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ABSTRACT

We investigate some of the geometric properties of rooted uniform infinite

planar triangulations or UIPT. We wish to establish certain isoperimetric proper-

ties of the UIPT - for example, to obtain some bounds on the boundary size of a

connected subset of the UIPT containing the root. The results are contingent on

some unproven results. We attempt to give some idea how these may be shown

and why, in all likelihood, they are in fact true. Also, we will show a proof that

if A is a simply connected subset of the plane consisting of a finite union of faces

of the UIPT, then |∂A| ≥ cn1/n for some constant c depending on ε, and where

|A| ≥ n.
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CHAPTER I

INTRODUCTION

The seminal work on rooted infinite planar triangulations was published in

2003 by Omer Angel and Oded Schramm [1]. Since then much work has been

done on random planar geometry. Uniform finite planar triangulations had been

studied before the work by Angel and Schramm, but their work was novel in that

it considered a distribution on infinite maps. They define finite triangulations

of size n of the sphere as an embedding of a connected planar graph G with n

vertices such that the boundary of each connected component of S2 \ G meets

exactly three edges of the embedded graph. The types of triangulations consid-

ered are those of type II (where the underlying graph is allowed to have multiple

edges between vertices, but no loops), and type III (where the underlying graph

has no loops and multiple edges are not allowed).

The main result of this paper is to show that for appropriate embeddings

of planar graphs into the sphere (called sphere triangulations or triangulations of

the sphere) there is a probability measure, call it τ , supported on infinite planar

triangulations such that τ i = limn τ
i
n, i = 2, 3. Here τ 2n is the uniform distribution

on rooted triangulations of type II of the sphere having n vertices, and similarly

for τ 3n, and the limit is taken to mean that limn

∫
fτn =

∫
fτ for every continuous

real-valued function on the space of locally finite embedded rooted triangulations.

They also showed that the UIPT is almost surely one ended. Here, a graph G

is called one-ended if G \ H contains exactly one infinite connected component

for every finite subgraph H of G. This means that the τ i probability of a rooted
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infinite planar triangulation having more than one end is zero. Thus, we can

consider the UIPT to be a triangulation of the plane.

Following its introduction, the UIPT has been extensively studied. Of par-

ticular interest is the geometry of the UIPT. If T is a triangulation with a root,

we define the ball of radius r to be the union of all faces of T whose boundary

contains at least one vertex at graph distance less than or equal to r − 1. We

denote the ball of radius r by Br(T ). In general, the complement of Br(T ) is not

connected. However, since the UIPT is almost surely one-ended, we know that

at most one of the connected components of the complement of Br(T ) is infinite.

The standard hull of radius r, which will be denoted by Br(T ) is taken to be the

union of the ball of radius r together with the finite connected components of the

complement of this ball.

Angel showed in [2] that for any ε > 0, both

lim sup
r→∞

|Br(T )|
r4 log6+ε r

<∞

almost surely, and also

lim
r→∞

|Br(T )| log32/3 +ε

r4
=∞

almost surely. He also showed that almost surely,

lim sup
r→∞

|∂Br(T )|
r2 log3 r

<∞,
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and for any given ε > 0,

lim
r→∞

|∂Br(T )| log6+ε r

r2
=∞.

Here, ∂Br(T ) is the boundary of the standard hull of radius r in the trian-

gulation T . These results, however, are not quite good enough for the result we

want to show. Angel conjectured that the random variables |Br(T )|
r4

and |Br(T )|
r4

both

converge in distribution. It should similarly be expected that |∂Br(T )|
r2

converges

in distribution, which would suffice for our problem (as stated in the abstract).

A paper by Nicolas Curien and Jean-François Le Gall [3] showed that these

conjectures are in fact the case. Indeed, let A be a conneced subgraph of the

UIPT. Define ∂A = {{x, y} : x ∈ A, y /∈ A} to be the edge boundary of A in

the UIPT, and ∂inA = {x ∈ A : x has a neighbor in Ac}. Then the results of

Curien and Le Gall [3] show that the random variables |Br
r4
| and |∂inBr

r2
| converge

in distribution. That Br
r4

converges in distribution plays an important role for us.

Finally, somewhat later, a paper by Curien and Lehéricy gives several results

about the boundary size of connected subsets of the uniform infinite planar quad-

rangulation (UIPQ) [4]. They remark in that paper that many of these results

should translate to results about the UIPT. We aim here to show how their meth-

ods regarding the UIPQ can be applied to give us some analogues in the space

of the UIPT. As mentioned above, there is a contour lying outside of Br(T ) that

separates the root from infinity, and its expected length grows linearly in r as

r grows without bound. Le Gall and Lehéricy use this idea (but for quadran-
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gulations). More precisely, they show that for any integer r ≥ 1, if L(r) is the

smallest length of cycle separating Br(P ) from infinity (Br(P ) here being the

ball of radius r of a quadrangulation instead of a triangulation), then given any

δ < 2, there is a constant Cδ such that for every ε ∈ (0, 1),

P(L(r) ≥ εr) ≤ Cδε
δ

and also, there is some constant C and λ > 0 such that for any a > 0,

P(L(r) ≥ ar) ≤ Ce−λa.

From this they glean the following: given ε > 0, there is some constant cε > 0

such that for every integer n ≥ 1,

|∂A| ≥ cεn
1/4

for every A such that A is a simply connected compact subset of the plane that

is a finite union of faces of the UIPQ, and |A| ≥ n. Notice that the standard

hull of radius r is a simply connected compact subset of the plane that is a finite

union of faces either of the UIPQ or the UIPT depending on the space we are

working with. The proof of this follows from the above result about the length

of the smallest cycle separating the ball of radius r in a quadrangulation from

infinity. We aim to show an analogous result for triangulations.

We also have results from Krikun [5] showing that there is a contour lying

outside the standard hull of radius r that separates the root from infinity, and

its expected length is linear in r as r approaches infinity. A contour in this case
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is just a path in the UIPT. The result from Curien and Lehéricy on the bounds

for the smallest length of a separating cycle is essentially an argument showing

the smallest separating cycle of the standard hull of radius r from infinity grows

approximately linearly with r. So this similar result from Krikun should be of

great use to us.
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CHAPTER II

CONJECTURED RESULTS

For our desired result, which we introduce below, we need a result provid-

ing quantitative estimates for the probability on the length of the smallest cycles

separating the ball of radius r centered at the root in the UIPT from ”infinity,”

meaning separating it from the unique infinite connected component. The anal-

ogous result in [4] is the following:

Conjecture 2.1 For every integer r ≥ 1, let L(r) be the smallest length

of a cycle separating Br(P from infinity (P being the uniform infinite planar

quadrangulation). Then, (i) For every δ < 2, there exists a constant Cδ such that

for every r ≥ 1, an for every ε ∈ (0, 1),

P(L(r) ≤ εr) ≤ Cδε
δ

and

(ii) There exists constants C and λ > 0 such that for every a > 0 and r ≥ 1,

P(L(r) ≥ aR) ≤ Ce−λa

The results for triangulations should be a little bit different, but some sim-

ilar bounds should hold. This is because the idea of the above theorem, proved

in [4], is that the length of the smallest cycle separating the ball of radius r from

infinity grows linearly with r. As mentioned previously, Krikun showed that the
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same is true of what he calls a ”contour” in the UIPT [5]. So it should be possible

to find bounds similar to those shown above for the UIPT, although the constants

and details will likely be somewhat different.

Let K be the set of all simply connected subsets of the plane consisting of a

finite union of faces of the UIPT. For A ∈ K, denote by |A| the number of faces

of the UIPT contained in A. The result we want is the following:

Conjecture 2.2 Given ε > 0, there is a positive constant c = c(ε) such that

for every n ∈ N,

|∂A| ≥ cn1/n

where a ∈ K, and |A| ≥ n, we have P(|∂A| ≥ cn1/4) > 1− ε.

The proof of this conjecture relies on two facts. The first is that the standard

hull of radius r is such that the random variable |Br|
r4

converges in distribution to

some finite limit. The second, loosely speaking, is that the smallest separating

loop of the standard hull of radius r grows linearly with r. We will give a heuris-

tic argument under this assumption, and also include a conjecture of something

more rigorous that can help us prove our result. We will include here a proof that

is essentially that of the corresponding theorem from [4] to show that it should

be essentially the same with some modifications.

Proof. Conjectured proof of Theorem 2.2: Let ε > 0. We know (by [3]) that the
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random variable |Br|
r4

converges in distribution. So, there is some N1 such that

P(|Br/r
4| < N1) ≥ 1− ε/2 ∗

for every r ≥ 1. Let L(r,N) be the event that the minimal length of a cycle

separating Br from the unique infinite connected component of the complement

of Br (recall that the UIPT is almost surely one-ended) is greater that r
N

. Now,

assume we have the result of the conjecture 2.1. Then we can find N large enough

such that

P(L(r,N)) > 1− ε/2 ∗ ∗

and fix this N . Since both N1 and N are fixed, we can find a constant c such

that N1(N + 1)4c4 < 1. Choose n ∈ N so that cn1/4 ≥ 1, and also N1((N +

1)[[cn1/4]])4 < n. Consider the following event: {|BN+1[[cn1/4]]|}∩L(N [[cn1/4]], N).

Then

P({|BN+1[[cn1/4]]|} ∩ L(N [[cn1/4]], N)) = P({|BN+1[[cn1/4]]|}) + P(L(N [[cn1/4]], N))

− P({|BN+1[[cn1/4]]|} ∪ L(N [[cn1/4]], N))

> 1− ε/2 + 1− ε/2− 1

= 1− ε

by our choice of N1, N , and c. So, the event {|BN+1[[cn1/4]]|} ∩ L(N [[cn1/4]], N)

has probability at least 1 − ε. If we now show that |∂A| ≥ cn1/4 on this event

when |A| ≥ n and A is simply connected, compact, and consists of a finite union

of faces of the UIPT, we will be done.

Let T denote the UIPT, and ρ denote its vertex. Consider first the case

8



where the graph distance from ρ to ∂A is greater than N [[cn1/4]] + 1. Then

the ball BN [[cn1/4]] is separated from the infinite connected component of T in

the complement of this ball by ∂A, which is a cycle. Since we are arguing on a

subset of the event L(N [[cn1/4]], N), this means that (just by the definition of

L(N [[cn1/4]], N)) |∂A| ≥ N [[cn1/4]]/N ≥ cn1/4.

On the other hand, suppose that the graph distance from ρ to ∂A is at

most N [[cn1/4]] + 1, and that ∂A < cn1/4. That is, the greatest distance between

any two vertices is at most [[cn1/4]] − 1. Since the graph distance from ρ to the

boundary of A is less than N [[cn1/4]] + 1, any vertex of ∂A is at graph distance

at most (N + 1)[[cn1/4]], and therefore any edge in ∂A is incident to a vertex

at graph distance at most (N + 1)[[cn1/4]] − 1, from which it follows that ∂A is

contained in the hull B(N+1)[[cn1/4]], which means that all of A is in this hull. But

then, |A| ≤ |B(N+1)[[cn1/4]]| < n, which contradicts our assumption that |A| > n.
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CHAPTER III

SUMMARY AND SUGGESTED RESEARCH

To summarize, the main ingredient missing from our problem is to give

quantitative estimates showing that there exists a loop separating the standard

hull of radius r from infinity is approximately linear. Krikun proves that this is

essentially the case in [5], but without giving a quantitative result as they use in

[4]. So bounding the probability of how large or small a separating loop can be

in the case of triangulations should be the first order of business. As mentioned,

Curien and Lehéricy give a method of how to find the quantitative bounds on

such a loop for the case of quadrangulations. However, I have yet to successfully

apply those methods to the space of triangulations. It may well be, and hopefully

is, that their methods will work, and it just requires a little more time. If this

result is found, there should be many other interesting results about the geometry

of the UIPT that can be proved. We give an example here.

Using the notation from the introduction, let K be the set of all simply con-

nected compact subset of the plane that are finite unions of faces of the UIPT.

Then the following theorem should follow in a similar manner to what is done in

[4]:

Conjecture 3.1 Given ε > 0, there is some constant c > 0 such that the

following holds

inf
A∈K

|∂A|
|A| 14 (log |A|)−c−ε

> 0, a.s.

Here, I use the exponent −c. In [4] they find c to equal 3
4

but remark that
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it is likely to not be the optimal exponent. The proof is quite similar to that of

the one that we used to show Theorem 2.2. Thus, provided we find quantitative

bounds on the probability for the smallest length of a separating loop, this result

should follow in a very similar manner to 2.2.

These would be the analogues to the main results for quadrangulations that

were found in [4]. There are many other results that have yet to be shown that

are also of considerable interest, although they might not necessarily follow easily

from the work already done or the concepts presented in this thesis. We list them

here.

From the outset of this project, we were interested in the isoperimetry of

the UIPT. For example, we wanted to learn more about the asymptotic behavior

of the isoperimatric profile. This is a function, call it Φ such that Φ : N→ [0,∞)

and it is defined by

Φ(n) = min{|∂A|
|A|

: ρ ∈ A ⊂ G with A connected, and |A| ≤ n},

where G is a connected infinite graph with root vertex ρ. Here, ∂A is defined

slightly differently than above and it is ∂A = {{x, y} : x ∈ A, y /∈ A}, or the edge

boundary of A. Similarly, we can define ∂inA = {x ∈ A : x has a neighbor in T \

A} (T being the UIPT), and Φin(n) to be as above but replacing ∂A with

∂inA. As was mentioned above, we know that the random variables Br
r4

and

∂inBr
r2

were shown to converge in distribution by Curien and Le Gall in [3]. So,

if we take A in the definition of Φ(n) to be the standard hull of volume ap-

proximately n, then ∂inA would have size approximately n−1/2. It follows that

asymptotically, we have for any function ψ(n) such that ψ(n) → ∞ as n → ∞,
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Φin(n) ≤ |∂in|/|A| < ψ(n)n−1/2 for n large enough. A more difficult question

that should follow from the heuristic argument is that Φ(n) should behave like

1/n−1/2. Thus, we have the following conjectures:

Conjecture 3.2 There is some constant C > 0 such that almost surely,

Φ(n) < Cn−1/2

for n large enough.

Angel and Schramm showed in [1] that the degree of every vertex has an ex-

ponentially decaying tail (this follows from Lemma 4.1 of [1]). This means that

we can apply a standard union bound argument and get that it is enough to show

the conjecture for Φin(n) instead of Φ(n). This should make the problem a little

easier, since ∂inA is in some sense a simpler structure than ∂A. Since the part

of the function Φin that can cause problems for this conjecture is |∂inA|, if we

want to improve on the upper bound of ψ(n)n−1/2, we would have to consider

the standard hull of the ball and in some way bound the areas on the boundary

which are too dense. How to show this conjecture to be true has proved elusive,

but intuition seems to indicate that the layering process used in [5] should be

instructive. In particular, since the degrees of the vertices have an exponentially

decaying tail, hopefully the number of areas on the boundary that are too dense

decreases in proportion to the volume of the standard hull.

Another conjecture suggested by the argument preceding conjecure 3.2 is the
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following:

Conjecture 3.3 There is a constant c > 0 such that, almost surely,

Φ(n) > cn−1/2

for n large enough.

Here again, it suffices to prove the conjecture for Φin(n) in place of Φ(n). This

is because |∂inA| ≤ |∂A| for any A ⊂ T , whence Φin(n) ≤ Φ(n).

Finally, the previous two conjectures suggest the following more difficult one:

Conjecture 3.4 The limit limn→∞ n
1/2Φ(n) exists almost surely.

These conjectures are the ones most related to the present work. There are,

however, other interesting questions to ask about the UIPT that were suggested

in the original research proposal. We list them here for thoroughness. For ex-

ample, the relation of the UIPT to planar circle packing has some unresolved

questions. A circle packing is a collection of circles that are connected, but their

interiors are disjoint. In other words, any two circles in a circle packing meet

in at most one point. To any circle packing, denoted by Q = (Qi)i∈I , there is a

graph whose vertex set is I, and for each i, j ∈ I there is an edge between i and j

if and only if Qi and Qj are tangent. This graph is called the nerve graph. Oded

Schramm proved the following rigidity theorem [6].

Theorem 3.1 Let T be a planar infinite triangulation of the 2-dimensional

sphere S2 with a countable number of accumulation points and Q a circle packing
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whose nerve graph is T . Then every other circle packing Q′ whose nerve is T is

Möbius equivalent to Q.

This means that if we take any rooted planar infinite triangulation T or

S2 with one accumulation point, there is a unique circle packing (unique up to

inflation and rotation) sending the root to the origin, and the accumulation point

to infinity, an whose nerve graph is T . This process with the circle packing pro-

vides us with a canonical embedding of the UIPT into R2. Let us denote this

canonical embedding by Ξ. A natural question to ask is about the existence of

limiting shapes, and their properties. For example, the following two questions

were posed in the original research proposal:

Problem 3.1 What is the growth rate of |Ξ−1({(x, y) ∈ R2 : x2 + y2 < R})|

as R→∞?

And, what is the typical Euclidean diameter of Ξ(B(R)) as R → ∞, where

B(R) is the standard hull of radius R.
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