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ABSTRACT

The use of authentication systems has increased significantly due to the advancement of technol-

ogy, greater affordability of devices, increased ease of use, and enhanced functionality. These

authentication systems help safeguard users’ private personal information. There are a plethora

of authentication systems based on a variety of inputs such as pins, biometrics, and smart cards.

All of these authentication systems experience different threats and attacks. Shoulder surfing is an

attack when an intruder tries to look at what a user is inputting on the authentication system ei-

ther by looking over the shoulder or using the video technology. Pin-based authentication systems

are prone to shoulder surfing; e.g. at ATM’s or other public places an intruder can shoulder surf

what a user is entering as their pin/password. Biometric-based authentication systems are prone to

spoofing attacks. Smart Cards can be easily stolen, replicated, or even spoofed. Thus, the goal of

this research is to explore, develop, and quantify an alternate authentication system that addresses

issues/attacks faced by the most commonly used authentication systems. We do this through the

development of a gaze-based authentication system which addresses the problem of shoulder surf-

ing, video analysis attacks, and spoofing attacks by an intruder. Results show an accuracy of 97.5

% and F-measure of 0.97 is achievable while authenticating a user and an accuracy of 89.5 %

and F-measure of 0.89 is achievable when attempting to detect an intruder trying to log in using

someone else’s password.
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1. INTRODUCTION

Authentication systems play an important role in the present-day technological world. All

secure systems which include the banking application, websites, mobile applications, mobile de-

vices, etc. are controlled one of authentication, authorization and identification system. Whether

you are trying to login to your mobile device or trying to access a lab in your department, or if

you are trying to transact using a banking website, all these trivial tasks in this present world are

secured by an authentication or identification/authorization system. While your phone may be just

an authentication system, logging in to the lab premises is considered as an identification as well as

authorization process. The system should be able to know who entered the premises and whether

the person unlocking the mobile phone is genuine user. In nutshell, all technology we interact

with involves an authentication system in some way or other. Thus a secured authentication [6] is

very important in most technological systems, making the security of the passwords to become a

domain of paramount interest to researchers.

1.1 Authentications Systems

Authentication is a process of knowing whether the credentials given by the user matches to

information stored by the authentication system for that particular user. Different types of authenti-

cation systems are available to protect secured systems. The pin or password-based authentication

[7] was one of the first authentication systems to be introduced. These authentication systems will

take pin or password input and authenticate the user by matching pin or password with one stored

in the system [8]. These traditional passwords can be easily shoulder surfed or even guessed by

the intruders [9, 10, 11].

A second class of authentication systems is biometrics authentication systems, which consist

of some physiological or behavioral trait that is unique to the person [12] [13]. These can include

fingerprint [14] [15], face [16], iris [17], palm print, finger vein pattern [18], gait [19], etc. Au-

thentication procedure comprises of two stages. First, where a user enrolls himself using the pin or
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biometric trait which is stored by the system for that particular user. Second, the user uses the au-

thentication system to get authenticated by using the passwords or biometric trait given during the

enrollment. The basic framework/system consists of an acquisition hardware/sensor, which takes

these physiological traits as input, extractor which extracts the unique information and a matcher

which matches two inputs as extracted features for comparison. Although these authentication

systems are highly reliable, they can be easily compromised [20].

1.2 Attacks on Authentication

The number of unauthorized accesses to an authentication system is growing day by day [21].

Securing a software system or application thus requires a secure authentication process. Making

sure the authentication process is itself is highly secure is an important and vital task. Successfully

bypassing authentication system can lead to severe consequences both in terms of loss of capital

as well as private data. Attackers can not only get the access to private information, but can also

change, delete, or corrupt important data. Moreover, an attacker can steal their victim’s identity,

resulting in identity theft and private information being leaked. These attacks has resulted in sig-

nificant interest in making authentications systems as secure as possible. Such attacks to break into

the system can be categorized [22] into various types:

1. Bypass Attacks

2. Brute Force Attacks

3. Session Eavesdropping

4. Shoulder Surfing and Replay Attack

5. Verifier Impersonation

6. KeyLogger Attack

7. Server Side Attack

8. Spoofing Attacks
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Method Examples Properties

What you know?
UserID
Password
PIN

Many Passwords easy to guess
Forgotten

What you have?
Cards
Badges
Keys

Shared Can be duplicated
Lost of Stolen

What you have and
what you know? ATM + PIN

Shared
PIN Weak Link

Something unique about user?

Face
Fingerprint
Iris
Voice
Finger-Vein

Not Possible to Share
Forging Possible (Now)
Cannot be lost
Stolen (Yes)

Table 1.1: Existing User Authentication Techniques adapted from [5].

1.2.1 Bypass Attacks

Bypass attacks are easiest to carry out for an attacker. These types of attacks occur when the

authentication system or device is broken due to some failure or some bug in the code. The general

authentication systems which are customized by the security organizations are the favorites for

attackers as they have a lot of threat surfaces due to the weak architecture and customization.

(a) Attacks by Transaction Type
(b) Attacks by Vector Type

Figure 1.1: Different attack classification for Q4 2015 and Q1 2016 - Total of 6 billion transac-
tions adapted from [1]
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1.2.2 Brute Force

Brute force attacks are an unintelligent way of gaining unauthorized access to a system as they

use a trial and error methods to guess the right password. This is a time-consuming process and

demands patience. However, brute force attacks have a higher rate of success when the lifetime

of the password has no constraints. Since brute force attacks try all possible permutations and

combinations of the potential password, the search tree is usually large and can not be solved in

linear time.

1.2.3 Session Eavesdropping

Session Eavesdropping occurs when attackers attempt to capture the packets or the signal dur-

ing the authentication process. The method includes the session takeover attacks where an attacker

captures the authentication token and reuses it in the new request for the authentication.

1.2.4 Shoulder Surfing

Shoulder surfing is a direct observation technique in which an attacker looks over the vic-

tim’s shoulder to get their confidential information [23]. Shoulder-surfing attacks are prevalent in

crowded places as the victim is typically unable to recognize a potential attacker. In most of cases,

an attacker tries to get the victim’s personal identification information to gain unauthorized ac-

cess to the system. In addition, the attackers can use devices such as long-range binoculars, video

cameras, and thermal cameras, etc. to support their attacks.

1.2.5 Spoofing Attacks

Spoofing attacks are one of the more prevalent attacks these days due to the advancement of

technology. These type of attacks are more sophisticated and are typically used to attack biomet-

rics authentication systems [24]. Spoofing attacks capture the biometric trait of the authentic user

and then replicating the biometric on some other material and use that for authentication. The most

common examples of biometric spoofing [25] [26] [27] is fingerprint, Iris, Face, Voice etc. The

ease of getting biometric sample of the user makes it more susceptible to spoofing attacks. More-
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over, if the biometric trait is lost then the user won’t be able to use that modality for authentication

as the biometric traits remain constant for the entire lifetime. Also, the biometric modalities can

be easily lifted or obtained, like a fingerprint, face, iris, etc which is most common biometric trait

used in authentication in the present world [28].

1.2.6 Other Attacks

Verifier impersonation is a basically a man-in-the-middle attack, where an attacker uses infor-

mation about the authentication system to create a convincing replica in which the make the user

puts all his details. These are also called phishing attacks sometimes if the authentication system

is over the internet using a web page [29].

KeyLogger attacks [30] a well-known methodology of attack on an authentication system. In

this system, a Trojan is used to capture the key pressing details of the keyboard. Server-side [31]

attacks are related to attacks on the servers instead of at client side. This is similar to man-in-the-

middle attack which exploits internet protocols to get the user’s authentication information.

Figure 1.2: Joint distribution of the match and liveness scores for fingerprint authentication on
presentation attack dataset by CiTeR, adapted from [2]

Thus, it is clear that any successful authentication system must handle two major problems: it
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must be able to detect when an impostor is trying to login to the system and when an intruder is

making a spoofing attempt. In Figure 1.2, we can clearly see that we have to tackle these prob-

lems in an authentication system simultaneously. There have been many attempts to address the

various attacks on the authentication systems. The National Institute of Standards and Technology

(NIST) funds a number of projects to tackle the problem associated with biometric authentication

by conducting the competitions for spoof detection for fingerprint, iris as well as face [32] [33]

[34]. Many algorithms have been implemented as well to cope with spoofing attacks on biometrics

as well as general authentication systems.

Eye tracking has been used in a plethora of domains like computer science, psychology, mar-

keting, neuroscience, etc [35]. Eye tracking is basically the method/algorithm of tracking an eye

using the sensors. This interaction is captured to explore the areas in psychology to check the

scene perception, reading, visual search etc. In neuroscience, eye tracking is used to explore the

attentional neuroscience, and brain functioning while tracking the eye fixations. In computer sci-

ence, the eye tracking is used in wide applications [36]. One of the first and foremost uses of eye

tracking in computer science is selective systems. Eye tracking can be used as an input system

like a mouse pointer to select the menus, text and navigate the applications and websites. Eye

tracking has also been used for typing [37], authentication [38, 39], computer-human interactions

[40, 41, 42, 43]. The eye tracking methodology provides unique benefits of being fast, reactive,

and user convenience [44].

In this work, we address the problem of shoulder surfing, video analysis attacks, spoofing

attacks and the problem of compromised passwords and biometric traits through the development

of a gaze-based authentication system. We are also exploring the use of eye tracking technology

for user authentication and identification as a soft biometric authentication system.

The proposed system seeks to address the problem of shoulder surfing, video analysis attacks,

spoofing attacks and the common problem of compromised passwords (intruder detection). In

gaze-based authentication, the user will have to follow colored shapes on the screen or move their

eye over particular places without giving much information to the intruder. These objects have
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a randomized position on the screen and follow a randomized path during an animation. A user

chooses different colors or positions as a password and authenticates himself/herself by following

the path of the shape colors or the particular places. For a successful authentication, the user’s

gaze path should match the path traced by the colored shape on a given frame. To match the user’s

gaze path to the path traced by the shape (which acts as the template) we use template matching

algorithms. The template matching algorithm [45] matches the predefined template that is at the

nearest distance to the path drawn by the gaze. Since all the paths and position of the shapes are

randomized there is no way of knowing which shape the user is following in a series of the steps.

Moreover, since there is no feedback given by the interface to the user, intruders can’t detect or see

what users did to authenticate themselves. To handle spoofing attacks, where an imposter knows

the pattern of the password or combination of the colors, we will try to recognize that it is an

impostor by checking the saccade and eye movement level features.

The organization of the rest of this thesis is as follows. Chapter 2 discusses existing authentica-

tion systems and their limitations. Chapter 3 describes the system architecture of the authentication

system. Moreover, it will cover the authentication interface as well as the authentication engine.

Chapter 4 outlines user studies and what data was collected. Chapter 5 will discuss and analyze

the results obtained for various authentication interfaces and their pros and cons. The results will

be presented in chronological order of improvement to the system. Chapter 6 describes intruder

detection using the gaze features. Chapter 7 will analyze the results obtained for the intrusion

detection. Chapter 8 will present the possible future work based on our work. Finally, Chapter 9

presents the conclusion of this thesis work.
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2. RELATED WORK

Research on making the authentication systems foolproof from different kinds of attacks has

always been of paramount interest to researchers from different domains like biometrics, cryp-

tography, network security, financial institutions, etc. This interest is justified by the potential of

these authentication systems which handle the security and integrity of the processes that range

from financial transactions to the personalized login to the mobile devices [46, 47, 48, 49, 50].

The widespread adoption of the mobile phone devices and tablets/PDA’s has increased the threat

surfaces of the authentication systems. The high usage of mobile devices to access private and

critical applications in public settings has also increased the demand to have a foolproof system

of authentication which cannot be bypassed easily [51, 52, 53]. The increased use of financial

application [54] on mobile devices has increased this threat to a new level and provides a new set

of challenges to the researchers.

The three broad categorized attacks faced by the authentication systems can be classified as

follows:

2.1 Shoulder Surfing Attacks

The significant problem in password-based user authentication is shoulder surfing [55]. There

have been several approaches previously suggested beyond the conventional way of using a key-

board and mouse-based input. In this section, we discuss few of the gaze-based solutions for

shoulder-surfing.

Kumar et al. [56] provided motivation for using eye tracking to thwart shoulder surfing. Gaze-

based password entry makes it even harder to detect user’s password if someone shoulder surfs.

This paper [56] provides two designs of keyboards (QWERTY and alphabetically ordered) to input

password where instead of touching the screen or typing a key, the user looks at each region or

character in sequence. The system uses two methods: 1) Gaze + Dwell, and 2) Gaze + Trigger.

In the dwell based method, the users gaze on a character for a short time (450 ms - 900 ms). The
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trigger approach captures the user’s gaze only when a dedicated trigger key is pressed. The result

of the study conducted shows that Gaze + Dwell method is more appropriate for triggering the

key press as it has a lower error rate. Also, the trigger-based approach requires the user to make a

coordination of eye and trigger keypress which is difficult to synchronize. The QWERTY keyboard

outperforms Alpha-numeric keyboard.

In PassShapes [57], for the authentication procedure, a user draws a shape of the character in a

predefined order. The representation of the shapes of characters is represented by characters which

can be easily hashed. The drawback of PassShapes is that it does not mitigate the shoulder surfing

attacks. Thus an intruder can easily get the password used by a user.

In EyePin [58] the password of a user is still a PIN only the way the PIN or password is inputted

in the system is different. EyePin uses gaze to input the numbers in the authentication system. The

gaze gestures were used to input the PIN in this system which increased the cognitive load on

users.

De Luca et al. [59] presented Eye-PassShapes that uses the eye-tracking based authentication

method which improves authentication by combining the above two methods: 1) PassShapes [57],

and 2) EyePin[58]. It uses the strokes from PassShapes and EyePIN’s eye-tracking approach. A

key needs to be kept on pressed while inputting the PassShape. The eye movements of users are

analyzed and compared with that of stored PassShape in an enrolled database for authentication.

The paper presents various hypotheses to identify the user-interaction speed, error rate and ease-

of-use of this method.

ColorPIN [60] is an authentication mechanism that enhances the PIN entry. It uses a combina-

tion of digits and colors. The combination of digits and colors help the user to input the password.

It presents an effective and easy way of reducing the shoulder surfing attacks by an intruder. More-

over, it also addresses the issue of an intruder using a camera for capturing the interaction with the

authentication interface.

Vibrainput [61] uses vibrations as cognitive means to provide security. In Vibrainput, a symbol

is mapped to a vibration pattern. Vibration starts as the user touches the screen and stops as
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user releases. The paper shows 2 prototypes of Vibrainput: 1) Wheel Based- The system shows

a graphical wheel comprised of a set of ten symbols and ten different digits. Users can move

a symbol to other position by rotating the wheel. The contents of the graphical wheel changes

after each selection. 2) A bar based - The system displays ten digits and two vertical bars. The

movement of the symbols is done by scrolling the bar. When the user drags the bar, only the

symbols change their positions. Vibrainput is generally slow as compared to a 4-digit PIN entry

but it is easy to learn and can be easily improved.

Zakaria, Nur Haryani, et al introduced 3 defense techniques on recall of graphical passwords

[62] such as Draw-A-Secret [63] and Background Draw-A-Secret [64]. In the Draw-A-Secret sys-

tem, a password is a picture drawn on N*N grid. The grid is represented by rectangular coordinates

(x, y). The user’s password is the cells that users cross while moving their gaze on the picture. The

3 techniques are 1) Decoy Strokes 2) Disappearing Strokes 3) Line Snaking Strokes.

Bulling et al. [65] presented a gaze-based authentication system. This authentication system

uses the graphical passwords on a single image. The algorithm leverages a computational model

that masks the areas of the image that are obvious spots of visual attention. The authors showed

that their algorithm is more secure than a standard image-based authentication and gazebased 4-

digit pin entry. Specifically, the authors use a bottomup computational model of visual saliency

aimed at estimating the parts of the visual scene that are most likely to attract visual attention. To

set a password, the authors present to the user an image with all parts of the image masked that are

more likely to draw the user’s attention.

Luca et al. [58] evaluate three different eye gaze interaction based methods for PIN entry,

specifically designed to be immune to the shoulder surfing attacks. The authors also investigated

a new approach to use gaze gestures and compare it to the well known classical gaze-interaction

based methods. The three modes of gaze interactions presented are 1) Dwell time-based input, 2)

Look and shoot, and 3) Gaze gestures.

Roth et al. [66], presented an alternative way of PIN entry method. They called it Cognitive

Trapdoor Games. This PIN entry method makes it extremely hard to break into the system. In
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addition, the authors also introduce an idea of using probabilistic cognitive based trapdoor games.

This method fails to attempt to recover the PIN by recording a PIN entry procedure using a camera.

The PIN entry process is designed like a gameplay, involving 3 participants: a machine interroga-

tor, a human observer, and a human oracle. Both the interrogator and the Oracle receive a key from

a dealer. The human observer will observe the oracle as they try to log-in. The oracle authenticates

herself to the system by answering questions presented by the system. At each step, the Oracle

is presented with two partitions of colored black and white and must input in which partition the

current PIN digit is in. Various other works has been done to thwart the shoulder surfing attacks

that include the work by Rajanna et al. [38]

Some of the common issues among all these solutions are that they are inaccurate, induce

cognitive load, and can’t be adapted to various scenarios. Hence, a system that is accurate, induce

no cognitive load, and can easily be adapted to multiple scenarios still remain unsolved.

2.2 Spoofing Authentication Systems

A spoofing attack is a situation in which an intruder or malware successfully pretends as a

legitimate/genuine user by falsifying data required for authentication, thereby gaining an illegit-

imate access to the system secured by the authentication system. There has been a lot of effort

towards addressing the spoofing attacks on various kinds of authentication systems [67, 68, 69, 70]

in general and biometric authentication and identification systems in specific [25, 71, 72]. The

biometric authentication is more susceptible to spoofing attacks as compared to the other authen-

tication devices due to material nature of the items used for authentication. These physiological

traits can be falsified, like fingerprint [73, 32], iris [33], face [74, 75] or finger-vein etc. A password

cannot be falsified, as an exact password is needed to crack the system by the intruder, which can

be easily obtained by doing the brute force attacks or shoulder surfing attacks. There are plethora

of the techniques to classify the spoof fingerprint [76, 77, 78, 79, 34], iris [78, 80, 81] or face

[82, 83, 84] from the live ones. The sophistication of the spoofing techniques is enhancing day by

day with the advancement of the technology, so constant research efforts are needed for making

the authentication system foolproof to the spoofing attacks [85, 86, 87, 88, 89].
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Since these problems are still not addressed completely, we need an authentication system that

users can easily use without having the possibility of shoulder surfing attack possible in working

condition and the forging or spoofing should be reduced to the minimal. Our system tries to ad-

dress all these problems viz. shoulder surfing, video analysis attacks and spoofing attacks. Our

system works on the principle of gaze movements to do the authentication. Moreover, we use the

movement features to detect the spoofing of the eye movements by some other person. Further-

more, we want to show this authentication system is not limited to the controlled setting but can be

used in real-time systems.
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3. THE GAZE BASED AUTHENTICATION SYSTEM: BACKGROUND

Gaze-based authentication is not a new field, but as was discussed in chapter 2.1 gaze-based

authentication systems face many problems including inaccuracy, inducing cognitive load, and

being inflexible to various real-life scenarios. The terms "gaze" and "eye movements" mean the

same and will be used interchangeably in the text, although we prefer to use gaze more.

Our system consists of three subsystems:

1. Gaze Tracking Module or Eye Tracker.

2. The User Interface.

3. The Authentication Engine.

A full working model of the system emulated on the computer screen is shown in figure 3.1.

3.1 The Gaze Tracking Modules

The Gaze tracking modules are basically the sensors used to perceive and detect the eye move-

ments of a user [90, 91, 92]. The modern Gaze trackers are based on the Infra-Red light source

based sensors [93]. The tracker has the light source which illuminates the eyes and the CCD cam-

era to capture the illuminated eyes to detect the pupil of the eye. The localization of the pupil is

done using the Daugman’s Method [94, 95]. Once both eyes or a single eye is detected, the system

translates the distance of the person and angle to detect the exact point on the screen where the

user is looking [96]. These gaze trackers use a simple calibration for making sure the support for

displays of different sizes and resolutions.

There are various types of gaze tracker sensors available in the market. We chose one which

resembles the basic commodity level sensor which will eventually find a place in real systems,

consumer electronics, homes, offices and other electronic devices. Moreover, the placement and

the technology of these sensors also vary. Some are head mounted, while others come with chin
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rests to make the environment very restricted [35]. We chose the Eye-Tribe tracker 1 for its wide

support in terms of SDK, no chin rest, and being economical. The Eye-Tribe tracker is a table

mounted eye/gaze tracking sensor that provides the location of the user’s gaze on the screen. In

addition to this, it also includes the pupil size of each eye. Figure 3.1 shows the table mounted

Eye-Tribe Gaze tracking device we used in our study.

3.2 The User Interface

As mentioned earlier, cognitive load, inaccuracy, and adapting to real-life scenarios make gaze

tracking-based authentication systems limited in their capabilities. Our research wanted to address

these issues and make general authentication systems resilient to shoulder surfing attacks as well

as put less cognitive load on the user using the authentication system based on gaze. We researched

many aspects of gaze based authentication systems and decided to make the authentication system

highly randomized to counter the shoulder surfing attacks and also, accurate and easy to use. We

present different gaze based authentication interfaces, and a user can choose an interface based on

requirements. The different interfaces are trade-offs between the total authentication time needed

by the system and level of authentication security necessary. The two are inversely proportional

to each other. Further, we will discuss the dynamics of each interface system and the trade-off of

choices made.

3.2.1 Randomized Simple Shape Moving Interface

Randomized simple shape interface is the first interface we designed after a literature review.

Since the gaze-based pin faced the shoulder surfing attacks, we came up a concept where we will

use circular shapes of different colors to represent a unit of the password. Each colored circle will

have a distinct location on the interface that will be randomized for each authentication instance

i.e. when a user starts to authenticate using our system. As you can see from the Figure 3.2 below,

the five colored shapes represent the units of the password, and the one on top is a circle for gaze

movement.
1theeyetribe.com [last accessed: 1st Feb 2018]
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Figure 3.2: A simple randomized interface with 5 colored circles and gaze pointer.

The users can select the combination of the colored circles as password and then during the

authentication phase the user has to follow colored shapes selected during the enrollment phase. In

this interface, the user can select up to five colored shapes as the password. The following figure

3.3 shows the three animations when a user selects three colored shapes as their password.

(a) Password animation frame 1
- Orange followed

(b) Password animation frame 2
- Yellow followed

(c) Password animation frame
3- Blue followed

Figure 3.3: A full authentication procedure where the password is three colored circles. Orange,
Yellow and Blue

This interface is simplistic in terms of the authentication procedure which we will talk about in

4.1. The number of the colored circles shown on the interface can be increased to any number with
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different colors. Having said that, as we increase the number of colored circles, the memorability

of the password becomes difficult. Also, since all of the colored circles move, it can be tough to

stay concentrated on the movement of the colored shapes which the user has to follow.

3.2.2 Static-Dynamic Interface

To make the authentication system highly dynamic and compare its authentication accuracy as

well as resilience to shoulder surfing attacks, we made the number of the colored circles present on

the interface fixed as 10, equal to the number of the digits on the keypad of an ATM or general pin

based password keypad. The randomness factor of both the initial location as well as the traversing

the path during the animation is also highly randomized using a randomization algorithm which we

will discuss in section 3.3.1. We enhanced the randomized interface to develop the static-dynamic

interface for two reasons.

1. Although the dynamic interface with ten (10) moving colored circles introduces enough

randomness to prevent both shoulder surfing and video analysis attacks, a few users were

overwhelmed by the visual cluttering of the interface.

2. Second, since all the 10 circles move within a space of 800× 800 pixels, two random paths

might be similar which again leads to recognition failures that negatively affect the accuracy.

The reason for choosing the 800× 800 pixels will be presented in section 3.2.3.

Considering these factors, we designed the static-dynamic authentication interface in such a

way that only half of the actual colored circles were dynamic and rest half were static. However, a

dynamic (moving) circle on the current animation can continue to be a dynamic circle or become

a static circle on the subsequent animation; the same is true for a static circle. Hence while au-

thenticating, the user mostly ends up following a few dynamic circles and focusing on a few static

circles. Since random placement of the static circles may bring two circles closer and result in

recognition errors, we fixed the locations for static circles as shown in Figure 3.4 along the virtual

circular boundary at angles 45◦, 135◦, 225◦, 315◦, and at the center of the rectangle.
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Figure 3.4: 10 colored circles in static-dynamic authentication interface.

3.2.3 Enrollment Interface

The interface is used by the user for the enrollment procedure. The user inputs the name and

the password selection which depends on the authentication interface used. If a user wants to use

the Static-Dynamic Interface or the Dynamic Interface, then the user will be prompted to select

four colors for four different animations which will be used for the authentication process. As

shown in figure 3.5, the user for the enrollment procedure has to provide the details like UserID

and the four color selection, which will act as the password for the Static-Dynamic or Dynamic

Interface. For the case of the shape-based interface the four rows seen in figure 3.5, are replaced

by the shapes present in the system. The selection of the shapes is done similar to that of colored

circles i.e. one per animation from each row.

The authentication interface selection is the direct function of the screen size as well as the

security level needed except the last interface which is based on shapes instead of just colors.

Moreover, the different authentication interfaces provide the flexibility to the user to select from

different choices. The interface dimensions were chosen to be 800 × 800 pixels to resemble the
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Figure 3.5: Enrollment interface for static-dynamic and dynamic authentication procedures.

average screens of the target devices where we will want to use this authentication system and

procedure. We did some research regarding the average sizes of ATM Screens, kiosks at airports,

laptop screens and mobile and PDA devices in general with average to small screens. From the

survey of ATM machines and websites [97], we came to know the general dimensions of these

screens is in the range of 8 inches to 15 inches. We took the median of the screen size and came

up with the number 11.5 inches, which roughly translates to 800 × 800 pixels on a screen with

resolution 1920× 1200 pixels.

3.3 Authentication Engine

The authentication engine is the backbone of our proposed gaze based authentication system.

In our research project, we used the authentication engine based in C# code with windows WPF

application to have easy integration of the gaze tracking module and the interface for proof of

concept and full system emulation. The authentication handles interaction with both of the above-

mentioned components of the authentication systems. Moreover, the authentication engine handles
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all of the algorithms for data storage, enrollment procedure, template generation, template match-

ing, user authentication, and user identification. The intruder detection is implemented offline

based on the data obtained using the Static-Dynamic Interface system. The data is pre-processed

using the python routine using pandas and other libraries. The analysis and model building for

each user is done using WEKA Data Mining Toolkit [98] and scikit-learn (Python library). The

main components of the authentication engine will be described in the below sections. The ran-

domness in the system is generated by the random point generation algorithm and the matching is

done using a traditional template-matching algorithm.

3.3.1 Random Point Generation Algorithm

This part of the thesis is the novel component of the work on top of the already present gaze-

based authentication system. As we have seen in 2, most gaze-based authentication systems have

predefined shapes and paths for the animation, so every time a user starts the authentication pro-

cedure the shapes and other components on the screen remain at the same location and makes

same movements, thus making the possibility of video analysis attacks very obvious. To overcome

this problem of shoulder surfing attacks we developed a randomized positioning algorithm which

randomizes the position of each colored circle or shape on the authentication interface. The obvi-

ous answer is to randomize the location of the shapes on the interface i.e. is within the region of

interest. But a common problem faced by these randomization algorithms is that there is a high

collision rate of the points generated in the subsequent trials which reduces the effectiveness of

having the shapes highly randomized. To avoid this situation we introduce the concept of uniform

distribution of the points on the interface surface. This algorithm makes the possibility of the colli-

sion very low, making the point distribution highly randomized. We generate a n number of points

within the authentication interface area using the famous method described by Leon-Garcia et al.

[99]. We evaluate the joint probability distribution of the points in the given area described by

the circle of radius Rc and the random variables X and Y representing the point distribution in the

given area. The points which show the uniform joint probability density function(pdf) is given by

equation 3.1.
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fX,Y (x, y) =


1
A

= 1
πR2

c
x2 + y2 ≤ R2

c

0 otherwise
(3.1)

Figure 3.6: The distribution of the points using equation 3.1 for initial positioning and path
points.

This algorithm is translated in the code by the number of points required as input and the radius

of the circle. The output is the n number of points which are uniformly distributed in the circle

of radius given as input. In the given figure 3.6 the randomized point algorithm is used for two

purposes.

3.3.1.1 Starting Point Generation Algorithm

Starting point generation algorithm makes sure that the initial position of the colored circles or

shapes is randomized at each authentication attempt by the user. As we can see in figure 3.6, where

we are just showing one colored circle, the initial placement of the colored circle/shape is placed

within a virtual circle of radius equal to one-third of the width of the authentication interface. The

reason behind having this kind of setup is to make sure all the colored circles or shapes are initially

placed near each other so that video analysis attacks won’t help any hacker to pinpoint the location
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on the screen where the user is looking at the start of the authentication process. Since all the

circles will be near each other, the attacker will be confused by the density of the circles initially

placed on the interface.

Figure 3.7: The distribution of the points using equation 3.1 for path generation.

3.3.2 Animation Path and Template Generation Algorithm

The above point generation algorithm is applied to get a n = 10 number of points for the

initial positions. Once the initial positions are obtained, we need to get the animation path of

these colored circles or shapes. We use the same point generation algorithm to generate a set of

points for each shape. Here, the number of the points are three for each shape and the value of

the radius is increased to half the width of the authentication interface (Rc = 400 pixels ) to make

the circle cover almost all the portions of the authentication interface. Based on the authentication

interface dimensions, duration of the animation, and the frequency of the gaze tracker, we have

established empirically that the template path should be made up of 300 points that are equally

distributed along its path relative to the length of each line segment. The template path generation

for each colored circle or shape is generated using a curve fitting algorithm. While there are various

curve fitting algorithms [100], only two work for our application, Beizer Curve Fitting [101] and
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Straight Line fitting [102]. These algorithms were used to make the intermediate points to fit the

curve. After applying one of these algorithms we came up with the 300 intermediate points to

cover the animations as discussed earlier.

3.3.3 Template Matching Algorithm

The matching algorithm we use in our system is based on template matching algorithms [103].

We match the template path and the users scan-path obtained during the authentication animations.

If the user followed green and during the enrollment, the user has selected green colored circle then

the first unit of the password is correct. The template matching algorithm is based on the root mean

square distance between the scan-path of the user and all the template paths of the shapes. The

template path with which the RMS distance is lowest is considered the entered unit (color/shape)

of the password from the user. The basic crux of the matching algorithm is taken from the $1

Algorithm [104].

Figure 3.8: The actual and sampled scan path and matching the sampled scan path to the template
of a colored circle/shape, adapted from [3].

The two phases of the template matching are Sampling and Actual Matching. In sampling,

we downsize the template path as well as the candidate scan path. Sampling makes sure irregular

spikes or jittery eye movements are removed before matching the two templates. Moreover, the

sampling also helps in reducing the computational complexity and the latency of the matching

algorithm. The matching algorithm is used to compute the score which is averaged root mean
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square distance between the template paths and the user scan path. An equation 3.2 is used to

calculate the average RMS distance of the template path from the user scan path when down

sampled to N. The matching accuracy is inversely proportional to the score obtained. That is the

higher the score, the less it matches. Hence, we select the path of the colored circle or shape, with

which the value of score is minimum.

∆DTColor/Shape =

N∑
p=1

√
(C[p]x − T [p]x)2 + (C[p]y − T [p]y)2

N
(3.2)

where p is a point on path, C - candidate path, T - template path, and ∆DTColor/Shape - average

distance to template of particular color/shape.

To detect the colored circle or shape the user followed we use equation 3.3 to get the color or

shape the user has followed.

MatchedColor/Shape = min
∀s∈SColors

∆DTs (3.3)

where SColors is a set of all shapes/colors on authentication interface and ∆DTColor/Shape - aver-

age distance to template of particular color/shape.
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4. DATA COLLECTION

To test our proposed gaze based authentication system for recognition accuracy, data needed

to be collected from users using our authentication systems for both enrollment as well as authen-

tication. The user study was conducted for each authentication interface. This section describes

the procedure followed for data collection for each authentication interface separately. Section 5

will talk about the results, evaluation and other analysis of the authentication and recognition ac-

curacy.Moreover there will be a section to analyze the hacking studies done on our system to prove

the resilience to shoulder-surfing and video analysis attacks.

The user studies were based on human users using gaze based authentication system proposed

in this work. Texas A&M University needs to get the consent from the users and the study should be

authorized by Institutional Review Board (IRB) of university for conducting the human user study.

This research project was authorized to do human user study under the IRB number IRB2015-

0529D.

4.1 Randomized Simple Shape Moving Interface Based Authentication User Study

In this user study, 15 participants (11 male, 4 female), the ages ranging from 18 to 25 (mean

age=21.65 years) were asked to use our authentication system. The users were asked to use the

enrollment interface to select the three colored circle based password out of five as shown in figure

3.2. After the password selection, the users were asked to use the authentication interface and gaze

tracking module to get authenticated. The authentication procedure is simple, the user has three

unit (colored circle based) password. On each animation, the user has to follow the colored shape

which has same color they have selected during the enrollment phase according to sequence. Once

the user followed all the shapes, the template matching is done using the algorithm mentioned in

section 3.3.3. The template matching algorithm provides the actual colored circles/shapes followed

by a user and the authentication engine matches it with the password selected by that user during

enrollment phase. If they match correctly then the user is authenticated and authorized otherwise
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the user is denied the access. Although the interface is extensible to 12 colored circles, we wanted

to see how our algorithms worked and how good was template matching on the dynamic moving

colored shapes. The results will be discussed in the later section 5.1.

4.2 Dynamic Authentication Interface based Authentication User Study

After maturing the user interface of proposed gaze based authentication system with static-

dynamic interface, we wanted to compare the authentication accuracy and recognition accuracy of

algorithm with that of gaze based pin authentication system and previous proposed simple inter-

face. In this study, data were collected from 20 participants (16 male and 4 female). The mean age

of the participants was 23.15 years. The participants were asked to enter gaze based passwords for

both the dynamic as well as static-dynamic interfaces. The interface shown to the participant was

randomized between dynamic and static-dynamic interface to make the presentation of the inter-

faces balanced to the participants. The dynamic and static-dynamic interface were evaluated under

two animation speeds. The animation time of each animation in the two interfaces were differed

to check the authentication accuracy and the cognitive load on the participants. Both the cases of

system’s authentication rates were evaluated by making the users to try the actual passwords as

well as false passwords. The two cases helped in achieving the true accept rate and false accept

rate.

Participants were also asked about the ease of use of interface and authentication system as

well as the amount of the cognitive load they experienced while doing the user study. Moreover,

the participants were asked about the password memorability and any other issues faced by them

during the use of the authentication interface in specific and authentication system based on the

gaze tracking in general.
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5. AUTHENTICATION RESULTS BASED ON TEMPLATE MATCHING

Having collected the data for each authentication interface, we analyzed both the recognition

as well as the authentication accuracy. In this section, we describe all the results associated with

the accuracy of different authentication interfaces. We will describe all results and analyze those

results. The recognition algorithm is already mentioned in section 3.3.3. The enrollment uses the

interface mentioned in section 3.2.3. Moreover, the authentication, as well as recognition, is done

on the fly and we note the results of each recognition attempt. We will be reporting the accuracy

[105, 106], F-measure [107], and other error rates [108]. True Accept Rate (TAR) is the percentage

of the time our authentication system correctly verifies a true claim of identity. E.g, If I am Adil

and I claim to be Adil, then the system verifies my claim. True Reject Rate (TRR) is the percentage

of times our authentication system correctly rejects a false claim of identity. E.g, If I am Adil and

claim to be Dr. Hammond and the system rejects the claim as it should. False Accept Rate (FAR)

is the percentage of the time our authentication system incorrectly verifies a false claim of identity.

E.g„ If I am Adil and I claim to be Dr. Hammond and system incorrectly verifies my claim. False

Reject Rate (FRR) is the percentage of the time our authentication system incorrectly rejects the

true claim of identity. E.g„ If I am Adil and I claim to be Adil and system incorrectly rejects the

claim.

5.1 Simple Shape Moving Interface

The authentication results were obtained for both the true passwords and false passwords. True

passwords yielded us the TAR and FAR and false passwords helped us to get the FRR and TRR.

Authorized Not Authorized Total
Authorized User 30 0 30

Un-Authorized User 0 28 18
Total 30 28 58

Table 5.1: Confusion matrix - user based authentication results.
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Table 5.1 describes the confusion matrix of the authentication process as defined in section

4.1. This confusion matrix only shows whether the user followed all the colored circles for all

the animations correctly. The user selected these colored circles during the enrollment phase. As

in the case of the 15 participants with who participated in user studies, all the participants were

recognized correctly, and the unauthorized person was denied access to the system. Hence using

the formula for accuracy and using the values of TP = 20, FP = 0, TN = 18, and FN =0 from the

table 5.1, we get the accuracy using Equation 5.1 as 100% for this authentication interface.

Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

F −measure =
2TP

2TP + FP + FN
(5.2)

The F-measure obtained using Equation 5.2 is 1.0. Moreover the FAR = 0% , FRR = 0% ,

TAR= 100% , TRR= 100% and misclassification rate is 0 % .

Also, we tested individual recognition of all the templates with animations to see the accuracy

of our template matching algorithm. This result helped us to understand how much jitter the

algorithm can tolerate and whether or not sampling helps our cause to increase the accuracy and

reduce the computation time.

Actual/Predicted Orange Yellow Blue Green Black
Orange 1.0 0.0 0.0 0.0 0.0
Yellow 0.0 0.98 0.0 0.2 0.0
Blue 0.0 0.0 0.99 0.0 0.01

Green 0.0 0.0 0.0 1.00 0.0
Black 0.0 0.0 0.01 0.0 0.99

Table 5.2: Confusion matrix - template matching algorithm, the colors represent the colored cir-
cle as showed in Figure 3.2 and Figure 3.3.

Table 5.2 shows the confusion matrix of the template matching algorithm on each of the tem-
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plate paths generated by matching the colored circle with the user’s scan path. We can see the

accuracy of the template matching algorithm is 98.8%. Now the logical question would be why the

template matching algorithm is less accurate than the total accuracy of the authentication system.

The answer is due to the different behaviors of authorized and unauthorized users. The password is

considered correct if the user follows all of the shapes in the password. So in this scenario, all the

cases were truly authenticated and classified correctly by the template matching algorithm as the

users knew which colored circle to follow and made fewer wandering gazes to other colors. But in

the case where unauthorized users were trying to get into the system, the users jumped from one

colored shape to another as they didn’t have a particular shape in mind which happens in the case

of an authorized user who knows and remembers his/her password. The template matching algo-

rithm would mis-recognize these cases. Table 5.2 shows that blue colored circle was misclassified

as black, and the green colored circle was misclassified as yellow in a few cases.

Moreover, this result showed that the accuracy obtained by the template matching algorithms is

quite high as compared to some solutions we discussed in Section 2. The resilience of the template

matching algorithm to jerky eye/gaze movements is more naturalistic to a human eye. Moreover,

after looking at the gaze movements and scan path of the users, we wanted to dive more into

the individuality of the eye movement to distinguish between genuine and intruder users, which

will be discussed in the Chapter 6. The results from this interface motivated us to go forward

with gaze-based authentication which will be more complex and support larger password spaces.

Even though the system was extensible to 12 colored circles, we needed a better approach to

handle the highly dynamic authentication interface and also try to reduce the cognitive load on the

user. Since this interface was built to demonstrate applicability of the gaze-based authentication

with template matching for higher accuracy, which it successfully proved, our next goal was to

address the shoulder surfing and video analysis attacks. The only downside of this interface was

the password space (53 = 125 ) and time of authentication, which was around 12 seconds. The

authentication time, as well as password space, will be addressed in subsequent interfaces.
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5.2 Dynamic Authentication Interface

In this section, we will talk about increasing the password space of the gaze-based authenti-

cation system and also how this system helped us to handle shoulder surfing and video analysis

attacks. More details about the hacking studies will be discussed in Section 5.3. As we talked

in Section 3.2.2 we made the password comparable to a four digit pin so that we can have the

comparison with that of pin-based authentication. In this interface, authentication is done when

the user follows four colored circles correctly. The number of possible colors are 10 which is

again the same as that of the number of digits possible ( i.e. 0 through 9). We have two different

authentication interfaces and the results will be discussed separately. The error rates, F-measure,

and accuracy will be calculated using the Equations 5.1 and 5.2 in Section 5.1.

To address these issues which lead to low accuracy of the system, we enhanced the interface to

have only five moving colored circles. The rest will be static during the animation. This interface

change enhanced the path-following capability of the user and led to fewer conflicts between two

colored circles. Moreover, due to fewer moving colored circles, the participants mentioned that

the cognitive load was less as compared to that of the fully randomized interface system. Table 5.3

shows the confusion matrix of the 3-second animation based static-dynamic interface.

Actual/Predicted Actual True Actual False Accuracy F-Measure
True Prediction 97.5% 2.5% 98.75% 0.99False Prediction 0% 100%

Table 5.3: Static-dynamic interface 3 second animations confusion matrix adapted from [3].

During the post-study survey we came to know a few limitations of our system. One, the system

is still slow as compared to other real time authentication based systems. Second, the people who

are color blind found it hard to use our authentication system. The first limitation is basically the

trade off between speed and the randomness of the system which makes it resilient to shoulder

surfing attacks completely. In the next section we will talk about the shoulder surfing and video
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Edit Distance 3 Seconds
0 Error 97.5% (39/40)
1 Error 2.5% (1/40)

Table 5.4: Static-dynamic interface: recognition error based on the edit distance (higher 0 error is
better) adapted from [3].

analysis attacks and how our system outperformed basic as well as gaze-based pin authentication

system. We addressed the problem of people having color blindness by including the shapes instead

of the colors in our authentication system.

5.3 Hacking Studies

We evaluated our gaze-based authentication system for both shoulder surfing as well as video

analysis attacks. The threats were emulated using two separate studies.

1. Shoulder Surfing attacks: This attack was emulated by using a single camera which records

chain of actions and movements of eyes when a user is inputting the password to the gaze-

based authentication system. The camera acts as if someone is shoulder surfing you to

check what you are inputting on the authentication interface. Since just eye movements

are captured by the web cam of our system, it is difficult to identify what is happening in the

system.

2. Video Analysis Attack: This attack is more enhanced. The intruder tries to capture all the

details of a user’s activities while using the authentication system. We emulated this setup

by using two cameras to capture both the user’s eye movement as well as the authentication

interface.

In this user study, we choose the 2-second animation static-dynamic interface. As discussed

in the last section, this interface selection is justified by lower latency as well as the accuracy

of authentication. We evaluated our system with that of a gaze-based pin authentication system,

where a user will use gaze to input the password on a number pad as the authentication screen.
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12 participants performed the hacking study. Each participant was asked to use the two studies

as mentioned above to evaluate the pin-based authentication system and our gaze-based authenti-

cation system. Each user was given three chances to crack the password, which is analogous to the

number of tries a user can attempt without blocking the authentication system for the user.

In the first case, where the user was provided with just the eye movements of the user, the

results for pin-based authentication system and 5.5 for our proposed gaze-based authentication

system. We see that for the case of pin password-based authentication systems, hackers were easily

able to crack the system. The reason being the static and localized position of all the numbers on

the interface. For twelve people, each was given two passwords to guess given the front camera

videos. For the case of the pin-based password, a large number of passwords were hacked, around

80% of them. Obviously, this is too high and needs to be addressed. There was no need to use the

double-camera system in this case as the single-camera easily resulted in 80% of passwords being

hacked.

Video 1st Try 2nd Try 3rd Try Total
Single 0 0 0 0%
Dual 4 (16.7%) 0 0 16.7%

Table 5.5: 2-second animation static-dynamic authentication interface hacking: The number of
passwords hacked in each try for both single and double camera attacks adapted from [3].

The results of our gaze-based authentication system are in Table 5.5. It clearly shows that none

of the hackers were successful in cracking our authentication system given one front camera feed

only. This makes our system resilient to shoulder surfing attacks. In the case of the dual video

analysis, we see that around four passwords were cracked by three hackers, one each by two, and

two by one hacker. The password cracking was possible using the deep video analysis given two

feeds, that is front and back camera feeds. When the hackers were asked how they cracked the

password, they replied that they were able to synchronize precisely both front and back camera

video feeds. Moreover, in all the cracked password cases, the users waited a long time before
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starting the new animations and also gave a clue to the camera by making some movement when

they started the subsequent animations. The Figure 3.2 shows the setup used for the hacking

studies.

As the results in the Table 5.5 show that even when we use the dynamic interface based gaze

based authentication, the intruders can guess the password using the advance video analysis at-

tacks. To handle these cases where the intruder can detect the password using the video analysis

attacks or generally using the guess or some kind of inferences, we would want a system to handle

these intruders. The next section of this thesis handles these attacks and generates a predictive

model using gaze features that helps us to avoid the intruders from getting the access to the system

even though they know the password. Chapter 6 describes the methodology, the features and the

algorithms used to do the classification of intruder from that of genuine user.
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6. INTRUDER DETECTION BASED ON GAZE FEATURES

As we have seen, even after having highly dynamic interfaces, the hackers who guessed the

password can get authorized. This kind of attack is possible with almost all types of authentication

systems except for biometric authentication systems, which handle this kind of threat using the

spoof detection. Since the pin or password inputted by the authorized user or intruder is the same

unless the underlying system is using the typing pattern of the user, which again is behavioral

biometrics where a unique way/behavior of user distinguishes him from other users. So unless we

are using some system which identifies the genuine user there are chances that the intruder/attacker

can get authenticated.

In this section, we will explore the possibility of using the uniqueness of the gaze movement of

users to distinguish the intruder from genuine user. We want to reduce the number of unauthorized

accesses to the system by employing an intruder detection algorithm using the gaze movement

of the user. We will use the same authentication interface used in the static-dynamic interface

mentioned in Section 3.2.2 and the layout given in Figure 3.4. We hypothesize that the gaze

pattern of a user while following a colored circle path is different from the gaze pattern of other

users. Moreover, we also try to show that the features obtained from the eye movement data can

help us differentiate between different kind of users based on the movement of the eyes.

6.1 User Study for Data Collection

To demonstrate the individuality of gaze movements when following a path we tested our

algorithm on real users. We collected data from 16 participants (mean age of 23.6) in a two-phase

user study.

1. We collected gaze data from authorized users as they used the authentication system. We

collected data for 30 authorized accesses for each user to have data for training and testing

the algorithms as well as to make sure the data were not jittery.

2. Second the unauthorized users were given the password sequence of the authorized user and
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were asked to use the authentication system. We collected the gaze data of the unauthorized

user to help us to determine the accuracy of the system. Each user was asked to input every

other user’s password sequence 4 times.

We used the enrollment interface shown in Figure 3.5 for both the phases of the study. The

user data were collected by inputting the userId in the text box, while the password was statisti-

cally generated by us so that a variety of password combination were used. After the password

sequence was given to the user, gaze data were collected by running the authentication interface

for this password thirty times. These data were collected to get the user’s baseline. The intruder’s

data were collected by giving a different user the password sequence and asking them to use the

authentication system. The intruder’s gaze data are different from that of actual authorized user as

depicted in Figures 6.1, 6.2, and 6.3.

The users were asked to come different times to make ensure that a wide variety of the data is

obtained. This variety of data involves different lightning conditions, different calibrations with the

eye tracking and seating positions. We originally used 64 features to detect the difference between

the actual user and an intruder trying to get into the system using user’s password.

6.2 Features used for Intruder Detection

In order to detect intruders reliably and accurately we extracted 44 features from the data.

In this section we will describe these features. These features can be broken down into several

subgroups and are discussed in detail in the following sections.

6.2.1 Spatial and Frequency Domain Features

The spatial features include the average (X, Y, Pupil radius) equation 6.1, standard deviation

(X,Y,Pupil radius) equation 6.2, median(X,Y, Pupil radius), peak(X,Y, Pupil radius).

µx =

∑n
i=1 xi
n

(6.1)
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Figure 6.1: A plot showing the variation in the pupil dimensions of an intruder and genuine user.

σx =

√√√√ 1

n

n∑
i=1

xi − µx (6.2)

These features helped us to understand how the data differ in the users on an aggregate level.

We also calculate the frequency domain features which include entropy and energy from the gaze

data. The Equation 6.4 is used to calculate the entropy of a random variable given its probability.

In our context, entropy is used as a measure of the jerkiness of the data in terms of movement of

gaze in X-Y coordinate system. We also calculated the entropy of the Pupil radius to understand

the dynamics of the pupil dilation during the authentication.

energy =
n∑
j=1

a2j + b2j
n

(6.3)

entropy =
n∑
j=1

pj ∗ log(pj) (6.4)
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Figure 6.2: A plot showing the variation in the fixations and saccades of an intruder and genuine
user.

Figure 6.3: The distinction of saccade length and distribution of saccades for different users.

pj =

√
a2j + b2j∑n

k=1

√
a2k + b2k

(6.5)

In the equation 6.3, a and b represent the real and imaginary part of the data point when it has been

37



converted into the frequency domain.

We calculate the Fourier domain of each data point using the Fast Fourier Transform (FFT).

The formula for the Fourier transform conversion is given in Equation 6.6. In the frequency domain

the jerkiness is reflected by the number of the peaks, if the peaks are small and large in number

then the scan path of the user is highly jerky, whereas few number of peaks and high amplitude

means that the scan path is less jerky [109]. We are handling the jerkiness in our authentication

system using the sampling to reduce the number of points going out of the scope.

x[k] =
n−1∑
j=0

e(−2πj/N)knx[n] (6.6)

In the equation, the x[n] corresponds to the data point in spatial domain which is discrete and

the x[k] describes the equivalent data point in the frequency domain.

6.2.2 Eye Gaze Domain based features

Spatial and Fourier domain features only cover some aspects of the data, we also wanted to

include the features which are unique based on the user at eye movement level. This led to the

exploration of more features based on the gaze pattern. We explored certain features limited to

the capability of the gaze tracking module we have. The features include the number of fixations,

duration of the fixation, gaze velocity. These features helped to distinguish people based on the

how the eye movement and the muscles play a role in saccades and fixations. We explore the

saccades when the colored circle is moving and the fixations when the user is constantly looking

at a static colored circle. Fixations are typically the gaze points that are voluntary and average

duration of gaze is around 100–300 ms. Saccades are rapid eye movements from one fixation to

other. Average duration of a saccade is usually 20–50ms. Figure 6.4 shows a representation of

fixations and saccades.

6.2.3 Sketch Based Features

As we have seen in Figure 3.3 the stroke made by the gaze data on the interface when traced

makes a sketch-like drawing. There are many sketch based algorithms to distinguish between two
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Figure 6.4: The typical fixations and saccades.

sketches and as such we can model them in various ways. Geometry-based algorithms [110] such

as Tahuti [111], PaleoSketch [112, 113, 114], and Ladder [115, 116, 117, 118, 119, 120, 121, 122,

123, 124] are used as low-level recognizer to detect primitive shapes in strokes. The use of sketch

based features enhance the distinction between the user’s and intruder’s gaze path.

The features we used include Rubine’s [125, 63, 126] 10 features, leaving three features based

on the time as the speed and the time is constant for all the participants. We additionally included

the extended features from Long’s [127] features also help in the gesture-based classification such

as in our case. Moreover, since we are distinguishing between two gestures or sketches, we also

use the Hausdorff’s distance [128] to measure the difference between two sketches or scan paths

of different users. The Hausdorff measure between two vectors is given byDA andDB where each

vector is calculated by Equation 6.7,

DA = min
b∈PB

|a− b|, a ∈ PA (6.7)

where the PA and PB are vector of points in A and B respectively and NA represent the number

of points in each vector. The two sided measure for the Hausdorff modified version is calculated

using equation 6.8, And the final measure is calculated using the equation 6.9

h(A,B) =

∑
(DA)

NA

(6.8)

39



H(A,B) = max(h(A,B), h(B,A)) (6.9)

To describe the all the Rubine and Long’s features as aggregated in the book [129] we need

to define few terms and what they mean. The following enumeration gives the terminology for the

items we will be using to calculate the Rubine and Long’s feature. Some of Rubine’s features are

represented in the Figure 6.5.

1. n the total number of data points in a gaze path

2. p0 the first data point in a gaze path

3. pi the ith data point in a gaze path

4. pn−1 the last data point in a gaze path

5. (x0, y0, t0) the x, y, and time value for the first data point in a gaze path

6. (xn1, yn1, tn1) the x, y, time value for the last data point in a gaze path

7. (xi, yi, ti) the x, y, time value for the ith data point in a gaze path

8. xmin the minimum x value of the gaze path (identical to the minimum x value of the bound-

ing box)

9. xmax the maximum x value of the gaze path (identical to the maximum x value of the bound-

ing box)

10. ymin the minimum y value of the gaze path (identical to the minimum y value of the bounding

box)

11. ymax the maximum y value of the gaze path (identical to the maximum y value of the bound-

ing box)

12. α the starting angle of the gaze path
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13. β the angle between the first (p0) and last (pn−1) point

14. θi the angle of the line between the ith and the (i+ k)th point, for some constant offset k

15. d the length of the bounding box encapsulating the entire gaze path

Figure 6.5: A visual reference for the terms defined in section 6.2.3 and Rubine features as dis-
cussed in equations from [4].

The calculation of the feature will be done using the above terms and the visual figure will

be used to reference what the feature means for few of them. Moreover, we will use some of
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the features from Rubine and Long’s Feature which helped algorithm to distinguish between the

intruder and genuine user are:

f8 =
n−1∑
i=1

√
∆x2i + ∆y2i (6.10)

where ∆xi = xi − xi−1 and ∆yi = yi − yi−1.

1. Feature f8 Equation 6.10: This feature measures the total length of the path formed by the

gaze. This feature distinguishes between an intruder and genuine person using the total path

length formed by saccades. It also helps in differentiating between the saccades of two users

with similar bounding boxes and same animations of the shapes.

2. Feature f15 Equation 6.11: This feature represents the curviness of gaze path. Since the path

formed by the gaze generated while following a path is different for different people, this

feature helps to quantify that change in terms of the curviness of the path.

3. Feature f17 Equation 6.13: This feature represents the density metric of gaze path corre-

sponding to the total length between start and end point.

4. Feature f18 Equation 6.12: This feature represents the density metric of gaze path length. It

is ratio of feature f8 to the length of the diagonal of bounding box of the gaze path.

5. Feature f27 Equation 6.14: This feature quantifies the differentiation between two shapes.

The equation computes the Normalized distance between the direction extremes (NDDE).

NDDE calculates the difference between the point of highest direction value and the lowest

value normalized by the total gaze path (f8). Higher NDDE values mean curved shapes

whereas lower values mean a poly-line.

6. Feature f28 Equation 6.15: This feature also measures the curviness of the gaze path. It cal-

culates the Direction Change Ratio (DCR) which computes the ration of maximum change

in direction to the average change. Poly-lines have high DCR whereas the curved lines have

a lower value.
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Rest of the feature definition for Rubine and Long’s features are mention in Appendix A.

f15 =

n−2∑
i=1


|θi|, if θi < 19◦

0, otherwise
(6.11)

f18 =

n−1∑
i=1

√
∆x2i + ∆y2i√

[(ymax − ymin)2 + (xmax − xmin)2]
(6.12)

where ∆xi = xi − xi−1 and ∆yi = yi − yi−1.

f17 =

n−1∑
i=1

√
∆x2i + ∆y2i√

[(xn−1 − x0)2 + (yn−1 − y0)2]
(6.13)

f27 =

n−2
max
i=1

∆yi
∆xi
−

n−2
min
i=1

∆yi
∆xi∑n−1

i=1

√
∆y2i + ∆x2i

(6.14)

where ∆xi = xi − xi−1 and ∆yi = yi − yi−1.

f28 =

n−2
max
i=1

∆yi
∆xi

n−2∑
i=1

[
∆yi
∆xi

]
/n− 2

(6.15)

where ∆xi = xi − xi−1 and ∆yi = yi − yi−1.
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Figure 6.6: All the features we used in our system.
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7. INTRUDER DETECTION FEATURE SELECTION AND CLASSIFICATION

The user studies were conducted according to the protocol described in Section 6.1 and the

feature extraction module was run over the data collected to get the features described in Section

6.2. In this section, we discuss feature selection, our implementation of intruder detection system,

user wise model for classification and results of our proposed intruder detection system.

Figure 7.1: The three evaluation scenarios for gaze intruder detection.

7.1 Feature Subset Selection

To determine the features which were optimal for intruder detection, we performed subset

selection on the 64 extracted features. The process of subset selection is critical for any machine

learning algorithm. Although a large number of features make the classification more accurate, it

can adversely make the process of generating model computationally intensive thereby leading to

high latency. Moreover, features selected during initial phase can have high correlation making
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the generated model an approximation and inadequate for classification. Also, irrelevant features

can cause overfitting of machine learning algorithms like ANN [130], making the generated model

sub-optimal and faulty. In more technical terms feature subset selection evaluates the worth of

adding a new feature to the subset using Equation 7.1, where rzc is the worthiness of the subset of

features, rzi is the average of the correlations between the features and the classification results, k

is the number of features, and rii is the average of the correlations between the features.

rzc =
krzi√

k + k(k − 1)rii
(7.1)

The BestFirst method of uses hill climbing to find the optimal solution. One of the other

effective feature selection techniques is Sequential Floating Search Methods (SFSM) [131, 132].

There are two categories of floating search algorithms: Sequential Floating Forward Selection

(SFFS) and Sequential Floating Backward Selection (SFBS). In the SFFS, the algorithm starts with

a null set of features and at each step, and the best feature satisfying a defined criterion function is

included in current feature set. This algorithm also confirms the likelihood of improvement of the

criterion if a feature is excluded from the current set. In this case, the worst feature which leads to

low accuracy (criterion function) is eliminated from the set. Therefore, SFFS keeps on increasing

and decreasing the number of features until the desired set of features are obtained. The backward

search (SFBS) works analogously, starting with a full feature set and executing the search until all

the features tested and the corresponding accuracy as a criterion.

7.2 Recognition Algorithms

The features selected after the subset selection were tested on five different classifiers: Random

Forest, Multilayer Perceptron, J48 (C4.5), Naive Bayes and Random Tree. We evaluated the recog-

nition accuracy of our proposed system using all popular machine learning algorithms present in

WEKA Toolkit. However, we only selected five of these machine learning algorithms according

to the characteristics of features. The data we obtained were labeled, so we choose the supervised

learning algorithms. We will talk more about these machine learning algorithms we selected.
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7.2.1 Decision Trees

The first class of algorithms is Decision Trees. Decision trees are one of the most commonly

used machine learning algorithms for a plethora of reasons. The model generated by these algo-

rithms are easy to understand. These algorithms try to interpret the latent factors or relationships

in the data. Moreover, these algorithms implicitly determine the optimal subset feature selection

while building the model.

In our proposed system, we explored three of these algorithms, J48, Random Tree, and Random

Forest. Random Tree is one of the simplest among these algorithms where each node represents

the random subset of features. This algorithm doesn’t prune the data. The J48 algorithm is one of

the popular decision tree algorithms widely used. It does pruning of the data to form 5 decision

trees. Both decision tree and J48 algorithms are susceptible to overfitting in case of noisy data. To

handle overfitting, a superior machine algorithm Random Forest was used. It constructs a series

of random trees to make the classification decisions thus avoiding the overfitting. All the decision

tree based algorithms can handle missing data and can be used to nominal as well as numeric data.

7.2.2 Artificial Neural Network

Artificial Neural Networks are known machine learning algorithm that model the non-linearity

of the data. The class of ANN we are using in our proposed solution is Multilayer Perceptron.

It is a feed-forward ANN that uses back-propagation or errors to train its model. All the nodes

are sigmoid as we need binary classification. ANN handles the numeric data well and finds the

nonlinear relationship among the data to calculate the weights to each node in hidden layers. Since

the algorithm involves a lot of back-propagation and error correction, it is very slow as compared

to function based machine learning algorithms. It is known to be used for gesture recognition thus

serving our purpose.

7.2.3 Bayesian Networks

To model using the probabilistic theory, we used the Naive Bayes algorithm. Naive Bayes

is a simplistic probability based machine learning algorithm that handles numeric data and uses
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conditional probability to build the Bayesian network. The algorithm uses probability decisions at

each node of the network to generate a full probabilistic graphic model.

Table 7.1: Performance of the classifiers for each user using all 64 features, where A is Accuracy
in percentage (%) and B is F- measure.

User/Classifier C4.5(J48) Naive Bayes Multilayer
Perceptron Random Tree Random Forest

A (%) B A (%) B A (%) B A (%) B A (%) B
User 1 91.30 0.91 81.52 0.81 89.13 0.88 82.60 0.82 92.39 0.92
User 2 93.47 0.93 89.13 0.89 93.47 0.93 92.39 0.924 97.82 0.97
User 3 92.55 0.92 90.42 0.90 92.80 0.91 93.60 0.93 93.61 0.95
User 4 93.47 0.93 94.56 0.94 97.81 0.97 90.20 0.90 96.73 0.96
User 5 86.36 0.86 81.67 0.81 93.18 0.93 85.22 0.85 94.31 0.94
User 6 86.51 0.86 85.39 0.85 88.76 0.88 93.25 0.93 92.13 0.92
User 7 93.18 0.93 87.50 0.87 95.45 0.95 85.22 0.85 94.31 0.94
User 8 87.50 0.87 84.09 0.84 87.50 0.87 87.50 0.87 92.04 0.92
User 9 96.59 0.96 96.59 0.96 98.86 0.98 95.45 0.95 99.90 0.99
User 10 94.31 0.94 96.59 0.96 97.70 0.97 93.18 0.93 97.72 0.97
User 11 88.09 0.88 85.71 0.85 90.10 0.90 81.82 0.81 92.85 0.92
User 12 94.04 0.94 96.42 0.96 94.04 0.94 94.04 0.94 98.80 0.98
User 13 93.18 0.93 87.50 0.87 93.25 0.92 95.45 0.95 96.59 0.96
User 14 85.33 0.85 89.88 0.90 88.76 0.88 85.39 0.85 94.55 0.95
User 15 96.55 0.96 96.59 0.96 94.57 0.94 98.85 0.98 98.99 0.99
User 16 93.61 0.93 92.05 0.92 89.72 0.89 89.63 0.86 96.54 0.96

7.3 Results and Analysis

The evaluation of these algorithms was done using the classification accuracy and F-measure.

The accuracy can be misleading at times when the data is class skewed. Skewed data has more

instances of one class to that of other classes. Data collected in the user study were divided into

skewed and non-skewed classes. For the skewed data, the baseline of the classification/recognition

accuracy is calculated using the majority classifier. ZeroR in WEKA Data Mining Toolkit is a

majority classifier which classifies every instance of the data as an instance of majority class. We

use the F-measure to overcome this problem of comparison between the baseline accuracy and
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accuracy obtained by the classifier.

Table 7.2: Cumulative accuracy and F-measure of classifiers across the users.

Classifier Overall Accuracy (%) Overall F-Measure
Naive Bayes 89.72 0.89
Random Tree 90.23 0.89

C4.5 J48 91.62 0.91
Random Forest 95.58 0.95

Multilayer Perceptron 92.81 0.92

7.3.1 Intruder Detection using User Based Models

We generated the model for each user who took part in the user study. We got 16 models

for each user. These models were all the binary classifiers predicting whether the new instance

supplied to the model is a genuine user or an intruder. We evaluated two different training and

testing cases.

The results obtained before the subset selection per user can be seen in Table 7.1. All 64 fea-

tures were selected for generating the results given in Table 7.1. As you can see, all the features we

discussed earlier are more than sufficient to reliably classify an intruder from a genuine user. The

results were obtained by modeling each user separately. Each user has a set of positive instances

(30), where the user itself is using the authentication system and negative instances (15 ∗ 4 = 60)

where an intruder is trying to imitate the genuine user’s password by following the same pattern of

colored circles. The majority classification accuracy for all the user is around 66% but as we can

see that all the classifiers for each user can easily classify the genuine vs intruder with greater than

85% accuracy. This shows that while following a pattern the gaze movement of a user is distinct

compared to any other user. Moreover, results in Table 7.1 also show that the F-measure value

for all the classifiers is higher than 0.80, meaning that the classifier is able to distinguish between

the real and intruder users easily. One important detail we noticed while training the model is all

the classifiers took an average of 0.5 seconds except Multilayer Perceptron which took around 45
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Table 7.3: Cumulative confusion matrix for C4.5 Decision Tree classifier.

User
Classified As

Genuine User Intruder
Genuine User 0.88 0.12

Intruder 0.06 0.94

Table 7.4: Cumulative confusion matrix for Naive Bayes classifier.

User
Classified As

Genuine User Intruder
Genuine User 0.87 0.13

Intruder 0.07 0.93

seconds for each user. Table 7.2 represents the cumulative accuracy and F-measure for all the users

for different classifiers.

Tables 7.3, 7.4, 7.5, 7.6, and 7.7 show the cumulative confusion matrix for all the user for five

different classifiers used.

7.3.2 Classification Results after Subset Selection

The features selected by using the two methods of subset selection were same. The reason

for this behavior is both the subset selection algorithms make a greedy choice while selecting the

feature which increases the classification accuracy. Moreover, both algorithms avoid selecting a

feature which lowers the classification accuracy. After running the subset feature selection algo-

rithm on our features we got the features mentioned in Figure 7.3.

The results in Table 7.8 shows the accuracy and F-measure for each user after the subset selec-

Table 7.5: Cumulative confusion matrix for Mutlilayer Perceptron classifier.

User
Classified As

Genuine User Intruder
Genuine User 0.94 0.06

Intruder 0.06 0.94

51



Table 7.6: Cumulative confusion matrix for Random Tree classifier.

User
Classified As

Genuine User Intruder
Genuine User 0.87 0.13

Intruder 0.07 0.93

Table 7.7: Cumulative confusion matrix for Random Forrest classifier.

User
Classified As

Genuine User Intruder
Genuine User 0.95 0.05

Intruder 0.03 0.97

Figure 7.3: Features selected by the subset selection algorithm by running the algorithm using
the 10-fold cross validation and selecting the features that existed in more than 6 folds and also
appeared in all the users subset selection.

tion of features. Tables 7.9, 7.10, 7.11, 7.12, and 7.13 shows the cumulative confusion matrix of

all the classifiers used in our study. Comparing the results from the previous section, we saw the

decrease in accuracy and F-measure. The reason for this behavior is when we selected the subset
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Table 7.8: Cumulative accuracy and F-measure of classifiers across the users after subset selec-
tion algorithm: using the features from Figure 7.3.

Classifier Overall Accuracy (%) Overall F-Measure
Naive Bayes 87.72 0.87
Random Tree 89.24 0.89

C4.5 J48 89.66 0.89
Random Forest 92.08 0.91

Multilayer Perceptron 90.81 0.90

Table 7.9: Cumulative confusion matrix for C4.5 Decision Tree classifier.

User
Classified As

Genuine User Intruder
Genuine User 0.88 0.12

Intruder 0.09 0.91

of features, we selected subset features that appeared in all resultant sets after running subset selec-

tion algorithm on all users. Also, this helped in making sure that a user’s model is not overfitting.

The classification accuracy and F-measure of the Random Forest algorithm are high for before and

after subset selection algorithm due to the pruning of the dataset, thereby removing the outliers

which cause the failure.

7.3.3 Classification Results For Skewed Data

We also explored the possibility of using the fewer negative instances i.e. intruder trying to use

authentication system. Instead of having 10 users’ intruder data for training we used 4 to balance

the positive samples. This reflects the practical scenario for the model making as the number of

Table 7.10: Cumulative confusion matrix for Naive Bayes classifier.

User
Classified As

Genuine User Intruder
Genuine User 0.87 0.13

Intruder 0.11 0.89
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Table 7.11: Cumulative confusion matrix for Mutlilayer Perceptron classifier.

User
Classified As

Genuine User Intruder
Genuine User 0.90 0.10

Intruder 0.09 0.91

Table 7.12: Cumulative confusion matrix for Random Tree classifier.

User
Classified As

Genuine User Intruder
Genuine User 0.89 0.11

Intruder 0.11 0.89

intruders training data will always be limited. We also tried without using any negative instance

of the sample data, but the model didn’t understand what is considered as negative and classified

everything as positive. We will leave the model generation based on the no negative instance

for future work. The results obtained using these limited intruder training instances showed that

intruder detection is possible using gaze. The results in Table 7.14 show the accuracy and F-

measure of the system using limited negative training instances.

7.3.4 Clustering based Results

We explored the possibility of using just the features to detect the intruder vs genuine user

without using the training. For achieving this we tried to use the clustering method to detect if

the genuine users’ cluster will be separable from that of intruder users. We used two clustering

methods for our data Expectation Maximization and Simple K means. We ran k-means clustering

Table 7.13: Cumulative confusion matrix for Random Forrest classifier.

User
Classified As

Genuine User Intruder
Genuine User 0.91 0.09

Intruder 0.06 0.94
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Table 7.14: Cumulative acccuracy and F-measure of classifiers across the users after subset selec-
tion algorithm: using the features from Figure 7.3.

Classifier Overall Accuracy (%) Overall F-Measure
Naive Bayes 84.72 0.84
Random Tree 86.23 0.86

C4.5 J48 86.68 0.86
Random Forest 90.08 0.89

Multilayer Perceptron 88.80 0.88

Figure 7.4: Classification accuracy of different classifiers.

algorithm on each user data and distance function used by the algorithm was euclidean distance.

The maximum iteration for the clustering algorithm was set to 500 and number of clusters were

2 (since we are classifying the data into two clusters). Expectation Maximization was set to use

two distance based evaluations i.e. Euclidean distance based and Manhattan distance based. The

number of iteration were set to 500 and the clusters were set again 2 for binary clusters. Since

the Euclidean distance and Manhattan distance doesn’t respect the non-linearity of the features

and calculated the clusters with a mix of genuine and intruder users. The results obtained by

the clustering algorithm was very nominal and couldn’t provide conclusive results due to distance

measures used. The cumulative results over all the users for both the clustering algorithms is shown

in Table 7.15.
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Table 7.15: Clustering accuracy of cumulative user models.

Clustering Algorithm Cluster Accuracy (%)
Expectation Maximization 71.36

k-Means 72.06

7.4 Algorithm Accuracy

The results showed that classification of an intruder from a genuine user using the feature

set given was better than the majority classifier. The basis for this difference is evaluated using

the features we used. The classification accuracy of classifiers on an average was 89%. The

classifiers used by our system were trained on features from 15 samples of a genuine user and 16

samples from intruders. The testing set consisted of 15 samples of a genuine user and 16 samples

from intruders ( instances from 13 remaining users selected at random). The random selection of

instances made sure model did not overfit the data. This process was repeated 10 times to make sure

all the instances were covered for testing. Figure 7.4 shows the comparison of the classification

accuracy across various scenarios and classifiers. The classification accuracy for the initial set of

64 features is better for all the classifiers as compared to other scenarios. This behavior is the result

of having independent users models using different features for modeling. Hence the models were

user specific and feature driven. In other scenarios, we chose a constant set of features using the

subset selection algorithm over all the users. This process helped us to select unique and repeatable

features that can be used to classify intruders in a generic case.

After selecting common features by subset selection algorithm, the models were generated

and classification results are shown in Table 7.8 and Figure 7.4. The results show a reduction in

accuracy results when compared with previous results. The reason was discussed in the previous

paragraph of this section.

In case of limited intruder training, the drop in the accuracy was expected. The user model

misclassified the negative instances as the model was not trained enough on variances of negative

instances.

56



7.4.1 Evaluation of different classifiers

The intruder detection classification was done using 5 classifiers. The prime reason for having

a variety of classifiers was to make sure the models are generic and don’t overfit the data. The

classifiers were chosen from various categories of machine learning algorithms. The first classifier

we chose was Naive Bayes. The foundation of this classifier is based on conditional probability.

We wanted to have a system that uses probabilistic approach learning while modeling the intrusion

detection system. The second classifier was chosen from the function based machine learning

algorithm. We chose Multilayer Perceptron for its error propagation and sigmoid function. The

Support Vector Machine was not selected due to its complexity in modeling the non-linear systems.

Finally, we selected Random Forest, Random Tree, and C4.5 (J48) classifier from decision tree

based machine learning algorithms because data from real life are never divided into pure classes,

we need a modeling mechanism to handle the impurity of class division and decision trees are one

of the best algorithms to address these issues.

Figure 7.5: F-measure of different classifiers for three scenarios.

Figure 7.5 shows the F-measure of 5 classifiers we used to model the system. We saw that when

using all features, classifiers are performing better as compared to other scenarios. Moreover, an
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interesting observation revealed that Random Tree performed the same in case of when using 64

features and subset of features. The reason for this behavior is that decision tree based algorithms

choose features that make the decision about the class easy and doesn’t consider the feature that

introduces impurity in classification.

As we can see from Figure 7.4 and 7.5 that among different decision tree based algorithms the

Random Forest performs best. Random Forest prunes the decision tree to reduce the complexity

of the final classifier, and hence improves predictive accuracy by the reduction of overfitting.

Moreover, the Multilayer Perceptron performs on par with that of the decision tree based al-

gorithms because of back propagation of error to update the weights of nodes. Neural networks

(Multilayer Perceptron) are known for overfitting to the data so we used regularization built in

WEKA Data Mining Toolkit to avoid it. Even though we used regularization, we still have the

error propagation that makes the model more dependent on data.

7.4.2 Misclassification

In our system, classifiers made two types of mistakes. One, an intruder was misclassified as

a genuine user. Other, a genuine user was classified as an intruder. All the cases that resulted in

the misclassification of a genuine user as an intruder were the result of fatigue to the user while

participating in the user study. All users provided thirty samples of positive instances i.e. using

their password for authentication. The repetition of doing the same authentication resulted in

fatigue and jitter while following the colored circles/shapes. Moreover, the saccades got longer,

the number of fixations changed. Since the possibility of giving continuous samples will not be

the regular case while using an authentication system, the number of false negatives will decrease.

Moreover, the continuous exposure to the screen resulted in pupil dimension changes.

For the case of false positives, which is a serious affair as compared to false negatives in an

authentication system, our system had around 8% of instances overall coming from selected users

who were new to the eye tracking and couldn’t follow the eye tracking protocol. We have user 5 and

user 6, who found it hard to concentrate while performing the studies. This resulted in a decrease

of accuracy as reflected in Table 7.1. Moreover, the experienced users who have performed the eye
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tracking based user study had fewer false positives. Finally, the clustering results can be improved

by using the non-linear distance based measure to put the data into clusters. The manifold distance

can be used as distance measure in clustering algorithms. The clustering algorithms with manifold

distance has been used primarily for non-linear based data.

7.4.3 Usability of the Authentication Interface and Intruder Detection

All the users who participated in the user studies for intruder detection were given the survey to

give feedback about our system and were asked questions about authentication systems as shown

in figs. 7.6 to 7.13.

Figure 7.6: Figure showing how often people use authentication systems. (1-Never, 10-Everyday)
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Figure 7.7: Chart showing the distribution of how serious the people are about losing their pass-
words. (1-Don’t Care, 10-Freak Out)

Figure 7.8: Chart showing the distribution of how participants liked the concept of using the gaze
based authentication. (1-Didn’t like it, 10-Loved it)
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Figure 7.9: Ease of use of gaze-based authentication system. (1-Didn’t like it, 10-Loved it)

Figure 7.10: Ease of use of gaze-based authentication system. (1-Didn’t like it, 10-Loved it)

Figure 7.11: How would you avoid the shoulder surfing attacks in public places.
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Figure 7.12: Overall experience of the participants with gaze based authentication system.

Figure 7.13: Prospects of having continuous authentication systems based on gaze.
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8. FUTURE WORK

Our work suggests that the gaze-based authentication is a possible solution to handle shoulder

surfing, video analysis attacks, and intruder detection. Moreover, we can explore the possibility

of using the gaze-based authentication as a full biometric system. Furthermore, we believe that

gaze-based authentication system can be made available to the mobile as well as small PDA’s.

8.1 Generalized Biometric System

With the advancement of technology and hardware, it is possible to research on an avenue

of making gaze-based authentication as general biometric authentication. High-frequency data

coming from the gaze trackers can help us get more minute information of the gaze data and

other features of eye movements like microsaccades, jitters, etc. Also, the replication/spoofing of

muscle movement of eyes is very hard and nearly impossible. Furthermore, the pupillary light

reflex to the light can’t be modeled easily hence making gaze-based authentication resilient to the

spoofing attacks. Finally, the gaze-based authentication can be used as a separate biometric-based

authentication system without having an animation interface. A window of eye movement can be

captured and classified as if it belongs to an individual or not. But it would need a large testing and

detailed research.

8.2 Authentication System: Real Time

While our work evaluated the intruder detection using features and collected data, we believe

that the system can be implemented for real-time recognition. The unique problem is the latency

and resources for computation. The amount of the data coming from the gaze tracker is huge that

is why we downsample the data for template matching algorithm to detect the colored circle/shape

followed by the user. For doing the real-time intruder detection, we need to process the data to

get all the features and run the recognition algorithm, which needs more research and improve-

ment. Furthermore, the authentication latency needs to be decreased. More simplified yet secure

interfaces can help in overcoming this problem.
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8.3 Continuous Authentication Systems

Continuous authentication is a buzz word these days and industries are spending a lot on finding

new ways to make sure the user is continuously authenticated while using the system. Gaze-

based authentication is a non-intrusive way of continuous authentication. While a user is using a

system, they need to look at it. This way the continuous authentication is non-intrusive and natural.

Whenever a user looks away the system can be locked and needs to get authenticated while using

the system.
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9. CONCLUSION

In this work, we developed an authentication system based on gaze tracking. We were able to

authenticate users with an accuracy of 97.5% and F-measure of 0.97. Moreover, we also developed

a system to classify an intruder from that of a genuine user with an accuracy of 89.5% and F-

measure of 0.89.

There are three main contributions of this research work. First, developing a framework for

making the gaze-based authentication system resilient to the shoulder surfing, and video analy-

sis attacks. This was achieved by using the randomization framework for initial placement and

movement of colored circles/shapes on the interface.

Second, a non-intrusive authentication interface that is clutter free and simplified in contrast

to other gaze-based authentication was developed. Moreover, the animation of the colored shapes

and path generation was made generic to include the transition in different types of paths, like

straight lines, curves, etc. We made the system generic so it can be updated to handle the changes

with different applications. Also, we provided a solution to select the security level of gaze-based

authentication. The more secure system will lead to increase in latency.

Finally, an intruder detection system was developed, which used 24 features to classify an

intruder from a genuine user. The features were tested and evaluated to make sure the features

represent the uniqueness of the user. Although our system had several errors, we discussed their

probable cause and way to handle them by using high-frequency gaze tracker and features which

were not feasible using the present eye tracker. Through this research work, we demonstrated a

solution to shoulder surfing, video analysis, and intrusion detection using the gaze-based authen-

tication system. Through the advancement of the trackers and technology, the gaze-based authen-

tication can be used as stand-alone biometric authentication system and presents a non-intrusive

way to achieve continuous authentication.
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APPENDIX A

RUBINE AND LONG’S FEATURES EQUATIONS

f1 = cos(α) =
(x2 − x0)√

[(y2 − y0)2 + (x2 − x0)2]
(A.1)

f2 = sin(α) =
(y2 − y0)√

[(y2 − y0)2 + (x2 − x0)2]
(A.2)

f3 =
√

[(ymax − ymin)2 + (xmax − xmin)2] (A.3)

f4 = arctan

[
(ymax − ymin)

(xmax − xmin)

] (A.4)

f5 =
√

(xn−1 − x0)2 + (yn−1 − y0)2 (A.5)

f6 = cos(β) =
(xn−1 − x0)

f5
(A.6)

f7 = sin(β) =
(yn−1 − x0)

f5
(A.7)

f8 =
n−1∑
i=1

√
∆x2i + ∆y2i (A.8)

where ∆xi = xi − xi−1 and ∆yi = yi − yi−1.

θi = arctan

(
∆xi∆yi−1 −∆xi−1∆yi
∆xi∆xi−1 + ∆yi∆yi−1

)
(A.9)
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f9 =
n−2∑
i=1

θi (A.10)

f10 =
n−2∑
i=1

|θi| (A.11)

f11 =
n−2∑
i=1

|θi|2 (A.12)

f12 =
n−1
max
i=1

[
∆x2i + ∆y2i

∆t2i

]
(A.13)

f13 = tn−1 − t0 (A.14)

f14 = |45◦ − arctan

[
(ymax − ymin)

(xmax − xmin)

]
| (A.15)

f15 =

n−2∑
i=1


|θi|, if θi < 19◦

0, otherwise
(A.16)

f17 =

n−1∑
i=1

√
∆x2i + ∆y2i√

[(xn−1 − x0)2 + (yn−1 − y0)2]
(A.17)

f18 =

n−1∑
i=1

√
∆x2i + ∆y2i√

[(ymax − ymin)2 + (xmax − xmin)2]
(A.18)

where ∆xi = xi − xi−1 and ∆yi = yi − yi−1.

f19 =

√
[(xn−1 − x0)2 + (yn−1 − y0)2]√

[(ymax − ymin)2 + (xmax − xmin)2]
(A.19)
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f22 =

∑n−2
i=1 θi∑n−2
i=1 |θi|

(A.20)

f23 = log[
n−1∑
i=1

√
∆x2i + ∆y2i ] (A.21)

where ∆xi = xi − xi−1 and ∆yi = yi − yi−1.

f24 = log[|45◦ − arctan

[
(ymax − ymin)

(xmax − xmin)

]
|] (A.22)

f27 =

n−2
max
i=1

∆yi
∆xi
−

n−2
min
i=1

∆yi
∆xi∑n−1

i=1

√
∆y2i + ∆x2i

(A.23)

where ∆xi = xi − xi−1 and ∆yi = yi − yi−1.

f28 =

n−2
max
i=1

∆yi
∆xi

n−2∑
i=1

[
∆yi
∆xi

]
/n− 2

(A.24)

where ∆xi = xi − xi−1 and ∆yi = yi − yi−1.
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