plasma” by
Shuai Y. F. Liu and Ralf Rapp, 2018, Phys. Rev. C 97, 034918, Copyright 2018 by APS.
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hensive quantum many-body framework for light and heavy partons and their two-body

correlations in the QGP. We have solved this problem through a multi-layered numerical

iteration procedure in our fit to 3 sets of lQCD data, where a typical accuracy at a few-

percent level can be achieved. The main predictive power of the approach resides in the

emerging spectral and transport properties of the QGP, including the prevalent degrees of

freedom in the EoS.

In our construction of selfconsistent solutions, it turns out that the above set of lQCD

constraints does not uniquely specify the input for the driving kernel. We have classified

its possible range by a weakly- and a strongly-coupled solution. In the former, the input

potential comes close to a lower limit set by the HQ free energy itself (not unlike what has

been discussed based on direct Bayesian extraction methods [71]). The resulting light-

parton spectral functions have rather moderate widths, well below their masses, and thus

yield well-defined quasiparticles, as well as rather sharp but loosely bound resonances

near Tc. The latter remain subleading, at a 10% level, in their contribution to the EoS.

In contrast, the strongly-coupled solution is characterized by a potential that appreciably

exceeds the free energy (not unlike recent lQCD extractions reported in Ref. [136]). The

emerging partonic spectral widths are much enhanced; they become comparable to the

parton masses and thus dissolve quasiparticle structures for low-momentum modes near

Tc. At the same time, broad but well-defined two-particle bound states (mesons) emerge

and become the leading contribution to the EoS, thus signaling a transition in the degrees

of freedom in the system. At high momenta, parton quasiparticles reemerge and bound-

state correlations are much suppressed. This solution, in particular, critically hinges on a

proper treatment of the quantum effects induced by the large scattering rates.

While we believe that the strongly coupled solution is clearly the more attractive one

(including its transition from quarks to hadrons and a qualitatively liquid-like behavior

with interaction energies comparable to the parton masses), a more quantitative charac-
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terization of this notion is in order. Therefore, we have applied the SCS and WCS to

investigate the HQ transport problem. With a generalization to include the off-shell effects

for HQ transport coefficients based on the Kadanoff-Baym equation, we find the drag co-

efficients of the SCS to be significantly larger than for the WCS in the low-momentum and

low-temperature region. Using these transport coefficients in HQ Langevin simulations,

the calculated heavy-meson spectra show a v2 that is significantly larger in the SCS than

in the WCS. The former is favored by the experimental data. We have also calculated the

ratio η/s. We find that the η/s of the SCS has a promisingly small value, while the η/s for

the WCS is again unfavorable in hydrodynamic phenomenological studies. Comparing the

phenomenology using these transport coefficients with experimental data allows us to con-

clude that the quantum microscopic picture of the QGP is closer to that described by the

SCS. Another simple insight is supporting this conclusion: Converting the heavy-quark

diffusion coefficient into a thermalization and scattering rate, one can straightforwardly

deduce that values of 2πTDs ' 3 translate into quark scattering rates of order 1 GeV; this

implies the dissolution of light quasiparticles, fully consistent with our numerical find-

ings. The large widths also require the underlying potential V to markedly exceed the free

energy, FQQ̄, independent of model details [57].

For future applications, an ambitious line is to test the predicted spectral properties

more directly; in the quarkonium sector this presumably requires the formulation of quan-

tum transport approaches for heavy-ion collisions as recently discussed in the literature [137,

138, 139, 140, 141], which, in turn, can take advantage of heavy-quark diffusion proper-

ties computed with the same underlying interaction. The most direct connection remains

the dilepton production rate, where again constraints from lQCD data can be straight-

forwardly utilized. Another area accessible to our approach is the investigation of fi-

nite chemical potential in the QCD phase diagram, starting with the calculation of quark

susceptibilities. However, the description of phenomena associated with dynamical chi-
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ral symmetry breaking, which are expected to become important at temperatures below

T ' 0.185 GeV [142], will require an extension of the current formalism to explicitly

include condensation mechanisms. This is more challenging but, we believe, still feasible.
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APPENDIX A

POTENTIAL APPROXIMATION FOR LIGHT PARTONS

In this section we discuss several issues related to the implementation of the potential

approximation for light-quark interactions. Historically, the Cornell potential has been

a successful tool for quark-based hadron spectroscopy; 3D reductions of the 4D Bethe-

Salpeter equation (BSE) are also widely used in effective hadronic approaches to hadronic

vacuum physics, including light mesons like π-π interactions. In particular, the Cornell

potential incorporates essential nonperturbative aspects of the QCD force, i.e., a confining

force. Our approach is a finite-temperature version of this framework, where remnants of

the confining force will turn out to play a crucial role to render a strongly coupled system.

The recovery of the vacuum vector-meson masses at low QGP temperatures in the SCS

as shown in Sec. 4.2.4 (where the potential is close to its vacuum form) is a direct man-

ifestation of a “realistic" vacuum limit of the approach in the light-quark sector. As we

remarked in the text, interactions believed to be essential for spontaneous chiral symme-

try breaking (such as instanton-induced forces) are not included, but we recall that recent

lQCD computations have found that the effects of chiral symmetry breaking have essen-

tially vanished once the temperature has reached about 30 MeV above the chiral crossover

temperature, T χpc ' 0.155 GeV [142].

There are several further considerations. The reduction of the relativistic 4D Bethe-

Salpeter equation (BSE) [78] into 3D scattering equations has been scrutinized, e.g., in

Ref. [81] and discussed in Sec. 2.1. In particular, within in the Blankenbecler-Sugar (BbS)

scheme [79] as shown in Eq. (2.4) and Eq. (2.5), the BSE can be equivalently separated into

two coupled equations, where the kernel of the first (leading) equation is potential-like,

while the second (subleading) equation quantifies the off-energy-shell corrections to the
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potential kernel. The philosophy is to expand the BSE around the potential solution using

a parametrically small correction GG − E(2) in Eq. (2.5) (R2V in Ref. [79]), rather than

to expand around the free-wave solution using the coupling constant and/or velocity (as in

NRQCD) as a small parameter. In particular, such an expansion does not rely on a non-

relativistic hierarchy. This series usually exhibits a fast convergence [79, 81], suggesting

that the leading potential solution is already close to the full solution. In many cases,

the higher-order off-shell corrections can be effectively absorbed in an adjustment of the

potential. In the present case, the fits of the potential to lQCD data may approximately

encode such corrections. Finally, we recall that for 2 → 2 on-shell scattering in the CM

system the in- and outgoing momenta moduli of the particles are equal, i.e., there is no

energy transfer in the collision. We also recall that while the two-body interaction is

approximated by an instantaneous force, the many-body quantum approach fully accounts

for the dynamics (energy dependence) of the one- and two-particle propagators (and T -

matrices) in the system. Additional considerations can be found in Refs. [8, 143].
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