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ABSTRACT 

     I used video and movement data obtained from animal-borne video and data recorders 

(VDRs) and histological data obtained from vibrissal pads of elephant seals to address the 

questions: When, where, how, and on what prey do female southern elephant seals forage? 

Although the annual cycle of southern elephant seals for breeding, molting, and foraging is well 

known, there is little information about their foraging strategies, hunting tactics, habitat-

associations and sensory biology at sea. I deployed VDRs and satellite telemeters on eight 

female southern elephant seals from Península Valdés, Argentina, during their two-month post-

breeding migration. I identified three distinct dive types and their functions (foraging, resting and 

transiting) in the deep waters of the Patagonian continental slope and Argentine Basin. 

Compared to resting and transit dives, foraging dives were deeper and less linear with bursts of 

speed, steeper descent and ascent angles, longer two-dimensional and three-dimensional dive 

paths, and greater variation in speed, descent angle, and vertical head movements. The primary 

prey identified on video included herring smelt (Argentinidae) and myctophids (Myctophidae). 

Seals foraged at a mean maximum depth of 469 m with a mean water temperature of 3.7°C and 

mean salinity of 33.8 psu associated with Sub-Antarctic Mode Water, Antarctic Intermediate 

Water and Upper Circumpolar Deep Water. These habitat associations were similar to those for 

elephant seals from other colonies. Compared to foraging and transit dives, resting dives were 

longer in duration with shorter two-dimensional dive paths, lower stroking rates and speeds, and 

greater variation in pitch and roll angle during descent. Transit dives were shallower and more 

linear with higher swim speeds and stroking rates, shorter durations, shallower ascent angles, and 

farthest straight-line distances traveled. I provide evidence that elephant seal vibrissae have 

similar microstructure and innervation to other seals, adding to the growing body of evidence 
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that species in the family Phocidae, and perhaps all pinnipeds, possess highly sensitive vibrissae 

that form a sensory system for prey detection and capture. 

     In summary, female southern elephant seals from Península Valdés immediately depart the 

coast after breeding and travel to the continental slope while making shallow transit dives with 

little variation in easterly heading. Once beyond the continental shelf, they begin making deep 

foraging dives along the continental slope and Argentine Basin in cold water that arises from 

southern polar regions. While at sea for 75 days, they travel an average horizontal distance of 

6,080 km and make 2,815 foraging dives. Their primary prey are small fish, some of which are 

bioluminescent, that they detect and capture in total darkness using vision and the tactile sensory 

system in their vibrissae. Between bouts of foraging dives, they make transit dives to new 

foraging areas or rest and probably sleep at an average maximum depth of 375 m. Of the 26 

species of seals in the family Phocidae, southern elephant seals are the deepest diving and most 

pelagic, spending 10 months per year at sea and 89% of their time submerged while transiting, 

hunting and resting at depth. 
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NOMENCLATURE 

 

2D two-dimensional 

3D three-dimensional 

AAIW Antarctic Intermediate Water  

AR1 auto-correlated model of order 1 

AUC area under the curve 

AVISO Archivage, Validation et Interprétation des données des Satellites 

Océanographiques 

Basin Argentine Basin 

Chl-α Chlorophyll-α 

Cluster cluster analysis 

cm centimeters 

CNES Centre National d’Etudes Spatiales 

DC dermal capsule 

DVN deep vibrissal nerve 

ESA European Space Agency 

FPT first-passage time 

F-SC follicle-sinus complex 

g grams 

GAM generalized additive model 

GB gigabyte 

GEBCO  Generalized Bathymetric Chart of the Oceans 
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GM glassy membrane 

GMT Greenwich Mean Time 

GPS global positioning system 

hr hours 

HS hair shaft 

Hz hertz 

ICB inner conical body 

IRS inner root sheath 

kg kilograms 

kHz kilohertz 

km kilometers 

LCDW Lower Circumpolar Deep Water 

LCS lower cavernous sinus 

LDA linear discriminant analysis  

LED light-emitting diode 

m meters 

mg milligrams 

ml milliliters 

mm millimeters 

MNC Merkel-cell neurite complex 

MODIS Modern Resolution Imaging Spectroradiometer 

MS mesenchymal sheath 

n number 
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NADW North Atlantic Deep Water 

NASA National Aeronautics and Space Administration 

NOAA National Oceanic and Atmospheric Administration 

NODC National Oceanographic Data Center 

ORS outer root sheath 

PO.DAAC Physical Oceanography Distributed Active Archive Center 

psu practical salinity units 

QDA quadratic discriminant analysis 

RF random forest analysis 

ROC receiver operating characteristic 

RS ring sinus 

SD standard deviation 

sec seconds 

shelf Patagonian continental shelf 

slope Patagonian continental slope 

SMOS Soil Moisture and Ocean Salinity 

SSHA sea surface height anomaly 

SSS sea surface salinity 

SST sea surface temperature 

SAMW Subantarctic Mode Water 

STMW Subtropical Mode Water 

SW Surface Water 

UCDW Upper Circumpolar Deep Water 
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UCS upper cavernous sinus 

WSDW Weddell Sea Deep Water 

VDR video-data recorder 

VHF very high frequency 
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1. INTRODUCTION 

1.1 Distribution and brief history of southern elephant seals 

   Southern elephant seals (Mirounga leonina), the largest of the phocid seals, have a circumpolar 

distribution in the southern hemisphere (Fig. 1.1) (Hall et al., 2006). Breeding colonies occur 

from approximately 40°S to 62°S (Carrick and Ingham, 1962). There is one well-established 

mainland colony, however, the majority of breeding occurs on numerous sub-Antarctic islands 

(Hall et al., 2006; Hoelzel et al., 2001). There are four main genetic stocks of southern elephant 

seals located at Macquarie Island in the South Pacific Ocean, Kerguelen and Heard Islands in the 

South Indian Ocean, South Georgia in the South Atlantic Ocean, and Península Valdés, 

Argentina in the South Atlantic Ocean (Slade et al., 1998).   

 

 

 

 

Figure 1.1. Distribution of southern elephant seals  reprinted from De Bruyn et al. (2009), under CC-BY license. 
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     According to studies of population genetics, the Península Valdés population, the only large 

mainland colony, shared a common ancestor with the Macquarie Island population ca. 600,000 

years ago. The remaining populations diverged ca. 200,000-300,000 years ago, except for the 

populations at South Georgia and Heard Islands, which may have diverged as recently as 20,000 

years ago (Slade et al., 1998). The population at Península Valdés has low mitochondrial DNA 

(mtDNA) diversity; only three haplotypes are present in the population, two of which could be 

derived from the third with a single mutation. This suggests that the Península Valdés population 

derived from a single matriline, indicating a single founder event 600,000-700,000 years ago 

(Corrigan et al., 2016; Hoelzel et al., 2001; Slade et al., 1998). However, there is evidence for 

limited male dispersal, especially between South Georgia and Península Valdés (Hoelzel et al., 

2001). 

     Although the global population of southern elephant seals largely declined from the 1950s-

1990s, recent reports indicate that it has stabilized in recent years (Hindell et al., 2016; 

McMahon et al., 2005). The population at Kerguelen Island, which historically had been 

decreasing, has now stabilized. The population at South Georgia has remained stable and the 

population at Península Valdés has been increasing since the 1970s. The population at Macquarie 

Island, however, has been decreasing steadily since the 1950s (Hindell and Perrin, 2008; Hindell 

et al., 2016; McMahon et al., 2005).  

1.2 Southern elephant seals at Península Valdés 

     The southern elephant seal population at Península Valdés is the only well-established 

mainland colony, the northernmost sizeable colony, and the only colony that has been 

consistently increasing over recent decades (Campagna et al., 1995; Campagna and Lewis, 1992; 

Hindell et al., 2016; Hoelzel et al., 2001).  
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1.2.1 Annual cycle  

     The annual cycle of southern elephant seals from all colonies is similar, regardless of 

population size or colony latitude, although the breeding and molting seasons at Península 

Valdés commence approximately two weeks earlier than other colonies (Lewis et al., 2004). 

Southern elephant seals haul out on land for weeks at a time during the breeding and molting 

seasons, during which they fast (Carrick et al., 1962; Matthews, 1929).  Female seals haul out for 

approximately one month during the breeding season, depart on a foraging trip of ca. two months 

in duration, haul out for approximately one month to molt, and then depart on a foraging trip of 

ca. eight months in duration prior to the following breeding season. Adult males follow a similar 

annual schedule, but haul out for longer durations (2-3 months) during the breeding season 

(Campagna et al., 1993; Le Boeuf and Laws, 1994).   

     Southern elephant seals undergo a cataclysmic molt, during which the fur and upper 

epidermis are cast and replaced (Carrick et al., 1962). This type of molt is unique to the elephant 

seal species and the Hawaiian monk seal, and is not known to occur in any other mammal, 

aquatic or terrestrial (Kenyon and Rice, 1959). At Península Valdés, adult females molt in 

December and January and adult males molt between late February and April. Juveniles do not 

follow the same annual schedule as adults; the maximum number of juveniles molting on shore 

occurs in mid-November (Lewis et al., 2004).  

     Southern elephant seals are a polygynous species, and males establish harems on the beaches 

during the breeding season.  Females give birth to a single pup annually (Campagna et al., 1993; 

Le Boeuf and Laws, 1994). At Península Valdés, reproductive males begin arriving in late 

August and harems are formed by alpha males by the second week of September. Females begin 

arriving in September and the adult female population peaks during the first week of October. 
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Females give birth within a week of coming ashore, and wean their pups approximately 22 days 

later. Females copulate ca. 20 days after parturition, mostly with alpha males. Female presence 

begins declining after the second week of October, and most alpha males are gone by mid-

November (Campagna et al., 1993). Seals at other colonies follow a similar schedule, albeit 

delayed by approximately two weeks (Carrick et al., 1962; Lewis et al., 2004).  

1.2.2 Marine habitat  

     The Patagonian continental shelf, along which Península Valdés is located, encompasses an 

area greater than 1,000,000 km2 (Sánchez and Ciechomski, 1995). It is one of the most 

productive shelves in the world and extends 300-400 km east from Península Valdés (Campagna 

et al., 1999).  Near-shore vertical mixing creates tidal fronts, (Campagna et al., 2007), which in 

this location are associated with increased densities of copepods, euphausiids, cephalopods, and 

commercial fish larvae, and are the spawning grounds of the Argentine short-fin squid (Acha et 

al., 2004).  At the edge of the shelf, along the continental shelf break, the cold water of the 

Malvinas Current flows northward along the 1,000 m isobath and meets the warmer shelf waters 

(Fig. 1.2). The shelf break front located here is an area of increased primary productivity as 

measured by satellite and in-situ chlorophyll concentrations (Campagna et al., 2007; Campagna 

et al., 2000; Piola and Matano, 2001), and is thought to be caused by upwelling created by the 

interaction of the Malvinas Current with the high gradient of the continental slope in this area 

(Romero et al., 2006a).  The shelf-break front is a known hatchery for Argentine hake and is 

important for the migration of anchovies and Argentine hake. Argentine short-fin squid and 

myctophid fish are found here in great quantities (Acha et al., 2004). 
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     The Malvinas Current is a branch of the Antarctic Circumpolar Current, which transports 

deep and intermediate waters between the three major oceans (Atlantic, Pacific, and Indian) 

(Stewart, 2008). The Antarctic Circumpolar Current is majorly constricted in the narrow Drake 

Passage, and as it leaves, it hugs the boundary of South America as the Malvinas Current and 

carries sub-Antarctic waters up to ca. 39°S. This is the northernmost excursion of the Antarctic 

Circumpolar Current (Fig. 1.2) (Talley, 2011).  

     North of the Antarctic Circumpolar Current, strong southward currents are found near the 

western boundary of each ocean. In the South Atlantic, this boundary current is called the Brazil 

Current, which carries warm, subtropical water southward (Fig. 1.2). The eastward extension of 

each of these currents forms the southern branch of the respective subtropical gyres.  The 

transition between subantarctic waters and subtropical waters occurs in each of the oceans 

Figure 1.2. The Brazil-Malvinas Confluence. Simplified map depicting the cold water of the Malvinas Current 
flowing north colliding with the warm water of the Brazil Current flowing south. Sea Surface Temperature data 
from NASA’s Earth Observations website and obtained from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) instrument aboard NASA’s Aqua and Terra satellites. 
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between the Antarctic Circumpolar Current and the southern branch of the subtropical gyre (Orsi 

et al., 1995; Saraceno et al., 2004). In the South Atlantic, this transition zone is known as the 

Brazil-Malvinas Confluence, a frontal zone created by the collision of the Brazil and Malvinas 

Currents (Piola and Matano, 2001; Wainer et al., 2000). After colliding with the Brazil Current, 

the Malvinas Current takes a sharp turn to the south and then east. The Brazil Current splits into 

two branches, with one forming a recirculation cell and the other flowing east as the South 

Atlantic Current (the southern limb of the subtropical gyre) (Saraceno et al., 2004). The Brazil-

Malvinas Confluence is characterized by a sharp horizontal temperature gradient and is a region 

of intense mesoscale eddy activity (Campagna et al., 2000; Piola and Matano, 2001). The 

confluence is home to the hatchery grounds of at least two stocks of Argentine short-fin squid 

(Acha et al., 2004).  

1.2.3 Potential prey  

      Little is known about the diet of southern elephant seals due to the difficulty of observing 

foraging behavior at sea. Stomach lavage samples taken on shore cannot be expected to 

accurately characterize prey consumed while foraging hundreds of kilometers away from 

rookeries (McMahon et al., 2005; Slip, 1995). In addition, cephalopod beaks are not digested as 

readily as fish bones and can amass in the stomach, biasing estimates of the relative contribution 

of individual prey to the diet (Cherel et al., 2008; Rodhouse et al., 1992; Whitehead et al., 2003).  

     Most of the information available on diet is based on studies of southern elephant seals from 

subantarctic islands and suggests that southern elephant seals are wide-ranging, generalist 

predators that exhibit intraspecific variation and plasticity in both foraging habitat and prey 

preference (Biuw et al., 2010; Bradshaw et al., 2003; Campagna et al., 2007; Daneri et al., 2000; 

Ducatez et al., 2008; Eder et al., 2010; Field et al., 2007; Field et al., 2005; Hindell et al., 1991; 
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Lewis et al., 2006; Newland et al., 2009; Piatkowski et al., 2002). They feed in deep waters on 

dielly migrating meso-pelagic prey, as well as in neritic habitats on demersal and benthic prey 

(Boyd and Arnbom, 1991; Campagna et al., 1998; Eder et al., 2010; Field et al., 2001; Hindell et 

al., 1991; Hückstädt et al., 2011; McIntyre et al., 2011). Stable isotope analyses indicate that 

individual seals occupy trophic levels over a wide range of values (Cherel et al., 2008; Eder and 

Lewis, 2005). Stable isotope and fatty acid analyses, as well as stomach lavage studies, indicate a 

diet composed primarily of cephalopods and fish. Known prey identified from stomach lavage 

includes 28 cephalopod species (24 squid and 4 octopus) and 22 fish species (mainly nototheniid 

and myctophid species) (Appendix A: Tables A.1, A.2) (Bradshaw et al., 2003; Brown et al., 

1999; Burton and van den Hoff, 2002; Clarke and MacLeod, 1982; Daneri et al., 2000; Eder et 

al., 2010; Field et al., 2007; Green and Burton, 1993; Laws, 1956; Murphy, 1914; Piatkowski 

and Vergani, 2000; Rodhouse et al., 1992; Slip, 1995; van den Hoff, 2004; van den Hoff et al., 

2003). Benthic mollusks, ascidians, and crustaceans, including euphausiids, copepods, 

amphipods, mysids, and isopods have been found in stomach contents, although with the 

exception of euphausiids, it is unknown whether ingestion occurred primarily or secondarily 

(Burton and van den Hoff, 2002; Field et al., 2004; Green and Burton, 1993; Laws, 1956; 

Piatkowski and Vergani, 2000; Rodhouse et al., 1992; Slip, 1995; van den Hoff et al., 2003). 

1.2.4 Foraging behavior 

     It is known that adult southern elephant seals from Península Valdés and some other colonies 

display intersexual differences in foraging locations (Campagna et al., 1999; Campagna et al., 

2007; Hindell et al., 1991). Males forage predominantly over the continental shelf and slope. 

Females transit the shelf in a matter of days to forage over the continental slope and deep waters 

of the Argentine Basin, diving to depths at times >1000 m (Campagna et al., 1999; Campagna et 
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al., 1995; Campagna et al., 2007; Campagna et al., 1998). There is evidence that this sexual 

segregation in foraging habitat begins to emerge early in development (Campagna et al., 2006). 

According to stable isotope studies, it appears that individual males of this population are 

specialists, split between several strategies. Stable isotope values for females are more 

homogenous, indicating that females forage on similar prey (Lewis et al., 2006). 

1.3 Sensory modalities for tracking and capturing prey 

     Many deep-diving marine carnivores, including elephant seals, have adapted pigments that 

increase sensitivity to the blue-green wavelengths of light that persist at depth (Hanke et al., 

2009; Levenson et al., 2006; Levenson and Schusterman, 1999). However, seals forage in the 

aphotic zone and at night when light levels are greatly diminished (Vacquié-Garcia et al., 2015). 

Although there is evidence that seals forage on bioluminescent prey such as myctophids, which 

may be located and tracked visually, seals also forage on meso-pelagic prey that are not 

bioluminescent and thus must be located and tracked using other sensory means during periods 

of or at depths with little to no ambient light (Field et al., 2007; Green and Burton, 1993; Slip, 

1995). Studies of other pinniped species, i.e. harbor seals and California sea lions, indicate that 

they can sense and track hydrodynamic trails in the water using their vibrissae (Dehnhardt et al., 

2001; Gläser et al., 2011; Schulte-Pelkum et al., 2007) and readily use mystacial whiskers during 

feeding events (Grant et al., 2013; Marshall et al., 2008; Marshall et al., 2015; Marshall et al., 

2014b). Most phocid species have hair shafts with a distinct beaded profile (Ginter et al., 2012; 

Ginter et al., 2010; Hanke et al., 2013; Hyvärinen, 1995; Hyvärinen et al., 2009; Ling, 1966; 

Yablokov and Klezeval, 1969), with the known exceptions of monk seals (Monachus sp.), 

bearded seals, Ross seals, and leopard seals (Hydrurga leptonyx) (Berta et al., 2006; Ginter et al., 

2012; Ginter et al., 2010; Ling, 1972; Marshall et al., 2006). Otariids and terrestrial mammals 
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have smooth hair shafts (Ginter et al., 2012; Hanke et al., 2013; Hyvärinen et al., 2009).  This 

has functional significance, as the beaded profile of harbor seal vibrissae suppresses vortex 

shedding while the vibrissae are moving through water, resulting in a higher signal-to-noise ratio 

than that experienced by smooth vibrissae (Hanke et al., 2013; Hanke et al., 2010). Histological 

studies of pinniped vibrissae indicate that each mystacial vibrissal follicle is innervated by 5-10 

times more axons than those of terrestrial mammals (Dehnhardt et al., 1999; Hyvärinen and 

Katajisto, 1984; Hyvärinen et al., 2009; Marshall et al., 2006; Mattson and Marshall, 2016; 

Sprowls, 2017). It is clear that vibrissae serve as sensory structures for prey capture and 

detection in a wide range of pinniped species, including southern elephant seals. 

1.4 Northern elephant seal vibrissae as a proxy for southern elephant seal vibrissae 

     Southern and northern elephant seals (Mirounga angustirostris) diverged ca. 800,000 years 

ago, and the Península Valdés population shared its last common ancestor with other southern 

elephant seal populations ca. 600,000 years ago (Slade et al., 1998). Northern elephant seals and 

southern elephant seals from Península Valdés share many similarities, including comparable 

annual cycles and intersexual differences in foraging habitat, with females foraging in deeper 

waters (Le Boeuf and Laws, 1994; Le Boeuf et al., 2000; Lewis et al., 2006). There is a positive 

relationship between innervation (sensitivity) of vibrissae and aquatic specialization (Dehnhardt 

et al., 1999; Hyvärinen et al., 2009; Marshall et al., 2014a). Southern and northern elephant seals 

diverged recently in geologic time and share the same degree of aquatic specialization; it is likely 

that the function and structure of their vibrissae are similar, if not identical.  

1.5 Research objectives 

     The purpose of this dissertation was to examine the diving and foraging behavior as well as 

foraging habitat of female southern elephant seals from Península Valdés, Argentina during their 
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post-breeding foraging trip using animal-borne instruments that recorded video of prey 

encounters and other behaviors, oceanographic data, and movement data that allowed me to 

calculate three-dimensional dive paths for each dive. In addition, I investigated the potential for 

the use of the vibrissae as a sensory structure for prey detection and capture using vibrissae 

obtained from stranded northern elephant seals as an analog for the vibrissae of southern 

elephant seals. 

     In Chapter 2, data from dives with associated video recordings were used to develop a model 

to assign functions (foraging, resting, transit) to dives without associated video and an algorithm 

to identify individual prey encounters within each foraging dive. I hypothesized that seals from 

the Península Valdés colony forage on similar prey as seals from other geographic areas, and that 

seals forage primarily over the continental slope and Argentine Basin at depths below 400 m. In 

Chapter 3, the association for foraging dives with location, bathymetry, oceanographic features, 

individual water masses, productivity, and hydrographic variables were examined. I 

hypothesized that seals forage in association with cyclonic eddies shed from the Malvinas 

Current in the Brazil-Malvinas Confluence Zone, and in association with frontal zones as 

indicated by high chlorophyll-α concentrations, temperature, or salinity gradients. In Chapter 4, 

the innervation of individual mystacial vibrissal follicles was quantified, using northern elephant 

seal vibrissae as a proxy, and the potential role for prey detection and capture was assessed. I 

hypothesized that elephant seal mystacial vibrissae were similar in microstructure to that of other 

pinnipeds, and that each follicle-sinus complex would be innervated by > 1000 axons. 
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2. DIVING BEHAVIOR OF POST-BREEDING FEMALE SOUTHERN  

ELEPHANT SEALS (Mirounga leonina) 

2.1 Introduction  

     Southern elephant seals spend the majority of the year in the deep waters of the Southern 

Ocean and the southern regions of the Atlantic, Pacific and Indian Oceans. Adult females spend 

ten months at sea, divided into a two-month post-breeding foraging trip and an eight-month post-

molt foraging trip. In between these two periods at sea, they haul out on land for approximately 

one month each during the breeding and molting seasons, respectively (Le Boeuf and Laws, 

1994). The peak period for pupping and breeding at Península Valdés, Argentina occurs during 

the first week of October, and the peak period for molting occurs during December and early 

January (Lewis et al., 2004). 

     Southern elephant seals from Península Valdés display intersexual differences in foraging 

behavior. Males forage in shallower waters along the continental shelf or slope, while females 

cross the 300-400 km wide continental shelf during the first few days of their foraging trip on 

their way to deeper waters in the Argentine Basin (Campagna et al., 1999; Campagna et al., 

2007; Lewis et al., 2006). They exhibit diurnal diving behavior, indicating that they forage on 

prey in the deep scattering layer (Campagna et al., 1998; Hindell et al., 2016; McIntyre et al., 

2011; McIntyre et al., 2010; Vacquié-Garcia et al., 2015). Little is known about the common 

prey items of southern elephant seals during their extended foraging trips (Burns et al., 2006). 

Stomach lavage, stable isotope, and fatty acid signature analyses indicate a diet comprised of fish 

and cephalopods (Green and Burton, 1993; Lewis et al., 2006; Newland et al., 2009). However, 

stomach content analyses may not accurately represent common prey items of seals that forage 

kilometers away from rookeries (McMahon et al., 2005; Slip, 1995).  
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     Previous studies of pinniped foraging behavior have focused on the geographical location and 

depth of foraging using animal-borne instruments. Geographical locations (latitude and 

longitude) of southern elephant seals foraging behavior have been inferred based on increased 

residence time using surface tracks derived from satellite transmitters or geolocation tags 

(Bailleul et al., 2007; Hindell et al., 2016; Muelbert et al., 2013; O’Toole et al., 2014). Foraging 

behavior has also been inferred based on the shape of time-depth profiles (Campagna et al., 

1995; McIntyre et al., 2011; Schreer and Testa, 1996), bottom time (McIntyre et al., 2011; 

Mcintyre et al., 2012), or variation in accelerometry, depth, or speed (Hassrick et al., 2007). 

     Recent advances in technology led to the development of various animal-borne instruments 

with high-resolution recording capability that are able to detect individual prey encounters in 

various pinniped species using video (Davis et al., 2003; Volpov et al., 2016), stomach 

temperature sensors (Horsburgh et al., 2008; Kuhn and Costa, 2006; Skinner et al., 2014) and 

jaw-motion accelerometers (Naito et al., 2013; Naito et al., 2017; Viviant et al., 2010). There 

have also been a number of studies that infer prey encounters based on rapid head movements 

detected by animal-borne accelerometers attached to the head (Gallon et al., 2013; Jouma'a et al., 

2016; Vacquié-Garcia et al., 2015). Gallon et al. (2013) suggested that video-recorded validation 

is required to confirm the function of these rapid head movements.  

     The objective of this study was to assign functions (foraging, resting, or transit) to the dives 

of post-breeding female southern elephant seals using animal-borne instruments that recorded 

video of prey encounters and other behaviors, three-dimensional dive path, and locomotory 

performance. We used video recordings of prey capture to develop a model to identify foraging 

dives and an algorithm to identify prey encounters for dives without video. We hypothesized that 
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Seals from the Península Valdés colony forage on similar prey as seals from other geographic 

areas, and that seals forage primarily over slope and Argentine Basin at depths below 400 m. 

2.2 Methods 

2.2.1 Animals and Instrumentation 

     Miniature video-data recorders (VDRs, Pisces Design, La Jolla, CA; Fig. 2.1) were attached 

to the heads of 12 adult female southern elephant seals (standard length 260 + 16.4 s.d. cm, 

curvilinear length 273 + 15.5 s.d. cm, axillary girth 173 + 9.7 s.d. cm) prior to their post-

breeding foraging trip at a rookery (42.573851 S, 63.590378 W) 21 km north of Punta Delgada, 

Península Valdés, Argentina in October and November of 2012, 2013, and 2015. Females with 

pups that appeared healthy and close to weaning (silver pelage after molting their black, natal 

pelage) were selected to minimize the length of time they would remain on the rookery after 

instrumentation. Females were approached from behind while resting on the beach and sedated 

with an intramuscular injection of Telazol (0.5 mg kg-1).  

 

 

 

 

 

 

 
Figure 2.1. A.Video-data recorder (VDR). B. VDR, satellite transmitters, and VHF radio transmitters attached to a 
southern elephant seal female. The VDR contains a VisionMOS mDVR2 monochrome digital video recorder, an 
STMicroelectronics LIS3DH three-axis accelerometer, three-axis magnetometer, and sensors for depth, speed, 
light level, dissolved oxygen, conductivity, temperature, and sound (50 Hz - 16 KHz). 

A. B. 



 
 

14 
 

    The VDR (12 cm long, 5.7 cm wide and 4.6 cm high; weight in water is ca. 60 g) is encased in 

polyurethane and depth rated to 2,000 m (Fig. 2.1). It has a Vision MOS mDVR2 monochrome 

digital video recorder and six near-infrared Light Emitting Diodes (LEDs) as a light source. The 

near-infrared LEDs allow imaging in total darkness without disturbing the animal’s behavior 

(near-infrared light is invisible to marine vertebrates; Levenson et al., 2006). Compressed video 

(MPEG4) is stored on a digital video recorder with 32 GB of memory, and data are stored on 8 

GB Flash memory. Sensor data are recorded at 1 Hz except speed (4 Hz) and the 3-axis 

accelerometer (16 Hz). Some instruments have a fast acquisition Global Positioning System 

(GPS) that records geolocation while the seal is at the surface. Power is provided by two lithium-

ion batteries (10 cm long, 3 cm wide, 3 cm tall; mass = 270 g in water each). The battery pack 

enables 28 hours of programmable video recording and data recording for up to nine months. All 

sensors were calibrated prior to deployment.    

     The VDR was mounted on the head and the auxiliary battery pack behind the head. The seals 

were also instrumented with two VHF radio transmitters (Advanced Telemetry System, Isanti, 

MN) and two satellite transmitters (Spot 5 or 6, Wildlife Computers, Redmond, WA). One of 

each was placed on the head and back and enabled us to track the seals at sea and when they 

returned to shore. After cleaning the fur with acetone, all instruments were mounted on custom 

fitted, nylon-backed neoprene rubber and affixed to the fur with neoprene cement.  

     In 2012 and 2013, the video was programmed to begin recording when the seal exceeded a 

depth of 250 m, which indicated that it had finished traversing the shelf and was beginning to 

dive over the continental slope. In 2015, the video was programmed to commence recording 10 

(n=2) or 20 (n=2) days after leaving the rookery and once it exceeded a depth of 250 m. This was 

done to improve the chance of recording foraging activity in deeper water, as the majority of the 
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prey encounters recorded during the first two field seasons were located over the continental 

slope. 

     Each seal was tracked at sea using satellite telemetry for the duration of the post-breeding 

foraging trip (75 + 9 s.d. days). After returning to shore, the seals were relocated using satellite 

and radio telemetry, then sedated with an intramuscular injection of Telazol (0.5 mg kg-1) to 

remove the instruments. The neoprene rubber molted off within one week after the seals returned 

to the rookery. 

2.2.2 Video and Data Analysis 

     Video and data were downloaded and archived after instrument recovery. The video for each 

seal was viewed at the original recording speed and frame-by-frame to identify foraging events, 

prey species, and other behaviors. Dives with video were divided into three categories: foraging, 

transit, and resting. Foraging dives were defined as those in which prey were visible in the video 

and ingestion of prey was either viewed on the video or heard (crunching sound) on the audio. 

Dives in which foraging behavior was suspected but not confirmed (e.g., crunching sound but no 

visual of prey, prey visible on camera but no indication of consumption, etc.) were not included 

in the analysis. Transit dives were defined as those in which no resting or prey encounters were 

observed. Resting dives were defined as those during which the seal either drifted in the water 

column (drift dives) or rested on the ocean floor. A total of 269 video-recorded dives were 

analyzed and identified as foraging, resting, or transit. 

     The beginning and end of individual dives were determined using the VDR’s saltwater 

switch, which indicated when the seal was at the surface. This surface indicator was also used to 

correct any drift that occurred in the depth sensor over the course of the deployment. The 

beginning and end of descent and ascent for each dive was determined based on changes in 
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depth. Descent began when the change in depth was negative for at least 5 consecutive seconds 

and ended when depth change was equal to zero for more than 10 seconds or became positive for 

more than 5 seconds. Ascent beginning and end was determined similarly. Bottom time 

comprised the time between descent and ascent. Stroking rate was calculated from the smoothed 

y-axis accelerometer record using the findPeaks function in the quantmod package in R ((R Core 

Team, 2013; Ryan, 2013). One stroke was defined as one full stroke cycle. 

     The uncorrected, three-dimensional dive paths (course steered) for each dive were calculated 

using the AnimalTrack package in R (Farrell and Fuiman, 2013), which used depth, speed, and 

bearing (based on magnetometer and accelerometer data) to determine X, Y, and Z coordinates at 

a resolution of 1 Hz. The course steered was corrected for set and drift using filtered ARGOS 

locations to determine the actual dive path (course made good). ARGOS locations were filtered 

in a multi-step process. All class Z locations were removed. Locations of classes A and B that 

were not located within 5 km and 2 hr of another location were eliminated. The remaining 

locations were filtered with the vmask function in the argosfilter package in R (Freitas, 2010), 

which applies the McConnell et al. (1992) algorithm, with a speed threshold of 2 m sec-1. A 

subsequent filter removed locations occurring within 12 hr of another location. This increased 

the minimum time lag between successive correction points for the three-dimensional 

coordinates to 12 hr. When the ARGOS locations were closer in time, even a small location error 

created a large drift correction for a small subset of the data.  

     Four VDRs recorded both data and video. Two VDRs were not recovered, and two VDRs 

malfunctioned and did not record data or video. One VDR recorded for the entire trip (82 days), 

while the remaining seven VDRs recorded from 2 - 59 days. The four VDRs deployed during the 

2015 season recorded data but not video. In total, 14,834 dives were recorded by eight seals 
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among the years 2012-16. Of these, 1,037 dives were excluded from the analysis for various 

reasons including inaccurate speed sensor and depth readings. The remaining 13,797 dives were 

analyzed. In total, 235 variables were calculated for each dive (broken down into ascent, bottom, 

descent, first half, second half, and the entire dive; Table A2.1) and used to create a model with 

the video-recorded dives (known class) that could be used to determine dive types for the 

remaining dives (unknown class) without video. Several classification models were tested to 

identify the one with the highest predictive accuracy.  

     Variables for all dives were combined into a single matrix in R. Each variable was 

standardized (rescaled to mean of 0 and standard deviation of 1), and data corresponding to 

video-recorded dives was extracted. Overall, 213 of the 269 dives with video were suitable for 

inclusion in the analysis. Dives with video were divided into subsets by random assignment 

using stratified sampling based on class: 70% for developing the models and 30% for testing the 

models. Supervised models included linear discriminant analysis (LDA), quadratic discriminant 

analysis (QDA), and random forest analysis (RF). Kmeans cluster analysis (Cluster), an 

unsupervised machine learning algorithm, was also performed. More information on individual 

model development can be found in Appendix B.  

     Models were compared and the best was chosen based on accuracy, area under the curve 

(AUC), and the Kappa statistic. Accuracy and the Kappa statistic were computed using each 

classifier’s predicted dive types for the test dataset with the confusionMatrix function in the caret 

package in R (Kuhn et al., 2014). Statistics for the Kmeans cluster assignments were computed 

using all dives with video. Receiver Operating Characteristic (ROC) curves, which plot 

sensitivity as a function of specificity across a range of cut-off values (Florkowski, 2008; Lee 

and Fujita, 2007) were computed for each class (one class vs all others) with the roc function in 
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the pROC package in R (Robin et al., 2011) for the LDA, QDA, and RF classifiers and with the 

algorithm described by Lee and Fujita (2007) for the Cluster classifier. Area under the curve 

(AUC), a proxy for overall classifier accuracy (Florkowski, 2008) was computed for each ROC 

curve using the auc function in the flux package in R (Jurasinski et al., 2014).  

     Dive types were predicted using the final model (RF). To ascertain where and when the seals 

were foraging, transiting, or resting, the relative proportions of dive types by location and time of 

day were analyzed. The maptools and rgeos packages in R (Bivand and Lewin-Koh, 2013; 

Bivand and Rundel, 2013) were used to create a new time-of-day variable, which labeled each 

dive as occurring during dawn, day, dusk, or night based on date, location, and time of day. 

Astronomical dawn and dusk were used (sun at 18° below horizon). Bathymetry (obtained from 

the General Bathymetric Chart for the Oceans) for each dive was extracted using the raster 

package in R (Hijmans and van Etten, 2014) and used to determine whether each dive took place 

on the continental shelf (defined as <200 m38), slope (200-3,500 m, ), or in deep water (>3,500 

m) (Dogliotti et al., 2014; Violante et al., 2010). The hourly distribution of dive types by dive 

location was also examined. 

     A prey encounter event algorithm was developed as an indicator of foraging success using the 

video dive data. A new variable was created which was coded as “yes” during verified prey 

encounters (prey pursuit visible on camera and prey capture either seen on camera or heard on 

audio), “maybe” during likely prey encounters (e.g., prey seen on camera but no evident capture, 

suspected foraging based on audio or movement of seal’s head, but no visual confirmation of 

prey encounter, etc.), or “no” during periods of no suspected prey encounters. Prey encounters 

verified with video were 32.5 + 30 s.d. seconds in duration and represent one or more prey 

captures. Because prey capture could often not be seen on the video because the snout overhangs 
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the mouth, the total number of prey captures per prey encounter event could not be verified. 

However, there was a characteristic head movement evident in the Z-axis (vertical axis) of the 

accelerometer that occurred during prey capture and a crunching sound on the audio recording. 

In total, 1,183 detection algorithms with varying input variables and detection threshold 

combinations were developed and compared. If all input variables for a specific algorithm were 

over threshold within two seconds of each other, a prey encounter event was detected. Detections 

within five seconds of each other were combined into a single prey encounter event. The best 

prey encounter algorithm was selected based on sensitivity (true positive rate) and specificity 

(true negative rate). 

     First-passage time analysis (Fauchald and Tveraa, 2003) was conducted using the beginning 

coordinates of each dive to determine the spatial scale at which seals searched for prey on the 

order of kilometers over the course of the foraging trip. Spherical first-passage time analysis 

(Adachi et al., 2017; Bailleul et al., 2008) was conducted using the three-dimensional locations at 

a resolution of 1 Hz to determine the spatial scale at which seals searched for and pursued prey 

on the order of meters over the course of a dive. 

2.3 Results 

2.3.1 Model Comparison and Selection 

     Models to identify dive type were compared based on accuracy, the Kappa statistic, and area 

under the curve (AUC) (for a detailed comparison, see Appendix C). Accuracy scores for all 

models were better than the no information rate (0.591) at a 0.01 significance level. Random 

forest analysis (RF) had the highest overall accuracy (0.909), Kappa statistic (0.842),  mean 

sensitivity (0.92),  mean specificity (0.96), and  balanced accuracy averaged across classes 
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(0.936) and for each individual class (0.936, 0.938, and 0.936 for foraging, resting, and transit 

dives, respectively) (Tables 2.1, 2.2, and 2.3). 

 

 

 

 

 

 

 

 

     Receiver operating characteristic (ROC) curve plots and AUC calculations showed that RF 

performed better than all other models for foraging (AUC = 0.978, Fig. 2.2A), transit (AUC = 

0.975, Fig. 2.2B), and resting (AUC = 0.998, Fig. 2.2C) dive classes individually and when 

averaged across dive classes for each model (AUC = 0.984; Table 2.4). As RF performed better 

than the other models according to all metrics, it was selected as the final model for classifying 

the 13,797 dives (9,453 foraging, 1,405 resting, 3,039 transit; Fig. 2.3).

 Cluster LDA QDA RF 
Sensitivity 0.75 0.74 0.85 0.92 
Specificity 0.90 0.88 0.92 0.96 
Pos Pred Value 0.86 0.79 0.83 0.92 
Neg Pred Value 0.89 0.88 0.92 0.94 
Balanced Accuracy 0.83 0.81 0.88 0.94 

 
Foraging Resting Transit 

 
Cluster LDA QDA RF Cluster LDA QDA RF Cluster LDA QDA RF 

Sensitivity 0.811 0.872 0.923 0.872 0.480 0.625 0.875 0.875 0.951 0.737 0.737 1.000 
Specificity 0.930 0.778 0.889 1.000 1.000 0.983 0.966 1.000 0.776 0.872 0.915 0.872 
Pos Pred Value 0.945 0.850 0.923 1.000 1.000 0.833 0.778 1.000 0.630 0.700 0.778 0.760 
Neg Pred 
Value 0.769 0.808 0.889 0.844 0.935 0.950 0.983 0.983 0.975 0.891 0.896 1.000 
Balanced 
Accuracy 0.871 0.825 0.906 0.936 0.740 0.804 0.920 0.938 0.864 0.805 0.826 0.936 

Table 2.1. Accuracy and Kappa statistic for each model (* indicates that the accuracy was significantly better than 
the no information rate at a significance level of <0.01). 

 
 

 Accuracy (95% CI) Kappa statistic 
LDA 0.803 (0.687, 0.891)* 0.638 
QDA 0.864 (0.757, 0.936)* 0.755 
RF 0.909 (0.813, 0.966)*  0.842 
Cluster 0.812 (0.753, 0.862)* 0.667 

 

Table 2.2. Predictive model measures averaged across the three classes for each model. 
 
 
 

Table 2.3. Predictive model measures by class.  
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Figure 2.2. ROC curves (sensitivity by specificity plots) for one class vs. all other classes for all models (AUC in parentheses). Gray line indicates “line of no 
discrimination”. A. Foraging vs. all other classes. B. Transit vs. all other classes. C. Resting vs. all other classes. 
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Figure 2.3. Seal dive locations colored by dive type (classified using random forest). A. Foraging dives. B. 
Resting and transit dives.  
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2.3.2 Daily behavior and proportion of dives types over the shelf, slope and deep water 

     The females crossed the continental shelf in 3.7 + 0.3 s.d. days, and the post-breeding trip 

lasted 75 + 9 s.d. days. Upon leaving the rookery, the seals all swam perpendicular to the coast 

on an easterly (~100°) bearing, making 87.8 + 27.8 s.d. (range 57-158) dives per day over the 

shelf, of which 71 + 28.4 s.d. (range 42-140) were transit dives, 15.1 + 8.6 s.d. (range 0-31) were 

resting dives, and 1.7 + 3.8 s.d. (range 0-13) were foraging dives. Most dives were transit dives 

(mean number of consecutive dives: 10.8 + 12.7 s.d.), with resting dives occurring singly and in 

bouts of 2-9 dives (mean number of consecutive dives: 1.85 + 0.6 s.d.). Foraging dives were rare. 

Dive type over the shelf was not influenced by time of day (Fisher’s exact test, p-value = 0.8). 

The first 5-10 dives were generally of short duration (5-10 min), and the mean transit dive 

duration over the shelf was 13.4 + 4.4 min. Most of the dives were square-bottomed and 

appeared to closely follow the bathymetry of the shelf, although some had vertical excursions of 

5-20 meters. Speed did not vary during these vertical excursions, and it is possible that the seals 

were simply following the bathymetry. Video was recorded for 19 dives over the shelf by one 

seal. The sea floor was visible during the majority of the dives, but for some dives the sea floor 

was not visible or only visible for a short period of time.  Over the continental shelf, transit dives 

represented 85-89% of daily dives, resting dives ranged from 9-13% and foraging dives ranged 

from 0-2%.  

 Foraging Transit Resting Mean 
RF 0.978 0.975 0.998 0.984 

QDA 0.961 0.941 0.972 0.958 
LDA 0.937 0.921 0.914 0.924 
Cluster 0.882 0.935 0.661 0.826 

Table 2.4. AUC calculations by class for all models. 
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          Over deeper water, seals made 59.9 + 9.8 s.d. (range 43-92) dives per day, of which 48.2 + 

10.3 s.d. (range 2-75) were foraging, 5.9 + 5.2 s.d. (range 0-37) were resting, and 5.8 + 7.8 s.d. 

(range 0-46) were transit. Foraging occurred almost exclusively in bouts (98% of foraging dives 

preceded and/or followed another foraging dive). The average foraging bout consisted of 14 + 

8.4 s.d. dives with a maximum of 51. Transit dives occurred singly and in bouts of up to 18 

consecutive dives (mean consecutive number of dives: 1.5 + 0.6 s.d.). Resting dives occurred 

mostly in bouts with a maximum of 30 (mean consecutive number of dives: 4.2 + 3.1); 85% of 

resting dives preceded and/or followed another resting dive.  

     A diurnal pattern was present in dives over the continental slope and Argentine Basin for all 

three dive types (Fig. 2.4). Kruskal Wallis tests indicated significant differences in dive depth by 

time of day for foraging (χ2 statistic 3035.9, p-value <0.0001), resting (χ2 statistic 64.059, p value 

<0.0001), and transit (χ2 statistic113.57, p value <0.0001) dives. Post-hoc pairwise comparisons 

were made using the Mann-Whitney Wilcoxon test to determine which time of day categories 

(dawn, day, dusk, night) differed from each other. P-values were adjusted with a Bonferroni 

correction. The pattern was most obvious for foraging dives, which had a mean maximum depth 

of 689 + 213 s.d. m during the day and 391 + 219 s.d. m at night (adjusted p-value <0.0001). 

Mean maximum depth for resting dives was 382 + 110 and 261 + 132 s.d. m during day and 

night, respectively (adjusted p-value <0.0001). Mean maximum depth for transit dives was 360 + 

192 s.d. m for daytime dives and 255 + 131 s.d. m for nighttime dives (adjusted p-value 

<0.0001). 

     Over the slope, the proportion of foraging dives was not significantly different among dawn, 

day, dusk, and night (Fisher’s exact test Bonferroni-adjusted p-value 0.42, Table 2.5).  Although 

Fisher’s exact test detected a significant difference in transit dives by time of day over the slope 
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(Bonferroni-adjusted p-value 0.04), subsequent pairwise comparisons were insignificant after 

adjusting p-values with a Bonferroni correction. Fisher’s exact test detected a significant 

difference in resting dives by time of day over the slope (Fisher’s exact test adjusted p-value 

<0.0001, Table 2.5). Subsequent pairwise comparisons indicated that resting dives constituted a 

significantly higher percentage of day dives (15%) than during dawn, dusk, or night (all 2%). 

     Over the deep water of the Argentine Basin, Fisher’s exact test detected a significant 

difference in foraging dives by time of day (adjusted p-value <0.001). Subsequent pairwise 

comparisons indicated that foraging dives made up a significantly lower percentage of dives 

during the day (75%) than during dawn and dusk (92% and 95%), but was not significantly 

different between day and night after applying a Bonferroni correction (Table 2.5). The 

percentage of transit dives was not significantly different among time periods (Fisher’s exact test 

unadjusted p-value 0.71). Fisher’s exact test detected a significant difference in resting dives by 

time of day (p-value <0.0001, Table 2.5). Resting dives made up 1% of the dives during dawn, 

dusk, and night, but comprised a significantly greater percentage (17%) of dives occurring 

during daytime hours (Table 2.5). 

 

 

 

 

 

 

Figure 2.4. Maximum dive depth (m, s.d. bars) by time of day for all dives over the continental slope and 
Argentine Basin. A. Foraging dives. B. Resting dives. C. Transit dives. For each plot, means with different 
letters are significantly different at the α = 0.05 level (Kruskal Wallis test, post hoc Mann-Whitney Wilcoxon 
pairwise tests with Bonferroni correction). 
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Dawn Day Dusk Night 

Shelf Foraging 0.02 0.02 0.02 0 

 
Resting 0.11 0.13 0.09 0.13 

 
Transit 0.87 0.85 0.89 0.87 

Slope* Foraging 0.81 0.71 0.72 0.67 

 Resting* 0.02A 0.15B 0.02A 0.02A 

 
Transit 0.17 0.14 0.26 0.31 

DW* Foraging* 0.92A 0.75B 0.95A 0.9AB 

 
Resting* 0.01A 0.17B 0.01A 0.01A 

 
Transit 0.07 0.08 0.05 0.09 

 

     Circular histograms and line plots with percentage of dive type by hour provided more detail 

on the distribution of dives relative to time of day. Dives were binned by hour (0-23). Over the 

shelf, no clear pattern for dive type distribution by hour was evident. Foraging dives accounted 

for 0-7% of dives per hour (small sample size of only 32 foraging dives over shelf). Resting 

dives accounted for 4-19% of dives per hour, and transit dives accounted for 79-96% of dives per 

hour (Figs. 2.5, 2.6). Resting and transit dive distribution by hour over the shelf were not 

significantly different from uniform distribution (Rayleigh’s z-test, p-values 0.51 and 0.66, 

respectively). Foraging dive distribution by hour over the shelf was not tested due to the small 

sample size. Over the slope, dive distribution for each dive type by hour was significantly 

different from uniform (Rayleigh’s z-test, p-value 0.02, <0.0001, and <0.0001 for foraging, 

resting, and transit, respectively). Foraging dives accounted for 42-90% of dives per hour and 

occurred at greater than average frequency during the hours of 0200, 0400, 0600-0900 and 1700-

2300 GMT. Resting dives accounted for 0-35% of dives per hour and occurred at a greater than 

average frequency between 1000-1600 GMT. Transit dives accounted for 5-41% of dives per 

hour and occurred at greater than average frequency between 2300-0600 and 1200-1300 GMT 

Table 2.5. Percent dive type by time of day over the continental shelf, continental slope, and over deep water. 
Asterisks indicate significant p-values (α=0.05) for Fisher’s exact test. Significantly different pairwise values by 
row are denoted by different superscripts. P-values for post-hoc comparisons were adjusted with a Bonferroni 
correction. 
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(Figs. 2.5, 2.7). Over deep water, dive distributions for foraging and resting dives by hour were 

significantly different from uniform (Rayleigh’s z-test, adjusted p-value <0.0001 for both 

foraging and resting). Dive distribution for transit dives by hour was not significantly different 

from uniform distribution (p-value 0.07). Foraging dives accounted for 56-95% of dives per hour 

and occurred at a greater than average frequency from 1700-0800 GMT. Transit dives accounted 

for 3-11% of dives per hour. Resting dives accounted for 0-35% of dives per hour and occurred 

at greater than average frequency between 0900 and 1600 GMT (Figs. 2.5, 2.8).  

 

Figure 2.5. Percentage of dive type by hour for A. all dives, B. dives over the continental shelf, C. dives over the 
continental slope, and D. deep water dives. 

A. B. 

C. D. 
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Figure 2.6. Distribution of percentage of dive type by hour for dives occurring over the continental shelf (insets are square root plots to magnify the 
distribution for easier viewing). A. Foraging dives. B. Resting dives. C. Transit dives. 

A. B. C. 
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Figure 2.7. Distribution of percentage of dive type by hour for dives occurring over the continental slope (insets are square root plots to magnify the 
distribution for easier viewing). A. Foraging dives. B. Resting dives. C. Transit dives. 

A. B. C. 
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Figure 2.8. Distribution of percentage of dive type by hour for dives occurring over the deep water of the Argentine basin (insets are square root plots to 
magnify the distribution for easier viewing). A. Foraging dives. B. Resting dives. C. Transit dives. 

 

A. B. C. 
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Figure 2.9. Square 3D plot  of representative foraging dive, with prey encounters viewed on video highlighted in 
blue.  

De
pt

h 
(m

) 



 
 

32 
 

 

 

Figure 2.10. A-D. Time series plots of representative foraging dive, with prey encounters viewed on video highlighted in blue.: A. 
Depth (m), B. Pitch (°), C. Speed (m sec-1), D. Stroking rate (stroke cycles sec-1). 

D. 

C. 

A. 

B. 



 
 

33 
 

 

 

 

 

 

 

 

 

Figure 2.11. Square 3D plot of representative resting dive, with drift phase highlighted in red.  
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Figure 2.12. A-D. Time series plots of representative resting dive, with drift phase highlighted in red.: A. Depth (m), B. Pitch (°), C. Speed (m sec-1), D. 
Stroking rate (stroke cycles sec-1). 

B. 

A. 

C. 

D. 
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Figure 2.13. Square 3D plot of representative transit dive.  
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Figure 2.14. A-D. Time series plots of representative transit dive. A. Depth (m), B. Pitch (°), C. Speed (m sec

-1
), D. Stroking rate (stroke cycles sec

-1
). 

 

A. 

B. 

C. 

D. 
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        Foraging          Resting          Transit 

 
Mean SD Mean SD Mean SD 

Maximum depth shelf (m) 96A 8 88B 19 75C 29 
Maximum depth slope/  Argentine Basin (m) 553A 258 375B 114 307C 171 
Dive duration shelf (min) 13.8A 2.1 17.9B 5.7 13.4A 4.4 
Dive duration slope/ Argentine Basin (min) 21.5A 5.8 22.6B 6.2 19.9C 6.6 
Total corrected 3D distance (m) 1955A 671 1262B 409 1292B 472 
Total corrected horizontal distance (m) 1419A 498 997B 355 1154C 417 
Corrected straight line horizontal distance (m) 949A 462 756B 375 1069C 402 
Mean Speed (m sec-1) 1.19A 0.33 0.62B 0.26 1.25C 0.35 
Max Speed (m sec-1) 2.57A 0.54 2.02B 0.71 2.11C 0.49 
Mean stroking rate bottom (stroke cycles sec-1) 0.25A 0.12 0.2B 0.15 0.36C 0.18 
Mean stroking rate ascent (stroke cycles sec-1)* 0.52A 0.1 0.5B 0.1 0.54C 0.11 
Path linearity 0.48A 0.15 0.6B 0.22 0.84C 0.16 
Horizontal path linearity 0.65A 0.18 0.74B 0.21 0.92C 0.11 
Mean pitch angle descent (°)* -49.6A 8.8 -11.6B 28.4 -37C 7.5 
Mean pitch angle ascent (°)* 43.8A 11.4 29.2B 15.5 22C 16.3 
Mean descent speed (m sec-1)* 1.38A 0.42 0.66B 0.43 1.16C 0.29 
Mean ascent speed (m sec-1)* 1.19A 0.26 0.98B 0.29 1.32C 0.33 
Mean vertical speed (depth change) descent (m sec-1)* 1.28A 0.34 0.67B 0.26 0.76C 0.24 
Mean vertical speed (depth change) ascent (m sec-1)* 1.27A 0.2 0.84B 0.22 0.75C 0.24 
Speed variance 0.24A 0.11 0.26B 0.1 0.13C 0.07 
Mean horizontal speed (m sec-1) 1.1A 0.27 0.67B 0.18 1.1A 0.33 
Horizontal speed variance  0.25A 0.07 0.18B 0.09 0.15C 0.07 
Rate of change in z-axis accelerometer 0.05A 0.02 0.03B 0.01 0.02C 0.01 
Mean vector length 0.66A 0.14 0.64B 0.2 0.92C 0.09 
Pitch angle variance during descent* 461A 251 1243B 883 244C 200 

 

Table 2.6. Descriptive statistics by dive type for all 13797 dives (9453 foraging, 1405 resting, 3039 transit). 
Mean values with different superscripts are significantly different (Kruskal-Wallis test, post-hoc Mann-Whitney-
Wilcoxon pairwise tests with Bonferroni correction). 
 
 
 
 
* Statistics for descent and ascent variables were computed with dives > 5 m in depth; shallower dives were not 
included. 
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2.3.3 Comparison of dive types 

     Almost all dives recorded, regardless of bathymetry or dive type, began with a few strokes 

proximal to the surface followed by a gliding descent (Figs. 2.9-2.14). No gliding ascents from 

depth were observed, but data from the final days of the foraging trip was limited to one seal. 

Seals did glide the final 10-20 m while ascending. 

2.3.3.1 Foraging dives 

     Compared with transit and resting dives, foraging dives (Figs. 2.9, 2.10) were deep and 

meandering with bursts of speed and rapid changes in pitch and direction associated with prey 

encounters. The mean maximum dive depth over the slope and Argentine Basin (553 + 258 s.d. 

m) was significantly deeper than resting and transit dives (Table 2.6), with a maximum depth of 

1,850 m. The mean dive duration over the slope and Argentine Basin (21.5 + 5.8 s.d. min) was 

significantly longer than transit but not resting dives. When foraging, seals traveled the farthest 

total and horizontal distances (1,955 + 671 s.d. and 1,419 + 498 s.d. m, respectively), and their 

dive paths were less linear with frequent changes in compass bearing. Mean speed (1.2 + 0.33 

s.d. m sec-1), stroking rate on ascent (0.52 + 0.1 s.d. strokes sec-1) and straight-line horizontal 

distance (949 + 462 s.d. m) were all significantly greater than for resting dives but slightly less 

than for transit dives. Compared to resting and transit dives, foraging dives had greater variation 

in speed, the highest maximum speed (2.6 + 0.54 s.d. m sec-1), the highest mean descent speed 

(1.38 + 0.42 s.d. m sec-1), the steepest descent and ascent angles (-49.6 + 8.8 s.d. and 43.8 + 11.4 

s.d. °, respectively), and greater variation in descent angle and vertical head movements (higher 

rate-of-change in the z-axis accelerometer) associated with prey pursuit and capture. Due to the 

steeper descent and ascent angles, foraging dives had the highest mean vertical speed during 

descent and ascent (1.28 + 0.34 s.d. and 1.27 + 0.2 s.d. m sec-1, respectively).  
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     A typical foraging dive over deeper water began with the seal descending to a mean 

maximum depth of 689 meters during the day and 391 meters at night with a steeper descent 

angle (~50°) than for resting or transit dives. During some foraging dives, the seal glided to the 

maximum dive depth. During other foraging dives, the seal glided approximately halfway to the 

maximum dive depth and then continued via stroking and gliding. The descent heading was 

initially linear, but as the seal began to pursue prey, there were large variations in heading, roll, 

and pitch accompanied by bursts of speed associated with prey pursuit and capture. Prey 

encounters were typically associated with torturous paths composed of many twists and turns. 

The seal typically made short ascents and descents of 10-50 m in the water column between prey 

encounters. 

2.3.3.2 Resting dives 

     Resting dives (Figs. 2.11, 2.12) included drift dives and dives in which the seals rested on the 

ocean floor over the continental shelf and slope for prolonged periods. However, during some 

resting dives, the seals rested intermittently on the order of seconds throughout the dive. 

Compared to foraging and transit dives, resting dives were longer in duration and had more 

variation in pitch and roll angle during descent, but distance traveled, swim speed and flipper 

stroke rate were significantly less than both foraging and transit dives (Table 2.6). The mean 

maximum depth (375 + 114 s.d. m over the slope and Argentine Basin) was deeper than transit 

dives but shallower than foraging dives. The mean dive duration over the shelf (17.9 + 5.7 s.d. 

min) and in deeper water (22.6 + 6.2 s.d. min) was significantly longer than both foraging and 

transit dives. During resting dives, seals traveled the shortest straight line and total horizontal 

distances (997 + 355 s.d. and 756 + 375 s.d. m, respectively), and their dive paths were less 

linear with more variation in compass bearing than transit dives. Mean descent angle (-11.6 + 
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28.4 s.d. °) was less steep than both foraging and transit dives. Mean speed (0.62 + 0.26 s.d. m 

sec-1), mean maximum speed (2.02 + 0.71 s.d. m sec-1), mean descent and ascent speeds (0.66 + 

0.43 s.d. and 0.98 + 0.29 s.d. m sec-1), and mean vertical speed during descent (0.67 + 0.26 s.d. 

m sec-1) were significantly less than for foraging and transit dives.  

     A typical resting dive over the shelf involved gliding to the ocean floor and resting for 

approximately six minutes. The seal began the descent with a few strokes. During most resting 

dives, the seal was stationary for an extended period, but there were some dives in which the seal 

rested intermittently for 10-120 sec at a time over the course of the dive. In resting dives over the 

deeper water of the slope and Argentine Basin, seals typically glided to 100-200 m with a pitch 

angle of -48.2 + 15.9 s.d. ° before beginning the drift portion of the dive. As they drifted, the roll 

angle increased to 150-180°, indicating that the seal was drifting belly-up and vertically 

downward. Under these conditions, the speed sensors recorded zero speed because the downward 

drift was perpendicular to the sensor. The average amount of time per resting dive where speed 

was equal to zero was 6.7 + 4.5 s.d. min. There were a few resting dives recorded over the slope 

(depth < 500 m) in which the seal glided to the ocean floor and rested on the bottom instead of 

drifting, similar to how the seals rested on the shelf.  

2.3.3.3 Transit dives 

     Compared to foraging and resting dives, transit (Figs. 2.13, 2.14) dives were shallow, shorter 

in duration and very linear with little change in compass bearing. Seals glided to maximum depth 

and then either stroked continuously or used a stroke-and-glide mode of locomotion. Because the 

continental shelf along Península Valdés is less than 120 m deep, the depth of transit dives over 

the shelf were shallow (mean depth 75 + 29 s.d. m). One seal had approximately 150 shallow 

dives of only a few meters in depth (mean 2 m, mean 5.9 min duration). With those dives 
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removed, mean transit dive duration was 14.6 + 4.4 s.d. min and mean transit dive depth was 

82.3 + 20.5 s.d. m over the shelf.    

     Transit dives that occurred over the slope and in the Argentine basin were deeper (mean 

maximum depth 307 + 171 s.d. m) than transit dives over the shelf but shallower than deep water 

foraging and resting dives. Transit dives had a more linear path (mean vector length of 0.87 

where 1 = highly directional, 0=not directional) than foraging (0.66) and resting (0.59) dives, but 

were slightly less directional than transit dives over the shelf (0.94). Seals glided to maximum 

depth and then either began to ascend or continued to swim at depth using stroke-and-glide 

locomotion before ascending using continuous stroking. The mean speed of transit dives over 

deep water was not as fast as those over the shelf (0.98 m sec-1 and 1.42 m sec-1, respectively) 

and also not as fast as foraging dives over deep water (1.19 m sec-1), but faster than resting dives 

(0.57 m sec-1). Some transit dives were deeper than average and had a time-depth profile with 

some vertical excursions (10-50 meters) that may have been associated with searching behavior. 

The mean duration of these dives (19.9 + 6.6 s.d. min) was shorter than both resting and foraging 

dives, in part because of a higher mean speed (1.25 + 0.35 s.d.. m sec-1) and mean flipper stroke 

rate during both bottom swimming and ascent (0.36 + 0.18 and 0.54 + 0.11 s.d. strokes sec-1, 

respectively; Table 2.6) which depletes body oxygen stores more quickly and reduces the aerobic 

dive limit. However, the longest dive recorded (70.1 min in duration) was a transit dive which 

had a mean speed of 0.44 m sec-1 with a mean stroke frequency of 0.15 strokes sec-1 at the 

bottom of the dive. Transit dives were the most linear with little variation in compass bearing, 

speed, and roll and pitch angles. Mean descent angle (-37 + 7.5 s.d. °) was less steep than for 

foraging dives, and mean ascent angle (22 + 16.3 s.d. °) was less steep than both resting and 

foraging dives. As a result, transit dives had lower mean vertical speed during descent and ascent 
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(0.76 + 0.24 s.d. and 0.75 + 0.24 s.d. m sec-1). In addition, because they were shorter in duration 

than foraging dives, total (1,292 + 472 s.d. m) and horizontal distances (1,154 + 417 s.d. m) 

traveled were less, but straight line distance (1,069 + 402 s.d. m) was the highest due to their 

linearity. 

2.3.4 Identification of foraging events 

     The final prey encounter algorithm used two variables: the rate of change in the z-axis 

accelerometer (calculated in 16 Hz, subsampled to 1 Hz) and the rate of change in heading (in 1 

Hz), both smoothed with a running 10-point average. The cutoff values were 0.035 and 0.16, 

respectively. This algorithm was chosen because it had a sensitivity of 95% (detected 95% of 

video-recorded prey encounters; 5% of video-recorded events were not detected by the 

algorithm) and a specificity of 94% (94% of detected events occurred during a definite or 

probable video-recorded prey encounter; 6% of detected events were false positives). In total, 

32,367 prey encounters were identified. Of these, 31,552 (97.5%) occurred during foraging 

dives, 268 (0.8%) occurred during resting dives, and 547 (1.7%) occurred during transit dives. 

Prey encounters were detected during 9,503 dives. At least one encounter was detected in 96.4% 

of all foraging dives (9,013 of 9,353 dives), 8.8% of resting dives (123 of 1,405 dives), and 12% 

of transit dives (373 of 3,039 dives). 

      The mean number of prey encounters for foraging dives was 3.4 ± 2.1 s.d. (range 0-19), and 

the mean duration of an encounter was 28 + 19.3 s.d. sec (range 1-207 sec). The combined 

duration of all prey encounters for foraging dives (an index of foraging success) was 97 + 65 s.d. 

sec over the slope (range 0-465 sec) and 95 + 59 s.d. sec over deep water (range 0-344 sec, Fig. 

2.15). Using this index for foraging success, which did not consider dive duration, day dives 

were significantly more successful than night dives and dusk dives were significantly more 
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successful than day dives over the slope. Over deep water, this index indicated that both dusk 

and night dives were significantly more successful than day dives (Table 2.7). When dive 

duration was taken into consideration (dividing the cumulative duration of prey encounters by 

dive duration), foraging dives during dawn, dusk, and night were significantly more successful 

(more prey encounters per unit time) than foraging dives during the day over both the slope and 

deep water (all adjusted p-values <0.01) (Table 2.8). 

 

 

 

 

    Mean SD SE CI (95%) Min Max Median 
Slope All 97 65 1.5 2.9 0 465 86 

 
Dawn 96AB 58 4.0 7.9 0 267 88 

 
Day 99A 69 2.1 4.1 0 465 87 

 
Dusk 102B 64 6.7 13.2 0 286 94 

 
Night 92B 58 2.5 4.9 0 296 83 

Deep water All 95 59 0.7 1.3 0 344 87 

 
Dawn 98AB 61 2.0 3.9 0 312 90 

 
Day 93A 57 0.9 1.8 0 336 85 

 
Dusk 101B 55 2.8 5.6 0 342 95 

  Night 98B 60 1.3 2.5 0 344 90 

    Mean SD SE CI (95%) Min Max Median 
Slope All 0.131 0.098 0.002 0.004 0.000 1.000 0.114 

 
Dawn 0.155A 0.103 0.007 0.014 0.000 0.564 0.126 

 
Day 0.122B 0.099 0.003 0.006 0.000 1.000 0.106 

 
Dusk 0.155A 0.102 0.011 0.021 0.000 0.489 0.131 

 
Night 0.136A 0.092 0.004 0.008 0.000 0.473 0.122 

Deep water All 0.14 0.09 0.00 0.00 0.00 0.71 0.12 

 
Dawn 0.17A 0.11 0.00 0.01 0.00 0.68 0.15 

 
Day 0.12B 0.07 0.00 0.00 0.00 0.51 0.10 

 
Dusk 0.16A 0.09 0.00 0.01 0.00 0.56 0.15 

  Night 0.17A 0.11 0.00 0.00 0.00 0.71 0.15 

Table 2.7. Raw foraging success. Cumulative prey encounter duration in seconds for foraging dives over the 
continental slope and in deep water. Different subscripts indicate significantly different mean values (Kruskal-
Wallis test, post-hoc Wilcoxon-Mann Whitney with Bonferonni correction). 
 
 

Table 2.8. Adjusted foraging success. Cumulative prey encounter duration divided by dive duration in foraging 
dives over the continental slope and in deep water (normalized to range 0-1). Different subscripts indicate 
significantly different mean values (Kruskal-Wallis test, post-hoc Wilcoxon-Mann Whitney with Bonferonni 
correction). 
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Figure 2.15. Corrected seal locations colored by number of cumulative prey encounter seconds.   
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    Mean SD SE CI (95%) Min Max Median 

 
All 431 258 3.2 6.3 1 1419 403 

 
Dawn 249A 177 6.3 12.4 33 892 192 

Slope Day 539B 232 3.8 7.4 1 1419 528 

 
Dusk 262AC 196 10.7 21.0 46 1045 205 

  Night 285C 220 5.2 10.2 2 1096 207 

 
All 483 244 1.5 3.0 0 1227 497 

 
Dawn 327A 201 3.7 7.2 4 925 276 

Deep water Day 603B 202 1.8 3.4 1 1227 607 

 
Dusk 462C 193 5.2 10.1 28 1082 466 

  Night 336A 217 2.5 4.9 0 1088 300 

Table 2.9. Mean depth (m) for prey encounters over the continental slope and in deep water by time of day. 
Significantly different means are denoted by different superscripts (Kruskal-Wallis test, post-hoc Mann-
Whitney-Wilcoxon pairwise tests with Bonferroni correction). 
 
 
 

Figure 2.16. Boxplots of mean depth of detected prey encounters in foraging dives by time of day for A. all 
dives, B. dives over the continental shelf, C. dives over the continental slope, and D. deep water dives. Mean 
values are displayed in blue. 
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    Mean SD SE CI (95%) Min Max Median 

 
All 4.0 1.3 0.02 0.03 2.0 13.9 3.8 

 
Dawn 4.6 1.5 0.05 0.11 2.6 13.9 4.5 

Slope Day 3.7 1.3 0.02 0.04 2.0 13.9 3.5 

 
Dusk 4.4 0.9 0.05 0.09 2.6 8.7 4.5 

  Night 4.3 1.2 0.03 0.06 2.5 13.8 4.4 

 
All 4.2 1.9 0.01 0.02 1.7 17.5 3.6 

 
Dawn 5.0 2.5 0.05 0.09 2.2 15.9 4.1 

Deep water Day 3.5 1.1 0.01 0.02 1.8 17.5 3.2 

 
Dusk 4.2 1.5 0.04 0.08 2.4 12.5 3.9 

  Night 5.1 2.4 0.03 0.05 1.7 15.6 4.3 

 

Figure 2.17. Boxplots of mean temperature of detected prey encounters in foraging dives by time of day for A. 
all dives, B. dives over the continental shelf, C. dives over the continental slope, and D. deep water dives. Mean 
values are displayed in blue. 

  

Table 2.10. Mean temperature (° C) for prey encounters over the continental slope and in deep water by time of 
day. 
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     The mean prey encounter depths over the slope and Argentine Basin were 431 + 258 s.d. m 

and 483 + 244 s.d. m, respectively. Kruskal Wallis tests indicated that there were significant 

differences in mean depth of prey encounters by time of day over both the slope and deep water 

(p-value <0.0001 for both). Post-hoc comparisons were made with the Mann-Whitney-Wilcoxon 

test with a Bonferroni correction. Over the slope, mean prey encounter depth was significantly 

deeper during the day (539 + 232 s.d. m) than during dusk, night, and dawn (262 + 196 s.d. m, 

285 + 220 s.d. m, and 249 + 177 s.d., m respectively). Mean prey encounter depth at dawn was 

significantly shallower than at dusk (Fig. 2.16, Table 2.9). Over the deep water of the Argentine 

basin, mean prey encounter depth was significantly shallower during dusk, night, and dawn (462 

+ 193 s.d. m, 336 + 217 s.d. m, and 327 + 201 s.d. m, respectively) than during day  (603 + 202 

s.d. m). Mean prey encounter depth was significantly deeper at dusk than dawn or night (Fig. 

2.16, Table 2.9). Mean prey encounter temperature was 4 + 1.3 s.d. °C (range 2-13.9°C) over the 

slope and 4.2 + 1.9 s.d. °C in deep water (range 1.7-17.5°C) (Fig. 2.17, Table 2.10).  

2.3.5 First-passage time analysis   

     Dive locations for two VDRs that recorded for the majority of the foraging trip were used to 

conduct first-passage time analysis. Peak variance occurred at a radius of 45 kilometers, 

indicating that two-dimensional movement patterns occurred on a scale of approximately 45 km 

over the course of the foraging trip (Fig. 2.18). Spherical first-time passage analysis was 

conducted using the corrected three-dimensional locations at a resolution of 1 Hz from all seals. 

Mean peak variance occurred at a radius of 10 meters, indicating that movement patterns in the 

three-dimensional trajectory of individual dives occurred on a scale of approximately 10 m (Fig. 

2.19).  
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Figure 2.18. First passage time (horizontal, 2D) averaged for two seals for which data recorded for the majority 
of the migration. 

  

Figure 2.19. Mean spherical first passage time averaged for all 8 seals.  
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2.4 Discussion 

     This study reports herring smelt as a prey item of southern elephant seals. Herring smelt are 

generally known to occur further north, but there are reports of larval Argentinidae occurring 

near Islas Malvinas (Falkland Islands) (Ehrlich et al., 1999; Richards, 2005). Myctophids have 

previously been reported as prey using stomach lavage on Macquarie Island (Field et al., 2007; 

Green and Burton, 1993; Slip, 1995), as well as for northern elephant seals based on still images 

obtained with animal-borne cameras (Naito et al., 2013). Although southern elephant seals may 

feed on both fish and squid, only fish were observed in the video during this study. Rodhouse et 

al. (1992) noted that cephalopod beaks are less digestible than fish bones and may accrue in the 

stomach, biasing diet composition estimation. It is therefore possible that cephalopods do not 

comprise as great a proportion of the diet of the southern elephant seal as assumed, at least in the 

Península Valdés population. Although confirmed prey species of southern elephant seals also 

include members of Families Bathylagidae, Centrolophidae, Channichthyidae, Gempylidae, 

Nototheniidae, Paralepididae, and Phosichthyidae (Field et al., 2007; Green and Burton, 1993; 

Laws, 1956; Slip, 1995), no representatives from these families were identified on the video 

records. However, species identification was not possible for many of the prey encounters. 

Another limiting factor was that much of the video of prey encounters was obtained over the 

continental slope and not over the deeper water of the Argentine Basin where the majority of 

foraging dives occurred. Hence, further research is warranted. 

     Previous studies of female elephant seals from Península Valdés reported no resting dives 

over the continental shelf (Campagna et al., 1995). In this study, all resting dives observed over 

the shelf involved gliding to the seafloor and then remaining stationary. Because previous 

research relied on time-depth recorders, which do not record speed or accelerometry (Campagna 
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et al., 1995; Campagna et al., 1998; Campagna et al., 2000), this resting behavior may not have 

been detected or confused with swimming along the seafloor (i.e., a typical, square-bottomed 

transit dive). This study described resting on the seafloor by southern elephant seals. It is 

unknown why they do not commence resting at the surface, but avoiding predators such as killer 

whales, which are in this area, may be an explanation. 

     Our observation of little to no foraging on the shelf is consistent with previous reports for 

females from this colony and with reports for post-breeding females from the Kerguelen Islands, 

Macquarie Island, and South Georgia (Campagna et al., 1995; Hindell et al., 2016; Labrousse et 

al., 2015). This is in contrast to post-breeding females from the Antarctic Peninsula that mainly 

forage on the continental shelf.  

     The time to cross the shelf was consistent with previous reports for post-breeding females 

from Península Valdés (Campagna et al., 1998). Over the continental shelf, dive durations for all 

dive types were shorter than over deep water, consistent with previous reports (Campagna et al., 

1995; Campagna et al., 1998). The majority of dives over the shelf were transit dives, which in 

this study had faster mean speeds and higher mean stroke rates. Crocker et al. (1994) 

hypothesized that northern elephant seals may maximize travel velocity to the detriment of dive 

duration to avoid predation by white sharks in shallower waters. Previous studies of females 

from Península Valdés indicated a mean dive duration of 12.7 min over the shelf and 23.4 

minutes over deep water (Campagna et al., 1995). These are similar to the overall mean dive 

durations observed in this study: 14 + 4.8 s.d. min over the shelf and 21.4 + 6 s.d. min over deep 

water.  

     Once off the continental shelf and over the continental slope, some seals began to engage in 

foraging dives, while other seals continued to transit for a day or two (foraging sporadically) 
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before beginning to intensely forage. Some exhibited clear, area-restricted searching from the 

satellite tracks at the surface. However, other seals foraged just as intensively while continuing to 

move away from the rookery with no apparent area-restricted search behavior. 

     A diel pattern was present in dives over the continental slope and Argentine Basin, consistent 

with known information about southern elephant seals diving in deep water (Campagna et al., 

1998; Hindell et al., 2016; McIntyre et al., 2011; McIntyre et al., 2010; Vacquié-Garcia et al., 

2015). Although this pattern is consistent with feeding on the deep scattering layer, its presence 

during transit and resting dives was unexpected and may be associated with predator avoidance. 

     The steeper descent angle and deeper depth during foraging dives suggests that the seals were 

preparing for a specific depth and/or a specific dive type as soon as they began descending. 

There was a moderate correlation between maximum dive depth and descent angle (Pearson’s 

correlation coefficient = 0.53, p-value <0.0001). In a study of free-range dives of Weddell seals 

(Leptonychotes weddellii), foraging dives were also deeper, covered the longest distance, and 

had steeper ascent and descent angles (Davis et al., 2013), consistent with deep-living prey.  

          The seals glided during descent for all dive types. A model of the energetic cost of transit 

and foraging dives in northern elephant seals indicated that gliding to depth in deep foraging 

dives is cost-effective and saves energy. This model also indicated that an ascent speed of 1.2 m 

sec-1 was the optimal speed for both deep and flat-bottom foraging dives (~ 400 m in depth) in 

which a gliding descent is performed. For deep foraging dives, this speed is the best compromise 

between minimizing the cost of ascent and maximizing dive duration. For flat-bottomed foraging 

dives, this ascent speed combined with a gliding descent increases the aerobic dive limit by up to 

1.8 minutes when compared to continuous stroking. This estimate of 1.2 m sec-1 is an exact 
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match for the mean speed of foraging dives over deep water in this study (Davis and Weihs, 

2007). 

     The shallower ascent angle during transit dives (22°) was consistent with optimal ascent angle 

estimates from Davis and Weih’s (2007) model. The model indicated that maximum horizontal 

displacement occurs at ascent angles of 20-30°. The model also plotted maximum depth of 

transit dives as a function of ascent angle, and projected a maximum dive depth of ~275-350 m 

for transit dives with ascent angles of 20-30°. Mean maximum depth of deep-water transit dives 

in this study was 307 m, falling within the projected range. The speed chosen for modeling the 

transit dives (1.2 m sec-1) was similar to the 1.25 m sec-1 mean for transit dives in this study. One 

interesting thing the model determined was that there is little savings in energetic cost compared 

to subsurface swimming if the primary purpose of the dive is transit. This suggests that there 

may be other factors at play here (e.g., predator avoidance). 

     Previous studies indicated that Marion Island females dive deeper than southern elephant seal 

females from other colonies (McIntyre et al., 2011). The mean maximum depths for the 

Península Valdés population included dives over the shelf. Marion Island is surrounded by deep 

water (Mcintyre et al., 2012), and thus this may not be a realistic comparison. Dive depths of 

Península Valdés females that occurred solely over the slope and deep water overlap with those 

of Marion Island females. During the daytime, dive depths of Marion Island and Península 

Valdés females were 517.8 + 162.9 s.d. m and 608 + 240 s.d., respectively. At night, dive depths 

were very similar for the two populations, with Marion Island females diving to 359 + 142.5 s.d. 

m and Península Valdés females diving to 370 + 213 s.d. m. These values were also similar to 

Kerguelen post-breeding females when only dives in water >1000 m are considered: daytime 

dive depth of 519.2 + 208.3 s.d. m and nighttime dive depth of 384.4 + 199.2 s.d. m (Guinet et 



 
 

53 
 

al., 2014). These data indicate that these females are all foraging on prey in the deep scattering 

layer, which appears to occur at similar depths across the foraging ranges of these seals. 

     Over the deeper waters of the continental slope and Argentine Basin, females showed a 

temporal pattern in dive type, with resting dives occurring more frequently during daylight 

hours. According to optimal foraging theory, marine mammals should minimize the cost of 

transport to their foraging locations (Crocker et al., 2001). Horizontally, the southern elephant 

seal females travel thousands of kilometers during their foraging trips. However, they may 

reduce the cost of transport vertically by saving energy during peak daytime hours, when prey 

are the deepest, using that time to rest, then increase foraging frequency when prey moves closer 

to the surface. An index for foraging success, the fraction of each dive associated with prey 

encounters, indicated that foraging dives during the day were significantly less successful than 

during dusk, night, and dawn over both the continental slope and the Argentine Basin. Research 

on the foraging behavior of Kerguelen Island females indicates that they forage more efficiently 

at night versus during the day; however, the authors did not suggest that the seals fed 

preferentially at night (Guinet et al., 2014). A large proportion of southern elephant seal tagging 

studies have used satellite-relay data loggers (SRDLs). The resolution of the data uplinked by 

these tags may be insufficient to reliably identify drift dives (McIntyre et al., 2011), and 

therefore it is unknown whether any temporal pattern that was present would have been detected. 

     The spherical first-time passage analysis indicated that three-dimensional movements occur 

on a scale of approximately 10 m. This is very similar to the only other known application of 

spherical first-time passage analysis based on data from northern elephant seals. That analysis 

found the highest variance at 8 m and a second smaller peak at 17 m (Adachi et al., 2017). 
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     In summary, this study both confirmed some previously known information and provided 

some new insights into the post-breeding foraging trips of female southern elephant seals from 

the Península Valdés colony. Females from this colony rapidly transit the continental shelf to 

forage over the continental slope and Argentine Basin, and once in deep water, they exhibit a 

diurnal diving pattern. The diel pattern applies not only to foraging dives, but to resting and 

transit dives as well, suggesting that another factor besides feeding on the deep scattering layer 

may be at play, such as predator avoidance. The seals conserve energy through varied means 

during their foraging trip. Their mean ascent swim speed of 1.2 m sec-1 during foraging dives is 

the optimal speed identified for energy savings in a northern elephant seal model. Their mean 

ascent angle of 22° for transit dives falls into the optimal range of 20-30° identified as covering 

the most distance for the least cost. Seals minimize the cost of transport to foraging grounds 

vertically by resting more during the day, when prey are further from the surface and when 

foraging dives are significantly less successful. By combining video and movement data, this 

study was able to categorize dives without video and identify prey encounters with 95% success 

using data from two sensors, the magnetometer and accelerometer. More research is needed to 

determine whether further refinement of dive type classification is possible, i.e. separating transit 

dives from searching dives, and to determine prey preference over deep water. 
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3. HABITAT ASSOCIATIONS OF FEMALE SOUTHERN ELEPHANT SEALS  

(Mirounga leonina) FROM PENÍNSULA VALDÉS, ARGENTINA 

3.1 Introduction 

     Southern elephant seals (Mirounga leonina) are wide-ranging predators that make a post-

breeding foraging trip of two months and a post-molt foraging trip of seven months (Campagna 

et al., 1999; Hindell et al., 2016; Lewis et al., 2006) While at sea, the distribution of southern 

elephant seals, like many apex marine predators, is often associated with oceanographic features 

(Campagna et al., 2006; Campagna et al., 2000; Cotté et al., 2015). This is thought to be a 

consequence of the enhanced productivity that is often linked with these features, which results 

in an accumulation of primary, secondary, and tertiary consumers through a trophic food web 

(Ballance et al., 2006; Simmons et al., 2007).  

     Female southern elephant seals from the Península Valdés, Argentina colony are known to 

forage along the Patagonian continental shelf break and in the Argentine Basin (Fig. 3.1) 

(Campagna et al., 1995; Campagna et al., 1998). At the shelf-break, the Malvinas Current, 

carrying cold sub-Antarctic water north from the Antarctic Circumpolar Current, meets the low-

salinity shelf water, which is freshened by discharges from the Magellan Strait to the south 

(Charo and Martinez, 2000; Jullion et al., 2010; Matano et al., 2010; Palma et al., 2008). This 

front is associated with temperature and salinity gradients and increased primary productivity 

(Campagna et al., 2000; Romero et al., 2006a). In the Argentine Basin, cold, relatively fresh 

water from the Malvinas Current and warm, salty subtropical water from the Brazil Current 

collide to produce the Brazil-Malvinas Confluence (Fig. 1.2), one of the most energetic regions 

of the world ocean. The Brazil-Malvinas Confluence is characterized by increased primary 
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productivity, large temperature gradients, and intense mesoscale eddy activity (Acha et al., 2004; 

Jullion et al., 2010; Legeckis and Gordon, 1982; Piola and Matano, 2001).  

 

 

 

 

 

 

 

 

 

Figure 3.1. Map depicting the Patagonian continental shelf, slope, and Argentine Basin. The 
shelf, which is <200 m in depth, extends 300-400 km east from Peninsula Valdés. The 
continental slope drops steeply to the Argentine Basin, which has depths of 5000-6000 m. 
Males forage over the continental shelf and slope, while females forage over the continental 
slope and Argentine Basin. Map data from ArcGIS and GEBCO. 
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     The primary purpose of the current study was to assess the association for foraging dives with 

location, bathymetry, productivity (chlorophyll-α), hydrographic variables (e.g., temperature, 

salinity, sea surface height), oceanographic features (e.g., eddies and confluence zones) and 

distinctive water masses during the post-breeding foraging trip of female southern elephant seals 

from Península Valdés, Argentina. Our hypothesis was that seals forage in association with 

cyclonic eddies generated by the collision of the Brazil and Malvinas Currents and in association 

with frontal zones as indicated by high surface temperature and salinity gradients and/or high 

chlorophyll concentration.   

3.2 Methods 

3.2.1 Animals, Instrumentation, and Data Processing 

     Miniature video-data recorders (VDRs, Pisces Design, La Jolla, CA) were attached to the 

heads of 12 adult female southern elephant seals 21 km north of Punta Delgada, Península 

Valdés, Argentina in October and November of 2012, 2013, and 2015 prior to their post-

breeding foraging trip. Females were sedated with an intramuscular injection of Telazol (0.5 mg 

kg-1). 

     The VDR (12 x 5.7 x 4.6 cm, weigh = 60 g in water) is enclosed in polyurethane and depth 

rated to 2,000 m. Six near-infrared Light Emitting Diodes serve as a light source for the Vision 

MOS mDVR2 monochrome digital video recorder. Compressed video is stored as MPEG4 files 

on a digital video recorder with 32 GB of memory, and data are stored on an 8 GB flash drive. 

All sensor data are recorded at 1 Hz, with the exception of speed (4 Hz) and the 3-axis 

accelerometer (16 Hz). Some instruments are equipped with a fast-acquisition Global Positioning 

System (GPS) that records geolocation at the surface. Power is supplied by two lithium ion 
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batteries (10 x 3 x 3 cm, mass = 270 g in water each). All sensors were calibrated prior to 

deployment. 

     The VDR was mounted on the head and the battery pack behind the head. The seals were also 

instrumented with two satellite transmitters (Spot 5 or 6, Wildlife Computers, Redmond, WA) 

and two VHF radio transmitters (Advanced Telemetry System, Isanti, MN). One of each was 

placed on the head and back to facilitate tracking of the animals at sea and when they returned to 

the rookery. All instruments were mounted on nylon-backed neoprene rubber and glued to the 

fur with neoprene cement after the fur had been cleaned with acetone. 

     In 2012 and 2013, the video was programmed to commence recording once the seal had 

exceeded a depth of 250 m, which indicated that it had reached the continental slope. In 2015, 

the video was programmed to begin recording 10 (n=2) or 20 (n=2) days after departing the 

rookery and once it had exceeded a depth of 250 m. Each seal was tracked at sea using satellite 

telemetry for the duration of the foraging trip. After returning to the rookery, seals were 

relocated using satellite and radio telemetry and sedated with an intramuscular injection of 

Telazol (0.5 mg kg-1) so that the instruments could be retrieved. 

     Video and data were downloaded and archived. The beginning and end of individual dives 

were determined based on the VDR’s saltwater switch, which indicated when the VDR was at 

the surface. Three-dimensional dive paths (course steered) for each dive were calculated using 

the AnimalTrack package in R (Farrel and Fuiman, 2013), which used speed, depth, and bearing 

to determine X, Y, and Z coordinates in 1 Hz. Course steered was corrected for set and drift 

using filtered ARGOS locations to establish the dive path (course made good). ARGOS locations 

were filtered by removing all Z class locations and all A|B locations that were not located within 

5 km and 2 hours of another location. The vmask function in the argosfilter package in R was 
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used to filter the remaining locations using a speed threshold of 2 m sec-1 (Freitas, 2010, 

McConnell et al., 1992). All locations occurring within 12 hours of another location were 

removed to increase the minimum time lag between correction points for set and drift. When the 

correction points were closer in time, even minute location errors created large drift corrections 

for a small subset of the data. 

     Four VDRs functioned fully with audio and video. Two VDRs were lost, two VDRs 

malfunctioned, and four VDRs recorded data but not video. VDRs recorded for 2-82 days. 

14,834 dives were recorded by eight seals among 2012-2016. 1037 were excluded due to various 

reasons including inaccurate speed and depth sensor readings. The remaining 13,797 dives were 

designated as foraging, resting, or transit by applying a random forest classification based on 22 

summary variables calculated for each dive (Appendix C: Figure C.6). 

3.2.2 Environmental Data Acquisition 

     Bathymetry data were obtained from The General Bathymetric Chart of the Oceans (GEBCO) 

(IOC, 2003). Chlorophyll-α (Chl-α, mg ml-3) data were accessed from NASA’s Earth 

Observations website and obtained from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) instrument aboard NASA’s Aqua and Terra satellites, consisting of 8-day composites 

at a 0.1° spatial resolution. Sea surface temperature data (SST, °C) were obtained from the same 

dataset at an 8-day temporal and 0.041° spatial resolution (NASA Goddard Space Flight Center, 

2014). Current speed (m sec-1) and direction (°) were calculated using data from NASA’s 

Physical Oceanography Distributed Active Archive Center’s (PO.DAAC) Ocean Surface Current 

Analysis Real-time (OSCAR) dataset, available in 5-day temporal and  0.33° spatial resolution 

(ESR, 2009). Sea surface height anomaly (m) data were obtained from NASA’s PO.DAAC 

website, and consisted of gridded data from TOPEX/Poseidon, Jason-1, Jason-2 and Jason-3 
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satellites at a 5-day temporal and 0.17° spatial resolution (Zlotnicki, 2016). Sea surface salinity 

(SSS) data, measured in practical salinity units (psu), were downloaded from NOAA’s National 

Oceanographic Data Center (NODC) and obtained from the European Space Agency’s (ESA) 

Soil Moisture and Ocean Salinity (SMOS) satellite at a 7-day temporal and 0.25° spatial 

resolution (Zhang, 2016). Sea surface temperature gradient and sea surface salinity gradient were 

calculated using the Spatial Analyst toolbox in ArcGIS. All oceanographic datasets were 

converted into raster images using either ArcGIS or R. Global eddy track data were processed by 

Centre National d’Etudes Spatiales (CNES) and downloaded from Archivage, Validation et 

Interprétation des données des Satellites Océanographiques (AVISO, 2017). Only eddies that 

persisted for a minimum of four weeks were retained in the dataset. The data for each eddy track 

included daily coordinates for the eddy centroid, eddy type (cyclonic or anticyclonic) and radius. 

Eddies matching the spatial and temporal extent of the study were extracted and daily raster 

images were created using the raster package in R. All individual raster images for each dataset 

were stacked using the raster package in R and coded by date. Values for each variable were 

extracted for all seal locations. Temperature (°C) for the upper 5 m of each dive (surface 

temperature) was extracted from the VDR data for each dive, providing higher-resolution 

information than the SST data. Maximum dive depth (m), as well as temperature (°C) and 

salinity (psu) at maximum depth were also extracted from the VDR data. 

3.2.3 Data Analysis 

     Generalized additive models (GAM) were used to determine the influence of environmental 

variables and time of day on presence/ absence of foraging during female southern elephant seal 

dives over the post-breeding foraging migration; binomial GAMs with a logit link and cubic 

spline smoothing functions were fit using the mgcv package in R. Of the 13,797 dives available 
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for analysis, 1,762 dives were eliminated due to missing environmental data. The remaining 

12,035 dives (8,206 of which were foraging) were used in the GAMs. Dives that were classified 

as foraging (see Chapter 2) were coded “1” for presence, while dives that were classified as 

resting or transit (non-foraging) were coded “0” for absence (Fig. 3.2). Initial variables included 

in the models included time of day (Hour in decimal form), bathymetry (m), sea surface salinity 

(psu), chlorophyll-α concentration (mg ml-3), surface temperature (°C, VDR data), sea surface 

temperature (°C, satellite data), sea surface height anomaly (m), vertical temperature gradient of 

the upper 50 m (°C m-1, calculated with VDR data), current speed (m sec-1), current direction (°), 

location (longitude and latitude), sea surface salinity gradient, sea surface temperature gradient, 

and sea surface height anomaly gradient. Seal ID number was added as a random effect. An 

autoregressive model of order 1 (AR1) was fitted to the model residuals with Seal ID number as 

a grouping variable due to the high autocorrelation between successive dives for each seal. 

Before fitting the models, variables were tested for concurvity using the mgcv package in R, 

which assesses to what degree each covariate can be modeled as a function of each of the 

remaining covariates (Wood, 2008). Variables were also tested for collinearity using the 

Spearman Rank Correlation Coefficient. If two variables exhibited concurvity or collinearity 

(>0.6), they were individually fit to a GAM with the remainder of the variables and the GAM 

with the lowest Akaike’s Information Criterion (AIC) was chosen as the starting GAM for the 

backward selection process. Once all variables exhibiting collinearity and/or concurvity were 

eliminated from the model, the least significant (lowest p-value) variable was removed from the 

GAM. This process was repeated as a stepwise procedure, removing the least significant variable 

until either all variables were significant (p-values <0.05) or there was an increase in the AIC of 

>1%. Model residuals were checked for temporal autocorrelation via partial autocorrelation 
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plots, spatial autocorrelation via variograms, and model fit via binning and plotting the residuals 

by the fitted values. 

    Summary statistics for foraging dives were computed for all variables. Boxplots were created 

to view univariate data distribution. Two-dimensional (2D) binned histograms for each pair of 

variables were created using the hexbin package in R to illustrate bivariate data distribution. 

Summary statistics and boxplots for salinity and temperature (VDR data) at the maximum depth 

of foraging dives were computed to ascertain depth, temperature and salinity ranges of prey. 

Conductivity sensors were not present on every instrument; salinity data were available for 3,995 

foraging dives recorded by three seals.  

     Neutral density (γn) of the water mass at the bottom of each foraging dive for which salinity 

values were present (n = 3,995) was estimated using latitude, longitude, temperature, salinity, 

and pressure (decibars) in conjunction with Matlab code provided by the Intergovernmental 

Oceanographic Commission (Jackett and McDougall, 1997). Neutral density is a continuous 

analog of potential density surfaces, which were previously the gold standard for fitting 

isopycnals to hydrographic data (Jackett and McDougall, 1997). Water mass was then identified 

based on neutral density (γn) values using water mass definitions for the Brazil-Malvinas 

Confluence area published by Jullion et al. (2010) (Fig. 3.3, Table 3.1).  

 
Water mass Neutral density (γn) 
Surface Water (SW) < 26 
Subtropical Mode Water (STMW) < 26.5 
Subantarctic Mode Water (SAMW) < 27.2 
Antarctic Intermediate Water (AAIW) < 27.55 
Upper Circumpolar Deep Water (UCDW) < 27.92 
North Atlantic Deep Water (NADW) < 28.11 
Lower Circumpolar Deep Water (LCDW) < 28.26 
Weddell Sea Deep Water (WSDW) >= 28.26 

Table 3.1. Water mass definitions (Jullion et al., 2010). Surface water includes low salinity shelf waters. 
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Figure 3.2. Map depicting seal locations over the Argentine shelf, slope, and Basin from 2012-2016 used in the 
binomial GAM. Red indicates absence of foraging, while green indicates presence of foraging. 
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Figure 3.3. Depth ranges for water masses across latitudes 29-54°S, encompassing  Georgia Basin, Argentine 
Basin, and Rio Grande Rise. Figure adapted from Jullion et al. (2010). ©American Meteorological Society. 
Used with permission. 
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3.3 Results 

3.3.1 GAM Results 

     Bathymetry, location (longitude and latitude), and sea surface salinity all exhibited pairwise 

concurvity. Surface temperature (measured by the VDR) was collinear with sea surface 

temperature (satellite-derived), and bathymetry was collinear with sea surface height anomaly 

gradient. GAMs including bathymetry and surface temperature resulted in the lowest AIC values, 

so sea surface height anomaly gradient, location, and sea surface salinity were excluded from the 

initial model before the backward selection process began. The final model AIC was 5,203 and 

% deviance explained was 40.6%. Variables retained in the final model were all significant (p-

value <0.05) and included time of day, bathymetry, sea surface height anomaly, chlorophyll-α 

concentration, and surface temperature. Additive effects plots indicated that bathymetries deeper 

than 3000 m, the period from dusk to dawn (1650-0739 GMT), chlorophyll-α concentration 

(>5.8 mg ml-3), lower sea surface height anomaly (<0.06 m), and surface temperatures of 11.7-

15.5°C were all associated with presence of foraging. Higher sea surface height anomaly (>0.06 

m) and surface temperatures of 7.1-11.7°C were associated with absence of foraging (Fig. 3.4).  

     Partial autocorrelation plots of the raw residuals showed that residual temporal 

autocorrelation was present (Fig. 3.5A). An AR1 model applied to the residuals improved the 

GAM fit (Fig. 3.5B). Since raw residual plots are not very useful for binomial models 

(Carruthers et al., 2008), residuals were binned and plotted by fitted values with a 95% 

confidence interval (Fig. 3.5C), which indicated a good fit. A variogram showed no residual 

spatial autocorrelation (Fig. 3.5D), indicating that any spatial autocorrelation was sufficiently 

modeled in the GAM via the bathymetry main effect (this exhibited concurvity with location) 

and/or the AR1 model. 
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Figure 3.4. Smooth functions of explanatory variables from the final GAM with 95% shaded confidence interval 
with rug plots indicating distribution of data points. Values >0 indicate a positive additive effect (increased 
presence of foraging), while values <0 indicate a negative additive effect (reduced presence of foraging). 
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3.3.2 Foraging habitat-associations at the surface 

     For foraging dives, the means and ranges over the slope and Argentine Basin were determined 

for sea surface salinity, surface chlorophyll-α concentration, sea surface height anomaly, and 

surface temperature (Figs. 3.6, 3.7, Table 3.2). Surface current direction ranged from -180° to 

180° for dives over the slope and deep water (Fig. 3.8). Seals were present in cyclonic (cold-

core) eddies for 20.6% of dives, in anticyclonic (warm-core) eddies for 4.9% of dives, and were 

not present in a detected eddy for 74.5% of dives (Fig. 3.9). 

Figure 3.5. Residual plots for the final GAM. A. Partial autocorrelation plot of raw model residuals. Values above 0.1 
indicate that temporal autocorrelation is present. B. Partial autocorrelation plot of standardized residuals after 
applying a first-order autoregressive model to the residuals. C. Binned plot of residuals by fitted values. D. 
Variogram. Sharply increasing values would indicate spatial autocorrelation. 
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 All Foraging Dives Slope Foraging Dives Basin Foraging Dives 
Bathymetry (m) 4516 + 1525 1792 + 807 5193 + 633 
Chl-α conc. (mg ml-3) 1.23 + 2.12 2.89 + 3.75 0.82 + 1.05 
Current speed (m sec-1) 0.32 + 0.24 0.29 + 0.15 0.33 + 0.26 
Surface temperature (°C)  12.32 + 2.24 11.03 + 2.16 12.64 + 2.14 
Sea surface height anomaly (m) 0.02 + 0.18 -0.01 + 0.1 0.03 + 0.19 
Sea surface salinity (psu) 34.29 + 0.27 34.21 + 0.19 34.32 + 0.27 

Figure 3.6. Boxplots of bathymetry and surface habitat variables for foraging dive locations over the slope (n = 
1585) and Argentine Basin (n = 6589). 

Table 3.2. Descriptive statistics for foraging dive surface environmental variables and bathymetry. 
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Figure 3.7. Binned shaded histograms depicting bivariate distributions of bathymetry and surface habitat variables 
for foraging dives (n=8206). 
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Figure 3.8. Circular histograms depicting distribution of current direction (°, binned into 30° segments) at foraging 
dives locations for A. all foraging dives (n=8206), B. slope foraging dives (n=1585), and C. deep water foraging 
dives (n=6589). 

Figure 3.9. Pie chart depicting percent of foraging dives (n=8206) that occurred within and outside of cyclonic 
(cold-core) eddies, anticyclonic (warm-core) eddies, and in waters not within an eddy. 
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3.3.3 Foraging habitat-associations at depth 

   Maximum dive depth over the slope was 501 + 234 s.d. m (range 2 to 1154 m) and 461 + 283 

s.d. m (range 2 to 1526 m) over deep water. Temperature at maximum depth was 3.73 + 0.8 s.d. 

°C (range 2.36 - 9.43 °C) over the slope and 3.74 + 1.27 °C (range 1.77 - 13 °C) over deep water. 

Salinity at maximum depth 33.56 + 0.21 s.d. psu (range 33.21 - 34.37 psu) over the slope and 

33.8 + 0.41 s.d. psu (range 33.28 - 38.06 psu) over the Argentine Basin (Table 3.3, Fig. 3.10). 

     Seals encountered water masses with neutral densities ranging from 25.85 to 28.52 γn (Table 

3.1, Fig. 3.3). Surface Water, Lower Circumpolar Deep Water, Weddell Sea Deep Water, and 

North Atlantic Deep Water were each encountered during < 1% of foraging dives (between 2-13 

total dives each). In the majority of dives (70%), seals encountered Sub-Antarctic Mode Water at 

a mean maximum dive depth of 434 + 250 s.d. m. Antarctic Intermediate Water was encountered 

in 17.4% of dives at a mean maximum dive depth of 540 + 300 s.d. m, Upper Circumpolar Deep 

Water in 10.7% of dives at a mean maximum dive depth of 461 + 257 s.d. m,, and Subtropical 

Mode Water in 1.7% of dives at a mean maximum dive depth 555 + 250 s.d. m (Figs. 3.11, 3.12, 

3.13). Upper Circumpolar Deep Water was encountered by one seal that foraged for a couple of 

weeks in waters at ~ 48°S (Fig. 3.13B), where this water mass is much more accessible, located 

at ~200 m from the surface as opposed to > 800 m from the surface near the Brazil-Malvinas 

Confluence (Jullion et al., 2010, Fig. 3.3). 

 

 

 All Foraging Dives Slope Foraging Dives Basin Foraging Dives 
Temp (°C) at max depth 3.74 + 1.27 3.73 + 0.8 3.73 + 1.33 
Salinity (psu) at max depth 33.84 + 0.41 33.55 + 0.21 33.95 + 0.42 
Maximum depth (m) 469 + 275 501 + 234 461 + 284 
Table 3.3. Descriptive statistics for foraging dive habitat at depth. 
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Figure 3.10. Boxplots for environmental variables at depth for foraging dives over the slope (n = 1585 for 
depth and temperature, n = 1087 for salinity) and over the Argentine Basin (n = 6589 for depth and 
temperature, n = 2908 for salinity). 
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Figure 3.11. Plot of salinity and temperature at the bottom of foraging dives colored by water mass  (n=3995). 
SW = Surface Water, STMW = Subtropical Mode Water, SAMW = Subantarctic Mode Water, AAIW = Antarctic 
Intermediate Water, UCDW = Upper Circumpolar Deep Water, NADW = North Atlantic Deep Water, LCDW = 
Lower Circumpolar Deep Water, WDSW = Weddell Sea Deep Water. 

Figure 3.12. Pie chart depicting percentage of dives within each water mass. Water masses with < 1% of dives 
are not shown. STMW = Subtropical Mode Water, SAMW = Subantarctic Mode Water, AAIW = Antarctic 
Intermediate Water, UCDW = Upper Circumpolar Deep Water. 
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Figure 3.13. Map of foraging dives for which neutral density could be calculated (salinity measurements 
available at maximum dive depth) colored by water mass in A. 2013 (1 seal) and B. 2015 (two seals). SW = 
Surface Water, STMW = Subtropical Mode Water, SAMW = Subantarctic Mode Water, AAIW = Antarctic 
Intermediate Water, UCDW = Upper Circumpolar Deep Water, NADW = North Atlantic Deep Water, LCDW = 
Lower Circumpolar Deep Water, WDSW = Weddell Sea Deep Water. 
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3.4 Discussion 

3.4.1 Bathymetry      

     Bathymetry was a significant explanatory variable in the final GAM, with increased 

likelihood of foraging occurring at bathymetries of  greater than 3,000 m. This corresponds to the 

lower slope and Argentine Basin, further confirming that female seals do not forage on the 

continental shelf in this location (Campagna et al., 1995; Campagna et al., 1998). 

3.4.2 Foraging habitat-associations at the surface 

     Although hydrographic features at the surface were significant in the GAM model, they 

represent habitat-associations that likely do not reflect the hydrographic conditions at depth 

(mean depth = 451 + 280 s.d. m) where elephant seals forage. Surface water temperature was a 

significant explanatory variable, with increased likelihood of foraging associated with surface 

temperatures of 11.7 - 15.5°C likely associated with mixed surface waters in the confluence 

zone.  Decreased likelihood of foraging was associated with surface temperatures of 7.1 - 

11.7°C. These surface temperatures were typically encountered in low-salinity Shelf Waters, 

where the seals did not forage.  The smooth function for surface temperature for values between 

15.5 - 20°C occurred on either side of the zero additive effect line, and therefore interpretation of 

the smooth function for temperature should center on values outside of this range.  

     According to the respective GAM smooth function, likelihood of foraging decreased with 

increasing sea surface height anomaly likely associated with anticyclonic (warm-core) eddies 

and meanders of the Brazil Current. Likelihood of foraging increased with decreasing sea surface 

height anomaly (<0.06 m) likely associated with cyclonic (cold-core) eddies and meanders of the 

Malvinas Current. The confidence intervals for the smooth function for sea surface height 
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anomaly for values <0.2 m occurred on either side of the zero additive effect line, and therefore 

caution should be used when interpreting the smooth function for these values. 

     Over 20% of all foraging dives occurred in cyclonic eddies, while less than 5% occurred in 

anticyclonic (warm-core) eddies. Studies of juvenile foraging behavior from Península Valdés 

described associations with the outer edge of both cyclonic and anti-cyclonic eddies (Campagna 

et al., 2006). The meeting of the Brazil and Malvinas Currents gives rise to one of the most 

energetic eddy fields in the world ocean (Piola and Matano, 2001), which the seals in this study 

were in the midst of during their foraging trip (Fig. 3.14). 

 

 

 

 

 

Figure 3.14. Map of study area with known eddies on A. Nov. 15, 2013. B. Dec. 15, 2013. C. Nov. 15, 2015. D. 
Dec. 15, 2015. Eddies represented in black are cyclonic (cold-core) eddies while eddies represented in white are 
anticyclonic (warm-core) eddies. This shows that the eddy field is very intense throughout the duration of the 
post-breeding foraging trip from year to year. Eddy track data downloaded from AVISO. 
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     Surface chlorophyll-α concentration was also a significant explanatory variable in the final 

GAM. Chlorophyll-α concentrations were higher on the slope than in deep water, likely due to 

the shelf-break front where a seasonal chlorophyll bloom occurs in the spring and persists 

through the summer (Romero et al., 2006b).  

     Sea surface temperature gradient and sea surface salinity gradient were not included in the 

final GAM because they were insignificant. A recent study on the habitat use of southern 

elephant seals from each of the other major populations (Kerguelen Islands, Macquarie Island, 

South Georgia, and the Antarctic Peninsula) found that frontal areas were not focal foraging 

locations and that seals from these colonies were able to forage successfully both over the 

continental shelf and in the deep ocean away from fronts (Hindell et al., 2016). The same 

conclusion cannot be reached in this study, however, as both sea surface height anomaly and 

chlorophyll-α concentration were significant explanatory variables. 

3.4.3 Foraging habitat-associations at depth  

     Seals made most foraging dives in Subantarctic Mode Water, followed by Antarctic 

Intermediate Water, Upper Circumpolar Deep Water, and Subtropical Mode Water. Sub-

Antarctic Mode Water, Antarctic Intermediate Water, and Upper Circumpolar Deep Water are all 

transported by the Malvinas Current. Sub-Tropical Mode Water and recirculated Antarctic 

Intermediate Water (at depths of 700-1000 m) are transported by the Brazil Current (Charo and 

Martinez, 2000; Jullion et al., 2010; Matano et al., 2010; Palma et al., 2008). A study of the 

foraging migrations of southern elephant seals from the other major sub-Antarctic colonies and 

the Antarctic Peninsula indicated that post-breeding females spent the most time in Antarctic 

Surface Water, followed by Antarctic Intermediate Water and Circumpolar Deep Water (Hindell 

et al., 2016), meaning that two of the main water masses used by seals in this study are shared 
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with other populations of southern elephant seals. Some seals from other colonies do not travel 

far enough north to encounter Subantarctic Mode Water. A study of southern elephant seal 

distribution from South Georgia, the most proximal major colony to Península Valdés, indicated 

that the seals spent the majority of their time in Upper Circumpolar Deep Water and it’s 

boundary with Antarctic Intermediate Water (Biuw et al., 2007). One seal in that study was 

associated with Sub-Antarctic Mode Water.  

     There is little information regarding the association of potential prey species with specific 

water masses in the southwest Atlantic. There is a fishery for Ilex argentinus, the Argentine 

short-fin squid, along the continental shelf-break. Although this squid is not a known prey 

species for southern elephant seals, Martiala hyadensi, a known prey species, is frequent bycatch 

in this fishery (Boyle and Rodhouse, 2008). Fish species that are known prey of southern 

elephant seals are also present over the Argentine continental slope and Argentine Basin. In one 

sampling study over the Argentine continental shelf and slope extending to ~48°W, 25 species of 

Southern Ocean fishes were recorded from 16 families, representing 15% of the ichthyofauna of 

the Southern Ocean (Cousseau et al., 2012). Of these 25 species identified, 9 are known prey 

species of southern elephant seals, including members of the families Bathylagidae, Gempylidae, 

Myctophidae, Nototheniidae, and Paralepididae. Another study that collected 47 species of fish 

from 23 families between 36°-56°S and 44°-62°W found that sub-Antarctic species were the 

most abundant (Figueroa et al., 1998). Of these 47 species identified, 10 are known prey species 

of southern elephant seals, including members of the families Bathylagidae, Centrolophidae, 

Gempylidae, Myctophidae, Paralepididae, and Photichthyidae. Information about temperature, 

salinity, or density of the water masses from which the fishes were sampled was not provided. 
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     In summary, post-breeding female southern elephant seals from the Península Valdés, 

Argentina colony foraged away from the continental shelf over the continental slope and 

Argentine Basin in predominantly sub-Antarctic waters, in temperatures ranging from 1.8°C - 

13°C and salinities ranging from 33.2 – 38.1 psu. The majority of dives were made in Sub-

Antarctic Mode Water, followed by Antarctic Intermediate Water. One seal foraging near the 

southern rim of the Argentine Basin made a series of foraging dives in Upper Circumpolar Deep 

Water, which is closer to the surface at that latitude. A small percentage of dives (<2%) were 

made in Sub-Tropical Mode Water. Our hypotheses were upheld; seals foraged in association 

with areas of higher primary productivity as measured by chlorophyll-𝛼𝛼 concentration and in 

areas of negative sea surface height anomaly likely corresponding to meanders and anti-cyclonic 

eddies originating from the Malvinas Current; 21% of foraging dives were made within cyclonic 

eddies.  
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4. THE VIABILITY OF VIBRISSAE AS SENSORY STRUCTURES FOR  

PREY DETECTION AND CAPTURE IN ELEPHANT SEALS1 

4.1 Introduction 

     Vibrissae are highly specialized hairs that are present at one or more developmental stages in 

the majority of therian taxa (Ahl, 1986). Pocock (1914) completed a comprehensive study of the 

arrangement of the vibrissae in a wide range of mammalian species and concluded that the 

architecture is evolutionarily highly conserved. While absent in prototherians, vibrissae are 

present in both eutherians and metatherians, indicating that they evolved before these two clades 

diverged (Pocock, 1914) over 160 MYA (Luo et al., 2011). Vibrissae consist of a hair follicle 

encircled by prominent blood sinuses and are therefore referred to as Follicle-Sinus Complexes 

(F-SCs) (Rice et al., 1986), each of which is encased in a dense connective tissue capsule (Patrizi 

and Munger, 1966). Surrounding the vibrissal hairshaft is the follicle proper, composed of the 

outer root sheath (ORS) and inner root sheath (IRS), and derived from the epidermis. Adjacent to 

the ORS is the glassy membrane (GM), contiguous with the basement membrane. Flanking the 

GM is the mesenchymal sheath (MS), derived from the dermis along with the dermal capsule 

(DC). Between the MS and the DC is the sinus cavity (Van Horn, 1970). In pinnipeds, the blood 

sinus cavity is split into three sections: the lower cavernous sinus (LCS), the ring sinus (RS), and 

the upper cavernous sinus (UCS). The ring sinus is separated from the UCS by the conical body 

(Marshall et al., 2006) and contains a collar-like projection of the MS referred to as the ringwulst 

(Ling, 1977). In general, vibrissal hairshafts are longer than pelage hairs and F-SCs are larger 

and more highly innervated than typical pelage hair follicles (Ahl, 1987; Reep et al., 2002). Each 

vibrissa acts as a biomechanical filter (Ginter, 2011; Sane and McHenry, 2009) that conveys 
                                                           
1 The contents of this section are reprinted with permission from McGovern, K.A., Davis, R.W., Marshall, C.D., 
2015. Are vibrissae viable sensory structures for prey capture in northern elephant seals, Mirounga angustirostris? 
Anat. Rec. 298, 750-760. 
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information regarding external stimulation to mechanoreceptors located in the lower part of the 

follicle (Ling, 1966; Yablokov and Klezeval, 1969). 

     There is a progressive increase in F-SC innervation with increased aquatic specialization. 

Semiaquatic and fully aquatic mammals generally have higher innervation than terrestrial 

mammals (Dehnhardt et al., 1999; Hyvärinen et al., 2009; Marshall et al., 2014a). In lieu of 

performance data, innervation can be used as a proxy for sensitivity (George and Holliday, 

2013). Although there are few comparative data, the average number of axons per vibrissa in 

seals ranges from 1,000 to 1,600 (Hyvärinen et al., 2009; Marshall et al., 2006; Yablokov and 

Klezeval, 1969), 5- to 10-fold more than that of terrestrial mammals (Dehnhardt et al., 1999; 

Hyvärinen and Katajisto, 1984; Hyvärinen et al., 2009). We hypothesized that NES mystacial 

vibrissae were similar in microstructure to the vibrissae of other seals and that each F-SC was 

innervated by a minimum of 1,000 axons. 

4.2 Materials and methods 

     Mystacial vibrissal pads were obtained from nine stranded NES (five weaned pups, two 

unweaned pups, and two yearlings) that died during rehabilitation efforts at the Marine Mammal 

Center in Sausalito, CA. Samples were fixed in phosphate buffered physiological formaldehyde. 

The number and distribution of vibrissal hairshafts were quantified and mapped for each 

mystacial mask. Measurements of length and width were made for individual vibrissal hairshafts 

using digital calipers. Since vibrissal hairshafts were oval in cross-section, two width 

measurements (maximum diameter and minimum diameter) were recorded. Larger F-SCs were 

dissected from the mystacial mask and sectioned at 35 to 40 µm on a Lipshaw 80A microtome 

fitted with a Physiotemp freezing stage. A total of 18 F-SCs were sectioned in the longitudinal 

plane and 15 F-SCs in cross-section. Sections were stained with either a modified Masson's 
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trichrome stain (Masson, 1929) or a modified Bodian silver stain (Bodian, 1936) following Reep 

et al. (2001) and Marshall et al. (2006). Longitudinal sections from the center of the F-SC and 

cross-sections from the center of the LCS that had been stained with trichrome and silver were 

used to characterize the microstructure of the F-SCs. All longitudinal measurements were made 

at the center of the F-SC. All cross-sectional morphometrics were made at the midlevel of the 

LCS (N = 12 for HS measurements; N = 14 for all other measurements). Silver stained cross-

sections midway through the LCS were used to quantify axons. For each F-SC, all axons were 

counted for three consecutive cross-sections at the midlevel of the LCS. Axon counts from the 

three sections were then averaged for each F-SC. Micrographs were collected using a Nikon 

Eclipse microscope and SPOT Pursuit camera. Measurements were made using SPOT Advanced 

software. No adjustments were made to micrographs after photos were taken, with the exceptions 

of brightness and contrast enhancement, rotating, flipping, and the addition of scale bars to some 

images, as well as aligning of successive micrographs to reproduce the longitudinal sections. 

     To characterize NES F-SCs and to provide additional comparative data with other studies 

(e.g., Hyvärinen et al., 2009; Marshall et al., 2006), the following morphometric data were 

collected from histologically processed longitudinal sections: (1) maximum F-SC length, (2) 

maximum total sinus length, (3) maximum UCS length, (4) RS length, (5) maximum LCS length, 

(6) maximum RS width, (7) maximum DC thickness, and (8) maximum hair shaft (HS) diameter 

at the level of the RS. The following morphometrics were collected from histologically 

processed cross-sections at the level of the LCS: (1) mean maximum diameter of the F-SC, (2) 

mean maximum diameter of the LCS, (3) mean longitudinal axis of the HS, (4) mean 

perpendicular axis of the HS, (5) mean longitudinal axis of the ORS, (6) mean perpendicular axis 

of the ORS, and (7) DC thickness. All measurements are reported as means with standard 
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deviations. Separate linear regressions were conducted modeling F-SC size as a function of LCS 

diameter, F-SC length, animal body length, and animal body mass to see if any of these factors 

predict F-SC size. 

4.3 Results 

4.3.1 Vibrissal Hairshafts 

The mean number of mystacial vibrissae was 100.4 ± 2.65 (range 97–105), and they were 

arranged in seven rows and 9 to 10 columns (Fig. 4.1). The vibrissal hair shafts were shortest at 

the rostrodorsal edge of the mystacial pad (range 7.54–20.11 mm) and successively increased in 

length approaching the caudoventral aspect (range 73.27–138.14 mm). They were oval in cross-

section and exhibited beaded profiles. Maximum diameter ranged from 1.7 to 3.6 mm in 

rostrodorsal vibrissae to 10.9 to 16.6 mm in caudoventral vibrissae. Minimum diameters were 

1.6 to 2.4 mm and 6.9 to 13.1 mm for rostrodorsal and caudoventral vibrissae, respectively. All 

axial diameters were measured at the hair-skin interface where the hair shaft exits the follicle. 

 

 
Figure 4.1. Representative schematic diagram of individual vibrissae on one side of the mystacial array. 

http://onlinelibrary.wiley.com/enhanced/figures/doi/10.1002/ar.23061#figure-viewer-ar23061-fig-0001
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4.3.2 F-SC Microstructure 

     The F-SCs had a tripartite sinus organization and were comprised of an UCS, RS, and LCS 

surrounded by a DC of dense connective tissue (Fig. 4.2). A small, asymmetrical ringwulst was 

present within the RS, and the RS and UCS were separated by a thick connective tissue band 

adjoining apical to the inner conical body (ICB) (Fig. 4.3). There were thick and robust 

connective tissue trabeculae traversing the UCS, while only very thin and delicate trabeculae 

were present in the LCS. The RS was devoid of any trabeculae. Longitudinal and cross-sectional 

morphometrics are detailed in Tables 4.1 and 4.2. 

 

 
Figure 4.2. A. Longitudinal section. B. Longitudinal section; arrows point to the deep vibrissal nerve (DVN); A 
processed with a modified Masson's trichrome stain, B processed with a Bodian silver stain. 

http://onlinelibrary.wiley.com/enhanced/figures/doi/10.1002/ar.23061#figure-viewer-ar23061-fig-0002
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 Mean S.D. Minimum Maximum 

F-SC length (mm) 19.99 1.65 15.32 21.85 

Total sinus length (mm) 18.17 1.65 13.68 20.47 

UCS length 8.62 1.07 6.08 10.36 

% of total sinus length 47.3 2.5 43.8 50.7 

RS length (mm) 2.53 0.38 1.85 2.95 

% of total sinus length 13.9 1.6 11.8 16.2 

LCS length (mm) 6.65 0.62 5.13 7.32 

% of total sinus length 36.6 2.1 32.6 39.1 

RS width (mm) 3.51 0.15 3.30 3.82 

DC thickness at level of RS (mm) 0.46 0.04 0.37 0.53 

 

 

 

 

Figure 4.3. Ring sinus and asymmetrical ringwulst, processed with a modified Masson's trichrome stain. 

Table 4.1. Longitudinal section F-SC morphometrics. 

 

http://onlinelibrary.wiley.com/enhanced/figures/doi/10.1002/ar.23061#figure-viewer-ar23061-fig-0003
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    Other structural features included the presence of a glandular network composed of sebaceous 

glands and tubular glands spanning the upper ∼4 to 5 mm of the UCS (Fig. 4.4). The tubular 

glands had a myoepithelium and were putatively identified as apocrine sweat glands. Granules of 

an unknown substance ∼1 µm in diameter were observed within the secretory portion of the 

apocrine sweat glands for some of the samples, which further supported the identification. There 

were four or more sebaceous glands and two or more apocrine sweat glands for each F-SC; 

secretions of each appeared to empty directly into the hair canal. The apocrine sweat glands were 

located along the periphery of the UCS in close proximity to the DC, while the sebaceous glands 

were more centrally located. 

     Blood vessels were observed to transect the DC and enter the F-SC at its base and at the mid-

UCS. Putative nutritional blood vessels transected the DC in the upper UCS adjacent to the 

glandular network (Fig. 4.5). 

4.3.3 F-SC Innervation 

     The deep vibrissal nerve (DVN) entered through the base of the DC and subdivided into 

smaller branches that coursed apically through the LCS (Fig. 4.2B). Branches extended through 

 Mean S.D. Minimum Maximum 
Max diameter of the F-SC (mm) 4.30 0.20 4.02 4.70 

Max diameter of the LCS (mm) 3.44 0.19 3.16 3.84 

Mean longitudinal axis of HS (mm) 1.38 0.15 1.15 1.66 

Mean perpendicular axis of HS (mm) 1.02 0.11 0.87 1.22 

Ratio HS diameter 0.74 0.05 0.67 0.81 

Mean longitudinal axis of ORS (mm) 2.13 0.17 1.82 2.46 

Mean perpendicular axis of ORS (mm) 1.67 0.18 1.42 2.06 

Ratio ORS diameter 0.78 0.05 0.71 0.87 

Table 4.2. Transverse section F-SC morphometrics. 
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the LCS, RS, and RW to the ICB, innervating structures along this path. Axons terminated on 

presumptive mechanoreceptors located along the junction of the GM and ORS in the LCS, RS, 

and ICB. No axons were observed in the UCS, indicating that a superficial vibrissal nerve (SVN) 

was not present. 

     The mean number of axons present at the level of the mid-LCS was 1,584.89 ± 281 (N = 15) 

(range 1,164–2,161) (Fig. 4.6) and was not highly correlated with LCS diameter, F-SC length, or 

animal length. There was a weak relationship (R2 = 0.65) between the number of myelinated 

axons and body mass. Mechanoreceptors presumed to be Merkel-cell neurite complexes (MNCs) 

and lanceolate receptors were present along the junction of the GM and ORS in the LCS and RS 

(Fig. 4.7). 

 

 
Figure 4.4. Sebaceous and tubular glands located within the glandular network of the UCS. A. The secretory 
portion of a tubular gland is circled (calibration mark is 200 µm). SG = sebaceous gland element, TG = tubular 
gland element. B. Tubular gland located within the glandular network of the UCS (calibration mark is 100 µm); 
A and B processed with a modified Masson's trichrome stain. 

http://onlinelibrary.wiley.com/enhanced/figures/doi/10.1002/ar.23061#figure-viewer-ar23061-fig-0005
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Figure 4.5. Blood vessels of the F-SC. A. Blood vessel entering through the DC at the base of the F-SC. 
BV = blood vessel. B. Putative nutritional blood vessel transecting the DC and entering the glandular network in 
the upper UCS. C. Blood vessel traversing the DC at the mid-UCS; A, B, and C processed with a modified 
Masson's trichrome stain. 
 

Figure 4.6. Axon bundles in the LCS. A. Cross-section at the level of the mid-LCS. B. Axon bundle (calibration 
mark is 10 µm). Myelinated sheaths of individual axons are stained red; A and B processed with a Bodian silver 
stain. 
 

http://onlinelibrary.wiley.com/enhanced/figures/doi/10.1002/ar.23061#figure-viewer-ar23061-fig-0004
http://onlinelibrary.wiley.com/enhanced/figures/doi/10.1002/ar.23061#figure-viewer-ar23061-fig-0006
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Figure 4.7. Mechanoreceptors in the LCS. A. Mechanoreceptors (MNCs) located at the junction of the GM and 
ORS in the upper LCS. B.Mechanoreceptors located along the junction of the GM and ORS in the upper 
LCS. C. Presumed Merkel cell-neurite complexes (MNCs, *) in the upper LCS (calibration mark is 10 µm) D. 
Nerve tufts (grayish streaks along GM) terminating on mechanoreceptors in the upper LCS (calibration mark is 
10 µm); A processed with a Bodian silver stain; B, C, and D processed with a modified Massons's trichrome 
stain. 

http://onlinelibrary.wiley.com/enhanced/figures/doi/10.1002/ar.23061#figure-viewer-ar23061-fig-0007
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4.4 Discussion 

4.4.1 Vibrissal Hairshafts 

     The number of vibrissae in the mystacial array of NES is similar to that of other phocids that 

forage pelagically (Dehnhardt and Kaminski, 1995; Ling, 1966, 1972; Ling, 1977; Marshall et 

al., 2006; Yablokov and Klezeval, 1969). The longest vibrissa measured in this study was 13.8 

cm. The two yearlings in this study had longer vibrissae than the pups. It is probable that NES 

vibrissae attain even longer dimensions in adults. It is known that larger southern elephant seals 

(Mirounga leonina) have longer vibrissae than smaller animals, with lengths measuring up to 16 

cm in large adults (Ling, 1966). Among other pinnipeds, maximum vibrissal lengths are 4 cm in 

the Ross seal (Ommatophoca rossii) (Ling, 1972), 22 cm in bearded seal (Erignathus barbatus) 

juveniles (Marshall et al., 2006), and 15 cm in northern fur seals (Callorhinus ursinus) (Ladygina 

et al., 1985), although these are approximations because over time vibrissae can sustain damage 

and wear, becoming abraded (Marshall et al., 2006). 

     The beaded profile in NES vibrissal hair shafts is a distinctive feature observed in most 

species of phocids (Ginter et al., 2012; Ginter et al., 2010; Hanke et al., 2013; Hyvärinen, 1995; 

Hyvärinen et al., 2009; Ling, 1966; Yablokov and Klezeval, 1969), with the known exceptions of 

monk seals (Monachus sp.), bearded seals, Ross seals, and leopard seals (Hydrurga leptonyx) 

(Berta et al., 2006; Ginter et al., 2012; Ginter et al., 2010; Ling, 1972; Marshall et al., 2006). 

This stands in contrast to the smooth vibrissal hair shafts of otariids and terrestrial mammals 

(Ginter et al., 2012; Hanke et al., 2013; Hyvärinen et al., 2009) and has functional significance in 

terms of sensory perception. The beaded profile of harbor seal vibrissae suppresses vortex 

shedding while the vibrissae are moving through water, resulting in a higher signal-to-noise ratio 

than that experienced by smooth vibrissae (Hanke et al., 2013; Hanke et al., 2010). 
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4.4.2 F-SC Microstructure 

     The average F-SC length of NES (20 mm) was similar to that observed in other pinnipeds, 

which include 18 mm in Ross seals (Ling, 1972), 19.1 mm in bearded seals (Marshall et al., 

2006), and ∼20 mm in ringed seals (Hyvärinen and Katajisto, 1984).  In this study, the RS 

comprised 14% of the F-SC length in NES, which is lower than the roughly 20% reported in the 

southern elephant seal (Ling, 1966) but similar to the 13% reported in bearded seals (Marshall et 

al., 2006). Qualitatively, the ringwulst in NES mystacial F-SCs appears similar in size to that 

described in southern elephant seals (Ling, 1966), but appears much smaller than that observed 

in bearded and ringed seals (Hyvärinen, 1989, 1995; Marshall et al., 2006). The presence of an 

UCS is a distinctive feature of pinniped vibrissae (Hyvärinen, 1989; Hyvärinen et al., 2009; 

Marshall et al., 2006). The UCS comprised 47% of the F-SC length in NES, which is similar to 

about 40% in southern elephant seals (Ling, 1966) and ∼60% in bearded seals (Marshall et al., 

2006) and ringed seals (Hyvärinen, 1989). Dehnhardt et al. (2003) hypothesized that the long 

UCS functions to thermally protect the ICB, RS, LCS, and associated mechanoreceptors, thereby 

maintaining discriminatory capabilities when diving in cold water (Hyvärinen, 1989; Hyvärinen 

and Katajisto, 1984; Hyvärinen et al., 2009). Measurements of follicle temperature and thermal 

imaging of harbor seals have shown that F-SC temperature remains elevated above ambient and 

that vibrissae do not lose sensitivity in colder water (Dehnhardt et al., 1998; Erdsack et al., 

2014). A similar outcome may be achieved by arteriovenous anastomoses thought to be present 

in the dermis surrounding the F-SCs in ringed seals and Florida manatees (Trichechus manatus 

latirostris) (Hyvärinen and Katajisto, 1984; Sarko et al., 2007) and by an extended neck area in 

the F-SC of Australian water rats (Hydromys chrysogaster) which comprises 20% of the total F-
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SC length (Dehnhardt et al., 1999). An enlarged UCS in excess of 55% may be indicative of ice 

seals inhabiting very cold waters. Additional comparative data are needed to test this hypothesis. 

     Blood vessels were observed entering the F-SC at the base and transecting the DC at the level 

of the UCS. Vessels crossing the upper UCS appeared to intermingle with elements of the 

glandular network to supply nutrients to the glands. Vessels entering at the base or crossing the 

mid-UCS appeared to empty directly into the sinus. Blood vessels supplying the UCS in 

pinnipeds have not been previously described; blood vessels have been documented penetrating 

the F-SC solely at the base (Hyvärinen, 1989; Hyvärinen and Katajisto, 1984; Stephens et al., 

1973; Yablokov and Klezeval, 1969). Blood vessels were not observed transecting the DC in the 

RS. Yablokov and Klezeval (1969) commented on the curious lack of blood vessels traversing 

the side of the follicle in the walrus, hooded seal, and Greenland seal, as they had observed that 

blood vessels bisected the DC in the F-SCs of mysticetes at numerous places along the side of 

the follicle. Cats, rats, and rhesus monkeys also have blood vessels that transect the DC on the 

side of the follicle (Ebara et al., 2002; Van Horn, 1970). This is the first evidence to suggest that 

blood supply to the LCS and UCS may be separate and distinct. It is possible that the thick 

connective tissue band between the UCS and RS effectively prevents blood flow between the 

UCS and the RS/LCS. This has implications regarding thermoregulation of the F-SC and 

associated mechanoreceptors and warrants further investigation. 

     Because blood is incompressible, even a slight deflection of the vibrissa will shift the fluid in 

the sinus (Japha, 1910). This suggests that the vibrissa could be rendered more or less sensitive 

by increasing or decreasing the blood pressure within the sinus. Recording of afferent neurons 

from the F-SCs of cats during stimulation of the vibrissae revealed that opening the follicle, and 

thereby decreasing blood pressure within the sinus complex, completely stopped or weakened 
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spike activity from certain slow-adapting receptors (Gottschaldt et al., 1973). The presence of 

blood vessels in the LCS and UCS of the northern elephant seal indicates the ability to regulate 

blood pressure, and thus sensitivity, within the F-SC. 

     Tubular glands were observed in the upper UCS of NES mystacial vibrissae. Similar 

structures were also described in southern elephant seals (Ling, 1966) and Ross seals (Ling, 

1972); studies of the vibrissae of bearded seals and ringed seals did not report these structures 

(Hyvärinen and Katajisto, 1984; Hyvärinen et al., 2009; Marshall et al., 2006). The function of 

these glands in NES is unknown, but apocrine sweat glands are present to some degree in 

association with pelage hairs in all pinnipeds, albeit reduced in size from those of terrestrial 

mammals. Although there is a consensus that otariids have apocrine sweat glands associated with 

the majority of pelage hair follicles, there is less agreement about the pervasiveness of these 

glands in phocid seals. Some studies have reported their existence in most or all pelage hair 

follicles (Gray et al., 2006; Ling, 1968; Montagna and Harrison, 1957), while other studies have 

described a less frequent occurrence on specific parts of the body (Khamas et al., 2012). 

Apocrine sweat glands are more prominent in otariids than phocids and may even have some 

function in thermoregulation. While it is doubtful that there is any thermoregulatory benefit in 

phocids (Khamas et al., 2012; Ling, 1965, 1970), it is probable that the structures have some 

chemosensory function during haul-out behaviors. Studies of the development of pelage hairs in 

southern elephant seal fetuses showed that the apocrine sweat glands begin to form before the 

sebaceous glands, although the secretory tubular portion is slower to develop and is not complete 

until just before or shortly after birth (Ling and Thomas, 1967). We suggest that apocrine sweat 

glands may provide chemosensory information either for mom-pup recognition or sexual 

signaling. There is some evidence that enlarged apocrine sweat glands associated with pelage 
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follicles on the face are linked to sexual signaling in male gray seals (Halichoerus grypus) and 

male ringed seals (Hardy et al., 1991). Ahl (1986) suggested that movement of the vibrissae may 

function to disseminate pheromones. 

4.4.3 F-SC Innervation 

     The DVN penetrated the DC of NES at the base rather than laterally as exhibited in terrestrial 

mammals. This entry location has also been reported in other pinnipeds and mysticete whales 

(Japha, 1910; Ling, 1966; Marshall et al., 2006; Stephens et al., 1973). Effort was spent 

searching for axons in the UCS since Ling (1966) reported observing axons in the UCS of 

southern elephant seal mystacial F-SCs. However, no axons were observed in the UCS nor other 

pinniped F-SCs for which data are available (Hyvärinen et al., 2009; Marshall et al., 2006). The 

F-SCs of all terrestrial mammals studied thus far, as well as the semiaquatic Australian water rat, 

are innervated by the SVN at the apical portion of the follicle and by the DVN near the follicular 

base (Dehnhardt et al., 1999; Dykes, 1975; Rice et al., 1986). 

     The average number of axons per vibrissa (1,584) was similar to that observed in other 

pinnipeds: bearded seals 1,314 (max 1,650) (Marshall et al., 2006), harp seals ∼1,100 (Yablokov 

and Klezeval, 1969), and ringed seals 1,350 (Hyvärinen et al., 2009). Overall, innervation to the 

mystacial field is similar among most pinnipeds studied, with the exception of bearded seals, 

which have increased innervation to the mystacial field as a result of their greater number of 

vibrissae (122 per side compared with 50 per side in NES). This is likely due to differences in 

foraging location (benthic vs. pelagic) and use of vibrissae (active touch vs. of hydrodynamic 

sensation) (Marshall et al., 2006). The estimated mean number of axons innervating the 

mystacial array in NES is 159,097. This number is remarkably close to that reported for ringed 

seals and sea otters (Hyvärinen et al., 2009; Marshall et al., 2014a). The number of axons 
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innervating each F-SC in NES and other pinnipeds indicates that these are extremely sensitive 

sensory organs. Neurological recordings of the region of the somatosensory cortex that receives 

afferent fibers from mystacial vibrissae in northern fur seals provides further evidence for the 

sensitivity of these structures in pinnipeds; the vibrissal projections have their own dedicated 

region within the cortical region that represents the face (Ladygina et al., 1985). 

     The increased innervation to individual pinniped F-SCs relative to that of terrestrial and 

semiaquatic animals cannot be attributed solely to the increase in F-SC length that is also 

observed. Individual F-SCs in the humpback whale (Megaptera novaeangliae), which also 

average about 20 mm in length, are innervated by 300 to 450 axons (Japha, 1910). Likewise, F-

SCs approaching similar lengths (10.7–18.5 mm) in the Florida manatee are innervated by 210 to 

254 axons (Reep et al., 2001). In contrast, the caudal F-SCs of Australian water rats, which 

measure ∼6.3 mm in length, are each innervated by an average of 560 axons (Dehnhardt et al., 

1999). This information indicates that innervation cannot be predicted by F-SC size alone when 

making comparisons between taxa. 

     Within species, there is some evidence that larger F-SCs are innervated by a larger number of 

axons. Ringed seal caudoventral F-SCs are innervated by an average of 1,540 axons compared 

with 1,050 to 1,200 axons in smaller rostrodorsal F-SCs (Hyvärinen et al., 2009) There is a 

similar trend in Australian water rats, with 537 versus 363 axons in caudoventral and 

rostrodorsal F-SCS, respectively (Dehnhardt et al., 1999). The current study focused on 

caudoventral F-SCs of NES; further investigation is needed to determine whether axon counts 

scale to F-SC size in this species. For this reason, the projected mean number of axons 

innervating the mystacial array in NES predicted in this study should be regarded as a maximum 

estimate. In the present study, axon counts were conducted at the midlevel of the LCS. It is 
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undetermined if larger F-SCs are innervated by a greater number of axons or if there is greater 

branching of axons before DVN entry into larger F-SCs. Is it unknown to what extent (or indeed, 

whether) individual axons from the DVN branch as they ascend through the F-SC. Hyvärinen et 

al. (2009) conducted axon counts on the DVN just before entry into the F-SC in ringed seal 

vibrissae and obtained very similar numbers (1,540 axons per caudal F-SC compared with 1,584 

in this study), so it seems unlikely that much branching of individual axons occurs between the 

base of the F-SC and the mid-LCS. Whether branching of individual axons occurs in the upper 

LCS or RS is unknown. Substantial branching of axons for an individual F-SC would have 

implications regarding the directionality of sensory information from individual vibrissae. It is 

worth noting that most individual F-SCs are represented by similarly sized cortical areas in the 

northern fur seal somatosensory cortex, with the exception of the first, generally smaller, row of 

vibrissae, which are each represented by reduced cortical areas (Ladygina et al., 1985). 

4.4.4 Use of Vibrissae 

     The mystacial vibrissae of pinnipeds are highly mobile (Ahl, 1986; Hyvärinen, 1995) due to a 

lack of strong connective tissue attachments between the F-SCs and the surrounding dermis 

(Yablokov and Klezeval, 1969). Striated muscle fibers are attached to the bases of pinniped F-

SCs (Hyvärinen, 1989; Ling, 1966; Marshall et al., 2006), demonstrating that they are under 

voluntary control (Dehnhardt et al., 2003). Mystacial vibrissae are protracted when seals use 

them for active touching (Dehnhardt, 1994; Dehnhardt and Dücker, 1996), investigating water 

movement (Wieskotten et al., 2011), or pursuing a hydrodynamic trail (Dehnhardt et al., 2001; 

Gläser et al., 2011; Schulte-Pelkum et al., 2007). 

     Mechanoreceptors of NES F-SCs characterized in this study deserve detailed follow-up with 

electron microscopy. However, based on our observations, we predict that mechanoreceptor 
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types and locations of NES are consistent with that of other pinnipeds. In general, F-SCs of 

pinnipeds feature a myriad of mechanoreceptor types also found in terrestrial species (Rice et al., 

1986), including lanceolate endings, Merkel-cell neurite complexes (MNCs), and lamellated 

corpuscles (Dehnhardt and Dücker, 1996; Dykes, 1975; Hyvärinen, 1989; Hyvärinen and 

Katajisto, 1984; Marshall et al., 2006; Stephens et al., 1973). These mechanoreceptors are 

located along the junction of the GM and the ORS in the LCS and RS (Hyvärinen, 1995; 

Marshall et al., 2006). The LCS of southern elephant seals is reported to possess more delicate 

and elastic trabeculae than the UCS, and is thus exposed to the greatest amount of bending (Ling, 

1966). Our observations confirm this distinction in NES. It has been hypothesized that F-SC 

mechanoreceptors are compressed on the leading side of the deflected shaft and stretched on the 

opposite side (Dehnhardt et al., 1999; Dykes, 1975; Gottschaldt et al., 1973). As in other seals, 

the hair shaft of NES is keratinized throughout its entire length, and the ORS maximum to 

minimum diameter ratio is practically identical to that of the HS so that forces should transmit 

effectively from the outer HS to the mechanoreceptors located in the GM. 

     NES likely use a combination of sensory modalities to locate prey underwater (Schulte-

Pelkum et al., 2007), and there is increasing evidence that the vibrissae are an important sensory 

modality for foraging in all pinnipeds. Studies with captive harbor seals, California sea lions, and 

walruses have demonstrated that they are able to use their vibrissae to accurately discriminate 

between objects of different sizes and shapes with a high resolving capacity similar to that of a 

prehensile organ (Dehnhardt, 1990; Dehnhardt and Dücker, 1996; Dehnhardt and Kaminski, 

1995; Kastelein and Van Gaalen, 1988). California sea lions and harbor seals are also able to use 

their vibrissae to follow abiotic and biotic trails in the water (Dehnhardt et al., 2001; Gläser et 

al., 2011; Schulte-Pelkum et al., 2007). Harbor seals, as a representative generalized phocid 
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species, have highly sensitive and directional vibrissae (Hanke et al., 2013; Hanke et al., 2012; 

Renouf, 1979) which enables them to determine directionality of water flow when approaching a 

hydrodynamic trail from a perpendicular angle, detect and follow turns in the trail (Dehnhardt et 

al., 2001), and discriminate between wakes created by objects of differing sizes and shapes 

(Wieskotten et al., 2011). 

     Our work adds to the growing body of evidence that phocids and perhaps all pinnipeds, which 

exhibit varying and divergent feeding niches, possess highly sensitive mystacial vibrissae that 

detect prey. This is supported by animal-borne video camera footage of southern elephant seals, 

Weddell seals (Leptonychotes weddellii), and Steller sea lions (Eumetopias jubatus) foraging that 

demonstrate the mystacial vibrissae are protracted during pursuit of prey (McGovern KA, Davis 

RW, Olivier P, personal observations). For NES, recent work by Naito et al. (2013), in which 

jaw accelerometers were deployed on NES, demonstrated jaw movements associated with 

feeding at depths ranging from 507 to 562 m. Still images revealed foraging on myctophids and 

bathylagids (Naito et al., 2013). In addition, the still images were partially occluded by the 

mystacial vibrissae (Naito et al., 2013), which could only occur if the seals' vibrissae were 

protracted at the time of the image. These data confirm that NES forage at depth (>500 m) on 

prey that are not bioluminescent (bathylagids) and confirms protraction of vibrissae before prey 

capture, signifying that these seals complement vision with vibrotactile cues for prey 

localization. The number of myelinated axons in individual NES vibrissae supports our 

hypothesis that NES vibrissae are highly sensitive and likely are an important sensory modality 

for prey capture. 
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5. SUMMARY 

5.1 Summary   

     I used video and movement data obtained from animal-borne video and data recorders 

(VDRs) and histological data obtained from vibrissal pads of elephant seals to address the 

questions: when, where, how, and on what prey do female southern elephant seals forage? The 

annual cycle of southern elephant seals for breeding, molting, and foraging is well known. 

Females spend ca. ten months per year at sea divided into a two-month post-breeding trip and 

eight-month post-molting trip (Le Boeuf and Laws, 1994). They exhibit a diurnal dive pattern in 

deep water, diving to shallower depths at night than during the day, presumably while foraging 

in the deep-scattering layer (Campagna et al., 1998; Hindell et al., 2016; McIntyre et al., 2011; 

McIntyre et al., 2010; Vacquié-Garcia et al., 2015). However, there is little information about 

their foraging strategies, hunting tactics, habitat-associations and sensory biology at sea.  

     Female southern elephant seals from Península Valdés traversed the continental shelf in 3.7 

days to forage in the deep waters of the Patagonian continental slope and Argentine Basin, where 

I identified three distinct dive types and their functions (foraging, resting and transiting). 

Compared to resting and transit dives, foraging dives were deeper and less linear with bursts of 

speed, steeper  descent and ascent angles, longer two-dimensional and three-dimensional dive 

paths, and greater variation in speed, descent angle, and vertical head movements. Seals 

completed 48.2 foraging dives + 10.3 s.d. per day at depths of 689 m + 213 s.d. during daylight 

hours and 391 m + 219 s.d. during the night. Prey species imaged on video over the continental 

slope included herring smelt (Argentinidae) and myctophids (Myctophidae).  On average, there 

were 3.4 prey encounters + 2.1 s.d. during a foraging dive, each lasting 28 seconds + 19.3 s.d. in 

duration and possibly representing more than one prey capture or attempt. In total, 98% of all 
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foraging dives were part of a bout consisting of 14 dives + 8.4 s.d. When the cumulative prey 

encounter duration as a function of dive duration was compared by time of day, daytime dives 

were found to be significantly less successful than dives during dawn, dusk, or night.  

     While at sea, females spent 3.9% of their time resting or possibly sleeping at depth. Resting 

dives included drift dives and dives in which the seals rested on the ocean floor over the 

continental shelf and slope. In resting dives over the deeper water of the continental slope and 

Argentine Basin, seals typically glided to 100-200 m before beginning the drift portion of the 

dive, which was 6.7 min + 4.5 s.d. in duration. Compared to foraging and transit dives, resting 

dives were longer in duration with shorter two-dimensional dive paths, lower stroking rates and 

speeds, and greater variation in pitch and roll angle during descent.  

     While traversing the continental shelf at the beginning and end of the post-breeding foraging 

trip and when moving to new foraging areas, the females made transit dives instead of swimming 

at the surface. Seals glided to depth and then either stroked continuously or used a stroke-and-

glide mode of locomotion. Transit dives were shallower and more linear with higher swim 

speeds and stroking rates, shorter durations, shallower ascent angles, and farther straight-line 

distances traveled.  

     I used first passage time analysis to quantify the spatial scale(s) at which search effort was 

concentrated along the foraging trip trajectory (Bailleul et al., 2008; Fauchald and Tveraa, 2003). 

Over the course of the foraging trip, horizontal area-restricted search occurred on a scale of 45 

km. Over the course of an individual dive, three-dimensional area-restricted search occurred at a 

scale of 10 m, representing the scale at which seals search for, pursue, and handle prey. 

     I found evidence for a temporal pattern in dive type. Resting dives comprised a significantly 

larger percentage of dives during daylight hours, with the greatest frequency between the hours 
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of 0700-1300 local time over the slope and 0600-1300 local time over the basin. Over the 

Argentine Basin, foraging dives comprised a significantly higher percentage of dives during dusk 

and dawn, with greater frequency between the hours of 1400-0500 local time. According to 

optimal foraging theory, animals should minimize the cost of transport to their foraging locations 

(Crocker et al., 2001). Although these seals travel large horizontal distances over the course of 

their foraging trips (81 km per day), they rest preferentially during the daytime when prey are 

deeper, thus minimizing the energetic cost of accessing prey at depth.  

     Over the continental slope, seals foraged at depths of 501 m + 234 s.d., temperatures of 

3.73°C + 0.8 s.d. and salinities of 33.55 psu + 0.21 s.d. Over the deep waters of the Argentine 

Basin, seals foraged at depths of 461 m +  284 s.d, temperatures of 3.73°C + 1.33 s.d. and 

salinities of 33.95 psu + 0.42 s.d. Foraging was predominantly associated with waters of 

Antarctic and Sub-Antarctic origin at depth, with 70% of foraging dives occurring in Sub-

Antarctic Mode Water, 17% in Antarctic Intermediate Water, 11% in  Upper Circumpolar Deep 

Water, and a mere 2% in Sub-Tropical Mode Water. The seals that foraged in Upper 

Circumpolar Deep Water traveled along the southwest rim of the Argentine Basin where the 

Upper Circumpolar Deep Water is closer to the surface. Seals foraged in similar water masses to 

southern elephant seal colonies located farther south and avoided foraging in subtropical waters 

that were just as accessible to them as the subantarctic waters. The seals in this study foraged in 

association with the northernmost excursion of the Antarctic Circumpolar Current, the Malvinas 

Current (Talley, 2011). 

     When considering sea surface hydrography and bathymetry, seals foraged in association with: 

1) bathymetries >3,000 m; surface temperatures of 11.7-15.5°C likely corresponding to mixed 

surface waters in the confluence zone, 3) chlorophyll concentration (>5.8 mg ml-3), 4) the diel 
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period from late afternoon to dawn (1350-0439 local time). Seals showed decreased foraging in 

association with: 1) increased sea surface height anomaly (>0.06 m) likely corresponding to 

meanders and warm-core eddies shed from the Brazil Current, 2) surface temperatures of 7.1-

11.7°C likely corresponding to waters on the continental shelf and slope, 3) daylight hours of 

0439-1350 local time. Seals foraged mainly (74.5% of foraging dives) where there were no 

known eddies (aged at least 4 weeks), whereas 21% and 5% of foraging dives were located 

within cold-core and warm-core eddies, respectively.      

     Fish sampling studies indicate that at least 13 known prey species of southern elephant seals 

are found in the waters of the continental shelf, slope, and Argentine Basin (Appendix A, Table 

A.2) (Cousseau et al., 2012; Figueroa et al., 1998). In this study, southern elephant seal females 

from Península Valdés foraged on Myctophidae and Argentinidae over the continental slope. 

Known prey of southern elephant seals also includes a number of cephalopod species (Appendix 

A, Table A.2). Although seals were not observed foraging on cephalopods in this study, Martiala 

hyadensi, a known prey species, occurs at times in great abundance in waters over the 

continental slope. There is also a large fishery for Argentine shortfin squid, Ilex argentinus, over 

the continental slope (Boyle and Rodhouse, 2008), although there is no known evidence that they 

are exploited by southern elephant seals. 

     I found that elephant seal vibrissae have similar microstructure and innervation as other 

pinniped species. Northern elephant seals have 1,584 axons per vibrissae, similar to that found in 

bearded, harp, and ringed seals (Hyvärinen et al., 2009; Marshall et al., 2006; Yablokov and 

Klezeval, 1969). California sea lions and harbor seals are able to detect and track hydrodynamic 

trails using their vibrissae alone (Dehnhardt et al., 2001; Gläser et al., 2011; Schulte-Pelkum et 

al., 2007).  Hydrodynamic trails left behind by swimming prey can persist on the order of 
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minutes and have particle velocities within the detection range of the vibrissae (Dehnhardt et al., 

2003; Fish and Lauder, 2006; Hanke and Bleckmann, 2004; Hanke et al., 2000). Neurological 

recordings of the region of the somatosensory cortex that receives afferent fibers from mystacial 

vibrissae in northern fur seals shows that the vibrissal projections have their own dedicated 

region within the cortical region that represents the face (Ladygina et al., 1985), further 

indicating that the vibrissae are highly sensitive sensory structures. The video recordings in this 

study showed that the elephant seals’ vibrissae were protracted during periods of foraging. 

Although elephant seals likely use a combination of sensory modalities to locate prey 

underwater, the evidence presented in this volume adds to the growing body of evidence that 

phocids, and perhaps all pinnipeds, possess highly sensitive vibrissae that are viable sensory 

structures for prey detection and capture.  

     In conclusion, female southern elephant seals from Península Valdés depart the coast after 

breeding and traverse the continental shelf in less than 4 days at an easterly heading en route to 

the deep waters of the Patagonian continental slope and Argentine Basin where they begin 

making foraging dives in deep, cold water originating in south polar regions. While at sea for 75 

days, they travel an average horizontal distance of 6,080 km and make 2,815 foraging dives to an 

average depth of 469 m in water with a temperature of 3.7°C and a salinity of 33.8 psu. Their 

primary prey are small fish and possibly other prey that they detect and capture in total darkness 

using vision and the tactile sensory system in their vibrissae. Between bouts of foraging dives, 

they make transit dives to new foraging areas or rest and probably sleep while drifting to an 

average maximum depth of 375 m. Of the 18 species of seals in the family Phocidae, southern 

elephant seals are the deepest diving and most pelagic. Each year, females spend 10 months at 

sea and 89% of their time submerged while transiting, hunting and resting at depth. 
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5.2 Future research 

     Future research should include deploying VDRs on both female and male southern elephant 

seals from the Península Valdés colony during the post-breeding and post-molting season to 

compare foraging location and prey preference. This would help identify the trophic level(s) 

occupied by the seals, determine the range and differences of prey species exploited by females 

and males, and shed some light on whether males and/or females are generalist or specialist 

feeders. Future fisheries sampling research to determine the distribution of potential prey species 

and their association with hydrographic variables over the Argentine Basin would complement 

research on elephant seal foraging behavior. 
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APPENDIX A. KNOWN PREY SPECIES OF SOUTHERN ELEPHANT SEALS 
 
 

Class Order Species South Georgia Macquarie Island Heard Island South Shetland E. Antarctica Signey Island Pen. Valdés 
Cephalopoda Teuthida Alluroteuthis unidentified sp.  SL[1] SL[1]   SL[8]  

Alluroteuthis antarcticus  SL[2] SL[3, 4] SL[5] SL[6, 9] SL[7]   
Batoteuthis skolops  SL[2]       
Brachioteuthis unidentified sp.  SL[1, 4] SL[1, 5]     
Brachioteuthis linkovskyi  SL[3]      
Brachioteuthis picta SL[2]   SL[6] 9    
Chiroteuthis unidentified sp. SL[2] SL[1] SL[1, 5]     
Chiroteuthis veranyl    SL[6]    
Galiteuthis unidentified sp.  SL[1] SL[1]   SL[8]  
Galiteuthis glacialis SL[2] SL[3, 4] SL[5] SL[9]    
Gonatus antarcticus SL[2] SL[1, 3] SL[5, 4] SL[6, 9]  SL[8]  
Histioteuthis unidentified sp. SL[2] SL[3]      
Histioteuthis atlantica  SL[4]      
Histioteuthis eltaninae  SL[1, 3] SL[1, 4, 5]     
Liocranchia unidentified sp.   SL[5]     
Lycoteuthis lorigera  SL[3]      
Kondokavia longimana SL[2] SL[1, 3, 4] SL[1, 5] SL[6, 9]  SL[8] SI[11] 
Martiala unidentified sp.  SL[1]      
Martiala hyadensi SL[2] SL[3, 4] SL[5]    SI[11] 
Mastigoteuthis unidentified sp.  SL[1] SL[1, 5]     
Mastigoteuthis psychrophilia SL[2]       
Mesonychoteuthis hamiltoni SL[2]       
Moroteuthis unidentified sp.  SL[4]      
Moroteuthis ingens  SL[1, 3, 4] SL[1, 5]     
Moroteuthis knipovitchi SL[2] SL[1, 3, 4] SL[1, 5] SL[6]  SL[8]  
Pholidoteuthis unidentified sp.   SL[1]     
Pholidoteuthis boschmai  SL[3, 4]      
Psychroteuthis unidentified sp.      SL[8]  
Psychroteuthis glacialis SL[2] SL[3, 4] SL[5] SL[6, 9] SL[7]   
Taonius unidentified sp.  SL[1] SL[1]     
Taonius pavo  SL[4] SL[5]     
Todarodes unidentified sp.  SL[1] SL[1]     
Todarodes filippovae  SL[3] SL[5]     
Unid cranchid  SL[3]      
Slosarczykovia circumantartica  SL[3, 4]      
Vampyroteuthis  SL[1]      

Octopoda Grimpoteuthis glacialis    SL[9]    
Pareledone charcoti SL[2]   SL[6, 9]    
Pareledone polymorpha SL[2]   SL[6]     
Pareledone turqueti    SL[6]    
Unidentified genus and species      SL[8]  

Table A.1. Known cephalopod prey of southern elephant seals. SL: stomach lavage, SI: stable isotope, FA: fatty acid signature, DO: direct observation. Sources are numbered (see legend for Table A2).  
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Family Species South Georgia Macquarie Island Heard Island Peninsula  Valdés 

Bathylagidae Bathylagus sp.  SL[1, 4]   
Centrolophidae Icichthys australis  SL[4]   
Channichthyidae Unidentified genus and species   SL[1]  

Champsocephalus gunnari   SL[1]  
Channichthys rhinoceratus   SL[1]  

Gempylidae  Paradiplosinus gracilis  SL[4]   

Myctophidae Electrona unidentified species  SL[1]   
Electrona antarctica   SL[1, 5]  
Electrona carlsbergi  SL[1, 4] SL[1, 5]  
Electrona subaspara  SL[1, 4]   
Gymnoscopelus unidentified sp.  SL[1]   
Gymnoscopelus bolini  SL[4]   
Gymnoscopelus braueri  SL[4] SL[1]  
Gymnoscopelus nicholsi FA[12] SL[1, 4] SL[1, 5]  
Gymnoscopelus piabilis  SL[4]   
Krefftichthys anderssoni  SL[4]   
Protomyctophum choriodon  SL[4]   
Protomyctophum normani  SL[4]   
Unidentified genus and species   SL[1]  

Nototheniidae Dissostichus eleginoides FA[12], DO[13] SL[4] SL[5] SI[11] 
Notothenia acuta   SL[1]  
Notothenia coriceps SL[10]    
Notothenia squamifrons   SL[1]  
Nototheniops mizops   SL[1]  
Unidentified genus and species  SL [4]   

Paralepididae Magnisudis prionosa  SL[4]   
Photichthyidae Photichthys argenteus  SL[4]   

 
Table A2. Known fish prey of southern elephant seals. SL: stomach lavage, SI: stable isotope, FA: fatty acid signature, DO: direct observation. Sources are numbered. Species highlighted in blue were observed in the fisheries 

sampling study described by Figueroa et al. (1998), dives highlighted in yellow were observed in the fisheries sampling study observed by Cousseau et al. (2012), and dives highlighted in green were observed in both. 
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APPENDIX B. MODEL DEVELOPMENT 
 
 

Descriptor (R)  Descriptor full name A B D F S W 
Depthvar Depth variance + + + + + + 
Diveduration Dive duration (min) 

     
+ 

headingROC Mean heading rate of change + + + + + + 
Headingvar Heading variance + + + + + + 
Horzpathlinearity Horizontal path linearity     + + + 
Maxconsectimeatzero Maximum consecutive number of seconds speed =0 m/sec 

     
+ 

maxconsectimeunderpt3 Maximum consecutive number of seconds speed <0.3 m/sec 
     

+ 
maxconsectimeunderpt5 Maximum consecutive number of seconds speed <0.5 m sec-1 

     
+ 

Maxdepth Maximum depth (m) + + + + + + 
Maxspeed Maximum speed  (m sec-1) + + + + + + 
Maxspeedh Maximum horizontal speed (m sec-1) + + + + + + 
Maxstrokingrate Maximum stroking rate (strokes sec-1) + + + + + + 
Meanpitchangle Mean pitch angle (°) + 

 
+ 

   Meanrollangle Mean roll angle (°) + 
 

+ 
   Meanspeed Mean speed  (m sec-1) + + + + + + 

Meanspeedh Mean horizontal speed (m sec-1) + + + + + + 
Meanstrokingrate Mean stroking rate (strokes sec-1) + + + + + + 
Meanvectorlength Mean vector length (measure of angular dispersion; 0=uniform , 1=none) + + + + + + 
Meanverticalspeed Mean vertical speed (m sec-1) + 

 
+ 

   Minspeedh Minimum horizontal speed (m sec-1) + + + + + + 
numsecshighROCzaxis Number of seconds normalized rate of change in z-axis accelerometer >0.2   

    
+ 

numsecslowspeedpt3 Number of seconds speed <0.3 m sec-1 
     

+ 
numsecslowspeedpt5 Number of seconds speed <0.5 m sec-1 

     
+ 

numsecslowspeedzero Number of seconds speed =0 m sec-1 
     

+ 
Pathlinearity Path linearity (3D) 

   
+ + + 

proportiondiveconsectimeatzero maxconsectimeatzero  diveduration-1 
     

+ 
proportiondiveconsectimeunderpt3 maxconsectimeunderpt3 diveduration-1 

     
+ 

proportiondiveconsectimeunderpt5 maxconsectimeunderpt5 diveduration-1 
     

+ 
proportiontimehighROCzaxis numsecshighROCzaxis diveduration-1 

     
+ 

proportiontimelowspeedpt3 numsecslowspeedpt3 diveduration-1 
     

+ 
proportiontimelowspeedpt5 numsecslowspeedpt5 diveduration-1 

     
+ 

proportiontimelowspeedzero numsecslowspeedzero diveduration-1 
     

+ 
speedcalcROC_4 Mean speed (4 Hz) rate of change + + + + + + 
speedcalcvar_4 Speed (4 Hz) variance + + + + + + 
Speedhvar Horizontal speed variance + + + + + + 
speedROC Mean speed rate of change + + + + + + 
Speedvar Speed  variance + + + + + + 
Straightlinehorzdist Straight-line horizontal distance (m) 

   
+ + + 

strokingROC Mean stroking rate rate of change + + + + + + 
totaldist3D Total 3D distance (m) 

   
+ + + 

Totalhorzdist Total horizontal distance (m) 
   

+ + + 
Varpitchangle Pitch angle variance + 

 
+ 

   Varrollangle Roll angle variance + 
 

+ 
   Varstrokingrate Stroking rate variance + + + + + + 

Varverticalspeed Vertical speed variance + 
 

+ 
   Vertpathlinearity Vertical path linearity 

   
+ + + 

Xaccelvar X-axis accelerometer variance + + + + + + 
xaccelvar_16 X-axis accelerometer (16 Hz) variance + + + + + + 
yaccelROC_16 Mean y-axis accelerometer (16 Hz) rate of change + + + + + + 
Yaccelvar Y-axis accelerometer variance + + + + + + 
yaccelvar_16 Y-axis accelerometer (16 Hz) variance + + + + + + 
zaccelROC Mean z-axis accelerometer rate of change + + + + + + 
zaccelROC_16 Mean z-axis accelerometer (16 Hz) rate of change + + + + + + 
Zaccelvar Z-axis accelerometer variance + + + + + + 
zaccelvar_16 Z-axis accelerometer (16 Hz) variance + + + + + + 

 
 

Table B.1. Dive descriptors.  + indicates that the descriptor was calculated for the corresponding portion of the dive. A=ascent, B=bottom, 
D=descent, F=first half, S=second half, W=whole). Descriptors are calculated based on 1 Hz data unless otherwise specified. All distances 
were estimated using corrected (course made good) coordinates. Rate of change (ROC) is calculated per second unless otherwise indicated. 
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     To select the initial variables to use in LDA and QDA, several transformations (cubed, 

squared, log, square root, exponent, third) for each descriptor were computed, standardized, and 

added to the predictor matrix. This was done to increase the potential for variables to be included 

in the model, as both LDA and QDA assume multivariate normality, and transformations can 

sometimes render non-normal data normal. The Shapiro-Wilks test in R was used to select 

variables that had a normal distribution (p-value > 0.05) for each of the three classes. These 

multivariate normal data were then entered into an initial feature selection process for use in 

QDA. LDA makes an additional assumption of equal covariance matrices between classes. The 

Bartlett test was used in R to select variables that met this assumption (p-value > 0.05). The 

resulting data was input into an initial feature selection process for use in LDA. RF makes no 

assumptions regarding multivariate normality or equal covariance, so the original predictors were 

entered into the initial feature selection process for use in RF. 

     The initial feature selection process was identical for each of the supervised classification 

models. A loop was written that incorporated the recursive feature elimination function from the 

caret package in R, which selected the predictors that contributed most to the separation between 

classes using 10-fold cross-validation. This function produced a list of predictors from most 

influential to least influential, according to how much each predictor contributed to variance 

between classes. During the first iteration of the loop, the most significant predictor was selected 

and all collinear variables were eliminated from the dataset. During each successive iteration of 

the loop, the next most significant predictor was selected and all collinear variables were 

eliminated. This process was repeated until there were no collinear variables present in the 

dataset. This process was completed for each dataset (original dataset for RF, multivariate 



 
 

128 
 

normal dataset for QDA, multivariate normal with equal covariance dataset for LDA) before 

training all classifiers.  

     To develop the LDA and QDA classifiers, the corresponding selected predictors were entered 

into a stepwise discriminant analysis (direction = both) using the stepclass function in the klaR 

package in R (Weihs, Ligges, Luebke, & Raabe, 2005) to determine the optimal predictors to 

include in each model. LDA or QDA was specified in the function input. The selected predictors 

for each were then used to develop the corresponding classifier using the MASS package in R 

(Venables & Ripley, 2013). The LDA was also fit in SPSS (IBM Corp, 2016) to calculate the 

eigenvalues and standardized canonical coefficients and to test the discriminant functions. 

     To develop the RF classifier, the rfe function in the caret package in R was used to determine 

the optimum number of predictors, ranging from sizes 1:30. The outer resampling method used 

was repeated (10 repeats) 10-fold cross-validation. The number of predictors chosen for use in 

the classifier was determined based on Accuracy and the Kappa statistic. To tune the values for 

mtry (number of predictors sampled at each node split) and ntree (number of trees in forest), 150 

random forest models were fit to the data using the randomforest package in R (Liaw & Wiener, 

2002) with mtry = 1:15 and ntree = 50, 100, 200, 300, 400, 500, 1000, 1500, 2000, and 2500. To 

avoid overfitting the classifier to the training data, each tree in each forest was fit with 13 (equal 

to 70% of the dives in the training set for the class with the smallest sample size) randomly 

selected and bootstrapped samples from each class. The out-of-bag (OOB) error estimate was 

calculated for each model by using each tree in the forest to predict dive class for the dives that 

were not used to train that particular tree, then averaging the prediction error across all of the 

trees in the forest. The OOB error rate was subtracted from 1 to obtain an OOB correct 

classification rate. 



 
 

129 
 

     The kmeans cluster analysis was completed using the kmeans function in R. The elbow 

method and silhouette method were both used to determine the optimal number of clusters. The 

input variables used for the random forest model were used for the kmeans analysis, as kmeans 

also does not make any assumptions based on normality or equality of covariance matrices. The 

resulting clusters were labeled as “foraging”, “resting”, or “transit” based on the primary class of 

video dives occurring in each cluster.  
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APPENDIX C. INDIVIDUAL MODEL RESULTS 

C.1 Linear discriminant analysis 

     Five predictors were selected by the stepclass function to develop the LDA classifier. The 

predictors chosen were transformations of 1) speed variance during the first half of the dive (in 4 

Hz, speedcalcsmoothvar_4firsthalf), 2) stroking rate variance during the first half of the dive 

(varstrokingratefirsthalf), 3) rate of change in the y-axis accelerometer at the bottom of the dive 

(in 16 Hz, yaccelROC_16bottom), 4) variance in the x-axis accelerometer during the first half of 

the dive (in 16 Hz, xaccelvar_16firsthalf), and stroking rate variance during the second half of 

the dive (varstrokingratesecondhalf) (Table C.1). The coefficients of the linear discriminants are 

listed in Table C.2. Fig. C.1 depicts the decision boundaries for the resulting LDA classifier. The 

classifier correctly classified 76.9% of the training data (89.8%, 58.8%, and 57.1% of foraging, 

resting, and transit dives, respectively) (Table C.3). The eigenvalues of the first and second 

discriminant functions were 0.421 and 0.298, respectively (Table C.4). The proportion of the 

trace explained by the first and second discriminant functions was 58.5% and 41.5%, 

respectively. Chi-square tests for the first and second discriminant functions together and the 

second discriminant function solo were both significant at the p<0.001 significance level (χ2 

statistic of 86.9 and 37, respectively) (Table C.5). A plot of the canonical discriminant function 

coefficients standardized from 0 to 1 showed that varstrokingratefirsthalf contributed the most to 

the separation of classes on discriminant axis 1, and that yaccelROC_16bottom contributed most 

to the separation of classes on discriminant axis 2 (Fig. C.2). The LDA classifier was tested on 

the test dataset with an overall accuracy of 0.803 (95% CI: 0.687, 0.891) and a Kappa statistic of 

0.638 (Table C.1). The classification had an overall accuracy significantly better than the no 
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information rate (NIR) at the 0.01 level with a p-value of 0.0002. Balanced accuracy was 0.825, 

0.804, and 0.805 for foraging, transit, and resting, respectively (Table C.3).  

 

 
Foraging Resting Transit 

sqrt(varstrokingratefirsthalf) 0.13 + 0.68 -0.92 + 0.99 -0.05 + 0.79 

third(xaccelvar_16firsthalf) 0.02 + 0.64 -0.20 + 0.63 -0.60 + 0.63 

log(yaccelROC_16bottom) 0.35 + 0.79 -0.59 + 0.87 -0.26 + 0.71 

third(speedcalcvar_4firsthalf) 0.17 + 0.99 0.74 + 0.61 -0.52 + 0.86 

third(varstrokingratesecondhalf) 0.31 + 0.89 -0.12 + 0.71 0.29 + 1.02 

 

 LD1 LD2 
sqrt(varstrokingratefirsthalf) -1.32 0.26 
third(xaccelvar_16firsthalf) 0.90 0.29 
log(yaccelROC_16bottom) 0.71 1.03 
third(speedcalcsmoothvar_4firsthalf) 0.65 -0.25 
third(varstrokingratesecondhalf) 0.36 0.38 

 

 

  Prediction   

Reference Foraging Resting Transit Correctly 
classified 

Foraging 79 0 9 0.898 
Resting 5 10 2 0.588 
Transit 18 0 24 0.571 

 

 

 

 

Function Eigenvalue % of Variance Cumulative % Canonical Correlation 

1 .421a 58.5 58.5 0.544 
2 .298a 41.5 100 0.479 

Table C.1. Group means for LDA variables. 
 
 
 
 

Table C.2. Coefficients of linear discriminants for LDA variables. 
 
 

Table C.3. LDA classification performance on training dataset. 
 
 

Table C.4. Eigenvalues and % variance of first two linear discriminant functions. 
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Test of Function(s) Wilks' Lambda Chi-square df Sig. 
1 through 2 0.542 86.911 10 0 
2 0.77 37.04 4 0 

 

 

 

Table C.5. Test of linear discriminant functions. 
 
 
 

Figure C.1. Decision boundaries for LDA classifier, overlaid with training dataset color coded by known dive type. Correctly 
classified dives are located in the same color region (e.g. red on red for resting dives).    
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C.2 Quadratic discriminant analysis 

     Three predictors were selected by the stepclass function to train the QDA classifier. The 

predictors chosen were transformations of: 1) variance in the x-axis accelerometer during the 

bottom phase of the dive (in 16 Hz, xaccelvar_16bottom), 2) variance in the y-axis accelerometer 

(in 16 Hz, yaccelvar_16), and 3) rate of change in the z-axis accelerometer (in 1 Hz, 

zaccelROC). Group means for each of the predictors are listed in Table C.6. The classifier 

correctly classified 87% of the training data (95.5%, 65.5%, and 78.6% of foraging, resting, and 

Figure C.2. Plot of standardized canonical linear discriminant function coefficients.   
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transit dives, respectively (Table C.7). Fig. C.3 depicts the QDA classification as a 3D plot of the 

three predictor variables. The 3D plot is shown as three biplots to better visualize the decision 

boundaries of the classifier. The larger spheres are the video-identified dives used to train the 

classifier. The smaller spheres are the remainder of the dataset, colored by predicted dive type as 

classified by the QDA classifier. The QDA classifier was tested on the test dataset with an 

overall accuracy of 0.864 (95% CI: 0.757, 0.936) and a Kappa statistic of 0.755 (Table 2.1). The 

classification had an overall accuracy significantly better than the NIR at the 0.01 level with a p-

value of 1.4e-06. Balanced accuracy was 0.906, 0.92, and 0.826 for foraging, transit, and resting, 

respectively (Table 2.3).  

 

  Foraging Resting Transit 

log(xaccelvar_16bottom) 0.32 -0.80 -0.54 

log(zaccelROC) 0.20 -0.55 -1.05 

third(yaccelvar_16) 0.09 0.66 -0.65 

 

 

  Prediction   

Reference Foraging Resting Transit Correctly classified 

Foraging 84 0 4 0.955 
Resting 1 11 5 0.647 
Transit 9 0 33 0.786 

 

 

 

 

Table C.6. Group means for QDA variables. 
 
 
 

Table C.7. Performance of QDA on training dataset. 
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                      Prediction  

Reference Foraging Resting Transit Correctly classified (OOB) 

Foraging 82 0 6 0.93 
Resting 0 16 1 0.94 
Transit 5 0 37 0.88 

 

 

 

 

 

 

 
 

 

Table C.8. Performance of random forest model on training set (OOB). 
 
 
 

Figure C.3. 3D plot  of QDA classification with all three predictors, viewed as three biplots. Large  spheres are video-identified dives used 
to train the model; smaller spheres are the remainder of the dives, colored according to QDA classifier-predicted dive type. 

Figure C.4. Plot of A. Accuracy  and B. Kappa coefficient by number of predictors in random forest model. Blue line indicates optimal 
number of predictors for each metric. 
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C.3 Random forest classification 

     22 predictors were chosen for use in the classifier based on Accuracy and the Kappa statistic 

(Fig. C.4). An mtry of 2 performed consistently well across ntree values of 400:2500, with an 

OOB correct classification rate of 0.918 (Fig. C.5). An mtry of 2 and ntree of 1500 (mid-range of 

well-performing values) were selected for use in the final model. The selected 22 variables were 

input into the randomforest package in R with these parameters to train the RF classifier. The 

OOB estimate of error rate for the training set in the random forest classification model was 

8.16%. The OOB error rate by class was 0.068, 0.059, and 0.119 for foraging, resting, and 

transit, respectively (Table C.8). The 22 variables included in the random forest model are listed 

from most important to least important in Fig. C.6 according to the mean decrease in the Gini 

coefficient. The random forest model was tested on the test dataset with an overall accuracy of 

Figure C.5. Out of Bag Correct Classification Rate for varying values of ntree and mtry for use in tuning the random forest model. 
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0.909 (95% CI: 0.813, 0.966) and a Kappa statistic of 0.842 (Table 2.1). The random forest 

classification had an overall accuracy significantly better than the NIR at the 0.01 level with a p-

value of 9.7e-09. Balanced accuracy was 0.94 for each of the three classes (Table 2.3).  

C.4 KMeans cluster Analysis 

     Fig. C.7 depicts the results of the kmeans cluster analysis plotted on the first two principal 

components overlaid with the training set dives. The elbow and silhouette method both indicated 

that the optimal number of clusters for kmeans cluster analysis was k=3 (Figs. C.8, C.9). The 

first two principal components explain 52.6% of the point variability (Fig. C.10). Based on the 

percent of known dive classes that were assigned to each cluster, the cluster classes were defined 

as “transit”, “foraging”, and “resting”, for clusters 1, 2, and 3, respectively. Classification was 

tested using all of the video dives with an overall accuracy of 0.812 (95% CI: 0.753, 0.862) and a 

Kappa statistic of 0.667 (Table 2.1). The kmeans cluster analysis assigned clusters had an overall 

accuracy significantly better than the NIR at the 0.01 level with a p-value of 1.9e-06. Balanced 

accuracy was 0.871, 0.74, and 0.864 for foraging, resting, and transit, respectively (Table 2.3). 

 

 
Figure C.6. Mean decrease in the Gini coefficient (a relative measure of how great of a role a predictor plays in separating the data into 
classes) for predictors in the random forest model. 
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Figure C.7. KMeans cluster analysis results plotted on principal components 1 and 2, overlaid with known video-recorded dive types. 

Figure C.8. Elbow plot  for kmeans analysis. Blue line demarcates optimal number of clusters. 
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Figure C.10. Contribution of principal components to point variability. 
  

Figure C.9. Silhouette width plot for kmeans analysis. Blue line demarcates optimal number of clusters. 
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