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ABSTRACT

In this dissertation, we focus on analytic and numerical inversion of an integral trans-

form (cone or Compton transform) that maps a function to its integrals over conical sur-

faces with a weight equal to some power of the distance from the cone’s vertex. It arises

in various imaging techniques, most prominently, in modeling of the data provided by

the so-called Compton camera, which has novel applications in various fields, including

biomedical and industrial imaging, homeland security, and gamma ray astronomy.

In the case of pure surface measure on the cone, an integral identity relating cone,

Radon and cosine transforms is presented, which enables us to derive an inversion formula

for the cone transform in any dimension. The image reconstruction algorithms, based on

the inversion formulas, and their numerical implementation results in dimensions two and

three are provided. In 3D, the implementation of the inversion algorithms is challenging

due to the high dimensionality of the forward data, and the fact that the application of a

fourth order differential operator on the unit sphere to a singular integral is required. We

thus develop and apply three different inversion algorithms and study their feasibility.

The weighted divergent beam transform, which integrates a function over rays with

a weight equal to some power of the distance to the starting point (source) of the ray, is

closely intertwined with the weighted cone transform. We study it in some details, which

leads eventually to other weighted cone transform inversions. The image reconstruction al-

gorithm, based on one of the inversion formulas, and its numerical implementation results

for various weight factors in dimensions two and three are also provided.

All inversion formulas presented in this dissertation are applicable for a wide variety

of detector geometries in any dimension.
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1. INTRODUCTION1

In this dissertation, we focus on analytic and numerical inversion of an integral trans-

form (cone or Compton transform) that maps a function to its integrals over conical sur-

faces with a weight equal to some power of the distance from the cone’s2 vertex. It arises in

various imaging techniques, most prominently in modeling of the data provided by the so-

called Compton camera, which has novel applications in various fields including medical

and industrial imaging, homeland security, and gamma ray astronomy [1, 6, 9, 48, 56, 65].

In Compton camera setting, the vertices of the cones correspond to the locations of the

detection sites on the scattering detector. More information on the working principle of a

Compton camera can be found in Section 2.2.

Several works, e.g. [2, 3, 6, 8, 11, 18, 21, 27, 47, 57, 62, and references therein], con-

centrated on the case of pure surface measure on the cone. Probably, the first known

analytical reconstruction formula in 3D was given in [8], where the authors considered

only the cones having central axis orthogonal to detector plane. The papers [6,30] contain

spherical harmonics expansion solutions. Another inversion formula for cone transforms

on cones having fixed central axis and variable opening angle is provided in [47]. The

paper [57] presents two reconstruction methods for two Compton data models. Inversion

formulas using the full set of Compton projections are presented in [42, 43]. Inversion

formulas for n-dimensional cone transform over the cones having central axis orthogonal

1Portions of this chapter have been adapted from:
Some inversion formulas for the cone transform, by F. Terzioglu, Inverse Problems, Volume 31, 2015,

Copyright © by IOP Publishing Ltd. Reprinted with the permission of IOP Publishing Ltd.
Three-dimensional image reconstruction from Compton camera data, by P. Kuchment and F. Terzioglu,

SIAM Journal on Imaging Sciences, Volume 9, 2016. Copyright © by SIAM. Reprinted with the permission
of SIAM. Unauthorized reproduction of this article is prohibited.

Inversion of weighted divergent beam and cone transforms, by P. Kuchment and F. Terzioglu, Inverse
Problems & Imaging, Volume 11, 2017. Copyright © by AIMS. Reprinted with the permission of AIMS.

2The word “cone” in this text always means a surface, rather than solid cone.
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to detector plane are provided in [20, 24]. All these works only addressed the cones with

the vertex on the scattering detector. Inversion algorithms for various 2D cone transforms

are given in [2–4, 6, 11, 18, 21, 27–29, 34, 35, 44, 54, 61, 62].

The problem of inverting the cone transform is over-determined (e.g. the space of

cones in 3D with vertices on a detector surface is five-dimensional, three-dimensional

in 2D. Without the restriction on the vertex, the dimensions are correspondingly six and

four.) One thus is tempted to restrict the set of cones, in order to get a non-over-determined

problem (e.g. [2, 3, 6, 8, 18, 21, 24, 27, 30, 31, 47, 57, 62, and references therein]). In most

of these considerations only a subset of cones with vertex at a given scattering detector is

used. This means that most of the information already collected by the Compton camera

is discarded. However, when the signals are weak (e.g. in homeland security applications

[1]), restricting the data would lead to essential elimination of the signal. We thus intend

to use the over-determined data coming from all cones with vertices on the scattering

detector. This improves the stability, but makes the problem more complicated due to the

high dimensionality.

In the Compton camera imaging applications mentioned above, the vertex of the cone

is located on the detector plane, while in other applications vertices are not restricted, al-

though some other conditions might be imposed on the cones. We thus find it useful to

understand first analytic properties of a more general cone transform, where no restriction

on the vertex location or parameters of the cone is imposed. This is the transform ad-

dressed in this text with the hope that it can be useful for more restricted versions. As our

reconstructions in Chapters 3 and 4 show, this hope does materialize, as one indeed arrives

at flexible applications to the Compton imaging [37, 60].

It has been mentioned in various papers, e.g. [6,43,57] that, depending upon the engi-

neering of the detector, various power weights can appear in the surface integral. However,

more work needs to be done to determine the weight factor that accurately represents the

2



projections obtained from a Compton camera. Here, we consider a weight that is equal to

some power of the distance to the vertex (detection site), which covers all weights arising

in various works. An alternative inversion formula for such transform assuming that the

vertices of the cones are located on a given straight line is provided in [31]. A reconstruc-

tion formula for such transform defined on the cones having vertices on a hyperplane and

a central axis orthogonal to this hyperplane is derived in [24]. In comparison, the formulas

we derive allow for a wide variety of cone vertex (a.k.a. detector, or source) geometries,

which do not allow for harmonic analysis, but satisfy what we call in this paper Tuy’s

condition (Definition 4.2.3).

A closely intertwined with the weighted cone transform is what is called weighted

divergent beam transform, which integrates a function over rays with a weight equal to

some power of the distance to the starting point (source) of the ray. When the weight

factor is not present, this is the well studied and important for the 3D X-ray CT divergent

(or cone) beam transform (see e.g. [16, 22, 25, 32, 33, 58, 63, 64, and references therein]).

We study it in some details, which eventually leads to the desired weighted cone transform

inversions [38].

In order to avoid being distracted from the main purpose of this text, we assume that the

functions in question belong to the Schwartz space S of smooth fast decaying functions.

This allows us to skip discussions of applicability of various transforms. However, as

in the case of Radon transform (see, e.g. [36, 46]), the results have a much wider area of

applicability, since the derived formulas can be extended by continuity (although we do not

do this in the current text) to some wider functional spaces. This is confirmed, in particular,

by our successful numerical implementations for discontinuous (piecewise continuous)

phantoms. The issues of appropriate functional spaces will be addressed elsewhere.

We also adopt the standard abuse of notations, writing the action of a distribution T on

a test function ϕ, 〈T, ϕ〉, as
∫
T (x)ϕ(x)dx.

3



The dissertation is organized as follows. In Chapter 2, origins and some applications

of the cone transform are discussed. In Chapter 3, the cone transform in the case of the

pure surface measure on the cone is considered, and various inversion formulas for the full

data cone transform in Rn are derived. The formulas are applicable for a wide variety of

detector geometries in any dimension. The results of numerical simulations in dimensions

two and three are also provided. In Chapter 4, the weighted cone transform, mapping a

function to its integrals over conical surfaces with a weight equal to an integer power of

the distance from the cone’s vertex, is considered. The relations between the Radon and

the weighted divergent beam and cone transforms are investigated, and novel inversion

formulas in Rn are derived for the latter two. The formulas are applicable for a wide vari-

ety of detector geometries in any dimension. The image reconstruction algorithm based on

one of the inversion formulas and its numerical implementation results for various weight

factors in dimensions two and three are also provided. Chapter 5 contains some further

properties of the (weighted) cone transform. Conclusions and remarks can be found in

Chapter 6. Appendix A contains an alternative proof of a relation between cone, Radon

and cosine transforms that is instrumental in deriving an inversion formula for the cone

transform in Chapter 3. In Appendix B, we collect some facts about well known spe-

cial functions, operators and integral transforms including Radon, Funk, sine and cosine

transforms.

4



2. ORIGINS AND SOME APPLICATIONS OF THE CONE TRANSFORM

2.1 Optical Tomography and Broken Ray Transform

Optical tomography is an important biomedical imaging technique that is used to de-

termine the optical properties of a medium of interest [5]. In a typical experiment, a light

source and an array of detectors are placed around the medium, the light illuminated from

the source propagates through the medium, and is collected by the detectors. The inverse

problem of optical tomography is to reconstruct the optical parameters (absorption and

scattering coefficients) of the medium of interest from boundary measurements [53].

When the medium of interest is of intermediate thickness (varying between the size of

a molecule and micrometers), the propagation of light in the medium is modeled by the ra-

diative transport equation. The first-order scattering approximation to the radiative trans-

port equation enables the derivation of a relationship between the extinction coefficient

(the sum of absorption and scattering coefficients) of the medium and the single-scattered

light intensity, which is referred to as single-scattering optical tomography (SSOT) [12].

The path of a single-scattered photon consists of two rays with a common vertex, which

is called a broken ray. Thus, the measured data is related to the integrals of the extinc-

tion coefficient over broken rays, which is called the broken ray transform (BRT). It is

also called V-line Radon transform in the literature, and it corresponds to two-dimensional

cone transform (see (3.4) and Fig. 3.1).

Inversion of broken ray transform allows the recovery of the scattering and absorption

coefficients of the radiative transport equation in the single scattering regime, and thus en-

able image reconstruction in SSOT [12]. The interested reader is referred to the pioneering

works [10–12] for a thorough explanation of the physics of SSOT. More results on BRT

can be found in [2–4, 27–29, 34, 35, 44, 54, 61, 62, and references therein].
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2.2 Compton Camera Imaging1

The conventional gamma cameras used in medical Single Photon Emission Computed

Tomography (SPECT) imaging determine the direction of an incoming γ-photon by "col-

limating” the detector (see Fig. 2.1(left)). This considerably decreases the efficiency, be-

cause only a small portion of the incoming γ-rays passes through the collimator [6]. Thus,

the acquired signal is weak and statistically noisy. The situation is similar in astronomy

and even more severe in homeland security applications [1, 36, 48, 65].

On the other hand, Compton cameras utilize Compton scattering (see Fig. 2.1(right))

and use electronic rather than mechanical collimation to provide simultaneous multiple

views of the object and dramatic increase in sensitivity [56].

Figure 2.1: Left: Collimation. Right: Compton Scattering.

A Compton camera consists of two parallel detectors (see Fig. 2.2). When the photon

hits the first detector, where its position u and energy E1 are recorded, it undergoes Comp-

ton scattering. Then, it is absorbed in the second detector where its position v and energy

1Portions of this section have been adapted from: Some inversion formulas for the cone transform, by
F. Terzioglu, Inverse Problems, Volume 31, 2015, Copyright © by IOP Publishing Ltd. Reprinted with the
permission of IOP Publishing Ltd.

6



E2 are again measured. The scattering angle ψ and a unit vector β are calculated from the

data as follows (see e.g. [9]):

cosψ = 1− mc2E1

(E1 + E2)E2

β =
u− v
|u− v|

. (2.1)

Here, m is the mass of the electron and c is the speed of light.

From the knowledge of the scattering angle ψ and the vector β, we conclude that the

photon originated from the surface of the cone with central axis β, vertex u and opening

angle ψ (see Fig. 2.2). Therefore, although the exact incoming direction of the detected

particle is not available, one knows a surface cone of such possible directions. One can

argue that the data provided by Compton camera are integrals of the distribution of the

radiation sources over conical surfaces having vertex at the detector. The operator that

maps source intensity distribution function f(x) to its integrals over these cones is called

the cone or Compton transform. The goal of Compton camera imaging is to recover the

source distribution from this data [1].

Figure 2.2: Schematic representation of a Compton camera.
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3. SOME INVERSION FORMULAS FOR THE CONE TRANSFORM1

In this chapter, we focus on the case of the pure surface measure on the cone and de-

rive various inversion formulas2 for the full data cone transform in Rn. In Section 3.2,

we obtain an integral relation between the cone and Radon transforms in Rn and deduce

from it an inversion formula for the cone transform. In Section 3.3, we provide a differ-

ent inversion formula derived from another integral relation between the cone and Radon

transforms in Rn. Both of these formulas require the vertices of the cones to be available

throughout the whole space, which is clearly impossible in Compton imaging, although

is suitable for SSOT. However, the integral relation provided in Section 3.3 also enables

us to associate the cone transform with the cosine transform, and through this relation,

we obtain the Radon transform explicitly in terms of the cone transform, which leads in

turn to a variety of inversion algorithms from Compton data in Section 3.4. The results of

numerical simulations in dimension two are provided in Section 3.5. Section 3.6 contains

several procedures that convert the cone data to Radon data of the same function and the

results of numerical implementation of these approaches in dimension three.

3.1 The Cone Transform

A round cone in Rn can be parametrized by a tuple (u, β, ψ), where u ∈ Rn is the cone

vertex, vector β ∈ Sn−1 is directed along the cone’s central axis, and ψ ∈ (0, π) is the

1Portions of this chapter have been adapted from:
Some inversion formulas for the cone transform, by F. Terzioglu, Inverse Problems, Volume 31, 2015,

Copyright © by IOP Publishing Ltd. Reprinted with the permission of IOP Publishing Ltd.
Three-dimensional image reconstruction from Compton camera data, by P. Kuchment and F. Terzioglu,

SIAM Journal on Imaging Sciences, Volume 9, 2016. Copyright © by SIAM. Reprinted with the permission
of SIAM. Unauthorized reproduction of this article is prohibited.

2The reader should recall that it is common to have a variety of different inversion formulas for Radon
type transforms, which are all the same for perfect data, but react differently to unavoidable errors in data [36,
46]. Having such a variety is even more important when dealing with overdetermined data, as in Compton
imaging.
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opening angle of the cone (see Fig. 2.2). Then, a point x ∈ Rn lies on the cone iff

(x− u) · β = |x− u| cosψ. (3.1)

The n-dimensional cone transform C maps a function f into the set of its integrals

over the circular cones in Rn. Explicitly,

Cf(u, β, ψ) =

∫
(x−u)·β=|x−u| cosψ

f(x)dx (3.2)

where dx is the surface measure on the cone.

The n-dimensional vertical cone transform maps a function f into the set of its inte-

grals over the cones having central axis parallel to the xn-axis, and thus the vector β is

equal to en = (0, ..., 0, 1) ∈ Rn. It can be written in terms of the spherical coordinates.

Namely,

Cf(u, en, ψ) =

∞∫
0

∫
Sn−2

f(u+ ρ((sinψ)ω, cosψ))(ρ sinψ)n−2dωdρ. (3.3)

In two dimensions, the equation (3.1) describes two rays with a common vertex (see

Fig. 3.1). A cone in two dimensions can be parametrized by a point u ∈ R2 that serves

as its vertex, an opening angle ψ ∈ (0, π) and a vector β = β(φ) = (sinφ, cosφ) ∈ S1

directed along the central axis.
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Figure 3.1: A Cone in 2-dimensions.

Then, the 2D cone transform of a function f ∈ S(R2) is given by

Cf(u, β, ψ) = Cf(u, β(φ), ψ) =

∞∫
0

f(u+ r(sin(ψ + φ), cos(ψ + φ)))dr

+

∞∫
0

f(u+ r(− sin(ψ − φ), cos(ψ − φ)))dr.

(3.4)

As a straightforward calculation shows, analogously to the Radon transform, cone

transform has an evenness property, and is shift and rotation invariant:

Lemma 3.1.1. Let f ∈ S(Rn), u ∈ Rn, β ∈ Sn−1 and ψ ∈ (0, π). Then,

1.

Cf(u,−β, ψ) = Cf(u, β, π − ψ). (3.5)

2. Let Ta be the translation operator in Rn, defined as Taf(x) = f(x+ a) for a ∈ Rn.

We define

Ta(Cf)(u, β, ψ) := Cf(u+ a, β, ψ).
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Then,

TaC = CTa.

3. Let A be an n × n rotation matrix and MAf(x) = f(Ax) be the corresponding

rotation operator. We define

MA(Cf)(u, β, ψ) := Cf(Au,Aβ, ψ).

Then,

MAC = CMA.

3.2 Inversion of the Cone Transform

In the following, we investigate the relation between the cone and Radon transforms

and provide various analytic inversion formulas for the n-dimensional cone transform.

Theorem 3.2.1. Let f ∈ S(Rn). Then,

1. For any u ∈ Rn and β ∈ Sn−1, we have

π∫
0

Cf(u, β, ψ)dψ =
Γ(n−1

2
)

2π(n−1)/2

∫
Sn−1

Rf(ω, u · ω)dω =
Γ(n−1

2
)

2π(n−1)/2R
#Rf(u), (3.6)

where R#, the dual operator to the Radon transform, is defined in Section B.2.

2. Let a function µ : Sn−1 → R be such that
∫

Sn−1

µ(β)dβ = 1. Then,

f(x) =
π−n/2Γ(n

2
)

2Γ(n− 1)

∫
Sn−1

π∫
0

I1−nu→xCf(u, β, ψ)µ(β)dψdβ, (3.7)

where Iα is the Riesz potential defined in Section B.2.
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Remark 3.2.2.

1. One notices that according to (3.6), the inversion formula (3.7) consists of a back-

projecting of the cone data, followed by a filtration (i.e., is what is called a FBP type

formula).

2. One can choose µ(β) to be equal to a delta-function, which would eliminate inte-

gration with respect to β in (3.7). However, if the signal is very week, eliminating

almost all values of β would lead to elimination of the signal. Thus weighted inte-

gration with respect to β allows for accounting for all data collected.

Proof. We first prove the theorem for dimensions n ≥ 3.

π∫
0

Cf(u, en, ψ)dψ =

π∫
0

∞∫
0

∫
Sn−2

f(u+ ρ((sinψ)ω, cosψ))(ρ sinψ)n−2dωdρdψ

=

∫
Sn−1

∞∫
0

f(u+ ρσ)ρn−2dρdσ =

∫
Rn

f(u+ x)|x|−1dx =
1

|Sn−2|
R#Rf(u),

The last equality is due to [46, Chapter 2, Theorem 1.5] (see also (A.3)). As both R and

R# commute with rigid motions in Rn, we obtain for any β ∈ Sn−1,

π∫
0

Cf(u, β, ψ)dψ =
1

|Sn−2|
R#Rf(u).

Thus, for any function µ on Sn−1 such that
∫

Sn−1

µ(β)dβ = 1, we have

∫
Sn−1

π∫
0

Cf(u, β, ψ)µ(β)dψdβ =
1

|Sn−2|
R#Rf(u) =

Γ(n−1
2

)

2π(n−1)/2R
#Rf(u).
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Note that the last equality follows from the area formula for the n-sphere, that is

|Sn−1| = 2πn/2

Γ(n
2
)
. (3.8)

Using (B.16) with α = n− 1, and utilizing the gamma-function duplication formula (see

B.1.1)

Γ(z)Γ(z +
1

2
) = 21−2z√πΓ(2z), (3.9)

we conclude that

f(u) =
πn/2Γ(n

2
)

2Γ(n− 1)

∫
Sn−1

π∫
0

I1−nu→xCf(u, β, ψ)µ(β)dψdβ.

For the 2-dimensional case, we only need to provide the proof of (3.6), since the rest

of the proof stays the same. Assume for now that u = 0. By definition of the 2D cone

transform, we have

π∫
0

Cf(0, β(φ), ψ)dψ =

π∫
0

∞∫
0

f(r sin(ψ + φ), r cos(ψ + φ))drdψ

+

π∫
0

∞∫
0

f(−r sin(ψ − φ), r cos(ψ − φ))drdψ.

Changing variables, we obtain

π∫
0

f(r sin(ψ + φ), r cos(ψ + φ))dψ =

π+φ∫
φ

f(r sinψ, r cosψ)dψ,
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and
π∫

0

f(−r sin(ψ − φ), r cos(ψ − φ))dψ =

φ∫
−π+φ

f(r sinψ, r cosψ)dψ.

Thus,

π∫
0

Cf(0, β(φ), ψ)dψ =

∞∫
0

π+φ∫
−π+φ

f(r sinψ, r cosψ)dψdr.

Changing variables by letting θ =
π

2
− ψ and using 2π-periodicity of sine and cosine

functions, we get

π+φ∫
−π+φ

f(r sinψ, r cosψ)dψ =

3π
2
−φ∫

−π
2
−φ

f(r cos θ, r sin θ)dθ =

2π∫
0

f(r cos θ, r sin θ)dθ.

Therefore,

π∫
0

Cf(0, β(φ), ψ)dψ =

2π∫
0

∞∫
0

f(r cos θ, r sin θ)drdθ =
1

2

2π∫
0

Rf(θ, 0)dθ,

where the last equality follows by letting n = 2 and p = 0 in (A.2). Now, using the shift

invariance of both cone and Radon transforms, we conclude that

π∫
0

Cf(u, β, ψ)dψ =
1

2

∫
S1

Rf(ω, u · ω)dω =
1

2
R#Rf(u),

which is (3.6) with n = 2, so we are done.

Corollary 3.2.3. For n = 3, the formula (3.7) becomes

f(u) = − 1

4π

∫
Sn−1

π∫
0

∆Cf(u, β, ψ)µ(β)dψdβ,
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where the Laplace operator ∆ acts in the variable u.

3.3 An Alternative Inversion Formula

For the derivation of an alternative inversion formula, we need the following relation

between the cone and Radon transforms.

Theorem 3.3.1. Let f ∈ S(Rn). For any u ∈ Rn and β ∈ Sn−1, we have

1

π

π∫
0

Cf(u, β, ψ) sinψdψ =
1

|Sn−1|

∫
Sn−1

Rf(ω, ω · u)|ω · β|dω = C(R(Tuf))(β), (3.10)

where |Sn−1| denotes the area of the sphere Sn−1 and C is the cosine transform whose

definition is given in (B.26).

Proof. We first observe that if Duf(σ) :=

∞∫
0

f(u+ ρσ)ρn−2dρ, then

F (Duf)(ω) =

∫
Sn−1

Duf(σ)δ(ω · σ)dσ = Rf(ω, u · ω), (3.11)

where F denotes the Funk transform (see (B.21)). Indeed,

F (Duf)(ω) =

∫
Sn−1

Duf(σ)δ(ω · σ)dσ

=

∫
Sn−1

∞∫
0

f(u+ ρσ)ρn−2dρδ(ω · σ)dσ

=

∫
Sn−1

∞∫
0

f(u+ ρσ)δ(ω · ρσ)ρn−1dρdσ

=

∫
Rn

f(x)δ(ω · (x− u))dx = Rf(ω, u · ω).
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It is known that S =
π

|Sn−1|
CF where S,C and F are the sine, cosine and Funk

transforms, respectively (see Appendix B.3 and [52, p. 284, (5.1.17)]). Applying cosine

transform and multiplying with
π

|Sn−1|
in both sides of (3.11), we obtain

S(Duf) =
π

|Sn−1|
CF (Duf) =

π

|Sn−1|
C(R(Tuf)).

That is,

∫
Sn−1

Duf(σ)(1− (β · σ)2)1/2dσ =
π

|Sn−1|

∫
Sn−1

Rf(ω, u · ω)|β · ω|dω. (3.12)

It remains to show that

∫
Sn−1

Duf(σ)(1− (β · σ)2)1/2dσ =

π∫
0

Cf(u, β, ψ) sinψdψ. (3.13)

Since all S,C, D and R commute with rotations, it suffices to take β = en.

∫
Sn−1

Duf(σ)(1− (en · σ)2)1/2dσ =

∫
Sn−2

π∫
0

Duf((sinψ)ω, cosψ)(sinψ)n−1dψdω

=

π∫
0

∫
Sn−2

∞∫
0

f(u+ ρ(sinψ)ω, cosψ))(ρ sinψ)n−2dρdω sinψdψ

=

π∫
0

Cf(u, en, ψ) sinψdψ.

An alternative proof of Theorem 3.3.1 is given in Appendix A.

The equality (3.10) enables us to invert the cone transform by utilizing the inversion

formulas for the Radon transform.
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Theorem 3.3.2. Let f ∈ S(Rn). For any u ∈ Rn, we have

f(x) =
Γ2(n+1

2
)

2πnΓ(n)

∫
Sn−1

π∫
0

I1−nu→xCf(u, β, ψ) sinψdψdβ. (3.14)

Proof. Integrating both sides of (3.10) with respect to β over Sn−1, we obtain

∫
Sn−1

π∫
0

Cf(u, β, ψ) sinψdψdβ =
π

|Sn−1|

∫
Sn−1

Rf(ω, ω · u)

∫
Sn−1

|ω · β|dβdω.

Using the rotation invariance of the Lebesgue measure on the sphere, for any ω ∈ Sn−1,

we compute

∫
Sn−1

|ω · β|dβ =

∫
Sn−2

π∫
0

| cosφ|(sinφ)n−2dφdθ =
2|Sn−2|
n− 1

.

Thus, we get

∫
Sn−1

π∫
0

Cf(u, β, ψ) sinψdψdβ =
π

|Sn−1|
2|Sn−2|
n− 1

∫
Sn−1

Rf(ω, ω · u)dω

=
2π

n− 1

|Sn−2|
|Sn−1|

∫
Sn−1

R#Rf(u) =
πΓ(n)

2n−1Γ2(n+1
2

)
R#Rf(u). (3.15)

Note that, for the evaluation of the constant, we have used the area formula for the n-

sphere, (3.8) and the duplication formula (3.9). Now, using formula (B.16) with α = n−1,

we obtain the result.

Corollary 3.3.3. For n = 3, the formula (3.14) reads as

f(u) =
−1

4π3

∫
Sn−1

π∫
0

∆Cf(u, β, ψ) sinψdψdβ,
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where the Laplacian ∆ acts in the variable u.

3.4 Other Inversion Formulas

The main goal of this section is to derive a formula that is applicable in Compton

imaging (i.e., only uses the cone vertices located outside the object). The cosine transform

is a continuous bijection of C∞even(Sn−1) to itself (see e.g. [14], [52]). Since, for any f ∈

S(Rn), Rf(ω, 0) is an even function in C∞(Sn−1), we can recover the function R(Tuf)

explicitly for all u ∈ Rn by inverting the cosine transform according to the Theorem B.3.5.

Theorem 3.4.1. Let f ∈ S(Rn). For any u ∈ Rn and ω ∈ Sn−1, if n is even,

Rf(ω, ω · u) =
−2n−1

Γ(n− 1)

π∫
0

Pn/2(∆S)F (Cf)(u, ω, ψ) sinψdψ, (3.16)

and if n is odd,

Rf(ω, ω · u) =
Γ(n+1

2
)

π(n+1)/2

∫
Sn−1

π∫
0

Cf(u, β, ψ) sinψdψdβ (3.17)

− 2π−n/2

Γ(n
2
)
P(n+1)/2(∆S)


∫

Sn−1

π∫
0

Cf(u, β, ψ) log
1

|ω · β|
sinψdψdβ

 ,

where F is the Funk transform (B.21) and the operator Pr(∆S) is given in Theorem B.3.5,

both of them acting in the spherical variable ω.

Proof. The result follows by applying inverse cosine transform (B.27) and (B.28) to equal-

ity (3.10).

This result, in particular, answers the question of what geometries of Compton detec-

tors are sufficient for (stable) reconstruction of the function f . Indeed, formulas (3.17) and

(3.16) show that it is sufficient to have for any ω ∈ Sn−1 and s ∈ R a detector location u

such that ω · u = s. This can be rephrased in a nice geometric way:
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Definition 3.4.2 (Compton Admissibility Condition). We will call an array of Compton de-

tectors admissible (for a given region of space), if any hyperplane intersecting this region,

intersects a detection site of the scattering detector.

So, if a set U of detectors is admissible for a region D ∈ Rn, then the formulas (3.17)

and (3.16) enable one to reconstruct the Radon transform of any function f supported

inside D, and thus f itself.

Here is a useful example of an application of the admissibility:

Proposition 3.4.3. Suppose that n = 3 and the detectors are placed on a sphere Sr of

radius r. We assume that the region for placing the object to be imaged is the concentric

sphere Sr′ of radius r′ = r − δ for some δ > 0. Then, any curve U on Sr that satisfies the

condition below is admissible:

Any circle on Sr of radius ρ ≥
√
δ(2r − δ) intersects U .

Proof. Indeed, every plane intersecting the interior of the sphere Sr′ intersect Sr over a

circle of radius ρ ≥
√
δ(2r − δ) and thus contains at least one detector.

Remark 3.4.4.

1. The experience of Radon transform shows that uniqueness of reconstruction should

hold for some non-admissible sets of detectors as well, although some (“invisible")

sharp details will get blurred in the reconstruction (see, e.g. [36, Ch. 7]). The

corresponding microlocal analysis of this issue will be done elsewhere.

2. The admissibility condition is not the minimal one. For instance, in the situation

of Proposition 3.4.3, the set of Compton data will still be 4-dimensional, and thus

somewhat overdetermined.
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3. In the cases of low signal-to-noise ratio (e.g. SPECT and especially homeland se-

curity imaging), one would prefer to use larger admissible sets of detectors (e.g. 2D

rather than 1D arrays considered in Proposition 3.4.3), which would allow introduc-

ing additional (weighted, if needed) averaging, in order to reduce the effects of the

noise.

4. As it has been mentioned before, for all the reconstruction algorithms we develop in

this text, the geometry of detectors is irrelevant, as long as it satisfies the generous

Admissibility Condition 3.4.2 in section 2. If this condition is violated, one can

still use the algorithms, but then familiar limited data blurring artifacts [36, 46] will

appear.

A different approach to recovery of the Radon data from the Compton data comes from

the following known relation (see [19]) between the cosine and Funk transforms:

(∆S + n− 1)C = F, (3.18)

where ∆S is the Laplace-Beltrami operator on the unit sphere.

Indeed, applying (∆S + n− 1) to (3.10), we obtain

Φ(u, β) := F (R(Tuf))(β) =
(∆S + n− 1)

π

π∫
0

Cf(u, β, ψ) sinψdψ, (3.19)

where ∆S acts in variable β.

We now use the inversion formula for the Funk transform given in Theorem B.3.3 (see

also [52, Chapter 5, Theorem 5.37]), whose application to (3.19) leads to the following

result.
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Theorem 3.4.5. Let f ∈ S(Rn), n ≥ 3. For any u ∈ Rn and ω ∈ Sn−1,

Rf(ω, ω · u) =
Γ(n/2)

2πn/2

∫
Sn−1

Φ(u, β)dβ (3.20)

+
2n−1

(n− 2)!
Q(∆S)


∫

Sn−1

Φ(u, β) log
1

|ω · β|
dβ

 ,

where

Q(∆S) = 4(1−n)/2
(n−3)/2∏
k=0

[−∆S + (2k + 1)(n− 3− 2k)] .

In particular, in 3D one arrives to

Corollary 3.4.6. For any u ∈ R3 and ω ∈ S2,

Rf(ω, ω · u) =
1

4π

∫
S2

Φ(u, β)dβ − ∆S

2π


∫
S2

Φ(u, β) log
1

|ω · β|
dβ

 . (3.21)

3.5 Reconstructions in Dimension Two

In 2D, for ω = (cos θ, sin θ), ∆S =
∂2

∂θ2
. Then the formula (3.16) reads as

Rf(ω, ω · u) =
1

2
(
∂2

∂θ2
+ 1)

π∫
0

Cf(u, ω⊥, ψ) sinψdψ. (3.22)

We applied this approach to some 2D examples. Figures 3.2 and 3.3 show the recon-

structions of some phantoms from their projections collected by four Compton cameras

placed along the sides of a square. We simulate analytically the Compton projection data

of the phantoms and then use formula (3.16) to convert them to Radon projections. Fi-

nally, the filtered back-projection is applied to invert the Radon transform and obtain the

reconstructions.
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ALGORITHM Numerical Implementation of (3.22)
Data: ci,j,k = Cf(ui, θj, ψk), i = 1, ..., U , j = 1, ..., T , k = 1, ..., P.

1: For i = 1, ..., U , j = 1, ..., T compute

G(ui, θj) :=
P∑
k=1

ci,j+T/2,k sinψk∆ψ ∼
π∫

0

Cf(u, ω(θ)⊥, ψ) sinψdψ.

2: For i = 1, ..., U , j = 1, ..., T , differentiate G(ui, θj) with respect to θ twice using

finite difference method.

3: For i = 1, ..., U , j = 1, ..., T compute

Rf(ωj, ωj · ui) =
1

2
(
∂2

∂θ2
+ 1)G(ui, θj).

4: Carry out 1D interpolation to obtain Rf(ωj, sk) for a uniform mesh {sk} on [−1, 1].

5: Apply filtered backprojection algorithm for the Radon transform to obtain fi,j from

Rf(ωj, sk) where i, j runs over the reconstruction grid [−1, 1]2.

Result: fi,j is an approximation to the phantom f which is supported on the unit circle.
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Figure 3.2: Left: The phantom is the characteristic function of a circle having density 1
unit, radius 0.5 unit and centered at (0, 0). Right: 256x256 image reconstructed from the
simulated Compton data using 257 detectors per side and 200 counts for the angles β and
ψ each (see Fig. 3.1).

Figure 3.3: Left: The phantom is the sum of the characteristic functions of two intersecting
circles having densities 0.3 and 0.7 units, radii 0.5 and 0.3 units, and centered at (0, 0) and
(0.5, 0). Right: 256x256 image reconstructed from the simulated Compton data using 257
detectors per side and 200 counts for the angles β and ψ each (see Fig. 3.1).
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3.6 Reconstructions in Dimension Three

In this section, we address the numerical implementation in the 3-dimensional case,

where we develop and apply three different inversion algorithms and study their feasibility.

Our first attempt has been to implement numerically the inversion formula (3.17) from

Theorem 3.4.1. The results were discouraging. The reason for this failure was that (3.17)

requires numerical computation of some singular integrals, followed then by applying to

the results a fourth order differential operator on the sphere.

Thus we had to resort to different inversion techniques, the description of which one

finds below.

In all examples below, the two-layer detectors cover the unit sphere S2 in R3 and the

object is located inside of this sphere and at some positive distance from it3. The algorithm

given in [50] is used to generate the triangular mesh on S2. The forward simulations of

Compton camera data were done numerically rather than analytically and thus involved

errors, which is in fact better for checking the validity and stability of the reconstruction

algorithms.

3.6.1 Method 1: Reconstruction Using Spherical Harmonics Expansions

In this section, we derive a series formula that recovers the Radon data from cone data.

Let us introduce the function

G(u, β) :=

π∫
0

Cf(u, β, ψ) sinψdψ.

3The spherical geometry of the detector and of most of the phantoms we consider does not constitute any
inverse crime. This particular geometry is used to reduce immense computations of the synthetic forward
data, which run for a long time even on multi-core machines. The inversion algorithms are not aware of the
symmetry of the detectors and/or phantoms.
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For each fixed detector location u ∈ Rn, we can expand the function G(u, β) of β ∈ Sn−1

into spherical harmonics Y m
l (see Appendix B.1.3):

G(u, β) =
∞∑
l=0

N(n,l)∑
m=1

gml (u)Y m
l (β), (3.23)

where

gml (u) =

∫
Sn−1

G(u, β)Y m
l (β)dβ

and

N(n, l) = (n+ 2l − 2)
(n+ l − 3)!

l!(n− 2)!

(see e.g. [6, 45, 59]). Using (3.17), one obtains the following series inversion formula:

Theorem 3.6.1. For any u ∈ Rn and ω ∈ Sn−1,

Rf(ω, ω · u) =
Γ(n+1

2
)

πn/2
g10(u)− 2π−n/2

Γ(n
2
)

∞∑
l=1

dlqn,l

N(n,l)∑
m=1

gml (u)Y m
l (ω), (3.24)

where

qn,l = 4−(n+1)/2

(n−1)/2∏
k=0

[l(l + n− 2) + (2k − 1)(n− 1− 2k)] (3.25)

and

dl = |Sn−2|
1∫

−1

log
1

|t|
p
(n−2)/2
l (t)(1− t2)(n−3)/2dt, (3.26)

with p(n−2)/2l being the l-th degree Gegenbauer polynomial (see Appendix B.1.2).
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Proof. Plugging (3.23) into the second term in the right hand side of (3.17), we obtain

Rf(ω, ω · u) =
Γ(n+1

2
)

2π(n+1)/2

∫
Sn−1

G(u, β)dβ (3.27)

−
2P(n+1)/2(∆S)

πn/2Γ(n
2
)

∞∑
l=0

N(n,l)∑
m=1

gml (u)

∫
Sn−1

log
1

|ω · β|
Y m
l (β)dβ.

We note that
∫

Sn−1

G(u, β)dβ = 2
√
πg10(u). Then Funk-Hecke formula (see Theorem

B.1.1) implies that ∫
Sn−1

log
1

|ω · β|
Y m
l (β)dβ = dlY

m
l (ω),

where dl is as in (3.26). Also, since ∆SYl = −l(l + n − 2)Yl, l = 0, 1, 2, ..., we have

P(n+1)/2(∆S)Yl = qn,lYl, where qn,l is given in (3.25). Hence, we get the result.

In particular, for n = 3, we get

Corollary 3.6.2. For any u ∈ R3 and ω ∈ S2,

Rf(ω, ω · u) = π−3/2g10(u)− 1

4π2

∞∑
l=1

dlql

2l+1∑
m=1

gml (u)Y m
l (ω), (3.28)

where ql = (l − 1)l(l + 1)(l + 2) and dl = 2π

1∫
−1

log
1

|t|
p
(n−2)/2
l (t)dt with p(n−2)/2l being

the l-th degree Gegenbauer polynomial (see Appendix B.1.2).

Remark 3.6.3. The coefficients ql in (3.28) are fourth order polynomials in l and account

for fourth order differentiation. Thus, it is expected to face an instability issue in the

numerical implementation of (3.28) when considering high degree spherical harmonics.

In our numerical tests, the phantom was the characteristic function of the 3D ball of

radius 0.5 centered at the origin, while the Compton detectors covered the concentric unit
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sphere. The reason for considering a radial phantom is that its Radon transform can easily

be computed analytically. On the other hand, the Compton data was simulated numerically

and then used to numerically reconstruct the Radon data via (3.28). The results can then

be compared with the exact (analytically computed) Radon transforms4.

Figure 3.4 shows the comparison of the analytically computed Radon transform of

the phantom (shown in red) with its reconstructions, using (3.28). The results are illus-

trated for the direction ω = [−0.2342,−0.1844,−0.9545]. In obtaining the Radon data

Rf(ω, s) for uniformly sampled s ∈ [−1, 1] from Rf(ω, u · ω), we used MATLAB® tool-

box cftool with spline fitting having a smoothing parameter 0.99. The cone data is

numerically simulated for 1806 detector points on the sphere and 90 opening angles ψ.

For the cone axis direction vectors, we used varying discretization of the sphere corre-

sponding to 1806, 7446, and 30054 points. We have considered spherical harmonics up to

degree l = L = 30 in the expansion (3.23). In order to reduce the effect of instability, we

only used l = Lt in the computation of the Radon transform via (3.28) equal to 18.

4Tests on non-radial phantoms have lead to similar results.
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ALGORITHM Numerical Implementation of (3.28)
Data: ci,j,k = Cf(ui, βj, ψk), i = 1, ..., U , j = 1, ..., B, k = 1, ..., P.

1: For l = 1, ..., L, pre-compute

ql = (l − 1)l(l + 1)(l + 2) and dl ∼
T∑
i=1

p
(n−2)/2
l (ti)∆t

with p(n−2)/2l being the l-th degree Gegenbauer polynomial.

2: For i = 1, ..., U , j = 1, ..., B compute

G(ui, βj) :=
P∑
k=1

ci,j,k sinψk∆ψ ∼
π∫

0

Cf(u, β, ψ) sinψdψ.

3: For i = 1, ..., U , and l = 1, ..., L, carry out the integral

gml (ui) =
∑
τ∈K

Area(τ)

3

∑
v∈V (τ)

G(ui, v)Y m
l (v) ∼

∫
Sn−1

G(u, β)Y m
l (β)dβ,

where m = 1, ..., 2l + 1, τ is a face of the triangular mesh K on S2, and V (τ) is the

set of vertices of τ .

4: For i = 1, ..., U , j = 1, ..., T , and ωj ∈ K, a triangular mesh on S2, compute

Rf(ωj, ωj · ui) = π−3/2g10(u)− 1

4π2

Lt∑
l=1

dlql

2l+1∑
m=1

gml (ui)Y
m
l (ωj).

5: Carry out 1D interpolation to obtain Rf(ωj, sk) for a uniform mesh {sk} on [−1, 1].

6: Apply filtered backprojection algorithm for the Radon transform to obtain fi,j,l from

Rf(ωj, sk) where i, j, l runs over the reconstruction grid [−1, 1]3.

Result: fi,j,l is an approximation to the phantom f which is supported on the unit sphere.
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Figure 3.4: The analytically computed Radon transform of the phantom (shown in red)
vs. its reconstruction from the Compton data using (3.28). The reconstructions shown
correspond to three different mesh sizes: the number of points on the sphere being 1806,
7446, and 30054, from left to right.

3.6.2 Method 2: Reconstruction by Direct Implementation of Theorem 3.4.5

As we have mentioned before, the direct numerical implementation of the formula

(3.17) in 3D required the application of the fourth order differential operator ∆S(∆S+2) on

the sphere to the result of numerical implementation of a singular integral. The dissertant

could not make it work well. The advantage of using (3.21) is that one needs to apply

two second order operators acting in different variables and with a smoothing operator

sandwiched in between. This makes such a calculation more feasible.

In our numerical implementations, we used the algorithm for the discrete Laplace-

Beltrami operator given in [7], which comprises heat equation based smoothing used to

create a point-wise convergent approximation for the Laplace-Beltrami operator on a sur-

face. For a function f given at the set V of vertices of a mesh K on the 2-sphere, it is

computed, for any v ∈ V , as follows:

∆h
Kf(v) =

1

4πh2

∑
t∈K

Area(t)

#t

∑
p∈V (t)

e−
‖p−v‖2

4h (f(p)− f(v)). (3.29)
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Here, for any face t ∈ K, the number of vertices in t is denoted by #t, and V (t) is the

set of vertices of t. The parameter h is a positive quantity (akin to the time in the heat

equation), which intuitively corresponds to the size of the neighborhood considered at

each point. The authors of [7] suggest that h can be taken to be a function of v, which

allows the algorithm to adapt to the local mesh size.

In our experiments, we used the adaptive parameter h(v) = 0.0156×(the average

edge length at v). We used the same phantom as in the previous section. Figure 3.5

shows the comparison of the analytically computed Radon transform of the phantom

(shown in red) with its reconstructions. The results are illustrated for the direction ω =

[−0.2363,−0.2484,−0.9394]. In obtaining the Radon data for uniformly sampled s ∈

[−1, 1] from Rf(ω, u · ω), we used the same MATLAB® toolbox cftool with spline

fitting having a smoothing parameter 0.995. The cone data is numerically simulated for

1806 detector points on the sphere and 90 opening angles ψ. For the cone axis direction

vectors, we used varying discretization of the sphere corresponding to 1806, 7446, and

30054 points.
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ALGORITHM Numerical Implementation of (3.20)
Data: ci,j,k = Cf(ui, βj, ψk), i = 1, ..., U , j = 1, ..., B, k = 1, ..., P.

1: For i = 1, ..., U , j = 1, ..., B compute

G(ui, βj) :=
P∑
k=1

ci,j,k sinψk∆ψ ∼
π∫

0

Cf(u, β, ψ) sinψdψ.

2: For i = 1, ..., U , and l = 1, ..., L, apply discrete Laplace-Beltrami operator (3.29) in

β to G(ui, βj).

3: For i = 1, ..., U , j = 1, ..., T , compute Φ(ui, βj) as in (3.19).

4: For i = 1, ..., U , and l = 1, ..., L, carry out the integrals

∫
Sn−1

Φ(u, β)dβ ∼
∑
τ∈K

Area(τ)

3

∑
v∈V (τ)

Φ(ui, v)

and, for ωj ∈ K, a triangular mesh on S2,

∫
Sn−1

Φ(u, β) log
1

|ω · β|
dβ ∼

∑
τ∈K

Area(τ)

3

∑
v∈V (τ)

Φ(ui, v) log
1

|ωj · v|
.

where τ is a face of the triangular mesh K on S2, and V (τ) is the set of vertices of τ .

5: Using the results of the previous step, compute Rf(ωj, ωj · ui) as in (3.20).

6: Carry out 1D interpolation to obtain Rf(ωj, sk) for a uniform mesh {sk} on [−1, 1].

7: Apply filtered backprojection algorithm for the Radon transform to obtain fi,j,l from

Rf(ωj, sk) where i, j, l runs over the reconstruction grid [−1, 1]3.

Result: fi,j,l is an approximation to the phantom f which is supported on the unit sphere.
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Figure 3.5: The Radon transform of the phantom recovered using (3.21) and (3.29). The
reconstructions shown corresponds to three different mesh sizes: the number of points on
the sphere being 1806, 7446, and 30054, from left to right.

3.6.3 Method 3: Reconstruction via a Mollified Inversion of the Cosine Transform

The formula (3.10) shows that availability of any cosine transform inversion would

also lead to an inversion of the cone transform, and such approximate and exact inversions

of C indeed exist [40,51,52]. We apply here the method of approximate inverse developed

in [39, 40, 51], which is an incarnation of a general approach to solving inverse problems

numerically. Namely, for a given data h, the aim is to find g satisfying Cg = h. If we find

a ‘Green’s function’ ψ such that Cψ = δ, then the spherical convolution h ∗ ψ of h and

ψ solves the equation Cg = h. Now, if one picks a ‘mollifier’ (an approximation to the

δ-function) δγ and “approximate Greens function” ψγ , such that Cψγ = δγ , then one finds

the approximate solution gγ = g ∗ δγ .

In our numerical tests, we used the reconstruction kernel ψγ that was analytically com-

puted in [51] for a special class of mollifiers (see [51, (4.1) and (4.10)]). We used the same

phantom as in the previous sections. Figure 3.6 shows the comparison of the analytically

computed Radon transform of the phantom (shown in red) with its reconstructions, using

(3.28). The results are illustrated for the direction ω = [−0.2342,−0.1844,−0.9545]. The

MATLAB® toolbox cftool was used with the smoothing parameter 0.99999999. The

32



cone data is numerically simulated for 1806 detector points on the sphere and 90 opening

angles ψ. For the cone axis direction vectors, we used varying discretization of the sphere

corresponding to 1806, 7446, and 30054 points.

ALGORITHM Reconstruction via a mollified inversion of the Cosine Transform
Data: ci,j,k = Cf(ui, βj, ψk), i = 1, ..., U , j = 1, ..., B, k = 1, ..., P.

1: For i = 1, ..., U , j = 1, ..., B compute

G(ui, βj) :=
P∑
k=1

ci,j,k sinψk∆ψ ∼
π∫

0

Cf(u, β, ψ) sinψdψ.

2: For i = 1, ..., U , and for ωl ∈ K, a triangular mesh on S2, compute

Rf(ωl, ωl · ui) = 4
∑
τ∈K

Area(τ)

3

∑
v∈V (τ)

G(ui, v)ψγ(ωl · v) ∼ 4

∫
Sn−1

G(u, β)ψγ(ω · β)dβ.

where ψγ is given as in [51, Theorem 4.7], and τ is a face of the triangular mesh K on

S2, and V (τ) is the set of vertices of τ .

3: Carry out 1D interpolation to obtain Rf(ωl, sk) for a uniform mesh {sk} on [−1, 1].

4: Apply filtered backprojection algorithm for the Radon transform to obtain fi,j,l from

Rf(ωl, sk) where i, j, l runs over the reconstruction grid [−1, 1]3.

Result: fi,j,l is an approximation to the phantom f which is supported on the unit sphere.
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Figure 3.6: The Radon transform of the phantom using the method of mollified inverse
for the cosine transform. The reconstructions shown corresponds to three different mesh
sizes: the number of points on the sphere being 1806, 7446, and 30054, from left to right.

One notices insufficient resolution of singularity, which is due to the insufficiently fine

approximation of δ-function by δγ chosen in [40, 51].

3.6.4 Comparison of the Three Methods

While above we only addressed reconstructing the Radon transform of the function

in question, here we show how the three methods perform after taking the final step of

inverting the Radon transform and reconstructing the characteristic function of the ball.

The inversion of Radon transform from the reconstructed values Rf(ω, s) was done

according to the formula (B.16) with α = 0. We used 128 values of s and 480 directions ω

in methods 1 and 3, and 1806 directions in method 2. We used the filtered backprojection

formula with the filter given in [41]. The normalized L2 and H1 errors for the Radon

transforms obtained in each of the methods are summarized in Table 3.1. The reason for

considering the H1-error is the fact that H1-norm control of the 3D Radon transform data

Rf corresponds to the L2-norm control of the tomogram f [46].
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Method L2 Error H1 Error

1 0.0986 0.3231

2 0.1046 0.3767

3 0.0896 0.3660

Table 3.1: The normalized L2 and H1 errors for the Radon data for each of the three
methods.

Figure 3.7 shows the three cross-sections of the spherical phantom and of its recon-

structions from the Radon data obtained via the three methods above. The finest mesh on

the sphere (30054 points) was used.
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(a) (b)

(c) (d)

Figure 3.7: Comparison of the three reconstruction methods. The cross-sections by the co-
ordinate planes are shown. (a) The phantom is the characteristic function of 3d ball having
radius 0.5 and center at the origin. (b) Reconstruction via Method 1. (c) Reconstruction
via Method 2. (d) Reconstruction via Method 3.

Figure 3.8 shows x-profiles of the central cross-sections of the spherical phantom and

of its reconstructions shown in Figure 3.7.
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Figure 3.8: x-profiles of the phantom and the reconstructions in Figure 3.7, (a) method 1,
(b) method 2 and (c) method 3.

It is important to note that in all of the methods, there are parameters that can still

be optimized, namely L and Lt in Method 1, h in Method 2, and γ and ν in Method 3

(see [51]).

We have also tested the reaction of our algorithms to random noise. The 20% Gaussian

white noise added to the cone data for Methods 1 and 2. For Method 2, we added 10%

noise to the cone data. Figure 3.9 shows the three cross-sections of the spherical phantom

and of its reconstructions from the Radon data obtained via the three methods above. The

finest mesh on the sphere (30054 points) was used.
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(a) (b)

(c) (d)

Figure 3.9: Comparison of the three reconstruction methods. The cross-sections by the
coordinate planes are shown. (a) The phantom is the characteristic function of 3d ball
having radius 0.5 and center at the origin. (b) Reconstruction via Method 1 from data
contaminated with 20% Gaussian white noise. (c) Reconstruction via Method 2 from data
contaminated with 10% Gaussian white noise. (d) Reconstruction via Method 3 from noisy
data contaminated with 20% Gaussian white noise.

Figure 3.10 shows x-profiles of the central cross-sections of the spherical phantom and

of its reconstructions shown in Figure 3.9.
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Figure 3.10: Comparison of x-profiles of central slices of phantom and the reconstructions
from noisy data shown in Figure 3.9.
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4. INVERSION OF WEIGHTED DIVERGENT BEAM AND CONE

TRANSFORMS1

In this chapter, we consider the weighted divergent beam and cone transforms, and

discuss their inversion. In Section 4.1, we define the weighted divergent beam and cone

transforms and describe a simple relation between them. In Section 4.2, we present a vari-

ety of inversion formulas for the weighted divergent beam transform (Theorems 4.2.5 and

4.2.7). We then derive an integral relation between the weighted divergent beam and cone

transforms in Section 4.3, which leads to new inversion formulas for the n-dimensional

weighted cone transform (Theorem 4.3.6). In Section 4.4, we investigate the relation be-

tween the Radon and weighted divergent beam and cone transforms. This enables us to

derive other inversion formulas for the latter two (Theorem 4.4.4). Section 4.5 contains the

results of numerical implementation of some of the inversion formulas for the weighted

cone transform in dimensions two and three for two different vertex geometries, as well as

examples of numerical inversion of two weighted divergent beam transforms in dimension

three.

4.1 The Weighted Cone and Divergent Beam Transforms

In this section, we define the closely related weighted divergent beam and cone trans-

forms.

Definition 4.1.1. For k > −1, the k-weighted divergent beam transform of a function
1Reprinted from: Inversion of weighted divergent beam and cone transforms, by P. Kuchment and F.

Terzioglu, Inverse Problems & Imaging, Volume 11, 2017. Copyright © by AIMS. Reprinted with the
permission of AIMS.
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f ∈ S(Rn) is defined by

Dkf(u, σ) = Dk
uf(σ) :=

∫ ∞
0

f(u+ ρσ)ρkdρ, (4.1)

where u ∈ Rn is the source of the beam {u + ρσ}|ρ≥0 and σ ∈ Sn−1 is the unit vector in

the direction of the beam.

Consider now a circular cone2 S in Rn. The set of such cones can be parametrized by

a triple (u, β, ψ), where u ∈ Rn is the cone’s vertex (apex)3, the unit vector β ∈ Sn−1 is

directed toward cone’s interior along the cone’s axis, and ψ ∈ (0, π) is the opening angle

(see Fig. 4.1). A point x ∈ Rn lies on S(u, β, ψ) iff (x− u) · β = |x− u| cosψ.

Figure 4.1: A cone with vertex u ∈ Rn, central axis direction vector β ∈ Sn−1 and opening
angle ψ ∈ (0, π).

Definition 4.1.2. Let k ∈ Z+ = {0, 1, 2, ...}, and suppose that f ∈ S(Rn). We define the

2The word “cone” in this paper always means a surface, rather than solid cone.
3In the Compton camera imaging, cone’s vertex corresponds to a detection location.
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k-weighted cone transform Ckf of f as

Ckf(u, β, ψ) :=

∫
S(u,β,ψ)

f(x)|x− u|k−n+2dS(x), (4.2)

where dS is the surface measure on the cone S. In other words,

Ckf(u, β, ψ) = sinψ

∫
Rn
f(x)δ((x− u) · β − |x− u| cosψ)|x− u|k−n+2dx, (4.3)

where dx is the Lebesgue measure on Rn.

Remark 4.1.3.

• To avoid confusion, note that the power in the integral weight in the definition of

Ckf is not equal to k, but rather also depends on the spatial dimension n.

• At this step, one can allow all real values k > −1, while later on, k ∈ Z+ :=

{0, 1, 2, . . . } will be important.

• We note that k = n−2 corresponds to the case of pure surface measure on the cone.

Remark 4.1.4. We will say just “weighted" cone or divergent beam transform, when no

confusion about the value of k can arise.

Changing variables in (4.3) as x = u+ ρσ for ρ ∈ [0,∞) and σ ∈ Sn−1, and using the

fact that δ is homogeneous of degree −1, we make the following simple observation:

Proposition 4.1.5. Let u ∈ Rn, β ∈ Sn−1 and ψ ∈ (0, π). Then,

Ckf(u, β, ψ) = sinψ

∫
Sn−1

∫ ∞
0

f(u+ ρσ)ρkdρ δ(σ · β − cosψ)dσ

= sinψ

∫
Sn−1

Dk
uf(σ)δ(σ · β − cosψ)dσ. (4.4)
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By letting t = cosψ, we can rewrite (with an abuse of notation) Ckf as

Ckf(u, β, t) :=


√

1− t2
∫
Sn−1

Dk
uf(σ)δ(σ · β − t)dσ, if |t| ≤ 1

0, otherwise.

(4.5)

4.2 Inversion of the Weighted Divergent Beam Transform

If f ∈ S(Rn), for each u ∈ Rn,Dk
uf(σ) can be uniquely extended to a smooth function

on Rn\{0} homogeneous of degree −(k + 1):

Dk
uf(x) =

1

|x|k+1
Dk
uf(

x

|x|
). (4.6)

This function is locally integrable with respect to x ∈ Rn, provided k < n − 1, and has

a well-defined Fourier transform as a tempered distribution (see e.g. [17]), i.e., for each

ϕ ∈ S(Rn),

〈D̂k
uf(ξ), ϕ(ξ)〉 =

∫
Rn
Dk
uf(y)ϕ̂(y)dy. (4.7)

In the following, we derive inversion formulas for the divergent beam transform that are

analogs of the well known [63,64] Tuy’s inversion formula, which addresses the case when

k = 0 in dimension three, and the sources (detectors in the Compton camera case) move

along a curve.

In the rest of the paper, the shorthand notations ∂uj and ∂u will be used for the partial

derivatives ∂/∂uj and gradient∇u with respect to the variables u.

Theorem 4.2.1. Let k ∈ Z+, f ∈ S(Rn), and all source locations u are accessible. Then,

f(x) =
(−i)k+1

(2π)n

∫
Sn−1

(
∆(k+1)/2
u D̂k

uf(θ)
) ∣∣

u=x
dθ, (4.8)
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where ∆u :=
∑

j ∂
2
uj

is the Laplace operator with respect to the variable u, and its power

when k is not an odd integer is understood as the corresponding Riesz potential (see,

e.g. [46]).

Proof. Let f ∈ S(Rn). For any θ ∈ Sn−1, the Fourier transform of Dk
uf satisfies

D̂k
uf(θ) =

∫ ∞
0

eiρθ·uf̂(ρθ)ρn−k−2dρ. (4.9)

Indeed, for any ϕ ∈ S(Rn), due to Dk
uf being homogeneous of degree −(k + 1) and

changing to polar variables y = sω, we have

〈D̂k
uf, ϕ〉 = 〈Dk

uf, ϕ̂〉 =

∫
Rn
Dk
uf(y)ϕ̂(y)dy

=

∫
Sn−1

∫ ∞
0

Dk
uf(ω)ϕ̂(sω)sn−k−2dsdω

=

∫
Rn
ϕ(x)

∫
Sn−1

∫ ∞
0

∫ ∞
0

e−ix·sωf(u+ rω)sn−k−2ds rkdrdω dx.

Now, changing variables in s to ρ = s/r, and then letting y = u+ rω, we get

〈D̂k
uf, ϕ〉 =

∫
Rn
ϕ(x)

∫ ∞
0

∫
Sn−1

∫ ∞
0

e−ix·rρωf(u+ rω)rn−1drdωρn−k−2dρ dx

=

∫
Rn
ϕ(x)

∫ ∞
0

∫
Rn
e−iρx·(y−u)f(y)dyρn−k−2dρ dx,

which implies (4.9).

The following simple formula holds for any unit vector θ:

∆(k+1)/2
u eiρθ·u = (iρ)k+1eiρθ·u. (4.10)

Thus, applying (k+1)/2-th power of the Laplace operator with respect to u to (4.9), we
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obtain

∆(k+1)/2
u D̂k

uf(θ) = ik+1

∫ ∞
0

eiρθ·uf̂(ρθ)ρn−1dρ. (4.11)

Now, recalling the Fourier inversion formula in polar coordinates

f(x) =
1

(2π)n

∫
Sn−1

∫ ∞
0

eiρθ·xf̂(ρθ)ρn−1dρdθ (4.12)

and comparing with (4.11), we obtain the desired formula

f(x) =
(−i)k+1

(2π)n

∫
Sn−1

(
∆(k+1)/2
u D̂k

uf(θ)
) ∣∣

u=x
dθ.

Remark 4.2.2. Considering formula (4.8), one realizes quickly that it is not very useful,

since it requires “sources” u of the beams to be available throughout the whole space. In

the Compton camera case, as well as in 3D CT, this would require detectors/sources to be

placed throughout the object imaged, which is impossible.

Moreover, in this case, one deals with just a deconvolution problem, and a severely

overdetermined one at that (the dimension of the data used is 2n − 1 instead of n). Thus,

there must exist formulas requiring much less data, in particular allowing the detectors u

to be situated only outside the object being imaged (e.g. Tuy’s formula only requires an

arc of external sources).

This is also related to the interesting question about “admissible” complexes of cones

that provide enough data for stable reconstruction. We have already briefly addressed this

issue in [37, 60] and plan to have more detailed discussion elsewhere.

Here we show an example of how such deficiency can be alleviated for the weighted

45



divergent beam transform.

Definition 4.2.3.

• LetM ⊂ Rn be a smooth d-dimensional submanifold. We will say that it satisfies

the Tuy’s condition with respect to a subset V ⊂ Rn, if any hyperplane intersecting

V has a non-tangential intersection withM.

Equivalently: for any x ∈ V and unit vector θ ∈ Sn−1, there exists a point u ∈ M

such that θ · x = θ · u, and θ is not normal toM at the point u.

• We denote by Pu the orthogonal projection onto the tangent space toM at the point

u ∈M.

Remark 4.2.4. Notice that the above condition is a strengthened version of what was

called admissibility condition in [37, 60].

Theorem 4.2.5. Let k be an odd non-negative integer andM ⊂ Rn satisfies Tuy’s con-

dition with respect to a compact V . Then, for any homogeneous linear elliptic differential

operator L(u, ∂u) of order k + 1 on M and any smooth function f supported in V , the

following inversion formula holds:

f(x) =
1

(2π)n

∫
Sn−1

1

L(u, Puθ)
L(u, ∂u)D̂k

uf(θ)dθ, (4.13)

where u ∈M is related to x and θ as in the Tuy’s condition.

IfM is one-dimensional, then k can be any natural number (in this case, when k = 0,

one ends up with the standard Tuy’s formula).

Remark 4.2.6.

• Notice that u ∈ M in (4.13) depends on both x and θ and that L(u, Puθ) does not

vanish if the Tuy’s condition is satisfied.
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• The differential expression in the formula above is written in the variable u, while

the actual variables at hand are θ and x. Due to the non-tangentiality required in

the Tuy’s condition, such a differential operator can be locally lifted to an opera-

tor in (x, θ) variables (which requires a specific calculation for each manifold of

detectors).

• The choice of u in Tuy’s condition might not be unique, and any such choice will

work.

Proof. The proof follows exactly the one of Theorem 4.2.1, using at the end the formula

for the symbol of a homogeneous differential operator of order k + 1 (instead of a power

of the Laplacian in (4.10)):

L(u, ∂u)e
iρθ·u = (iρ)k+1L(u, Puθ)e

iρθ·u (4.14)

and noticing that the factor L(u, Puθ) does not vanish, due to the ellipticity and homo-

geneity of the operator and the Tuy’s condition.

A serious deficiency in Theorem 4.2.5 is that, unlessM is one-dimensional, only odd

values of k are allowed. This issue can be resolved, paying the price of having a more

complex formula.

Indeed, consider the following first order linear differential operator acting tangentially

toM, with coefficients depending upon u ∈M and θ ∈ Sn−1:

O(u, θ, ∂u) := Puθ · ∂u. (4.15)

Let also L(u, ∂u) be an operator like in Theorem 4.2.5, but of order k. Applying the

composition O ◦ (aL) to the exponential eiρθ·u, where a := 1/L(u, Puθ), and using (4.14),
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we get

O ◦ (aL)eiρθ·u = |Puθ|2(iρ)k+1eiρθ·u. (4.16)

Since the order of the composition is odd, this enables us to extended the inversion formula

to the even values of k:

Theorem 4.2.7. Let k be an even non-negative integer andM⊂ Rn satisfies Tuy’s condi-

tion with respect to a compact V . Then, for any homogeneous elliptic differential operator

L(u, ∂u) of order k onM and any smooth function f supported in V , the following inver-

sion formula holds:

f(x) =
1

(2π)n

∫
Sn−1

1

|Puθ|2
(
O ◦ 1

L(u, Puθ)
L
)
D̂k
uf(θ)dθ, (4.17)

where u is related to x and θ as in the Tuy’s condition.

Proof. The proof stays exactly the same, except instead of (4.14), we use (4.16).

Remark 4.2.8. Since we are dealing with a severely overdetermined transform, the vari-

ety of possible inversion formulas is large and is not exhausted by the ones above. For

instance, instead of using the operator 1
|Puθ|2 (O ◦ 1

L(u,Puθ)
L), one can use ( 1

|Puθ|2O)k+1.

4.3 Inversion of the Weighted Cone Transform

The following result presents a relation between the weighted divergent beam and cone

transforms defined in section 4.1, which will be instrumental in the inversion of the latter

one.

Proposition 4.3.1. Suppose that f ∈ S(Rn), and h(t) is a distribution on R regular near

t = ±1. Then,

〈
h(t),

Ckf(u, β, t)√
1− t2

〉
R = 〈h(σ · β), Dk

uf(σ)〉Sn−1 . (4.18)
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(Notice that Ckf(u, β, t) = 0 for |t| > 1, and is smooth for |t| < 1.)

Proof. By the representation (4.5) of the weighted cone transform, we have

〈
h(t),

Ckf(u, β, t)√
1− t2

〉
R =

〈
h(t), 〈δ(σ · β − t), Dk

uf(σ)〉Sn−1

〉
R

=
〈
(h ∗ δ)(σ · β), Dk

uf(σ)
〉
Sn−1 = 〈h(σ · β), Dk

uf(σ)〉Sn−1 .

We note that (4.18) is equivalent to

∫ π

0

Ckf(u, β, ψ)h(cosψ)dψ =

∫
Sn−1

Dk
uf(σ)h(σ · β)dσ. (4.19)

Definition 4.3.2. Let k < n− 1. We introduce the following distribution:

hn,k(t) :=

∫ ∞
0

e−itssn−k−2ds (4.20)

= in−k−1[(n− k − 2)!tk−n+1 + (−1)n−k−1iπδ(n−k−2)(t)],

(see e.g. [17, Chapter 2, p.172, eqn. (5)]).

Proposition 4.3.3. The following identity holds:

D̂k
uf(ξ) =

∫
Sn−1

Dk
uf(σ)hn,k(σ · ξ)dσ. (4.21)
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Proof. For each ϕ ∈ S(Rn), since Dk
uf is homogeneous of degree −(k + 1), we have

〈D̂k
uf, ϕ〉 = 〈Dk

uf, ϕ̂〉 =

∫
Rn
Dk
uf(y)ϕ̂(y)dy

=

∫
Sn−1

∫ ∞
0

Dk
uf(σ)ϕ̂(sσ)sn−k−2dsdσ

=

∫
Sn−1

∫ ∞
0

Dk
uf(σ)

∫
Rn
e−isσ·ξϕ(ξ)dξsn−k−2dsdσ

=

∫
Rn

∫
Sn−1

Dk
uf(σ)hn,k(σ · ξ)dσϕ(ξ)dξ,

which implies (4.21).

Now, by combining (4.19) and (4.21), and using the inversion formula for the weighted

divergent beam transform (4.8), we obtain an inversion formula for the weighted cone

transform.

Theorem 4.3.4. Let f ∈ S(Rn), and k < n− 1. Then,

f(x) =
(−i)k+1

(2π)n

∫
Sn−1

∫ π

0

(
∆(k+1)/2
u Ckf(u, β, ψ)

)∣∣
u=x

hn,k(cosψ)dψdβ. (4.22)

Remark 4.3.5. The same deficiency applies here that was mentioned in remark 4.2.2: the

formula requires the cones to be available with all vertices u throughout the space, which

is unacceptable for many imaging applications (e.g. Compton ones). Fortunately, a similar

remedy as for the divergent beam transform exists, which we address next.

Theorem 4.3.6. Let k ∈ Z+, k < n − 1. Suppose that M ⊂ Rn satisfies the Tuy’s

condition with respect to a compact V ⊂ Rn, and f is a smooth function supported in V .

Then, depending on the parity of k, the following inversion formulas hold:

1. if k is odd, then for any homogeneous linear elliptic differential operator L(u, ∂u) of
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order k + 1 onM

f(x) =
1

(2π)n

∫
Sn−1

∫ π

0

1

L(u, Puθ)
L(u, ∂u)C

kf(u, θ, ψ)hn,k(cosψ)dψdθ, (4.23)

2. if k is even, then for any homogeneous linear elliptic differential operator L(u, ∂u)

of order k onM

f(x) =
1

(2π)n

∫
Sn−1

∫ π

0

1

|Puθ|2
(
O ◦ 1

L(u, Puθ)
L
)
Ckf(u, θ, ψ)hn,k(cosψ)dψdθ,

(4.24)

where O is given as in (4.15), and u ∈ M is related to x and θ as in the Tuy’s

condition.

Proof. The proof is just an immediate consequence of the equalities (4.21), (4.19), (4.13),

and (4.17) (in that order).

4.4 Relations with the Radon Transform: Other Inversion Formulas

In this section, we first present a relation between the Radon and the weighted divergent

beam and cone transforms for any dimension n and any k ∈ Z+. Analogous relation for

the usual divergent beam transform (k = 0) is obtained in [25] (see also [64, Chapter 2]).

Proposition 4.4.1. Let f ∈ S(Rn) and h be a distribution on R which is homogeneous of

degree k − n+ 1 and regular around ±1. Then,

∫ π

0

Ckf(u, β, ψ)h(− cosψ)dψ (4.25)

=

∫
Sn−1

Dk
uf(σ)h(−σ · β)dσ =

∫
R
Rf(β, s)h(u · β − s)ds = (Rβf ∗ h)(u · β).

Proof. The first equality is already obtained in Proposition 4.3.1. By definition of the
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weighted divergent beam transform, we have

∫
Sn−1

Dk
uf(σ)h(−σ · β)dσ =

∫
Sn−1

∫ ∞
0

f(u+ ρσ)ρkdρh(−σ · β)dσ

=

∫
Sn−1

∫ ∞
0

f(u+ ρσ)h(−ρσ · β)ρn−1dρdσ,

due to the homogeneity of h. Letting x = u+ ρσ, we obtain

∫
Sn−1

∫ ∞
0

f(u+ ρσ)h(−ρσ · β)ρn−1dρdσ

=

∫
Rn
f(x)h((u− x) · β)dx =

∫
Rn
f(x)

(∫
R
h(u · β − s)δ(x · β − s)ds

)
dx

=

∫
R

(∫
Rn
f(x)δ(x · β − s)dx

)
h(u · β − s)ds =

∫
R
Rf(β, s)h(u · β − s)ds.

Remark 4.4.2. In dimensions two and three, for k = 0 and k = 1, respectively, the

relation (4.25) gives the following (geometrically obvious) formula:

Ckf(u, β,
π

2
) = R(β, u · β),

which is used in [6] in dimension three.

Remark 4.4.3. In dimension three, a special case of (4.25), namely for h(t) = tk−2, is

proven and used to derive an inversion formula for the cone transform for k = 0 and k = 1

in [57]. In dimension two, an inversion formula for k = 0 is derived using (4.25) with

h(t) = t−1 in [1, 18]. For the usual divergent beam transform (k = 0) in dimension three,

the applications of various functions h can be found in [64, Chapter 2, and references

therein].
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Let k ∈ Z+, and h be the function on R defined by

h(t) :=



1

2(k − n+ 1)!
|t|k−n+1sgn t, if k > n− 2 and k − n is odd,

1

2(k − n+ 1)!
|t|k−n+1, if k > n− 2 and k − n is even,

δ(n−k−2)(t), if k ≤ n− 2.

(4.26)

We note that h is homogeneous of degree k−n+1, and for k > n−2, h(k−n+2) = δ(t)

(see e.g. [17]).

Now, using the differentiation property of the convolution

∂α(g ∗ h) = ∂αg ∗ h = g ∗ ∂αh

and the inversion formula (B.18) for the Radon transform, we obtain the following for-

mula, which can be used for inversion of both the weighted divergent beam and cone

transforms:

Theorem 4.4.4. Suppose that for any u ∈M and β ∈ Sn−1, s = u · β and

G(β, s) := (Rβf ∗ h)(s) =

∫ π

0

Ckf(u, β, ψ)h(− cosψ)dψ (4.27)

=

∫
Sn−1

Dk
uf(σ)h(−σ · β)dσ.

Then, for any f ∈ S(Rn),

f(x) =
1

2
(2π)1−n


(−1)(n−1)/2

∫
Sn−1

G(k+1)(β, x · β) dβ, if n is odd,

(−1)(n−2)/2
∫
Sn−1

HG(k+1)(β, x · β) dβ, if n is even,
(4.28)

where G(k+1) is the (k + 1)-st derivative of G with respect to s, h is given in (4.26), and
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H is the Hilbert transform (B.19) with respect to s.

Proof. Using h given in (4.26) for k ≥ n− 2, we have

(Rβf ∗ h)(k+1) = (Rβf)(n−1) ∗ h(k−n+2) = (Rβf)(n−1) ∗ δ = (Rβf)(n−1),

and for k < n− 2, we get

(Rβf ∗ h)(k+1) = (Rβf ∗ δ(n−k−2))(k+1) = (Rβf)(n−1).

Hence, the application of Radon transform inversion (B.18) gives the result.

Remark 4.4.5. The reconstruction formula (4.28) is independent of the geometry of the

manifoldM that u belongs to. Indeed, for the weighted cone transform, it is sufficient that

for any s ∈ R and β ∈ Sn−1, there is a vertex u = sβ + y, where y⊥β, and the weighted

cone data is available at all angles ψ for these u and β. In other words, the requirement

for the reconstruction is that any hyperplane intersecting the domain of reconstruction

contains the vertex of a cone with the axis normal to the plane and all opening angles.

For the weighted divergent beam transform, the corresponding condition is that for any

s ∈ R and β ∈ Sn−1, there is a source u = sβ+y, where y⊥β, and the weighted divergent

beam data is available at all directions σ for this source u.

4.5 Reconstruction Algorithms and Numerical Implementation Results

In this section, we present the results of numerical implementation of Theorem 4.4.4.

In dimension two, the weighted cone transform and divergent beam transforms are sim-

ilar, so we only provide examples for the weighted cone transform for k = 1 using two

different vertex geometries. We then give the reconstruction results for the weighted cone

transform in dimension three for k = 0 and k = 2 using a spherical vertex geometry. Ex-

amples showing the reaction of the algorithms to Gaussian white noise in the data are also
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provided. We also present an example of numerical inversion of the weighted divergent

beam transform in dimension three for the cases k = 1 and k = 2 using a spherical source

geometry.

All phantoms are placed off-center of the vertex curve/surface, to avoid unintended

use of rotational invariance. Care was taken to avoid other possibilities of committing an

inverse crime, by making the forward and inverse algorithms as unrelated as possible.

ALGORITHM Numerical Implementation of (4.28)
Data: ci,j,k = Cf(ui, βj, ψk), i = 1, ..., U , j = 1, ..., B, k = 1, ..., P.

1: For i = 1, ..., U , j = 1, ..., B compute

G(βj, ui · βj) :=
P∑
k=1

ci,j,kh(− cosψk)∆ψ ∼
π∫

0

Cf(u, β, ψ)h(− cosψ)dψ.

2: Carry out 1D interpolation to obtain G(ωj, sk) for a uniform mesh {sk} on [−1, 1].

3: For i = 1, ..., U , and j = 1, ..., B, differentiate G with respect to s (k + 1)-times, and

if n is even, computeHG(k+1) using Fourier spectral method.

4: For each reconstruction point xi,j,l ∈ [−1, 1]3, find G(k+1)(xi,j,l · β, β) (if n is even,

HG(k+1)(xi,j,l · β, β) ) by interpolating G(ωj, sk).

5: Carry out the integration

fi,j,l =
∑
τ∈K

Area(τ)

6(2π)n−1

∑
v∈V (τ)

G(k+1)(v, xi,j,l · v) ∼ (2π)1−n

2

∫
Sn−1

G(k+1)(β, x · β)dβ,

where τ is a face of the triangular mesh K on S2, and V (τ) is the set of vertices of τ .

Result: fi,j,l is an approximation to the phantom f which is supported on the unit sphere.
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4.5.1 2D Image Reconstruction from Weighted Cone Data

In dimension two, for k = 0, the relation (4.25) gives C0(u, β, π/2) = Rf(β, u · β),

which is geometrically obvious (also see [6]). Thus, we focus here on the case k = 1 only.

Since a cone in 2D is represented by two rays with a common vertex, the weighted cone

transform for k = 1 is given by

C1f(u, β(φ), ψ)

=

∞∫
0

[f(u+ r(cos(φ− ψ), sin(φ− ψ)) + f(u+ r(cos(φ+ ψ), sin(φ+ ψ))]rdr,

where β(φ) = (cos(φ), sin(φ)). The inversion formula (4.28) now reads as

f(x) =
−1

8π

∫
S1

(
H ∂2

∂s2

π∫
0

C1f(sβ + y, β, ψ)sgn(cosψ)dψ
)∣∣∣

s=x·β
dβ. (4.29)

For the numerical implementation of (4.29), we considered the phantom

f = χD1 − 0.5χD2 ,

where D1 and D2 are the concentric disks centered at (0, 0.4) with radii 0.25 and 0.5,

respectively. Here, χDi denotes the characteristic function of each disk (see Fig. 4.2).

The cone projection data of the phantom f is simulated numerically using 256 counts for

vertices u, 400 counts for central axis directions β and 90 counts for opening angles ψ.
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Figure 4.2: The density plot (left) and surface plot (right) of the phantom f that consists of
two concentric disks centered at (0, 0.4) with radii 0.25 and 0.5, and densities 1 and -0.5
units, respectively.

Figure 4.3: The density plot of 256 × 256 image reconstructed from the simulated cone
data using 256 counts for vertices u (represented by white dots on the unit circle), 400
counts for directions β and 90 counts for opening angles ψ (left), and the comparison of
y-axis profiles of the phantom and the reconstruction (right).
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Figure 4.4: The density plot of 256×256 image reconstructed from cone data contaminated
with 5% Gaussian noise (left), and the comparison of y-axis profiles of the phantom and
the reconstruction (right). The dimensions of the cone data are taken as in Fig. 4.3.

As our inversion formula is valid for arbitrary geometry of vertices, we considered

both a circular and a square geometry of vertices of the cones.

Figure 4.3 shows the results of reconstruction from cone projections where the vertices

cover the unit circle. The density plot and the y-axis profile of the reconstruction are

provided in (a) and (b), respectively. The results with a 5% Gaussian white noise added to

the cone data is shown in Figure 4.4.

In Figure 4.5, we provide the results of reconstruction from cone projections where

the vertices are placed along the sides of a square with sides of length two. The density

plot and the y-axis profile of the reconstruction are provided in Figure 4.5 (a) and (b),

respectively. Figure 4.6 shows the results with a 5% Gaussian white noise added to the

cone data.

58



Figure 4.5: The density plot of 256 × 256 image reconstructed from the simulated cone
data using 256 counts for vertices u (represented by white dots around the square), 400
counts for directions β and 90 counts for opening angles ψ (left), and the comparison of
y-axis profiles of the phantom and the reconstruction (right).

Figure 4.6: The density plot of 256×256 image reconstructed from cone data contaminated
with 5% Gaussian noise (left), and the comparison of y-axis profiles of the phantom and
the reconstruction (right). The dimensions of the cone data are taken as in Fig. 4.5.

In the case of the square geometry (but not in the circular one), some corner-related

effects appear along the diagonals, as shown in Figure 4.7. They can be eliminated by
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using a finer discretization in β.

Figure 4.7: Comparison of the profiles of the reconstruction along the diagonal of the
square region for the circular (left) and square (right) locations of the vertices (detectors).

4.5.2 3D Image Reconstruction from Weighted Cone Data

In dimension three, the relation (4.25) is geometrically obvious for the case k=1 (see

remark 4.2), and is numerically implemented in [6] using spherical harmonic expansions.

Here, we provide examples of reconstruction from the weighted cone data for k = 0 and

k = 2. Theorem 4.4.4 gives the following inversion formula for k = 0:

f(x) =
1

8π2

∫
S2

( ∂
∂s

π∫
0

C0f(sβ + y, β, ψ)δ′(cosψ)dψ
)∣∣∣

s=x·β
dβ

=
−1

8π2

∫
S2

( ∂
∂s

( ∂
∂t
C0f(sβ + y, β, t)

)∣∣∣
t=0

)∣∣∣
s=x·β

dβ, (4.30)

and for k = 2, we have

f(x) =
−1

16π2

∫
S2

( ∂3
∂s3

π∫
0

C2f(sβ + y, β, ψ)sgn(cosψ)dψ
)∣∣∣

s=x·β
dβ. (4.31)
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In our examples, the vertices of the cones cover the unit sphere S2 in R3 and the phan-

tom is the characteristic function of the 3D ball of radius 0.5 units located strictly inside

and off-center of this sphere.

The forward simulations of weighted cone projections were done numerically using

1800 counts for vertices u on the unit sphere, 1800 counts for unit vectors for the cone axis

directions β and 200 counts for opening angles ψ. For the discretization of the sphere, we

used a uniform mesh for both the azimuthal and the polar angles.

Figure 4.8 shows the three cross sections of the spherical phantom and of its recon-

structions from the cone data obtained via (4.30). The comparison of the phantom and the

reconstruction given in Figure 4.8 in terms of their coordinate axis profiles is provided in

Figure 4.9.

Figure 4.8: The 3D ball phantom with radius 0.5, center (0,0,0.25) and unit density (left),
and 90×90 image reconstructed via (4.30) from weighted cone data simulated using 1800
counts for vertices u on the unit sphere, 1800 counts for directions β and 200 counts for
opening angles ψ (right). The cross sections by the planes x = 0, y = 0 and z = 0.25 are
shown.
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Figure 4.9: Comparison of the x-axis (left), y-axis (center) and z-axis (right) profiles of
the reconstruction and the phantom given in Fig. 4.8.

Figure 4.10 shows the three cross sections of the spherical phantom and of its recon-

structions from the cone data obtained via (4.31). The comparison of the phantom and the

reconstruction given in Figure 4.10 in terms of their coordinate axis profiles is provided in

Figure 4.11.

Figure 4.10: The 3D ball phantom with radius 0.5, center (0,0,0.25) and unit density (left),
and 90×90 image reconstructed via (4.31) from weighted cone data simulated using 1800
counts for vertices u on the unit sphere, 1800 counts for directions β and 200 counts for
opening angles ψ (right). The cross sections by the planes x = 0, y = 0 and z = 0.25 are
shown.
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Figure 4.11: Comparison of the x-axis (left), y-axis (center) and z-axis (right) profiles of
the reconstruction and the phantom given in Fig. 4.10.

Figures 4.12 and 4.13 show the results of reconstruction from weighted cone data for

k = 2 contaminated with 5% Gaussian white noise.

Figure 4.12: The 3D ball phantom with radius 0.5, center (0,0,0.25) and unit density (left),
and 90 × 90 image reconstructed via (4.31) from weighted cone data contaminated with
5% Gaussian white noise (right). The dimensions of the cone projections are taken as in
Fig. 4.10. The cross sections by the planes x = 0, y = 0 and z = 0.25 are shown.
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Figure 4.13: Comparison of the x-axis (left), y-axis (center) and z-axis (right) profiles of
the reconstruction and the phantom given in Fig. 4.12.

4.5.3 3D Image Reconstruction from Weighted Divergent Beam Data

In dimension three, when k = 0, Theorem 4.4.4 reduces to Grangeat’s formula [22].

Here, we provide examples of reconstruction from the weighted divergent beam data for

k = 1 and k = 2 using a spherical source geometry. For k = 1, Theorem 4.4.4 gives the

following inversion formula:

f(x) =
1

8π2

∫
S2

( ∂2
∂s2

∫
S2

D1f(sβ + y, σ)δ(σ · β)dσ
)∣∣∣

s=x·β
dβ, (4.32)

and for k = 2, we have

f(x) =
−1

16π2

∫
S2

( ∂3
∂s3

∫
S2

D2f(sβ + y, σ)sgn(σ · β)dσ
)∣∣∣

s=x·β
dβ. (4.33)

The forward simulations of weighted divergent beam projections were done numeri-

cally using 1800 counts for sources u on the unit sphere, 30K counts for unit directions σ.

For the triangulation of the sphere, we used the algorithm given in [50].

Figure 4.14 shows the three cross sections of the spherical phantom and of its recon-

structions from the weighted divergent beam data obtained via (4.32). The comparison of
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the phantom and the reconstruction given in Figure 4.14 in terms of their coordinate axis

profiles is provided in Figure 4.15.

Figure 4.14: The 3D ball phantom with radius 0.5, center (0,0,0.25) and unit density (left),
and 90× 90 image reconstructed via (4.32) from weighted divergent beam data simulated
using 1800 counts for sources u on the unit sphere and 30K counts for unit directions σ
(right). The cross sections by the planes x = 0, y = 0 and z = 0.25 are shown.

Figure 4.15: Comparison of the x-axis (left), y-axis (center) and z-axis (right) profiles of
the phantom and the reconstruction given in Fig. 4.14.

Figure 4.16 shows the three cross sections of the spherical phantom and of its recon-
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structions from the weighted divergent beam data obtained via (4.33). The comparison of

the phantom and the reconstruction given in Figure 4.16 in terms of their coordinate axis

profiles is provided in Figure 4.17.

Figure 4.16: The 3D ball phantom with radius 0.5, center (0,0,0.25) and unit density (left),
and 90× 90 image reconstructed via (4.33) from weighted divergent beam data simulated
using 1800 counts for sources u on the unit sphere and 30K counts for unit directions σ
(right). The cross sections by the planes x = 0, y = 0 and z = 0.25 are shown.

Figure 4.17: Comparison of the x-axis (left), y-axis (center) and z-axis (right) profiles of
the reconstruction and the phantom given in Fig. 4.16.
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5. FURTHER PROPERTIES OF THE WEIGHTED CONE TRANSFORM

In this chapter, we present some further results about the weighted cone transform. In

Section 5.1, we derive identities that relate spherical harmonic expansion coefficients of

the weighted cone transform with the weighted divergent beam transform and the Radon

transform. Then, we provide a range condition for the weighted cone transform in Section

5.2. In Section 5.3 we present the dual operator to the weighted cone transform, and prove

in Section 5.4 that the normal operator is a classical pseudo-differential operator.

5.1 Spherical Harmonic Expansions

Let us fix a vertex (source, detector) location u. Then cones with the vertex u are

in one-to-one correspondence with the (n − 2)-dimensional spheres on the unit (n − 1)-

dimensional sphere centered at u, the correspondence being given by intersecting a cone

with the unit sphere. Analogously, rays (divergent beams) emanating from u correspond to

the points on this unit sphere. It is clear then that the (weighted) cone data with the vertex

u is the “Radon” transform over the (n − 2)-dimensional spheres of the correspondingly

weighted divergent beam transform data. Since the transform that integrates over these

spheres is rotationally invariant, it is natural to use spherical harmonics expansion in the

hope of relating the two types of data. This is exactly what we plan to do in this section:

find a relation between spherical harmonic expansion coefficients of the weighted cone

and divergent beam transforms.

We can expand Ckf(u, β, t) and Dk
uf(σ) in spherical harmonics as follows:

Dk
uf(σ) ∼

∞∑
l=0

N(n,l)∑
m=0

dkl,m(u)Yl,m(σ) (5.1)
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and

Ckf(u, β, t) ∼
∞∑
l=0

N(n,l)∑
m=0

ckl,m(u, t)Yl,m(β), (5.2)

where Yl,m is the spherical harmonic of degree l and order m (see Appendix B.1.3),

N(n, l) = (n+ 2l − 2)
(n+ l − 3)!

l!(n− 2)!
, (5.3)

dkl,m(u) =

∫
Sn−1

Dk
uf(σ)Yl,m(σ)dσ, (5.4)

and

ckl,m(u, t) =

∫
Sn−1

Ckf(u, β, t)Yl,m(β)dβ. (5.5)

The following theorem gives a relation between spherical harmonic expansion coefficients

(5.4) and (5.5) of the weighted divergent beam and cone transforms, respectively. This

relation for k = 1 in dimension three was provided in [6].

Theorem 5.1.1. Let P λ
l (t) be the Gegenbauer (ultraspherical) polynomials of degree l,

λ > −1/2 (see Appendix B.1.2). Then, for any u ∈ Rn,

ckl,m(u, t) =


|Sn−2|(1− t2)(n−2)/2P (n−2)/2

l (t)dkl,m(u), |t| ≤ 1

0, |t| > 1.

(5.6)

Proof. In view of (4.4), it is clear that ckl,m(u, t) = 0 when |t| > 1. For |t| ≤ 1, we can
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write

ckl,m(u, t) =

∫
Sn−1

Ckf(u, β, t)Yl,m(β)dβ

=
√

1− t2
∫

Sn−1

∫
Sn−1

Dk
uf(σ)δ(σ · β − t)dσ Yl,m(β)dβ

=
√

1− t2
∫

Sn−1

Dk
uf(σ)

∫
Sn−1

δ(σ · β − t)Yl,m(β)dβ dσ.

Here, we can apply Funk-Hecke formula (see Theorem B.1.1) to obtain

∫
Sn−1

δ(σ · β − t)Yl,m(β)dβ = |Sn−2|(1− t2)(n−3)/2P (n−2)/2
l (t)Yl,m(σ).

Hence,

ckl,m(u, t) = |Sn−2|(1− t2)(n−2)/2P (n−2)/2
l (t)

∫
Sn−1

Dk
uf(σ)Yl,m(σ)dσ,

which implies (5.6).

When k = n − 2, we can use the relation of the cosine transform with spherical

harmonics to find a relation between the spherical harmonic expansion coefficients of the

cone and Radon transforms.

Lemma 5.1.2. Let g ∈ L1(Sn−1). Then,

∫
Sn−1

π∫
0

Cf(u, β, ψ)g(β) sinψdψdβ = π

∫
Sn−1

Rf(ω, ω · u)Cg(ω)dω. (5.7)

Proof. Multiplying both sides of (3.10) with g(β) and integrating with respect to β over
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Sn−1, we have

∫
Sn−1

π∫
0

Cf(u, β, ψ)g(β) sinψdψdβ =
π

|Sn−1|

∫
Sn−1

Rf(ω, ω · u)

∫
Sn−1

g(β)|ω · β|dβdω

= π

∫
Sn−1

Rf(ω, ω · u)Cg(ω)dω.

The spherical harmonics are known to be the eigenfunctions of the cosine transform.

This follows from the Funk-Hecke Formula (B.1.1).

Corollary 5.1.3. For every spherical harmonic Yl of degree l, l = 0, 1, 2, ..., and every

ω ∈ Sn−1,

CYl(ω) = λlYl(ω) (5.8)

where λl is given as in Funk-Hecke Formula (Theorem B.1.1) for f(t) = |t|.

Now, we can establish the following relation.

Proposition 5.1.4. For every spherical harmonic Yl of degree l,

∫
Sn−1

π∫
0

Cf(u, β, ψ)Yl(β) sinψdψdβ = πλl

∫
Sn−1

Rf(ω, ω · u)Yl(ω)dω. (5.9)

In particular, for l = 0, we obtain (3.15).

Proof. Letting g = Yl in (5.7), and using (5.8), we get (5.9). Then, the equation (3.15)

follows from direct calculation.

Remark 5.1.5. As the relation (5.9) gives the spherical harmonics coefficients of the func-

tion Rf(ω, u · ω), one can recover it for all u ∈ Rn and ω ∈ Sn−1. Then, any inversion
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formula for the Radon transform (B.16) would reconstruct the function f . This can be

considered as an analog of Cormack’s method [46].

5.2 A Range Condition

Theorem 5.2.1. Suppose that f ∈ S(Rn). For any k ∈ Z+ and u ∈ Rn, the weighted

cone transform Ck
uf(β, t) satisfies the following differential equation.

{
a2(n, t)

∂2

∂t2
+ a1(n, t)

∂

∂t
+ a0(n, t) + b(n, t)∆S

}
g(β, t) = 0 on Sn−1 × (−1, 1)

g(β,−1) = g(β, 1) = 0, (5.10)

where

a0(n, t) =
1

2
(n− 2)[(n− 1)t− n],

a1(n, t) = −1

2
(2t+ n− 2)(1− t2), (5.11)

a2(n, t) = (1− t2)2,

b(n, t) = −(1− t2).

Proof. Let λ = (n − 2)/2. It is well known that P λ
l (t) solves the following differential

equation (see Appendix B.1.2):

(1− t2)y′′ − (n− 1)ty′ + l(l + 2λ)y = 0. (5.12)
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Let y(t) = P λ
l (t), and ỹ(t) = (1− t2)λy(t). Then, for t ∈ (−1, 1),

y(t) = (1− t2)−λỹ(t),

y′(t) = (1− t2)−λ−1
[
(1− t2)ỹ′(t)− λỹ(t)

]
, (5.13)

y′′(t) = (1− t2)−λ−2
[
(1− t2)2ỹ′′(t)− λ(2t− 1)(1− t2)ỹ′(t)− 2λ(λ+ 1)tỹ(t)

]
.

Plugging (5.13) in (B.6), we obtain

(1− t2)2ỹ′′ − (t+ λ)(1− t2)ỹ′

+
[
λ(2λ+ 1)t− 2λ(λ+ 1) + l(l + 2λ)(1− t2)

]
ỹ = 0.

Then, (5.6) implies that for any k ∈ Z+ and u ∈ Rn, ckl,m(u, t) satisfies

{
a2(n, t)

∂2

∂t2
+ a1(n, t)

∂

∂t
+ a0(n, t) + b(n, t)(−l)(l + n− 2)

}
ckl,m(u, t) = 0, (5.14)

where ai(n, t), i = 0, 1, 2, and b(n, t) is as in (5.11). Now, since

∆SYl,m = −l(l + n− 2)Yl,m l = 0, 1, 2, ... (5.15)

we obtain

{
a2(n, t)

∂2

∂t2
+ a1(n, t)

∂

∂t
+ a0(n, t) + b(n, t)∆S

}
ckl,m(u, t)Yl,m(β) = 0, (5.16)

whose application in (5.2) implies the theorem.
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5.3 Dual Operator

Let Z = Rn × Sn−1 × (−1, 1), w ∈ C∞c (Rn) be a weight function, and

L2
w(Z) :=

g : Z → R | ||g||L2
w(Z)

=

∫
Z

|g(u, β, t)|2 w(u)

1− t2
dtdβdu

1/2

<∞

 .

Theorem 5.3.1. Let Ck
# be the operator defined on L2

w(Z) as

Ck
#g(x) =

∫
Z

g(x− y, β, t)δ(y · β − |y|t) |y|
k−n+2w(x− y)√

1− t2
dtdβdy

=

∫
Rn

∫
Sn−1

g(x− y, β, y
|y|
· β)
|y|k−n+1w(x− y)√

1−
(
y
|y| · β

)2 dβdy. (5.17)

Then, Ck, Ck
# form a dual pair, that is for f ∈ S(Rn), we have

(Ckf, g)L2
w(Z)

= (f, Ck
#g)L2(Rn)
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Proof. By definition of the cone transform (4.3),

(Ckf, g)L2
w(Z)

=

∫
Z

Ckf(u, β, t)g(u, β, t)
w(u)

1− t2
dtdβdu

=

∫
Z

∫
Rn

f(x)δ((x− u) · β − |x− u|t)|x− u|k−n+2dx g(u, β, t)
w(u)√
1− t2

dtdβdu

=

∫
Rn

f(x)

∫
Z

g(u, β, t)δ((x− u) · β − |x− u|t) |x− u|
k−n+2w(u)√
1− t2

dtdβdu

 dx

=

∫
Rn

f(x)

∫
Z

g(x− y, β, t)δ(y · β − |y|t) |y|
k−n+2w(x− y)√

1− t2
dtdβdy

 dx

=

∫
Rn

f(x)Ck
#g(x)dx = (f, Ck

#g)L2(Rn).

5.4 A Microlocal Property

It is rather standard in tomography to consider the normal operator Ck
#C

k, and study

its properties.

Theorem 5.4.1. The normal operator Ck
#C

k is a classical pseudo-differential operator

(see e.g., [23, 55]) of order 1− n,

Ck
#C

kf(x) =

∫
Rn

∫
Rn

ei(x−y)·ξa(x, y, ξ)f(y)dydξ,

with an amplitude

a(x, y, ξ) = a0(x, y)|ξ|1−n,
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where

a0(x, y) = 2

∫
Rn

|x− y||(x− u)(2u− v)|k−n+2w(u)

||x− u|(y − u)− |y − u|(x− u)|
du.

Proof. We compute the normal operator

Ck
#C

kf(x) =

∫
Rn

∫
Sn−1

Ckf(x− y, β, y
|y|
· β)
|y|k−n+2w(x− y)√

1−
(
y
|y| · β

)2 dβ dy|y|
=

∫
Rn

∫
Sn−1

∫
Rn

f(x− y + z)δ(z · β − |z| y
|y|
· β)|x− y − z|k−n+2dz |y|k−n+2w(x− y)dβ

dy

|y|

=

∫
Rn

∫
Sn−1

∫
Rn

f(x+ z − y)δ((|y|z − |z|y) · β)w(x− y)|y(x− y − z)|k−n+2dydβdz,

where we have used δ(a(x− y)) =
1

a
δ(x− y).

Now, for fixed y, z ∈ Rn, y 6= z,

|y|z − |z|y =
||y|z − |z|y|
|z − y|

A(z − y)

for some the rotation matrix A depending on y and z. Thus,

δ((|y|z − |z|y) · β) = δ(
||y|z − |z|y|
|z − y|

A(z − y) · β) =
|z − y|

||y|z − |z|y|
δ((z − y) · A−1β).

As the Lebesgue measure on Sn−1 is rotation invariant, we obtain

Ck
#C

kf(x) =∫
Rn

∫
Sn−1

∫
Rn

f(x+ z − y)
|z − y|

||y|z − |z|y|
δ((z − y) · β)w(x− y)|y(x− y − z)|k−n+2dydβdz.
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As δ((z − y) · β) =

∞∫
−∞

e−i[(z−y)·β]rdr, we have

∫
Sn−1

δ((z − y) · β)dβ =

∫
Sn−1

∞∫
−∞

e−i[(z−y)·β]rdrdβ

Letting ξ = rβ and using rotation invariance of Lebesgue measure, we obtain

∫
Sn−1

∞∫
−∞

e−i[(z−y)·β]rdrdβ = 2

∫
Rn

e−i(z−y)·ξ|ξ|1−ndξ.

Therefore,

Ck
#C

kf(x)

= 2

∫
Rn

∫
Rn

∫
Rn

e−i(z−y)·ξf(x+ z − y)w(x− y)
|z − y||y(x− y − z)|k−n+2

||y|z − |z|y|
dydz|ξ|1−ndξ

= 2

∫
Rn

∫
Rn

∫
Rn

ei(x−v)·ξf(v)
|x− v||y(2(x− y)− v))|k−n+2w(x− y)

||y|(v − x+ y)− |v − x+ y|y|
dydv|ξ|1−ndξ

= 2

∫
Rn

∫
Rn

∫
Rn

ei(x−v)·ξf(v)
|x− v||(x− u)(2u− v)|k−n+2w(u)

||x− u|(v − u)− |v − u|(x− u)|
dudv|ξ|1−ndξ,

where we changed variables in z by letting v = x + z − y, and then in y by u = x − y.

Hence,

Ck
#C

kf(x) =

∫
Rn

∫
Rn

ei(x−v)·ξa0(x, v)|ξ|1−nf(v)dvdξ,

where

a0(x, v) = 2

∫
Rn

|x− v||(x− u)(2u− v)|k−n+2w(u)

||x− u|(v − u)− |v − u|(x− u)|
du.
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Finally letting

a(x, v, ξ) = a0(x, v)|ξ|1−n

implies the result.
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6. CONCLUSION AND REMARKS

In this dissertation, the (weighted) cone transform was investigated in terms of its

invertibility, range conditions and microlocal properties. It was argued that in the case

of Compton camera imaging, reducing the set of cones “visible” from a detector (e.g.,

considering only the cones with a given axial direction), which was done in most previous

studies, seems not to be a very good idea (especially in presence of low signal-to-noise

ratio), since this amounts to discarding the already collected data while it could be used for

stabilizing the reconstruction. We thus considered the full data (weighted) cone transform,

and derived various inversion formulas that are applicable for a wide variety of detector

geometries in any dimension. We note that it is common to have a variety of different

inversion formulas for Radon type transforms, which are all the same for perfect data,

but react differently to unavoidable errors in data. Having such a variety is even more

important when dealing with overdetermined data, as in Compton camera imaging.

A closely related to the weighted cone transform is what is called weighted divergent

beam transform. When the weight factor is not present, this is the well studied and im-

portant for the 3D X-ray CT divergent (or cone) beam transform. We thus studied it in

some details, derived various inversion formulas and implemented them numerically in

dimension three.

One of the most important features, in the author’s view, is that the new formulas are

adjustable to a wide variety of (detector) geometries. We introduced the class of such

geometries satisfying what we call in Chapter 4 the Tuy’s condition (its weaker form was

defined as Compton admissibility condition in Chapter 3). Most of the previously derived

formulas required very symmetric geometries, allowing for harmonic analysis tools to be

used. This is also related to the important issue of understanding the geometries that allow
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for (stable) reconstruction. They deserve a much more thorough study, which we plan to

address in future work.

As it was mentioned in the introduction, to avoid being distracted from the main pur-

pose of this text, we assumed that the functions to be reconstructed belong to the Schwartz

space S. However, as in the case of Radon transform (see, e.g. [36, 46]), the results un-

doubtedly have a much wider area of applicability, since the derived formulas can be ex-

tended by continuity to some wider function spaces. Although we haven’t done this in the

current text, this conclusion is confirmed, in particular, by our successful numerical imple-

mentations for discontinuous (piecewise continuous) phantoms. The issues of appropriate

function spaces will be addressed elsewhere.

Practical soundness of the derived inversion techniques is shown by their numerical

implementation in the most interesting dimensions two and three. The implementation of

the 3D inversion algorithms in Chapter 3 is challenging due to the high dimensionality of

the forward data, and the fact that the application of a fourth order differential operator on

the unit sphere to a singular integral is required. We thus develop and apply three different

inversion algorithms and study their feasibility. One should also notice, that the algorithm

of the 3D cone transform inversion in Chapter 4 works much faster than some of the ones

developed in Chapter 3. The reason is that a much coarser mesh (1.8K nodes) on the

sphere suffices, rather than 30K used in Chapter 3.
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APPENDIX A

AN ALTERNATIVE PROOF OF THEOREM 3.3.1

Here we prove Theorem 3.3.1 in an alternative way, which avoids reference to the

relation (B.31).

As in the case of the Radon transform, invariance properties play a key role in the inver-

sion of the cone transform. In fact, due to rotational invariance, it suffices to prove (3.10)

only for the vertical cone transform. Moreover, shift invariance enables us to consider

vertical cones having vertex at the origin only, that is u = 0.

Proposition A.0.1. For any f ∈ S(Rn), we have

π∫
0

Cf(0, en, ψ) sinψdψ =
π

|Sn−1|

∫
Sn−1

Rf(ω, 0)|ω · en|dω. (A.1)

We first prove the proposition for n = 2. By definition of the 2-dimensional cone

transform (3.4), we have

π∫
0

Cf(0, e2, ψ) sinψdψ =

π∫
0

∞∫
0

f(r sinψ, r cosψ) sinψdrdψ

+

π∫
0

∞∫
0

f(−r sinψ, r cosψ) sinψdrdψ.
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Changing variables by letting r → −r and ψ → π − ψ, respectively, we obtain

π∫
0

∞∫
0

f(r sinψ, r cosψ) sinψdrdψ =

π∫
0

0∫
−∞

f(−r sinψ,−r cosψ) sinψdrdψ

=

π∫
0

0∫
−∞

f(−r sinφ, r cosφ) sinφdrdφ.

Therefore,

π∫
0

Cf(0, e2, ψ) sinψdψ =

π∫
0

∞∫
−∞

f(−r sinψ, r cosψ) sinψdrdψ

=

π∫
0

Rf(ω(ψ), 0) sinψdψ

where ω(ψ) := (cosψ, sinψ). Now, the evenness property of the Radon transform implies

that

π∫
0

Rf(ω(ψ), 0) sinψdψ =

π∫
0

Rf(ω(ψ + π), 0) sinψdψ = −
2π∫
π

Rf(ω(φ), 0) sinφdφ.

Hence, we get

π∫
0

Cf(0, e2, ψ) sinψdψ =
1

2

2π∫
0

Rf(ω(ψ), 0)| sinψ|dψ =
1

2

∫
S1

Rf(ω, 0)|ω · e2|dω,

which is the equation (A.1) for n = 2.

In order to prove the proposition for n ≥ 3, we need several auxiliary results.
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Lemma A.0.2. For any f ∈ S(Rn), u ∈ Rn, and p ∈ R,

∫
Sn−1

Rf(ω, p+ u · ω)dω = |Sn−2|
∫

Sn−1

∞∫
|p|

f(u+ rω)(r2 − p2)(n−3)/2rdrdω. (A.2)

Proof. Due to the shift invariance of the Radon transform, it suffices to prove the lemma

for u = 0 only. Let F be the spherical mean-value of f , i.e.,

F (r) =
1

|Sn−1|

∫
Sn−1

f(rω)dω.

The rotational invariance of the Radon transform implies that it commutes with the

spherical mean-value operator. Thus,

F̂ (p) := RF (ω, p) =
1

|Sn−1|

∫
Sn−1

Rf(ξ, p)dξ.

On the other hand, if {ω, ω⊥1 , ..., ω⊥n−1} is an orthonormal system in Rn,

F̂ (p) =

∞∫
−∞

· · ·
∞∫

−∞

F (pω + t1ω
⊥
1 + · · ·+ tn−1ω

⊥
n−1)dt1...dtn−1

=

∞∫
−∞

· · ·
∞∫

−∞

F

(√
p2 + t21 + · · · t2n−1

)
dt1...dtn−1

as F is radial. Letting x = t1ω
⊥
1 + · · ·+ tn−1ω

⊥
n−1, we have

∞∫
−∞

· · ·
∞∫

−∞

F

(√
p2 + t21 + · · · t2n−1

)
dt1...dtn−1 =

∫
Rn−1

F (
√
p2 + |x|2)dx

= |Sn−2|
∞∫
0

F (
√
p2 + t2)tn−2dt.
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Finally, letting r =
√
p2 + t2, we obtain

∞∫
0

F (
√
p2 + t2)tn−2dt =

∞∫
|p|

F (r)(r2 − p2)(n−3)/2rdr

=
1

|Sn−1|

∫
Sn−1

∞∫
|p|

f(rω)(r2 − p2)(n−3)/2rdrdω.

Hence, the result follows.

Corollary A.0.3. Letting p = 0 in (A.2), we obtain

R#Rf(u) =

∫
Sn−1

Rf(ω, u · ω)dω = |Sn−2|
∫

Sn−1

∞∫
0

f(u+ rω)rn−2drdω

= |Sn−2|
∫
Rn

f(u+ x)|x|−1dx = |Sn−2|(|x|−1 ∗ f)(u). (A.3)

(See also [46, Chapter 2, Theorem 1.5].)

Lemma A.0.4. For ψ0 ∈ (0, π/2), ψ ∈ (0, π), and n ≥ 3, we define

g(ψ0, ψ) =
(cos2 ψ0 − cos2 ψ)(n−4)/2

(sinψ)n−3
. (A.4)

Then, for any f ∈ S(Rn),

π−ψ0∫
ψ0

Cf(0, en, ψ)g(ψ0, ψ)dψ =
(cosψ0)

n−3

|Sn−3|

∫
Sn−2

Rf((cosψ0)ω, sinψ0), 0)dω. (A.5)

Proof. The idea of the proof is to exhaust the exterior volume of two opposite cones having

a common vertex in two ways. The first is by taking a family of vertical cones whose

vertices are at the origin and opening angles vary from ψ0 to π − ψ0. The second is to

consider a family of hyperplanes passing through origin and are tangent to the vertical
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cone having vertex at the origin and opening angle ψ0 (See Fig. A.1).

Figure A.1: Geometry of Lemma A.0.4.

Let the functions f and g be given as in the lemma. We can split the integral on the left

hand side of equation (A.5) into two parts to get

π−ψ0∫
ψ0

Cf(0, en, ψ)g(ψ0, ψ)dψ =

π/2∫
ψ0

Cf(0, en, ψ)g(ψ0, ψ)dψ

+

π−ψ0∫
π/2

Cf(0, en, ψ)g(ψ0, ψ)dψ. (A.6)

By the definition of the vertical cone transform (3.3), for the first term on the right
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hand side, then

π/2∫
ψ0

Cf(0, en, ψ)g(ψ0, ψ)dψ

=

π/2∫
ψ0

∞∫
0

∫
Sn−2

f(ρ(sinψ)ω, ρ cosψ)(ρ sinψ)n−2g(ψ0, ψ)dωdρdψ.

If we make a change of variables in the integral with respect to ρ by letting z = ρ cosψ,

we have

π/2∫
ψ0

Cf(0, en, ψ)g(ψ0, ψ)dψ

=

π/2∫
ψ0

∞∫
0

∫
Sn−2

f(z tanψω, z)(z tanψ)n−2g(ψ0, ψ)dω
dz

cosψ
dψ.

Now, if we let r = z tanψ, then dr = z sec2 ψdψ, and since

cos2 ψ0 − cos2 ψ =
sec2 ψ − sec2 ψ0

sec2 ψ0 sec2 ψ
=

tan2 ψ − tan2 ψ0

sec2 ψ0 sec2 ψ
=

r2 − z2 tan2 ψ0

z2 sec2 ψ0 sec2 ψ
,

we have g(ψ0, ψ(r, z)) =
(r2 − z2 tan2 ψ0)

(n−4)/2

(r secψ0)n−4
.

Thus,

π/2∫
ψ0

Cf(0, en, ψ)g(ψ0, ψ)dψ

= (cosψ0)
n−4

∞∫
0

∫
Sn−2

∞∫
z tanψ0

fz(rω)(r2 − z2 tan2 ψ0)
(n−4)/2rdrdωdz.

Then, using the identity (A.2), we obtain the following relation between the cone trans-
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form of f and (n− 1)-dimensional Radon transform of fz.

π/2∫
ψ0

Cf(0, en, ψ)g(ψ0, ψ)dψ =
(cosψ0)

n−4

|Sn−3|

∞∫
0

∫
Sn−2

Rfz(ω,−z tanψ0)dωdz

=
(cosψ0)

n−4

|Sn−3|

∞∫
0

∫
Sn−2

∫
Rn−1

fz(x̄)δ(x̄ · ω + z tanψ0)dx̄dωdz.

Now, since δ(λ(u− a)) = λ−1δ(u− a), we get

π/2∫
ψ0

Cf(0, en, ψ)g(ψ0, ψ)dψ

=
(cosψ0)

n−3

|Sn−3|

∫
Sn−2

∞∫
0

∫
Rn−1

f(x̄, z)δ(x̄ · (cosψ0)ω + z sinψ0)dx̄dzdω. (A.7)

For the second term of the right hand side of (A.6), we change the variable ψ by π−ψ

to get

π−ψ0∫
π/2

Cf(0, en, ψ)g(ψ0, ψ)dψ =

π/2∫
ψ0

Cf(0, en, π − ψ)g(ψ0, π − ψ)dψ

=

π/2∫
ψ0

∞∫
0

∫
Sn−2

f(ρ(sinψ)ω,−ρ cosψ)(ρ sinψ)n−2g(ψ0, ψ)dωdρdψ.
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Again we change variables first by letting z = ρ cosψ and then r = z tanψ to obtain

π−ψ0∫
π/2

Cf(0, en, ψ)g(ψ0, ψ)dψ

= (cosψ0)
n−4

∞∫
0

∫
Sn−2

∞∫
z tanψ0

f−z(rω)(r2 − z2 tan2 ψ0)
(n−4)/2rdrdωdz

=
(cosψ0)

n−4

|Sn−3|

∞∫
0

∫
Sn−2

Rf−z(ω, z tanψ0)dωdz,

where the last equality follows from the identity (A.2). Again, by the definition of the

Radon transform, and δ(λ(u− a)) = λ−1δ(u− a), we get

∞∫
0

∫
Sn−2

Rf−z(ω, z tanψ0)dωdz

= cosψ0

∫
Sn−2

∞∫
0

∫
Rn−1

f(x̄,−z)δ(x̄ · (cosψ0)ω − z sinψ0)dx̄dzdω

= cosψ0

∫
Sn−2

0∫
−∞

∫
Rn−1

f(x̄, z)δ(x̄ · (cosψ0)ω + z sinψ0)dx̄dzdω.

Thus,

π−ψ0∫
π/2

Cf(0, en, ψ)g(ψ0, ψ)dψ

=
(cosψ0)

n−3

|Sn−3|

∫
Sn−2

0∫
−∞

∫
Rn−1

f(x̄, z)δ(x̄ · (cosψ0)ω + z sinψ0)dx̄dzdω. (A.8)

Now, using (A.7) and (A.8) for the first and second terms in the equation (A.6), we
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obtain

π−ψ0∫
ψ0

Cf(0, en, ψ)g(ψ0, ψ)dψ

=
(cosψ0)

n−3

|Sn−3|

∫
Sn−2

∫
Rn

f(x)δ(x · ((cosψ0)ω, sinψ0))dxdω.

Finally, observing that

∫
Rn

f(x)δ(x · ((cosψ0)ω, sinψ0))dx = Rf(((cosψ0)ω, sinψ0), 0),

we have

π−ψ0∫
ψ0

Cf(0, en, ψ)g(ψ0, ψ)dψ =
(cosψ0)

n−3

|Sn−3|

∫
Sn−2

Rf((cosψ0)ω, sinψ0), 0)dω.

Hence, we get the result.

Lemma A.0.5. Assume that n ≥ 3. Let g(ψ0, ψ) be given as in (A.4) and define

h(ψ0, ψ) =
(cos2 ψ0 − cos2 ψ)(n−2)/2

(sinψ)n−3
.

Then,

d

dψ0

π−ψ0∫
ψ0

Cf(0, en, ψ)h(ψ0, ψ)dψ

= (2− n) cosψ0 sinψ0

π−ψ0∫
ψ0

Cf(0, en, ψ)g(ψ0, ψ)dψ.
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Proof. As
∂h

∂ψ0

(ψ0, ψ) = (2− n) cosψ0 sinψ0g(ψ0, ψ), utilizing Leibniz integral rule and

noticing that h(ψ0, π − ψ0) = h(ψ0, ψ0) = 0 gives the result.

Proof of Proposition A.0.1, n ≥ 3. By Lemmas A.0.5 and A.0.4, we have

d

dψ0

π−ψ0∫
ψ0

Cf(0, en, ψ)h(ψ0, ψ)dψ

= (2− n) cosψ0 sinψ0

π−ψ0∫
ψ0

Cf(0, en, ψ)g(ψ0, ψ)dψ

=
(2− n)sinψ0(cosψ0)

n−2

|Sn−3|

∫
Sn−2

Rf(((cosψ0)ω, sinψ0), 0)dω.

Integrating both sides with respect to ψ0 from 0 to π/2, we obtain

π∫
0

Cf(0, en, ψ) sinψdψ

=
n− 2

|Sn−3|

π/2∫
0

∫
Sn−2

Rf(((cosψ0)ω, sinψ0), 0)dω sinψ0(cosψ0)
n−2dψ0

=
n− 2

|Sn−3|

π/2∫
0

∫
Sn−2

Rf(((sinφ)ω, cosφ), 0) cosφ(sinφ)n−2dωdφ,

(A.9)

where we changed the variable by letting φ =
π

2
− ψ0. On the other hand, letting φ =
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ψ0 +
π

2
, we have

π∫
0

Cf(0, en, ψ) sinψdψ

=
n− 2

|Sn−3|

π/2∫
0

∫
Sn−2

Rf(((cosψ0)ω, sinψ0), 0)dω sinψ0(cosψ0)
n−2dψ0

=
n− 2

|Sn−3|

π∫
π/2

∫
Sn−2

Rf(((sinφ)ω,− cosφ), 0)(− cosφ)(sinφ)n−2dωdφ.

Now, due to evenness of Radon transform, we have

Rf(((sinφ)ω,− cosφ), 0) = Rf(((− sinφ)(−ω),− cosφ), 0)

= Rf(−((sinφ)(−ω), cosφ), 0) = Rf(((sinφ)(−ω), cosφ), 0).

Since the Lebesgue measure is rotation invariant, we obtain

π∫
0

Cf(0, en, ψ) sinψdψ

=
n− 2

|Sn−3|

π∫
π/2

∫
Sn−2

Rf(((sinφ)ω, cosφ), 0)(− cosφ)(sinφ)n−2dωdφ.

(A.10)
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Summing (A.9) and (A.10), we conclude that

π∫
0

Cf(0, en, ψ) sinψdψ

=
n− 2

2|Sn−3|

π∫
0

∫
Sn−2

Rf(((sinφ)ω, cosφ), 0)| cosφ|(sinφ)n−2dωdφ

=
n− 2

2|Sn−3|

∫
Sn−1

Rf(σ, 0)|σ · en|dσ.

Finally, application of the formula (3.8) and Γ(z + 1) = zΓ(z) gives the result.

Proof of Theorem 3.3.1. We will use Proposition A.0.1 and the properties of the cone

transform to deduce Theorem 3.3.1. We first remind that the Radon transform commutes

with shifts and rotations, that is R(Tuf)(ω, s) = Rf(ω, s + ω · u) and MARf(ω, s) =

Rf(Aω, s) = R(MAf)(ω, s).

As cone transform also commutes with shifts, Proposition A.0.1 implies that

π∫
0

Cf(u, en, ψ) sinψdψ =

π∫
0

C(Tuf)(0, en, ψ) sinψdψ

=
π

|Sn−1|

∫
Sn−1

R(Tuf)(ω, 0)|ω · en|dω =
π

|Sn−1|

∫
Sn−1

Rf(ω, ω · u)|ω · en|dω.

Next, for β ∈ Sn−1, let A be the rotation matrix such that β = Aen and x = A−1u. As

cone transform commutes with rotations, we further have

π∫
0

Cf(u, β, ψ) sinψdψ =

π∫
0

C(MAf)(x, en, ψ) sinψdψ

=
π

|Sn−1|

∫
Sn−1

R(MAf)(ω, ω · x)|ω · en|dω.
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Due to the rotational invariance of the Radon transform, we have

∫
Sn−1

R(MAf)(ω, ω · x)|ω · en|dω =

∫
Sn−1

MARf(ω, ω · x)|ω · en|dω

=

∫
Sn−1

Rf(Aω, ω · x)|ω · en|dω =

∫
Sn−1

Rf(Aω, ω · A−1u)|ω · A−1β|dω

=

∫
Sn−1

Rf(Aω,Aω · u)|Aω · β|dω =

∫
Sn−1

Rf(ω, ω · u)|ω · β|dω,

The last equality is due to the rotational invariance of the Lebesgue measure on the sphere.

Hence, we obtain (3.10).
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APPENDIX B

SOME SPECIAL FUNCTIONS, OPERATORS AND INTEGRAL TRANSFORMS

B.1 Special Functions

In this section, we collect some facts about well known special functions, such as the

gamma function, Gegenbauer (ultraspherical) polynomials and spherical harmonics. More

information can be found in e.g. [45, 52, 59].

B.1.1 The Gamma Function

The gamma function Γ(z), Re z > 0, is defined via an absolutely convergent improper

integral:

Γ(z) =

∞∫
0

xz−1ex dx. (B.1)

This integral function is extended by analytic continuation to all complex numbers ex-

cept the non-positive integers (where the function has simple poles), as a meromorphic

function.

The following formulas are known:

Γ(n) = (n− 1)! (n is a positive integer), (B.2)

Γ(2z) = π−1/222z−1Γ(z)Γ(z + 1/2) (the duplication formula), (B.3)
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|Sn−1| = 2πn/2

Γ(n/2)
(area formula for the n-sphere). (B.4)

B.1.2 Gegenbauer Poynomials

The Gegenbauer poynomials P λ
l (t), λ ≥ −1/2, of degree l are defined as the orthogo-

nal polynomials on [−1, 1] with weight function (1− x2)λ−1/2. They generalize Legendre

polynomials and Chebyshev polynomials, and are special cases of Jacobi polynomials. We

normalize P λ
l (t) by requiring P λ

l (1) = 1. We then have

1∫
−1

P λ
l (t)P λ

m(t)(1− x2)λ−1/2 dx =


0, l 6= m,

22λ−1(Γ(λ+ 1
2
))2l!

(l + λ)Γ(l + 2λ)
, l = m.

(B.5)

Gegenbauer polynomials are particular solutions of the Gegenbauer differential equation

(1− t2)y′′ − (n− 1)ty′ + l(l + 2λ)y = 0. (B.6)

B.1.3 Spherical Harmonics

A homogeneous polynomial of degree l satisfying the Laplace equation is called a

homogeneous harmonic polynomial of degree l. A spherical harmonic Yl of degree l is the

restriction to Sn−1 of a homogeneous harmonic polynomial of degree l on Rn. There are

N(n, l) = (n+ 2l − 2)
(n+ l − 3)!

l!(n− 2)!
(B.7)
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linearly independent spherical harmonics of degree l, and spherical harmonics of different

degree are orthogonal on Sn−1:

∫
Sn−1

Y m
l (ω)Y p

k (ω) dω =


0, l 6= k,m 6= p

1, l = k,m = p.

(B.8)

The system

{Y m
l (ω)}, l = 0, 1, 2, ..., m = 1, 2, ..., N(n, l)

is an orthonormal basis L2(Sn−1). Thus, every integrable function f on Sn−1 can be ex-

panded into spherical harmonics:

f(ω) ∼
∞∑
l=0

N(n,l)∑
m=1

fl,mY
m
l (ω) (B.9)

where

fl,m := (f, Y m
l ) =

∫
Sn−1

f(ω)Y m
l (ω) dω. (B.10)

An important result on spherical harmonics is the Funk-Hecke Formula:

Theorem B.1.1. Let f(t)(1− t2)(n−3)/2 ∈ L1(−1, 1). Then, for every spherical harmonic

Yl of degree l and ω ∈ Sn−1,

∫
Sn−1

f(ω · σ)Yl(σ)dσ = λlYl(ω), (B.11)

with

λl = |Sn−2|
1∫

−1

f(t)P
(n−2)/2
l (t)(1− t2)(n−3)/2dt,
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where P (n−2)/2
l (t) are the Gegenbauer polynomials.

B.2 The Radon Transform

In this section, we provide the definition, some properties and inversion formulas of

the Radon transform. More information can be found in e.g. [26, 36, 46].

The n-dimensional Radon transform R maps a function f on Rn into the set of its

integrals over the hyperplanes of Rn. Namely, if ω ∈ Sn−1 and s ∈ R,

Rf(ω, s) = Rωf(s) :=

∫
x·ω=s

f(x)dx. (B.12)

In this notation, the Radon transform of f is the integral of f over the hyperplane perpen-

dicular to ω at the signed distance s from the origin.

It is immediate from the definition the Radon transform is even. That is, for any ω ∈

Sn−1 and s ∈ R,

Rf(ω, s) = Rf(−ω,−s). (B.13)

Moreover, it commutes with rigid motions in Rn. Indeed, let Ta be the translation operator

in Rn, defined as Taf(x) = f(x+ a) for a ∈ Rn. We define

Ta(Rf)(ω, s) = Rf(ω, s+ a · ω).

Then,

TaR = RTa. (B.14)

Similarly, let A be an n × n rotation matrix and MAf(x) = f(Ax) be the corresponding
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rotation operator. We define

MA(Rf)(ω, s) := Rf(Aω, s).

Then,

MAR = RMA. (B.15)

The Radon transform is invertible on S(Rn), namely

f =
1

2
(2π)1−nI−αR#Iα−n+1Rf, α < n. (B.16)

Here, R# is the backprojection operator defined as

R#g(x) =

∫
Sn−1

g(ω, x · ω)dω, (B.17)

and Iα, α < n, is the Riesz potential acting on a function f(u) as

(̂Iαf)(ξ) = |ξ|−αf̂(ξ),

where f̂ is the Fourier transform of f . For instance, when n is odd, I1−n is simply the

differential operator

I1−n = (−∆)(n−1)/2

with ∆ being the Laplacian (see e.g. [15, 26, 46]).
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Letting α = 0 yields the following version of the Radon inversion formula.

f(x) =
(2π)1−n

2


(−1)(n−1)/2

∫
Sn−1

(Rf)(n−1)(ω, x · ω)dω, if n is odd,

(−1)(n−2)/2
∫

Sn−1

H(Rf)(n−1)(ω, x · ω)dω, if n is even,
(B.18)

whereH is the Hilbert transform in R defined as the principal value integral

Hg(t) =
1

π
p.v.

∫
R

g(s)

t− s
ds (B.19)

and

(Rf)(n−1)(ω, s) :=
∂n−1

∂sn−1
R(ω, s).

B.3 Funk, Sine and Cosine Transforms

In this section, we collect some facts about auxiliary transforms of integral geometry.

More information can be found in [52].

Definition B.3.1. Let f ∈ C2(Sn−1). The Laplace-Beltrami operator ∆S on Sn−1 is de-

fined by

(∆Sf)(
x

|x|
) = |x|2(∆f̃)(x), (B.20)

where f̃(x) = f(
x

|x|
) is the homogeneous extension of f to Rn, and ∆ is the Laplace

operator on Rn.

The Funk transform integrates a function on the sphere over all great circles (hyper-

plane sections). The formal definition is given below.
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Definition B.3.2. The Funk transform of a function f ∈ C(Sn−1) is defined by

Ff(θ) =

∫
Sn−1∩θ⊥

f(σ)dθσ =

∫
{σ∈Sn−1:d(σ,θ)=π/2}

f(σ)dθσ. (B.21)

Here, d(σ, θ) = arccos(σ · θ) is the geodesic distance between the points σ and θ in Sn−1,

and dθσ stands for the O(n)-invariant probability measure on the (n − 2)-dimensional

sphere Sn−1 ∩ θ⊥.

Several inversion formulas for the Funk transform exist in the literature [13,15,26,49,

52]. We use the following inversion formula.

Theorem B.3.3 ( [52]). Let g = Ff , f ∈ C∞even(Sn−1), n ≥ 3. If n is even, then

f = cP (∆S)Fg, c =

√
π

Γ2((n− 1)/2)
, (B.22)

where

P (∆S) = 41−n/2
n/2−2∏
k=0

[−∆S + (2k + 1)(n− 3− 2k)] . (B.23)

If n is odd, then

f(ω) = Q(∆S)

 2n−2Γ(n
2
)

(n− 2)!πn/2

∫
Sn−1

g(σ) log
1

|ω · σ|
dσ

+
Γ(n

2
)

2πn/2

∫
Sn−1

g(σ)dσ, (B.24)

where

Q(∆S) = 4(1−n)/2
(n−3)/2∏
k=0

[−∆S + (2k + 1)(n− 3− 2k)] . (B.25)
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Definition B.3.4. The cosine transform of a function f ∈ C(Sn−1) is defined by

Cf(ω) =
1

|Sn−1|

∫
Sn−1

f(σ)|σ · ω|dσ, (B.26)

for all ω ∈ Sn−1.

The cosine transform is a continuous bijection of C∞even(Sn−1) to itself (see e.g. [14],

[52]).

Theorem B.3.5. [52] Let g = Cf , f ∈ C∞even(Sn−1). Then, if n is odd,

f(ω) = Pr(∆S)

−2π(2−n)/2

Γ(n
2
)

∫
Sn−1

g(σ) log
1

|ω · σ|
dσ

+
Γ(n+1

2
)

π(n−1)/2

∫
Sn−1

g(σ)dσ, (B.27)

with r = (n+ 1)/2, and if n is even,

f = cPr(∆S)Fg, c = − π2n−1

Γ(n− 1)
, (B.28)

with r = n/2, where F is the Funk transform and

Pr(∆S) = 4−r
r−1∏
k=0

[−∆S + (2k − 1)(n− 1− 2k)] .

The following identity (see [19]) provides a relation between the cosine and Funk

transforms.

(∆S + n− 1)C = F, (B.29)

Definition B.3.6. The sine transform of a function f ∈ C(Sn−1) is defined by

Sf(ω) =
1

|Sn−1|

∫
Sn−1

f(σ)(1− |σ · ω|2)1/2dσ, (B.30)
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for all ω ∈ Sn−1.

It is known that (see [52, p. 284, (5.1.17)]),

S =
π

|Sn−1|
CF. (B.31)
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