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ABSTRACT 

Whole-rock elemental data is a useful tool for sub-dividing and characterizing mudrock 

variability across a shale basin. The chemostratigraphy of the Cenomanian-Turonian the 

Woodbine and Eagle Ford Groups in the Brazos basin—a western sub-basin of the East Texas 

basin—contains five distinct chemofacies within five regionally correlative chemozones, EB 1 

through EB 5. Chemozones are characterized by variations in geochemical data and coincide 

with major sequence stratigraphic surfaces determined from gamma-ray and deep-resistivity 

wireline logs. Chemostratigraphic correlations of high-resolution XRF measurements (1.2 to 2.4-

inch spacing; 12,282 total data points), integrated with 623 XRD mineralogy and 708 core-

derived TOC measurements, highlight significant vertical and lateral elemental heterogeneities in 

a shale that otherwise appears to be homogenous. 

 In the Woodbine and Eagle Ford Groups, several key elements are identified and 

correlated to depositional conditions: Ca concentrations indicate carbonate input; Si, Al, K, and 

Ti concentrations indicate clay input; Mo and Mn concentrations indicate redox conditions; and 

Ni enrichment indicates paleoproductivity. These key elemental proxies characterize 

chemofacies and chemozones. Average concentrations of key elements were mapped across 

chemozones to quantify their regional variability across the basin. This chemostratigraphic 

framework highlights major changes in: sedimentation type (i.e. siliclastic versus carbonate), sea 

level, redox conditions, paleoproductivity, and organic-matter enrichment in source rock plays. 

This assessment ultimately aids identifying horizontal landing zones and understanding their 

spatial variation in source rock plays. 
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1. INTRODUCTION

In recent years, shale plays have risen to the forefront of hydrocarbon exploration in 

North America. A sharp growth in United States oil production—increasing from 5 MMBOPD 

in 2008 to 9.4 MMBOPD in 2016 (U.S. Energy Information Administration, 2016)—can in large 

part be attributed to the development of these unconventional resources. The Eagle Ford Group 

shale play of Maverick basin, Brazos basin, and the adjoining areas of Texas (Figure 1) has 

proven to be one of the most prolific unconventional resource plays worldwide. Although this 

trend was identified as productive as early as 1933 (McCallum, 1933), the economic conditions, 

drilling and completions technology, and geologic modeling needed to unlock commercial-level 

returns was not achieved until 2008 (Cusak et al., 2010). 

Despite the undeniable success of unconventional resource plays, much has yet to be 

understood about the controls of organic matter (OM) richness and reservoir quality in shale 

formations. Understanding and modeling depositional environment is critical to identifying the 

most productive areas within a shale basin. Geochemistry and chemostratigraphy also are 

powerful forensic tools for determining variations in depositional conditions in shale units that 

otherwise appear homogenous (Brumsack, 2006; Tribovillard et al., 2006; Algeo and Rowe, 

2012). The distribution, enrichment, and/or depletion of certain major and trace elements in fine-

grained mudrock corresponds to particular sedimentary facies, implies specific paleoredox 

conditions, and results in OM richness consequences (Tribovillard et al., 2006; Algeo and Rowe, 

2012). The chemostratigraphic interpretation of elemental variability allows for the quantitative 

spatial correlation of paleoenvironmental data across a basin. Basin-scale evaluations of 

depositional environment—when integrated with production, reservoir, and TOC data—aid in 
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determining source rock richness, optimal reservoir facies, hydrocarbon storage potential, ideal 

acreage positions, and horizontal well target zones of shale plays (Brumsack, 2006). 

Exploitation of the organic-rich Eagle Ford Group as an oil, condensate, and gas shale 

play spans from the south Texas Maverick basin, across the San Marcos Arch, and into the 

Brazos sub-basin of the larger East Texas basin (Figure 1). Industry activity within the Eagle 

Ford Group has primarily occurred in the area southwest of the San Marcos Arch where 

extensive chronostratigraphic and geochemical studies were conducted (Wehner et al., 2017; 

Donovan et al., 2016; Donovan et al., 2015; Tinnin and Darmaoen, 2016; Moran, 2013; Kearns, 

2011; Ratcliffe, 2011; Deluca, 2016). The Brazos basin chronostratigraphic equivalents to the 

prolific south Texas Eagle Ford Group have proven to be a sizable economic source of 

hydrocarbons. In this area, the Middle Cenomanian to Late Turonian sediments of the Eagle Ford 

and Woodbine Groups are stratigraphically, mineralogically, and geochemically distinct from the 

units in south Texas due to stronger influences from the (Early Cenomanian to Middle 

Cenomanian) Woodbine and (Turonian) Harris Delta systems (Adams and Carr, 2010; Donovan 

et al., 2015).  

In this study, a chemostratigraphic framework is established for the Woodbine and Eagle 

Ford Groups from 10 cored wells, (A through J), throughout the Brazos basin (Figure 1; Table 

1). A total of 12,282 x-ray fluorescence (XRF), 623 x-ray diffraction (XRD) mineralogy, and 

708 core-derived total organic carbon (TOC) measurements were integrated in order to define 

five chemofacies that vary in mineralogy (argillaceous-to-calcareous) and OM content (poor-to-

rich). Vertical changes in chemofacies and elemental signatures were used to sub-divide the 

strata into five chemostratigraphic zones which coincide with major chronostratigraphic surfaces 

(Donovan, 2017, unpublished). Key elements associated with OM enrichment were identified 
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and spatial changes in these elements were quantified by mapping average values in each 

chemozone across the basin. The chemozones were extrapolated to 118 wells throughout the 

Figure 1. Map of Texas showing the Eagle Ford Group outcrop belt, productive Eagle Ford Shale trend, and major 

structural features during the Late Cretaceous. The Brazos Basin and focus area for this study is denoted with a red 

rectangle and shown in the inset map. Modified from Wehner et al., 2017 and Donovan et al., 2015. Oil and gas well 

spots taken from IHS production data (IHS, 2018). 
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basin by correlating gamma-ray and deep-resistivity wireline log characteristics. This 

chemostratigraphic framework quantifies major shifts in environment (e.g. OM productivity, 

redox conditions, and detrital input) during deposition and allows for a better assessment of the 

source- and reservoir-rock potential. 

1.1 Geologic History 

1.1.1  Structural Setting 

The East Texas basin was one of several actively-subsiding extensional depocenters 

caused by early rifting along the Gulf Coast during the Mesozoic and Cenozoic (Mancini, 2008), 

forming concurrently with the Laramide Orogeny.  The Brazos basin is considered to be a 

Table 1. Core data (XRF, XRD, TOC) for each of 

the ten wells, labelled A through J, in this study. 

For proprietary purposes, well names and 

locations have been omitted. 
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western sub-basin of the East Texas basin (Figure 1), the axis of which trends parallel to the shelf 

margin (Denne and Breyer, 2016). The Brazos basin is separated from the East Texas basin by 

the northeast-southwest trending Houston Arch; stratigraphy and facies distribution on either 

side are distinctly different. Like the East Texas basin, the Brazos basin is structurally bounded 

to the west by the Mexia-Talco Fault System and by the Sabine Uplift to the northeast (Figure 1). 

Inactive Sligo and Stuart City reefs formed paleotopography along the shelf margin during 

deposition, providing restriction to the Brazos basin (Donovan et al., 2012). The Sabine Uplift 

and the erosion of the Ouachita and Arbuckle Mountains to the northeast provided much of the 

deltaic sediments within the older Woodbine (Woodbine Delta) and younger Eagle Ford (Harris 

Delta) Groups. 

Across the entirety of Texas, the Woodbine/Eagle Ford succession is underlain by the 

Buda Formation and overlain by the Austin Chalk Formation (Figure 2). During deposition, the 

Figure 2. Generalized Cretaceous stratigraphic 

succession and architecture of the Northern Gulf of 

Mexico Basin with the Eagle Ford and Woodbine Groups 

highlighted in pink. Modified from Galloway, 2008. 



6 

San Marcos Arch effectively separated south and east Texas, causing significant controversy in 

the correlation of the Cenomanian/Turonian sediments across the arch (e.g. Vallabhaneni et al., 

2016; Donovan et al., 2015; Hentz et al., 2014; Hentz and Ruppel, 2010). The Eagle Ford Group 

is a Middle Cenomanian to Late Turonian, unconformity-bounded, chronostratigraphic unit 

occurring in both south and east Texas (Donovan et al., 2015; Donovan, unpublished, 2017). The 

Woodbine Group is an older (Early to Middle Cenomanian), unconformity-bounded, siliclastic 

unit that underlies the Eagle Ford Group. It predominantly occurs in the east Texas basin as a 

productive sandstone of the Woodbine Delta (Figure 1), is present as a prodelta mudstone 

throughout the Brazos basin and rarely occurs southwest of the San Marcos Arch (Donovan et 

al., 2015). 

1.1.2 Sequence Stratigraphic Framework 

The complex depositional architecture of the Cenomanian-Turonian Gulf Coast 

sediments has resulted in multiple and conflicting naming systems for the Woodbine and Eagle 

Ford Groups. The chemozone boundaries (Figure 3) identified within this study are conformable 

with the nomenclature system and key chronostratigraphic surfaces of Donovan (2017). 

Prior to Woodbine and Eagle Ford Group deposition, the Gulf Coast shelf was carbonate-

dominated system (Phelps et al., 2010). The Buda Group consists of both the Buda Limestone 

Formation and the overlying False Buda Formation which is intermittently present in the Brazos 

and East Texas basins. In the study area, the False Buda Formation is thin but present and the 

unit’s top marks the base of the study interval. A sea-level fall during the Early Cenomanian 

partially eroded the Buda Group. Subsequent eustatic sea-level rise formed the Western Interior 

Seaway (Arthur and Sageman, 2005) and deposited the Woodbine and Eagle Ford Groups 

throughout the Brazos basin. 
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The first sequence deposited above the Buda Group is the Woodbine Group (Figure 3) 

consisting of mudstone that prograded from the Woodbine Delta (Donovan et al., 2015). This 

regressive unit has characteristically low gamma-ray and deep-resistivity values and contains 

sediments that are systematically truncated from the top-down by the sequence boundary at the 

bottom of the overlying Lower Eagle Ford Member of the Eagle Ford Group (Donovan et al., 

Figure 3. Type log (Core B) for the Eagle Ford and Woodbine Groups 

in the Brazos basin. Five chemozones are identified in this study and 

shown to the right of the type log. Chemozones are coincident with 

major chronostratigraphic surfaces identified by Donovan (2017), 

shown to the left of the type log.  
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2015; Adams and Carr, 2010). In the East Texas basin, the Woodbine Group exceeds 600 feet in 

thickness and contains productive sandstone beds. This unit thins to less than 100 feet in the 

Brazos basin and occurs predominantly as a pro-delta mudstone (Donovan, 2015). This unit 

commonly is confused with the younger Harris Delta sediments of the overlying Eagle Ford 

Group (e.g. Hentz and Ruppel, 2011) and may be also incorrectly interpreted in some literature 

as being age-equivalent to the Lower Eagle Ford (e.g. Denne and Breyer, 2016; Hentz and 

Ruppel, 2011).  

The Lower Eagle Ford Formation is a distinctive sequence marked by high gamma-ray 

and deep-resistivity values. This unit is chronostratigraphically equivalent to the productive, 

organic-rich Lower Eagle Ford of south Texas. The Lower Eagle Ford Formation is a 

transgressive, calcareous, black shale and is the dominant target zone for horizontal drilling in 

the Brazos basin. Carbonate content of the Lower Eagle Ford Member is largely biogenic in 

origin and supplied by planktonic foraminifer shells (Hudson, 2014).  The Lower Eagle Ford 

Formation and the Woodbine Group together are sometimes named the Maness Shale (e.g. Hentz 

and Ruppel, 2011; Denne and Breyer, 2016). 

The overlying Upper Eagle Ford Formation is sub-divided into Upper, Middle, and 

Lower units (Figure 3). The Upper Eagle Ford Formation occurs across both south and east 

Texas, but is distinctly more clay-rich in the Brazos basin due to siliclastic input from the Harris 

Delta System than its calcareous equivalents in south Texas (Figure 3). The Lower Member of 

the Upper Eagle Ford Formation is transitional in lithology from an open-marine, carbonate-

dominated lithology to a progressively more argillaceous, pro-delta mudstone of the Harris 

Delta. These deltaic sediments cause much of the thickening of the Eagle Ford Group within the 

Brazos basin. This unit has high-to-moderate gamma-ray and deep-resistivity log responses. The 
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Middle Member of the Upper Eagle Ford Formation is a regressive sequence of generally 

argillaceous and OM-poor mudstone that records distal deposits of the Harris Delta (Donovan et 

al., 2015). The Upper Member of the Upper Eagle Ford Formation is another regressive 

sequence sourced from the Navarro Delta to the east (Donovan, 2017). The sequence is thin to 

absent in the Brazos basin study area. 

The Eagle Ford Group is overlain by an angular unconformity that formed prior to the 

Austin Chalk Formation, which was deposited as flat-lying beds in a deeper, quiet water shelf 

over both the basins and the uplifts of the Eagle Ford Group across Texas (Adams and Carr, 

2010). 

1.2 Controlling Factors on Source Rock Development 

Organic-matter (OM) enrichment within source-rocks is governed by the interactions of 

three mechanisms: (1) preservation, (2) productivity, and (3) dilution (Bohacs et al., 2005). 

Understanding the relationships between these mechanisms, organic content, and the elemental 

composition of shales is key to reducing exploration risk in unconventional resource plays (Katz, 

2012; Bohacs et al., 2005). A mudrock’s enrichment and/or depletion in major elements (Ca, Si, 

Al, Fe, Mg, etc.) and trace elements (Mo, V, Cr, U, Ni, etc.) can be used as proxies for the 

primary mechanisms for OM-rich source-rock deposition (Sageman and Lyons, 2004; Jarvis, 

1992; Tribovillard et al., 2006; Algeo and Rowe, 2012).  

OM preservation is defined as the net accumulation and destruction of organic material 

within source rocks and is governed by the oxidation state of the water column at the time of 

deposition (Bohacs et al., 2005). An anoxic water column is devoid of aerobic biological 

activity; this condition occurs at the sediment-water interface where oxygen demands from 
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biologic productivity at the surface exceeds oxygen supplied by water circulation (Tribovillard et 

al., 2006). Many studies have concluded that anoxic depositional environments increase OM 

preservation and source rock potential (e.g. Demaison and Moore, 1980; Hollander et al. 1991).  

OM productivity is the degree to which OM formation occured within the water column 

at the time of deposition. Productivity is largely associated with nutrient-enriched surface waters 

in oceanic upwelling zones that encourage microbial blooms (Harris, 2005). Certain 

organophyllic trace elements [such as copper (Cu), nickel (Ni), zinc (Zn), cadmium (Cd), and to 

a lesser extent phosphorous (P) and barium (Ba)] are preferentially enriched in organic 

molecules themselves (Tribovillard et al., 2006). Ni and Cu are especially excellent 

paleoproductivity proxies as they behave as micronutrients for plankton and typically indicate 

the preservation of deposited settling planktonic debris within anoxic mudrocks (Algeo and 

Rowe, 2012; Tribovillard et al., 2006; Hudson, 2014).  

OM dilution is defined as the organic-carbon-free sedimentation rate (Tyson, 1995 from 

Bohacs et al., 2005). There is an optimal amount of dilution that maximizes OM accumulation 

and preservation; too much dilution will prohibit significant concentrations of OM accumulation, 

whereas too little dilution will limit preservation and burial, keeping OM at the surface and 

exposing it to microbial reworking, erosion, and transport (Tribovillard et al., 2006).   
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2. METHODS

2.1 High-Resolution XRF Acquisition 

Energy dispersive x-ray fluorescence (ED-XRF) data were collected using two Bruker 

Tracer 5i handheld spectrometers (serial numbers 900F4196 and 900F4198) on all ten cores. 

Data were collected every 1.2” (3.0 cm) on Core A and every 2.4” (6.0 cm) on the remaining 

cores (Core B through Core J). Significant testing was conducted on Core F to establish the 

following collection parameters for this study: (1) data collected using both spectrometers was 

quantitatively comparable because data variance between the two machines is negligible for 

these cores; (2) a 15-second collection time for both trace and major elements was used because 

data variance between 15-, 30-, 90-, and 120-second collection intervals is negligible for these 

cores; (3) all cores were washed to eliminate potential surface impurities, however data variance 

between a washed and unwashed sample is negligible for these cores; (4) the metal guard plate 

originally installed on both handheld spectrometers was removed for all testing as it significantly 

increases the distance between the scintillometer and the sample, decreasing the concentration of 

all readings. 

Both scintillometers were calibrated using the mudrock reference matrices developed by 

Rowe et al. (2012). All data were collected within ten days during May and June of 2017.  On 

each core, the 900F4198 spectrometer was used to scan from the top-down and the 900F4196 

spectrometer was used to scan from the bottom-up. The machines overlapped in data collection 

for fifty measurements in the middle of the each core to confirm that the production of 

quantitatively comparable results. Before and after scanning, a metal token with a specific 
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elemental composition was measured to assure that there was no instrument drift. Before a core 

was scanned, the entire section was washed thoroughly with warm tap water and wiped in the 

direction of bedding planes. The handheld devices were positioned face-down on the slabbed 

core face for scanning. Care was take to position the gun flush with the surface of the slab, 

avoiding fractures or irregular surfaces.  Trace and major elements were collected sequentially 

within a single scan using the dual mode of the handheld devices. In dual mode, the devices 

began scanning trace elements under a 15-kV filter for a 15-second count time. At 15 seconds, 

the filter automatically flips to a 40-kV filter and major elements are scanned for another 15 

seconds. 

Raw data for each scan recorded counts of photons versus energy signatures in kV. The raw-

energy spectra for each individual scan is then converted to elemental concentrations using a 

proprietary method developed by Bruker. Data were output in spreadsheet format for each scan, 

denoting the elapsed time and elemental concentrations in weight percent. Concentrations in 

weight percent for 27 elements (Mg, Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, 

Rb, Sr, Y, Zr, Nb, Mo, Ba, Pb, Th, and U) were recorded. Three elements were poorly detected 

by the handheld: Cu, Ba, and U; these data were therefore omitted from the study. Significantly 

high concentrations of Ca (>25%) interfere with the detection of many trace elements (e.g. Ni, V, 

Mo, Cr, Zn). Therefore, any data showing this interference was removed when portraying cross-

plot relationships of these trace elements with other data. Ashbeds and phosphatic nodules 

commonly plotted as outliers so these also were omitted and generally avoided, if possible, 

during data collection. At any point where a plug was visibly extracted for XRD mineralogy or 

TOC data analysis, care was taken to collect an XRF measurement as close as possible to the 
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plug hole. Where available, data were compared to benchtop XRF data collected by Core Lab on 

crushed samples to check measurement accuracy.  

2.2 Spotfire Cluster Analysis of Chemofacies 

 Elemental chemofacies were derived by running an agglomerative hierarchical cluster 

analysis of the combined XRF data on all wells within the study using TIBCO Spotfire software. 

This is a statistical grouping method that clusters individual data points into a tiered dendrogram 

of similar groups. Spotfire’s cluster analysis is powerful because it not only clusters similar rows 

of data (i.e. rows of elemental data for associated depths), but also clusters similar columns of 

data (i.e. detrital elements which track each other, e.g. Si, K, Al, and Ti, will cluster together). A 

variety of clustering methods are available in TIBCO Spotfire; Ward’s method was demonstrated 

to produce the best results in a variety of geologic studies (Roush, 2015; Temple et al., 2008) and 

was the method used within this study. Agglomerative hierarchical clustering using Ward’s 

Method produces cluster combinations that minimize internal grouping variance (Romesburg, 

1989). The cluster analysis normalizes the range of values for each column (i.e. Ca) between 0 

and 1. This effectively normalizes the entire dataset such that major elements in wt % and trace 

elements in ppm are weighted equally and not based on concentration value. 

 A spreadsheet was created that contained all 12,282 rows of XRF data. Each row 

contained a core label (i.e. Core A through J) and a depth label. Each row contained column 

values for all 27 elements. The elemental data were then clustered by row, producing a 

dendrogram tree to visualize cluster relationships. Clustering of rows and columns using Spotfire 

is powerful because it groups depths that contain similar geochemical signatures across many 

cores. This allows us to quantitatively correlate rock sections with elementally similar 
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compositions (chemofacies) across multiple cores in a basin. Chemofacies groupings can be 

assigned on as low-level (only a few groups) or as high-level (many groups) as desired.  

 The data relationships function of Spotfire was used to determine which XRF elements 

were most linearly correlated (both positively and negatively) to TOC data. This helped to 

reduce the number of variables inputted into the final iteration of the hierarchical cluster analysis 

down to 5 key elements: Ca (positive correlation with TOC), Si (negative correlation with TOC), 

Mo (positive correlation with TOC, anoxia indicator), Mn (negative correlation with TOC, oxia 

indicator), and Ni (positive correlation with TOC, productivity indicator). In this way, the data 

Table 2. Input parameters used to convert XRF elements to 

mineral compositions in Interactive Petrophysics. Mineral 

densities and clay ratios are calibrated to XRD data from the 

cores. 
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were able to be appropriately clustered into 5 meaningful chemofacies for this broad regional 

study. 

When available, XRD mineralogy and TOC measurements produced by Core Labs were 

incorporated into the dataset. Rebound hammer data was also collected on a 1’ (30.5 cm) 

resolution on Cores A, E, F, and G using a Proceq Bambino Rebound Hammer. The device gives 

readings in Leeb Hardness, which is defined as the ratio of rebound velocity to impact velocity 

of a rebounding ball within the hammer. Uniaxial compressive strength (UCS) is then calculated 

from Leeb Hardness measurements by the following equation for clay-rich mudstone (Lee et al., 

2014): 

UCS (MPa) =  2.154e0.0058x where x = Leeb Hardness 

2.3 Element-to-Mineral Conversion of XRF Data 

A proprietary element-to-mineral conversion program, developed by Michael Ashby of 

Apache Corporation, within Interactive Petrophysics was used to approximate the mineralogical 

composition of core samples from XRF elemental data. This conversion tool uses weight percent 

concentrations for Ca, Al, Si, Fe, Mg, S, K, Th, and P to derive mineral concentrations at each 

measurement. Parameters for the application are summarized in Table 2. Element-to-mineral 

conversions were particularly useful in order to fraction terrigenous quartz and feldspars from 

clay. 

2.4 Enrichment Factor Calculation 

Particular trace elements were normalized by calculating enrichment factors (EF), which 

compare sample data of a certain element to concentrations from a known reference source. The 
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reference source chosen for this study was the Post Archean Average Shale (PAAS) from Taylor 

and McClennan (1985). Element enrichment factors are calculated by the following equation:  

EFElement =

Element Concentration (ppm)Sample

Aluminum Concentration (ppm)Sample

Element Concentration (ppm)PAAS

Aluminum Concentration (ppm)PAAS

 

If EF is greater than 1, the element is enriched and if EF is less than 1, the element is 

depleted. This method was used in particular for calculating enrichment factors in the trace 

elements Mo and Ni.  
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3. RESULTS 

3.1 General Geochemical Trends and Elemental Proxies 

Complete profiles of geochemical data, gamma-ray and resistivity log responses, TOC 

data, and XRD mineralogy are contained in Appendix A. Several definitive trends in the 

elemental and rock data occur within the Woodbine and Eagle Ford Groups. Cross-plots of 

calcium (Ca) and total carbonate minerals (calcite, dolomite, and siderite) from XRD data shows 

a moderate positive, linear relationship (Figure 4A). Of the total carbonate minerals detected in 

XRD data, 77% are calcite, 9% are dolomite, and 14% are siderite. Cross-plotting Ca and TOC 

shows a positive correlation until Ca concentration exceed approximately 25 wt%, after which an 

inversely correlative trend is observed (Figure 5A).  

Terrigenous elements are clearly defined when cross-plotting them with Titanium, which 

is typically overwhelmingly terrigenous in origin (Tribovillard et al., 2006). By these methods, 

the following major elements (Figure 4E) are determined to be strongly detrital: silica (Si), 

aluminum (Al), potassium (K), and titanium (Ti). Trace-elements including Pb, Nb, Rb, Y, and 

Th also show linear relationships with Ti and are interpreted to be detrital in origin. Strongly-

linear Si/Ti (Figure 4E) correlations suggest that there is rarely a biogenic Si fraction within the 

dataset. Strongly-linear Si/Al (Figure 4D) correlations suggest that the majority of the Si resides 

within the clay fraction and not within sand or silt fraction (Ratcliffe et al., 2007).  

Cross-plotting the sum of the major terrigenous elements (Si + Al + K + Ti) with the total 

clay minerals from XRD data (Figure 4B) shows a moderate positive correlation, confirming that 

these element are detritally-sourced and reside largely within the clay fraction. This composite  



 

18 

 

 

Figure 4. Cross-plots of elemental data 

with XRD minerals (A and B) and silica (C, D, 

and E). Data is colored by chemofacies, a 

legend for which is shown in Figure 6. 
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curve of major terrigenous elements can be considered as a proxy for terrigenous input. Ca/Si  

(Figure 4C) correlations demonstrate a strong inverse relationship. This reciprocal relationship 

also is clearly demonstrated by plotting elemental data converted to oxides on a ternary diagram 

(Figure 6) with end-members of 5x Al2O3—2x CaO—SiO2 (Brumsack, 1989).  

Three significant trends between trace elements and TOC are shown in Figure 5. Mo (Figure 

5C) demonstrates a weakly positive correlations to TOC. Mn (Figure 5E) demonstrates a 

moderate, inverse correlation to TOC. EF Ni (Figure 5D) demonstrates a moderate positive 

correlation with TOC.  

Argillaceous,       

OM-Poor

Transitional,         

OM-Poor

   Transitional,         

OM-Moderate

Calcareous,          

OM-Rich

Calcareous,                 

OM-Moderate

Laminated silty-

claystone

Laminated 

claystone

Argillaceous, 

foraminiferal 

marlstone

Laminated 

foraminerferal 

marlstone

Dolomitized 

foraminiferal 

wackestone

4,061 1,964 2,118 3,030 550

33% 16% 17% 24% 5%

812' 393' 423' 606' 110'

Carbonate Content: Ca (wt%) 2% 6% 9% 17% 25%

Terrigenous Content: Si + Al + K + Ti (wt%) 37% 32% 29% 21% 10%

Oxygen Indicator: Mn (ppm) 325 241 175 116 262

Anoxia Indicator: EF Mo 10 16 20 33 47.1

Paleoproductivity Indicator: EF Ni 0.45 0.71 0.73 1.20 2.27 

173 99 96 181 42

24% 26% 30% 40% 50%

46% 47% 44% 36% 27%

17% 15% 12% 15% 15%

160 78 72 161 32

1.47% 2.42% 2.81% 3.70% 2.85%

514 194 185 360 58

2915 psi 3088 psi 3443 psi 4512 psi 6368 psi

3.22 3.31 4.00 8.78 9.65

103 102 105 108 102Average Gamma-Ray (API)

Average Resistivity (Ohm-m)
Log Properties

Chemofacies Statistics

Rebound Hammer 

Strength

Total Number of Measurements in Chemofacies

Average Uniaxial Compressive Strength

Measurement 

Statistics

Total Number of Measurements

Percentage of Total Measurements

Total Represented Footage of Core

Elemental 

Averages

XRD Mineralogy 

Averages

Total Measurements in Chemofacies

Total Carbonate (wt%)

Total Clay (wt%)

Quartz and Feldspar (wt%)

Dominant Lithology Observed in Thin Section

Total TOC Measurements in Chemofacies

Average TOC (wt%)
TOC

Table 3. Summary of the defining characteristics of each chemofacies. 
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Figure 5. Cross-plots of elemental data with 

TOC data. Data is colored by chemofacies, a 

legend for which is shown in Figure 6. 
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3.2 Chemofacies Definitions 

Clustering of key elements (i.e. Ca, Si, Mo, Mn, and Ni) produced five distinct chemical 

facies, summarized in Table 3: (1) argillaceous, OM-poor; (2) transitional, OM-poor; (3) 

transitional, OM-moderate; (4) calcareous OM-rich; and (5) calcareous, OM-moderate.  

3.2.1  Argillaceous, OM-Poor 

 The argillaceous, OM-poor chemofacies (Figures 6, 7, and 8A) are defined by the highest 

values of terrigenous elements (Si, Al, K, and Ti) and Mn and the lowest values of Ca, Mo, and 

Ni measured within this study (Table 3). This is the most common chemofacies, representing 

33% of the total dataset. XRD mineralogy confirms that this chemofacies is the lowest in 

carbonate and highest in terrigenous clay, quartz, and feldspar. Average TOC content in this 

chemofacies is the lowest of all chemofacies. Uniaxial compressive strength (UCS) indicates that 

this is the mechanically weakest chemofacies, averaging 2915 psi. Spectral gamma-ray and deep-

resistivity average values are relatively low.  

In thin section, this chemofacies is observed as a silty-claystone (Figure 8A) with 

laminations consist dominantly of light brown, terrigenous clay, moderate amounts of silt, and 

occasional globigerinid foraminifera. Foraminifera commonly are clay or pyrite- filled. 

Disseminated pyrite occurs occasionally within the laminations. In hand sample this chemofacies 

is dark brown and fissile, breaking easily along bedding planes.  

3.2.2 Transitional, OM-Poor 

The transitional, OM-poor chemofacies (Figure 6, 7, and 8B) are defined by significantly 

elevated concentrations of terrigenous elements and Mn and significantly reduced concentrations 

of Ca, Mo, and Ni (Table 3). This chemofacies records a slight decrease in terrigenous input and 
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slight increase in carbonate content as compared to the argillaceous, OM-poor chemofacies. This 

chemofacies comprises 16% of the total measurements and represents a transitional facies that is 

dominantly argillaceous but has a small carbonate component. The XRD mineralogy confirms 

low carbonate content and high terrigenous clay, quartz and feldspar content. Average TOC 

content is low but not as low as the argillaceous, OM-poor chemofacies. UCS values indicate 

that this unit is relatively weak, averaging 3088 psi. Spectral gamma-ray values and deep-

resistivity values remain low.  

Figure 6. Ca-Si-Al oxide ternary diagram (modeled after Brumsack, 1989), colored by chemofacies. The Woodbine 

and Eagle Ford Groups are largely a binary system between clay and carbonate. n= total number of measurements.  
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The transitional, OM-poor chemofacies is laminated claystone with minor calcareous 

foraminiferal laminations (Figure 8B). Less silt-sized quartz and feldspar grains and more clay 

laminations are seen in its thin sections compared to the argillaceous, OM-poor facies. Light 

brown terrigenous clay is still visually dominant in thin section, but black, calcareous mud is 

increasingly more common. In hand sample, this chemofacies is dark brown to black with visible 

bedding planes, but is generally less-fissle than the argillaceous, OM-poor facies. 

3.2.3 Transitional, OM-Moderate  

 The transitional, OM-moderate chemofacies (Figures 6, 7, and 8C) are defined by 

moderate concentrations of all key elements and represents 17% of the total dataset (Table 3).  

This transitional facies is significantly more enriched in Ca and depleted in terrigenous elements 

than the transitional, OM-poor chemofacies. The XRD mineralogy confirms the increase in 

carbonate content and decrease in siliclastic content within the elemental chemistry. Average  

Figure 7. Histogram distributions of key elements and TOC, colored by chemofacies compositions. A color legend 

for chemofacies is shown in Figure 6. 
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Figure 8. Representative photomicrographs of the dominant lithologies observed in each chemofacies. (A) 

laminated silty-claystone observed in the argillaceous, OM-poor chemofacies; (B) laminated claystone observed 

in the transitional, OM-poor chemofacies; (C) argillaceous, foraminiferal marlstone observed in the transitional, 

OM-moderate chemofacies; (D) laminated, foraminiferal marlstone observed in the transitional, OM-rich 

chemofacies; (E) dolomitized foraminiferal wackestone observed in the calcareous, OM-moderate chemofacies; 

and (F) fibrous calcite cement observed in the calcareous, OM-moderate chemofacies. Core photograph and thin 

section image location is shown to the left of each photomicrograph. Thin-section images A-D and F were taken 

from Core E of this study; thin-section image E was taken from Core D. 
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TOC content is moderate in this chemofacies. UCS values indicate that this chemofacies is 

moderate in relative mechanical strength, averaging 3443 psi. Spectral gamma-ray values are 

slightly elevated and deep-resistivity readings are moderate. 

The transitional, OM-moderate chemofacies represents an argillaceous, foraminiferal 

marlstone (Figure 8C; Allix et al., 2010). In thin section, black calcareous mud is dominant with 

secondary amounts of light-brown, terrigenous clays. Calcite-filled globigerinid foraminifera are 

very common and weakly-to-moderately laminated. Inoceramid shells are occasionally present. 

In hand sample, this chemofacies is rarely fissile and dominantly black, however lighter grey 

laminations occur where carbonate-rich foraminifers are concentrated. 

3.2.4 Calcareous, OM-Rich 

The calcareous, OM-rich chemofacies (Figure 6, 7, and 8D) is the most organic-rich 

facies within the Woodbine and Eagle Ford succession and is defined by the highest enrichment 

in Mo and Ni, high concentrations of Ca, low concentrations of terrigenous elements, and the 

lowest concentrations of Mn within the total dataset (Table 3). It represents 24% of the total 

measurements. XRD mineralogy confirms high concentrations of total carbonate minerals and 

relatively low terrigenous minerals (quartz, feldspar, and clay). Average TOC content in the 

calcareous, OM-rich chemofacies is the highest the highest of all chemofacies. Rebound hammer 

measurements indicate high mechanical strength compared to more argillaceous facies, 

averaging a UCS of 4512 psi. Spectral gamma-ray and deep-resistivity values are the highest in 

the entire data set. 

The calcareous, OM-rich chemofacies dominantly is a laminated, foraminiferal marlstone 

(Figure 8D). Planktonic foraminifera and black calcareous mud dominate thin sections. Light-

brown, terrigenous clay occurs minimally compared to the more argillaceous chemofacies. 
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Inoceramid shells are common and aligned with bedding planes. Foraminifera shells are usually 

calcite-filled and/or rimmed by calcite. In hand sample, this chemofacies is dominantly black 

with common, lighter laminations containing higher concentrations of foraminifera. 

3.2.5 Calcareous, OM-Moderate 

The calcareous, OM-moderate chemofacies (Figure 6, 7, 8E, and 8F) occurs as the most 

calcareous facies and is defined by the highest concentrations of Ca, moderate concentrations of 

Mn, low concentrations of Mo and Ni, and the lowest concentrations of terrigenous elements of 

all chemofacies (Table 3). The calcareous, OM-moderate chemofacies represents only 5% of the 

entire dataset. XRD mineralogy supports the elemental data, indicating the lowest amount of clay 

and highest amount of carbonate minerals occur in this chemofacies. Average TOC content is 

approximately equivalent to the transitional, OM-moderate chemofacies. This chemofacies 

demonstrates the highest mechanical strength, averaging a UCS of 6368 psi, and it has high 

deep-resistivity values, and low spectral gamma gamma-ray values. 

The calcareous, OM-moderate chemofacies represents two distinct lithofacies when 

analyzed in thin section (Figures 8E and 8F), both enriched in diagenetic carbonate. The most 

dominant lithofacies is a dolomitized, foraminiferal wackestone (Figure 8E). In this facies, 

ferroan dolomite partially-to-fully replaces abundant globigerinid foraminifera and commonly 

rims disaggregated inoceramid shells. Fine, euhedral ankerite crystals commonly occur within 

the black, calcareous mud matrix of this lithofacies. The secondary lithofacies observed within 

this chemofacies cluster is a thinly-bedded fibrous, calcite cement (Figure 8F) that fill bedding-

parallel factures. Calcite fibers in these veins grow normal to bedding and are colloquially called 

“beef-texture calcites” for their resemblance to fibrous steak (Al Duhailan et al., 2015; Cobbold 

and Rodrigues, 2007). In hand sample, beef-texture calcites occur as massive, grey-colored 
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laminations ranging in thickness from 5 mm to 10 cm. The calcareous, OM-moderate 

chemofacies appears light grey in color due to higher concentrations of carbonate minerals. 

Vertical fractures ranging from 10 to 30 cm commonly observed in core, corresponding with an 

increase in mechanical strength, brittleness and calcite content. Almost always, this chemofacies 

is interbedded within thick packages of the calcareous, OM-rich chemofacies. 

3.3 Chemozone Definitions and Elemental Maps 

The Woodbine and Eagle Ford Groups were sub-divided into five regionally correlative 

chemozones, EB 1 through EB 5, by identifying shifts in elemental data and chemofacies 

occurrence that coincide with major chronostratigraphic surfaces (Figure 9). The defining 

elemental trends for each chemozone and resulting paleoenvironmental interpretation are 

summarized in Table 4. North-south and west-east regional correlations of chemozones between 

cored wells are shown in Figure 10. For complete geochemical profiles for each core in this 

study, see Appendix A. Structure maps produced for each chemozone depict a uniform,  

  

Table 4. Summary of the defining elemental characteristics of each chemozone and resulting interpretations for 

paleoenvironment. 
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monoclinal dip towards the southeast. Gross isopach maps (Figure 11) convey changes in 

thickness for each chemozone. Average values of elemental data in each chemozone across all  

wells were used to construct regional elemental maps for average Ca, quartz and feldspar (QF), 

total clay (TC), EF Ni, Mo, and Mn (Figures 13).  

3.3.1 Chemozone EB 1 

Chemozone EB 1 (Figure 9) corresponds to the entire Woodbine Group (Figure 2; 

Donovan, 2017) within the Brazos basin, which is bounded by unconformities and is deposited 

directly above the False Buda Formation of the Buda Group (Figure 10). Gamma-ray and deep-

resistivity signatures for this chemozone are relatively low. EB 1 is weakly organic-rich, with an 

average TOC of 1.93 wt% across 103 measurements. The unconformity at the base of EB 1 is 

recognizable by a distinct shift from carbonate-dominated deposition in the False Buda 

Formation of the Buda Group (Ca > 30 wt%) to terrigenous-dominated deposition in EB 1. 

Terrigenous elements generally are high and argillaceous and transitional, OM-poor chemofacies 

are most dominant in EB 1, especially in the northern cores. Chemozone EB 1 

thickening to the northwest (Figure 11) coincides with increased terrigenous input, as both the 

QF and TC maps for EB 1 illustrate increasing concentrations that coincide with EB 1 northwest 

thickening, where average calcium and Ni decreases, but Mn increases. Mo is most elevated in 

cores B, C, D, and E, forming a bullseye pattern of increasing concentration across the basin 

(Figure 11). 

3.3.2 Chemozone EB 2 

 Chemozone EB 2 corresponds to the transgressive Lower Eagle Ford Formation (Figure 

3; Donovan, 2017), which is the most organic-rich chemozone—averaging a TOC of 3.93 wt% 

across 95 measurements—and the target for most horizontal wells in the Brazos basin. Gamma- 

FALSE BUDA 
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FALSE BUDA 

Figure 10. Regional cross sections A-A’ (North-South) and B-B’ (West-East) showing correlation of chemozones 

across the Brazos basin. Flattened on the top of chemozone EB2, which is interpreted to be the top of the Lower 

Eagle Ford Formation. 
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ray and deep-resistivity signatures are the highest in EB 2 of the entire succession (Figure 9). 

The unconformity at the base of EB 2 is recognizable by a distinct increase in Ca concentrations 

and decrease in terrigenous elements (i.e. Si, Al, K, Ti). EB 2 is defined by maximum 

concentrations of Ca, Mo, and EF Ni and minimum concentrations of QF, TC, and Mn of any 

chemozone. The calcareous, OM-rich chemofacies is the most dominant facies in EB 2 with 

secondary amounts of the calcareous, OM-moderate chemofacies. Mo concentrations are 

maximal and most enriched in cores B, C, and D in the center of the basin. Mn concentrations 

are minimal and most depleted in cores B, D, E, and J in the center of the basin. Ni is most 

enriched in this chemozone and shows increasing average concentrations in cores to the north 

and west. Chemozone EB 2 thickness increases to the northeast, coinciding with increases in QF 

and TC and decreases in Ca. Nonetheless, EB 2 is still the most carbonate-rich and siliclastic-

poor chemozone within this study, as documented in the chemical maps and as seen in the 

element-to-mineral models for each core. 

3.3.3 Chemozone EB 3 

Chemozone EB 3 corresponds to the lower portion of the Lower Member of the Upper 

Eagle Ford Formation (Figure 3; Donovan, 2017). Gamma-ray and deep-resistivity values for 

this chemozone are moderate (Figure 9). EB 3 is moderately organic-rich, averaging a TOC of 

3.06 wt%.  In the center of the basin, this chemozone is characterized by a continual, upward 

decrease in Ca concentrations and increase in terrigenous element concentrations from minimal 

levels in EB 2. Elemental indicators also document a gradual upward decrease in Mo and EF Ni 

and an increase in Mn. The dominant chemofacies in EB 2 is transitional, OM-moderate with 

secondary amounts of the calcareous, OM-rich chemofacies.  However, towards the north and 

west, a major facies change occurs and the calcareous, OM-rich facies is more dominant. This 
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Figure 11. Gross interval isopachs and average elemental maps by chemozone. Gross interval isopachs are 

constructed by correlating chemozonations using gamma-ray and deep-resistivity logs from 118 wells across the 

basin. Elemental maps are constructed by contouring the average value per chemozone in each well across the 

basin. Quartz and feldspar (QF) and total clay (TC) maps are constructed from average mineral concentrations from 

Element-to-Mineral conversions. For each elemental map set, maps are color-scaled exactly the same such that 

relative changes across chemozones can be conceptualized. 
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trend is particularly evident in cores A and J (Figure 10). Chemozone EB 3 increases in thickness 

to the north and northwest (Figure 11) coinciding with increases in both carbonate concentration 

to the northwest and terrigenous element concentration to the northeast. Dramatic increases in 

average Ca concentration to the northwest coincides with the previously mentioned north and 

west facies transition to dominantly calcareous, OM-rich facies. Where this facies transition is 

observed (Cores A and J), EB 3 also shows enrichment of Mo and EF Ni and depletion Mn 

(Figure 11).  

3.3.4 Chemozone EB 4 

 Chemozone EB 4 corresponds to the upper portion of the Lower Member of the Upper 

Eagle Ford Formation (Figure 3; Donovan, 2017). Gamma-ray and deep-resistivity values for 

this chemozone are relatively low. EB 4 is organic-poor, averaging 1.61 wt% TOC. EB 4 is 

defined at the base by a distinct increase in Mn and decrease in Mo concentrations (Figure 9). 

The transitional, OM-poor chemofacies is the most dominant chemofacies in EB 4. Terrigenous 

elements and Mn continue to increase-upward through EB 4 whereas Ca concentrations continue 

to decrease-upward. Mo and EF Ni are both depleted throughout the entire interval. Chemozone 

EB 4 thickness increases to the northeast, coincident with increases in QF to the east (Figure 11). 

Mn increases to the southeast, sub-parallel to increases in TC. Average Ca, Mo, and EF Ni maps 

all increase weakly to the northwest but their concentrations are generally very low. 

3.3.5 Chemozone EB 5 

 Chemozone EB 5 corresponds to the Middle Member of the Upper Eagle Ford Formation 

(Figure 3; Donovan, 2017). Gamma-ray and deep-resistivity corresponding to this chemozone 

are the lowest for the entire succession. EB 5 is very organic-poor, averaging 0.94 wt% TOC. 

Chemozone EB 5 is defined at the base by a transition to fully-terrigenous sediment input 
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(Figure 9) indicated by the highest concentrations of terrigenous elements, the lowest 

concentrations of Ca, and the pervasiveness of argillaceous, OM-poor chemofacies throughout 

the entire chemozone. Mo and EF Ni consistently are very depleted and Mn concentrations 

consistently are very enriched throughout EB 5. Element-to-mineral conversions indicate 

increasing-upward concentrations of quartz. Chemozone EB 5 thickens dramatically to the 

northwest (Figure 11) coinciding with increased QF concentrations. Mn increases to the 

southeast, sub-parallel to increases in TC (Figure 11). Average concentrations of Ca, Mo, and EF 

Ni in EB 5 are the lowest of the entire data set and vary only weakly, increasing slightly to the 

northwest. 

 EB 5 is absent in Core A and only partially cored in wells E, G, H, and J. Operators 

commonly chose not to core the interval because it is exceedingly clay-rich and organic-matter 

poor. The elemental maps for EB 5 are therefore more interpretive. 
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4. DISCUSSION

4.1 Key Elements and their Implications for OM Enrichment 

4.1.1  Ca as a Proxy for Carbonate Input 

Ca concentration demonstrates a significant linear relationship with carbonate minerals 

(Figure 4A) from XRD (calcite, dolomite, and siderite) and is interpreted to represent the 

carbonate fraction of the total dataset. Increased carbonate content is generally favorable for 

organic matter enrichment (Figure 5A), however different types of carbonate have different 

implications for organic matter enrichment, a topic which is discussed in a following section. 

4.1.2 Si + Al + Ti + K as a Proxy for Clay Input 

The composite curve of Si + Al + Ti + K concentrations is interpreted to represent the 

terrigenous fraction of the dataset. Strong Si/Ti (Figure 4E) and Si/Al (Figure 4D) relationships 

indicate that there is a negligible biogenic silica fraction within the dataset and that a majority of 

the Si resides within the clay fraction. Therefore, Si + Al + K + Ti largely represent a terrigenous 

clay fraction, which is supported visually by thin section (Figure 8) and also in the significant 

linear trend between these elements and total clay minerals from XRD (Figure 4B). In the 

Woodbine and Eagle Ford Groups, organic matter dilution occurs primarily through terrigenous 

clay input; increases in terrigenous elemental concentrations often coincide with areas of large 

gross interval thickening and represent times of increased siliclastic sedimentation rates. 

Increasing concentrations of terrigenous elements clearly show a negative correlation with TOC 

(Figure 5B). 



 

36 

 

4.1.3 Mo as a Proxy for Anoxic Conditions  

Organic matter preservation in source rocks is achieved largely through deposition within 

anoxic settings or stratified water columns (Katz, 2012; Bohacs et al. 2005) and Mo-enrichment 

is a classic indication for anoxia (Tribovillard et al., 2006; Brumsack, 2006; Calvert and 

Pedersen, 1993; Algeo and Rowe, 2012).  Mo is a highly mobile element under oxidizing 

conditions but will fall out of solution under oxygen-poor conditions (Tribovillard et al., 2006). 

A positive Mo/TOC (Figure 5C) correlation in the Woodbine and Eagle Ford Groups indicates 

Mo-enrichment that is interpreted to occur under anoxic depositional conditions. 

4.1.4 Mn as a Proxy for Oxic Conditions  

Mn-enrichment is common during oxic bottom-water conditions (Calvert and Pedersen, 

1993; Sageman and Lyons, 2003; Tribovillard et al., 2012; Brumsack, 2006). The moderate 

negative Mn/TOC (Figure 5E) correlation in the Woodbine and Eagle Ford Groups, and 

coincident Mn-enrichment is interpreted to indicate oxic depositional conditions. 

4.1.5 Mo/Mn Crossover as a Proxy for Dominant Redox Condition  

Mo and Mn indicate reciprocal conditions of water column oxygenation with Mo-enrichment 

indicating oxygen-poor depositional environments and Mn-enrichment indicating oxygen-rich 

depositional environments. Mo/Mn curve crossover (Figure 9) can therefore be used to highlight 

shifts in dominant redox conditions at the time of deposition (e.g. when Mn is to the left of Mo, 

conditions are oxic and when Mo when is to the left of Mn, conditions are anoxic).  

4.1.6 EF Ni as a Proxy for OM Productivity 

Ni is soluble in oxygenated, marine water columns and behaves as a micronutrient for 

microbial scavengers (Tribovillard et al, 2006). In stratified water columns or in areas of 

upwelling, scavengers will ingest Ni in the oxygenated surface waters and upon death will be 
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deposited and preserved at the anoxic sediment-water interface (Tribovillard et al., 2006). In the 

Woodbine and Eagle Ford Groups, moderate positive EF Ni/TOC (Figure 5D) correlations 

support the interpretation that EF Ni is a proxy for OM productivity.  

4.2 Types of Carbonate and their Implications for Depositional Environment and OM 

Enrichment 

Carbonate concentrations in the Woodbine and Eagle Ford Groups in the Brazos basin 

record pelagic carbonate deposition and subsequent diagenesis of that carbonate. Pelagic 

carbonate is composed of planktonic foraminifera and marine mudstone (Figure 8D), both of 

which are dominant in the calcareous, OM-rich chemofacies. The lack of biodiversity, low 

amounts of terrigenous dilution, depletion in Mn, and enrichment in Mo and Ni in this 

chemozone suggest a dominantly stressed, anoxic, and low-energy environment of deposition 

with high OM productivity. This type of pelagic carbonate demonstrates a positive correlation 

with TOC (Figure 5A, Figure 7F). 

Two diagenetic alterations of these foraminifera-rich mudrocks occur the OM-moderate 

chemofacies: a dolomitized foraminiferal wackestone (Figure 8E) and a precipitated, fibrous 

calcite (Figure 8F). The dolomitized foraminiferal wackestone is the most common diagenetic 

calcareous facies in the dataset. In clay-rich mudstone, this type of ferroan dolomite can form in 

early diagenesis as magnesium releases during smectite-illite conversion (Zeng and Tice, 2014). 

The bed-parallel, fibrous calcite veins are hypothesized to precipitate during early diagenesis 

under exceedingly sulfidic, anoxic conditions in which methanogenic bacteria precipitate calcite 

(Zeng and Tice, 2014; Kruse, 2014). Both diagenetic carbonate features are replacive of the 

original rock fabric, diluting TOC. Ca/TOC (Figure 5A) correlations from the representative 
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calcareous, OM-moderate chemofacies are the only data that reflect decreasing TOC with 

increasing Ca concentration. Furthermore, this chemofacies is exceedingly high in mechanical 

strength and may be potential frac-barriers (Al Duhailan et al., 2015).  

4.3 Reciprocal Sedimentation of Siliclastic and Carbonate Rocks 

The biomodal nature of siliclastic and carbonate deposition in the Woodbine and Eagle 

Ford Groups is demonstrated clearly by the strong inverse nature of Ca and Si concentrations 

within the elemental dataset (Figure 5A). Average Ca maps (Figure 11) are largely inverse of 

average QF and TC maps. Siliclastic mudstones are interpreted to indicate a more proximal 

depositional environment, being deposited during sea level falls. Carbonate input is largely 

pelagic foraminifera and carbonate mud, which are interpreted to indicate a more distal shelf 

environment, being deposited during sea level rise.  

Two distinct terrigenous systems are identified within the data set, which correspond to 

the Woodbine (EB 1) and Harris Delta systems (EB 3 through 5). The Woodbine prodelta 

mudstone deposits occurring EB 1 are defined by increasing average QF and TC concentrations 

to the northwest (Figure 11) and are interpreted to be deposited during an overall sea-level fall. A 

distinct shift from a northwesterly-sourced to northeasterly-sourced terrigenous input based on 

average elemental concentrations (Figure 11)—which coincides with gross interval thickening—

between EB 1 to EB 2 suggests a major unconformity and/or stratigraphic change at this 

boundary. This boundary coincides with the sequence boundary that separates the Woodbine and 

Eagle Ford Groups within the Brazos basin (Donovan et al. 2015). EB 2 is characterized by 

maximum carbonate concentrations and minimum terrigenous input, indicating a more distal 

marine depositional environment and an overall higher sea level. The second terrigenous system 
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occurs in chemozones EB 3 through EB 5 and is associated with input from the Harris Delta 

from the northeast (Donovan et al., 2015). The system becomes increasingly more enriched in 

terrigenous elements upward through time, with maximal QF concentrations in EB 5, which is 

consistent with the interpretation that these chemozones are dominated by an overall sea level 

fall. 

4.4 Paleoenvironment and Source Rock Quality by Chemofacies 

 The following depositional conditions are interpreted for each chemofacies (EB 1 

through 5) based on their elemental definitions (Table 3) and their key elemental indicators. 

4.4.1 Argillaceous, OM-Poor  

Low Mo and high Mn indicate this chemofacies was deposited in an oxic water column. 

High concentration of terrigenous elements indicate that terrigenous dilution of OM is high. Low 

EF Ni values indicate low levels of paleoproductivity. This chemofacies is the most ductile and 

the most organic-poor, making it the poorest quality source rock and the least fracable 

chemofacies. 

4.4.2 Transitional, OM-Poor 

Low Mo and moderate Mn concentrations indicate this chemofacies was deposited in a 

suboxic water column. High concentrations of terrigenous elements indicate that terrigenous 

dilution of OM is high. Low EF Ni values indicate low levels of paleoproductivity. This 

chemofacies is ductile and organic-poor, making it a poor quality source rock that is undesirable 

for horizontal fracturing. 
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4.4.3 Transitional, OM-Moderate 

Moderate Mo and low Mn concentrations indicate this chemofacies was deposited in an 

anoxic to suboxic water column. Moderate concentrations of terrigenous elements indicate that 

OM dilution is moderate. Moderate EF Ni values indicate moderate levels of paleoproductivity. 

This chemofacies has moderate mechanical strength and is moderately organic-rich, making it a 

moderate quality source rock for horizontal fracturing. 

4.4.4 Calcareous, OM-Rich 

High Mo and low Mn concentrations indicate this chemofacies was deposited in an 

anoxic to euxinic water column. Low concentrations of terrigenous elements indicate that OM 

dilution is low. High EF Ni values indicate high levels of paleoproductivity. This chemofacies is 

mechanically brittle and organic-rich, making it the best quality source rock for horizontal 

fracturing within the dataset. 

4.4.5 Calcareous, OM-Moderate 

Very high Mo concentrations and the occurrence of diagenetic carbonate indicates this 

chemofacies was deposited in a euxinic water column. High EF Ni values indicate very high 

levels of paleoproductivity. Low concentrations of terrigenous elements indicate low clay 

dilution, however in this chemofacies diagenetic carbonate dilutes TOC. This carbonate dilution 

is relatively small as this chemofacies represents only 5% of the total dataset. The “beef texture” 

calcites of this chemofacies are exceedingly high in mechanical strength and precipitated as bed-

parallel planes, making them potential frac-barrier in horizontal wells (Al Duhailan et al., 2015). 
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4.5 Paleoenvironment and Source Rock Quality by Chemozone 

The following depositional conditions are interpreted for each chemozone based on their 

defining elemental trends (Table 4) and indications from key elemental indicators.  

4.5.1 EB 1 

High QF and TC concentrations indicate that OM dilution in EB 1 is high and increases 

toward the northwest. EF Ni concentrations indicate low levels of OM productivity. Mo 

concentrations indicate suboxic to anoxic conditions which are most enriched in the center of the 

basin (cores B, C, D, and E). Chemozone EB 1 contains poor-quality source rock and would 

make a poor landing zone for horizontal wells.  

4.5.2 EB 2 

Low QF and TC concentrations indicate that OM dilution in EB 1 is minimal, increasing 

slightly toward the northwest. EF Ni concentrations in this chemozone indicate the highest levels 

Figure 12. Average maps for the most organic-rich chemozones, EB 2 and EB 3. Average TOC co-

varies with average Mo maps (Figure 11), suggesting that organic matter enrichment in the Brazos 

basin is largely driven by anoxia. 
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of OM productivity throughout the basin. Average Mo and Mn concentrations indicate anoxic to 

euxinic conditions, which are most enriched in the center of the basin (cores B,  wells. 

Covariance of average Mo and average TOC maps (Figure 12) suggest that reducing conditions 

are the most prominent driver in organic-matter enrichment within the Brazos basin.  

4.5.3 EB 3 

Chemozone EB 3 is enriched in Ca concentrations to the north and west (Cores A and J), 

indicating low OM dilution (Figure 11). Increases in EF Ni and Mo coincide with increases in 

Ca. Conversely, chemozone EB 3 is enriched in terrigenous elements to the south and east, 

indicating high OM dilution. Decreases in EF Ni and Mo coincide with increases in average QF 

and TC. Chemozone EB 3 contains good-quality source rock to the west and north, and poor-

quality source rock to the south and east. This interpretation is supported by a map of average 

TOC in EB 3 (Figure 12). 

4.5.4 EB 4 

High average QF and TC concentrations indicate that OM dilution in EB 4 is high and 

increases toward the east. EF Ni concentrations indicate low levels of OM productivity. Mo 

concentrations indicate oxic conditions which increase slightly to the northwest. Chemozone EB 

4 contains poor-quality source rock and would make a poor landing zone for horizontal wells. 

4.5.5 EB 5 

High average QF and TC concentrations indicate that OM dilution is high in EB 5 and 

increases toward the northeast (QF concentrations) and to the southeast (TC concentrations). EF 

Ni concentrations indicate very low levels of OM productivity and Mo concentrations indicate 

highly oxic conditions. Chemozone EB 5 contains poor-quality source rock and would make a 

poor landing zone for horizontal wells.  
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5. CONCLUSIONS

Even in the simplest of shale formations, mudstone deposition is complex and depends on 

a variety of depositional processes. Often, variability is only discernible on the micro-scale and 

requires a higher-resolution analysis. XRF data is inexpensive, simple to collect across many 

cores, and can be correlated to TOC and XRD mineralogy. Elemental proxies for mineralogy and 

organic-matter richness allow the interpretation chemostratigraphic boundaries and changes in 

regional depositional processes occurring within a shale basin. In the Woodbine and Eagle Ford 

Groups, several key elements are identified and correlated to depositional conditions: (1) Ca 

indicates carbonate input, which is associated with foraminifer deposition and generally 

favorable conditions for OM enrichment; (2) Si indicates terrigenous clay dilution and is 

unfavorable for OM enrichment; (3) Mo and Mn are inverse indicators of redox conditions at the 

time of deposition—high Mo and low Mn concentrations are generally favorable for OM 

preservation and enrichment; and (4) Ni records fluctuations in paleoproductivity and is 

favorable for OM deposition and enrichment. 

Five statistically-clustered chemofacies are identified throughout the Woodbine and 

Eagle Ford Groups from elemental analysis and its relationships to TOC data: (1) argillaceous, 

OM-poor; (2) transitional, OM-poor; (3) transitional, OM-moderate; (4) calcareous, OM-rich; 

and (5) calcareous, OM-moderate. These chemofacies highlight the high-frequency variability 

within a visually homogeneous shale and have direct relationships with OM-richness. 

Five chemozones, EB 1 through EB 5, are defined by variations in dominantly occurring 

chemofacies and major elemental shifts in which coincide with the proposed sequence 

stratigraphic framework (Donovan, 2017). Chemozone EB 1 corresponds to the Woodbine 

Group, is dominated by siliclastic input from the northwest, and was deposited in suboxic 
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conditions during a sea level fall with moderate OM productivity resulting in fair-to-poor source 

rock quality. Chemozone EB 2 corresponds to the Lower Eagle Ford Formation, contains 

minimal amounts of terrigenous clay dilution and high amounts carbonate input, was deposited 

under anoxic conditions during a sea level rise with high OM productivity resulting in the best 

source rock quality of all chemozones. Chemozone EB 3 corresponds to the lower portion of the 

Lower Member of the Upper Eagle Ford Formation, is high in carbonate content, was deposited 

under anoxic to suboxic conditions during a sea level fall with moderate OM productivity 

resulting in fair to good source rock quality. EB 4 and EB 5 are both dominated by siliclastic 

deposition from the east/northeast and were deposited under oxic to highly oxic conditions 

during prolonged sea level fall with low organic matter productivity resulting in poor source rock 

quality. 

Regional chemostratigraphy highlights major changes in: sedimentation type (i.e. 

siliclastic versus carbonate), sea level, redox conditions, paleoproductivity, and organic-matter 

enrichment in source shale basins. This assessment ultimately aids identifying horizontal landing 

zones and understanding their spatial variation in source rock plays.  
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