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ABSTRACT

A goal across many physics and engineering disciplines is to accurately simulate

physical systems with radiation-hydrodynamics codes in which the assumption of lo-

cal thermodynamic equilibrium (LTE) is predicted to be violated, such as laser driven

hohlraums, stellar coronae, and supernova ejecta. In such regimes, the computational

costs to capture relevant physics have been observed to be 3 orders of magnitude

higher over the LTE problem. This thesis discusses innovations in non-LTE (NLTE)

calculationsby leveraging high performance computing (HPC), load balancing, and

algorithmic improvements to solve problems that were insoluble with existing tech-

niques. We also present results demonstrating where NLTE is most important in

simulation results. In particular, this capability was applied to 3 demonstration

problems: a supernova (SN), a 1D problem meant to capture dynamics present in

inertial confinement fusion (ICF) hohlraums, and a modified version of the blastwave

diagnostic experiment performed at Sandia National Laboratory’s (SNL) Z machine.

SN modeling was accomplished with a two stage process, first a radiation hy-

drodynamics (RH) simulation to model explosive dynamics followed by an offline

post-processing stage for calculating quantities analogous to those measured by ob-

servers. The use of NLTE physics enabled by this work were important in both

stages of this modeling, ultimately resulting qualitatively different results between

LTE and NLTE.

The 1D hohlraum problem analysis indicates that the quantity of interest (QOI),

the analogue of laser entrance hole (LEH) closing time, was mildly sensitive to the

use of NLTE physics, but relatively insensitive to atomic model complexity, indicat-

ing some detail is needed in the treatment of auto-ionizing states. For non-integrated
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quantities like the radiation spectral energy density, some modest differences were

observed.

The Z machine blastwave diagnostic resulted in comparisons between LTE and

NLTE, yielding some differences associated with the early dynamics of simulation,

particularly with the hohlraum. More detailed comparisons corroborate the impor-

tance of NLTE modeling near hohlraum walls, but also support the idea that LTE is a

reasonable assumption at late times, demonstrating that work done by experimental

designers to avoid NLTE effects was successful.
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1. INTRODUCTION

The field of high energy density physics (HEDP) attempts to model physical

systems in which pressures exceed 1Mbar [4, Chapter 1]. Systems of interest include

astrophysical events such as supernovae (SNe) as well as inertial confinement fusion

(ICF). At these conditions of high temperature and pressure, due to the non-linear

dependence of radiation energy on temperature, which scales as temperature to the

fourth power, the radiation field can carry a non-negligible amount of the total energy

and momentum in the system. When this occurs, one must include radiation energy

and momentum transport in hydrodynamic simulations in order to capture relevant

physics.

1.1 Radiative Transfer

Accurate modeling of physical systems of interest require knowledge of the photon

intensity, I (r, ν,Ω, t), governed by the radiation transport equation given by

1

c

∂I (r, ν,Ω, t)

∂t
+∇ · (ΩI (r, ν,Ω, t)) + σt (r, ν, t) I (r, ν,Ω, t) = ε (r, ν,Ω, t) +

∞∫
0

dν ′
∫
4π

dΩ′ [σs (r, ν ′ → ν,Ω′ ·Ω, t) I (r, ν ′,Ω′, t)] +Q (r, ν,Ω, t) , (1.1)

where c is the speed of light, r is a position vector, ν is the photon frequency, Ω is a

direction unit vector, t is the time variable, σt (r, ν, t) is the macroscopic total photon

interaction cross section, ε (r, ν,Ω, t) is the total emissivity, σs (r, ν ′ → ν,Ω′ ·Ω, t) is

the macroscopic double differential scattering cross section, and Q (r, ν,Ω, t) is an ex-

traneous source. The field of collisional radiative modeling is dedicated to producing

macroscopic cross sections and emissivities with sufficient fidelity and accuracy as to
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provide useful results for typical HEDP regimes. Under the assumptions of collisional

radiative modeling, in which photons, free electrons, and ions are the primary inter-

acting species, the emissivities and macroscopic cross sections are a function of the

ion species, radiation and free electron energy distributions, free electron density, and

(weakly) on the ion energy distribution. Under LTE conditions, the emissivity must

be locally balanced by absorption in which the local radiation energy distribution

has relaxed to a Planckian. The emissivity in LTE is given by

εLTE (r, ν,Ω, t) = σa (r, ν, t)B (ν, T ) , (1.2)

where σa is the macroscopic cross section due to absorptions, B (ν, T ) is the Planck

distribution, and T is the temperature. The Planck distribution is given by

B (ν, T ) =
2hν3

c2
1

exp
(

hν
kBT

)
− 1

, (1.3)

where h is Planck’s constant and kB is the Boltzmann constant. In LTE, a tem-

perature is sufficient to describe the photon, electron, and ion energy distributions,

and the emissivity is related to the macroscopic absorption cross section and does

not need to be calculated separately. In TRT/RH codes that use the assumption of

LTE, only the macroscopic cross sections are required to calculate all of the colli-

sional radiative quantities. These macroscopic cross sections in some communities

are referred to as the opacity. At the very least, these two quantities are related to

each other and will now be discussed in further detail.

1.1.1 Opacities

A great number of resources have been allocated in the past to improving the

computational methods used for solving transport equations. Included in that list
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are the highly coupled and non-linear equations of thermal radiative transfer. These

methods have focused on decreasing the overall cost and improving robustness of

algorithms such that the equations can be solved on very fine spatial grids, accurate

angular quadratures, and novel energy discretization techniques. While this task is

necessary for accurately modeling physical systems of interest, it is not solely suf-

ficient. An additional requirement is the use of accurate physical quantities. One

such quantity is the opacity, a quantity that describes how opaque a material is. It

is related to the probability of a photon interacting with a given material, and thus

related to the photon mean free path. The word ‘opacity’ is used in different ways

among various communities. The HEDP community often refers to an opacity as a

linear attenuation coefficient quantity, while in the atomic physics and other commu-

nities, it is defined as a mass attenuation coefficient. These differences can cause a

non-insignificant amount of confusion amongst researches from different fields. This

work will use the mass attenuation coefficient version. The two are relatable by the

following relationship

σ (ν) = ρκν , (1.4)

where σ (ν) is the macroscopic cross section or linear attenuation coefficient, which

has dimensions of length−1, κν is the mass attenuation coefficient, which has di-

mensions of length2× mass−1, and ρ is the material density. In this work the word

‘opacity’ will refer to the mass attenuation coefficient, κν , which is used throughout

and, thus, factors of ρ will accompany this quantity where appropriate. The total

macroscopic cross section of a material is given by the sum over all species of the

number density of that species multiplied by its microscopic cross section. In this case

the differentiation between species is chosen to be any feature (i.e. proton number,

3



neutron number, nuclear excitation state, etc.) in which a change causes a change

in the neutron microscopic cross section. In the case of TRT in HEDP, the material

is hot enough to cause bound electrons to become excited out of their ground state

and potentially become unbound (i.e. ionized). Atoms can thus have any number of

bound electrons (assumed [0, Z]) where Z is the proton number, and the remaining

bound electrons can be in any of a countably infinite set of configurations. This is not

computationally tractable and so approximations are made. Currently, most inline

capabilities take advantage of an approximation called the average atom model. This

model averages both electronic configurations both within an ion stage and across

ion stages. The benefit of this method is that the total number of unknowns can be

reduced to O (10) thus making inline capabilities very fast, but sacrificing the abil-

ity to model potentially relevant physics. Another method of approximation, called

configuration average, can contain many more unknowns as it only averages across

electron configurations within the same ion stage. This work takes advantage of the

configuration average approach using a reduced detailed configuration accounting

(rDCA) model [1, 2]. DCA models can vary in the total amount of incorporated

physics, but contain less averaging than average atom models [7, §2.5]. Each con-

figuration average is called an energy level. The total number of species is thus the

total number of energy levels in all ion stages, where the number density of atoms

in ion stage i and energy level ` is Ni`. Then, the opacity is given by

κtot (ρ, Te, Tr, hν) =
I∑
i=1

Li∑
`=1

Ni`(ρ, Te, Tr)

ρ

(
σ
(bound–bound)
i` (hν) + σ

(bound–free)
i` (hν)

)

+
Ne

ρ

1∫
−1

σ(free–free)
s (µ, hν) dµ+ κ(free-free)(hν),

4



where I is the total number of ion stages, Li is number of energy levels in ion stage

i, ρ is the mass density of the material, σ
(bound–bound)
i` (hν) is the energy dependent

microscopic cross section due to bound-bound transitions, σ
(bound–free)
i` (hν) is the en-

ergy dependent microscopic cross section due to bound-free transitions, Ne is the free

electron density, σ
(free–free)
s (µ, hν) is the differential free-free scattering cross section

due to scattering off of free electrons, and κ(free-free)(hν) is the contribution to the

opacity from inverse Bremsstrahlung absorption. The number densities of atoms in

any given ion stage and energy level are calculated using local information about the

system; namely, the material mass density ρ, the electron energy distribution F (Ee),

and the photon energy distribution G (ν). Solving this particular problem falls under

the field of collisional radiative modeling and fortunately, it is a well known and well

studied problem [18].

1.1.1.1 LTE vs NLTE

In terms of opacity computation, the difference between LTE and NLTE come

down to the method used to calculate the populations, Ni`. Once known, the process

of calculating the opacity is identical. In LTE, populations attain an equilibrium gov-

erned by the Saha relationship. In problems in which the density is an independently

determined state variable, both LTE and NLTE steady state calculations require an

iterative procedure to arrive at the correct electron density, yet they differ greatly

in asymptotic complexity. The computational complexity for solving for the popu-

lations under the Saha-Boltzmann relationship is O
(
NM̄

)
whereas solving the full

rate matrix is of order O
(
NM̄3

)
where N is the number of ion stages being modeled

and M̄α ≡ 1
N

∑N
i=1M

α
i . Even more importantly than these complexities is the fact

that in LTE, electron energy distributions have relaxed to a Maxwell Boltzmann

distribution at T and photons have relaxed to a Planck distribution at T . Thus the
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populations become a function of 2 variables and are thus amenable to tabulation.

Even in the case when Tr 6= Te, the 3-D (ρ, Tr, Te) space could be stored in many

situations. However, in the case in which the rate matrix is calculated from the

spectral energy density, the input space becomes high dimensional and impractical

to tabulate. While this is not yet implemented, this is one of the major drivers for

developing inlinlte rather than attempting to tabulate NLTE opacities by adding

Tr as a table variable. Thus in the case of LTE the cost of calculating the opacity

is independent of the complexity of the atomic models used and only related to the

number of interpolation points. This is not the case for calculating the opacity under

NLTE conditions. Significant performance is necessary in order to mitigate the high

computational cost of NLTE physics. Performance aspects of the inlinlte library

will be discussed in greater detail chapter 4.

1.2 Novel Accomplishments

The aim of this work was to study the effect of relaxing the assumption of LTE

in physical systems in the HEDP regime using an approach in which the atomic

model complexity could vary from a highly averaged reduced detailed configuration

accounting (rDCA) atomic models to very complex DCA atomic models. Even the

reduced models have exhibited benefits over average atom models commonly used in

an inline context [1]. The benefits in physical fidelity gained by these models come

at a non-trivial computational cost. Due to the increased cost incurred, optimization

was necessary if this capability was to be used for a realistic physical system. Im-

provements came both in software and algorithms. This was accomplished through

writing the inlinlte library, taking advantage of the Kokkos library which aims to

provide high performance and remain portable to current and upcoming computing

hardware [6]. Time was spent to improve compilers’ ability to vectorize performance
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of critical portions of inlinlte such that vector processing units (VPUs) could be

effectively utilized. Additionally, inlinlte is portable to nVIDIA graphics pro-

cessing units (GPUs), which will become increasingly important as GPUs become

more ubiquitous on upcoming supercomputers. The issue of load imbalance arises

in RH simulations and occurs due to the use of a temperature cutoff in which NLTE

physics is only applied to spatial cells whose temperature is greater than the cutoff.

Load balancing was implemented using a scalable algorithm which can be completed

in logarithmic time. The load balancing algorithm is based on one developed for

particle transport codes [16] but was modified to support non-power-of-two hard-

ware resources using a weighted scheme. This scheme was implemented in order

to be portable to computers whose compute nodes have heterogeneous performance

characteristics. These improvements resulted in more than an order of magnitude

performance improvement over the previous capability available in xRAGE in two of

the problems examined. This improvement resulted in a parameter study of a 1D

problem meant to be similar to a laser driven hohlraum as well as a 2D simulation of

problem with the geometry of an HEDP experiment. The ability to run 2D simula-

tions with realistic geometries and taking into account NLTE effects in a few weeks

time is a boon for the HEDP community.
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2. ATOMIC PHYSICS

For high energy density physics applications, calculating the macroscopic opac-

ity of a material requires knowledge of the fundamental, microscopic interactions

between photons and electrons. Atomic physics is the study of these interactions,

which includes both free electrons and those that are bound to atomic nuclei.

In systems in which the RH equations are valid, photons, free electrons, and

ions interact with each other. The probabilities at which these interactions occur

depend on quantities such as the incident photon or electron energy, atomic species,

and bound-electron configurations. Outlined in the following sections are the atomic

processes most commonly considered in collisional radiative (CR) modeling. For

brevity, the word “atom” in this work can refer to both a neutral atom or a charged

ion.

In the following section, it will be necessary to use a notation that can distinguish

between atoms with different numbers of bound electrons. Atoms that possess the

same number of bound electrons belong to the same ion stage, denoted by the index

i. The neutral atom is chosen to be in the 0th ion stage (i = 0). Atoms in which i

electrons have been removed relative to the neutral stage possess a charge i and are

said to be in the ith ion stage. Within an ion stage, the atoms can be further sep-

arated into energy levels, which arise form different bound-electron configurations.

An atom in the ith ion stage and `th energy level is denoted by these two indices

enclosed in parentheses, (i`). The number density, or “population”, of atoms in this

level is denoted by Ni`. A complete set of populations is obtained by solving the CR

equations for a given set of conditions and these data are of fundamental importance

in calculating the opacity.
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2.1 Fundamental Atomic Processes

Understanding the mechanisms that describe how atoms transition between dif-

ferent ion stages and energy levels is necessary for quantitatively studying HEDP.

The following subsections describe the various atomic processes important for CR

modeling.

2.1.1 Electron-Impact Excitation and De-excitation

Electron-impact excitation (EIE) is the process in which an atom in a particular

energy level (i`) is excited to a higher energy level (im) by a free electron. In

this process, the excitation energy is transferred from the free electron to the atom.

Electron-impact de-excitation is the inverse process in which an atom transitions to

a lower energy level and the de-excitation energy is transferred to a free electron.

The excitation process can be symbolically represented by an expression of the form

(i`) + e→ (im) + e′, (2.1)

where e is a free electron and the prime denotes that the final electron has a kinetic

energy that is lower than that of the incident electron. The change in the free

electron’s kinetic energy is determined from energy conservation and is exactly equal

to the transition energy,

E0 ≡ Eim − Ei`. (2.2)

In an excitation process, the free electron’s kinetic energy is decreased by E0, whereas

it is increased by the same amount in a de-excitation process.

A quantitative description of EIE rates is necessary for solving the CR equations.
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The number of transitions per unit volume per unit time at which atoms are being

excited from level (i`) to (im) due to free electrons with energies dE about E is

Si,`→m (E) dE = Ni`NeF (E) v (E)σi,`→m (E) dE, (2.3)

where Si,`→m (E) is the (energy) differential transition rate per unit volume, Ni`

is the population of atoms in level (i`), Ne is the free electron number density,

F (E) is the free electron energy distribution, v (E) is the free electron speed, and

σi,`→m (E) is the electron-impact excitation cross section for the transition from level

(i`) to (im). The total rate per unit volume, Si,`→m, is obtained by integrating the

differential transition rate per unit volume over all free electron energies. Since the

cross section is 0 for energies below the excitation energy E0, the integration range

can be truncated as follows

Si,`→m ≡
+∞∫
0

Si,`→m (E) dE = Ni`Ne

+∞∫
E0

F (E) v (E)σi,`→m (E) dE. (2.4)

A related quantity of particular convenience when constructing the CR equations is

the rate coefficient si,`→m (F ), which is defined as

si,`→m (F ) ≡
+∞∫
E0

F (E) v (E)σi,`→m (E) dE. (2.5)

In the special case where F (E) is well described by its equilibrium distribution,

that is the Maxwell-Boltzmann distribution, the distribution function F (E) is char-

acterized by the scalar temperature T and the rate coefficient can be described by

a function of T rather than a functional of F (E). In the DCA approach, F (E)

is assumed to be a Maxwell-Boltzmann distribution, and the rate coefficients are
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represented by the formula

sFITi,`→m (T ) =
8π2a20
E0

√
8

3πmekT
exp

(
3∑

n=0

anx
n

)
, (2.6)

where x = log
(
E0

kT

)
and an are fit coefficients calculated by ATOMIC, which is a

plasma modeling code in the LANL suite of atomic physics codes [18, Chapter 2.2.1]

[7]. The electron-impact de-excitation rate coefficient can be calculated from the

relationship

ti,m→` (T ) =
gi`
gim

exp

(
E0

kT

)
si,`→m (T ) , (2.7)

where gi` is the statistical weight of level (i`). The relationship described in (2.7)

can be derived from the principle of detailed balance. The relationship described in

(2.7) holds when using equation (2.6) to obtain an analogous formula for the inverse

process, tFITi,m→` (T ).

2.1.2 Electron-Impact Ionization and Three-Body Recombination

Electron-impact ionization (EII) is the process in which a free electron transfers

energy to an atom, resulting in the ejection of a bound electron. This process changes

the electron configuration by removing an electron and increases the charge of the

atom by one. Three-body recombination is the inverse process in which a free electron

recombines and becomes bound, transferring its kinetic energy to the atom. The

ionization process can be represented by an expression of the form

(i`) + e→ (jm) + e′ + e′′, (2.8)
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where the two electrons e′ and e′′ have a lower total kinetic energy than the initial

energy of the impacting electron. In this work, only single ionization events will

be considered due to their relatively high probability of occurrence when compared

multiple ionization events.

A discussion of EII rates proceeds in a similar manner to the one above for EIE

rates. The number of transitions per unit volume per unit time that atoms are being

ionized from level (i`) to (jm) due to EII from free electrons with initial energies of

dE about E and all physically possible final energies is

Ci→j,`→mdE = Ni`NeF (E) v (E)σi→j,`→m (E) dE, (2.9)

where Ci→j,`→m is the differential electron-impact ionization rate per unit volume,

σi→j,`→m (E) is the cross section for the specified interaction. The rate coefficient is

the integral over all free electron energies above the ionization energy E0

ci→j,`→m (F ) =

+∞∫
E0

F (E) v (E)σi→j,`→m (E) dE. (2.10)

In the DCA approach, when F (E) is well described by a Maxwell-Boltzmann distri-

bution, these rate coefficients are represented by the formula

cFITi→j,`→m (T ) =
8π2a20
E0

√
8

3πmekT
exp

(
−E0

kT
+

3∑
n=0

anx
n

)
, (2.11)

where x = log
(
E0

kT

)
and an are fit coefficients calculated by the ATOMIC code [18,

Chapter 2.2.1] [7]. The three-body recombination rate coefficient can be calculated
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from the concept of detailed balance, through the relationship

bj→i,m→` (T ) =
gi`
gjm

h3 exp
(
E0

kT

)
2 (2πmekT )

3
2

ci→j,`→m (T ) . (2.12)

This relationship holds when using the fit formula described in (2.11).

2.1.3 Auto-ionization and Dielectronic Recombination

Auto-ionization (AI) is the process that results in the ionization of a bound

electron through de-excitation of a different bound electron. This process can be

represented with an expression of the form

(i`)→ (jm) + e. (2.13)

The number of AI transitions per unit volume per unit time of atoms from level (i`)

to (jm) accompanied by an emitted free electron with energies dE about E is

Ai→j,`→mdE = Ni`Ai→j,`→mβa (E) dE, (2.14)

where Ai→j,`→m is the differential auto-ionization rate per unit volume. βa (E) is a

normalized Cauchy or Lorentz distribution function, which depends on the lifetime

associated with the transition. Thus the rate coefficient, which is simply the rate per

atom in this case, is the integral over all free electron energies, i.e.

ai→j,`→m = Ai→j,`→m. (2.15)

This quantity can be calculated by ATOMIC, the LANL suite of atomic physics

codes [18, Chapter 2.2.1] [7]. The dielectronic recombination rate coefficient can be
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calculated from the concept of detailed balance, through the relationship

dj→i,m→` =
gi`
gjm

h3F (E0)

4π (2me)
3
2

ai→j,`→m. (2.16)

2.1.4 Photo-excitation and De-excitation

Photo-excitation is the process in which a photon is absorbed by an atom and its

energy excites a bound electron. Photo-de-excitation is the inverse process in which

an electron de-excites releasing its energy in the form of a photon. The excitation

process can be described by an expression of the form

(i`) + hν0 → (im) , (2.17)

where hν0 is a photon with frequency ν0. The change in the photon’s energy can be

expressed in terms of the transition energy,

hν0 ≡ Eim − Ei`. (2.18)

The rate coefficients for processes in which the incident particle is a photon depend

on quantities related to the intensity Iν , which is one of the primary unknowns in

the radiative transfer equations. Particularly, rate coefficients depend on the mean

spectral intensity, denoted henceforth as G (hν). The mean spectral intensity is the

average intensity per unit solid angle given by

G (hν) =
1

4π

∫∫
4π

Iν dΩ. (2.19)
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In thermal equilibrium (TE), the mean spectral intensity is given by the Planck

distribution at the equilibrium temperature. The number of transitions per unit

volume per unit time of atoms changing from (i`) to (im) due to photo excitations

with energies dhν about hν is

Ui,`→mdhν = Ni`G (hν)σi,`→m (hν) c dhν, (2.20)

where Ui,`→m is the differential radiative excitation rate per unit volume, σi,`→m (hν)

is the radiative excitation cross section for the excitations from (i`) to (im). The

cross section is related to the statistically weighted oscillator strength, gfi ,`→m

σi,`→m (hν) =
he2π

mec

gfi ,`→m

gi`
β (hν) , (2.21)

where β (hν) is a normalized line shape function. A common choice for the line

shape function is the Cauchy distribution, often called a Lorentzian or Breit-Wigner

distribution which is given by

βLorentzian (hν) =
Γ

π
(
(hν − hν0)2 + Γ2

) , (2.22)

where Γ is the full width at half maximum of the distribution and hν0 is the transition

energy. Thus the radiative excitation rate coefficient, which is the rate per atom, is

the integral over all photon energies

ui,`→m (G) =
he2π

me

gfi ,`→m

gi`

+∞∫
0

G (hν) β (hν) dhν. (2.23)

In the case where G (hν) is slowly varying relative to the line shape function, the

highly peaked line shape function will select the photon energy distribution G (hν)
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at the transition energy, such that the integral is well approximated by G (hν0).

This selection is a property of delta function distributions called the sifting prop-

erty. Radiative de-excitation contains contributions both from spontaneous decay

and stimulated emission. The spontaneous decay rate, also called the Einstein A

coefficient, can be written as

yi,m→` =

∫ +∞

0

σ′i,m→` (hν) dhν, (2.24)

where the primed cross section is obtained through micro-reversibility and given by

σ′i,m→` (hν) =
8π

h3c2
gi`
gim

(hν)2 σi,`→m (hν) . (2.25)

Again, the line shape function will sift the integrand, yielding

yi,m→` =
8π2e2

h2c3me

gfi ,`→m

gim
(hν0)

2 . (2.26)

The contribution to the radiative de-excitation rate coefficient due to stimulated

emission can be expressed in terms of the radiative excitation rate coefficient as

zi,m→` (G) =
gi`
gim

ui,`→m (G) . (2.27)

2.1.5 Photo-ionization and Radiative Recombination

Photo-ionization (PI) is the process in which a photon is absorbed by an atom

and results in the ionization of a bound electron. Radiative recombination is the

inverse process in which a free electron recombines with an atom becoming bound,

resulting in the emission of a photon. Photo-ionization of a single electron can be
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described by an expression of the form

(i`) + hν → e+ (jm) . (2.28)

The corresponding energy conservation equation is given by

hν = φi + Ejm − Ei`︸ ︷︷ ︸
hν0

+E, (2.29)

where φi is the ionization potential. Note that a photon with energy hν0 would yield

a free electron with 0 kinetic energy. The rate per unit volume at which atoms in

state (i`) are being ionized to to state (jm) due to photons with energies dhν about

hν is

Pi→j,`→mdhν = Ni`G (hν)σi→j,`→m (hν) c dhν, (2.30)

where σi→j,`→m (hν) is the interaction cross section. Thus, the PI rate coefficient is

pi→j,`→m (G) =

+∞∫
hν0

G (hν)σi→j,`→m (hν) c dhν. (2.31)

In the DCA approach, these cross sections are well represented by the formula

σFIT
i→j,`→m (hν) =

1

hν0
exp

(
3∑

n=0

anx
n

)
, (2.32)

where x ≡ log (hν)− log (hν0) and an are fit coefficients calculated by the ATOMIC

code [18, Chapter 2.2.1] [7]. For recombination rates, the cross section formula given

in (2.32) only holds if F (E) is well described by a Maxwell-Boltzmann distribution.

The rate coefficient for radiative recombination without taking stimulated emission
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into account is

rj→i,m→` (F ) =
gi`
gjm

1√
2m3

ec
2

+∞∫
0

F (E)
(hν0 + E)2√

E
σi→`,j→m (hν0 + E) dE, (2.33)

where F (E) is the free electron distribution. The contribution to the radiative

recombination rate coefficient due to stimulated emission is

qi→`,j→m (F,G) =
gi`
gjm

h3c

π
√

128m3
e

+∞∫
0

F (E)
(hν0 + E)2√

E
σi→`,j→m (hν0 + E)G (hν0 + E) dE.

(2.34)

Notice that this approximation is for the cross section itself and not for the rate

coefficient, meaning that these integrals have to be carried out explicitly. For some

CR calculations, calculating these integrals can dominate the computation time.

2.1.6 Inverse Bremsstrahlung

Inverse bremsstrahlung, also called free-free absorption, is the process in which a

photon is absorbed by a free electron, causing a change in the energy and momentum

of the free electron. This process is not an aspect of solving the CR equations for the

populations, but is a component of the opacity. This work uses the Kramers opacity

for the free-free contribution to the opacity, given by the following relationship [24,

Chapter 5.3]

κ(free-free)ν ∝ 〈Z2〉√
Teν3

, (2.35)

where 〈Z2〉 is the mean squared charge.
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2.1.7 Scattering

In general, photon scattering is a process in which a photon and electron interact

and the result is a photon with a potentially different energy and momentum. During

a scattering process, photons can interact with bound and free electrons. In the case

of scattering events, the probability of interaction depends on the energies of the

participating photon and electrons.

2.1.7.1 Thomson Cross Section

Thomson scattering is a model for scattering that only changes the direction

of the photon and electron, i.e. elastic scattering. It can be derived from classical

electromagnetism and is accurate at low photon energies. The Thomson cross section

is the result of integrating the differential cross section over all angles

σThomson = 2π

+1∫
−1

r20
2

(
1 + µ2

)
dµ =

8π

3
r20, (2.36)

where r0 is the classical electron radius given by e2

4πε0mec2
where e is the electron

charge, ε0 is the vacuum permittivity, me is the electron mass, and c is the speed of

light.

2.1.7.2 Scattering Opacity

The scattering opacity can be calculated given a scattering cross section. Given

the Thomson cross section, the scattering opacity is given by

κν,s =
NeσThomson

ρ
. (2.37)
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Both the electron and mass densities have linear dependence on the total atomic

number density, thus this formula can be rewritten as

κν,s =
〈Z〉
M

σThomsonNA︸ ︷︷ ︸
≈0.4cm2

, (2.38)

where M is the molar mass of the material and NA is Avogadro’s number. M is well

approximated by the material mass number A, leading to scattering opacity used in

this work, given by

κν,s

[
cm2

g

]
=

0.4 〈Z〉
A

. (2.39)

The scattering term is independent of energy, and may not be accurate at high

energies, where Compton scattering is more representative.

2.1.8 Omitted Processes

The presented processes do not represent a complete list of all possible atomic

processes. As previously mentioned, multi-ionization processes were not presented

due to their low probability relative to single ionization events. Pair production

can contribute to the opacity by increasing the absorption probability for photons.

However, photons must at least exceed the threshold energy of ∼ 1.022 MeV to

have a non-zero pair production probability and that cross sections peaks at a much

higher energy. Similarly, nuclear interactions such as electron capture and internal

conversion are able to change the bound electron configuration and could affect the

populations. However, these events occur with a much lower probability in systems

of interest than do the processes described above. While certain problems may call

for explicit accounting of these processes, details associated with them are beyond

the scope of this work.
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2.2 Rate Equations

The rate coefficients for the atomic processes as described in the previous section

allow one to write down a coupled set of ordinary differential equations (ODEs) to

describe the atomic level populations for a given set of conditions.

2.2.1 Background

When a system is in LTE, the free electrons have relaxed to a Maxwellian dis-

tribution with temperature Te and the populations can be described by the Saha-

Boltzmann relationship

Ni`

Njm

∝ exp

(
− E0

kBTe

)
, (2.40)

where E0 is the energy difference between the two levels and kB is the Boltzmann

constant. Under LTE, the EIE, EII, and AI rates are each balanced by the rate

of their respective inverse processes. In the case when photons have relaxed to a

Planckian distribution with temperature Tr, and Tr = Te, all collisional and radiative

processes are in equilibrium with their respective inverse processes.It is also possible

to be out of LTE and for the system to be in steady state. An example of this is called

coronal equilibrium in which the electron density is sufficiently small that each ion

stage is expected to contain significant population only in its ground state. In that

case, electron-impact excitation and ionization is balanced by radiative de-excitation

and recombination. This steady-state case requires that one solve the system of

ODEs with the simplifying constraint dNi`

dt
= 0. In the numerical implementation,

the steady-state case has the benefit that the populations need not be stored between

RH time steps, significantly reducing memory requirements.
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2.2.2 Overview

In order to write down the CR rate equations, the net rate of change for each

process under consideration is needed. In the previous section, an expression was

obtained for the various rate coefficients between two levels. The net rate of change

for a given level due to a particular process is a sum of the rate coefficients into and

out of that level, multiplied by the number density of their respective reactants (ions

and free electrons).

2.2.2.1 Net Rate due to Electron-Impact Excitation and De-excitation

Rate coefficients given in equations (2.6) and (2.7) can describe the net change

rate for atoms in the (i`) level due to electron impact excitations and de-excitations,

given by

Si` =
∑
m

Ne{Nim [si,m→` (Te) + ti,m→` (Te)]

−Ni` [si,`→m (Te) + ti,`→m (Te)]}.
(2.41)

2.2.2.2 Net Rate due to Electron-Impact Ionization and Three-Body

Recombination

Rate coefficients given in equations (2.11) and (2.12) can describe the net change

rate for atoms in the (i`) level due to electron impact ionizations and three-body

recombinations, given by

Ci` =
∑
jm

Ne{Njm [cj→i,m→` (Te) +Nebj→i,m→` (Te)]

−Ni` [ci→j,`→m (Te) +Nebi→j,`→m (Te)]}.

(2.42)

22



2.2.2.3 Net Rate due to Autoionization and Dielectronic Recombination

Rate coefficients given in equations (2.15) and (2.16) can describe the net change

rate for atoms in the (i`) level due to autoionizations and dielectronic recombinations,

given by

Ai` =
∑
jm

Njm [aj→i,m→` +Nedj→i,m→` (Te)]

−Ni` [ai→j,`→m +Nedi→j,`→m (Te)] .

(2.43)

2.2.2.4 Net Rate due to Photo-excitation and De-excitation

Rate coefficients given in equations (2.23), (2.26), and (2.27) can describe the net

change rate for atoms in the (i`) level due to photo-excitations and de-excitations,

given by

Ui` =
∑
m

Nim [ui,m→` (Tr) + yi,m→` + zi,m→` (Tr)]

−Ni` [ui,`→m (Tr) + yi,`→m + zi,`→m (Tr)] .

(2.44)

2.2.2.5 Net Rate due to Photo-ionization and Radiative Recombination

Rate coefficients given in equations (2.31), (2.26), and (2.27) can describe the

net change rate for atoms in the (i`) level due to photo-ionizations and radiative

recombinations, given by

Pi` =
∑
jm

Njm [pj→i,m→` (Tr) +Ne (rj→i,m→` (Te) + qj→i,m→` (Te, Tr))]

−Ni` [pi→j,`→m (Tr) +Ne (ri→j,`→m (Te) + qi→j,`→m (Te, Tr))] .

(2.45)
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2.2.3 Constructing the Rate Matrix

Given the above equations, the CR equations can be written as

dNi`

dt
= Ci` + Pi` +Ai` + Si` + Ui`, (2.46)

where each term represents the net contribution for a given process and its inverse to

the total time rate of change of population Ni` as prescribed in 2.2.2. The system is

linear with respect to the populations and additionally can be written as the product

of a matrix and vector,

dN

dt
= R (F,G,Ne) N, (2.47)

where N is the population vector and R is the rate matrix, which is a function of

the electron and photon energy distributions. Given the atomic processes described

earlier in this chapter, the rate matrix has a block tri-diagonal structure with non-

uniform blocks. Neither excitation nor de-excitation processes change the number

of bound electrons, thus their contributions necessarily lie along the block diagonal.

The ionization and recombination processes described change the number of bound

electrons by one. This means that the block diagonal matrices are only coupled to

their neighboring blocks, leading to a block tri-diagonal structure.

2.2.4 Solving the Rate Equations

A priori knowledge of the block tri-diagonal structure of the rate matrix can

be used not only to save memory, but also to apply methods specifically designed

for such systems. A more detailed discussion of the reasoning behind algorithmic

choices is given in the implementation chapter. While algorithms exist that allow
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for block matrices to be processed in parallel, it was decided to go with the Thomas

algorithm. This algorithm, while sequential, has the lowest total complexity and

memory requirements. Additionally, parallelism can be exposed within the linear

algebra functions themselves. This combination, when compared with other block tri-

diagonal solvers, yields lower memory requirements, lower computational complexity,

and exposes low level parallelism.
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3. IMPLEMENTATION DETAILS

This work resulted in the production of a library known as inlinlte. This library

in written primarily in C++ with an application programming interface (API) com-

patible with the C, C++, FORTRAN, and python languages. inlinlte utilizes the

Kokkos library to obtain intranode parallelism, the message passing interface (MPI)

for internode parallelism, and libquo for dynamic process mapping. The use of MPI,

Kokkos, and libquo, will be discussed in more detail in this chapter. In terms of

algorithms used, inlinlte uses the Brent-Dekker nonlinear solution method in solv-

ing for the electron density, the Thomas algorithm for the block tri-diagonal linear

solver, and an automatic adaptive 8-panel Newton-Cotes quadrature rule for pho-

toionization integrals. inlinlte leverages modern tools and practices to maintain

correctness, performance, and developer productivity. The code is hosted on LANL’s

internal gitlab page and uses git for version control. Google’s test framework is used

for unit and integration tests to make sure individual components are operating cor-

rectly as well as ensuring that inlinlte is able to obtain correct charge states and

monochromatic opacities. Performance, though not automated, is extensively tested

with intel’s VTune, intel’s vectorization advisor, and the Kokkos performance tools.

The tools provided through the Kokkos ecosystem also provide profiling to ensure

kernel runtimes do not increase. A build of inlinlte without optimization, with-

out OpenMP, and without MPI, has also been run with valgrind to ensure that no

memory leaks are present.

3.1 Performance Portability

On the path to exascale computing, the department of energy (DOE) laboratories

have committed to purchasing supercomputers whose compute nodes have heteroge-
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neous compute resources. Advanced technology system (ATS) 1, known as Trinity

at Los Alamos National Laboratory (LANL), will have compute nodes that use the

many core intel knights landing (KNL) processor. In contrast, ATS 2, known as Sierra

at Lawrence Livermore National Laboratory (LLNL), will have compute nodes that

will use multi-core IBM Power 9 central processing units (CPU) and nVIDIA Volta

graphics processing unit (GPU) coprocessors. ATS1 and ATS2 will have compute

nodes with very different architectures and requirements for performance. Despite

differences, it is a stated goal of the DOE to have single source code bases capable of

running on both machines in a performant manner. This is a very difficult problem

in performance portability and software developers at SNL attempted to solve this

problem with the Kokkos library.

Initially a package within the Trilinos solver library [12], Kokkos is a C++ li-

brary which includes parallel patterns and data structures that allow for efficient

mapping of work and memory to a targeted hardware backend. The parallel pat-

terns included are parallel for, parallel reduce, and parallel scan which will

efficiently map parallel work to computing resources. Kokkos has also recently added

dynamic task directed acyclic graph (DAG) and static work DAG capabilities [5].

The parallel {for,reduce,scan} patterns intake an iteration index range and an

object containing the work to be done for each iteration index. These patterns can

be nested to allow for hierarchical parallelism. The outermost level of parallelism is a

league-team policy in which teams of threads are launched simultaneously to perform

parallel work. Each team has at its disposal a number of threads that can be set by

the user, but can also be automatically set by the runtime to a number suited for

the hardware. In addition, each thread within a team can utilize vector processing

units (VPU). Thus Kokkos contains up to 3 levels of hierarchical parallelism that

can be tuned to specific hardware types: the TeamPolicy, TeamThreadRange, and
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ThreadVectorRange. In addition to parallel patterns with hierarchical parallelism,

multidimensional arrays called views are provided as these are common in scientific

computing. Views separate indexing from data layout allowing for data layouts can

change without changing the access signature. Backend specific default layouts are

designed to yield coalesced loads on GPUs and cache efficiency on CPUs [6].

Other parallel runtime systems and libraries were investigated and eventually

ruled out. Investigations in parallelization started with looking into the use of the

nVIDIA’s compute unified device architecture (CUDA) platform. Due to its asymp-

totic complexity, the linear solver was the first component to be investigated. Three

different block tri-diagonal solver algorithms were selected for investigation: Thomas

algorithm, cyclic reduction, and parallel cyclic reduction [13, 20, 21, 11]. These algo-

rithms all require certain BLAS level 2 and 3 algorithms for block matrix operations.

Necessary linear algebra functions include matrix-matrix multiply, LU decomposition

with partial pivoting, solving a triangular matrix (for use with LU decomposition),

and matrix-vector multiply. All of the listed algorithms are implemented in cuBLAS,

which is a CUDA capable library for dense linear algebra. While this showed useful

speedup for the low Z, high fidelity atomic models that were tested, it proved dif-

ficult to hide data transfer costs for reduced atomic models. This issue arose when

calculating the rate coefficients.

Another approach to exposing parallelism is done by running the calculation for

each cell in a spatial mesh concurrently. This was implemented via the open multi-

processing (OpenMP) intranode parallelization API in which each thread would per-

form the calculation on a “batch” of cells. The batch size would be based on the

size of a targeted memory space such as an L2 data cache. Many BLAS libraries

such as cuBLAS, MAGMA, and MKL provide a batched API that would allow for a

linear algebra operation to be applied to a batch of data which would reduce kernel
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invocation overhead and targeted for the large number and relatively small sized

matrices that are common in rDCA atomic models. A requirement of the batched

implementations of linear algebra operations is that all matrices and vectors must

be the same size across all elements of a batch. There is no guarantee that block

matrices in different block rows will have the same size, which would be necessary

if attempting to use this API for cyclic reduction or parallel cyclic reduction. This

implementation is limited to treating only a single element with NLTE physics. Cells

within the mesh that will be treated with NLTE physics will therefore all have block

tri-diagonal systems of the same size and structure. Thus, an element of a batch

maps to a cell in the mesh. This means that using batched BLAS calls, a block

tri-diagonal solver algorithm can be applied to a batch of block tri-diagonal matri-

ces simultaneously. Due to exploiting parallelism at a higher level, the sequential

Thomas algorithm was chosen as the solver of choice as it had the lowest memory

requirements and asymptotic complexity [21]. A potential issue of this approach is

that cells in the mesh with different conditions will converge to an electron density

at different rates. The use of continuum lowering to account for pressure ionization

effects also precludes the use of batching because it breaks the assumption that block

matrix sizes are the same across all cells. It was also shown that dynamic on node

work scheduling is necessary to help reduce thread idle time as well as the overall

wall clock time. This combination of conditions made Kokkos the ideal candidate for

inlinlte. This switch precluded the use of the batched APIs provided by MAGMA,

MKL, and cuBLAS.

3.2 MPI+Threads With libquo

In practice, inlinlte uses the OpenMP backend of Kokkos. However, this cal-

culation is one of a large number of different calculations that are part of a RH or
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TRT simulation. Many of the production level RH codes used by DOE laboratories

have been in use for an extended period of time and were developed when single

program multiple data (SPMD) via MPI, and only MPI, was sufficient for perfor-

mance on state of the art supercomputers. Many of the production codes run most

efficiently when running 1 MPI process per compute core. A näıve implementation

of inlinlte would restrict 1 process per compute node in order to allow OpenMP

to utilize all available resources. This would incur an unacceptable slowdown for the

rest of the application. libquo can be used to dynamically set optimal MPI policies

for libraries that have different requirements [10]. This allows for the RH portions of

a calculation to use 1 MPI rank per core and NLTE calculations to use 1 MPI rank

per node, which is the preferred mode of operation for each calculation.

When an opacity is requested, all active MPI ranks on a node gather the input

data to a single MPI rank. After the gather has occurred, the gathered to rank per-

forms the calculation while the remaining ranks are waiting at a barrier, thus leaving

their hardware resources available. The gathered rank is able to spawn threads on the

other ranks’ resources. Once the calculation has completed, the active rank reaches

the barrier, all ranks become active again, and output data is scattered. This process

is illustrated in figure 3.1.
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Figure 3.1: 1. All ranks gather input data to rank0. 2. All ranks but rank0 bar-
rier, relinquishing their hardware resources. rank0 carries out global load balance
procedure. 3. rank0 spawns threads on all available hardware resources, taking ad-
vantage of hyperthreads when available and the calculation is performed. 4. rank0
redistributes both local and non-local output data to other ranks. 5. all ranks reach
the barrier and become active, reaching their initial state.

While the current release version of inlinlte is limited to using a 1 rank per

node layout after the remap, that requirement could be relaxed on nodes with larger

numbers of cores. With features of an upcoming release of libquo1, using 1 rank

per NUMA domain and similar setups would be possible. This generality in addition

to the local behavior of this strategy should ensure inlinlte’s on-node scalability.

Other strategies are possible, some of which would preclude the use and cost of

the dynamic process mapping provided through libquo. One such strategy would

be retain the 1 rank per core mapping and spawn OpenMP threads on that core,

1See issue #30 on libquo github for more information.
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potentially taking advantage of hyperthreads where available. In order to prevent in-

curring the memory cost of storing one copy of the atomic model per rank, one would

need to use MPI shared memory functionality, which is a relatively new feature of

the MPI standard with varying support across implementations. More importantly,

this strategy would not allow for on-node load balancing that occurs through shared

memory dynamic scheduling. The cost of an NLTE calculation can vary based upon

the input conditions. This occurs because the number of iterations required to con-

verge the electron density is inversely proportional to the temperature. To show this

disparity, a set of input conditions, shown in figure 3.2 were run using both static

and dynamic scheduling.
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Figure 3.2: Distribution of (ρ, Tr, Te) input conditions. Note that temperature units
are on the left vertical axis and density units are on the right vertical axis.

These runs were analyzed by intel’s vtune profiling tool. The analysis performed

32



by vtune revealed that many of the threads were idle for much of computation because

while every thread had the same number of input conditions, certain inputs took

longer than others. This resulted in an average thread utilization of 20 out of 40

threads, as shown in figure 3.3 below.

Figure 3.3: Left: For some threads, significant amount of idle time; Right: CPU
usage histogram reveals about 50% average utilization of resources.

Dynamic scheduling breaks the iteration space of the parallel for loop into smaller

chunks, allowing each thread to process a chunk of the iteration space before request-

ing an additional chunk of work. This has an overhead penalty associated with it

but it is easily amortized due the large amount of work required for even a single

NLTE calculation. When dynamic scheduling was used to perform the NLTE work,

the result was that each thread was actively working for a greater proportion of the

calculation. This resulted in a 60% improvement in calculation time and an average

thread utilization of 36 out of 40 threads, as shown is figure 3.4 below.
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Figure 3.4: Left: Majority of threads active for entire calculation; Right: CPU usage
histogram reveals about 90% average utilization of resources.

Dynamic scheduling presents a compelling reason to use OpenMP across the

entire node. This reason, combined with the memory benefits of only requiring a

single copy of the atomic model per node, is why ultimately the strategy shown in

figure 3.1 was chosen.

3.3 Global Load Balance

A commonly used practice among radiation hydrodynamics codes that incorpo-

rate NLTE physics is to apply physics only for spatial zones above a certain tempera-

ture. Standard spatial domain decomposition procedures can lead to load imbalance

of NLTE computational work. Because of this, inlinlte internally performs global

load balance of NLTE work for effective hardware utilization. Global load balancing

is executed after on-node data gathering has occurred. This means that each vertex

in the graph is equivalent to a compute node. The load balancing algorithm used

has ideal and non-ideal variants, the latter being based on the former. These will be

discussed below, starting with the ideal case.
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3.3.1 Ideal Case

The ideal case requires a number of conditions to be met. All participating com-

pute units must have identical performance characteristics and the number of total

compute units must be a power of 2. If those conditions are met, the method has the

benefit of not requiring any global communication and has logarithmic complexity. It

is a balanced binary tree approach as described by O’Brien, et al. for use in particle

transport applications and illustrated in figure 3.5 [16].

Start :

Step 1:

Step 2:

Step 3:

Figure 3.5: Start with imbalanced workload, after log2 (8) = 3 steps, workload per-
fectly balanced.

3.3.2 Non-Ideal Case

In order to relax the strict requirements of the ideal case, a more robust version

of this method is used in practice. This method allows for an arbitrary number of

compute units and heterogeneous performance characteristics. This method requires

assigning a weight to each compute unit. The weight is proportional to the per-

formance of the compute unit. One way to implement the weighting scheme is to

set the weight of the compute unit equal the rate at which it processes work. At
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initialization time, this weight can be calculated as

wi =
Nitems

Nruns

Nruns∑
j=1

1

tj
, (3.1)

where Nitems is the number of NLTE cells used to evaluate node performance, Nruns

is the number timing measurements taken, and tj is a single timing measurement.

Nitems should be large enough to saturate node resources and hide parallel launch

overheads and Nruns should be large enough to dampen noise associated with com-

putation timings. This method has embedded the assumption that NLTE work is

equal across cells. It can be shown that the number of non-linear iterations required

is inversely proportional to temperature. However, inlinlte implements on node

dynamic scheduling of work which helps alleviate much of the issues. Additionally,

constructing the rate matrix via the matrix polynomial method reduces the time

per non-linear iteration by increasing performance of rate matrix construction. This

means that relatively more time is spent precomputing photo-ionization rate coef-

ficients as opposed to the non-linear solve, meaning that the number of non-linear

iterations has less overall effect on total time of NLTE work. While improvements

could be made to the weighting scheme, this method appears to be sufficient for

the purposes of this work.This weighting scheme provides a mapping between work

and time, allowing the algorithm to balance the load such the time taken on every

compute unit is roughly equal. By defining the timing estimate of compute resource

i at iteration k as

T
(k)
i =

Ni

wi
(3.2)
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A measure of imbalance at iteration k, denoted as ι(k), can be defined as

ι(k) ≡ maxi(T
(k)
i )

mini(T
(k)
i )

, (3.3)

ι = 1 represents perfect load balance. Through the weighting scheme used, this

means that each compute resource should take the same time to finish, regardless

of its particular performance characteristics. Checking this measure against a stop-

ping criterion also introduces inter-node communication as finding the minimum and

maximum time estimates is implemented via an MPI Allreduce. However, if it can

be shown that all compute units have approximately the same performance charac-

teristics and that the number of compute units is a power of 2, then the algorithm

can relax to the ideal case. The ideal case is guaranteed to balance the workload in

a single iteration and doesn’t require any global communication.

3.3.3 Data Redistribution

After the NLTE calculation has completed, the results must be returned to the

original compute node on which it originated. This is currently implemented by

inverting the load balance procedure. Every rank stores every rank and the number

of items transferred to or from that rank. This list is iterated through in reverse

order. This method has the benefit in which every message destination and size is

known a priori. The sign of the message size is used to determine if the rank will

be sending or receiving. If a rank needs to perform multiple consecutive sends or

receives in the sequence, those operations can be done in an asynchronous fashion.

Thus, the list of transfers and sizes can be preprocessed and split into spans in which

the message sizes have the same sign and each span can be iterated through using

non-blocking sends and receives and only needing to wait after all sends and receives

in that span are completed. In the worst case, this method is equivalent to using
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blocking sends and receives but also offers great benefit in certain pathological cases.

1. Group items into spans such that each the message sizes have the same sign in

each span

2. For each span

(a) For each element of the span

i. perform non-blocking send or receive

(b) wait for all messages in span to post

The above implementation works for ideal and non-ideal cases, and never requires

global communication. Other inversion methods exist, but were not explored as the

chosen method proved to be performant, scalable and is easy to implement.

3.4 Data Structures

Kokkos provides multidimensional arrays called views. Views are able to reside on

a specified memory space, such as GPU memory. Individual elements are accessed in

the same way as FORTRAN multidimensional arrays Aij... → A(i, j, ...). Additionally,

their layout and access patterns are separate and can be customized. The standard

layouts are multidimensional generalizations of row major and column major. Row

major becomes a right layout, in which the right most index in the accessor is unit

stride. Column major becomes a left layout in which the left-most index in the

accessor is unit stride. One additional constraint on views is that their span must

be given by a cartesian product. This is not amenable for storing block matrices

whose size varies between block rows as is the case with the rate matrix. While

compressed storage formats would be beneficial, it would disallow standard LAPACK

implementations from being used in the solver. However, views of views are possible
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and this is what is used. To store block matrices, a 1D view of 2D views is used.

Three such data structures are used to specify a block tri-diagonal matrix, one for

each non-zero block diagonal. For RHS vectors and permutation matrices needed for

partial pivoting, 1D views of 1D views are used. The data structures allow for the

tri-diagonal solver algorithm to be written concisely.

3.4.1 BLAS/LAPACK Interface

A wrapper interface for the linear algebra functions required by the tri-diagonal

solver algorithm was developed. The functions required are matrix-matrix multi-

ply (gemm), matrix-vector multiply (gemv), LU decomposition (getrf), and solve

(getrs). This wrapper interface must be called at the thread team level within

Kokkos’s hierarchical parallelism framework. Standard BLAS/LAPACK implemen-

tations are supported including those offered by intel, netlib, and a hand-coded

internal implementation. On CPUs, intel’s math kernel libraries (MKL) offering

offers great performance and is supported on computer systems used by inlinlte

and is the default option. Other options on the CPU are possible and some are

able to provide similar performance. However, these libraries are currently CPU

only and not portable to the GPU. The hand-coded implementation is fully portable

and does not have any additional external dependencies, allowing for inlinlte to

be fully portable to any hardware backend supported by Kokkos. Additionally, this

implementation was written specifically to be called from the team thread level of a

Kokkos kernel and takes advantage of thread and vector level parallelism where pos-

sible. However, this implementation lacks some hardware specific optimizations that

other implementations have such as knowledge of cache sizes and its performance

will suffer when compared to the highly optimized CPU implementations, specifi-

cally for larger matrices where cache blocking can provide significant performance
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boosts. Additionally, the hand-coded implementation does not implement partial

pivoting for LU decomposition which results in decreased robustness. Given these

caveats, the hand-coded implementation is generally only used when other options

are not available.

3.4.2 Atomic Model Storage

All data pertaining to a specific atomic model is also stored using Kokkos views,

some of which have a mixture of dimensions which are known at compile time and

others that are known at runtime. This is supported and can give additional perfor-

mance because certain stride calculations can be performed at compile time. Data

associated with an atomic model is constant and does not always follow sequential

access patterns. Another benefit of Kokkos views is that both of these attributes can

be expressed and used to increase performance. On CPU backends, constant data

can help compilers more easily reason about possible optimizations and vectoriza-

tion. On the GPU, the benefits are ever more substantial because the atomic data

can take advantage of the specialized texture memory available on GPUs which can

be accessed randomly without as much performance degradation [6].

3.5 NLTE 〈Z〉 Solution Procedure

The solution procedure outlined in this section is specific to the steady-state case

in which the mass density is an externally imposed constraint. Solution requires the

following:

1. Calculate precomputed rate coefficients (if any)

2. If matrix polynomial method, calculate matrix and RHS coefficients.

3. Brent’s method, for each iteration:

(a) Calculate rate matrix given input Ne
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(b) Solve Rate matrix

(c) Calculate residual R = ρNA

M
−
∑

i`Ni`

4. Post process population and calculate 〈Z〉 =
∑

i` iNi`

5. If continuum lowering enabled recalculate, modify data structures appropri-

ately

(a) Recalculate rate coefficients (if need to be recalculated)

(b) Redo Brent’s method with continuum lowered populations

(c) Recalculate 〈Z〉

From an algorithmic standpoint, the pattern for adding the contribution to the rate

matrix for any given atomic process is the same. This realization allowed for writing

a matrix population function templated on atomic process type. Each process need

only know how to calculate matrix indices and rate coefficients. This function can

also be used in the matrix polynomial method as there is a known electron density

dependence for each process. Thus each process can populate the corresponding

polynomial coefficient matrices using an electron density of 1 to obtain the matrix

and RHS coefficients. This can also be used to optionally precompute and store

rate coefficients. In the event that the matrix polynomial method is too memory

intensive, precomputed rate coefficients can provide reasonable performance with

a smaller memory footprint. Due to numerical integrals necessary in calculating

photo-ionization rate coefficients, they should be precomputed if possible. Using a

numerical integration routine templated on the integrand proved to be much more

performant compared to a routine that relied on function pointers. This is because

the integrands could be inlined at compile time and loops over quadrature points

could be vectorized. This is not possible unless the integrands are able to be inlined at
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compile time. The other processes can have their rate coefficients precomputed, but

with limited benefit per byte relative to that gained by precomputing photoionization

rate coefficients. The use of template metaprogramming has enabled a much more

readable and maintainable code-base that is just as performant due to the ability to

inline function calls at compile time. A future improvement would be to use explicit

template instantiation to improve compile times and decrease compiled file sizes.

Current compile times for the backends used in xRAGE do not warrant these changes.

Additionally, this methodology is extensible in that more atomic processes could be

added in the future with minimal code changes.

3.5.1 Pruning the Populations

In cases where the rate matrix is poorly conditioned, the steady state populations

can be negative, which is unphysical to have a negative number density. An example

when this can occur is at very low temperatures, when almost all atoms reside in

the neutral ground state. Due to its unphysical nature, negative number densities

are replaced with zero. An electron density can be calculated from the modified

populations. If this estimate is non-zero, the populations are renormalized to ensure

conservation of electron number. This normalization results in a slightly different

set of populations, which can be summed to calculate a total number density. Based

on the newly calculated number density, the populations are again renormalized to

ensure conservation of ion number. A new ion number density and electron number

density can be calculated from the final set of populations. The current choice for

〈Z〉 is

〈Z〉 =


∑

i` iNi`∑
i`Ni`

,
∑

i` iNi` > 0

Ne

Ntot
, otherwise.

(3.4)
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The conditional exists to provide a fallback when the electron density is near 0. It

has been noted previously that NLTE physics is usually only being used in high

temperatures, meaning that the more rigorous definition will be the most commonly

used definition.

3.5.2 Residual Choices

Simulations which have the material density ρ as a state variable place a con-

straint on the populations. The total number density can be calculated from the

material density. In the case of single element, the number density is:

Ntot =
ρNA

M
, (3.5)

where Ntot is the total number density, NA is Avogadro’s number, and M is the

molar mass of the material. The number conservation constraint is given by

Ntot =
∑
i`

Ni`. (3.6)

The above is only true when a single material is present. The presence of multiple

materials presents a much more challenging problem and is beyond the scope of

this work. The populations are a function of the electron density and only a single

value of the electron density, Ne, will satisfy the condition given in equation (3.6).

However, the electron density can also be directly calculated from the populations

as well through conservation of electron number. This constraint is given by

Ne =
∑
i`

(i− 1)Ni`. (3.7)
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For a given set of fixed electron and radiation energy distributions, commonly de-

scribed via electron and radiation temperatures, the coupled system of rate equations

only depend on the electron density. Once an electron density is specified, popula-

tions can be obtained vi a linear solve. When solving for the steady state populations

(in which all net rates are 0), the system is over-constrained. Suppose there are P

populations, this implies a P × P rate matrix. The electron density is also an

unknown, indicating a total of P + 1 unknowns. However, there are 2 additional

constraints which would imply a total of P + 2 equations for P + 1 unknowns. One

of the equations and unknowns can be removed from the rate matrix, making it a

P − 1×P − 1 matrix. The resultant solution vector y is normalized by the removed

unknown as follows

yi` =
Ni`

Njk

, ∀ i 6= j, ` 6= k. (3.8)

One of the constraints must then be used to solve for Njk. The 2 choices are given

by

Ntot =
∑
i`

Ni` =
∑
i` 6=jk

Ni` +Njk = Njk

∑
i` 6=jk

Ni`

Njk︸︷︷︸
yi`

+1

 , (3.9)

Ne =
∑
i`

(i− 1)Ni` =
∑
i` 6=jk

(i− 1)Ni` + jNjk = Njk

∑
i` 6=jk

(i− 1)
Ni`

Njk︸︷︷︸
yi`

+j

 .

(3.10)

These choices will necessarily satisfy one of the given constraints. The remaining

constraint will be satisfied if the electron density chosen is close to the true electron
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density. The remaining constraint can be reformed as a residual such that when

the residual is less than a specified tolerance, the electron density is said to have

converged. The previously implemented choice was

Njk =
Ne∑

i` 6=jk (i− 1) yi` + j
, (3.11)

R = Ntot −Ne

∑
i` 6=jk yi` + 1∑

i` 6=jk (i− 1) yi` + j
. (3.12)

This method was shown to have issues when the electron density was small, in cases

when very little ionization has occurred. This is due to the fact that limNe→0R =

Ntot. Additionally, limNe→0Njk = 0, which implies that all of the populations are 0.

However, one is also free to choose the following

Njk =
Ntot∑

i` 6=jk yi` + 1
, (3.13)

R = Ne −Ntot

∑
i` 6=jk (i− 1) yi` + j∑

i` 6=jk yi` + 1
. (3.14)

This choice does not suffer from the same issues in limNe→0{Njk, R}. This method

has been shown to be numerically stable for a broader extent of the input phase

space (ρ, Te, Tr) in the inlinlte code.

Additionally, when physical bounds are placed on the electron density guesses, it

can be shown that the residual moves from negative to positive as the electron density

increases. However, if the mass density is high, the upper bound electron density is

also very high, which can lead to large disparities between electronic process rates

and photonic process rates. Specifically, electron impact ionization has quadratic

dependence on the electron density. Large disparities can present numerical precision

issues that must be addressed. Since this is an iterative method, many of these issues

45



will disappear near the neighbourhood of convergence when the electron density used

to calculate the rates is unphysically high. However, this issue can manifest when

attempting to calculate the residual at the physically dictated upper and lower bound

limits of the electron density, which are used to bracket the residual. Bracketing in

this context is the notion that if a smooth function changes sign on an interval, a

zero of that function must lie in the interval. The numerical precision issues in these

high density regimes can result in the upper bound residual having the incorrect sign

which will result in a failure for the Brent-Dekker method. Since there are physical

arguments for what the sign of the residual should be, checks can be put in place to

guard against this. This specific issue was encountered when the density of the iron

exceeded 75 g/cc in a simulation described in section 6.1.

3.5.3 Inverse Table Lookup Method

As currently implemented in xRAGE, only LTE tabulated opacities are used, but

the location within the table is augmented through the NLTE 〈Z〉. This methodology

follows the work of Busquet [3]. With current rDCA models, even this method was

very expensive, more than 2 orders of magnitude slower than an LTE equivalent

simulation. It’s efficacy is thus not well known and further research in this area

is a key aspect of this work. The table lookup is augmented by obtaining the LTE

temperature which corresponds to the NLTE 〈Z〉. This modified temperature is used

in the table lookup to obtain the augmented opacities.

3.6 Block Tri-diagonal Solver

While other methods for solving the block trigiagonal coupled linear system were

investigated, the Thomas method was ultimately chosen. Three different block tri-

diagonal solver algorithms were selected for investigation: Thomas algorithm, cyclic

reduction, and parallel cyclic reduction [13, 20, 21, 11]. As implemented, these
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algorithms all require certain BLAS level 2 and 3 algorithms for the block matrices.

Linear algebra functions needed include matrix-matrix multiply, LU decomposition

with partial pivoting, solving a triangular matrix (for use with LU decomposition),

matrix-vector multiply. All of the listed algorithms are implemented in cuBLAS,

which is a CUDA capable library for dense linear algebra. While this showed useful

speedup for low Z, high fidelity atomic models, it proved difficult to hide data transfer

costs for reduced atomic models. CUDA kernels were written to calculate the rate

coefficients to investigate their speedup as well. Hiding data transfer and kernel

invocation overhead on reduced atomic models such as would be used inline in a RH

calculation proved difficult. It was decided to investigate parallelism across cells in

the mesh as its implementation would be much more straightforward.
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4. CODE PERFORMANCE

As previously stated, the additional computational work required to incorporate

all of the atomic physics necessary to relax the assumption of LTE is very large. When

used in xRAGE, it has been shown to regularly take 90% of the total computation time

and represent more than an order of magnitude increase in total computational time

when compared to LTE simulations with all other input parameters held constant.

Focusing on improving the computation time is thus of high importance if NLTE

effects are to be studied in real physical systems of interest such as ICF.The remainder

of this chapter will focus on detailing code performance and the strategies and tools

used to employ said improvements.

4.1 Rate Matrix Computation

When using reduced atomic models such as rDCA, matrix sizes tend to vary form

O (10− 100). It turns out that in this regime, calculating the rate matrix elements,

an O (N2) complexity procedure, and matrix factorization, an O (N3) complexity

procedure, can be similar due to the difference in proportionality coefficients asso-

ciated with each. Highly optimized linear algebra libraries are used to ensure that

linear algebra operations on the rate matrix are performant. Further optimization

of matrix solvers will unlikely yield in significant performance gains. Thus effort was

spent in increasing the performance of populating the rate matrix. Since this is being

integrated into multi-physics codes with users who might not be atomic physicists or

NLTE domain experts, user facing memory control was greatly simplified to facilitate

ease of use. Rate matrix computation options are able to be set in xRAGE input files.

A list of inlinlte specific options are listed in table 4.1.
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Table 4.1: List of inlinlte relevant input file options for use in xRAGE.

Name Values Default Explanation
inlinlte max iterations int 50 Maximum number of itera-

tions in non-linear solver.
inlinlte integration tol real 10−4 Tolerance for P.I. rate inte-

grals
inlinlte non-linear tol real 10×integration tol. Non-linear solver relative

tolerance
inlinlte memory option 0-6 0 Rate Matrix:

0 = matrix polynomial
1 = store P.I. RC’s
2 = store all photon process
RC’s
3 = Option 2 + C.E. RC’s
4 = Option 3 + C.I. RC’s
5 = Store all RC’s
6 = calculate everything in
place 1

These options have varying memory cost and one should in general use the fastest

algorithm that can be afforded given memory constraints. These options provide a

set of space-memory tradeoffs to satisfy a broad set of problems and gives inlinlte

the highest opportunity possible to be utilized. The cost of calculating the rate

coefficients for a given atomic process varies between processes. Photoionization is

especially expensive due to the fact that integrals over photon energies are computed

numerically. Figure 4.1 shows the speedup associated with storing only the photoion-

ization rate coefficients as opposed to recalculating them every time they are needed.

More than 100% improvement is observed in all 3 test cases.
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Figure 4.1: Comparing memory option 1 to memory option 6 shows significant differ-
ences in performance. It is unlikely that option 6 would provide benefits over other
memory options.

The relative worth of precomputing the rate coefficients for other processes is not

as notable as for photoionization, but could still prove very useful. Additionally, the

matrix polynomial method performance shown. All speed comparisons are relative

to using option 1. In addition, memory requirements for each option is also shown in

figure 4.2. Also of note that the memory requirements are strongly dependent upon

atomic model complexity as well as proton number.
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Figure 4.2: This plot compares memory options 0 through 5. The time is in blue
(left bars) while memory is in green (right bars). This shows the time-space tradeoffs
relative to option 1. The percentages listed are the % timing improvement over option
1.

While option 0 might not present the optimal choice in a combined context, it

does always provide the best performance. The goal of these options was to provide

flexibility to users with the hope that the most performant option that can be afforded

with respect to memory will be chosen. In the runs presented in this work, option 0

was able to be used without running into memory issues.
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4.2 Parallel Scalability

The use of both intranode and internode load balancing, as currently implemented

in inlinlte, requires communication between MPI ranks. For load balancing to

prove useful for large scale simulations, it must demonstrate excellent parallel scal-

ability. The algorithm used was described in the previous chapter and is in theory

scalable. A test was devised to simulate load imbalance in which each MPI rank

started with an amount of NLTE work of 2× rank + 10. This yields a total amount

of work which is quadratic with respect to the number of ranks, and linear with re-

spect to the amount of work per rank, on average. This test was run on the Grizzly

platform at LANL using 4608, 9216, 18000, 18432, 36864, and 50400 cores. Note

that only the 18000 and 50400 core cases are non-ideal in the sense that they require

global communication and potentially multiple iterations to achieve a desired level

of load balance. All other cases run were ideal and did not require global communi-

cation and only require one iteration. The results of the overall runs are shown in

figure 4.3 and show that communication time is negligible relative to the time spent

performing the NLTE 〈Z〉 calculation.
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Figure 4.3: Comparing NLTE calculation time vs communication time. Error bars
are plotted for each though they are very small on this scale. Communication time,
while plotted, is also difficult to see on this scale. Note that the total execution time
is roughly linear with respect to number of cores.

Communication times are further broken down into their four components in

figure 4.4. While communication time grows with the number of cores, some increase

is expected from algorithmic complexity as well as the fact that message sizes are

also increasing with number of cores because the total amount of work is increasing

quadratically.
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Figure 4.4: This plot breaks down communication time into its 4 components. The
gather and scatter are intranode only, while the load balance and data redistribution
are internode only. Error bars are shown for total communication time and not
component-wise.

4.3 Sequential Speedup

In addition to load balancing in a multi-physics context, inlinlte provides no-

table performance improvements over nlte rdca even when run sequentially, indi-

cating that the NLTE solver is more efficient for a single set of inputs, not just in

the aggregate. It is these gains in efficiency when combined with increased hardware

utilization that result in order of magnitude or more speedup. Timing speedup is

shown in figure 4.5.
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Figure 4.5: This shows performance improvements of inlinlte over the already
implemented DCA solver when both are run without the use threading or MPI,
though both will attempt to take advantage of vector processing.

4.4 Memory Consumption Improvements

Another significant improvement inlinlte brings is in memory consumption.

Due to the nature of how nlte rdca obtained parallelism, a copy of the atomic data

is required per rank. xRAGE is designed to run well with 1 MPI rank per core, which

is inefficient use of memory resources for cores that share the same memory space.

Comparison is shown in table ??.
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Table 4.2: Note that despite noticeably poorer serial and parallel performance from
nlte rdca, it’s memory requirements are similar to or worse than inlinlte’s option
0 and universally significantly worse than inlinlte’s option 1.

Model nlte rdca option 0 option 1

DCA Hydrogen 16.14 11.63 3.18

rDCA Iron 69.71 77.51 22.88

rDCA Lithium 1.75 0.86 0.33

The Brent-Dekker method was used as the outer non-linear solver to converge

the electron density. This method shows improvements over the Dekker method due

to its use of inverse quadratic interpolation when appropriate [17, Chapter 9.3].

4.5 Speedup in Mulitphysics Simulations

These improvements manifest themselves in highly integrated radiation hydrody-

namics simulations as well. Included are plots showing the speedup over the previous

NLTE solver implementation in the xRAGE rad-hydro code. Figure 4.6 shows the

speedup over the simulation run with the previous nlte rdca NLTE solver. This

is showing the speedup as a function of (normalized) simulation time. Speedup ini-

tially starts out low because xRAGE initialization dominates simulation time for the

first cycle. However, the speedup rapidly increases as the amount of NLTE work

peaks in the first fifth of the simulation. This peaking is due to the fact that NLTE

work is localized to particular region of the problem domain and inlinlte is able to

distribute that work effectively. After about a fifth of the way through the simula-

tion, the material globally cools to below the NLTE cutoff temperature except in the

region very near the shock, yielding almost no NLTE work for the remainder of the
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Table 4.3: Walltime values for each simulation. NLTE physics about a factor of 30
slower than LTE and a factor of 3 faster than previous method.

LTE inlinlte DCA solver

Wall time [hr]: 16.3 59.1 98.0
CPU time [hr]: 32.7 965.3 2943.5

simulation. Because of this, neither NLTE solver is being utilized appreciably and

so the speedup factor begins to relax as they are taking roughly the same amount of

time per cycle. Even so, the speedup factor appears to by relaxing to around 3×.
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Figure 4.6: Left: Speedup vs time; Right: % cells treated with NLTE

Even for a relatively small problem, when NLTE work was present, more than an

order of magnitude speedup was realized. Similar, but in many ways more promising,

results were obtained for a problem involving iron, a material with a much higher

proton number. Total walltime figures are presented in table 4.3 and show significant

overall speedup. The time scales of these speedups should also be noted. Figure 4.7

shows similar characteristics to the supernova-like problem in that the speedup starts
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out small due to initialization, but rapidly jumps to a value of over 18×, well over an

order of magnitude improvement. This number starts to decrease, but for a different

reason than in the previous problem. Notice that the amount of NLTE work continues

to rise, and more specifically, a larger portion of the simulated domain requires NLTE

physics. This is reducing the degree to which the NLTE work is imbalanced because

in the limit that 100% of the domain is above the NLTE cutoff temperature, the

NLTE work is balanced to the same degree to which the domain has been evenly

decomposed across resources. Thus in this limit, benefits obtained due to better

load balance are reduced and the speedup factor continues to relax to a lower value.

However, this comparison was not carried out to later solution times due to the

excessive computational cost of nlte rdca, which would have required well over a

month of wall time to complete.
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Figure 4.7: Left: Speedup vs time; Right: % cells treated with NLTE

Total walltime figures are presented in table 4.4 and show significant overall

speedup. The time scales of these speedups should also be noted. While it

might be possible and beneficial to complete a handful of these 1D simulations with
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Table 4.4: Walltime values for each simulation. Values in parentheses are for the
entire simulation to finish, those not in parentheses are for approximately the first
25% of the simulated time.

LTE inlinlte DCA solver

Wall time [hr]: 0.5 (2.1) 32.7 (214.2) 230.8 (*)
CPU time [hr]: 7.8 (33.4) 673.7 (6482.3) 7096.4 (*)

nlte rdca, its applicability does not extend much beyond that. Due to the speed

improvements, the resources necessary to run similar problems is low enough that

a parameter studies on 1D problems are now possible, which will be demonstrated

in a later chapter. Additionally, a 2D problem was also run with the same geome-

try as the blastwave problem, but with slightly modified materials [14]. It appears

that problems like this have been made possible thanks to the performance improve-

ments brought about by inlinlte. Detailed performance comparisons of this 2D

simulation with the previous capability were not possible due to timing constraints.

Looked at another way, this simulation would not have been run without this capa-

bility in place. Instead, the simulation was restarted from a particular point in time

in which NLTE physics is relevant but it was run with the previous NLTE solver.

The time in particular was the time from -4 ns to -3.6 ns of the simulation time.

This restart simulation ran for 400 picoseconds of simulation time and the wall time

required was recorded and compared to the wall time needed for the simulation that

used inlinlte for the NLTE solver. The results are shown in table 4.5.The data

above show that the incorporation of NLTE physics is very computationally expen-

sive relative to LTE by nearly 2 orders of magnitude for this problem in particular.

However, that performance figure is through the use of inlinlte, the previous ca-

pability appeared to be roughly 3 orders of magnitude more expensive. In addition,
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Table 4.5: Performance of inlinlte for the blastwave simulation. Parenthetical
values represent wall time, all others are CPU time. Note that the LTE simulation
ran with 1/16th of the resources.

LTE inlinlte DCA solver

400 ps Time [hr]: 24.7 (0.685) 1810.8 (3.145) 23543.4 (40.875)
Total time [hr]: 7503.6 (116.1) 317280 (552.6) N/A

the wall-time figures were much closer due to the fact that the LTE simulation ran

with 16× fewer computational resources. However, an RH simulation of this size

would not be able to take advantage of those resources as well. The NLTE physics is

embarrassingly parallel, allowing it to scale well as computational resources increase.

These performance data indicate that inlinlte in tandem with HPC enable the

study of systems of interest in which NLTE effects could be important.
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5. ASTROPHYSICS: SUPERNOVA

A supernova (SN) is an explosive event that can occur in the late stages of stel-

lar evolution. This can occur either when material accretes onto the surface of a

compact star known as a white dwarf or in the core of a massive star (m > 8M�).

When this occurs, thermal pressure is no longer able to support the star in its current

state. In the core of a massive star, when iron starts to undergo fusion, these en-

dothermic reactions rob the core of thermal energy, thus reducing thermal pressure.

This sudden deletion of pressure in the core causes the central region to implode and

then explode. Given the proper conditions in the implosion and explosion, the re-

sulting outward driven shock can gravitationally unbind a significant fraction of the

star’s mass and eject into the interstellar medium at extremely high velocities. These

events occur at extreme scales and in extreme conditions and result in impressively

complex dynamics. The primary source of information about the inner workings of

supernovae is obtained from the electromagnetic radiation produced from the time

the shock breaks out of the surface of the star until weeks, months, or even centuries

later. These electromagnetic signals are complemented with data from cosmic rays,

neutrinos, and direct observations of isotopic abundances. This data carries infor-

mation about events with extreme conditions and scales that cannot be reached in

a laboratory. This data can be compared against simulations to provide validation

of codes used to simulate such events. Validation or invalidation of models can aid

in gauging our understanding of physics. With thousands of SNe observed each year

[15] this radiation provides an abundant source of information about these events

that probe extreme conditions.

61



A light curve depicts the luminosity of an event as a function of time for time

scales on the order of 100s of days. Over this time scale, the material ejected from

the explosion has typically cooled to sub-eV temperatures and become rarefied. The

assumption of LTE tends to over-predict the ionization of the hydrogen in this ejected

material [18, Figure 2.3]. The opacity of fully stripped ion stage of hydrogen does not

have any line structure and would preclude characteristic x-rays such as the Lyman

alpha (Ly-α) series from being observed in a simulation that assumed LTE. This

is inaccurate and when NLTE physics are accurately captured, this spectroscopic

behavior is recovered [22]. This is not currently a capability available to the astro-

physicists at LANL using xRAGE [9] in conjunction with Rainbow- to calculate SN [8]

and inlinlte can provide this to both RH and post-processing codes. Here I demon-

strated how these new tools can used to incorporate NLTE physics into modeling

astrophysical phenomena in the LANL suite of light curve and spectra codes.

5.1 Supernovae-Like Problem

Due to current single material limitation of inlinlte’s NLTE post-processing

capabilities, a SN simulation was carried out in which hydrogen was the only mate-

rial in the simulation. This is because the inlinlte is unable to handle atomically

mixed material opacities. Due to this limitation, this is not truly meant to simulate

a supernova in full detail for direct comparison to observations. Instead, it is specif-

ically designed to show the increased fidelity obtained when treating hydrogen with

NLTE in a post-processed fashion, obtaining spectral features not currently obtained

under LTE. While the approximation of a single material is used for demonstrative

purposes, for certain classes of SNe this approximation is not as extreme as it might

appear. While current stars are composed of approximately 2% elements heavier

than helium and these elements can dominate the opacity, the earliest stars in the
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universe are composed entirely of H and He. Lightcurves from these earlier stars

have been a major focus of the LANL collaboration [23]. The initial condition of the

problem is shown in figure 5.1.

1010 cm

1012 cm

T = 10 eV

T = 0.025 eV

ρ = 10-15 g/cc

ρ = 10-4 g/cc 

Figure 5.1: Supernova-like initial condition.

This system was simulated using the xRAGE code developed at LANL using a

similar configuration as the one described in [8]. This simulation used an analytic

ideal gas equation of state for the hydrogen and was run with and without NLTE

opacity look ups. These simulations used flux limited multi-group diffusion with
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49 groups as the radiation transport model. For performance characteristics of this

simulation, see chapter 4. The outputs of these simulations can be post-processed

to obtain a simulated electromagnetic signal of this event similar to what would be

recorded by telescopes and other data collection instruments used by observational

astronomers. The scootaloo post-processor is a tool developed at LANL for this

purpose and is a stripped-down python implementation of the mkbin and spectra

tools in the Rainbow- framework described in [8] and was modified to use inlinlte’s

monochromatic opacity capabilities to obtain spectra. scootaloo was used to obtain

spectra at three different times in the simulation. inlinlte was used to calculate

opacities under both LTE and NLTE conditions. LTE opacities were obtained by as-

suming the radiation temperature was equal to the electron temperature and NLTE

opacities were obtained by using the true radiation temperature for Tr. A spectrum

was generated under each assumption for each time being considered. Additionally,

the simulation being post-processed was run under LTE and NLTE assumptions in

the RH code. The results for the first timing snapshot are shown in figures 5.2 and

5.3, which occurs at approximately 2 hours into the event.

The results from the NLTE simulation show that significant differences can occur

between the LTE and NLTE post-processed opacities, resulting in noticeably differ-

ent luminosities, particularly near the photon energies in which the luminosity peaks.

The difference between the radiation and electron temperatures is large enough that

the assuming both temperatures are equal results in very different opacities. Specif-

ically, the NLTE opacity for the outer region shows little to no ionization whereas

the LTE opacity indicates ionization. This observation is inferred from the fact that

the NLTE opacity does not exhibit the E−3 dependence at low energies, which is

exhibited when 〈Z2〉 > 0.
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Figure 5.2: This figure is the result from post-processing the output of the NLTE
RH simulation at 2 hours. Top: spatial density profile; Upper middle: spatial radi-
ation and electron temperature profiles (note in K); Lower middle: monochromatic
opacities at inner, outer, and highest temperature conditions; Bottom: spectral lu-
minosity.

In addition to the differences between NLTE and LTE opacities, line features

from the hydrogen Balmer series are observed in the spectral luminosity, including a

feature from the notable H − α line. The SN-like simulation run with LTE physics

was also post-processed at approximately 2 hours into the event yielding an analo-

gous figure, figure 5.3. It is notable that the LTE simulation yields temperatures in

the outer regions of the problem lower than in the NLTE simulation. These lower

temperatures are not high enough to cause ionization for either the LTE or NLTE

opacities. As a result, the NLTE and LTE opacities and spectral luminosities quali-

65



tatively agree. Although this problem is of an illustrative nature, it shows that NLTE

effects were able to noticeably manifest themselves within the RH simulation in a

noticeable way in the post-processing. It is important to note that NLTE physics

plays a role both in the initial RH simulation and in the post-processor, the exact

impacts of those effects were not completely known at the onset of this work.
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Figure 5.3: This figure is the result from post-processing the output of the LTE RH
simulation at 2 hours and has the same layout as figure 5.2

While unexpected, this behavior reinforces the idea that NLTE physics play a

role in the dynamics of SN ejecta. Line features are again recovered in the spectral

luminosity including those from the Balmer series with qualitative agreement between

NLTE and LTE. This procedure was repeated at 4 hours into the simulation and
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generated analogous figures. The RH simulation which used NLTE physics was

post-processed, the results of which are shown in figure 5.4. The spectral luminosities

that resulted from LTE and NLTE opacities again displayed qualitative differences,

particularly in the photon energy ranges near where the spectral luminosity peaks.

The opacity at the outermost region of the simulation shows ionization in the LTE

case but shows little signs of ionization in the NLTE case. These differences result

in noticeable differences in the bolometric luminosity, which is an important metric

used in the characterization of astronomical events.
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Figure 5.4: This figure is the result from post-processing the output of the NLTE
RH simulation at 4 hours and has the same layout as figure 5.2

As was the case at t = 2hrs, line features from the Balmer series are recovered in

both LTE and NLTE plots. The RH simulation under the LTE assumption was post-
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processed at around 4 hours into the event, the results of which are shown in figure

5.5. The spectral luminosities when calculated with LTE and NLTE opacities are

qualitatively similar and both recover line features that are expected in astronomical

events similar to the one simulated.
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Figure 5.5: This figure is the result from post-processing the output of the LTE RH
simulation at 4 hours and has the same layout as figure 5.2

The LTE and NLTE opacities in the 3 conditions presented in figure 5.5 do not

show strong differences and helps explain the qualitative similarities observed in the

spectral luminosities. This procedure was repeated at 8 hours into the simulation

and generated analogous figures. The RH simulation which used NLTE physics was

post-processed, the results of which are shown in figure 5.6. The spectral luminosities
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that resulted from LTE and NLTE opacities again displayed qualitative differences

supported by the fact that the opacity at the outermost regions of the simulation

shows ionization in the LTE case but shows little signs of ionization in the NLTE

case.
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Figure 5.6: This figure is the result from post-processing the output of the NLTE
RH simulation at 8 hours and has the same layout as figure 5.2

As was the case at t = 4hrs, line features from the Balmer series are recovered

in both LTE and NLTE plots. The RH simulation under the LTE assumption was

post-processed at around 8 hours into the event, the results of which are shown in

figure 5.7. The spectral luminosities when calculated with LTE and NLTE opacities

seem to show some small but noticeable differences, especially for photon energies
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near where the spectral luminosity peaks. These differences are supported by the fact

that NLTE and LTE opacities in the outer regions of the problem differ with regard

to the degree of ionization present. The opacity calculated under LTE conditions

shows minor ionization while the opacity calculated with NLTE conditions does not

show signs of appreciable ionization.
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Figure 5.7: This figure is the result from post-processing the output of the LTE RH
simulation at 8 hours and has the same layout as figure 5.2

An interesting result of this work is the fact that it can be difficult to predict

when NLTE physics will have a large effect or not. This uncertainty is largely due

to the presence of physics cliffs, namely excitation and ionization in this case. The

opacity of a neutral plasma with most atoms residing in the ground state will look
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very different from that of a nearly fully ionized plasma. In addition, if the plasma

is cold enough to have very few atoms in an excited energy level, this will result in

features associated with the Balmer series being largely absent. Conversely, if the

plasma is hot enough to be fully ionized, this will result in the absence of any line

structure in the opacity. One should bare in mind that caveats exist with regard

to the actual results obtained due to physics not currently taken into account in

inlinlte but that could be relevant in this low temperature, low density regime.

That being said, the conclusions drawn with regard to physics cliffs should still hold

true.
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6. HEDP: INERTIAL CONFINEMENT FUSION

Inertial confinement fusion (ICF) occurs when a system undergoes fusion reac-

tions in a fuel region in which the inertia of the plasma outside of this region is

sufficient to provide the containment and compression of the fuel region. Inertial

confinement is a method of plasma confinement in which the plasma inertia provides

sufficient containment. On systems of interest, inertial confinement timescales are

very short when compared to magnetic confinement. A system is said to obtain

ignition when it is able to sustain conditions favorable for fusion without the need

for external power input. This is the namesake for the National Ignition Facility

(NIF), a laser system located at Lawrence Livermore National Laboratory (LLNL).

This system houses the world’s most energetic laser and is used to conduct ICF re-

search. The targets meant to undergo ignition use the laser as a heating mechanism.

The UV laser impinges upon the walls of a cylinder made of a high-Z metal called

the hohlraum. The outer surface of the hohlraum walls rapidly heat up, creating a

hot plasma. This plasma emits thermal radiation in an attempt to symmetrically

compress a plastic capsule located at the center of the hohlraum. This symmetric

implosion creates a dense hot spot at the center of the capsule capable of fusing

the D-T mixture. The mixture fuses, creating energy in the form of neutrons and

alpha particles. Most of the energy is contained within the neutrons, the majority of

which stream out of the system. However, some of the reaction energy is contained

in the resulting alpha particle. The alpha particles likely deposit their energy in

their surroundings before escaping. This energy deposition heats up the surrounding

material, hopefully making it able to support fusion reactions. If the alpha particles

created in the initial hot spot succeed in sufficiently heating the surrounding material
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to fusion conditions, a burn wave will move radially outward burning much of the

fuel and producing a substantial amount of energy.

6.1 Hohlraums

Accurately modeling capsule implosions requires accurate spatial, spectral, and

temporal characterization of xrays emitted by the hohlraum. While this can be

measured, it is difficult to predict from first principal simulations. This could be in

part due to the fact that the hohlraum itself is driven by an inherently non-Planckian

laser source and in some experiments is observed to be out of LTE [19]. Bringing

simulations in closer agreement with experiment will give design scientists more

confidence in the predictive capabilities of simulations. This would make hohlraum

simulations a much more powerful tool for scientists working on ICF.

To explore this problem space, and in particular the effects of NLTE physics, a

simplified problem was devised that could be simulated with significantly decreased

computational costs, but still capture the physical processes important in hohlraums.

This problem is composed of two slabs of iron each 100 µm thick separated by

hydrogen gas at standard temperature and pressure (STP) and a density of 10−6 g
cm3 .

The right slab of iron was also initially at STP. The left half of the left slab was at

STP, while the right half of the left slab starts out at 300 eV and 1 atmosphere. This

is shown in figure 6.1.
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iron at 300 eV, 7.85 g/cc

iron at 0.025 eV, 1 atm

hydrogen at 0.025 eV, 1e-6 g/cc

Figure 6.1: Initial Condition for exploratory problem

This problem was chosen because it contains similar physics to a hohlraum, but

is not computationally expensive. This problem was run using xRAGE [9] using its

builtin flux limited multigroup radiation diffusion solver. A large set of simulations

were conducted in which the plate separation distance (1, 2, and 4 mm), number of

energy groups (5, 50, and 100), temperature of the hot iron (300 eV, 750 eV, and

1000 eV), and the pressure of the iron plate on the right hand side of the problem

(0.1 and 1 atm) were varied. The primary QOI is the time at which the ablation

fronts collide. These simulations were run under the LTE assumption as well as

NLTE with two different atomic models with varying complexity. This complexity is

varied through a parameter associated with averaging of dielectronic capture states

[1, §2]. The larger model uses m = 30 and the smaller model uses m = 10, where
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m is explicitly defined in [1]. That data is listed for both NLTE iron atomic models

as well as LTE, in table 6.1. This complete listing of the data contains the expected

trend that the most significant differences between LTE and NLTE occur at higher

temperatures. The largest differences in this table appear to be about 6%.

Table 6.1: Full comparison varying all possible parameters holding the cutoff tem-
perature constant.

Gap

[mm]

G

[#]

Thot

[keV]

Pcold

[atm]

NLTE-L NLTE-S LTE 2 |L−S||L+S| 2 |L−LTE||L+LTE| 2 |S−LTE||S+LTE|

4 50 0.75 0.1 1.33e-09 1.33e-09 1.36e-09 9.23e-06 2.23e-02 2.23e-02

2 50 1 0.1 5.80e-10 5.80e-10 6.00e-10 3.48e-06 3.39e-02 3.39e-02

4 50 0.3 0.1 2.65e-09 2.65e-09 2.64e-09 2.54e-06 3.79e-03 3.79e-03

1 50 0.75 1 3.30e-10 3.30e-10 3.40e-10 2.98e-06 2.98e-02 2.98e-02

2 1000.75 1 6.60e-10 6.60e-10 6.80e-10 2.11e-06 2.98e-02 2.99e-02

1 5 0.3 0.1 6.80e-10 6.80e-10 6.80e-10 4.51e-05 3.32e-05 1.19e-05

4 50 1 1 1.18e-09 1.17e-09 1.21e-09 8.51e-03 2.51e-02 3.36e-02

1 50 0.75 0.1 3.40e-10 3.30e-10 3.40e-10 2.98e-02 2.70e-05 2.99e-02

4 1000.75 0.1 1.33e-09 1.33e-09 1.35e-09 1.47e-06 1.49e-02 1.49e-02

4 50 0.3 1 2.65e-09 2.65e-09 2.64e-09 8.21e-06 3.77e-03 3.78e-03

1 50 0.3 0.1 6.40e-10 6.40e-10 6.40e-10 1.15e-05 2.12e-05 9.72e-06

2 50 0.3 1 1.29e-09 1.29e-09 1.29e-09 1.72e-06 9.80e-06 1.15e-05

4 5 1 1 1.16e-09 1.16e-09 1.20e-09 3.97e-06 3.39e-02 3.39e-02

4 1001 1 1.17e-09 1.17e-09 1.21e-09 1.12e-05 3.36e-02 3.36e-02

2 50 0.3 0.1 1.29e-09 1.29e-09 1.29e-09 4.18e-06 1.95e-05 2.37e-05

4 50 0.75 1 1.33e-09 1.33e-09 1.35e-09 8.25e-06 1.49e-02 1.49e-02

2 1001 0.1 5.80e-10 5.80e-10 6.00e-10 5.57e-07 3.39e-02 3.39e-02

2 5 0.3 1 1.35e-09 1.36e-09 1.35e-09 7.39e-03 1.50e-05 7.37e-03

1 5 1 1 2.90e-10 2.90e-10 3.10e-10 4.23e-05 6.66e-02 6.67e-02
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Table 6.1: Continued

Gap

[mm]

G

[#]

Thot

[keV]

Pcold

[atm]

NLTE-L NLTE-S LTE 2 |L−S||L+S| 2 |L−LTE||L+LTE| 2 |S−LTE||S+LTE|

2 1000.3 0.1 1.29e-09 1.29e-09 1.29e-09 3.50e-06 1.14e-05 7.87e-06

4 5 0.3 0.1 2.75e-09 2.75e-09 2.75e-09 3.45e-06 2.94e-06 5.13e-07

4 50 1 0.1 1.17e-09 1.18e-09 1.21e-09 8.51e-03 3.36e-02 2.51e-02

4 1000.75 1 1.33e-09 1.33e-09 1.35e-09 8.79e-07 1.49e-02 1.49e-02

1 1001 1 3.00e-10 2.90e-10 3.10e-10 3.39e-02 3.28e-02 6.66e-02

4 1001 0.1 1.17e-09 1.17e-09 1.21e-09 5.50e-06 3.36e-02 3.36e-02

1 1000.3 0.1 6.40e-10 6.40e-10 6.40e-10 2.59e-05 1.06e-05 1.53e-05

2 50 0.75 1 6.60e-10 6.60e-10 6.80e-10 7.23e-06 2.99e-02 2.99e-02

1 1000.75 1 3.30e-10 3.30e-10 3.50e-10 5.16e-06 5.89e-02 5.89e-02

1 50 1 1 3.00e-10 2.90e-10 3.10e-10 3.39e-02 3.28e-02 6.67e-02

2 5 1 1 5.70e-10 5.80e-10 6.00e-10 1.74e-02 5.13e-02 3.39e-02

2 5 0.75 1 6.50e-10 6.50e-10 6.70e-10 2.35e-05 3.03e-02 3.03e-02

2 50 1 1 5.80e-10 5.80e-10 6.00e-10 7.24e-06 3.39e-02 3.39e-02

1 1001 0.1 2.90e-10 2.90e-10 3.10e-10 2.57e-05 6.67e-02 6.67e-02

4 5 1 0.1 1.16e-09 1.16e-09 1.20e-09 6.28e-06 3.39e-02 3.39e-02

1 1000.75 0.1 3.30e-10 3.30e-10 3.50e-10 4.91e-06 5.88e-02 5.88e-02

1 50 1 0.1 2.90e-10 3.00e-10 3.10e-10 3.39e-02 6.67e-02 3.28e-02

2 5 1 0.1 5.70e-10 5.80e-10 6.10e-10 1.74e-02 6.78e-02 5.04e-02

4 5 0.3 1 2.75e-09 2.75e-09 2.74e-09 3.24e-06 3.64e-03 3.64e-03

1 50 0.3 1 6.40e-10 6.40e-10 6.40e-10 2.13e-05 1.80e-05 3.24e-06

1 5 0.3 1 6.80e-10 6.80e-10 6.80e-10 2.89e-05 2.89e-05 1.33e-08

1 5 0.75 1 3.30e-10 3.30e-10 3.50e-10 5.44e-05 5.89e-02 5.88e-02

2 1000.3 1 1.29e-09 1.29e-09 1.29e-09 1.40e-05 2.39e-05 9.85e-06
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Table 6.1: Continued

Gap

[mm]

G

[#]

Thot

[keV]

Pcold

[atm]

NLTE-L NLTE-S LTE 2 |L−S||L+S| 2 |L−LTE||L+LTE| 2 |S−LTE||S+LTE|

4 5 0.75 0.1 1.31e-09 1.31e-09 1.34e-09 6.56e-06 2.27e-02 2.26e-02

1 1000.3 1 6.40e-10 6.40e-10 6.40e-10 6.91e-06 1.16e-06 8.07e-06

1 5 0.75 0.1 3.30e-10 3.30e-10 3.50e-10 6.69e-06 5.89e-02 5.88e-02

2 5 0.75 0.1 6.50e-10 6.50e-10 6.70e-10 1.40e-05 3.03e-02 3.03e-02

2 50 0.75 0.1 6.60e-10 6.60e-10 6.80e-10 1.38e-05 2.99e-02 2.99e-02

4 5 0.75 1 1.31e-09 1.31e-09 1.34e-09 3.26e-06 2.26e-02 2.26e-02

2 1001 1 5.80e-10 5.80e-10 6.00e-10 5.18e-06 3.39e-02 3.39e-02

1 5 1 0.1 2.90e-10 2.90e-10 3.10e-10 3.39e-05 6.67e-02 6.66e-02

4 1000.3 0.1 2.64e-09 2.64e-09 2.64e-09 9.25e-06 8.35e-07 8.42e-06

4 1000.3 1 2.64e-09 2.64e-09 2.64e-09 5.94e-06 1.22e-05 6.27e-06

2 1000.75 0.1 6.60e-10 6.60e-10 6.80e-10 2.18e-06 2.98e-02 2.99e-02

2 5 0.3 0.1 1.36e-09 1.35e-09 1.35e-09 7.39e-03 7.39e-03 7.79e-06

A subset of the parameter configurations reported in table 6.1 were run with

two additional atomic models, one with m = 1 and another with m = 70, yielding

a total of 4 different levels of complexity in the atomic models. In addition, the

configurations were run assuming LTE with S4 transport using the LANL Eulerian

Applications Project’s Cassio code. Results for this subset are reported in table

6.2 below. From this data it can be seen that for this test problem the impact the

complexity of the atomic model is less than a 3% effect. The maximum impact of

LTE Sn transport vs. the NLTE solutions is at maximum 7%.
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Table 6.2: Results for how atomic model complexity affects highly integrated QOIs.

Tcut Gas Gap Hot Temp. Transport XS S L XL

500eV 1mm 750eV 3.50e-10 3.40e-10 3.50e-10 3.50e-10 3.40e-10

250eV 1mm 750eV 3.50e-10 3.40e-10 3.30e-10 3.30e-10 3.40e-10

250eV 2mm 750eV 6.80e-10 6.60e-10 6.60e-10 6.60e-10 6.60e-10

500eV 2mm 750eV 6.80e-10 6.70e-10 6.80e-10 6.80e-10 6.70e-10

500eV 1mm 1keV 3.10e-10 3.10e-10 3.10e-10 3.10e-10 3.10e-10

250eV 2mm 1keV 6.10e-10 5.80e-10 5.80e-10 5.80e-10 5.80e-10

500eV 2mm 1keV 6.10e-10 6.00e-10 6.00e-10 6.00e-10 6.00e-10

250eV 1mm 1keV 3.10e-10 2.90e-10 2.90e-10 2.90e-10 2.90e-10

A more detailed study was conducted at the spatial center of the simulation

for each simulation is the parameter subset. At this singular location, the density,

temperature, and radiation energy density was plotted as a function of time for LTE

transport, LTE diffusion, and each of the 4 atomic models. In addition, the spectral

energy density was plotted at 4 different times for each of the 6 models.
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Figure 6.2: The array of figures has 1mm gas spacing simulations on the top row,
2mm simulations on the bottom row. The left column has a hot temperature of 750
eV and the right column has a hot temperature of 1 keV. All NLTE simulations
assume a cutoff temperature of 250 eV.

Figure 6.2 includes results with an LTE cutoff temperature of 250 eV, while

figure 6.3 shows the same results only the RH code was run using an LTE cutoff

temperature of 500 eV.
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Figure 6.3: These figures have the same layout as in 6.2, but these results were
obtained with a cutoff temperature of 500 eV rather than 250 eV.

The spectral energy density comparisons in figure 6.4 show qualitative agreement

between LTE transport and LTE diffusion and between the four atomic models used

for the NLTE simulations. However, qualitative differences exist between LTE and

NLTE as is also observed in the radiation energy density comparison in figures 6.3

and 6.2. Transport appears to have a larger effect in temperature and density, while

NLTE appears to have a larger effect in radiation specific quantities.
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Figure 6.4: This array of figures shows group-wise spectral energy density for the
simulation with a plate spacing of 1mm and a hot temperature of 1 keV at 4 different
times: 0 ps, 160 ps, 320 ps, and 640 ps (read from left to right, top to bottom).

6.2 Blastwave Diagnostic

In addition to a set of 1D simulations described in section 6.1, a set of two 2D

simulations with the same geometry as in the blastwave diagnostic [14] were con-

ducted, but with modified materials for simplicity. The primary change in materials

was the use of an iron hohlraum. Both simulations were run with the xRAGE RH code

using flux limited multigroup diffusion for radiation transport. One simulation was

run under the LTE assumipton, while the other used NLTE physics with inlinlte.
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The geometry is shown in figure 6.5. At early times, slight differences are observed in

the NLTE simulation, but those changes do not have much appreciable effect on the

blastwave dynamics. However, this problem is designed to mitigate potential NLTE

effects and this comparison provides evidence to support that.

Figure 6.5: Initial Condition for blastwave diagnostic simulation.

Despite the similarities at late times, some noticeable differences exist at earlier
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times as shown in figure 6.6.

Figure 6.6: LTE to NLTE temperature comparison for the blastwave diagnostic.

A more detailed analysis was completed at 6 spatial locations in which the mass

density, material temperature, radiation energy density, and the radiation spectral

energy density were compared as a function of time. The first three of the quantities

listed are scalar and are shown as function of time. The six locations consist of
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three axial locations by two radial locations. The radial locations are 0.012 cm off

centerline and also at the hohlraum wall surface. The three axial locations occur at

0.13 cm, 0.3 cm, and 0.4cm, starting with 0.13cm in figures 6.7–6.10. The results

appear to show minor differences particularly associated with the time at which

dynamical features occur. However, at later times both LTE and NLTE simulations

show reasonable agreement, especially in the scalar quantities.

Figure 6.7: This figure shows density (top), material temperature (middle), and
radiation energy denisty (bottom) as a function of time near the center of the problem
at an axial location of 0.13cm. NLTE results shown is dashed line while LTE results
shown in dotted line.

Even the multigroup radiation spectral energy density shows agreement except
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when the spatial location experiences the most changes, which occurs as the temper-

ature front passes through that axial location.
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Figure 6.8: This array of figures shows group-wise spectral energy density near the
center of the problem at an axial location of 0.13cm at 6 different times: -8.1 ns, -5.6
ns, -2.8 ns, 0 ns, 2.8 ns, and 5.6 ns (read from left to right, top to bottom).

At the hohlraum wall at this axial location, differences are noticeable during the

dynamical portions of the simulation but appear to approach each other at later

times. Figure 6.9 also shows the interesting phenomenon of compression when the

temperature front reaches that portion of the hohlraum, followed by a rapid decrease

in temperature due to the hohlraum wall vaporizing and ablating into the surrounding

material. This is also accompanied by a rapid increase in temperature.
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Figure 6.9: This figure shows density (top), material temperature (middle), and
radiation energy denisty (bottom) as a function of time near the hohlraum wall at
an axial location of 0.13cm. NLTE results shown is dashed line while LTE results
shown in dotted line.

As in the previous spectra, modest differences are seen early, followed by closer

agreement at late times. Also of note is that only the highest energy groups are

appreciably populated at early times due to very high optical depth of the hohlraum

wall preventing lower energy photons being emitted by the source from reaching that

location.
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Figure 6.10: This array of figures shows group-wise spectral energy density near the
hohlraum wall at an axial location of 0.13cm and has the same layout as figure 6.8.

At this location further from the source, as seen in figure 6.11 the features of

the experiment designed to bring about LTE appear to be successful at this spatial

location as only modest differences are observed as the front passes.
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Figure 6.11: This figure shows density (top), material temperature (middle), and
radiation energy denisty (bottom) as a function of time near the center of the problem
at an axial location of 0.3cm. NLTE results shown is dashed line while LTE results
shown in dotted line.

As little differences are noted in figure 6.11, this is appropriately mirrored in

figure 6.12. Also of note is that only the highest energy photon groups are populated

at early times due to the high optical depth from the source for the lower energy

photons.
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Figure 6.12: This array of figures shows group-wise spectral energy density near the
center of the problem at an axial location of 0.3cm and has the same layout as figure
6.8.

At 0.3 cm at the hohlraum wall, as seen in figure 6.13, reasonable agreement is

observed with the exception of modest disagreement when the conditions undergo

rapid changes. Also of note is that ablation occurs immediately, indicating that

this data was taken much closer to the hohlraum surface that at 0.13cm. Data was

captured at a location corresponding to point on the mesh, causing variations in the

actual location in which data is recorded for the figures.
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Figure 6.13: This figure shows density (top), material temperature (middle), and
radiation energy denisty (bottom) as a function of time near the hohlraum wall at
an axial location of 0.3cm. NLTE results shown is dashed line while LTE results
shown in dotted line.

The result from figure 6.14 is consistent with the analysis of figure 6.13, that

being modest differences when conditions are changing rapidly.
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Figure 6.14: This array of figures shows group-wise spectral energy density near the
hohlraum wall at an axial location of 0.3cm and has the same layout as figure 6.8.

In figure 6.15, there is a difference in density between LTE and NLTE simulations

which is likely caused by an interfacial effect as this data is being take at or near

a material interface is which the density is discontinuous. Besides this, only minor

differences are observed.
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Figure 6.15: This figure shows density (top), material temperature (middle), and
radiation energy density (bottom) as a function of time near the center of the problem
at an axial location of 0.4cm. NLTE results shown is dashed line while LTE results
shown in dotted line.

The more noticeable differences seen in the density in figure 6.15 are not observed

in figure 6.16.
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Figure 6.16: This array of figures shows group-wise spectral energy density near the
center of the problem at an axial location of 0.4cm and has the same layout as figure
6.8.

Near the hohlraum wall at 0.4 cm above the origin, modest differences are ob-

served. Note that the data was recorded slightly off the wall and into the foam, and

thus as the wall ablates into the foam, the density increases.
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Figure 6.17: This figure shows density (top), material temperature (middle), and
radiation energy denisty (bottom) as a function of time near the hohlraum wall at
an axial location of 0.4cm. NLTE results shown is dashed line while LTE results
shown in dotted line.

The result seen in figure 6.17 is mirrored in figure 6.18.
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Figure 6.18: This array of figures shows group-wise spectral energy density near the
hohlraum wall at an axial location of 0.4cm and has the same layout as figure 6.8.

These axial locations correspond to changes in foam density within the hohlraum.

As the temperature front propagates through the system, differences between the

LTE and NLTE simulations decrease. This is supported by the data and only mi-

nor changes are observed, even in the spectra, at the 0.4 cm axial location, which

is the start of the experimentally relevant portion of the simulated domain. This

experiment was designed to be in LTE and the data shown support this notion.
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7. CONCLUSIONS

Vast improvements in computing technology over the past 2 decades have brought

about new opportunities in the realm of scientific computing including topics relevant

to the HEDP community. These improvements are realized both through increased

geometrical and spatio-temporal resolution as well as through incorporating higher fi-

delity physical models. This work detailed the incorporation of higher fidelity physics

by relaxing the assumption of LTE. This was accomplished through the creation of

the inlinlte library and demonstrated in the xRAGE RH code as well as the spectra

post-processor. This library showed marked improvements over the prior implemen-

tation in xRAGE beyond an order of magnitude.

In an RH simulation, the NLTE solver is used only for a single material of in-

terest and only when the temperature exceeds a cutoff value. Traditional domain

decomposition methods will yield an imbalance of NLTE work if the simulation con-

tains localized regions that exceed the cutoff temperature. inlinlte utilizes both

inter-node and intra-node load balancing, which increases hardware utilization and

improves performance. A scalable inter-node load balancing algorithm was demon-

strated. On-node parallelism was obtained using the Kokkos library which provides

performance portability through hierarchical parallel patterns, dynamic scheduling,

and architecture dependent data structure layouts. Dynamic process mapping is

accomplished via libquo and allows for efficient MPI + OpenMP usage indepen-

dent of the parallel nature of the host code. Increased performance for the study of

three demonstration problems: a supernova (SN), a 1D problem meant to capture

dynamics experienced in inertial confinement fusion (ICF) hohlraums, and a mod-

ified version of the blastwave diagnostic experiment performed at Sandia National
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Laboratory’s (SNL) Z machine. In the supernova modeling, explosive dynamics were

modeled using the xRAGE radiation hydrodynamics (RH) code [9] developed at the

Los Alamos National Laboratory (LANL). The simulation was run with and without

NLTE physics. The results of that RH simulation were post-processed using LANL’s

suite of light curve and spectra codes [8]. The post-processor was able to leverage

inlinlte’s monochromatic opacity capabilities to calculate opacities inline in order

to obtain simulated spectral luminosities, a metric used by observers to characterize

astrophysical events. The use of NLTE physics, both in the RH simulation and in

the post-processor, lead to qualitative differences in the resultant spectral luminosi-

ties, despite only modest differences in the RH simulation. However, the presence of

thresholds with sharp barriers, such as ionization, indicates that deviations from LTE

can lead to qualitative differences in relevant quantities when modeling supernovae

ejecta. In targeting the HEDP regime, a 1D problem meant to mimic the dynamics

possible in a hohlraum, a set of parameters were varied to study their effect on a

quantity of interest (QOI), in particular, the time in which 2 ablation fronts collided,

which is analogous to the closing of the laser entrance hole (LEH) in ICF. A total 54

configurations were used and run with different assumptions: LTE and NLTE using

two different atomic models for iron. This was reduced to 4 configurations that were

run under LTE and NLTE with four atomic models. Analysis indicates that the

collision time QOI was relatively insensitive to the 3 most complex atomic models

used, indicating some detail is needed in the treatment of auto-ionizing states. For

non-integrated quantities like the radiation spectral energy density, minor differences

were observed. Depending on the purpose of the simulation, relative importance of

atomic model complexity will vary.

The blastwave diagnostic simulation was conducted and comparisons between

LTE and NLTE were made, resulting in some differences associated with the early
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dynamics of simulation. More detailed comparisons corroborate importance of NLTE

modeling near hohlraum walls, but also support that LTE is a reasonable assumption

at late times, in accordance with experimental design.
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