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ABSTRACT 

 

Theory predicts that carbon nanofibers (CNFs), processed via carbonizing 

polymeric nanofibers, as down-sized version of carbon fibers (CFs) should be significantly 

stronger than CFs, due to size-dependent defects in CFs such as skin-core radial 

inhomogeneity. To close the gap between the predictions and experimentally achieved 

strength of CNFs, the processing-microstructure-properties relationship in CNFs was 

studied. The CNFs in my study were fabricated by thermal stabilization and carbonization 

of electrospun polyacrylonitrile (PAN) nanofibers which contain CNTs inclusions. In this 

research the formation of graphite-like structures (turbostratic domains) within CNFs was 

promoted by adding CNTs to the precursor in a process known as templated graphitization, 

in which the presence of CNTs can facilitate the arrangement of carbon atoms, obtained 

as a result of the carbonization of PAN, into a graphite-like structure (sp2 carbon bonds) 

similar to what exists in CNTs. It is further demonstrated that the templating effect of 

CNTs is more pronounced when PAN chains are aligned with each other and with CNTs, 

as was achieved in this research by hot-drawing the precursors. The existence of CNTs 

effectively promotes the formation of highly ordered polymer interphase.  

The study on the microstructure and mechanical properties of CNFs confirms that 

the modification of the precursor microstructure, such as enhanced chain alignment, can 

be maintained during carbonization, and indeed leads to enhanced graphitic alignment. 

Based on the MEMS-based nano-mechanical tension tests on CNFs, the combined effect 

of precursor hot-drawing and graphitic templating effect resulted in CNFs with tensile 
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strength and modulus of 6.9 GPa and 250 GPa, respectively, which are the largest values 

reported up to date for this type of material. Moreover, the multifunctional properties of 

electrospun CNFs, including piezoresisitivty and electrical conductivity, were restudied 

both experimentally and via continuum models, demonstrating the strong correlation 

between microstructure modification and properties improvement. 

In summary, a clear strategy for developing low-cost high performance 

CNF/CNTs hybrid nanofibers was obtained based on new understanding of the load 

bearing mechanism within CNF. These nanofibers can be used as the multifunctional 

building blocks for a host of applications, including aerospace and automotive industry. 
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NOMENCLATURE 

 

fc Alignment of crystallite domains 

σ Angle between fiber axis and backbone direction 

α Angle between nitrile group and backbone direction 

f Alignment of polymer chain 

fSWNTs Alignment of SWNTs in hybrid nanofiber 

IHH Raman intensity in HH configuration 

IVV Raman intensity in VV configuration 

Tg Glass transition temperature 

λ Hot-drawing ratio 

di Initial fiber diameter 

df Final fiber diameter 

IHH Raman intensity in HH configuration 

IVV Raman intensity in VV configuration 

Vf Volume fraction 

E Modulus 

La Crystallite size 

λL Laser wavelength in Raman spectroscopy 

ID Raman intensity from D-peak 

IG Raman intensity from G-peak 

f002 Herman’s orientation factor of graphitic crystallite 
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ρ Electrical resistivity 

ε Strain 

υ Poisson’s ratio 

m Mass of electron 

φ Electrical potential 

I Electrical current 

J0 Current density 

P Power input 

CFs Carbon fibers 

PAN Polyacrylonitrile 

DC Direct current 

CNFs Carbon nanofibers 

PS Polystyrene 

MEMS Microelectromechanical system 

NFES Near-field electrospinning 

PEO Polyethylene oxide 

PCL Polycaprolactone 

PVDF Polyvinylidene difluoride 

PPTA Poly (p-phenylene terephalamide) 

CNTs Carbon nanotubes 

CQDs Carbon quantum dots 

MWNTs Multi walled carbon nanotubes 
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PE Polyethylene 

PP Polypropylene 

HOG Highly ordered graphitic 

PPy Polypyrrole 

EMI Eectromagnetic interference 

SE Shielding efficiency 

SWNTs Single walled carbon nanotubes 

DMF Dimethylformamide 

DSC Differential scanning calorimeter 

XRD X-ray diffraction 

FWHM Full-width at half maximum 

FT-IR Fourier-transform infrared spectroscopy 

WAXD Wide angle X-ray diffraction 

DIC Digital image correlation 

SAED Selected area electron diffraction 

SEM Scanning electron microscopy 

TEM Transmission electron microscopy 

FIB Focused ion beam 

PAN-co-MAA Polyacrylonitrile-co-Methacrylic Acid 

GNP Graphite nano-platelets 

TRGO Thermally reduced graphene oxide 

f-SWNTs Functionalized single walled carbon nanotubes 
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HO Hghly ordered 

EELS Electron energy loss spectroscopy 

GF Gage factor 

R Electrical resistance 
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1. INTRODUCTION* 

 

Developing carbon filament through carbonizing cotton threads or bamboo slivers 

for light bulb dates back to late 19th century. However, carbon fibers (CFs) as promising 

materials for mechanical reinforcements in composites and structural light-weighting were 

introduced as late as 1963 by researchers in England 1-2. One of the first commercialized 

CFs with unprecedented mechanical strength at the time was developed by carbonizing 

polyacrylonitrile (PAN) by Toray Industries, Inc. in Japan in 1971, branded as T300, with 

tensile strength of 2.5 GPa, which was further improved to 3.5 GPa through modifications 

in material systems and fabrication process3. Since then and in the past 50 years of 

development, the mechanical strength of CF has evidently improved from 2.5 GPa to 7.0 

GPa for T1100G from Toray 4.  

The development of high strength PAN based CF opened up the opportunity of 

utilizing CF and its composites as the next-generation of structural materials in aerospace 

industry to substitute traditional metal based materials. The most important advantage of 

CF reinforced composite materials over traditional materials is its high specific 

mechanical properties, mainly strength and modulus, which can be utilized to reduce the 

weight of load bearing components, as a means to improve performance metrics such as 

fuel efficiency in aerospace and automotive industry, and maneuverability in aviation. 

                                                 
* Part of this section is reprinted with permission from "High-performance structural fibers for advanced 

polymer matrix composites”, by National Research Council, 2005, The National Academies Press, 

Washington, DC. 
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Driven by the benefits of CFs for structural light-weighting, increasing the strength of CFs 

and their composite materials has been the focus of research in both academia and industry 

for several decades 5-8. However, as shown in Fig.1.1 9, restricted by the precursor 

development and fabrication processes, the mechanical strength of CF seems to have 

reached a plateau 10-11.   

 

 

 

Figure 1.1. Improvement of the mechanical properties of commercial PAN-based 

and mesophase pitch-based carbon fibers from the period prior to 1990 to 2003.9 

Reprinted from [9] with permission. 
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1.1 Fabrication of carbon fiber and its mechanical property size effect* 

The carbon fibers with diameters of 5-10 µm are fabricated via thermal 

stabilization and carbonization of polymers, such as lignin 12, PAN homopolymer or 

copolymers and petroleum pitch 2. The CFs with highest strength are all based on PAN 

copolymers precursors. Compared to PAN homopolymer, PAN copolymers allow for 

higher chain alignment and crystallinity in the precursor fiber due to reduced polarity of 

non-PAN co-monomers, which translates into higher graphitic alignment and improved 

mechanical performance of CFs. The lowered stabilization temperature of PAN 

copolymer will also facilitate the mechanical performance improvement in CFs by 

reducing the possibility of thermal degradation during processing. Therefore, PAN 

copolymers are the most abundantly used precursors for high strength CFs 13-14.  

Despite the high strength of PAN-based carbon fibers with tensile strength values 

of as high as 7 GPa for Toray T1100G, studies on CFs point to strong anisotropic strength 

size effects, in which the strength of CFs is much more sensitive to diameter than length 

14-17. This anisotropic size effect can partly be explained in terms of a size-dependent radial 

inhomogeneity in PAN-based CFs, which can severely compromise their strength 11, 17-19. 

The radial inhomogeneity, also known as skin-core inhomogeneity, refers to the specific 

morphology of PAN-based CFs in which the skin is distinctly more graphitic than the core 

17. This size (diameter)-dependent phenomena occurs as a result of low oxygen diffusion 

                                                 
*  Part of this section is reprinted with permission from "Carbon nanotube reinforced small diameter 

polyacrylonitrile based carbon fiber." by H.G. Chae, Y.H. Choi, M. L. Minus, S. Kumar. Composites science 

and technology. 2009;69(3-4):406-413. 
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during stabilization to the core of the fiber 11, 15. Therefore, decreasing the average 

diameter of the PAN precursor fiber could effectively lower the extent of the structural 

inhomogeneity in CF, which should in principle improve the mechanical strength of CF 

11, 20.  

To develop high performance CFs, the gel-spinning method was developed to 

fabricate precursor polymer fiber 21, in which spinneret is used to squeeze diluted high 

molecular weight polymer solution to gel-like filament. This is followed by drawn the 

precursor fibers to align the polymer chain with the drawing direction. Drawing is a crucial 

step to achieve high mechanical performance fibers as it aligns the polymer chain and 

increasing crystallinity of the drawn fiber. Along with fiber microstructure evolution, there 

is an evident fiber thinning during the drawing process. While drawing the precursor is 

required to align polymer chains, excessive drawing can induce defects (such as chain 

scissor) in the fiber or even break them during the drawing process. This fact limits the 

minimum achievable precursor fiber diameter which can be achieved by drawing the 

precursor. Therefore, in traditional precursor fabrication methods such as gel-spinning, 

there exists a lower limit for the diameter of CF, which is about 3-5 µm. Even in some 

novel approaches developed by Dr. Kumar’s group, known as island-in-sea bi-component 

gel-spinning method, the minimum achievable CF diameter is still about 1 µm 20. For the 

CF with diameter ranging from 1 µm to 11 µm, strong mechanical size effect has been 

experimental observed, Fig.1.2 20. Hence, to achieve high strength of CF through 

decreasing its diameter, new precursor fabrication method needs to be introduced. 
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To address the above limitations, carbon nanofibers (CNFs) with their submicron 

diameter (100-300 nm) have increasingly attracted attention from researchers in different 

areas especially in the past decade 22-24, for their higher structural homogeneity, 

multifunctional properties, high surface to volume ratio and low defect density 18, 22. CNFs 

have been fabricated through different methods, such as carbonization of electrospun PAN 

precursor nanofibers 18 and vapor grown fabrication 25-26. Among these methods, 

electrospinning is an effective method for manufacturing polymer fibers with diameter in 

nanometer scale and provides an effective platform to modify molecular structure of 

polymers 27, required to improve mechanical strength 28, electrical 29 and thermal 

conductivity 30 of nanofibers. Electrospun CNFs are fabricated through three stages: Stage 

 

Figure 1.2. Effect of CFs and CF/CNTs diameter on its mechanical properties.20 

Reprinted from [20] with permission. 
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I: electrospinning to fabricate precursor PAN nanofibers; Stage II: stabilization of PAN 

nanofibers and Stage III: carbonization of PAN nanofibers 31-32. More details of the 

processing steps of CNFs is shown in Fig.1.3.  

After obtaining PAN precursor nanofibers in stage I, stabilization process is 

applied to transfer the PAN precursor from linear atomic structure to thermally stable 

ladder structure (stage II).  Stabilization is typically performed at the temperature range of 

240-300 ºC in air. During this process, complicated chemical reactions happens, such as 

oxidation, dehydration and cyclization, which requires diffusion of oxygen from 

environment into core of fiber to participate into the reaction and release of the generated 

heat to the environment. Therefore, care needs to be taken to prevent the local overheating 

 

Figure 1.3. Fabrication process of CNFs with electrospun PAN precursor nanofibers. 
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or incomplete stabilization limited by oxygen diffusion of the PAN precursor fibers, which 

will adversely affect the mechanical properties of the obtained CFs 14, 33-34. 

The stabilized PAN fibers are then carbonized at temperature ranges from 900 ºC 

to 1600 ºC under inert atmosphere in stage III. During this process, the non-carbon atoms 

within the fiber are eliminated and the cyclized PAN chains will be cross-linked to form 

turbostratic carbon, which is a kind of imperfect graphitic structure. In turbostratic 

structure, the adjacent atomic planes are shifted with respect to each other, therefore the 

inlayer distance increases from 0.335 nm for perfect graphite to > 0.345 nm. Typically, 

after carbonization process, the carbon content in CNF exceeds 90%.   

Classified based on the trajectory of the jet, the electrospinning process can be 

divided into two major categories, regular electrospinning 35 and near-field 

electrospinning 36, as discussed in the subsequent sections. 

1.2 Regular electrospinning process* 

Although electrospinning was first discovered by Rayleigh in 1897, it has become 

more attractive for researchers in recent decades due to its capability in fabricating 

nanomaterials, especially in generating ultrafine polymer nanofiber with diameters down 

to several tens of nanometers 35, 37.  As shown in Fig.1.4 in electrospinning a high DC 

voltage applied between a polymer solution source and a grounded target generates 

                                                 
* Part of this section is reprinted with permission from "Electrospinning of nanofibers: reinventing the 

wheel?" by D. Li, Y. Xia. Advanced Materials. 2004;16 (14):1151-1170 and "Molecular orientation and 

mechanical property size effects in electrospun polyacrylonitrile nanofibers" by M. Naraghi, S.N. Arshad, 

I. Chasiotis. Polymer. 2011;52 (7):1612-1618. 
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electrostatic forces on the charged solution, leading to the formation of a solution jet, jet 

stretching and thinning, hence, polymer fiber with submicron diameters form on the 

collecting target. During the electrospinning process, as the high voltage (10s kV) is 

applied to the syringe needle, the surface of the polymer solution droplet held by its own 

surface tension gets electrostatically charged at the needle tip 38. Then, electrostatic forces, 

including mutual electrostatic repulsion between electric charges on surface of the jet and 

Coulombic force applied to the induced charges of the jet by the applied electric field, act 

on the solution droplet to stretch it to form a conical shape, known as Taylor cone. By 

increasing the electric field to a critical value, the electrostatic force will overcome the 

 

Figure 1.4. Schematic diagram of electrospinning experimental setup.37 Reprinted 

from [37] with permission. 
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surface tension of polymer solution and form solution jet ejected towards the collector 

surface. During the travel of solution jet, the electrostatic forced induce solution jet 

stretching, and solvent evaporates, leading to the formation of polymer nanofiber on the 

target.  

The microstructure and morphology of polymer precursor nanofibers can be 

modified to some extent by tuning the electrospinning parameters 39-42. Typically, the 

electrospinning parameters are separated as two categories, which are solution parameters 

and processing parameters. Molecular weight of polymer, concentration, viscosity, surface 

tension and electrical conductivity of polymer solution are all in the first category, and 

they all play important roles in controlling the morphology of the electrospun nanofibers. 

The applied voltage, flow rate, collector, distance between syringe tip and collector and 

environment are among the processing parameters which also control the microstructure 

and morphology of nanofibers. 

To modify the microstructure of electrospun polymer nanofiber, M. Naraghi, et al. 

27 demonstrated an evident improvement in PAN nanofiber Young’s modulus through 

applying longer electrospinning distance. This was attributed to lower solvent content of 

as-electrospun fibers which had travelled longer distances, as shown in Fig.1.5, allowing 

them to maintain higher chain alignment. Therefore, the properties of CNF fabricated from 

the electrospun PAN nanofiber is highly dependent on the electrospinning parameters and 

polymer solution properties 11, 43. Apart from polymer chain alignment, crystallinity of as-

electrospun polymer nanofiber can be tailored from 0 % (amorphous fiber) to 50% (semi-
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crystalline fiber) through controlling the applied voltage, feed rate and different collector 

systems 44. 

 

Apart from the effect on microstructure of electrospun polymer nanofiber, 

electrospinning parameters also play an important role in determining the morphology of 

the obtained nanofiber. For example, through changing the surface tension and 

viscoelastic properties of the polymer solution, there is transition from smooth fiber to 

beaded fibers for the as-electrospun nanofibers 45. By controlling the humidity of the 

environment, Casper, et al, demonstrated that the surface morphologies of polystyrene 

(PS) fibers could be modified to exhibit porous surface 46. Therefore, regular 

 

Figure 1.5. Relationship between mechanical property size effects and 

electrospinning parameters.27 Reprinted from [27] with permission. 
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electrospinning has been demonstrated to be a versatile approach to fabricate polymer 

nanofibers with various microstructures and morphologies, which makes it to be a 

promising method for developing nanomaterials in various fields. 

1.3 Near-field electrospinning process* 

In the most common form of electrospinning, the polymer solution jet undergoes 

a whipping motion, often referred to as bending instability 47 . This instability, caused by 

repulsion between induced electrostatic charges on the jet, is considered to be one of the 

most critical mechanisms in drawing and thinning the polymer solution jet, to generate 

nanofibers and align the polymer chains within nanofibers 27, 48 . However, the whipping 

motion is stochastic in its nature, as it is driven by the distribution of induced charges 

along the jet. Thus, it often introduces some randomness with a rather wide distribution in 

the process output parameters, such as chain alignment within nanofibers, diameter 

distribution, physical properties of nanofibers, nanofiber alignment and position along a 

target 27, 49-50. The poor controllability over the output parameters, inherent to conventional 

electrospinning, is a roadblock to the application of electrospun nanofibers for some 

applications such as microdevices 51 and carbon-based MEMS 52 which require precise 

positioning of electrospun nanofibers 53-54.  

                                                 
* Part of this section is reprinted with permission from "Continuous near-field electrospinning for large rea 

deposition of orderly nanofiber patterns" by C. Chang, K. Limkrailassiri, L. Lin. Applied physics letters. 

2008;93:123111. 
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To overcome these limitations, near-field electrospinning (NFES) process was 

developed which allows for precision positioning of nanofibers by capturing the 

electrospinning jet before the bending instability has initiated 36, 53-55. NFES method has 

been applied to fabricate nanofibers from different polymers, such as polyethylene oxide 

(PEO) 56, polycaprolactone (PCL) 57, polyvinylidene difluoride (PVDF) 58, with diameters 

ranging from 30 nm – 10 µm. While in conventional electrospinning, major thinning of 

the jet occurs during the bending instability, the formation of nanofibers in NFES often 

relies on smaller initial polymer solution jet and employing lower solution concentrations 

with considerably lower viscosities and thus increases drawability 55, as shown in Fig.1.6. 

To further promote the application of near-field electrospinning in fabricating nanofiber 

 

Figure 1.6. Comparison between regular electrospinning and continuous near-field 

electrospinning polymer solution jet.55 Reprinted from [55] with permission. 
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in large scale, various approaches had been developed, such as continuous 55 and multi-

nozzle NFES 54. In the continuous NFES, a sharp tungsten probe is controlled by 

manipulator to stretch a thin strip of polymer solution from the droplet to form a local high 

electric charge intensity to initiate the electrospinning process under relatively low electric 

field 55-56. The nanofibers fabricated via NFES have been used in a variety of applications 

36, as conductive electrode 59, energy harvester devices 51 and flexible wearable devices 60.   

1.4 Post-processing of as-electrospun nanofiber* 

Although electrospinning method is an effective method to fabricate PAN 

precursor nanofiber, the method offers relatively limited opportunities in controlling the 

microstructure of polymeric precursors, comparing to traditional spinning method. For 

instance, the polymer chain alignment and crystallinity in as-electrospun PAN nanofiber 

is much lower than the traditional PAN precursor fiber from gel-spinning method 43, which 

evidently lowers the mechanical performance of the polymer nanofiber. Upon 

carbonization, the lower polymer chain alignment and crystallinity lowers the alignment 

of graphitic domain along the fiber axis with larger size in obtained CNFs, therefore 

compromising CNF’s tensile strength. Comparing with traditional CFs from gel-spun 

PAN precursor fibers with tensile strength and modulus of 4.7 GPa and 299 GPa 34, the 

highest averaged tensile strength and modulus of  CNFs obtained by carbonizing as-

electrospun PAN precursor nanofibers are only 3.5 GPa and 172 GPa, respectively 18. 

                                                 
* Part of this section is reprinted with permission from "Characterization of the adhesion of single-walled 

carbon nanotubes in poly(p-phenylene terephthalamide) composite fibers" by L. Deng, R.J. Young, S. 

Zwaag, S. Picken. Polymer. 2010;51(9):2033-2039. 
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Therefore, engineering the microstructure of as-electrospun precursor nanofibers, 

especially aligning polymer chain, is a key requirement to further improve the strength 

and modulus of electrospun CNFs 11.  

There has been some efforts to enhance chain alignment in as-electrospun 

nanofibers by controlling the electrospinning parameters. For instance, through increasing 

the electrospinning distance, the alignment of polymer chain in as-electrospun PAN 

nanofiber has been effectively improved due to reduced residual solvent for nanofiber with 

longer electrospinning distance 27. Moreover, Dr. Dzenis and co-works 61 found that 

reduction of electrospun fiber diameter from 2.8 µm to 100 nm results in an evident 

increase in modulus and toughness, due to the increased chain alignment and lowered 

crystallinity within the fibers. Despite all the efforts made, the alignment of as-electrospun 

nanofiber is still much lower than the polymer fiber fabricated by regular spinning process 

with post-drawing treatment. For instance, the Herman’s orientation factor and 

crystallinity of as-electrospun PAN nanofiber are 0.5 and 16.8% 27, which are much lower 

than 0.89 and 50% for gel-spun PAN fibers 62. Therefore, post-electrospinning treatments, 

such as mechanical drawing of the nanofibers, should be implemented to further improve 

the polymer chain alignment and therefore increasing its mechanical properties. In 

polymer nanofibers, the post-electrospinning drawing needs to be applied under relatively 

high temperatures, typically higher than the glass transition temperature of the polymer, 

to enhance the mobility of the polymer chains and facilitate chain alignment via drawing. 

Hence, it may be referred to as hot-drawing. 
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Hot-drawing of electrospun nanofibers can be used to align the polymer chains and 

nano-particles inclusions embedded in the polymer 63-66. For instance, as shown in Fig.1.7, 

by increasing the hot-drawing ratio (final length/initial length of fiber), there is a 

continuous increase in the chain alignment of poly (p-phenylene terephalamide) (PPTA) 

fibers 64. Moreover, aligning the chains enhances the chain packing, thus, it facilitates the 

crystallization of the polymer fiber. Therefore, it often leads to enhanced degree of 

crystallinity, crystal size and crystalline phase alignment 67-68. Apart from the chain 

alignment, hot-drawing can also reduce the structural defects inside the fiber 69 and fiber 

surface defects 63 through smoothing nanofiber surface, evaporating residual solvent and 

reducing voids during the reorientation of polymer chains.  

 

Figure 1.7. Effect of hot-drawing ratio on polymer chain alignment.64 Reprinted from 

[64] with permission. 
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State-of-the-art as-electrospun CNFs often suffer from poor graphitic alignment 

due to the lack of polymer chain alignment of the precursor nanofiber. That is because a 

prerequisite for graphitic alignment in CNFs is the alignment of polymeric chains in the 

PAN nanofiber precursor 7, 70, while as mentioned earlier, as electrospun nanofibers often 

have low degree of chain alignment, mainly due to fast solvent evaporations during 

electrospinning, which suppresses chain mobility 27. Thus, the high in-plane strength of 

sp2 C-C bonds provides ample opportunities to enhance the strength of CNFs by aligning 

the graphitic domains with the fiber axis 8, as shown in Fig.1.8. Hence, hot-drawing can 

be applied to as-electrospun PAN nanofibers as a post-processing treatment to enhance 

the performance of the fabricated CNFs 21, 68, 71.  

 

Figure 1.8. Schematic description of structural evolution of CNF fabricated by hot-

drawn electrospun PAN precursor nanofibers.  
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Previous efforts have been made in our group to enhance chain alignment in PAN 

nanofibers as precursors for CNFs 43. In this regard, hot-drawing has been successfully 

applied to the as-electrospun PAN nanofiber ribbons, which effectively enhances polymer 

chain alignment and crystallinity. The microstructure evolution within the precursor 

nanofiber has been preserved to some extent during the following stabilization and 

carbonization process, therefore evident graphitic structure alignment improvement has 

been achieved in hot-drawn CNFs. Based on the nano-mechanical testing of individual 

CNF, aligned graphitic structures provide 71% and 111% improvement in modulus and 

strength respectively. Despite the fact the previous work clearly demonstrates the 

contribution of hot-drawing of precursor to mechanical properties of CNFs, the details of 

hot-drawing in the prior work need to be revisited as excessive hot-drawing led to 

structural damage in CNFs, partly canceling out the enhancements in CNF strength caused 

by precursor hot-drawing. Moreover, the prior work primarily include carbonization at 

rather low temperatures (~1100°C), where the turbostratic domains are at their early stages 

of growth. 

1.5 Templating graphitization of CNTs in CF* 

In recent decades, the carbon nanomaterials, such as fullerene, graphene, carbon 

nanotubes (CNTs) and carbon quantum dots (CQDs) have received increasingly attention 

                                                 
* Part of this section is reprinted with permission from "Novel fluorescent carbonic nanomaterials for sensing 

and imaging" by A. P. Demchenko, M.O. Dekaliuk. Methods and applications in fluorescence. 

2013;1:042001 and "High resolution transmission electron microscopy study on polyacrylonitrile/carbon 

nanotube based carbon fibers and the effect of structure development on the thermal and electrical 

confuctivities" by B. A. Newcomb, L.A. Giannuzzi, et al. Carbon. 2015;93:502-514. 
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due to their superior chemical, physical, mechanical and thermal properties 72, as shown 

in Fig.1.9. Carbon nanotubes (CNTs) are special allotropes of carbon with a cylindrical 

nanostructure. Based on the numbers of the rolled layers of graphene, CNTs are typically 

divided into two types: single-walled carbon nanotubes, and multi-walled carbon 

nanotubes. The CNTs were produced by Iijima in 1991 through applying arc-discharge 

evaporation method 73. Since then, the outstanding physical properties of CNTs had been 

successfully demonstrated by researchers, such as outstanding mechanical properties, 

electrical conductivity and thermal conductivities, which makes CNTs to be a promising 

materials in various fields, For instance, the modulus and fracture strength of individual 

MWCNTs was experimentally measured to be about 1 TPa and >100 GPa 74, respectively. 

 

Figure 1.9. Schematic diagram of various carbon nanomaterials.72 Reprinted from 

[72] with permission. 
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The electrical resistivity of carbon-arc method fabricated MWCNTs is in the range from 

6×10-2 Ω m to 5×10-8 Ω m, from semi-conducting to metallic 75. The thermal conductivity 

of individual MWCNTs is 300 ± 20 W/mK 76. To benefit from the outstanding physical 

properties of CNTs in larger scales, different CNTs based nanocomposite materials had 

been developed by researchers in different fields. 

Apart from directly utilizing the excellent physical properties of CNTs themselves, 

the existence of nanofillers in hot-drawing process, such carbon nanotubes 68, reduced 

graphene oxide 66, carbon nanochip 67, is shown to have an evident influence on the 

microstructure of the polymer fiber, such as the crystallinity, polymer chain alignment, 

and therefore its properties 64, 66. Several approaches have been devised and successfully 

implemented to develop polymer-based CNT-reinforced nanocomposites, including 

electrospinning 77, gel spinning 71, and melt spinning 78. In this regard, electrospinning 

provides a platform to add nanoparticles, such as CNFs to enhance the morphology of 

polymeric nanofibers. In addition to the direct reinforcement effect, CNTs are found to 

drastically alter the morphology of polymers especially the semicrystalline ones 79, such 

as Nylon 66 80, polyethylene (PE) 81, polypropylene (PP) 82, or polyacrylonitrile (PAN) 83. 

For instance, CNTs, can nucleate crystallization of polymers from a polymer solution, and 

lead to formation of extended polymer chains in a shear flow 71, 84-85. Zhang et al 86, showed 

existence of CNTs will perform as heterogeneous nucleating agents for the formation of 

polypropylene (PP)  transcrystals perpendicular the nanotube fiber axis, which brings an 

effective mechanical properties improvement. This effect is likely due to epitaxial 

interactions between CNTs and polymer backbone 16, 68, and the comparable length of C-
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C bond in polymer backbones 71 84. The high surface to volume ratio of CNTs significantly 

enhances the efficiency of this method 84. By controlling solution properties and shear 

flow, thickness of the extended chain layer on CNTs can be as large as ~10 nm 87. For 

instance, the addition of CNTs to PAN micro and nanofibers, via respective gel spinning 

or electrospinning, and shear and elongational flows in these processes, led to considerable 

chain alignment 16, 71, 87. Stacking of extended chains, facilitated by epitaxial interactions, 

can also reduce void formation 87. 

Recent studies on polyacrylonitrile (PAN) fibers with CNT inclusions suggests 

that the presence of CNTs in PAN precursor will assist in graphitization during the 

carbonization 88-89. For example, Guo et al 90, had demonstrated the strong interaction 

between matrix PAN and CNTs in the PAN/CNTs hybrid composite film, moreover, the 

existence of CNTs effective increases the crystallinity of PAN matrix. The enhanced 

graphitization is partly caused by the suppression of chain relaxation due to reinforcing 

effect of CNTs, which enhances PAN cyclization during thermal stabilization process 16, 

91. Moreover, CNTs act as templates to guide graphitization 70, 87, 91. As shown in Fig.1.10, 

the existence of CNTs in CF will facilitate the formation of highly ordered graphitic 

structure (HOG) with outstanding mechanical and electrical properties, therefore bringing 

an increase in the overall mechanical and electrical properties of CF/CNTs hybrid fiber 70, 

89. Hence, carbonization of PAN in molecular vicinity of CNTs/graphene increases 

graphitic order and the mechanical reinforcing effect of CNTs 11, 16, 92-93.  
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Similarly, inclusions of graphene nanoparticles in PAN precursors enhance 

graphitization via templating effect, as observed in reactive force field molecular dynamic 

simulations of carbonizing PAN 91. Hence, carbonization of PAN in presence of 

CNTs/graphene increases graphitic order, while it will reduce the density of microscale 

defects (voids), and together with mechanical reinforcing effect of CNTs 16, 92-93, will 

enhance the mechanical properties of hybrid structures 11. Moreover, the carbonization 

temperature is also an important parameter influencing the graphitic structure 

concentration, therefore mechanical performance 18, electrical conductivity 94 and 

piezoresistive effect 95 of CNF. 

 

Figure 1.10. (a) Schematic description of carbon fibers with turbostratic carbon 

matrix, templated graphitic structure and CNTs and (b) TEM image of HOG 

structure.88 Reprinted from [88] with permission. 
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1.6 Multifunctional applications of CNF 

Apart from the high potential mechanical properties of electrospun CNF, other 

physical properties of them have also been studied, such as electrical conductivity, thermal 

conductivity. For example, the electrical conductivity of individual carbon nanofiber is 

measured to be 2 S/cm for 973 K carbonization and will be increased to 7 S/cm for 1873 

K carbonization 96. The thermal conductivity of CNFs is measured to be 160 W/mK based 

on T-type individual nanofiber thermal conductivity measurement 97. These properties and 

the coupling between the fields allows for the application of CNFs not just as structural 

elements but also as multifunctional components. 

1.6.1 Energy storage 

The application of CNFs and its composite in energy storage area has been widely 

investigated. Due to its outstanding electrical conductivity, large surface areas and 

structural stability, CNFs is thought to be a promising electrode materials to substitute the 

traditional graphite based electrode. Bonino, et al 98 fabricated the composite carbon-tin 

oxide nanofibers to be used as the anodes in lithium-ion battery, which exhibits higher 

discharge capacities than pure CNF and theoretical capacity of graphite. To further 

increase the surface area of the electrode, Ji, et al 99 developed porous CNF through 

resolving the SiO2 nanoparticles embedded in the electrospun CNF/SiO2 hybrid 

nanofibers with acid. The porous structure of the CNF provides an effective increase of 

the surface area of the electrode, therefore makes it to be a promising material for anodes 

in lithium-ion battery. Apart from the porous CNFs, hollow CNFs were also developed to 
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be applied as freestanding electrodes with better mechanical performance with large 

surface areas 100.  

1.6.2 Sensing 

The external stimuli induced property change of CNFs, especially electrical 

conductivity change, has been exploited to develop CNFs base sensors. The CNFs based 

electrical conductive elastomer nanocomposite was developed by Zhu, et al 101, which 

exhibits about 2-3 orders of magnitude in reversible resistivity at 120% strain. Moreover, 

CNFs surface-derivatized with various polymer brushes had also been developed as 

flexible gas sensor based on the electrical conductivity change due to the existence of the 

vapor 102. Irritant gases, such as NH3 or HCl can also be detected by CNF coated with thin 

layer of polypyrrole (PPy), due to reaction between PPy and the irritant gas induced 

composite electrical conductivity change. 

1.6.3 Electromagnetic interference shielding  

Due to the ability to absorb and reflect electromagnetic radiation, application of 

carbon nanofiber in electromagnetic interference (EMI) shielding has been developed by 

researchers in recent years. Hong, et al 103 successfully developed vapor grown CNF mats 

for EMI shielding, which exhibit effectiveness (shielding efficiency (SE), 52-81 dB, 1.5 

GHz) and high SE/density (370-470 dB cm3/g). Apart from pure CNF mats, introducing 

dielectric, magnetic or electrical conductive particles, such as titanium dioxide (TiO2) and 

magnetite (Fe3O4) into the nanofiber will effectively improve the performance of the 

hybrid nanofiber mats 104. The incorporation of magnetite nanofiller (Fe3O4) in electrically 
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conducting CNFs effectively increase both magnetic and dielectric losses, therefore, the 

EMI shielding performance of hybrid nanofiber mat. The EMI shielding performance of 

CNTs/CNF hybrid nanofiber has also been investigated, which shows thin CNFs sheets 

have a significant SE of >15 dB in the range of 300 MHz to 3 GHz 105.  

1.7 Research objectives and outlines 

Despite considerable studies on the processing-microstructure relationships in 

CNFs which are obtained by carbonization of as-electrospun PAN/CNTs composite 

nanofibers, the relationship between microstructure and properties of CNFs fabricated 

under the templating effect of graphitic nanoparticles such as CNTs is highly unexplored. 

That is partly rooted in experimental limitations in measuring the mechanical properties 

of nanostructures. Moreover, the processing-microstructure-property relationships in 

CNFs with CNTs inclusions needs to be revisited such that issues of chain alignment and 

CNTs alignment are addressed. In this regard, one of the lingering issues is how to align 

polymer chains effectively without inducing defects in the precursor via hot-drawing. 

Addressing these issues is the primary focus of this thesis, and it can set a foundation for 

the development of the next generation high strength nanoscale reinforcements for 

structural light-weighting. Hence, the overarching goal of this work is to unravel the 

processing-microstructure-property relationships in carbon nanofibers (CNFs) in which 

the formation of graphite-like structures (graphitization) is promoted under the templating 

effect of CNTs. The CNF properties of interest include mechanical properties and 

electromechanical couplings. To address the goal, we have identified three objectives: 
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Objective 1: Develop post-processing techniques to induce molecular chain alignment in 

PAN/CNTs electrospun hybrid nanofibers and investigate the effect of post-processing on 

microstructure and mechanical properties of nanofiber ribbons. 

Objective 2: Research the effect of CNTs inclusions on microstructure, mechanical 

properties of hybrid CNFs in response on thermomechanical treatments on precursors. 

Objective 3: Explore the relationship between microstructure and functional properties, 

such as electrical conductivity and piezoresistivity of CNFs for developing their 

multifunctional applications.  

In chapter 2, the templating effect of CNTs on microstructure evolution and 

mechanical properties of the electrospun hybrid PAN/CNTs precursor nanofiber with 

different post-processing conditions was studied. To further broaden the application fields 

of PAN nanofiber and CNFs, the near-field electrospinning process was studied in chapter 

3. From the experimental results in chapter 2 and 3, the basic processing-microstructure 

relationship in fabricating hybrid PAN/CNTs precursor nanofiber was obtained for 

Objective 1. Then, in chapter 4, through applying the most promising precursor fabrication 

parameters, CNF and CNF/CNTs were obtained by carbonizing the precursor nanofibers 

from Objective 1. In this chapter, based on the analysis of CNF microstructure evolution 

induced mechanical properties improvement, a clear path for fabricating high strength 

CNFs was developed. Moreover, the research on the effect of CNTs templating effect on 

microstructure and mechanical properties of CNF/CNTs hybrid nanofibers demonstrates 

the significant contribution of thermo-mechanical post-processing (hot-drawing) on 
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exerting templated graphitization effect of CNTs in CNF, which is for Objective 2. The 

experimental piezoresistivity testing of individual CNF in chapter 5 and multi-resolution 

continuum model developed in chapter 6, were applied to shed light on microstructure-

functional properties relationship in CNFs, for exploring their multifunctional applied 

fields in Objective 3. Therefore, together with recent developments in scalable 

electrospinning methods, this research brings about a clear processing-microstructure-

electromechanical performance relationship, which can set the foundation for the 

development of low-cost high performance multifunctional nanoscale reinforcements.  
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2. FABRICATION OF PAN/CNTs PRECURSOR AND ITS 

MICROSTRUCTURE EVOLUTION* 

 

Mechanical properties of carbonized micro and nanofibers is highly influenced by 

the microstructure of their precursor in relation to the precursor processing parameters. 

Therefore, major efforts have been devoted to engineering the microstructure of 

precursors. These efforts often are intended to enhance the chain alignment in precursors, 

which is a prerequisite for higher graphitic alignment in carbonized structures. The most 

abundantly used precursor of CNFs is polyacrylonitrile (PAN) which is fabricated via 

solution electrospinning. Moreover, electrospinning can provide a platform to add 

graphitic nanoparticles such as CNTs to the PAN precursor to influence the microstructure 

of the obtained electrospun nanofiber, through factors such as templating effect of CNTs 

for the PAN chains and changes in the solution properties. A down side of electrospinning 

in generating CNF precursors however is that the polymer chain alignment within the as-

electrospun nanofiber is much lower than the gel- or wet-spun PAN precursors used to 

fabricate CF in industry. The lower chain alignment in as-electrospun PAN precursors is 

an inherent feature of electrospinning process, which is caused by factors such as fast 

solvent evaporation that suppresses chain mobility.  

                                                 
* Part of this chapter is reprinted with permission from "Microstructural evolution and mechanics of hot-

drawn CNT-reinforced polymeric nanofibers" by J. Cai, S. Chawla, M. Naraghi. Carbon. 2016;109:813-

822. 
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In this chapter, microstructural changes in electrospun PAN/SWNT nanofibers 

induced due to a combined effect of SWNT inclusions and hot-drawing has been studied 

for the first time. The latter was mainly intended to enhance chain alignment in the 

presence of CNTs. The microstructural evolution of various PAN/SWNTs hybrid 

nanofibers with increasing hot-drawing ratio were analyzed by exploring polymer crystal 

structures, polymer chain alignment and SWNTs orientation. Through these analysis, a 

clear understanding of the effect of SWNTs concentration and draw ratio on 

microstructure of SWNTs reinforced semicrystalline polymer precursor was obtained. 

Combined with mechanical tests on PAN/SWNT ribbons, a structural and reinforcement 

mechanism of hybrid nanofiber is proposed. The thorough analysis of precursor 

microstructure evolution provides a solid foundation for improving mechanical properties 

of electrospun CNF through controlling its microstructure.  

2.1 Experimental 

2.1.1 Fabrication of ribbons of PAN/SWNT composite nanofibers 

Ribbons of PAN/SWNT composite nanofibers were fabricated by electrospinning, 

Fig.2.1(a). Different contents of single walled carbon nanofibers (SWNTs) obtained from 

OCSIAL LLC (diameter: 1.8 ± 0.4, length: ≥ 5um) corresponding to 0.1-0.5 wt.% of 

SWNTs relative to PAN were dispersed in dimethylformamide (DMF) (Sigma–Aldrich) 

via 24 hrs ultrasonication. After a visually homogeneous SWNTs/DMF solution was 

obtained, polyacrylonitrile (PAN) powder from Sigma–Aldrich with molecular weight of 

150,000 g/mol was dissolved into SWNTs/DMF to obtain a 10 wt.% solution (PAN in 

DMF). The SWNT content significantly influenced the electrospinning process by altering 
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the solution viscosity and electrical conductivity. Hence, the feeding rates of the polymer 

solution during electrospinning was adjusted within 0.6 ml/h to 2.0 ml/h for solutions with 

different SWNT contents with the goal of obtaining stable electrospinning jet. As shown 

in Fig.2.1(b), highly aligned polymer nanofibers ribbon were obtained by using a rotating 

disk collector with a peak-up velocity of ~5.7 m/s at electrospinning voltage and distance 

of 25 kV and 20 cm, respectively.  

2.1.2 Hot-drawing of PAN/SWNT nanofiber ribbons 

The electrospun PAN/SWNT nanofiber ribbons were subjected to hot drawing, as 

shown in Fig.2.1(c). To this end, the as-spun PAN/SWNTs nanofiber ribbon were 

stretched by applying hanging weights equivalent to 19 MPa engineering stress at 135 °C 

 

Figure 2.1. (a) Electrospinning experimental set-up and (b) obtained aligned 

PAN/SWNTs nanofiber ribbons and (c) hot-drawing setup of nanofiber ribbon. 
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environment in an oven. When the draw ratio reached a desired value (λ = 2 and 4, λ is 

the hot-drawing ratio, which equals to the final length of ribbon divided by initial length), 

the stretched ribbon were cooled down to room temperature in the oven. The diameters of 

PAN/SWNTs nanofiber were measured by using FEI Quanta 600 FE-SEM with at least 

50 measurements. 

2.1.3 Material characterization of PAN/SWNT nanofibers 

Glass transition temperature of PAN/SWNTs nanofiber was obtained by using a 

differential scanning calorimeter (DSC) TA Q20 with 10 °C/min heating rate, from room 

temperature to 150 °C. The X-ray diffraction spectrum of PAN/SWNT ribbons (XRD) 

(CuKα, wavelength of 0.154 nm) were obtained using GADDS BRUKER-AXS MWPC 

3-thircle X-ray Diffractometer. Diffraction patterns were analyzed by using Origin 9.0. 

The crystallinity was calculated based on the relative areas under the deconvoluted 

amorphous and crystalline peaks 71. The PAN crystal size is also calculated by using 

Scherrer’s equation (K = 0.9). The orientation of the PAN chains in the crystalline phase 

was determined based on the azimuthal scans of the diffraction peak at 2θ ≈ 17° 106. The 

alignment of crystals was quantified for comparison purposes between different 

fabrication conditions as 𝑓𝐶 =
180−𝐹𝑊𝐻𝑀

180
 , where FWHM corresponds to the full-width at 

half maximum value of the crystalline peak 66. Polymer chain molecular orientation was 

measured by using polarized FT-IR (Thermo Nicolet 380, wave length range 300-3000 

cm-1) method 27. In this method, polarized IR beam was irradiated on the aligned 

PAN/SWNTs nanofiber ribbons, and the transmission spectrums were acquired for two 
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polarization conditions in which the plane of polarization of the incident light was parallel 

and perpendicular to the fiber direction. The orientation factor of polymer chains, 𝑓, was 

calculated as 27: 

𝑓 =
3

2
< 𝑐𝑜𝑠2𝜎 > −

1

2
=
(𝐷−1)(𝐷0+2)

(𝐷0−1)(𝐷+2)
 with 𝐷 =

𝐴∥

𝐴⊥
 𝑎𝑛𝑑 𝐷0 = 2𝑐𝑜𝑡

2𝛼         (2.1) 

where 𝜎 is the average angle between fiber axis and backbone direction of PAN molecule, 

and 𝛼 is the angle between nitrile group in PAN and its backbone direction, approximated 

as 70°. Therefore, the orientation factor, f, qualitatively representing the orientation of 

PAN molecular backbone, lies between 0 and 1, corresponding to totally random and fully 

aligned polymer chains with respect to the fiber axis. The obtained orientation factor of 

polymer chain was the averaged value of three measurements. 

2.1.4 Characterizing SWNT alignment in PAN/SWNT nanofibers 

Orientation factor of SWNTs in PAN/SWNTs was obtained through polarized 

Raman spectroscopy by using Horiba Jobin-Yvon LabRam Raman Confocal Microscope 

with a He-Ne laser. For materials containing SWNTs, polarized Raman spectroscopy is 

an effective method to qualitatively characterize the orientation of SWNTs 64, 66. The 

intensity of the Raman peak is a sum of contributions from all SWNTs within the 

composite. In this work, a simple and rather qualitative parameter, 𝑓𝑆𝑊𝑁𝑇𝑠 = 1 −
𝐼𝐻𝐻

𝐼𝑉𝑉
, was 

used to compare alignment of SWNTs between different fabrication conditions, in which 

IHH and IVV corresponds to Raman intensities of HH and VV configurations, where the 

incident and scattered laser are both perpendicular and parallel to the fiber axis, 
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respectively. The obtained orientation factor of SWNTs is the averaged value of three 

measurements in each fabrication condition. 

2.1.5 Mechanical characterization of ribbons 

The mechanical properties of PAN/SWNT ribbons were measured in tension by 

using Gatan MT10365 tensile testing device. The gage length was 5 mm and crosshead 

speed of loading was 0.2 mm/min. For each fabrication condition, a minimum of three 

experiments were tested and the average values of the properties were reported. The stress 

applied on the sample was calculated by dividing the force by the true fiber area, which 

was estimated as the ratio of the linear density of the ribbon and the density of solid PAN 

107. Considering the high alignment of nanofibers in the ribbon, the obtained mechanical 

properties of ribbons are a measure of the average properties of individual polymer 

nanofibers. 

2.2 Results and discussion 

Aligned PAN/SWNTs nanofiber ribbons were electrospun on a rotating metal 

target. As shown in Fig.2.1(a), the as-fabricated nanofibers are well aligned with the 

rotating direction of the target, which sets the foundation for polymer chain alignment 

characterizations in our study. Addition of SWNTs in general led to thicker nanofibers. 

For instance, as shown in Fig.2.2, the diameter of the pure PAN nanofibers was 314±58 

nm, comparable to 0.1 wt.% PAN/SWNTs nanofibers diameter of 312 ± 64 nm, shown in 

Fig.2.3, and 0.2 wt.% PAN/SWNTs nanofibers diameter of 436 ± 92 nm, shown in Fig.2.4, 
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while 0.5 wt.% PAN/SWNTs nanofibers are considerably thicker (diameter of 538 ± 86 

nm) (Fig.2.5).  

 

The formation of the thicker nanofibers at higher SWNT concentrations can be 

partly attributed to the increase in the viscosity of the electrospinning solution with the 

addition of SWNTs (Fig.2.3-2.5). Further insight, however, was obtained by considering 

the variations of the diameters of nanofibers with different SWNT contents as a result of 

hot-drawing. To this end, ribbons of aligned nanofibers were subjected to hot-drawing 

above the Tg of PAN. We studied three stretch ratios of λ = 1 (as-fabricated), λ = 2 and λ 

= 4. The stretch ratio was defined as the final length of the ribbon to its initial length.  

 

 

Figure 2.2. Pure PAN ribbon SEM images and nanofiber diameter distribution with 

different hot-drawing ratios.  
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Figure 2.3. 0.1 wt.% PAN/SWNTs ribbon SEM images and nanofiber diameter 

distribution with different hot-drawing ratios. 

 

Figure 2.4. 0.2 wt.% PAN/SWNTs ribbon SEM images and nanofiber diameter 

distribution with different hot-drawing ratios. 
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An SEM image of the as electrospun ribbon of pure PAN nanofibers is shown in 

Fig.2.2, demonstrating the high degree of alignment of pure PAN nanofibers, achieved via 

electromechanical forces during electrospinning. As increasing the concentration of the 

SWNTs in polymer solution, there is an increase in the polymer solution charge density. 

Therefore, during the electrospinning process, the repulsive force between solidified 

nanofibers on target which still has some residual electrical charges and the polymer 

solution jet makes the obtained polymer nanofiber to be less aligned, shown in Fig.2.5. As 

increasing the hot-drawing ratios, the aligned polymer nanofibers are obtained. 

 

Figure 2.5. 0.5 wt.% PAN/SWNTs ribbon SEM images and nanofiber diameter 

distribution with different hot-drawing ratios. 
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The ratio of the volume of the nanofibers before and after hot-drawing can be 

calculated as 𝜆(𝑑𝑓 𝑑𝑖⁄ )
2

, where 𝑑𝑖  and 𝑑𝑓  are the average diameter of the nanofibers 

before and after drawing, respectively. According to this analysis, the deformation of the 

nanofibers during hot-drawing is not entirely volume-preserving, and can lead to both 

volume dilatation and shrinkage, depending on the concentration of the SWNTs. For 

instance, the average diameter of as-electrospun 0.1 wt.% PAN/SWNTs nanofiber 

decreases from 312±64 nm to 179±42 nm by hot-drawing to stretch ratio of λ=4, 

respectively, shown in Fig.2.6. This is despite the fact that a perfectly volume preserving 

drawing would require a reduction of average fiber diameter from 312 nm in the as-

electrospun ones to 156 nm. These theoretical predictions of the diameter based on volume 

preserved deformations are slightly lower than the measured corresponding value, 

suggesting void formation and volume dilatation (by ~31%) during hot drawing. Similar 

void formations at stretch ratios above 2 have also been observed in cold-drawn PAN 

nanofibers 108. On the other hand, the ratio of the volume of as-electrospun nanofibers with 

0.5 wt.% SWNTs (after to before hot-drawing) is 0.75, indicating a marked reduction in 

volume, by as much as 25%. This considerable reduction in diameter of the nanofibers 

with 0.5 wt.% SWNTs can only be possible if we assume that the chains in the as-

electrospun nanofibers were highly unpacked, with nanoscale porosities between chains. 

In other words, at such high concentrations of SWNTs, the fillers (and even potentially 

the agglomerates of the fillers) can act as spacers between polymer chains. With this 

analysis, the thicker diameter of the as-electrospun nanofibers with SWNT concentrations 

of ~0.5 wt.% is attributed to the low packing density of polymer chains, where further 
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packing is prevented by the presence of stiff SWNTs. More evidence in support of the 

unpacked structure of PAN chains can be found by considering the glass transition in 

composite nanofibers, as discussed in the following section.  

 

2.2.1 Effect of SWNT inclusions on glass transition temperature of PAN nanofibers  

As shown in Fig.2.7, DSC measurements point to a ~2.5°C increase in the Tg of 

PAN nanofiber with the addition of 0.1 wt.% SWNTs from 105.6°C to 108.9 °C, likely 

 

Figure 2.6. Average diameters of PAN/SWNTs with different SWNTs concentrations 

and hot-drawing ratios. 
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due to SWNT confinement effects on PAN chains and the consequent restricted mobility 

of the chains 106. However, further increase in the SWNT content from 0.1 wt.% to 0.2 

wt.% and 0.5 wt.% seems to slightly lower the Tg of the composite nanofibers, although 

all the composite fibers tested had a Tg higher than the neat polymers.  

The reduction in Tg of PAN/SWNT fibers by increasing the SWNT content beyond 

0.1 wt.% indicates lower interactions between SWNTs and polymer chains (lowered 

SWNT confinement effect) despite the apparent increase in SWNT content. This is partly 

an indirect indication of poor SWNT dispersion or SWNT agglomeration 109. The 

 

Figure 2.7. DSC results of PAN/SWNTs ribbons with different SWNTs 

concentrations. 
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reduction in the Tg of composites with the addition of SWNTs due to SWNT 

agglomeration has also been observed in macroscale polystyrene/SWNT nanocomposites 

110. However, due to minute dimensions of the sample, sample preparation for TEM 

imaging, as a means to directly detect agglomerations was not pursued. The reduction in 

Tg of composite nanofibers can also be partly attributed to the low packing of polymer 

chains, as a result of which the interaction between PAN chains is lowered.  

2.2.2 Effect of hot-drawing on microstructure of PAN/SWNT nanofibers 

In addition to diameter changes, post-fabrication drawing can drastically alter the 

alignment of polymer chain and SWNTs. The alignment of polymer chains was measured 

in this work by using polarized FT-IR and was expressed in terms of the Herman 

orientation factor, f, as discussed in the Experimental section. As shown in Fig.2.8, the 

orientation factor of the as-electrospun nanofibers, regardless of SWNT content, is rather 

low in the range of 0.30-0.54. This chain alignment is induced by electrostatic and 

mechanical forces applied on polymer solution during electrospinning. Moreover, among 

as-electrospun PAN/SWNT nanofibers, the orientation factor of polymer chains in 0.1 

wt.% PAN/SWNTs nanofibers is slightly lower than the pure PAN nanofiber. That is 

potentially caused by the reduced mobility of the chains due to the obstructive effect of 

SWNTs during the electrospinning process. The reduced chain mobility due to the 

presence of 0.1 wt.% SWNTs in PAN nanofibers also corroborates with the increased Tg 

of the 0.1 wt.% PAN/SWNTs nanofibers observed in section 2.2.1. It is also interesting to 

note that further addition of SWNTs leads to a higher chain alignment, such that the 

orientation factor increases from 0.30 for 0.1 wt.% PAN/SWNTs nanofibers to 0.54 for 
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0.5 wt.% PAN/SWNTs nanofibers, respectively. This considerable increase in chain 

alignment by increasing SWNT content from 0.1 wt.% to  0.5 wt.% can be explained based 

on the charge density of the SWNT containing polymer solution. In other words, the higher 

SWNT content facilitates the flow of charges within the jet due to high electrical 

conductivity of SWNTs. As a result, charge induction will be enhanced at higher SWNT 

contents, leading to increased electrostatic drawing by the electric field of electrospinning. 

Therefore, the as-electrospun nanofibers formed with higher SWNT contents showed 

higher chain alignment.  

 

 

 

Figure 2.8. (a) Polarized FT-IR results of nanofiber ribbon and (b) orientation factors 

of polymer chain in polymer nanofiber with different SWNTs concentration and hot-

drawing ratios. 
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Despite the rather low orientation factor of the as-electrospun nanofibers, hot-

drawing can drastically improve the chain alignment for all SWNTs concentrations 

studied, Fig.2.8. For example, the orientation factor of PAN chains in pure PAN 

nanofibers increased from 0.37 to 0.82 as a result of hot-drawing to a draw ratio of 4. It is 

also interesting to note that the orientation factor of polymer chains in as-electrospun 

fibers shows a strong dependency on SWNT content, varying in a range of 0.28-0.54 with 

a relative change of as high as 90% (compare the case of 0.1 to 0.5 wt.% SWNT content). 

However, at a draw ratio of 2, the variation range of orientation factor is narrowed down 

and the relative change in orientation factor among samples with different SWNT contents 

 

Figure 2.9. (a) Polarized Raman spectrum results of nanofiber and (b) orientation 

factor of SWNTs in polymer nanofiber with different SWNTs concentration and hot-

drawing ratios. 
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drops to ~20%. Further drawing the fibers to a draw ratio of 4 drops the relative change to 

~12%. Hence, the chain alignment in hot-drawn electrospun nanofibers is less dependent 

on the initial state of chains and more controlled by the post fabrication drawing.  

Apart from the polymer chain alignment, alignment of SWNTs within the polymer 

nanofiber is also influenced by the electromechanical and thermomechanical loads applied 

on fibers during electrospinning and subsequent hot-drawing. In other words, the flow of 

the polymer solution during electrospinning and the elongational and shear strains applied 

to the fibers during drawing has the tendency to align the SWNTs with the fiber axis. As 

discussed previous section, the alignment of SWNTs within the aligned bundle of 

nanofibers was measured via polarized Raman spectroscopy and was expressed as 

𝑓𝑆𝑊𝑁𝑇𝑠 = 1 −
𝐼𝐻𝐻

𝐼𝑉𝑉
, in which IHH and IVV corresponds to Raman intensities of HH and VV 

configurations. As shown in Fig.2.9(b), the as-fabricated 0.1 wt.% PAN/SWNTs 

nanofibers has the lowest SWNTs orientation factor. This result is expected from the 

reduced polymer chain mobility which was inferred from the increased Tg of 0.1 wt.% 

PAN/SWNTs nanofibers. In other words, chain mobility which facilitates chain and 

SWNT reorientation during electrospinning is considerably lost with the addition of well-

dispersed 0.1 wt.% SWNTs.  

However, among hot-drawn samples which contain SWNTs, the SWNT 

alignment is slightly higher than the rest in nanofibers which contain 0.1 wt.% SWNT 

compared to nanofibers with 0.2 and 0.5 wt.% SWNTs. In other words, hot-drawing is 

more effective in aligning SWNTs in low SWNTs concentration nanofiber. Hence, there 
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is an increased resistance to reorientation of SWNTs in samples with 0.2 and 0.5 wt.%  

SWNT content potentially due to direct interactions between SWNTs within SWNT 

agglomerates in these samples. It is to be pointed out that the highest Raman intensity 

ratio (
𝐼𝑉𝑉

𝐼𝐻𝐻
) achieved is about 6.7, significantly smaller than the conventional gel spun fiber 

of about 38, with drawing ratio ≈ 51 71.  

The alignment of polymer chains, during electrospinning and subsequent hot-

drawing, facilitates the formation of the crystalline structure of PAN nanofiber. The 

crystalline phase in PAN nanofibers not only may contribute to high mechanical 

performance 71, but also facilitated the formation of turbostratic domains in PAN during 

pyrolysis 89. Therefore, understanding the crystalline structure in PAN/SWNTs hybrid 

nanofiber is crucial in the development of nanofibers with high mechanical properties. 

The crystallinity in PAN nanofibers was studied via X-ray diffraction as a function of 

SWNTs content and drawing. As is shown in Fig.2.10 (a), no sharp peak which would be 

reminiscent of crystallinity, is observed in the as-electrospun PAN nanofibers. Hence, the 

degree of crystallinity in the as-fabricated fibers is considered to be negligible. Thus, it is 

concluded that the chain alignment which was achieved during electrospinning (see for 

instance Fig.2.8) was not sufficient to trigger crystallization within the as-electrospun 

PAN nanofibers. While the electromechanical forces of electrospinning tend to align the 

chains by inducing elongational flows, massive solvent loss during the formation of solid 

fibers can suppress chain mobility and prevent the formation of the crystals, which evident 

limits the mechanical properties of the as-electrospun PAN nanofibers. In contrast to as-
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electrospun nanofibers, after applying hot-drawing, the hot-drawn nanofibers show a sharp 

crystalline peak at 2𝜃~17°, corresponding to the (100) plane in PAN polymer chain 

hexagonal packing.  

 

The degree of crystallinity and the crystal size of polymer nanofiber with different 

SWNTs concentrations, corresponding to the diffraction angle of 2𝜃~17° in the x-ray 

pattern were also calculated as discussed in section 2.1.3. As shown in Fig. 2.10(a) & (b), 

the degree of crystallinity and the size of crystals significantly increases with drawing, and 

Figure 2.10. (a) WAXD curves obtained for 0.1 wt.% PAN/SWNTs ribbon and (b) 

calculated crystallinity and crystal size for different SWNTs concentrations and hot-

drawing ratios. 
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to a lower degree it is also a function of SWNT content. By drawing the samples to λ = 2 

and λ = 4, the degree of crystallinity in all samples increases to ~30-40%. The highest 

crystallinity is observed at a SWNT content of ~0.1-0.2 wt.%, which can be attributed to 

epitaxial growth of crystalline domains of PAN around SWNTs 83. On the other hand, 

further increase in SWNT content to 0.5 wt.% lowers the crystallinity due to lowered 

interface area between SWNTs and polymer chains, therefore lowering the epitaxial 

growth of crystalline domains.  

 

 
Figure 2.11. (a) 2D diffraction pattern from WAXD with a black line showing fiber 

direction and (b) azimuthal intensity scan of 0.1 wt.% PAN/SWNTs nanofibers with 

different SWNTs concentration and hot-drawing ratios.  
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It is also interesting to note that the size of the crystals in samples drawn to λ = 4 

is systematically, although slightly, larger than those of λ = 2. Moreover, as shown in the 

2D diffraction pattern of PAN/SWNT obtained via WAXD, such as the one shown in 

Fig.2.11(a), the crystalline peaks are observed at azimuthal angles of ±90° with respect to 

fiber axis. Thus, the polymer chain backbones in the crystalline phase is laid parallel to 

the fiber axis. Hence, the formation of this crystalline phase can be attributed to the 

drawing-induced alignment of polymer chains, which facilitates the packing of polymer 

chain along the fiber direction.  

 

Figure 2.12. Crystalline phase orientation factor with different SWNTs concentration 

and hot-drawing ratios.  
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While the degree of crystallinity seems to reach a plateau at a draw ratio of 2 with 

no further increase by drawing to a draw ratio of 4, Fig.2.12, the orientation of crystalline 

domains in PAN/SWNTs nanofiber monotonically increases with the draw ratio in all 

nanofibers with different SWNTs contents. Hence, it is concluded that the formation of 

the crystalline domains as a result of hot-drawing reaches a limit near or before λ = 2, 

controlled for instance by the loss of segmental chain mobility in the transitional regions 

in between crystalline domains. In samples which were drawn to λ = 4, further drawing 

results in higher alignment of the already formed crystals with the drawing direction.   

2.2.3 Mechanical performance of PAN/SWNT ribbons 

Mechanical properties of PAN/SWNTs ribbons with various SWNT contents and 

different hot-drawing ratios were measured in tension using the setup discussed in section 

2.1.5. Typical stress-strain curve for 0.1 wt.% PAN/SWNTs ribbons are shown in 

Fig.2.13(a). The elastic modulus, strength and energy to failure of ribbons were measured 

from the stress-strain curves as respectively the slope of the curve at strains below 2%, the 

maximum stress the sample has experienced during loading, and the energy to failure per 

unit mass of the ribbon. Given the viscoelastic behavior of polymer nanofibers 108, these 

properties are expected to slightly depend on strain rate, and as such their relative values 

among samples with different processing parameters is emphasized here. The as-

electrospun samples demonstrate a nearly elastic-perfectly plastic behavior to engineering 

strains as high as 50%. However, upon hot drawing to draw ratios of 2 and 4, the samples 

become stiffer and stronger, while their ductility drops to as low as ~10-15%. 
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The monotonic increase in strength and modulus with draw ratio can all be 

attributed to enhanced alignment of polymer chains and degree of crystallinity which also 

scales with draw ratio as evident from polarized FT-IR and XRD studies. Moreover, there 

is an evident correlation between the chain alignment and degree of crystallinity with 

sample ductility 66. That is, the as-fabricated samples with low degree of crystallinity and 

 

Figure 2.13. (a) Typical stress-strain curve for 0.1 wt.% PAN/SWNTs nanofibers, (b) 

modulus (c) strength and (d) energy to failure(J/g) for PAN/SWNTs nanofibers 

ribbons with different SWNTs concentrations and hot-drawing ratios.  
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chain alignment show ductility of as high as 50%, while both types of hot drawn samples 

(draw ratio of 2 and 4) have higher degrees of crystallinity (~30-40%) and lower ductility 

(10-15%). Hence, the loss in ductility in hot-drawn samples is likely caused by the 

alignment polymer chain and the formation of the crystalline structures. In other words, 

as the crystals form, the chains get anchored in the crystalline domains, and their mobility 

is lost. The loss in ductility, caused by limited chain mobility, lowers the energy to failure 

in hot-drawn samples especially at λ = 2. However, part of the loss in energy to failure is 

recovered by further hot-drawing the samples to λ = 4, mainly due to higher chain 

alignment which also leads to higher strength. 

It is also worth noticing the dependence of mechanical properties on SWNT 

contents. In the as-fabricated nanofibers, no clear dependence of mechanical properties on 

SWNT is found. That is likely due to the low alignment of SWNTs within nanofibers (Fig. 

2.9), which lowers the contribution of SWNTs to overall load bearing in the fibers. 

However, in the hot-drawn samples, the SWNTs are considerably more aligned (Fig.2.9), 

hence, they carry load more effectively in the matrix. For instance, as shown in 

Fig.2.13(b), the addition of 0.1 wt.% SWNTs to pure PAN increases the modulus of hot-

drawn nanofibers (λ = 4) from 9.6 GPa to 10.9 GPa. The comparison between the two 

moduli, a result of the addition of 0.1 wt.% SWNT with high degree of SWNT alignment 

along the fiber axis, allows us to calculate an “effective elastic modulus of SWNTs”, also 

known as the modulus reinforcement efficiency. This factor is defined as the relative 

change in the modulus of the composite material per unit volume of the SWNTs (dYc/dVf 

) 109. Accordingly, the efficiency factor of modulus of fillers in the case of the samples 
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with 0.1 wt.% SWNTs is calculated to be about 2.1 TPa, shown in Fig.2.14(a). This value, 

among the highest values reported in SWNT reinforced nanocomposites 109, is much larger 

than the theoretical modulus of SWNTs (~ 1TPa), indicates the formation of polymeric 

interphases around SWNTs with enhanced microstructure, such as crystallinity, and 

crystalline domain alignment. The interphase is likely the result of templating effects of 

SWNTs facilitated by strong SWNT-polymer chain interactions, as a result of which 

polymer sheath layers can form around SWNTs. An example of the polymeric sheath 

forming around SWNTs is shown in TEM image of a protruded SWNTs (Fig.2.14(b)), in 

which the sheath is ~5 times thicker than the diameter of individual SWNTs of ~2 nm 109, 

111.  

Despite the high efficiency of modulus reinforcing effect at 0.1 wt.% SWNT 

content, the dYc/dVf of 0.2wt.% and 0.5 wt.% are 0.71 and -0.71 GPa, respectively, 

suggesting a loss in reinforcement effect of SWNTs at higher than 0.1 wt.% SWNT 

content, potentially due to the agglomeration of SWNTs which lowers polymer interphase 

area. The highest measured value of dYc/dVf  of SWNT in this work is even higher than 

the corresponding value of microfiber with 1 wt.% SWNTs (1.1 TPa) 71, demonstrating 

the effectiveness of the combination of electrospinning and hot-drawing in developing 

high reinforcement effect of SWNT in polymer nanofibers.  



51 

 

 

The highly ordered polymer interphase is originated from the strong interactions 

between the nitrile group on PAN and surface of CNTs, which have been demonstrated 

both by molecular dynamic simulation 112 and experimental observation 50. Mobility of 

polymer chain around CNTs surface is strongly restricted, which increases the mechanical 

properties of polymer along the fiber axis direction and facilitates the formation of highly 

ordered polymer interphase. Moreover, the improved polymer chain alignment along fiber 

 

Figure 2.14. (a) Calculated modulus reinforcement efficiency of SWNTs for 

PAN/SWNTs with λ=4 and schematic description of effect of SWNT dispersion on 

interphase area, in which black circles represent SWNTs, gray regions represent bulk 

PAN nanofiber matrix, and orange regions represent highly ordered interphase 

regions, (b) TEM image of a protruded SWNT with polymer sheath around it, 

pointing to the strong interactions between SWNTs and the polymer. The region 

shown in a dotted box in the top figure is shown in higher magnification in the 

bottom image.  
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axis direction obtained from hot-drawing also promotes the formation of this interphase. 

The modulus of the polymer interphase could be interpreted by applying a three-phase 

rule of mixture equations for composite fiber, as follows, 

𝐸ℎ𝑦𝑏𝑟𝑖𝑑 = 𝐸𝐶𝑁𝑇𝑠𝑉𝑓,𝐶𝑁𝑇𝑠 + 𝐸𝐼𝑛𝑡𝑒𝑟𝑝ℎ𝑎𝑠𝑒𝑉𝑓,𝐼𝑛𝑡𝑒𝑟𝑝ℎ𝑎𝑠𝑒 + 𝐸𝑀𝑎𝑡𝑟𝑖𝑥𝑉𝑓,𝑀𝑎𝑡𝑟𝑖𝑥     (2.2) 

where Ehybrid is the modulus of the whole hybrid PAN/CNTs nanofiber, ECNTs, EInterphase 

and Ematrix are modulus from CNTs, polymer interphase and polymer matrix and Vf,CNTs, 

Vf,Interpahse and Vf,Matrix are the volume fraction of these phases to the whole hybrid 

nanofiber. The volume fraction of CNTs is calculated from its concentration. The modulus 

of hybrid nanofiber with 0.1 wt.% CNTs is obtained from experiment, which is 10.9±0.3 

GPa, and modulus of matrix is the same as the pure PAN nanofiber with λ = 4, which is 

9.6±1.1 GPa. Modulus of CNTs is set as its theoretical modulus, 1 TPa. Thus, the polymer 

interphase modulus required to satisfy the above equation as a function of the interphase 

thickness is shown in Fig.2.15. The thickness of this highly ordered polymer chain layer 

was found to be ~10 nm 87 for certain hybrid PAN/CNTs fiber, which is also comparable 

to the thickness of the interphase measured in our studies from TEM results. Assuming 

that the interphase thickness in 0.1 wt.% electrospun PAN/CNTs hybrid nanofiber is also 

~10 nm, the calculated modulus of polymer interphase is 17.5 GPa, which is ~1.8 times 

larger than the polymer matrix modulus (~9.6±1.1). This high modulus value of PAN is 

comparable to the modulus of the oriented crystalline phase of PAN. 
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2.2.4 Description of microstructure evolution 

Base on the microstructural and mechanical characterizations of PAN-SWNT 

ribbons, presented in previous sections, the microstructural evolution of electrospun 

PAN/SWNTs nanofibers under hot-drawing is described as shown in Fig.2.16. The as-

fabricated electrospun PAN/SWNTs nanofibers are mainly composed of amorphous 

polymer region without any crystalline phases. The as-fabricated ribbons have relatively 

low degrees of polymer chain and SWNT alignment, potentially due to rapid solvent loss 

during electrospinning, which suppresses chain mobility required for flow induced 

reorientation of polymer chains and SWNTs. The addition of SWNTs slightly enhances 

 
Figure 2.15. Calculated polymer interphase modulus with increasing thickness. 
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the alignment of both SWNTs and polymer chains, due to higher charge mobility in the 

composite jet (with SWNT fillers) which increases the pulling electrostatic force on the 

jet. However, the major improvement in polymer chain and SWNT alignment is achieved 

as a result of hot-drawing at ~135°C, considerably above Tg of PAN. In the hot-drawing 

process, the mobility of polymer chains was increased thermally, thus, the applied stress 

aligned the polymer chain and SWNTs during the process. As a result of the 

thermomechanical treatment, the degree of crystallinity in nanofibers was drastically 

 

Figure 2.16. Schematic diagram of structural evolution for electrospun PAN/SWNTs 

nanofibers with hot-drawing. 
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enhanced. Among the hot-drawn samples with different SWNT concentrations, 0.1 wt.% 

PAN/SWNTs nanofibers exhibit highest mechanical properties, degree of crystallinity, 

and quality of interphase. Interestingly, the modulus of the 0.1 wt.% PAN/SWNTs 

nanofibers exceeds the rule of mixture predictions, suggesting morphological changes in 

the polymer phase in that sample, such as the formation of the highly ordered polymer 

interphase around SWNTs. In other words, during the thermomechanical treatment, the 

crystalline structure of the PAN/SWNTs is also modified due to the templating 

crystallization effect of SWNTs in PAN nanofiber. The crystalline phase generated on the 

surface of SWNTs can in principle increase the interfacial stress transfer between SWNTs 

and matrix, therefore accounting for the improvements in the mechanical properties 

observed in 0.1 wt.% PAN/SWNTs. The structural changes in 0.1 wt.% PAN/SWNTs as 

a result of hot-drawing is schematically shown in Fig.2.16. However, adding more SWNTs 

to nanofibers adversely affects mechanical properties, likely due to the formation of 

SWNT agglomerates, which lower the effective interface between SWNTs and matrix.  

2.3 Conclusion 

To unravel the reinforcement effect of SWNTs in electrospun nanofibers, 

PAN/SWNTs nanofibers with different SWNTs concentrations were fabricated by using 

electrospinning. Hot-drawing was then applied to the obtained nanofibers to further 

modify its microstructures, enhance the alignment of the PAN chains and SWNTs. The 

SWNT content was varied between 0.1 wt.% to 0.5wt.% relative to the PAN content. At 

0.1 wt.% SWNTs, the as-electrospun samples demonstrated a marked increase in Tg and 

lowest chain alignment which was all attributed to high quality of dispersion of SWNTs 
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at such low SWNT loading and the confinement effects of well-dispersed SWNTs on 

polymer chains, which lowered their mobility. The hot-drawing led to major 

enhancements in chain alignment and led to major orientation-induced crystallization for 

all SWNT contents. By comparing the crystalline structure of the samples which were hot-

drawn to different draw ratios, we concluded that the formation of the crystalline domains 

reaches a limit near or before a draw ratio of 2, and after that it is controlled by the loss of 

segmental chain mobility in the transitional regions in between crystalline domains. 

Further drawing however can further reorient the crystals such that their backbone is more 

aligned with the fiber axis (the same as the drawing directions). Moreover, in hot-drawn 

samples with 0.1 wt.% SWNT content we measured a modulus reinforcement efficiency 

of ~2.1 TPa, among the highest measured in the literature. That is likely due to the high 

SWNT-matrix interactions which leads to the formation of low-defect density polymeric 

interphases around the SWNTs. At higher SWNT contents, the agglomeration lowered the 

modulus efficiency factor, such that at 0.5 wt.%, negative efficiency factors were also 

detected. 
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3. NEAR-FIELD ELECTROSPINNING FOR FABRICATING PAN NANOFIBERS 

ON SPOOL 

  

Polyacrylonitrile (PAN) nanofibers have long been the subject of studies as 

precursor for high performance materials such as carbon nanofibers. However, the 

inherent disadvantage of regular electrospinning, such as the solution jet whipping induced 

relatively large fiber diameter distribution has restricted its further development as the 

precursor for high performance carbon nanofiber. In this chapter, we report for the first 

time the successful application of low-voltage near-field electrospinning method to 

fabricate continuous polyacrylonitrile (PAN) nanofibers directly on a spool (rotating 

target).  

By analyzing the effect of different NFES parameters on morphology of as-

electrospun PAN nanofiber, we demonstrate the high controllability on the shape of the 

electrospun fiber cross sections in a wide range, from oval shapes to circular. Moreover, 

compared with regular electrospinning, NFES with higher solution jet stability shows an 

evident improvement in narrowing the nanofiber diameter distribution. In addition, we 

studied the mechanical properties of individual nanofibers via microdevices, as a means 

to gain more insight into their microstructure. The nano-mechanical tests reveal a two-

zone mechanical size effect. We attributed this abnormal size effect to solvent residues in 

as-electrospun nanofibers, which can play a significant role in dissipating the chain 

alignment achieved via electrostatic forces during electrospinning. The residual solvent 

content depends on the duration of electrospinning and thus the electrospinning distance.  
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The thorough study of the effects of NFES parameter on morphology and mechanical 

properties of PAN nanofiber provides a solid foundation to develop nanofibers with 

narrow diameter and property distributions to further broaden the application areas of 

nanofibers. 

3.1 Experimental 

3.1.1 Fabrication of PAN nanofibers  

As shown in Fig.3.1(a) and (b), 27 gauge (200 µm I.D.) stainless steel needle is 

connected to the syringe pump to dispense the polyacrylonitrile solution at rate of 

~200µL/hr. A 6-12 wt. % solution of polyacrylonitrile with molecular weight of 

150,000 g/mol in dimethylformamide (DMF), both obtained from Sigma–Aldrich, was 

utilized as the electrospinning polymer solution. Custom-made rotating aluminum 

cylindrical target with controllable rotating speed was used to collect the electrospun 

polymer nanofiber. The distance between the polymer droplet and the target surface was 

maintained at 400 to 600 µm. A 300V to 1000 V voltage difference was supplied between 

the needle and the target, by using a 0-1 kV dc power supply from Acopian. The linear 

speed of rotating target was 86.5 mm/s, which is the largest allowable value in our current 

experimental setup. After a polymer droplet was formed at the tip of the needle, a T-4-22 

tungsten probe from GGB industries was used to initiate the localized instability on the 

polymer droplet, by bringing the probe tip to the proximity of the droplet surface under an 

optical microscope. The probe position was controlled via a linear positioning stage. In 

addition to the rotary motion, the target was also displaced in the direction perpendicular 

to the jet to collect nanofibers continuously next to each other, instead of on top of each 
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other, as shown in Fig.3.1(d). The whole NFES process was performed under the optical 

microscope. The recorded video of the NFES is in supplemental materials. 

3.1.2 Mechanical tests on individual nanofiber 

Tension tests on individual nanofibers were performed via bulk micromachined 

devices specifically designed for this purpose. Each device consisted of platforms to 

mount an individual nanofiber, and compliant polysilicon beams to serve as load sensor. 

One side of the nanofiber was attached to the load sensor, while the other side was griped 

on the device and displaced relative to the load sensor via a piezoelectric actuator. The 

tests were performed under an optical microscope and the elongation of the fiber and load 

on the fiber was measured by correlating digital images of the tests via digital image 

correlation (DIC). The diameter of the nanofibers were measured via SEM imaging on an 

unloaded section of the nanofiber, left outside of the gage length.  

3.2 Results and discussion 

PAN nanofibers were electrospun from a solution of PAN in DMF by using the 

NFES setup explained in the section 3.1, and shown in Fig.3.1(a). We studied the 

formation of electrospun fibers at various solution concentrations (6 wt.% - 12 wt.%), 

electrospinning voltages (250 - 600 V) and distances (250 - 700 μm). As shown in previous 

studies, the aforementioned electrospinning parameters, voltage, distance and solution 

concentration, play an important role in determining the shape of the cross section and 

diameters of the electrospun fiber on target 53, 55. In all cases, the target tip velocity was 

86.5 mm/s, which is comparable to the take-up velocities employed in previous studies 50.   



60 

 

The setup was placed under an optical microscope to monitor the process, as shown 

in Fig.3.1(b). We used a horizontal NFES setup in which the average electrostatic field is 

nearly horizontal, and normal to gravity. In each case, a droplet was initially formed at the 

 

Figure 3.1. (a) NFES electrospinning experimental setup, (b) optical microscope 

image shows the NFES solution jet, (c) NFES target with nanofiber on surface and 

(d) SEM image shows the parallel aligned single PAN nanofiber with homogeneous 

morphology. 
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tip of the needle by pumping liquid via a syringe pump. The electrospinning voltage was 

then applied. Next, the tip of a sharp tungsten probe was brought to the proximity of the 

droplet surface (~50μm) by manipulating the probe via a manual positioning stage, 

Fig.3.1(b). The tip of the tungsten is believed to assist with the localization of induced 

electrostatic charges on the droplet, enhancing local electrostatic forces applied on the jet, 

thus, facilitating the jet initiation.  

To understand the effect of electrospinning parameters on PAN fiber spinning 

process and geometry, we first investigated the stability of the electrospinning process and 

fiber diameters obtained at various solution concentration, ranging from 6 wt.% to 12 

wt.%. The electrospinning voltage and distance in this case are 400 V and 500 μm, 

respectively. In case of solution concentrations of 10 wt.% and 12 wt.%, the droplet was 

found to easily dry up and clog the syringe needle, thereby the electrospinning process 

was interrupted. In these cases, the rather high viscosity of the solution was also a major 

obstacle to continuous electrospinning. By decreasing the solution concentration to 8 

wt.%, the electrospinning process initiated by bringing the tungsten probe near the droplet 

and would continue stably, leading to the formation of the smooth electrospun 

nanofiber/fiber on the rotating target, as shown in Fig.3.1(b-d).  

We also studied lower solution concentrations of 6 wt.%, but the electrospinning 

was not continuous in these cases. This is likely due to low chain entanglement in the 

solution, manifested in the low viscosity of the solution, which leads to jet breakup due to 

surface tension 113. Hence, similar to conventional electrospinning, the solution 
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concentration in NFES should be within an allowable range for successful fiber spinning. 

Solution concentrations below this range will interefer with continuous fiber production 

in both methods due to insufficient chain entanglements, while concentrations above the 

range will poorly flow due to high viscosity. However, the upper range of allowable 

solution concentration appears to be lower in NFES. That is mainly because of the slower 

flow rates employed in the NFES and the larger residence time of the droplet on the tip of 

the needle, during which the solvent can evaporate, and the solution concentration can 

increase locally beyond the electrospinable range.     

With a solution concentration of 8 wt.%, we managed to orderly collect PAN 

nanofibers on the rotating spool, shown in Fig.3.1(d). As shown in this figure, each 

revolution of the spun PAN nanofiber nicely deposited on the target parallel to each other. 

The SEM image of individual nanofiber shows that the electrospun nanofibers have a 

smooth surface. No breakage of the nanofibers were observed on the spool, which literally 

means a single long PAN nanofiber was fabricated on the surface of the target with a 

length of over ~1.5 m (~17s electrospinning) and a diameter of 313±26  nm (aspect ratio 

of over 5x106).  

3.2.1 Effect of electrospinning parameters on fiber diameter and morphology 

More insight into the effect of NFES parameters on fiber diameter and morphology 

was obtained by varying the electrospinning voltage and distance at a constant solution 

concentration of 8 wt.%. At first, different voltages ranging from 250 V to 600 V were 

applied to perform NFES with the electrospinning distance fixed at 500 µm. As shown in 
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Fig.3.2, at an applied voltage of 250 V, the electrostatic force between polymer droplet 

and target is not strong enough to overcome the surface tension and initiate the 

electrospinning. Thus, electrospinning was not successful and no fibers were formed in 

this condition (Shown with a red × in Fig.3.2). By increasing the voltage to 400 V, the 

electrospinning was initiated and stably continued. As a result, PAN nanofibers with a 

circular cross section, diameter of 507 ± 155 nm and smooth surfaces were formed. 

Interestingly, further increasing the electrospinning voltage by ~25 % to 500 V, changed 

the cross section of the fibers from nearly circular to an oval, thus ribbons formed in this 

case. The width of the ribbon (the longer diameter of the oval) was parallel to the target 

 

Figure 3.2. Effect of NFES voltage on fiber diameter and morphology (Red Cross 

sign indicates unsuccessful experiment case). 
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surface, and it was measured in SEM to be 2.02±0.27 µm. The out of plane dimension of 

the ribbons (the smaller diameter of their oval cross section) is estimated to be ~400 nm 

in SEM. Moreover, the ribbons were no longer smooth as compared to the 400 V case 

(SEM images in Fig.3.2). 

The formation of wide ribbons at 500 V is an indication of the higher flow rates 

achieved by increasing the electrostatic forces applied on the droplet. It is to be noted that 

since the electrostatic field will both induce charges on the droplet and pull on the induced 

charges, one may expect the electrostatic forces on the droplet to increase with the square 

 

Figure 3.3. Effect of NFES distance on fiber diameter and morphology (Red Cross 

sign indicates unsuccessful experiment case).  
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of the voltage. Hence, increasing the voltage from 400 V to 500 V should in principle 

increase the electrostatic forces by more than 50%. Apart from that, the formation of less 

smooth fibers at higher voltages with an oval cross section is likely an indication of the 

deformation of the jet as it hits the target. To elaborate, one must consider the fact that the 

rate of solvent loss during electrospinning is a function of the surface area of the jet and 

forming fibers. Thus, the rate of solvent evaporation is expected to be significantly lower 

at 500 V (in which wide ribbons form) compared to 400 V. Hence, when the jet hits the 

target at higher voltage, it is still not fully solidified and can get deformed and flatten out 

due to the impact of hitting the target. This phenomenon has been also observed in regular 

electrospinning 114. The nonuniform flattening of the jet on the target may simply reflect 

the slight variations of the solvent residue of the jet as it reaches the target. 

To further reduce the average diameter of PAN nanofiber and achieve nanofibers 

with smooth surfaces, we studied the effect of distance at a fixed voltage on 

electrospinning, shown in Fig.3.3. At the fixed voltage of 400 V used here, the lowest 

allowable distance to initiate stable electrospinning is 400 µm, which generated PAN 

ribbon on target with width about 1.75±0.09 µm and thickness of 400±41 nm. When the 

electrospinning distance was reduced below 400 µm, a short circuit happened between the 

metal needle and grounded target, and electrospinning could not be initiated. The 

formation of PAN ribbons with a relatively large width at 400 μm is likely due to the fact 

the jet in these cases contains a considerable amount of residual solvent when it reaches 

the target, and thus, it is rather soft and can deform upon impacting the target, shown in 

Fig.3.4. This mechanism of flattening the ribbons on the target is similar to that presented 
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earlier in this document to explain the formation of ribbons at 500 V and 500 μm. By 

increasing the electrospinning distance, PAN nanofibers with near circular cross sections 

were obtained on the surface of the rotating target. The largest available electrospinning 

distance is 600 µm, which generates PAN nanofiber with diameter 313±26 nm. Larger 

distances did not allow for successful electrospinning due to insufficient electrostatic 

forces on the droplet which could not overcome the surface tension.  

 

3.2.2 Comparison with conventional electrospinning 

The NFES is considered as a modified electrospinning method to achieve orderly 

positioned nanofibers. Therefore, it will be illustrative to make comparisons between the 

 

Figure 3.4. Effect of NFES distance on morphology of obtained nanofiber on target. 
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two methods. However, a meaningful comparison should be made only when some output 

parameters are similar in the two methods, such as average fiber diameter. This 

comparison will specifically be interesting when considering the fact that the bending 

instability is believed to be one of the main factors leading to thin fibers in conventional 

electrospinning, while the small electrospinning distance effectively prevents this 

instability in NFES (Fig.3.5).  

 

To make such comparison, we focused on the NFES conditions in which the 

average fiber diameter was 313±26 nm, which were fabricated at a solution concentration 

 

Figure 3.5. Schematic diagram of comparison between NFES and regular 

electrospinning (ES) with SEM images showing difference between NFES and ES 

obtained electrospun PAN nanofiber on target. 
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of 8 wt.%, and electrospinning voltage and distance of respectively 400 V and 600 μm. 

We chose these NFES parameters, as the circular shape of their cross section (Fig.3.2) and 

the average fiber diameter is comparable to nanofibers that can be obtained via 

conventional electrospinning. An example of the latter were nanofibers electrospun in our 

lab from a 10 wt.% solution of PAN in DMF, at a voltage of 25 kV and distance of 20 cm, 

which resulted in an average diameter of 314±58 nm 50. Admittedly, these electrospinning 

parameters are not the only ones to results in this average nanofiber diameter, but these 

are within the range commonly used in conventional electrospinning.  

 

The similar average nanofibers diameter achieved in the two methods, despite the 

fact that the jet in NFES did not experience bending instability, is partly owed to the much 

 

Figure 3.6. Fiber diameter distribution comparison of ES and NFES. 
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thinner jet in NFES and lower solution concentration and thus viscosity in NFES which 

enhances the drawability of the jet 55.  It is also interesting to compare the average electric 

fields in these two cases, a value of ~1.25 kV/cm in conventional electrospinning, which 

is an order of magnitude less than the average electric field employed in NFES (~67 

kV/cm). In other words, a significantly larger average electric field is required to 

overcome the surface tension on the droplet and initiate the electrospinning when the 

distance between the needle and the target is reduced from ~20 cm in conventional 

electrospinning to below 1 mm in NFES. This is a result of the distortion of the 

electrostatic field around the needle by the target at small distances employed in NFES, 

which lowers the ratio of the local electric field on the surface of the droplet to the average 

electric field. To compensate for that and to initiate the electrospinning, a larger average 

electrostatic field needs to be employed in NFES.  

Apart from that and as shown in Fig.3.6, the distribution of nanofiber diameter 

fabricated via NFES is much narrower than the ones fabricated via conventional 

electrospinning. Although the average diameter of the nanofibers fabricated with the two 

methods are comparable, the standard deviation of the diameter in the NFES nanofibers is 

~26 nm, which is less than half the standard deviation of the diameter of nanofibers 

processed via conventional electrospinning (~58 nm). This lower standard deviation in 

NFES once again elucidates the stochastic nature of the whipping motion and bending 

instability, which leads to larger diameter distribution in conventional electrospinning. 

The ability to better control diameter distribution is crucial and can pave the path for 



70 

 

employing polymeric nanofibers in many applications such as precursors of CNFs as 

reinforcements for high performance composites.  

3.2.3 Mechanical property of individual NFES nanofiber 

The variation of mechanical properties of NFES nanofibers with diameter and the 

comparison between the mechanical properties of NFES nanofibers and those obtained 

from conventional electrospinning can provide us with valuable insights about the 

morphology of polymer chains in polymer nanofibers. In this section, we studied the 

mechanical properties of NFES nanofibers with circular cross sections fabricated at 

electrospinning voltage of 400 V and distance of 600 μm.  

To this end, we used microdevices shown in Fig.3.7(a) to characterize the 

mechanical properties of individual NFES PAN nanofibers. The devices were designed in 

our lab and fabricated by a commercial processes as explained in prior publications 43, 95, 

115. The devices are composed of Silicon platforms to grip individual nanofibers at their 

ends. One of the grips is connected to a compliant Silicon beam with known stiffness (1.93 

N/m), which serves as the loadcell, while the other one is connected to a piezoelectric 

actuator to load the fiber. Under the optical microscope, a tungsten probe was used to pick 

up single PAN nanofiber and mount it on the MEMS device. Epoxy glue was then applied 

to fix the nanofiber on the MEMS device beams, as shown in Fig.3.7(a-b). The MEMS 

device with fixed nanofiber was then placed on a picomotor piezo linear actuator platform 

(Newport company), which could unidirectionally displace the device on command. The 

moving part of the MEMS device was then fixed by another tungsten probe. Through 
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moving the whole MEMS device, force was applied to the single polymer nanofiber 

through the load cell. The testing was carried out under the optical microscope, during 

which continuous images were taken to perform Digital Image Correlation (DIC) by using 

a commercial software of VIC-2D, as shown in Fig.3.7(c-d). The relative displacements 

of the pads were then used to calculate the elongation of the nanofiber and the load applied 

to the nanofiber, from which the stress-strain curve of individual nanofibers, their strength 

 

Figure 3.7. (a) MEMS device with single PAN nanofiber, (b) higher magnification of 

PAN nanofiber on MEMS, (c) optical microscope image for DIC of MEMS with 

mounted polymer nanofiber without deformation and (d) with deformation. 
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and modulus were obtained. The diameters of the nanofibers tested ranged from 200 nm 

to 300 nm. Details of data analysis is presented in 116. 

Examples of stress-strain curves of PAN nanofiber obtained by using the method 

described above is shown in Fig.3.8(a). The modulus of polymer nanofiber is calculated 

by a linear fit to the stress-strain curve at the small strain regions, as shown in the inset of 

the figure. The modulus of PAN nanofiber ranges from 1.8 GPa to 9.7 GPa and the strength 

ranges from 161 MPa to 312 MPa. The SEM image of failure zone of PAN nanofiber is 

 

Figure 3.8. (a) Stress-strain curve of single PAN nanofiber and its modulus linear 

fitting with different diameters and (b) SEM image of failure position in PAN 

nanofiber after testing. 

 



73 

 

also shown in Fig.3.8(b). Evident necking happened near the failure surface. This is 

similar to the deformations observed in PAN nanofibers obtained from conventional 

electrospinning, which is likely caused by a skin-core inhomogeneity in nanofibers 117. 

The values of modulus and strength, respectively shown in Fig.3.9 (a) and (b) point 

to a strong mechanical size effect. For instance, the modulus of a ~200 nm thick nanofiber 

is ~8 GPa, which is about 4 times the modulus of a ~290 nm thick nanofiber. However, a 

 

Figure 3.9. (a) Modulus and (b) strength of PAN nanofiber with different diameters, 

and average values of (c) modulus and (d) strength of CNFs in different diameter 

range. 
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careful analysis of the mechanical properties as a function of diameter point to two regimes 

in the mechanical size effect. In zone 1 (Fig.3.9 (a) & (b)) which is identified with 

nanofibers thicker than ~260-270 nm, the strength and modulus decreases with diameter. 

This behavior is similar to the size effect observed in nanofibers obtained via conventional 

electrospinning, and it is an indication of lower chain alignment in thicker nanofibers. 

Similar to conventional electrospinning, it can be argued that the lower surface to volume 

ratio in thicker jets that will eventually form nanofibers can slow down the solvent 

evaporation in them. As a result, thicker nanofibers will have higher content of solvent 

residues as they reach the target. Hence, thicker nanofibers can more readily lose part of 

their chain alignment achieved during the electrospinning 27. 

The above argument, however, cannot explain the plateau in strength and modulus 

of nanofibers which was observed in the diameter range of 200-260 nm (zone 2), with a 

plateau modulus of 8.4±0.7 GPa and strength of 275±40 MPa. This behavior is peculiar 

to NFES nanofibers and is not observed in conventional electrospun nanofibers 27, 61. The 

plateau in material properties is an indication of similar morphologies within the range of 

the diameters studied, e.g., chain alignment. The rather high elastic modulus of nanofibers 

in this range, which requires a high degree of chain alignment and packing (corresponding 

to Herman orientation factor of 0.5-0.8 27, 50), may provide some insight as to how the 

morphology is not changing in this range. In other words, we attribute this plateau in 

properties to high chain packing and interactions between chains in nanofibers, as they 

form on the target, which suppress chain mobility, despite different contents of solvent 

residues in nanofibers with various diameters.  
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3.3 Conclusion 

The first successful effort to collect continuous single strand PAN nanofibers with 

aspect ratios exceeding 106 via continuous low-voltage near-field electrospinning (NFES) 

on a spool (rotating target) was presented in this work. Moreover, we studied the 

mechanical properties of PAN nanofibers via micromachined devices. Our studies pointed 

to the significant contribution of electrospinning parameters, such as distance and solution 

concentration, on the rate of success of electrospinning (i.e., spinning continuous fibers 

stably) and also the shape of the spun fibers. For instance, we also realized that slight 

changes in the voltage from 400 V to 500 V can significantly change the shape of the cross 

section of the fibers, from a circular cross section to oval shaped (ribbons). We explained 

that in terms of the solvent residues in the jet and momentum transfer between the fibers 

and the target, as the fibers reach the target. We also compared the output parameters of 

NFES, such as fiber diameter distribution and mechanical properties, with those of 

nanofibers fabricated via conventional electrospinning. In comparison to conventional 

electrospinning, the NFES led to a significantly narrower diameter distribution, by 

collecting the fibers prior to the initiation of bending instability which is stochastic in 

nature. Moreover, the size effect observed in NFES nanofibers, unlike nanofibers 

fabricated via conventional electrospinning, was not monotonic. While in conventional 

electrospinning, the strength and modulus often increase monotonically by reducing the 

diameter, the increase in properties of NFES reached a plateau when the diameter of 

nanofibers was reduced below ~260-270 nm. The plateau in mechanical properties was 

explained in terms of a plateau in nanofiber morphology, and was attributed to high chain 
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packing and interactions between chains in this diameter range (evident in the modulus of 

nanofibers of as high as 9 GPa, among the highest values in PAN nanofibers) which 

suppressed chain mobility.  
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4. MICROSTRUCTURE-PROPERTIES RELATIONSHIP IN FABRICATING CNF 

AND CNF/F-SWNTS 

 

Composite materials reinforced with carbon fibers (CFs) have achieved 

remarkable success in substituting traditional metallic based materials as a means to 

reduce weight for a variety of applications, such as aerospace sector, high performance 

racing cars and even sporting goods 1, 118-119. CFs are fabricated through pyrolysis of 

polymeric precursors, including polyacrylonitrile (PAN) homopolymer and copolymer, 

petroleum pitch, and lignin 8. Over  50 years of research and development on fabrication 

process, precursor polymer chemistry and morphology has led to considerable increase in 

the mechanical strength of CFs from ~2.5 GPa to ~7.0 GPa 4. However, flaws present in 

the structure of traditional CFs with diameter in the range of 4-8 µm, has become a major 

roadblock in further improving their strength 8, 14, 17. Thus, there has been a new push to 

enhance the strength of CFs by reducing their diameter from a few microns to below ~2 

microns by incorporating different processing techniques, such as gel-spinning of bio-

component precursors (island-in-sea method) 70 and electrospinning the precursors 18, 31. 

These efforts are motivated by the strong size (i.e., diameter) effects in CFs which stems 

from size dependent flaws in CFs, such as inherent radial structural inhomogeneity 19, 120-

121. Among methods to generate CFs with reduced diameters, electrospinning the polymer 

precursors followed by carbonization the precursor stands out as the method which is 

capable of generating nearly continuous carbon fibers with diameters as low as 100 nm 

(carbon nanofibers, CNFs) 122-124. Apart from high potential mechanical properties 11, 
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electrospun CNFs have also been shown to exhibit other properties which are highly 

sought for in developing multifunctional composites, such as high electrical conductivity 

125, piezoresistivity 95 and thermal conductivity 97.  

Continuum models of CNFs which treat them as composites of amorphous carbon 

reinforced with turbostratic particles and atomistic models of CFs in which size-dependent 

flaws such as skin-core inhomogeneity are absent predict that the strength of CNFs can 

reach values in excess of 14 GPa and conservatively may even be higher 11, 126-128.  

However, due to factors such as relatively low polymer chain alignment in electrospun 

precursors, which leads to limited graphitic alignment, the achieved strength of CNFs is a 

fraction of the predicted values. Different approaches has been applied to improve the 

mechanical performance of CNF for instance via enhancing the chain alignment in the 

precursor which leads to enhanced graphic alignment in CNFs 43, controlling the 

concentration of graphitic domains18, applying restricting force during carbonization 129 

and adding carbon nanomaterials to restrict polymer chain shrinkage during the fabrication 

process and introduce templating graphitization 91, 130. Despite all the efforts, the highest 

strength of CNFs measured experimentally (a value of ~4 GPa 18, 43 for  gauge length 25µm 

or higher), compares even poorly to the highest strength of commercial CFs (~7.0 GPa for 

Torayca®, T1100G).  

In an attempt to close the gap between the measured and theoretical strength, we 

studied the mechanical properties of PAN homopolymer-based electrospun CNFs in 

relation to their microstructure. Our efforts were in particular directed at reducing defects 
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in CNFs, such as poor graphitic alignment and both low degree and excessive 

graphitization. While compared to amorphous carbon which is achieved for instance via 

carbonization at ~1100 ºC, increasing the graphitization (by increasing the carbonization 

temperature to ~1400 ºC) can increase the strength by introducing more of the strong sp2 

C-C bonds, excessive graphitization (by employing higher carbonization temperatures) 

may lead to strength-compromising interactions between turbostratic domains 18. We 

demonstrate that through proper engineering the microstructure of CNFs, their strength 

can exceed the strength of traditional CFs. This is despite the fact that the industrial CFs 

are fabricated from PAN copolymers which facilitate drawing-induced chain alignment 

compared to PAN homopolymers used in this study to fabricate CNFs. Interestingly, the 

remarkable strength of CNFs has come with added benefits in terms of energy to failure 

and ductility. That is, comparing with CF, our electrospun CNF shows evident increase in 

failure strain and toughness, which is discussed based on the microstructure difference 

between them the fracture surfaces of CFs and CNFs as observed with nearly atomic 

resolution. Moreover, the decreased radial dimension of precursor polymer nanofiber from 

electrospinning provides a lowered defect density and structural inhomogeneity, which 

contribute to the overall and simultaneous improvement in strength and toughness. The 

proposed failure mechanism of electrospun CNFs with both high strength and toughness 

provides new pathway for developing high-performance structural fibers in both academia 

and industry. 
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4.1 Experimental work for CNFs 

4.1.1 Fabrication of hot-drawn CNFs 

Polyacrylontirile (PAN) precursor nanofiber ribbon was fabricated via 

electrospinning. The 10 wt.% homopolymer PAN solution was obtained by dissolving 

PAN powder (Mw = 150,000 g/mol) in Dimethylformamide (DMF) solvent (both from 

Sigma–Aldrich). The flow rate of electrospinning was set to ~0.8 ml/hr to obtain stable 

jet. Rotating target was used to obtain aligned polymer nanofiber ribbon with ~5.7 m/s 

peak-up velocity and at voltage and distance of 25 kV and 20 cm, as described in our 

previous work 50. Then, PAN nanofiber ribbon were drawn to different ratios, ranging 

from λ =1 to 3 (λ, hot-drawing ratio = final length/initial length of ribbon) by applying an 

engineering stress of ~19 MPa in an oven at a temperature of 135°C.  

Following that, the PAN precursor nanofiber were thermally stabilized at 290 ºC 

for 2 hours in air. FT-IR was used to characterize the stabilization reaction extent under 

different conditions, such as temperature and time. Based on the calculated ring 

cyclization index RCI (the ratio of intensity of the C=N to the sum of the intensities of 

C=N and C≡N), optimum condition for stabilization was chosen, as described in elsewhere 

43. During the stabilization, 5 MPa stresses were applied to the hot-drawn ribbons to 

constrain the shrinkage and maintain the chain alignment during the reaction. 

Carbonization was carried out in tube furnace (MTI, GSL-1700x) at 1400 ºC for 2 hours 

under inert gas (N2) environment, during which no stress is applied.  
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4.1.2 Microstructural characterization of CNFs 

The surface morphology of PAN and carbon nanofiber was characterized by using 

FEI Quanta 600 FE-SEM. The X-ray diffraction spectrums of PAN and CNFs ribbons 

(XRD) (CuKα, wavelength of 0.154 nm) were obtained using GADDS BRUKER-AXS 

MWPC 3-thircle X-ray Diffractometer. The crystallinity of PAN precursor nanofiber was 

calculated based on the relative area under the deconvoluted crystalline and amorphous 

peaks by using Lorentzian fitting in Origin 9.0 71. The PAN crystallite size in PAN 

precursor and CNFs were calculated from PAN (110) and CNFs (002), by using Scherrer’s 

equation (K = 0.89) 131. The orientation of the PAN chains in the crystalline phase was 

determined based on the azimuthal scans of the diffraction peak at 2θ ~ 17º 106. Orientation 

of CNFs crystallite was determined from the azimuthal scan at 2θ = 25º 10. Herman’s 

orientation factor of PAN crystal and CNFs crystal are obtained from following equations 

based on WAXD azimuthal curves of PAN (110) and CNFs (002) diffraction peaks. 

〈𝑐𝑜𝑠2𝜓〉 =
∫ 𝐼(𝜓)𝑐𝑜𝑠2(𝜓)sin (𝜓)𝑑𝜓

𝜋
2

−
𝜋
2

∫ 𝐼(𝜓)sin (𝜓)𝑑𝜓

𝜋
2

−
𝜋
2

,  𝑓 =
3〈𝑐𝑜𝑠2𝜓〉−1

2
                      (4.1) 

where ψ is off axis angel, I is diffraction intensity, and f is the Herman’s orientation factor. 

Graphitic structure within the CNF was characterized by using Horiba Jobin-Yvon 

LabRam Raman Confocal Microscope with a He-Ne laser (633nm). The averaged ID/IG 

ratio and crystallite size were obtained based on three times measurements. The curve 

fitting was carried out in Origin 9.0 with Lorenzian fitting. FEI Tecnai G2 F20 

transmission electron microscope (TEM) was used to characterize the graphitic structure 

of CNF, and selected area electron diffraction (SAED) was applied to measure the 
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alignment of turbostratic domains within CNFs. The obtained averaged full width half 

maximum (FWHM) of (002) arc of CNFs in SAED pattern was reported based on five 

times measurements. 

4.1.3 Mechanical testing of individual nanofiber 

The mechanical property of individual CNF was studied by using a MEMS-based 

nano-mechanical testing platform. After mounting individual CNFs on MEMS device 

with 3D-manipulator controlled sharpened tungsten tip, Tescan LYRA-3 focused ion 

beam (FIB) was used to deposit platinum (Pt) block on it to fix it on device. Then, the 

MEMS device with Pt block fixed nanofiber was mounted on stage with one-dimensional 

controllable motion ability. While the stage was actuated, optical images of the load cell 

in the device was captured via an optical microscope. Through applying Digital Image 

Correlation to calculate the displacement of different parts in the MEMS device and 

combining with the stiffness of the load cell, the stress-strain curve of individual CNF/f-

SWNTs tensile test was obtained. The cross-section area of CNFs used to calculate the 

stress in CNFs was obtained from the diameter of the failure position. The force and strain 

resolution of the MEMS device was 4 MPa and 0.1%, which is suitable for characterizing 

the modulus and strength of individual CNF. More details of the testing apparatus can be 

found in our previous work 43. 
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4.2 Results and discussion of CNFs 

4.2.1 Microstructure of CNFs and CF precursors  

 The microstructure and properties of CNFs are highly dependent on factors such 

as the degree of graphitization and graphitic alignment 18, 43, 132. Among these parameters, 

alignment of turbostratic (defective graphitic) domains is strongly dependent on precursor 

chain alignment. Higher alignment of precursor chains can effectively enhance graphitic 

alignment in CNFs, and thus, lead to CNFs with improved strength and modulus 43. The 

enhancement in chain alignment can be achieved to some extent via electromechanical 

drawing forces applied onto electrospinning jet, but more effectively via hot-drawing the 

as-electrospun nanofibers 43. The chain alignment can even lead to orientation-induced 

crystallization, as has been demonstrate in PAN 43, 61 and other polymer nanofibers 64, 133. 

On the other hand, excessive hot-drawing may induce defects in the precursor, such as 

chain scissor or voids, which can compromise the strength of the resulting CNFs. For 

instance, in a prior study, it was demonstrated that increasing the hot-drawing ratio from 

λ = 2 to λ = 4 increased the scatter in the strength of CNFs with no effective improvement 

in the average strength, suggesting defect accumulations in the precursor 43. Therefore, in 

this work, λ = 3 is chosen to be the maximum hot-drawing ratio applied to as-electrospun 

PAN nanofibers to induce chain alignment as a means to develop high strength CNFs.  
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 The microstructure of the PAN nanofibers as a function of the draw ratio, studied 

via X-ray diffraction method (Experimental section), is presented in Table 4.1. As shown 

in the table, hot-drawing of the precursor significantly increases the crystallinity, crystal 

size and alignment of chains within the crystalline domain. For instance, hot-drawing the 

PAN precursor nanofiber to λ = 3 (average diameter ~190nm) in this work led to an 

enhancement in crystallinity, crystal size and Herman’s orientation factor of crystal phase 

to 31%, 6.7 nm and 0.74, respectively, from a nearly amorphous state in as-electrospun 

nanofibers (λ = 1). That is, hot-drawing of the precursor above the glass transition 

temperature of PAN enhanced the mobility of PAN chains and facilitated chain alignment. 

It also led to a more densely packed arrangement of polymer chains. These results are in 

line with our prior findings on the effect of hot-drawing on the microstructure of PAN 43, 

50. 

Table 4.1. Structural parameters comparison between electrospun PAN nanofibers 

and PAN fibers.16,62,134 
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It is also illustrative to compare the morphology of PAN chains in hot-drawn 

electrospun nanofibers with the morphology of PAN chains obtained via other fabrication 

processes. For instance, PAN homopolymer microfibers made from wet-spinning exhibit 

higher crystallinity and crystal phase alignment 134. This is partly due to the swelling 

caused by the residual solvent which weakens the interactions between chains and allows 

for significantly higher draw ratios in wet-spun fibers. Drawing-induced chain alignment 

can continue until the crystalline domains which suppress chain mobility are formed 134. 

In addition, gel-spun PAN fibers can achieve larger crystal domains compared to 

electrospun PAN nanofibers, due to reduced entanglement of polymer chain 62. The chain 

alignment can also be further enhanced by utilizing PAN copolymers such as 

Polyacrylonitrile-co-Methacrylic Acid (PAN-co-MAA), instead of PAN homopolymers 

16. The reduced polarity of the precursor chains by introducing MAA monomers lowers 

the interactions and physical entanglement between chains, thus, allowing for higher draw 

ratios, chain alignment and crystallinity, as shown in Table 4.1.  

In addition to the processing conditions which facilitates chain alignment in gel- 

and wet- spun fibers, the lower degree of crystallinity of PAN chains in electrospun fibers 

could also be partly rooted in their sub-micron diameter (larger surface to volume ratio) 

which promotes solvent evaporation and lowers the residual solvent content of the fibers. 

As discussed earlier in the context of wet-spun fibers 134, the residual solvent can act as a 

plasticizer, facilitating chain reorientation in response to hot-drawing.  
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4.2.2 Microstructure of CNFs 

The significant effect of the microstructure of CNFs on their physical properties 

has been alluded to in previous studies 31, 43, 95, 129, 135-140. In this section, the microstructure 

of CNFs, especially their defect density and graphitic alignment, as a function of 

processing conditions is studied. 

Raman spectroscopy was used to analyze the microstructure of CNFs obtained as 

a function of the carbonization temperature and precursor hot-drawing ratios, Fig.4.1. 

After carbonization of the precursor, two major peaks appear at ∼1336 cm-1 and ∼1580 

cm-1 corresponding to the D- and G-peak of carbon materials. The ratio of peak intensities, 

ID/IG, can be used as a relative indicator of defect density within the materials with 

graphitic domains 31, 141. By increasing the carbonization temperature from 800 °C to 

1400 °C in as-electrospun CNFs (λ = 1, no precursor hot-drawing), there is a gradual 

decrease in the ID/IG ratio from 4.7 to 3.8 (~20%), indicating a reduced defect density in 

CNFs achieved by employing higher carbonization temperature.  

The ratio of peaks in Raman spectrum also allows us to calculate the width (in 

plane dimension of the graphitic structures, La) as: 142 

𝐼(𝐷)

𝐼(𝐺)
=
𝐶(𝜆𝐿)

𝐿𝑎
                                                        (4.2) 

where 𝜆𝐿 (= 633nm) is the wavelength of the He-Ne laser used to collect Raman spectrum. 

The value of the coefficient 𝐶(𝜆𝐿) for the He-Ne incident laser is ~8.3 nm 143. According 

to this analysis, the width of the graphitic crystallites increases from 1.75 nm to 2.05 nm 

by increasing the carbonization temperature, consistent with previous studies 18, 144. The 
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growth of the turbostratic domains in PAN-based CNFs along the basal plane of the 

domains (in-plane dimensions) during the carbonization process occurs as a result of the 

merger of the stabilized PAN chains through dehydration and denitrogenation reactions.  

Increasing the carbonization temperatures, especially from relatively low 

carbonization temperatures can lead to stronger CNFs by promoting the graphitic content 

of the nanofiber 18, 145. However, carbonization at temperatures above 1400 °C may 

compromise the strength of CNFs 18 and CF 34. Hence, the highest carbonization 

temperature used in this study was 1400 °C. The loss of strength in CFs fabricated above 

1400 °C was observed as early as 1975,146 but even as recently as 2016 its cause is 

speculated 147. A survey of literature suggests that it can be induced by stress concentration 

along interfaces of partially misaligned turbostratic domains 18, 34, 148, generation of atomic 

 

Figure 4.1. (a) Raman spectrum and (b) ID/IG ratios and La of CNFs with different 

fabrication conditions. 



88 

 

scale voids due to denitrogenation,146 or the reduction in the density of covalent crosslinks 

(sp3 bonds) within turbostratic domains 147.  

Apart from carbonization temperature, the Raman spectrum of the CNFs also 

shows that the hot-drawing of precursor nanofibers can effectively enhance the graphitic 

structure within CNFs, Fig.4.1 (b). For instance, as shown in the figure, the CNFs 

fabricated by carbonizing the hot-drawn precursor (λ = 3) have a lower ID/IG and thus 

defect density compared to the CNFs obtained from undrawn precursors (λ = 1) both 

fabricated at 1400 ºC. Moreover, as shown in Fig.4.1 (b), the reduction in defect density 

is also accompanied with a widening of the graphitic domains from ~2.05 nm to ~2.2 nm. 

In other words, denser packing, higher chain alignment, higher degree of crystallinity and 

 

Figure 4.2. (a) WAXD curve and (b) 2D intensity azimuthal scan of CNFs with 

different hot-drawing ratios. 
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larger PAN crystals in hot-drawn precursors (discussed in previous section and presented 

in Table 4.1) which is partly preserved in the following stabilization and carbonization 

processes, facilitate the merger (zipping) of the cyclized PAN chains during the 

carbonization, leading to lower defect density of graphitic structure.  

 

Therefore, based on the Raman spectrum of CNFs obtained at various 

carbonization temperatures, carbonization at 1400 ºC resulted in the lowest defect density 

and widest graphitic domains. The crystalline structure and mechanical properties of CNFs 

obtained at this temperature was further analyzed. The crystalline structure of CNFs 

obtained by carbonizing hot-drawn precursors to various hot-drawing ratios at 1400 ºC 

was characterized by WAXD. The appearance of peak at 2θ ~ 25°-26°, corresponding to 

(002) plane of the graphitic structure, indicates the formation of graphitic domains in the 

CNFs, Fig.4.2, in line with the emergence of the G peak in the Raman spectrum (Fig.4.1). 

By increasing the hot-drawing ratio of precursor nanofiber, there is a continuous increase 

in crystallite thickness (normal to the basal plane of graphitic domains, as measured by 

using Scherrer’s equation with K = 0.89) from 1.15 nm in CNFs of undrawn precursors to 

1.27 nm in CNFs of hot-drawn precursors with λ = 3. The increase in crystal thickness in 

CNFs via precursor hot-drawing is accompanied with an improvement in the alignment of 

the crystalline domains within the CNF as indicated by the Herman’s orientation factor. 

For instance, increasing the precursor hot-drawing ratio from λ = 1 to λ = 3 led to an 

increase in the Herman’s orientation factor of graphitic domains within CNFs from 0.44 
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to 0.52. This result reaffirms the direct correlation between chain alignment in the 

precursor and graphitic alignment in carbonized structures.  

The alignment of crystalline domains within CNFs was also studied via SAED, 

Fig.4.3. By increasing the hot-drawing ratio of precursors, there is a continuous increase 

in the alignment of crystalline domains, indicated by a reduction in the full width half 

maximum (FWHM) of the integrated intensity of (002) arc in SAED pattern. The FWHM 

of CNFs with λ = 1 decreases drastically from 86° to 50° for CNFs with λ = 3, indicating 

a narrower distribution of crystalline domains in CNFs with hot-drawn precursors.  

The SAED is commonly used to characterize the alignment of graphitic domains 

in CNFs, thus, the FWHM measurements of SAED can be used to compare the graphitic 

 

Figure 4.3. (a) SAED pattern of CNFs with different hot-drawing ratios with dash 

line showing direction of CNF and (b) FWHM of (002) arc in SAED pattern of CNFs 

in this work comparing with CNFs from other researches.43,129,132 
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alignments in our work with existing studies. For instance, as shown in Fig.4.3(b), 

increasing the carbonization temperature from 1100 °C (the work by Chawla, et al.) 43 to 

1400 °C (this work) in CNFs both obtained from undrawn precursors does not lead to any 

evident change in graphitic structural alignment. This is expected, as increasing the 

carbonization temperature can only facilitate the growth of the graphitic content, and it 

offers no effective mechanism to improve alignment. Compared to CNFs from another 

study (no precursor hot-drawing) 132 which were carbonized at 800 °C, our CNFs which 

were obtained from undrawn precursors have slightly higher graphitic alignment (lower 

FWHM) likely due to the different electrospinning parameters used which affects the 

microstructure of the precursor, thereby properties of CNFs, while precursor hot-drawing 

in this work leads to significantly narrower (002) arc, Fig.4.3(b).  

Moreover, Ramachandramoorthy, et al 129 successfully improved the alignment of 

graphitic structure by applying constraining forces during carbonization at 800 °C, which 

effectively improved mechanical performance of CNF. However, ladder structure of 

stabilized cyclic PAN chains are relatively rigid. In comparison, engineering the 

microstructure of precursor polymer nanofibers in its rubbery state (above Tg - the present 

study) is likely a more convenient path to align the polymer chain due to the much higher 

mobility of polymer chains. As such, the FWHM of CNFs with λ = 3 in our study is ∼50°, 

which is significantly smaller than the work of Ramachandramoorthy, et al 129 (∼69°), 

demonstrating the effectiveness of aligning graphitic structure within CNFs through 

applying hot-drawing to the precursor prior to stabilization.   
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4.2.3 Mechanical properties of individual CNF 

The mechanical properties of individual CNF with different hot-drawing ratios, 

carbonized at 1400 °C, was characterized by nano-mechanical tension tests under optical 

microscope. The testing method has been thoroughly discussed in a previous paper 43. As 

shown in Fig.4.4(a,c), the strength and modulus of as-electrospun CNFs (λ = 1) obtained 

at a carbonization temperature of 1400 °C is 3.7±0.6 GPa and 138±28 GPa, respectively, 

which are consistent with the previous result from Arshad’s work 18. Compared with the 

mechanical properties of CNFs carbonized at 1100 °C 43, increasing the carbonization 

temperature effectively improve the mechanical properties of CNF. The increased 

carbonization temperature leads to about 100% and 13% improvement in strength and 

modulus, respectively, in as-electrospun CNFs (no precursor hot-drawing). The improved 

mechanical performance is due to reduced defect density and enlarged crystalline size 

(both width and thickness) in CNFs formed at higher carbonization temperature. 

The mechanical properties of individual CNF with different hot-drawing ratios, 

carbonized at 1400 °C, was characterized by nano-mechanical tension tests under optical 

microscope. The testing method has been thoroughly discussed in a previous paper 43. As 

shown in Fig.4.4(a,c), the strength and modulus of as-electrospun CNFs (λ = 1) obtained 

at a carbonization temperature of 1400 °C is 3.7±0.6 GPa and 138±28 GPa, respectively, 

which are consistent with the previous result from Arshad’s work 18. Compared with the 

mechanical properties of CNFs carbonized at 1100 °C 43, increasing the carbonization 

temperature effectively improve the mechanical properties of CNF. The increased 

carbonization temperature leads to about 100% and 13% improvement in strength and 
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modulus, respectively, in as-electrospun CNFs (no precursor hot-drawing). The improved 

mechanical performance is due to reduced defect density and enlarged crystalline size 

(both width and thickness) in CNFs formed at higher carbonization temperature. 

 

Figure 4.4. (a) Tensile strength and (b) modulus of CNFs with different hot-drawings 

with different diameters obtained in this study. The average values of strength and 

modulus of our CNFs is compared with (c) modulus and (d) strength of representative 

CNFs and CFs that are based on PAN homopolymer 18,34 and a commonly used 

commercial CF (T300). 
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We would also like to emphasize that the strongest CNF obtained in our study is 

~7.7 GPa, which is even 10% larger than T1100G (strongest CF up to date from Toray 

Torayca®). Considering the extensive experimental works carried out to optimize the 

precursor chemistry of commercial CF and the utilization of PAN copolymers in CF 

industry, hot-drawn electrospun CNFs show great potential as the next-generation super 

strong reinforcement materials in nanoscale.  

 

Figure 4.5. Comparison between hot-drawn CNFs (this work) and other engineering 

materials for their specific strength and specific energy to failure (* The data for glass 

fibers is obtained from www.AGY.com.)34,43,106,149-152 
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In addition to remarkable strength, the rather large ductility in our CNFs is also 

interesting. The averaged failure strain of hot-drawn CNF with λ = 3 is 3.0±0.7%. 

Compared with CFs made of PAN homopolymer (1.25±0.15%) 34, there is a 140% 

increase in the failure strain. This large failure strain of electrospun CNFs has also been 

observed by other researchers 43, 132.  

The combination of high specific strength and ductility leads to remarkably high 

energy to failure (per unit mass), as shown in Fig.4.5. The combination of high specific 

strength and energy to failure is an essential requirement for advanced fibers. As shown 

in Fig.4.5, the combination of high specific strength and energy to failure is the highest of 

all CF/CNF developed up to date. Comparing with the commercial CF (T-300), there is 

80% increase in the specific strength and 267% improvement in specific energy to failure. 

Moreover, while the obtained specific energy to failure (55±20 J/g) of CNF is comparable 

to some super tough fibers 149-150, such as Kevlar (36-78 J/g) 151-152, DWNTs/polymer fiber 

(100 J/g) 107, spider silk (165 J/g) 152, the specific strength of hot-drawn electrospun CNF 

is much higher than all these materials, making them a suitable candidate for applications 

which call for high strength and flaw-tolerance, such as aerospace fields.  

4.2.4 Failure mechanism analysis of hot-drawn CNFs 

Since the ductility of CNFs in the present study and a few others 24, 45 is 

significantly larger than that of CFs, the high toughness and ductility of CNFs is explained 

in this section by considering the differences in the microstructure of CFs and CNFs, as 

studied via TEM imaging.  
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A TEM image of the fracture surface of an electrospun CNF is shown in Fig.4.6 

(b). As shown in the figure, the turbostratic domains are partially aligned, but more 

importantly they appear to be surrounded and dispersed within a matrix of amorphous 

carbon. A similar microstructure was also observed by other researcher 18. Moreover, there 

is no apparent variation of the alignment or concentration of TB domains in the radial 

direction. While the external loading which is along the axis of the CNF favors a crack 

propagation in the radial direction, i.e., normal to the plane of the maximum tensile stress, 

the locally heterogeneous microstructure of CNFs offers more energetically favorable 

alternative path within the weaker phase (amorphous matrix) and/or along the matrix 

interface with the fillers (turbostratic domains), as evident in the TEM images. For 

instance, zone I in Fig.4.6 (b) shows an instance in which the crack has propagated along 

the basal plane of a misoriented turbostratic domains. The graphene layers are overdrawn 

by white line for enhanced visibility. The TEM image of the fracture surface alone does 

not reveal whether the crack has propagated through the domain by exfoliating the domain 

in the c-direction (“opening” the domain), or has simply moved along the interface of the 

turbostratic domains with the amorphous matrix surrounding it. Another interesting 

fracture site is shown in zone II, which is a turbostratic domain aligned with the fiber axis. 

The length of this domain is comparable to the interior domains observed in the same 

image. Therefore, the crack has likely propagated around the domain instead of breaking 

it into smaller domains. The tendency of the crack to move around the rather uniformly 

distributed turbostratic domains, instead of breaking them, reflects the strength of the 

domains. As a result of that the crack is forced to follow the orientation of the turbostratic 
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domains. Thus, a highly tortuous crack path will form, increasing the energy required to 

completely fail the CNFs.  

 

The aforementioned mechanism of toughening in a heterogeneous structure of 

CNF resembles the toughening mechanisms in nanocomposites, such as graphite nano-

platelets (GNP) or thermally reduced graphene oxide (TRGO) within epoxy matrix 

 

Figure 4.6. (a) Schematic diagram of microstructure in CNF showing randomly 

distributed graphitic domains in amorphous carbon matrix, (b) TEM image of CNF 

fracture surface and schematic diagrams describing the possible failure mechanism in 

electrospun CNF (c) schematic diagram of microstructure in CF showing skin-core 

inhomogeneity, and (d) Reynolds and Sharp mechanism of tensile failure in CFs, 

which shows the tensile stress initiated graphitic layer plane rupture and further 

exertion of stress causes the complete failure of misoriented crystallite. (The 

schematic diagram is not in scale). 
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nanocomposite 153-156.  The major toughening mechanism in all these cases are crack 

pinning and deflection.  

The microstructure of CNFs can be contrasted with that of CFs. While the CNFs 

can be described as a composite of partially aligned turbostratic domains within an 

amorphous matrix, the microstructure of CFs is often described as an intertwined network 

of “interlinked layer planes” of turbostratic domains 17, Fig.4.6(c), which was 

demonstrated by the TEM observation of CFs, especially near the surface of CFs 89. The 

classical Reynolds and Sharp mechanism of tensile failure in CFs suggests that the shear 

strain energy is sufficient to induce basal-plane rupture in the misorientated crystallite, 

and the crack will propagate through the adjacent layer planes in CFs, as shown in 

Fig.4.6(d) 157. This fracture mechanism is promoted by the nearly continuous turbostratic 

domains, or significantly longer domains (along their basal planes) in CFs compared to 

CNFs. This is in contrast to the fracture mechanism observed in CNFs in which the crack 

will not break the turbostratic domains, but instead the crack will propagate around them. 

Therefore, CFs with nearly continuous turbostratic domains can absorb less energy per 

unit volume and will fail at lower strains compared to CNFs.  

The formation of the nearly continuous, interconnected and interlinked turbostratic 

domains in CFs requires a considerable degree of domain alignment and packing, which 

is more readily achievable in CFs (compared to CNFs) due to the higher chain alignment 

in their precursors (for instance, see Table 4.1). As such, in CNFs with hot-drawing ratio 

of λ = 3, the crystallite size is about 1.3 nm, which is comparable to the commercial CFs 
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(T300 with 1300-1400ºC carbonization), gel-spun CFs based on PAN homopolymer 

(1200 ºC carbonization) 20 and copolymer (1450 ºC carbonization) 10, while the CNFs have 

significantly lower Herman orientation factor of the graphitic domains. 

 

Other factors may also contribute to the lower ductility of CFs compared to CNFs. 

For instance, the microstructure of PAN-based CFs is typically described as a skin-core 

structure, originated from the insufficient stabilization reaction in core zone, as shown in 

Fig.4.6(c). Comparing to the more randomly orientated turbostratic domains in the core, 

highly aligned and less defective graphitic structure form in the skin of CF during the 

fabrication process 17. This is in contrast to CNFs in which by downsizing the precursor 

fiber diameter to sub-micron scale, the radial inhomogeneity is effectively eliminated 11, 

14. The radial inhomogeneity in CFs can lead to the formation of microcracks along the 

Table 4.2. Structural parameters comparison of CNFs with different hot-drawing 

ratios and CFs in micro-size. 10,20 
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interface between skin and core due to thermal strains developed during processing, 

further lowering the ductility of the fibers. Moreover, the relatively smooth surface of 

electrospun CNFs is also considered as one of the reason for its high potential strength 

and failure strain 14.  

4.3 Experimental work for CNF/f-SWNTs 

Templating graphitization process, the formation of highly-ordered low defect-

density graphitic structure in carbon nanofibers (CNFs), due to the existence of highly 

graphitic nanomaterials, such as carbon nanotubes (CNTs), was demonstrated to be an 

effective approach to modify the microstructure of CNFs. In this section, templating effect 

of functionalized single-walled CNTs (SWNTs) in CNFs facilitated by the thermo-

mechanical post processing and the contribution of that to microstructure evolution and 

mechanical properties of CNF/f-SWNTs hybrid nanofiber are studied in details. To 

improve the alignment of SWNTs, polymer chain and packing density of polymer chain 

on surface of SWNTs, hot-drawing was applied as the post-processing treatment to as-

fabricated PAN/f-SWNTs precursor nanofiber. After applying stabilization and 

carbonization processes, CNF/f-SWNTs was obtained. The microstructure of PAN/f-

SWNTs and CNF/f-SWNTs were both characterized in a comprehensive fashion by 

different methods, such as Raman spectroscopy, wide-angle X-ray diffraction. The 

correlation between microstructure evolution in both precursor and CNFs and post-

processing indicates the crucial effect of hot-drawing on microstructure improvement. The 

Microelectromechanical System (MEMS) based single nanofiber mechanical testing 

results show the templating effect of CNTs on CNFs mechanical properties would be 
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further exerted through applying hot-drawing. The existence and evolution of the highly 

order phase around the CNTs and its influence on the overall mechanical property of CNF 

are also discussed. 

4.3.1 Fabrication of hot-drawn CNF/f-SWNTs nanofiber 

To achieve better dispersion condition, functionalized single walled CNTs (P3-

SWNT, from Carbon Solution) is used in this work, which contains 1-3 atomic% 

carboxylic acid groups on surface. Polyacrylonitrile (PAN)/f-SWNTs precursor nanofiber 

ribbon was fabricated through using similar electrospinning approach discussed in our 

previous publications 50. The f-SWNTs were dispersed in dimethylformamide (DMF) 

solvent (from Sigma–Aldrich) through 4 hours ultrasonication to achieve visible 

homogeneous solution. Then, polyacrylonitrile powder (Mw = 150,000 g/mol, from 

Sigma–Aldrich) was dissolved in f-SWNTs/DMF solution to obtain 10 wt.% PAN/f-

SWNTs/DMF solution. The concentration of f-SWNTs is fixed at 0.5 wt.% of PAN. 

Electrospinning process was performed at voltage and distance of 16 kV and 20 cm, and 

the flow rate of polymer solution was set to ~0.5 ml/hr to obtain stable jet with rotating 

target at ~5.7 m/s peak-up velocity. PAN/f-SWNTs nanofiber ribbon then was drawn to λ 

= 3 (λ, hot-drawing ratio = final length/initial length of ribbon) by applying an engineering 

stress of ~19 MPa in an oven at a temperature of 135°C. The nanofiber ribbons with 

different hot-drawing ratios were stabilized at 290 ºC for 2 hours in air circumstance with 

5 MPa constraint stress. Carbonization of stabilized PAN/f-SWNTs was carried out in 

tube furnace (MTI, GSL-1700x) at 1400 ºC for 2 hours under inert gas (N2) environment 

without constraint stress.  
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4.3.2 Microstructure characterization and mechanical testing of CNF/f-SWNTs nanofiber 

The microstructure of CNF/f-SWTNs was characterized by Raman spectroscopy, 

wide-angle X-ray diffraction, by using the method described in section 4.1.2. The 

mechanical properties of individual CNF/f-SWNTs were measured by using the MEMS 

device, as discussed in section 4.1.3 

4.4 Results and discussion of CNF/f-SWNTs 

 As shown in our previous experimental works 50, adding unfunctionalized (and 

low defect density), to electrospun PAN nanofibers especially when the nanofibers are 

drawn at temperatures above their glass transition temperature to draw ratios of as high as 

4 leads to the formation of highly ordered (HO) polymer interphase on the surface of CNTs 

136. Prior studies also show that the carbonization of PAN with CNT inclusions can lead 

to the formation of highly ordered graphitic regions (HOG) around CNTs. However, the 

relatively low concentration of pristine SWNTs (0.1 wt.%-0.2 wt.%) that can be well-

dispersed in PAN nanofiber without considerable agglomeration, significantly restricts 

performance improvement in PAN nanofibers and CNFs. For instance, the highest 

mechanical strength and modulus in PAN/CNTs (pristine CNTs) hybrid nanofibers is 

achieved at 0.1 wt.% SWNTs, and further increasing the concentration will introduce more 

CNTs agglomerations and defects, therefore lowering the mechanical properties 50. 

Therefore, to overcome this problem, functionalized SWNTs with carboxylic acid groups 

was used in this work to fabricate the hybrid nanofiber. The carboxyl groups significantly 

enhanced the dispersion of CNTs in the DMF and also CNT/PAN/DMF solution, 

demanding significantly shorter ultrasonication times, compared to pristine CNTs, to 
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achieve visually homogeneous solutions. While adding 0.5 wt.% of pristine SWNTs to 

PAN in a previous work reduced the strength and modulus of the polymer nanofibers 

compared to the neat polymer nanofiber due to CNT agglomeration 50, the mechanical 

testing of polymer nanofiber ribbons with λ = 1 and 3, shows that adding 0.5 wt.% f-

SWNTs nanofiber effectively improves the strength and modulus of the ribbons (shown 

in Fig.4.7). The formation of HO polymer interphase wrapping protruded f-SWNTs, likely 

in the form of extended chains, are also found at the broken surfaces of hot-drawn PAN/f-

SWNTs nanofiber, shown in Fig.4.8. In the following sections, the microstructure of 

PAN/f-SWNTs with different hot-drawing ratios are analyzed by using various methods.  

 

Figure 4.7. (a) Tensile strength and (b) modulus of PAN/CNTs nanofiber ribbon. 
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4.4.1 Microstructure of PAN/f-SWNTs nanofiber 

The semi-crystalline structure of as-electrospun and hot-drawn PAN nanofibers 

was studied via X-ray powder diffraction method. In the x-ray patterns of as-electrospun 

PAN and PAN/f-SWNTs nanofibers (no hot-drawing), there is no evident crystalline peak 

(results not shown in the figure). That is due to fast evaporation of the solvent during 

electrospinning which “freezes” the chains prior to considerable chain alignment is 

achieved 50. However, as a result of the hot-drawing to λ = 3, a crystalline peak of PAN 

emerges at a diffraction angle of 17º in both types of precursors, pure PAN and PAN/f-

SWNTs, Fig.4.9 (a). The degree of crystallinity in pure PAN reaches ~31% (orientation-

induced crystallization facilitated via hot-drawing). The degree of crystallinity of hot-

 

Figure 4.8. SEM images of PAN/f-SWNTs hybrid nanofiber showing protruded f-

SWNTs (scale bar = 500 nm). 
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drawn PAN/f-SWNTs nanofibers is markedly higher, ~38%, indicating the role of CNTs 

as crystallization nucleating agent of PAN, which is consistent with previous results 50. 

However, despite the higher degree of crystallinity in PAN nanofibers with CNT 

inclusions, the PAN crystals formed in hot-drawn PAN/f-SWNTs, measured from 

Scherrer’s equation (K = 0.89) 131, are slightly smaller than the ones formed in pure PAN. 

It is likely that the growth of PAN crystals around each CNT is partly suppressed by the 

neighboring CNTs, thus, preventing the growth of a longer range order that can grow 

around an isolated CNT surrounded by PAN chains.  

More information about the crystalline structure of PAN was obtained by 

investigating their WAXD 2D pattern, Fig.4.10. As mentioned earlier in this section, both 

the as-electrospun PAN and PAN/f-SWNTs nanofibers (no hot-drawing) are nearly 

 

Figure 4.9. (a) WAXD patterns and (b) calculated crystallinity and crystal size of 

PAN and PAN/f-SWNTs with λ=3. 
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completely amorphous. However, the symmetric arcs that appear in the WAXD of both 

samples is a clear indication of not only the formation of crystals, but also the preferential 

alignment of the crystals, such that the backbone of the PAN chains is more or less aligned 

with the fiber axis. The preferential orientation of PAN crystals in both types of samples 

after hot-drawing is comparable, evident in the measured Herman’s orientation factors, 

0.70 and 0.69, for respectively pure PAN and PAN/f-SWNTs. Following this, the as-

electrospun and hot-drawn hybrid nanofibers is stabilized under 5 MPa constraint stress 

to maintain its molecular chain alignment, which is then carbonized at 1400 ºC (The 

optimum temperature for obtaining high strength CNFs) to fabricate CNF/f-SWNTs 

nanofiber. 

 

 

Figure 4.10. (a) WAXD 2D pattern and (b) azimuthal intensity scan of PAN and 

PAN/CNTs nanofibers with λ=3. 

 



107 

 

4.4.2 Microstructure of CNF/f-SWNTs hybrid nanofiber 

The ID/IG ratio and the average width of the graphitic crystallites (La) was obtained 

from Raman spectrum of CNF/f-SWNTs, as shown in Fig.4.11. For comparison, the 

Raman spectra of pure CNFs (obtained by carbonizing pure PAN with no CNTs) are also 

presented in Fig.4.11. Among pure CNFs, precursor hot-drawing leads to a reduction in 

ID/IG by less than ~10%. A similar trend can also be observed among CNF/f-SWNTs. 

Thus, it is clear that the chains in hot-drawn precursors can more readily form graphitic 

domains upon carbonization. This is expected since the hot-drawing will enhance the 

chain packing, thus, it will facilitate the merger of the chains during thermal stabilization 

and carbonization. Moreover, the CNTs can as templates for the graphitic structures as 

they emerge out of carbonizing PAN. However, a more pronounced defect mitigation is 

observed in CNFs as a result of the addition of CNTs in the precursors (Fig. 4.11). In as 

 

Figure 4.11. (a) Raman spectrum and (b) calculated ID/IG and crystal size (La) of 

CNF and CNF/CNTs with different hot-drawing ratios. 
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electrospun CNFs (no precursor hot-drawing), there is a 30% decrease in ID/IG ratio and 

44% increase in crystallite width (La), respectively, in as-electrospun CNF/f-SWNTs 

compared to pure CNFs. Similarly, in hot-drawn CNF/f-SWNTs, precursor hot-drawing 

leads to a 5% decrease in ID/IG ratio and 5% increase in crystallite size (La), indicating the 

formation of graphitic structure with less defects and larger size, which is consistent with 

previous works from others 91. It is to be noted that part of the G- and D-peak intensities 

in Raman spectrum of CNF/CNTs comes directly from the embedded CNTs, which has 

much lower ID/IG ratio (~0.13) than pure CNFs (~4). Therefore, the decrease in ID/IG ratio 

from as-electrospun CNFs to CNF/f-SWNTs should not exclusively be attributed to the 

improvement in graphitic structure from templating effect, although the low wt.% of CNTs 

lowers the significance of this effect.  

The graphitic structure of CNF/CNTs was further analyzed by using WAXD, as 

shown in Fig.4.12. From the WAXD patterns, the Herman’s orientation factor and 

crystalline thickness can be estimated as discussed in the Experimental section. These 

structural parameters are calculated for CNFs as a function of the precursor hot-drawing 

ratio and CNT content, and listed in Table 4.3. Prior to precursor hot-drawing, the 

graphitic crystallite thickness of as-electrospun CNF/f-SWNTs is slightly smaller than the 

crystallite thickness in pure CNFs (1.212 nm vs. 1.15nm). Moreover, the graphitic 

structure in pure CNFs has slightly more aligned graphitic structure than CNF/f-SWNTs. 

The Herman’s orientation factor of the former is f002=0.44 compared to f002=0.41 for the 

latter. This can be traced back to the adverse effect of CNTs on chain alignment in as-

electrospun PAN nanofibers. During the electrospinning process, by adding CNTs into 
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PAN solution, the combined effects of increased solution viscosity and lowered applied 

voltage leads to less electromechanical stretching on the polymer solution jet during 

electrospinning, therefore less molecular alignment.  

 

However, by hot-drawing the precursor, there is an evident increase in the graphitic 

structure of CNF/f-SWNTs, which leads to ~27% and ~19% increase in Herman’s 

orientation factor and crystallite size, respectively, shown in Table 4.3. This improved 

crystal structure within hybrid CNF/f-SWNTs from WAXD results is consistent with 

previous Raman spectroscopy analysis result. While in CNFs that are obtained with no 

precursor hot-drawing, the addition of CNTs can adversely affect the graphitic structure, 

it is interesting to note that the hot-drawing reverses this effect, such that the hot-drawn 

CNF/f-SWNT have slightly higher Herman’s orientation factor and thicker crystals 

 

Figure 4.12. (a) WAXD pattern, (b) intensity azimuthal scan and (c) 2D pattern of 

CNF/CNTs with different hot-drawing ratios. 
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compared to hot-drawn pure CNFs. This is in line with the WXRD results on precursors, 

in which the combined effect of the hot-drawing and CNT inclusions, rather than the CNT 

inclusions alone, led to the enhancement in crystalline structure of PAN. Therefore, based 

on the microstructure analysis, it is important to apply precursor hot-drawing in fabricating 

CNF/f-SWNTs to better exert the templating effect of CNTs and overcome the negative 

effect on graphitic structural alignment of CNF. 

4.4.3 Mechanical properties of individual CNF/f-SWNTs nanofiber 

The mechanical properties of individual CNF/f-SWNTs were characterized by 

using the MEMS-based nano-mechanical testing, Fig.4.13 (a). Two protruded f-SWNTs 

were observed at the broken surface of an individual CNF/f-SWNTs nanofiber after the 

tensile testing, which demonstrates the presence of the CNTs within the tested CNFs 

(Fig.4.13(b,c)). The stress-strain curves are shown in Fig.4.14(a), pointing to a linear 

elastic behavior of CNF/f-SWNTs with λ=1 and 3. After hot-drawing the precursor, the 

Table 4.3. Structural parameters of CNFs and CNF/CNTs with different hot-drawing 

ratios. 
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mechanical performances of CNF/f-SWNTs were effectively improved. The tensile 

strength of CNF/f-SWNTs increases from 2.35±0.64 GPa for λ=1 to 6.92±1.39 GPa for 

λ=3, a 194% improvement. The precursor hot-drawing leads to a 214% increase in average 

elastic modulus, to 250.2±20.7 GPa.  

 

Figure 4.13. (a) MEMS device with single CNF/CNTs nanofiber and (b,c) broken 

surface of CNF/CNTs after testing showing protruded SWNTs. 
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While in CNFs with hot-drawn precursors, the addition of CNTs increases the 

strength, in as-electrospun CNFs (no precursor hot-drawing) an opposite trend is observed. 

For instance, the strength of pure CNFs 3.67±0.59 GPa which is significantly higher than 

the strength of CNF/f-SWNTs, 2.35±0.64 GPa, and the modulus of pure CNFs is 138±28 

GPa which by adding CNTs drops to 80±30 GPa. The loss in mechanical properties, the 

strength and modulus, by adding CNTs to CNFs, which is only observed in samples with 

no precursor hot-drawing is consistent with the microstructure analysis in previous section. 

That is, in as-electrospun CNFs, adding CNTs lower the graphitic crystallite alignment 

and decrease its size due to the polymer solution property changes (increased viscosity) 

during electrospinning process. The reduced chain alignment in as-electrospun 

PAN/SWNT-f nanofibers will lead to a reduced graphitic domains alignment in CNFs and 

thus reduced strength and modulus. Although according to Raman analysis, the existence 

of CNTs effectively lowers the defect density within the CNFs, the property improvement 

due to the formation of highly-ordered graphitic structure cannot overcome the adverse 

effects brought about by the lowered alignment. On the other hand, after precursor hot-

drawing, there is an effective improvement in chain alignment in both pure PAN and 

PAN/f-SWNTs, which will promote the formation of the graphitic structures as 

demonstrated by WAXD on CNFs.  

The effect of graphitic templating of CNTs can be further alluded to by considering 

the mechanical properties of hot-drawn CNFs with and without CNTs. The strength of 

CNF increases from 6.34±0.83 GPa to 6.92±1.39 GPa and modulus increases from 217±44 

GPa to 250.2±20.7 GPa, by adding SWNT-f. These are improvements of ~9% and 15%, 
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respectively, in strength and modulus. The lower relative improvement in strength can 

partly be explained by the stress concentration that can develop in CNFs around embedded 

CNTs due to elastic mismatch between the CNTs and its surrounding.   

 

 

Figure 4.14. (a) Typical stress-strain curve, (b) modulus, (c) strength and (d) energy 

to failure of CNF/CNTs with different hot-drawing ratios. 
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The mechanical performances (gauge length > 25µm) of different CNFs and CFs 

are shown in Fig.4.15. For as-electrospun pure CNFs, through optimizing the 

carbonization temperature, the largest strength and modulus are improved to 3.5 GPa and 

172 GPa, respectively 18. In this work, by engineering the microstructure of precursor 

nanofiber through combining the templating effect of CNTs and hot-drawing, the averaged 

tensile strength and modulus  of CNF/f-SWNTs has increased to 6.92±1.39 GPa and 

 

Figure 4.15. Mechanical properties comparison between CNFs and CFs (gauge length 

> 25µm), with the star mark indicates the average tensile strength of CNF/f-SWNTs 

with λ=3.10,18,34,43 
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250.2±20.7 GPa, respectively, which is the largest value achieved for CNFs. Therefore, 

applying hot-drawing is not only important for improving the mechanical properties of 

pure CNFs, but also crucial to exert the templating effect of f-SWNTs in CNF matrix.  

Even comparing to the mechanical performances of CFs fabricated by various 

precursor polymer systems and approaches 10, 34, hot-drawn CNF/CNTs shows high tensile 

strength. For instance, the tensile strength of CNF/f-SWNTs is 70% larger than the gel-

spun CFs based on PAN homopolymer (4.09 GPa) 34. As shown in the previous works 43, 

hot-drawn CNFs shows better radial structural homogeneity and lower defect density than 

the CFs in micro-size, and this structural advantage has been further improved through 

introducing templating effect of CNTs. For modulus, considering the inherent advantage 

of gel-spinning process of precursor fibers, which has higher chain alignment and packing 

density, there is still a large gap between the achieved modulus of CNF/f-SWNTs in this 

work and the values from gel-spun CFs. In commercialized CFs, the tensile strength of 

CNF/f-SWNTs is larger than the medium strength CFs, such as IM7 and T800. The 

obtained average tensile strength is almost the same as the strongest CFs, which are Hexcel 

IM10 and Toray T1100 (~7GPa). However, due to the relatively low hot-drawing ratio 

induced low alignment of graphitic structure within hot-drawn CNF/CNTs, the obtained 

modulus is still lower than the gel-spun CFs and high performance commercial CFs.  



116 

 

 

The schematic diagrams of different microstructures of CNFs are shown in 

Fig.4.16(a). For the as-electrospun CNFs, the randomly orientated turbostratic domains 

(defective graphitic structures) distribute within the amorphous carbon matrix. The 

relatively low graphitic alignment in it evidently limits its achievable mechanical property. 

For further improving its mechanical properties, two approaches were applied, which are 

introducing CNTs to promote the formation of HOG and applying precursor hot-drawing 

to increase graphitic alignment. Adding CNTs into the precursor PAN solution, due to the 

strong interaction between them, polymer chain tends to attach on the CNTs surface to 

 

Figure 4.16. (a) Schematic diagrams of different microstructure of CNF and CNF/f-

SWNTs from different fabrication methods and (b) SEM and TEM showing HOG 

interphase wrapped protruded f-SWNTs at broken surface of CNFs. 
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form highly ordered polymer interphase, which was transferred to highly ordered graphitic 

interphase, being observed in CF/CNTs hybrid fiber 89. Although the templating 

graphitization effect of CNTs in CFs has been demonstrated to successfully improve its 

mechanical properties 70, for as-electrospun CNFs, due to the influence of adding CNTs 

on polymer solution properties, apart from templating effect, negative influence has also 

been brought into the CNFs, such as lowered graphitic structures. Moreover, the CNTs 

within the CNFs is not aligned along the fiber axis, shown in our previous results 50. 

Therefore, although the templating effect of CNTs has generated some highly ordered 

graphitic structure around its surface, it cannot overcome the negative effect from the 

previous microstructure modification, which makes the mechanical properties of as-

electrospun CNF/f-SWNTs to be less than the as-electrospun CNFs. Another more 

successful approach is applying hot-drawing process to precursor PAN nanofiber, which 

effectively modify hot-drawn CNFs microstructure, therefore improving its mechanical 

performances. To further improve the mechanical properties, f-SWNTs are added to the 

precursor nanofiber, then hot-drawing is applied to modify the precursor microstructure. 

During the hot-drawing process, the external applied stress facilitate the aligning of 

polymer chain, with high chain mobility along the fiber axis. In this process, the CNTs 

were also aligned along the fiber axis with polymer chain tightly packing around its 

surface. Then, after the stabilization and carbonization process, highly ordered graphitic 

interphase is obtained on the surface of CNTs. Due to the templating effect was promoted 

by the hot-drawing, the obtained interphase has larger thickness, demonstrated by the 

enlarged crystallite size in WAXD results. Because of the higher alignment of CNTs, the 
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HOG interphase is also aligned along the fiber axis. Moreover, after hot-drawing, the high 

alignment of turbostratic domains are maintained in the hybrid nanofiber, comparing to 

the hot-drawn pure CNFs. All these effects contribute to the overall mechanical property 

improvement of CNFs, which makes the CNF/f-SWNTs to achieve the highest 

combination of tensile strength and modulus. Therefore, this work provides an effect 

approach to further improve the mechanical properties of CNFs through engineering its 

microstructure. 

4.5 Conclusion 

We studied the mechanical properties of CNFs obtained by carbonization of 

electrospun polyacrylonitrile (PAN) precursors. The main microstructural parameters 

studied were precursor chain alignment achieved via hot-drawing and degree of 

graphitization controlled by adjusting the carbonization temperature. We limited the draw 

ratio to 3 to avoid drawing induced defects in the precursors. Moreover, the carbonization 

temperature was limited to 1400ºC to limit the size of the turbostratic domains and strength 

compromising interactions between fully grown domains. The microstructure analysis of 

precursor nanofiber shows the difference between electrospun nanofiber and gel-/wet-

spun PAN microfibers (the latter is the precursor of the CFs). The combination of Raman 

spectrum, WAXD demonstrates the effective improvement of graphitic structure within 

CNF, including lowered the defect density, increased graphitic domains alignment along 

the fiber axis and crystallite size with both increased precursor chain alignment and 

carbonization temperature.  
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Based on the nano-mechanical testing of individual CNF, the strength and modulus 

of CNF with λ = 3 are 6.3±0.8 GPa and 217±44 GPa, respectively. The strength of the hot-

drawn electrospun CNF is the largest value achieved among similar materials. Apart from 

the high strength, the combination of high specific strength and energy-to-failure of CNF 

is higher than all CNF/CF developed up to now. The energy-to-failure of the CNFs and 

their ductility is more than twice the corresponding value of the CFs. This was attributed 

to the peculiar microstructure of the CNFs (a nearly homogenous composite of partially 

aligned turbostratic domains within the matrix of amorphous carbon), in contrast to CFs 

with nearly continuous turbostratic domains. The distributed domains in CNFs allow for 

significant crack deflection and pinning as a means to enhance energy-to-failure.  

For further improving the mechanical properties of CNFs and exploring the 

influence of templating graphitization of CNTs on CNF microstructure and property, 

functionalized single walled carbon nanotubes (f-SWNTs) were added to the CNFs. The 

microstructure analysis and mechanical testing of PAN/f-SWNTs indicates relatively 

homogeneous distribution of CNTs in PAN nanofiber has been achieved, which brings 

effectively precursor microstructure evolution. Then, the CNF/f-SWNTs were fabricated 

through applying 1400 ºC carbonization, the optimum carbonization temperature for 

achieving high strength CNFs identified in previous section. The mechanical properties of 

individual CNF/f-SWNTs were improved to 6.92 and 250 GPa for tensile strength and 

modulus, respectively, through effectively microstructure evolution demonstrated by 

various characterization methods. The strength and modulus combination of CNF/f-

SWNTs is the largest value comparing to all CNFs/CFs developed based on PAN 
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homopolymer up to date. The experimental work in this chapter successfully developed a 

facile approach to develop high-strength CNFs. 
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5. PIEZORESISTIVE EFFECT OF INDIVIDUAL ELECTROSPUN CNF FOR 

STRAIN SENSING* 

 

Extensive experimental and theoretical studies on graphitic nanomaterials, such as 

carbon nanotubes (CNTs), carbon nanofibers (CNFs) and graphitic nanoparticles, have 

pointed to their remarkable physical properties.18, 25, 31, 74-75, 97, 158-160 For instance, the 

strength of individual CNTs have been measured to be as high as 100 GPa,74 while 

electrospun CNFs with strength of as high as 5-8 GPa18 have been materialized. Apart 

from excellent mechanical performance, CNTs and CNFs are known to have remarkable 

electrical conductivity,75, 160 and thermal stability 161-162.  

Inspired by their remarkable physical properties, significant research efforts in the 

past two decades have been focused on utilizing graphitic nanomaterials as building blocks 

of hybrid materials to achieve significant improvements in different aspects of physical 

properties of hybrid materials, such as electrical conductivity and mechanical strength.163-

166 Moreover, couplings between physical domains in graphitic nanomaterials has led to 

smart materials with sensing capabilities, for instance, as piezoresistive nanoscale 

sensors.167 In this regard, CNTs demonstrate piezoresistive behaviors which are attributed 

to the strain induced opening of their band gaps. However, the theoretically predicted large 

gage factors167 (75±5) of CNTs have only been realized experimentally at small strains 

(below 0.1%), which significantly limits their use. Moreover, the high sensitivity of the 

                                                 
* Part of this chapter is reprinted with permission from "Piezoresistive effect of individual electrospun 

carbon nanofibers for strain sensing" by J. Cai, S. Chawla, M. Naraghi. Carbon. 2014;77:738-746. 
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gage factor on CNT chirality will pose another challenge on developing CNT sensors with 

desired and controlled strain sensitivities.168-169 Alternatively, electrospun CNFs18, 31, 160 

can be considered as potential piezoresistive materials. As stated earlier in this thesis, 

individual electrospun CNFs are hybrid nanomaterial, composed of sp2 and sp3 hybridized 

carbon atoms, in which sp2 hybridized atoms may be clustered in turbostratic domains. 

Therefore, similar to amorphous carbon, high electrical conductivity of CNFs (~104-5 170-

173) can be approximated as a combination of electron conduction within the sp2 hybridized 

carbon atom regions, followed by electron tunneling in between these regions across the 

sp3 hybridized regions.173 This mechanism of electrical conduction may lead to a 

piezoresistive behavior through strain induced modulation of electron tunneling distance 

between sp2 hybridized regions. This potential piezoresistive mechanism in electrospun 

CNFs is similar to piezoresistivity in thick film resistors (TFR), which consist of metallic 

grains embedded in an insulating matrix.174 While the electrical conductivities of CNFs 

have been investigated before, their potentials as piezoresistive nanomaterials are largely 

unexplored. In this chapter, we present our experimental efforts to characterize the 

piezoresistive behavior of individual CNFs as nanoscale strain sensors. Moreover, we will 

propose a model that will link the measured piezoresistivity of CNFs to their 

microstructure. Through the experimental results and our developed model, we will then 

identify microstructural parameters of CNFs that will lead to enhanced piezoresistive 

properties and strain sensing capabilities.  
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5.1 Experimental 

5.1.1 Fabrication of CNF 

The CNFs in this study were fabricated via thermal stabilization and carbonization 

of electrospun polyacrylonitrile (PAN) nanofibers. To fabricate PAN nanofiber 

precursors, Polyacrylonitrile (Sigma-Aldrich) powder with molecular weight of 150,000 

g/mol was dissolved into Dimethylformamide (Sigma-Aldrich) to obtain a 9 wt.% 

solution. This solution was electrospun by using a syringe infusion system to inject the 

PAN/DMF solution at 1 ml/hr on the rotating disk collector at an electrospinning voltage 

and distance of 16 kV and 20 cm, respectively. Continuous PAN nanofiber ribbons with 

1cm width were obtained on the rotating collector. The PAN nanofibers were stabilized in 

an oven in air 245℃ for 1h hold time. Following this, the carbonization process was 

 

Figure 5.1. (a) Experimental setup for electrical and piezoresistivity testing and (b) 

MEMS device with four testing probes under optical microscope. 
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carried out in a tube furnace in N2 atmosphere at 1100 ℃ for 1h hold time. Continuous 

CNFs were obtained with diameters ranging from 200-800 nm, as confirmed by SEM. The 

microstructure and surface morphology of CNFs was studied via Raman spectroscopy, 

TEM and SEM imaging. Then, the electrical and piezoresistive properties of CNF were 

charachterized by MEMS device, shown in Fig.5.1. 

 

Figure 5.2. (a) SEM image of the MEMS device. (b) Pt block was deposited on the 

CNF to fix it mechanically and conductively on MEMS substrate. (c) TEM image of 

CNFs. (d) Raman spectrum of CNFs.  

 



125 

 

5.1.2 Piezoresisitivity testing of individual CNF 

To study the piezoresistivity of individual CNFs, a microelectromechanical 

systems (MEMS) device with four suspended beams and proper electrical connections 

was designed was used under the optical microscope. The four beams with 100 µm spacing 

distance were used to measure the resistance of the nanofibers via 4-point resistance 

measurement, to eliminate the contribution of wires and contact resistance to the 

 

Figure 5.3. (a) DIC analysis area indicated on the MEMS device, (b) positions on 

MEMS beams for DIC analysis, (c) obtained displacement of two beams by DIC, (d) 

measured resistance change of individual CNF with increasing displacement. 

 



126 

 

impedance measurements, as shown in Fig.5.2 (a). The design was fabricated by 

MEMSCAP company, by using the Silicon-on-Insulator Micromachining Process.  

The procedure to mount the CNFs on the MEMS devices was as follows. After 

putting epoxy glue drops on the two ends of the MEMS device, individual CNF was 

moved and placed at the right position by using tungsten probe controlled by a micro-

manipulator under the optical microscope. To electrically and mechanically connect the 

CNF to the electrodes, 0.5 µm thickness Pt films with 2 µm×2 µm sizes were deposited 

by using Focused Ion Beam (FIB) on the CNF at the location of the electrodes, Fig.5.2(b). 

Four micro-manipulators were used to place tungsten tips on the four electrodes of MEMS 

device, which were connected to the Keithley 4200 semiconductor characterization 

system. Then, the electrical resistances of individual CNF were obtained, as shown in 

Fig.5.3(d). At the same time, another positioner was used to control a tungsten tip to push 

the cantilever beam in MEMS, which generated a continuous displacement to the CNF. In 

this process, the electrical resistances of CNF were recorded with increasing the strain of 

CNF. The experiment was recorded optically, under an optical microscope, and Digital 

Image Analysis (DIC) was used to analyze continuous optical images of the two beams 

connecting to CNFs (shown in Fig.5.3(b)) and the displacement information of two beams 

are obtained, as shown in Fig.5.3(c). Following that, the relative displacement and strain 

of single CNF were calculated from the difference between displacements of the two 

beams and the length of CNF sample obtained individually by using SEM imaging. By 

combining the information of electrical resistance change with time and strain change with 

time, the piezoresistivity of individual CNF was obtained. For researching the reliability 
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and repeatability of the piezoresistive effect of CNF, a 3-cycle load/unload test was 

performed. At first, the nanofiber was loaded continuously to 0.05% maximum strain and 

then unloaded to zero strain for 3 full cycles. After that, 3 full load/unload cycles with 

0.1% maximum strain were applied to the CNF, and then nanofiber was loaded to fail. 

5.2 Results and discussion 

5.2.1 Piezoresistive effect of individual CNF 

TEM images of CNFs revealed no trace of crystalline domain formation, due to 

the relatively low thermal stabilization temperature (below 250ºC) which was employed 

in this study (Fig.5.2(c)). However, the G (graphitic) and D (Defect) peaks in the Raman 

 

Figure 5.4. Resistance change of individual CNF with increasing testing current.  
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spectrum of the CNFs mats revealed the formation of sp2 and sp3 hybridized carbon atoms 

175, respectively, Fig.5.2(d). The existences of sp2 and sp3 hybridized carbon atoms regions 

in CNF were also demonstrated by using EELS in other paper, in which the tested CNF 

has very similar manufacturing method to the ones we used in this work .31 

To eliminate any uncertainty in the contact electrical resistance between the CNF, 

Pt films and the MEMS device, we measured the electrical resistance of the CNF using a 

four point electrode scheme at each step of mechanical loading, shown in Fig.5.4. For this 

purpose, an input current, I, was passed through the CNF via the two outer electrodes, and 

the electric potential difference between the two inner electrodes was measured. In this 

regard, the magnitude of the input current should be sufficiently low to avoid any 

 
Figure 5.5. Resistance change of individual CNF with increasing testing current 

square. 
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noticeable heating of the sample (Joule heating), as it will cause an undesired drop in 

resistance via thermal activation of electrons and releasing more electrons from the 

valence band to the conduction band. 176 A threshold for such low input current was 

realized in this study by measuring the electrical resistance of the CNF as a function of 

input current. As shown in Fig.5.4, within an input current range from ~5µA to ~10µA, 

the electrical resistance will be independent of the input current. The resistance increase 

below about 5 µA is believed to be from the uncertainties related to the low input current 

and the limitations of the instruments. However, higher input currents led to noticeably 

lower resistance. As shown in Fig.5.5, the change in resistance was proportional to the 

input electric power or the square of current. Given the fact that near room temperature, 

the electrical resistance of CNFs decreases linearly with temperature,177 the linear trend in 

Fig.5.5 requires a linear relationship between the input electric power and the average 

 

Figure 5.6. Resistance change of individual CNF with (a) zero and (b) increasing 

strain. 
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temperature of the nanofiber, in line with the our understanding that the change in 

resistance of the CNF in Fig.5.5 is caused by Joule heating and the change in temperature. 

Therefore, we used input currents of ~5µA during piezoresistive measurements.  

To further establish the stability of the MEMS device in characterizing the 

electrical properties of CNF, several measurements of the electrical resistance of 

individual CNF at zero strain were made. As shown in Fig.5.6(a), the resistance of 

individual CNF is relatively constant as increasing the step numbers, which is the 

measurement of each manually movement of the testing platform for stretching the fiber, 

which shows beyond random variations of 0.1%, the setup can reliably measure electrical 

resistance of individual CNF. The piezoresistive effect of individual CNF is shown in 

Fig.5.6(b), in which there exists a linear response of the resistance of CNF with increasing 

the strain, a typical result for a piezoresistive material, such as thick film resistor and 

nanocomposite.178,179 The failure strain for the CNF was found to be about 1.83%, which 

is similar to the values obtained by other researchers.18 The gage factor of the linear 

response was measured to be ~2.55, which includes the piezoresistive effect in CNF, i.e. 

the relative change in resistivity per unit strain, and the geometrical changes.  

To separate the two effects (piezoresistive effect and effect of geometrical changes 

on resistance), we considered the following relationship for the gage factor of conductive 

materials subjected to an applied axial strain of ε, 

𝐺𝐹 =
∆𝑅

𝑅
𝜀⁄ =

∆𝜌

𝜌
𝜀⁄

⏟
Piezoresistive 

effect

+ 1 + 2𝜗⏟    
geometrical
change

                                      (5.1) 
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where the first term on the right hand side represents the piezoresistive effects in CNFs 

while the last two terms represent the contribution of geometrical changes to the 

nanofibers resistivity 180. Here, 𝜌 𝑎𝑛𝑑 𝜗  are resistivity and poisson’s ratio of the 

nanofiber, respectively. Although comparing with the equations (Eqn.6 and Eqn.39) used 

in other papers 181-182, Eqn.5.1 is a simplified and linearized gage factor equation, for 

researching the piezoresistive effect of CNF, whose failure strain is smaller than 2%, this 

approximated equation is still reasonable and reliable for extracting the dimensional 

change contribution to the gage factor and obtaining the piezoresistive coefficient.  

 

Figure 5.7. The piezoresistive coefficients for five CNFs samples with different 

diameters  
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The poisson’s ratio of single PAN-derived carbon fiber is in the range of 0.22 to 

0.28 183-184. Considering the same precursor (PAN) and similar manufacturing conditions 

(both containing stabilization and carbonization processes in similar temperatures), and 

therefore the similar structure for CF and CNF 18, the poisson’s ratio of CNF is assumed 

to be within the poisson’s ratio range (0.22-0.28) of CF. Therefore, it becomes evident 

that the piezoresistivity of individual CNF has a significant contribution to the gage factor 

(
∆𝜌

𝜌
𝜀⁄  constitutes up to 1.05 of 2.55 of the gage factor, which is calculated by using 

poisson’s ratio as 0.25±0.03). Similar gage factors were also measured for four other CNFs 

samples, where the piezoresistivity of CNFs (
∆𝜌

𝜌
𝜀⁄ ), was measured to be in the range of 

0.46-1.05, as is shown in Fig.5.7. The method for calculating the uncertainty of the 

measurement of piezoresistive coefficient is provided in Appendix. The initial resistivity 

of the CNFs is about (11.7±1.8)×10-5 ohm·m based on five testing samples. As shown in 

the figure, the piezoresistive coefficient does not show any dependence on nanofiber 

diameter, most likely due to the high sensitivity of electron tunneling resistance on average 

distance between conductive domains and the random nature of arrangements of these 

domains, as will be discussed in more details in the following paragraphs.  
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It is also interesting to note that the piezoresistive behavior of individual CNFs 

starts to deviate from the initial linear response at a strain of ~1.6%. This deviation from 

the linear response appears to follow a linear trend with respect to strain with an apparent 

gage factor of ~6.49. This behavior is believed to be caused by the micro fractures and 

plasticity generated on the conduction path within the CNF. This increased sensitivity of 

electrical resistance at large strains is also found in thick film resistors, and it is typically 

referred to as “fictitious piezoresistive effect”, 185 as it is not caused by a reversible 

piezoresistive effect, but from the cracks and discontinuities accumulated in conducting 

paths. To better illustrate this fictitious piezoresistive effect, the piezoresistive behavior of 

CNFs was also studied in response to cyclic loads.  

 

Figure 5.8. (a) The strain and resistance results of 3-cycle load/unload test with 

increasing step numbers and (b) resistance change ratio of CNFs with increasing 

strain. 
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The applied strain on individual CNF and the corresponding variations in the 

electrical resistance at each step of cyclic loading is shown in Fig.5.8(a), and the electrical 

resistance of CNF as a function of applied strain is shown in Fig.5.8(b). As shown in the 

figures, during the first 3 cycles with maximum strain of ~ 0.5%, there is no evident change 

in the linear response of the nanofiber, and the resistance of the undeformed CNF remains 

unchanged. However, by increasing the strain of the CNFs to about 1.1%, the deviation 

from the initial linear response (“fictitious piezoresistive effect”) starts to appear and the 

zero strain resistance of CNFs is increased by about 0.4%, indicating the accumulation of 

some damage or plastic deformations in CNF. Similar to the monotonic loading case of 

Fig.5.6(b), the slope of the fictitious piezoresistive response (apparent gage factor) is 

~5.43, which is significantly larger than the slope of the linear part. Despite this deviation 

from the initial linear response and the accumulation of damages in CNF during fictitious 

piezoresistive behavior, it is interesting to note that the slope of the strain-resistivity during 

reloading (cycles 4-6 in Fig.5.8(a)) follows the similar slope even beyond the 1% strain, 

suggesting that the flaws that caused the fictitious piezoresistive effect during the 3rd cycle 

at ~1% strain did not grow during reloading in the following cycles, until at least 1.5% 

strain, at which the nanofiber failed. 

5.2.2 Analytical modeling of piezoresistivity in CNF 

As demonstrated experimentally, the gage factor of electrospun CNFs is 

2.29±0.24, which is higher than typical gage factors of carbon fibers (~1.8-1.9). In contrast 

to CNFs, the gage factor of carbon fibers (microfibers) is much closer to the values 

calculated based on geometrical changes of electrical resistance (1 + 2𝜗) = 1.44 (𝑇300) 
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and this obtained gage factor of single carbon fiber in such work was overestimated as 

including the fictitious piezoresistive behavior. After considering these factors, the author 

in this paper concluded that the strain induced resistance change in CF is mainly from the 

dimensional change.186 Therefore, given the  relatively similarities between the fabrication 

processes of the two types of materials, the differences between their microstructures can 

guide us towards the origin of piezoresistivity in CNFs. More specifically, the turbostratic 

domains in carbon fibers, appear to be continuous and interwoven, while in conventional 

electrospun CNFs, the conductive regions (sp2 hybridized carbon atoms or the turbostratic 

domains) are surrounded by the amorphous carbon.18 This difference is potentially rooted 

in the fact that precursors of carbon fibers prior to carbonization, unlike electrospun CNFs, 

are subjected to hot-drawing, which results in the molecular alignment in the precursor 

and graphitic alignment in carbon fibers (graphitic layers become intertwined). This step, 

hot-drawing of precursors, is absent from the fabrication steps of the CNFs in this study. 

Therefore, it is hypothesized here that the electrical conduction in carbon fibers is 

dominantly through electric conductions within graphitic/trubostratic domains, while in 

CNFs, the electric conduction path, in addition to conduction within trubostratic domains, 

will contain electron tunneling between them. This proposed mechanism of conduction in 

CNFs is in line with electron conduction in amorphous carbon, as proposed in 173. 

Moreover, given the sensitivity of the electron tunneling resistance to tunneling distance, 

and thus local strain, the proposed mechanism of electrical conduction may account for 

the enhanced piezoresistivity of CNFs compared to carbon fibers. In addition, the high 

sensitivity of electron tunneling to the average distance between turbostratic domains and 
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the random nature of their arrangements in CNFs explains the scatter observed in their 

pezoresistive coefficient, Fig.5.7.  

 

To shed light on the significance of conductive domain discontinuity on 

piezoresistive behavior of CNFs, a simple model of CNFs was developed. Fig.5.9(a) 

shows a 3-D schmatic microstructure of CNFs, in which the regions of conductive (sp2 

hybridized) carbon atoms were assumed to be plates with certain diameter and thickness 

embedded in the regions of nonconductive (sp3 hybridized) carbon atoms matrix in gray 

color. This model is in line with our Raman spectrum of CNFs, presented earlier 

(Fig.5.2(d)), according to which CNFs can be considered to be biphasic materials 

composed of sp2 and sp3 hybridized carbon atoms. To simply illustrate the basic 

mechanism in piezoresistivity of CNFs and the parameters which will influence it, a 1-D 

model with a periodic arrangement of N insulating parts with length l1 ( sp3 hybridized 

amorphous carbon) separated from each other by N conducting parts of length l2 (sp2 

 

Figure 5.9. Illustration of (a) 3-D and (b) 1-D simplified microstructure of 

individual CNF. 
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hybridized carbon atom regions) was adopted as shown in Fig.5.9(b). In this model, the 

lengths l1 and l2 represent the averaged length of amorphous and turbostratic carbon along 

the axis direction of fiber, respectively. Based on this 1-D model, the total average strain 

applied in the whole CNF is 𝜀 =
𝑙1𝜀1+𝑙2𝜀2

𝑙1+𝑙2
 . Moreover, considering the force equlibrium 

among two phases in CNF (isostress), we have 𝐸1𝜀1 = 𝐸2𝜀2, where E1 and E2 are modulii 

of the two phases, and 𝜀1 and 𝜀2 are local strain of each phase in CNF. From these two 

relationships, we can find the local strains in conductive part and insulating part of CNFs 

as, 

𝜀1 =  𝜀
1+𝑙2 𝑙1⁄

1+(𝑙2 𝑙1)(𝐸1 𝐸2)⁄⁄
                                                       (5.2) 

𝜀2 =  𝜀
1+𝑙2 𝑙1⁄

1+(𝑙2 𝑙1)(𝐸1 𝐸2)⁄⁄

𝐸1

𝐸2
                                                   (5.3) 

In addition, due to the serial arrangements of the different phases, the resistance of 

the whole CNF is 𝑅 = 𝑁(𝑅1 + 𝑅2) = 𝑁(𝜌1
𝑙1

𝐴1
+ 𝜌2

𝑙2

𝐴2
), where 𝐴1 and 𝐴2, 𝑅1 and 𝑅2, 𝜌1 

and 𝜌2 are the cross sectional area, resistance, resistivity of each part. By assuming 𝐴1 =

𝐴2 and seting 𝑉𝑓 =
𝑙2

𝑙1+𝑙2
, as the volume fraction of sp2 hybridized carbon atoms, we obtain 

the resistivity of the whole CNF as, 

𝜌 = (1 − 𝑉𝑓)𝜌1 + 𝑉𝑓𝜌2                                                  (5.4) 

Because the electrical conductivity in the sp3 hybridized carbon phase is mainly 

due to electron tunneling effect, applied mechanical load will result in a resistance change 

due to a change of tunneling distance. In this model, the averaged length of the sp3 

hybridized carbon will be assumed to be in the range of 0.154-1 nm, beyond which the 

effective tunneling conductivity will effectively be negligible. The lower bound of this 
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range is selected based on the minium distance between Carbon atoms. The tunneling 

resistivity between two conductive carbon regions can be estimated as: 187 

𝜌1 = 𝜌0 exp(𝑑/𝑠) with 𝜌0 =
ℎ2

𝑒2√2𝑚𝜆
 and 𝑠 =

ℎ

4𝜋√2𝑚𝜆
                     (5.5) 

where e is the quantum of electricity, m is the mass of electron, h is Planck’s constant, d 

is the tunneling distance between adjacent turbostratic carbon and 𝜆 is height of barrier 

(for amourphous carbon, 0.1 – 0.5 eV 173). In response to an applied average strain of 𝜀, 

the tunneling distance will change to (1 + 𝜀1)𝑙1, leading to the change in total resistivity 

as, 

∆𝜌 ≈ (1 − 𝑉𝑓)
𝜕𝜌1

𝜕𝜀1
𝜀1 = (1 − 𝑉𝑓)

𝜌0𝑙1

𝑠
exp (

𝑙1(1+ 𝜀1)

𝑠
) 𝜀1                         (5.6) 

In equation (6), the resistivity of the sp2 carbon regions is assumed to be negligible 

compared to the other phase, as the resistivity of the former is primarily due to free 

electrons, while in the latter, the electrical conductivity is controlled via electron 

tunneling. Therefore, the piezoresistive coefficient of CNFs can be estimated as: 

1

𝜀

∆𝜌

𝜌
≈
𝑙1

𝑠

1

1−𝑉𝑓+𝑉𝑓(𝐸1 𝐸2)⁄
                                                (5.7) 

The model predictions are compared with experimental results to find the average 

values of the electron tunneling distance in electrospun CNFs. For this purpose, the 

volume fraction of sp2 hybridized carbon is assumed to be 80%, as has been measured 

experimentally.31 Moreover, the ratio of the modulii of the two phases, E2/E1 is assumed 

to be approximately equal to 1. This assumption is supported by the fact that, although 

both sp2 and sp3 hybridized carbon atoms exist in CNFs (Raman spectrum of CNFs – 
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Fig.5.2(d)), no cyrstalline domain is discernable in TEM images (Fig.5.2(c)). The latter is 

potentially due to the relatively low stabilization temperatures that was used in this study. 

In other words, both sp2 and sp3 hybridized carbon atom regions are amorphous, and the 

modulii of their corresponding regions are expected to be about the same as modulus of 

amorphous carbon atom.  

 

To achieve a reasonable agreement between the model predictions and the 

measured piezoresistive coefficient of CNFs, 0.46-1.05, the ratio of l1/s should be in the 

range of 0.5-1 (Fig.5.10(a)). This allowable range of l1/s was then used to estimate 

allowable ranges of the tunneling distance, l1, by considering the values of characteristic 

length, s. Since electron tunneling occurs between two sp2 hybridized carbon atoms, 

tunneling distances that are shorter than the minimum distance between carbon atoms are 

 
Figure 5.10. (a) The piezoresistive coefficient of CNFs as increasing l1/s with 

different modulus ratios, experiment results (grey area) and piezoresistive coefficient 

of CF (T300). (b) Characteristic lengths (s) with varying barrier height and the 

available number for tunneling distances. 
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not physically meaningful (l1>0.154nm). Therefore, given the fact that the characteristic 

length s is a function of electron tunneling barrier height, 𝜆 (Equation (5.5)), the allowable 

ranges of the tunneling distance, l1, can be calculated as shown in Fig.5.10(b). In other 

words, the predicted tunneling distance ranges from 0.154nm to 0.3nm, which is smaller 

than the tunneling distance (0.47nm-1nm) for CNTs in polymer matrix. 188 The sp2 carbon 

clusters which exist in sp3 amorphous carbon matrix contribute to this lowered barrier 

height and tunneling distance. 173 

Finally, the model can be used to devise strategies to enhance the piezoresistive 

properties of electrospun CNFs. As predicted by this 1-D model, the piezoresistivity of 

CNFs could be improved by increasing the modulus difference between two phases, for 

instance, through enhancing the degree of graphitization in sp2 regions, or increasing the 

tunneling distance between two adjacent sp2 carbon phases, through reducing the 

concentration of sp2 regions (Fig.5.10(a)). These properties can be controlled via tunning 

the manufacturing parameters, such as carbonization temperature and the addition of 

graphitic nanoparticles to precursors of CNFs, which are the subjects of future studies.  

5.3 Conclusion 

In conclusion, the piezoresistivity of individual electrospun CNF was analyzed by 

using the newly-designed MEMS device. The resistance decrease of CNF with increasing 

testing current demonstrated the existence of Joule heating at relatively high current 

(>10µA). The results of resistance change of CNFs with increasing strain show that the 

piezoresistivity of CNFs could be accurately and convienently obtained by the MEMS 
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device, and the gage factor is 2.29±0.24. Piezoresistivity of CNFs is repeatable and stable 

under cyclic loading, which has been demonstrated by cyclic piezoresistivity tests. At 

sufficiently high strains (>0.5-1%), mechanical loading induces permanent resistance 

change and fictitous piezoresistive effect, caused potentially by plastic deformation and 

microcracks inside the CNFs. Following the experiments, a 1-D modeling work based on 

periodic resistor model was introduced to get a more thorough understanding of the 

influence of CNFs microstructures on their piezoresistivity. In this model, individual CNF 

were modeled as hybrid materials of conductive carbon phases in a nonconductive carbon 

phase (sp2 and sp3 hybridized carbon atoms, respectively). The results show that by 

increasing the barrier height of amorphous carbon and modulus anisotropy between the 

two phases, the piezoresistivity of individual CNF will be improved, pointing to strategies 

to enhance the piezoresistivity of individual CNF. 
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6. MODELING OF ELECTRICAL CONDUCTIVITY AND PIEZORESISITIY OF 

ELECTROSPUN CNF* 

 

Processing parameters of CNFs provides ample opportunities to modify their 

microstructure, as a means to enhance certain performance metrics and properties. Given 

the large number of input variables and microstructural parameters, such as the volume 

fraction of turbostratic domains, their size and alignment, a purely experimental approach 

to identify the optimized microstructure for a desired material property is not feasible. To 

address this limitation, in this chapter, a two-dimensional numerical model based on 

resistor networks with inter-particle and intra-particle resistors, was developed to predict 

the electrical properties and piezoresistivity of CNFs. In this model, the CNFs are 

approximated as a hybrid materials which are composed of a network of conductive 

particles with electron tunneling in between them. Unlike existing modeling approaches 

to model the piezoresistivity of hybrid materials, our approach takes into account the 

impenetrable nature of the conductive particles. Moreover, our model takes into account 

the complicated conduction within each particle which may arise from their anisotropic 

electrical properties (such as graphitic particles). Our approach is in essence a multi-

resolution approach, in which the electrical conductivity within each particle is calculated 

via finite element analysis (FEA) to be coupled with network analysis of conduction in 

between particles via solving Kirchhoff’s circuit laws.  

                                                 
* Part of this chapter is reprinted with permission from "Computational analysis of electrical conduction in 

hybrid nanomaterials with embedded non-penetrating conductive particles" by J. Cai, M. Naraghi. 

Modelling and simulation in materials science and engineering. 2016;24:065004. 
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Despite the specific example of the CNFs used to elucidate the capabilities of our 

modeling approach, the length scale of the hybrid materials suitable for this model ranges 

from 100 nm to cm, representing materials from single CNF in hundreds of nanometer 

length scale to thick film resistor or nanocomposite materials in micrometer and millimeter 

length scale. In the submicron length scale, apart from analyzing electrical conductive 

behavior of single electrospun CNF, the developed model is also suitable to study other 

kind of hybrid nanomaterials which contain conductive fillers in an matrix with 

significantly lower conductivity, especially for the low aspect ratio nanofillers, such as 

hybrid structures of CNFs with CNT inclusions 89. Moreover, the FEA based strain 

distribution analysis is used to study the piezoresistivity of the hybrid nanocomposite 

fiber.  

We have used the model to study the effect of microstructure of CNFs, expressed 

in terms of factors such as volume fraction, alignment, and conductivity of turbostratic 

carbon on the macroscopic resistivity and its piezoresistivity of the carbon nanofiber. 

Based on the modeling results, a clear strategy for improving electrical conductivity and 

piezoresistivity of electrospun carbon nanofiber is proposed.  

6.1 Electrical conductive model development 

As briefly stated in the introduction, electrospun CNFs are fabricated via thermal 

stabilization and carbonization of electrospun polyacrylonitrile (PAN) nanofibers. In this 

process, PAN chains will first be converted to a ladder-like cyclic structure. Moreover, 

atoms other than carbon will gradually form volatile species such as ammonia gas which 
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will leave the sample189. During carbonization process, turbostratic domains will form in 

a nucleation and growth process. An example of the turbostratic domains in a CNF is 

shown in Fig.6.1(a). These particles will be surrounded by sp3 carbon matrix and partially 

carbonized PAN. The turbostratic domains become more and more graphitic as the 

carbonization time and temperature is increased 18. To estimate the electrical conductivity 

of CNFs, we modeled the microstructure of CNFs in 2D. Inspired by the fabrication 

process of CNFs, the microstructure was modeled as conductive particles (turbostratic 

domains) surrounded by a medium such as amorphous carbon or partially carbonized PAN 

which was assumed to be nonconductive. The particles were considered to be rectangular 

in shape, with the longer dimension representing the in-plane graphitic direction in 

turbostratic domains (a-axis), and the shorter direction represented the c-axis. The 

orientation of particles were defined as the angle between the a-axis of each particle and 

the CNF axis. Particles were grown in steps and in random direction from their randomly 

positioned nucleation sites. The relative growth rate in the a- and c-axis was controlled to 

achieve average aspect ratios that are consistent with experimental data. Higher and lower 

aspect ratio particles were also studied to provide more insight into conductivity in CNFs. 

The particles were grown until the percolation threshold was reached, at which a 

conductive path formed within the nanofiber. A comprehensive resistor network model, 

with both intra- and inter-particles resistance, was thus generated to analyze electrical 

conductivity of CNF. The conductivity of whole CNF was then calculated by solving the 

linear system of equations of Kirchhoff’s circuit laws based on the formed resistor 

network. Two types of resistances are incorporated in the obtained conductive network, 
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intra-particle and inter-particle resistances. Complementary methods, including parallel 

resistor calculation and finite element analysis, were applied to calculate these two kinds 

of different resistances, as discussed in following parts. The microstructural generation, 

calculation of the equivalent resistor values and solving the Kirchhoff’s circuit laws were 

all performed in MATLAB R2013a. 

 

Figure 6.1. (a) TEM image of CNF with turbostratic carbon outlined in white (b) 

simulated structure of the CNF (c) boundary conditions for calculating CNF 

conductivity and obtained resistor network with inter-particle and intra-particle 

resistances.  
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6.1.1 Microstructure generation 

As is shown in Fig.6.1(b), the microstructure of CNFs in 2 dimensions is 

approximated with a hybrid structure, in which the rectangles representing the turbostratic 

domain, which are randomly distributed in the amorphous carbon matrix (grey 

background). To generate the model, about 150 turbostratic particle nucleation sites were 

randomly generated within the matrix with dimension of 20 nm×20 nm. The density of 

the particles were chosen to represent the experimentally measured values from TEM 

images. The square matrix is chosen based on previous modeling works on 

nanocomposite, which used 2D square 190 or 3D cubic matrix 191. Larger aspect ratios 

increased the scatter in the conductivity measurements.  

The particles were then grown from nucleation sites in two directions, representing 

the a-axis and c-axis in graphitic (turbostratic) particles, as shown in Fig.6.1(c). The 

orientation angle of each particle, defined as the angle of the a-axis with the CNF axial 

direction (along which electrical conductivity was measured), was chosen randomly to be 

below a maximum orientation angles (θmax). A value of θmax of 90° corresponds to a 

completely randomly oriented particles (particles can have any orientation randomly 

selected between 0° and +90°). Reducing θmax will generate a cell with particles inclined 

towards the CNF axis. A θmax of zero corresponds to perfect alignment (not studied here). 

The growth rate in c-axis of turbostratic carbon is defined as 0.005nm/step, which is 0.286 

times the a-axis growth rate, intended to replicate the average aspect ratio of turbostratic 

domains structures from experimental TEM images. The electrical conductivity of 
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turbostratic carbon is assumed to be the same as deposited pyrolytic graphite 192, due to its 

structural similarity to high defect density graphite. To avoid particle penetration, when 

the minimum distance between two particles became smaller than some critical distance 

(growth prohibition distance, GPD), the growth of particle in that direction was stopped. 

The minimum distance between neighboring particles was determined based on 

experimental electrical conductivity of CNF with different carbonization temperature, 

which will be explained in following section. This growth mechanism effectively 

simulates the random size and distribution of turbostratic carbon in practical CNF sample. 

As the particles grow, the volume fraction of conductive turbostratic particles will increase 

and reach its percolation threshold.  

The electrical path within a percolated network of particles includes two types of 

resistances, inter- and intra-particle participate, were calculated as discussed in the 

following sections. 

6.1.2 Inter-particle resistance 

The inter-particle resistance is assumed to be generated from the electron tunneling 

effect between two conductive particles. The tunneling resistivity between two adjacent 

turbostratic particles can be estimated as 187:   

 

where e is electron charge, m is the mass of electron, ℏ is Plank’s constant, λ is the barrier 

height of matrix amorphous carbon and d is the tunneling distance. From experimental 

𝜌𝑡𝑢𝑛𝑛𝑒𝑙 =
ℏ2

𝑒2√2𝑚𝜆
exp (

4𝜋𝑑

ℎ
√2𝑚𝜆)                                   (6.1) 
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results 193, two resistivity bounds are considered for the tunneling resistivity in CNF. The 

upper bound corresponds to the resistivity of the matrix (amorphous matrix) which is 

4.56×10-3 Ω·m. The lower bound, 1.81×10-4 Ω·m, is the lowest resistivity measured in 

CNFs, assuming to represent the case of full growth of turbostratic domains and a 

completely percolated network between them, as shown in Fig.6.2 (a).  

 

When the minimum distance between two particles are smaller than the tunneling 

cut-off distance (TCD) for certain barrier height, the tunneling resistance will be 

calculated. The tunneling resistance between adjacent two particles can be calculated from 

 

Figure 6.2. (a) Tunneling resistivity between two particles with different tunneling 

distances (b) Inter-particle conductance calculation (c) Intra-particle conductance 

calculation.  
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the parallel tunneling resistors method, as shown in Fig.6.2(b). To this end, each 

turbostratic particle will be assumed to consist of parallel graphene layers (along the a-

axis) spaced apart by 0.34 nm. Each graphene layer will then be connected to the 

neighboring particle via a tunneling resistor, which is parallel to the rest of tunneling 

resistors at that specific contact site (Fig.6.2(b)). To calculate the resistance of each 

tunneling resistor, the conducting length was considered to be the distance from end point 

of each graphene layer in turbostratic carbon to the edge of the other particle. Moreover, 

the projection of 0.34 nm, which is the interlayer distance in turbostratic carbon on the 

other contacting plane is used as conducting width. The tunneling resistivity is obtained 

from Fig.6.2(a) with different barrier height and tunneling distance. 

6.1.3 Intra-particle resistance 

In existing models to predict electrical conductivity of hybrid nanocomposite, such 

as CNTs/Polymer nanocomposite, the intra-particle conductivity is mainly assumed to be 

along the axis of the filler and is calculated simply by applying Ohm’s law to 1D 

geometries 191, 194. This is a reasonable assumption in calculating the overall electrical 

conductivity of the nanocomposite, mainly due to high aspect ratio (up to several 

hundreds) of fillers. However, the ratio of the conductivities of turbostratic domains to 

amorphous carbon is significantly lower, in the order of 102-104 times, and with aspect 

ratio to about 3.5. Therefore, proposed approaches in the literature to estimate intra-

particle conductivity needs to be revisited. Given the random distribution of the size of 

each turbostratic carbon and location of contact points, FEA is used here to calculate the 

resistance within each particle.  
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Given the anisotropic atomic structure of turbostratic domains along the a- and c-

axis in CNF, each particle is assumed to be electrically anisotropic with σa = 4.25×104 S/m 

and σc = 1.39×103 S/m 192. Considering electrical anisotropy of particles, each particle 

which is in contact with n other particles (at n contact nodes), can be replaced with n(n-

1)/2 equivalent internal resistors, each connecting two contact points (Appendix B). The 

following algorithm was then used to calculate these equivalent internal resistors of a 

particle. We first applied a potential of V = 1V to node 1 (here node 1 is considered to be 

the primary node) while all other nodes were at V = 0 V. This boundary value problem 

was solved via FEA (Details of FEA is in Appendix B).  To this end, we meshed the 

rectangle particle with about 50,000 elements. The elements were triangular shaped with 

three nodes at the apexes. Dirichlet boundary condition was applied at all the contact 

points. By applying V = 1 at one contact point and V = 0 at all other points, the potential 

distribution for this boundary condition inside the particle is obtained by solving the steady 

state electrical conduction Laplace equation in orthotropic medium without internal 

current source as follows 195, 

 𝜎𝑥
𝜕2𝜙

𝜕𝑥2
+ 𝜎𝑦

𝜕2𝜙

𝜕𝑦2
= 0                                                 (6.2) 

From the FEA, the input current to each node was calculated. Since all the nodes 

except node 1 are at zero potential, the input current from all the nodes should output from 

node 1. Therefore, the resistance of the equivalent internal resistor connecting any 

arbitrary node i (i≠1) to node 1 is equal to the inverse of the input current at node i (note 

that the voltage difference between node i and 1 is 1 V). Through iteration of the primary 
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node (the node at V = 1V while others are at V = 0V), all the internal resistors can be 

calculated for each particle.  

6.1.4 Calculation of electrical resistance of the network 

The resistance of the conduction path composed of internal resistances of 

conductive particles connected via tunneling resistance within them was calculated as 

follows. The current for each contact node i within the network was calculated by using 

Kirchhoff’s current law as follows, 

where j is the node number connected to node i, Vi and Vj are the potential at node i and j, 

and Rij is the resistance between node i and j. It is to be noted that Rij is either the internal 

resistance of particles (when i and j are on the same particle) or the tunneling resistance 

between two particles (when a particle is connected at its contact node i to contact node j 

of another particle). Moreover, the left and right sides of the CNF box were considered 

electrodes 1 and 2, respectively, each to represent an iso-potential line. By setting the 

electric potential of nodes at electrode 1 to be 1V and at electrode 2 to be 0 V, the potential 

of all nodes within the network can be calculated by solving a system of linear 

equations196. The electrical conductivity of CNF is evaluated by using Ohm’s law based 

on the net current flow between the two electrodes. 

 

𝐼𝑖 = ∑
𝑉𝑖−𝑉𝑗

𝑅𝑖𝑗

𝑛
𝑗=1                                                         (6.3) 
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6.2 Results and discussion of electrical conductivity modeling  

An example of the calculations of the internal resistances in a turbostratic domain 

with three contact nodes is shown in Fig.6.3. For a particle with 3 contacts (n = 3), the 

number of internal resistances is 3. The boundary conditions required to capture the 

internal resistance were applied at contact points197, and the electrical potential distribution 

of each turbostratic particle was obtained, as shown in Fig.6.3(b). In this example, size of 

turbostratic particle is 1.23nm(L)×0.46nm(W), which is a typical size for turbostratic 

carbon in CNF from experiment, with three contact points locating on the edges of the 

particle, therefore three equivalent resistors within this particle. First we applied at V = 

1V at node 1 while other nodes were at 0V (In B.C.1, node 1 is the primary node). 

Therefore, the values of R2 and R3 were calculated in unit of ohms as 1/i2 and 1/i3, where 

i2 and i3 were the calculated input currents based on FEA analysis of the particle (described 

in previous section) in units of Amps at nodes 2 and 3, respectively. Similarly, by applying 

V = 1V to node 2 and keeping the other two nodes at 0V (B.C.2 where node 2 is the 

primary node), R1 and R3 were calculated, and by applying V = 1V to node 3 and keeping 

the other two nodes at 0V (B.C.3 where node 3 is the primary node), R1 and R2 were 

calculated.  

As noted in this example, each resistor can be calculated by applying V = 1V to 

either of its two ends, while keeping the rest of the nodes at 0V. That is, each resistor can 

be calculated from two sets of calculations. This redundancy is simply because of the fact 

that Rij = Rji (shown in Appendix B). In our analysis, the two calculated values of each 

resistors were the same within a margin of 2%, believed to be caused by numerical errors. 
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In the example shown in Fig.6.3(b), the calculated resistance values of resistors are R1 

=8.70×105 Ω·m, R2 =8.74×105 Ω·m and R3 =4.86×105 Ω·m based on FEA calculation.  

 

It is to be noted that if the simplified Ohm’s law method used in previous modeling 

work 191 for traditional nanocomposite was used, the resistance calculation results would 

have been 𝑅1 = 𝑅2 = 𝜌𝑐
𝐿

𝑊∗𝑇
= 2.69 × 105 Ω·m and 𝑅3 = 𝜌𝑎

𝑊

𝐿∗𝑇
= 6.29 × 104 Ω·m 

which will generate a relatively large error (~ 70%)  compared to the FEA results. 

Moreover, corresponding inter-particle resistances from these three contact points to other 

particles (Fig.6.3(a)) are 1.91×105 Ω·m, 7.98×104 Ω·m and 1.90×106 Ω·m, which are 

comparable to the intra-particle resistances. Therefore, for this particle, using FEA to 

 

Figure 6.3. (a) Conductive particle with three contact points and (b) equipotential 

line result for a typical sized particle based on FEA. 
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calculate accurate intra-resistance is critical to obtain reliable electrical conductivity of the 

whole CNF.  

 

The comparison between intra- and inter-particle resistances distribution in CNF 

on percolation (initial) and saturation (final) state is shown in Fig.6.4(a). As seen in the 

figure, all the inter-particle and intra-particle resistances at any volume fraction larger than 

percolation threshold are within the 5×104 Ω·m to 1×108 Ω·m range, indicating that both 

of these two types of resistances play an important role in determining the overall 

conductivity of the CNF. By growing the particle from the percolation state to a saturation 

state (where particles cannot grow any further unless the impenetrability condition for the 

particles is removed), the intra-particle resistance values increase and the distribution of 

 

Figure 6.4. (a) Intra-particle and inter-particle resistances distribution for initial and 

final CNF structure and (b) electrical resistance change ratio of CNF with increasing 

particle conductivities. 

 



155 

 

intra-particle resistance moves to the right (higher resistance values). This trend is 

expected since larger particle size is equivalent to longer conduction path within each 

particle. In contrast, as the particles grow, the inter-particle resistance values will decrease 

due to the decrease in tunneling distances between particles. Hence, by growing the 

turbostratic structure particles the contribution of the intra-particle resistances to the 

overall electrical conductivity of CNF will increase.  

In order to show the significance of particle conductivity to overall conductivity 

of CNF, we considered hypothetical cases where the conductivity of particles was 

significantly above the expected values, where σa and σc were 10, 100 and 1000 times their 

expected value of 4.25×104 and 1.39×103 S/m, respectively. In all cases, the ratio of σa 

and σc remained the same (~30). The results are presented in Fig.6.4 (b). The y axis in the 

figure is the calculated electrical resistance of the whole CNFs for different volume 

fractions and electrical conductivity of particles which is normalized by the electrical 

resistivity of CNFs corresponding to the most expected values of particle conductivities 

along the a- and c-axis at percolation threshold (Vf = 25%). The normalized electrical 

resistance of CNFs is plotted as a function of volume fractions and electrical conductivity 

of particles (relative to the most expected values of electrical conductivity of particles).  

As shown in Fig.6.4(b), for all volume fractions of particles studied here, by 

increasing electrical conductivity of turbostratic particles, the resistance of CNFs initially 

drops and reaches a plateau. The latter corresponds to a hypothetical case when the 

electrical conduction within CNF is mainly controlled by tunneling resistance simply due 
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to unrealistically high conductivities of particles. Hence, this analysis suggests that at low 

volume fractions (near the percolation threshold), the conductivity within particles may 

constitute only ~20% of the electrical resistance of CNFs (only a 20% drop in resistivity 

is observed by increasing the particle conductivity 100 and 1000 times). This ratio will 

increase with volume fraction. It is such that near the saturation point (Vf = 43%), the 

electrical resistance of CNFs is mostly (~75%) is due to conduction within particles (a 

nearly 75% drop in resistivity by increasing the particle conductivity 100 and 1000 times). 

Therefore, the consideration of both inter- and intra-particle conduction are critical in 

reliably predicting the electrical properties of CNFs.  

To develop a better understanding of the parameters which influence overall 

electrical resistivity of CNF, the effect of particle alignment, anisotropic growth rate and 

volume fraction on the percolation threshold and conductivity is analyzed in the following 

parts. Moreover, the effect of the matrix tunneling barrier height on the macroscopic 

conductivity is also discussed. 

6.2.1 Electrical conductivity of CNF vs. particle volume fraction and conductivity 

Guided by the growth of turbostratic particle size with carbonization time and 

temperature 18, we grew the turbostratic domains in steps in the model. As is shown in 

Fig.6.5, the electrical conductivity of the model can be calculated after reaching the 

percolation threshold (81 ± 68 S/m). Moreover, by increasing the size of the particle and 

therefore the particle volume fraction, the electrical conductivity of CNF increases, 

reaching a plateau of 1303 ± 119 S/m, corresponding to the saturation volume fraction of 
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particles (~43%). At small volume fraction, at or near the percolation threshold, the 

standard deviation in the predicted electrical measurements can be a significant portion of 

the predicted values. However, the absolute value of the standard deviation of electrical 

conductivities will decrease with volume fraction, and will reach ~10% at the saturation 

volume fraction, which is smaller than the experimental error (~15%) 95. The reported 

experimental electrical conductivity 193 of CNF with different carbonization temperature 

(1100 °C and 1500 °C) is shown in Fig.6.5 with dashed lines. The predicted electrical 

conductivity with different particle volume fraction is within the experimental 

conductivity range. The relatively high standard deviation near the percolation threshold 

 

Figure 6.5. Electrical conductivity of CNF with increasing particle volume fraction. 
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is due to the high sensitivity of conductivity to volume fraction near the percolation 

threshold. While more experiments are needed to be compared with the modeling results, 

current 2-D model indeed effectively describes the microstructure of CNF in relation to 

its electrical conductivity. Moreover, the matching between experimental and modeling 

results is likely an indication of the proper values chosen for the particle conductivities in 

our analysis (σa and σc) 

 

6.2.2 Effect of particle alignment and anisotropic growth rate on percolation probability 

Apart from the physical properties of individual turbostratic particles, their 

geometry and alignment will also influence the formation of a conduction path within 

CNFs and their electrical property. The formation of the conduction path can be best 

described by the Percolation probability, P, of turbostratic particles as a function of 

particle alignment and anisotropic growth rate within CNF. As shown in Fig.6.6, for very 

low particle volume fractions (16%), the percolation probability is very low for all 

alignment conditions. By increasing the volume fraction of particles, the difference in 

percolation probability for different alignment conditions becomes clearer. For instance, 

for CNF with Vf = 24%, by decreasing the maximum orientation angle of particle from 

90° (corresponding to totally random orientation) to 60°, there is a slight increase in the 

percolation probability, indicating the contribution of particles that are more aligned with 

CNF axis in bridging the gap between the two ends (electrodes) of CNFs190. Further 

increase in the particle alignment by reducing θmax to 30° and 10°, leads to a slight drop in 

P.  
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The maximum probability is obtained between θmax = 30° and 60°. The reason for 

generating this peak is that for CNF with highly aligned turbostratic domains, the 

conductive path along fiber direction is more difficult to be obtained due to less connection 

in transverse direction. As decreasing the content of alignment, more domains will 

contribute to the formation of conductive path and therefore generate a peak in percolation 

probability curve. The peak of percolation probability becomes broader as the particle 

volume fraction is increased. That is mainly because at such high volume fractions, many 

of the particles are grown to sufficiently large dimensions to contact with their neighboring 

particles.  

 

Figure 6.6. Effect of (a) particle alignment and (b) anisotropic particle growth rate on 

the percolation probabilities, P of CNF. 
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As pointed out in previous section, the growth rate of particles along the a- and c- 

axis in the model was taken to represent the experimentally observed aspect ratio of 

turbostratic domains in CNFs.  However, other aspect ratios may also be reached for 

instance via templated carbonization or hot-drawing of precursors and consequent chain 

alignment11. In this section, we investigated the effect of particle aspect ratio on 

percolation threshold. As shown in Fig.6.6(b), by increasing particle anisotropic growth 

rate ratio from 1 to 5, there is an evident increase in percolation probability. That is simply 

because longer particles can reach out to other particles that are further away to form the 

conduction path. This increased probability indicates the effectiveness of increasing 

particle growth rate anisotropy in generating more conductive pathways. It is however to 

be noted that compared to CNTs/polymer nanocomposite, the aspect ratio of the fillers 

(turbostratic carbon) cannot be very large in CNF, because in practice, large particles are 

thermodynamically more favorable to grow in non-straight fashion.  

6.2.3 Effect of particle alignment and anisotropic growth rate on conductivity 

The effect of particle alignment and anisotropic growth rates on electrical 

conductivity of CNF was also studied. As shown in Fig.6.7(a), similar to the percolation 

probability corresponding to different particle alignment, there is an electrical 

conductivity peak at about θmax = 60°, at which the electrical conductivity is 26% higher 

than the case of randomly oriented particles, an indication of the more conductive 

pathways generated due to induced particle alignment (refer to Fig.6.6(a)). The decrease 

in electrical conductivity by enhancing particle alignment beyond θmax = 60° is mainly due 

to a reduction in the probability of the formation of contact points between particles in the 
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lateral direction (similar to the trend observed in percolation probability in Fig.6.6(a)). 

These contact points can generate new conduction paths, increasing the electrical 

conductivity. This result is consistent with previous experimental and modeling results on 

the effect of conductive particle alignment (CNTs) on nanocomposite electrical 

conductivity 190, 194. This result provides an effective method for improving the electrical 

conductivity of CNF through partial particle alignment. For instance, in fabricating CNFs, 

the chains of the polymer precursor can be aligned through hot-drawing as a means to 

induce turbostratic particle alignment in the later carbonization process. Through 

controlling the fabrication conditions, the alignment of turbostratic particle can be 

controlled and based on this modeling results, an optimum alignment condition should be 

targeted to achieve the maximum electrical conductivity.  

 

 

Figure 6.7. Effect of (a) particle alignment and (b) anisotropic particle growth rate 

on electrical conductivity of CNF. 
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In addition to particle alignment, particle aspect ratio can influence the CNF 

conductivity. As is shown in Fig.6.7(b), by increasing the particle growth rate ratio, there 

is an evident increase in the overall electrical conductivity. This improvement is caused 

by the increased percolated pathways, alluded to by the increased P for larger particle 

growth rate ratios.  

6.2.4 The sensitivity of conduction path and conductivity to barrier height 

Apart from the properties of particle, the matrix properties, mainly the energy 

barrier height corresponding to electron tunneling, will also have an important influence 

on overall conductivity of the CNF. The effect of matrix tunneling barrier height on the 

percolation probability and conductivity of CNF is shown in Fig.6.8(a). Because of the 

increased cut-off tunneling distance at lower barrier height (Fig.6.2(a)), the percolation 

 

 

Figure 6.8. Effect of barrier height on (a) percolation probability, P of CNF and (b) 

electrical conductivity. 
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threshold will be decreased, suggesting that lower barrier height will facilitate the 

formation of conductive path within CNF. However, the influence of barrier height on 

electrical conductivity is not as evident especially at high volume fractions as the effect of 

other parameters discussed so far, i.e., particle conductivity and alignment (Fig.6.8(b)). 

The insignificant contribution of barrier height to conductivity of CNFs stems partly from 

the fact that at high particle volume fraction, most of the particles are in contact with other 

particles, thus, the tunneling distances are near the lower bound. At high particle volume 

fraction, the contribution of the intra-particle resistances is more important than inter-

particle resistances as discussed in section 6.2.3.  

6.3 Strain distribution analysis through FEA 

The only problem that may restrict the application of finite element method on 

predicting stress distribution in CNF is the effectiveness of this method in small length 

scale (~1 nm). Although there is no previous published works about applying finite 

element method on studying CNF, the continuum elasticity method has been successfully 

applied to study the mechanical behavior of carbon nanotubes 198. The researchers has 

shown that the laws of continuum mechanics are amazingly robust and allow one to treat 

even intrinsically discrete objects only a few atoms in diameter 199. For instance, 

continuum approaches based on continuum mechanics have also been applied successfully 

for simulating the mechanical responses of individual or isolated carbon nanotubes which 

are treated as beams, thin shells or solids in cylindrical shapes 200-201. Based on the previous 

experimental efforts of mechanical testing of individual CNF, the mechanical response of 

CNF is totally linear elastic and the breakage usually happens at the amorphous carbon 
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phase 43. Therefore, due to the structural similarity between CNTs and turbostratic 

domains, both of which are composed of sp2 hybridized carbon, and its linear elastic 

mechanical response under small strain (<1%), continuum linear elasticity based finite 

element analysis method is applicable for predicting the stress condition within the CNF 

matrix. Moreover, applying maximum stress concentration point in amorphous carbon 

phase as the failure initiation position is a reasonable assumption because of the previous 

experimental observation. 

 

The generated geometries of conductive graphitic particles are input into 

ABAQUS 6.13, shown in Fig.6.9(a). Each particle has its own local coordinate system to 

represent the anisotropic mechanical performance of graphitic domains. For graphitic 

 

Figure.6.9. (a) Particle distribution with local coordinate system and (b) obtained in-

plane strain distribution with 0.5 % global strain. 
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domains, it's a-axis modulus (Ea=700 GPa) is much higher than c-axis direction 

(Ec=39.5GPa) and also the amorphous matrix (Em = 140 GPa), therefore considering the 

anisotropic nature of the graphitic domains mechanical properties is crucial for accurately 

obtaining local strain distribution of conductive particles.  After applying 0.5 % strain to 

the whole hybrid structure, strain distribution of all particles is obtained, shown in 

Fig.6.9(b). Comparing with this FEA based strain analysis, previous rigid body rotation 

based model is oversimplified 202, in which the interaction between particles and particle 

self-deformation under global strain are not fully considered. After obtaining the strain 

distribution, renewed geometries of all particles are input back to MATLAB for 

calculating the electrical resistance of whole structure under certain global strains. 

 

6.4 Results and discussion of piezoresistivity modeling  

6.4.1 Percolation network formation 

The microstructure is generated based on the particle growing model. In the 

growing process, the particle will grow in steps, with certain growing speeds. The growing 

speeds ratio between a-axis and c-axis is set as 3.5 for representing the experimental 

obtained aspect ratio of graphitic domains in CNF. As shown in Fig.6.10 (a), as increasing 

the growing steps, there is a continuous increase of the volume fraction of graphitic 

particles. When the Vf of conductive phases is large enough, the first percolation 

conduction network forms, shown in Fig. 6.10 (b), in which there are only small part of 

the total particles participate into the conduction. After arriving this point, most of the 

particles will keep growing until most of them has contacted to others and stopped 
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growing. The saturation point correspond to the condition, in which all particles stop 

growing, and therefore the Vf of graphitic domains reaches its maximum value. Comparing 

with the experimental data for conductive particle volume fraction in CNF obtained from 

1400 oC carbonization, this simulated Vf range agrees well with it 11. 

 

 

6.4.2 Piezoresistivity of CNF with increasing turbostratic particle volume fraction 

Based on electrical resistance calculations of hybrid nanofiber with increasing 

strains, gage factor, parameter for qualitatively characterizing piezoresistive effect, is 

calculated by using the equation as follows, 

𝐺𝐹 =
∆𝑅

𝑅0𝜀
                                                          (6.4) 

 
 

Figure 6.10. (a) Volume fraction of graphitic particle with increasing growth steps 

(red and blue dots indicate the corresponding Vf for percolation and saturation 

conditions) and (b) formed conduction network for percolation and saturation points. 
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in which, ΔR is the resistance change ratio, R0 is the initial resistance of nanofiber and ε is 

the applied strain. As shown in Fig.6.11(a), at percolation and saturation point, there is the 

volume fraction distribution due to the random generated microstructure. The gage factor 

of the hybrid nanofiber is about 2.3, which agrees well with the experimental obtained 

gage factor (2.28±0.25) for CNF with 1100 oC carbonization. As increasing the Vf of the 

graphitic particles, the gage factor keeps decreasing to about 0.34 for about 43% graphitic 

particles. The correlation between piezoresistivity and conductive particle Vf  originates 

from the contribution of inter-particle resistance to the overall resistance of hybrid 

nanofibers. As shown in Fig.6.11(b), as increasing the Vf of graphitic domains through 

growing them, contribution of inter-particle resistance to overall resistance keeps 

decreasing due to the decreased inter-particle distance and increased size of particles. As 

 

Figure 6.11. (a) Simulated gage factor of hybrid nanofiber and (b) contribution of 

inter-particles tunneling resistance to overall resistance with increasing graphitic 

particles Vf. 
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discussed previous section, inter-particle tunneling resistance increases exponentially with 

tunneling distance, comparing with the intra-particle resistance change depending on the 

geometrical change, contributes more to the overall piezoresistivity of the whole structure.  

The volume fraction of graphitic domains within CNF is directly related to the 

carbonization temperature and time. Therefore, low carbonization temperature is 

necessary to fabricate electrospun CNF with high piezoresistivity for strain sensing 

applications.  

6.5 Conclusion  

A multi-resolution two-dimensional (2D) resistor network model was developed 

and presented to analyze the electrical conductivity of hybrid nanomaterials which are 

composed of insulating matrix with hard-core (non-penetrating) conductive particles. The 

model takes into account both intra- and inter-particle resistance. The modeling results 

show that intra-particle resistances make an important contribution to macroscopic 

electrical conductivity of CNF and this contribution is higher at larger particle volume 

fractions. By increasing the volume fraction and conductivity of the turbostratic particle, 

the conductivity of whole CNF will increase, which is consistent with the experimental 

results. Both particle alignment and anisotropic growth rate ratio will influence the 

conductivity of CNFs. With respect to particle alignment, an optimum alignment is 

proposed to result in highest CNF conductivity. Lower or higher alignments lead to lower 

conductivity by reducing the possibility of the formation of a percolated conduction path 

within the CNFs.  
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Following this, combined with FEA based strain analysis, piezoresistivity of 

hybrid CNF/CNTs nanofiber was studied. The simulation result shows the presented 

method successfully characterize the mechanism of electrical conduction of the hybrid 

nanofiber. The simulated gage factor is decreased with increasing conductive particle 

volume fraction, due to the decreased inter-particle tunneling resistance contribution. 

Based on this simulation works, a clear method is presented to develop high 

piezoresistivity electrospun CNF through applying low carbonization temperature for 

strain sensing applications.  
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7. SUMMARY AND FUTURE WORKS 

 

7.1 Summary 

The overarching goal of this work was to unravel the processing-microstructure-

property relationship in the fabrication of carbon nanofibers (CNFs) to realize its high 

potential mechanical properties, and explore its multifunctional applications through both 

experimental and modeling works. 

The CNFs in this work were fabricated by thermal stabilization and carbonization 

of electrospun polyacrylonitrile (PAN) nanofibers. To further improve the properties of 

CNFs, CNTs were added into the PAN precursor by exerting its templated graphitization 

effect. The latter refers to the conversion of PAN chains into carbon in the vicinity of 

CNTs by removing non-carbon atoms in a thermal treatment, known as carbonization. The 

presence of CNTs is expected to guide the arrangement of carbon atoms into a graphite-

like structure (sp2 carbon bonds) similar to what exists in CNTs. To achieve this goal, the 

effect of precursor hot-drawing and CNTs inclusion on the microstructure of precursors 

were thoroughly researched by using different characterization methods in chapter 1. The 

results demonstrate applying appropriate amount of CNTs and hot-drawing ratio are 

crucial to exert the templating effect of CNTs. The microstructure analysis point to evident 

changes in the microstructure by applying hot-drawing and adding CNTs, such as 

enhanced alignment of PAN chains, CNTs and crystalline structure within the hybrid 

nanofiber. The formation of highly ordered polymer interphase around the surface of 
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CNTs in hot-drawn PAN/CNTs hybrid nanofiber was alluded to by both estimating CNTs 

reinforcement efficiency based on mechanical testing of nanofiber ribbon and directly 

TEM observation.  

Although electrospun PAN nanofiber has been successfully used to fabricate 

CNFs, its inherent disadvantage, such as the poor controllability in solution jet whipping 

process of electrospinning, has restricted its further application in microdevices and 

carbon-based MEMS/NEMS device. The application of near-field electrospinning (NFES) 

process on fabricating PAN nanofiber on rotating target was thoroughly studied in chapter 

2. The electrospinning parameters, such as solution concentration, electrospinning 

distance and voltage, were demonstrated to play an important role in determining the 

diameter and cross-section shape of the obtained fibers on target. The following individual 

electrospun nanofiber mechanical testing based on MEMS device shows an evident 

mechanical size effect, which is believed to from the high chain packing and interactions 

between chain in small diameter range of the obtained nanofibers. The work in this chapter 

provides a good starting point for developing NFES PAN nanofiber to fabricate CNFs on 

spool or as building materials for MEMS device. 

The CNFs were then obtained through stabilizing and carbonizing the precursor 

nanofiber by applying the optimum precursor electrospinning and post-processing 

parameters identified in chapter 2. The microstructure of electrospun CNFs was 

characterized by applying different methods in details in chapter 4. The analysis results 

show that applying 1400 ºC carbonization will effectively lower the defect density of the 
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CNFs, which was chosen to be used to achieve high strength CNFs. The crystallite 

structure of CNFs carbonization at 1400 ºC was analyzed by WAXD, which shows 

considerable growth in crystallites and preferential orientation, obtained by precursor hot-

drawing. The nano-mechanical testing of individual CNF with different hot-drawing ratio 

demonstrates evident improvement in both mechanical tensile strength and modulus of 

CNF with λ=3, which go up to 6.3±0.8 GPa and 217±44 GPa, respectively, the highest 

value achieved CF/CNF based on PAN homopolymer. Moreover, the high ductility and 

specific energy to failure of hot-drawn CNFs stem from its radial homogeneous 

carbonization induced peculiar microstructure (homogeneous distribution of strong 

turbostratic domains in amorphous carbon matrix), which results in significant crack 

deflection and pinning as a method to enhance toughness. To further enhance the 

mechanical properties of CNFs, functionalized CNFs (f-SWNTs) were added into the 

electrospun CNFs. The introduction of CNTs evidently modify the microstructure of the 

hot-drawn precursor nanofiber, such as improved crystallinity and slightly decreased 

crystallite size. The study of the microstructure of CNF/CNTs demonstrates hot-drawing 

is crucial to exert the templating effect of CNTs, through promoting polymer chain 

alignment and packing around CNTs. The mechanical properties of CNF/f-SWNTs were 

evidently improved to 6.92 GPa and 250 GPa for strength and modulus, respectively, by 

adding CNTs.  

To explore the multifunctional applications of electrospun CNFs, the 

piezoresistivity of single CNF was studied in chapter 5 through using the newly-designed 

MEMS devices. The gauge factor of individual CNF was obtained experimentally to be 
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2.29±0.24. The repeatibility and stability of the pizeoresistive effect of CNF was 

demonstrated based on the cyclic loading/unloading test. The piezoresistive testing 

effectively identify the transition to fictious piezoresistive effect due to the internal plastic 

deformanction and microcrack formations at large strain ( 0.5-1%). A simplified 1-D 

model shows that the piezoresisitve effect of CNFs could be effectively improved through 

increasing the barrier height of amorphous carbon matrix or modulus anisotropy between 

turbostratic carbon and the matrix.  

To further understand the relationship between microstructure and electrical 

conductivity and piezoresistivity of CNFs, a multi-resolution two-dimensional (2D) 

resistor network model was developed in chapter 6, which is composed of growing 

conductive particles that are randomly distributed in insulating matrix. The modeling 

results are consistent with the experimental observation in that by increasing the volume 

fraction and conductivity of the turbostratic particles, the electrical conductivity will 

increase. Moreover, the modeling results show that alignment and anisotropic growth rate 

of the conductive particles will influence the overall electrical conductivity. Then, 

combined with the FEA based localized strain analysis of particle with applied global 

strain, the piezoresistivity of CNF nanofiber was studied. The modeling results show that 

by decreasing the volume fraction of particles, there is a continuous increase in the 

piezoresistive effect due to increased contribution of tunneling resistance between 

adjacent conductive particles. The modeling works in this chapter generates an effective 

link between the microstructure of CNF and its electrical conductivity and piezoresistivity, 

which provides a solid foundation for further improving the multifunctional properties of 
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electrospun CNF through controlling fabrication parameters induced microstructure 

evolution. 

Based on the combination of experimental and modeling works in this project, the 

processing-microstructure-properties relationship in fabricating electrospun CNFs and 

CNF/CNTs has been unraveled. The mechanical performance of CNF and CNF/f-SWNTs 

was successfully improved to the largest value among all CNFs and comparable to the 

strongest CFs up to date. The multifunctional properties, such as electrical conductivity 

and piezoresistivity of CNFs were explored and a clear path to further improve its 

performance through modifying its microstructure. Due to the limitation of time, there is 

still a great potential to further push the properties boundary of electrospun CNFs through 

the combination of various approaches. 

7.2 Future works 

7.2.1 Mechanical properties 

In this work, the high potential tensile strength of CNFs has been successfully 

materialized to some extent by introducing precursor hot-drawing induced graphitic 

alignment and templating effect of f-SWNTs. However, comparing to the 14 GPa strength 

upper limit for CNFs, predicted based on the continuum model 11, there is still a great 

potential to further improve its strength through optimizing the fabrication process and 

precursor polymer structure.  

As discussed in the precursor microstructure analysis, comparing with the gel-spun 

PAN, the low chain alignment and crystallinity of precursor PAN nanofiber has restricted 
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its further property improvement. Therefore, introducing higher hot-drawing ratio, 

optimizing the hot-drawing conditions, such as temperature, drawing stress and drawing 

medium could further improve the further improve the microstructure of precursor 

nanofibers. Moreover, through using PAN copolymer, such as comonomer containing 

carboxylic acids or vinyl ester, could effectively increase the chain alignment and packing 

density, due to the lowered polarity of the polymer chain. After achieving high chain 

alignment, the methods to maintain this alignment is crucial to transfer the high chain 

alignment in precursor nanofiber to graphitic alignment in CNFs. Therefore, optimizing 

the constraint stress during stabilization and carbonization is also important to improve 

the mechanical properties of CNFs. In addition to the fabrication process of CNFs, the 

post-processing, such as acid treatment and sizing also play an important role in 

determining the overall mechanical strength of CNFs. Through applying all these 

approaches to optimize the fabrication process and material system, there is a great 

potential to further push the limit for carbon fiber materials to make it to be an outstanding 

reinforcement materials in different fields to substitute the current CFs.  

7.2.2 Multifunctional applications 

The research of multifunctional properties of electrospun CNFs and their 

applications are still under its primary stage. For instance, although the piezoresistivity 

effect of individual CNFs has been obtained by the MEMS device, there is still a great 

space to further improve its performance. Guided by the modeling works, controlling the 

fabrication process could effectively improve the electrical conductivity and 

piezoresistivity of electrospun CNFs through controlling its microstructure. Demonstrated 
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by the microstructure characterization, through applying precursor hot-drawing, the size 

and alignment of turbostratic particles were evidently changed, which brings in significant 

mechanical properties improvement. Therefore, more experimental works are required to 

obtain the electrical conductivity and piezoresistivity of individual CNFs to generate the 

microstructure-properties relationship. Apart from fabrication method induced 

microstructure modification, adding high performance particles, such as CNTs, graphene 

will also effectively modify the microstructure of hybrid nanofiber, therefore its 

performances. Through properly controlling the fabrication process and application of 

post-processing, there is a great potential to further improve the multifunctional properties 

of CNF. The multifunctional nanocomposite materials based on electrospun CNFs with 

specific microstructure designing induced different properties combination, such as 

mechanical property, electrical conductivity, piezoresistivity and thermal conductivity, 

could be developed to substitute current composite in various application fields.  
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APPENDIX A: UNCERTAINTY CALCULATION OF DR/Dε 

 

Fig.A1 shows one example in our work of using line fitting method to calculate 

the uncertainty of dR/dε, in which the experimental results of resistance with measurement 

uncertainty, which is obtained based on 8 times testing at certain strain, in function of the 

strain in CNF sample with uncertainty of 0.15% of DIC method116 was plotted and linear 

fitted. After drawing the best fitting line, the upper bound line and the lower bound line, 

the slope of the linear fitting line is obtained, which is dR/dε = 167056±3341 and the 

uncertainty, 𝛿 (
𝑑𝑅

𝑑𝜀
) = 3341. 

 
Figure A1. Calculation of the uncertainty of dR/dε by line fitting. 

 



194 

 

By using the following equations, the uncertainty of gage factor (𝐺𝐹 =
𝑑𝑅/𝑑𝜀

𝑅0
) and 

piezoresistive coefficient (
∆𝜌

𝜌
𝜀⁄ = 𝐺𝐹 − 1 − 2𝜗) could be obtained. 

(𝛿𝐺𝐹)2 = (𝛿𝐺𝐹)2 = (
𝑑𝐺𝐹

𝑑(𝑑𝑅/𝑑𝜀)
)
2

(𝛿𝑅0)
2 + (

𝑑𝐺𝐹

𝑑𝑅0
)
2

(𝛿
𝑑𝑅

𝑑𝜀
)
2

= (
𝛿(𝑑𝑅/𝑑𝜀)

𝑅0
)

2

+ (
𝑑𝑅/𝑑𝜀

𝑅0
2 𝛿𝑅0)

2

 

(𝛿(
∆𝜌

𝜌
𝜀⁄ ))

2

= (𝛿𝐺𝐹)2 + 4 ∙ (𝛿𝜗)2 

where 𝛿(𝑑𝑅/𝑑𝜀) is obtained from the previous line fitting method, which is 3341 and 𝛿𝑅0 

is obtained from experiment based 8 times resistance measurements at the original zero 

strain on CNF, which is 3.48. So, the obtained uncertainty of gage factor measurement is 

0.056 or 2.2%. By using 0.25±0.030 as the poisson’s ratio of CNF, we could calculate the 

piezoresistive coefficient, which is 1.05±0.082, whose uncertainty is about 7.8%. Based 

on the calculation, we found that the uncertainty of piezoresistive coefficient measurement 

for all CNF samples is mainly from the uncertainty of piosson’s ratio (0.25±0.03), which 

is 12% comparing with the ~2% measurement uncertainty for the gage factors. That is to 

say even after considering its measurement uncertainty (~2.2%), the gage factor of CNF 

(2.29±0.24) is still evidently larger than the CF (1.8-1.9), which also shows the different 

piezoresistive behavior between two materials. 
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APPENDIX B: EQUIVALENT RESISTOR NETWORK FOR AN INDIVIDUAL 

PARTICLE 

 

We consider a continuous 

orthotropic electrical conductive 

medium (such as individual turbostratic 

domains), in which at certain points 

(points 1, 2, ….i, …n) on the surface, 

electric potential boundary conditions 

are prescribed. The electric currents can 

flow in and out of the medium only 

through these points, Fig.B1. In this appendix, we show that the relationships between the 

applied voltages and input/output currents of the points remains unchanged if the medium 

is replaced with a set of  𝑛(𝑛 − 1)/2 resistors. To this end, we will first consider the PDE 

which governs the electric potential within the medium obtained by considering the 

principle of conservation of charges: 

                                      
𝜕2𝑉/𝜕𝑥2

𝜌𝑥
+
𝜕2𝑉/𝜕𝑦2

𝜌𝑦
= 0                                            (B1) 

We consider the case where node i is at 𝑉0𝑖 while all the other nodes are at zero 

electric potential. That is:  

                         𝑉𝑖 = 𝑉0𝑖, 𝑉𝑗 = 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗 𝑎𝑛𝑑 𝑗 = 1 − 𝑛                                      (B2) 

 
Figure B1. Static equilibrium of a body 

under external currents 



196 

 

The solution to the above PDE (Equation B1) and the set of boundary conditions 

(Equation A2) will be denoted as 𝑉0(𝑥,𝑦) with a current density of 𝐽0(𝑥,𝑦) . If we 

increase 𝑉𝑖 =  𝛼𝑉0𝑖, while keeping all other 𝑉𝑗𝑠 =  0, the solution to the new boundary 

value problem will be 𝑉(𝑥,𝑦) =  𝛼𝑉0(𝑥,𝑦), simply because it satisfies both the B.C.s and the 

PDE. For the current density of points in the continuum we have: 

                                               𝐽0⃗⃗⃗⃗ =
𝜕𝑉0/𝜕𝑥

𝜌𝑥
𝑖̂ +

𝜕𝑉0/𝜕𝑦

𝜌𝑦
𝑗̂                                            (B3) 

Therefore, the current density of the second B.Cs will be 𝐽(𝑥,𝑦) = 𝛼𝐽0(𝑥,𝑦).  

Now let’s consider point j (𝑖 ≠ 𝑗). The total current passing through point j will be: 

                                              𝐼𝑗 = ∮ 𝐽0𝑛𝑑𝐴 
 

𝐶
                                               (B4) 

Therefore, if V0i changes to 𝛼𝑉0𝑖, according to Equation B4, I0j will change to 𝛼𝐼0𝑗. 

Hence, 

                                                        
𝜕𝐼𝑗

𝜕𝑉𝑖
= 𝑐𝑜𝑛𝑠𝑡. =  𝛼𝑖𝑗                                                            (B5) 

Considering the principle of superposition, the above solution is applicable to most 

general case of B.C., in which each node is at an arbitrary potential of  𝑉𝑖. Moreover, by 

considering the energy flowing into the system in the steady state (P), we can also show 

that 𝛼𝑖𝑗 = 𝛼𝑗𝑖, as follows. First, we consider the power input to the system at an arbitrary 

set of applied voltages which is,  
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    𝑃 = 𝐼2(𝑉2 − 𝑉1) + 𝐼3(𝑉3 − 𝑉1) + ⋯ = 𝐼2𝑉2 + 𝐼3𝑉3 +⋯+ (−𝐼2 − 𝐼3 −⋯𝐼𝑛)𝑉1                     (B6) 

Moreover, we have  ∑𝐼𝑖 = 0  (no charge accumulation within the medium). 

Therefore, 𝑃 = ∑𝐼𝑖 𝑉𝑖 . Now, let’s consider the case of 2 contact points (𝑛 = 2). We 

increase the input voltages to V1 (node 1) and V2 (node 2) via two different approaches. 

In approach (1), first we raise 𝑉1 = 𝑉1 & 𝑉2 = 0. Therefore, 𝐼1 = 𝛼11𝑉1 = 𝐼2 = 𝛼21𝑉1, as 

a result, 𝑃 = ∑ 𝐼𝑖 𝑉𝑖 = 𝛼11𝑉1
2. We then raise 𝑉2 = 𝑉2. As a result of the latter step, an extra 

input current will be generated which is 𝛿𝐼1 = 𝛼12𝑉2 and 𝛿𝐼2 = 𝛼22𝑉2. Hence, the power 

input to the system becomes:  𝑃 = ∑ 𝐼𝑖 𝑉𝑖 = 𝛼11𝑉1
2 + 𝑉1𝛿𝐼1 + 𝑉2𝛿𝐼2  = 𝛼11𝑉1

2 +

𝛼12𝑉1𝑉2 + 𝛼22𝑉2
2 

In approach (2), we first raise the voltage of node 2 toV2 and then raise the voltage 

of node 1 to V1. Hence, the power input to the system in the second approach will be: 

                                                       𝑃 = 𝛼22𝑉2
2 + 𝛼21𝑉2𝑉1 + 𝛼11𝑉1

2                                                (B7) 

Since the powers from two approaches are expected to be the same (a linear system 

at similar boundary conditions), we will have 𝛼21 = 𝛼12. Similar arguments can be made 

to show that 𝛼𝑖𝑗 =  𝛼𝑗𝑖 for n>2. Therefore, the continuum system can be represented by 

𝑛(𝑛 − 1)/2 constants (𝛼𝑖𝑗). 

Next we consider a set of n points (𝑖 = 1…𝑛) each connected by ohmic resistors 

with a magnitude of 𝑅𝑖𝑗 , where the subscripts refer to the number of the points (thus 𝑅𝑖𝑗 

= 𝑅𝑗𝑖). According to the definition of the Ohmic resistors, a voltage change in the ith 
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contact point of 𝜕𝑉𝑖 will induce a current flow (input or output) of 𝜕𝐼𝑗 from contact point 

j such that:  

                                                                  
𝜕𝐼𝑗

𝜕𝑉𝑖
=

1

𝑅𝑖𝑗
= 𝑐𝑜𝑛𝑠𝑡.                                                                (B8) 

A comparison between equations A5 and A8 proves that the medium with n 

contact points can be replaced by a set of 𝑛(𝑛 − 1)/2 resistors such that 𝛼𝑖𝑗 =
1

𝑅𝑖𝑗
. 
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APPENDIX C: FINITE ELEMENT ANALYSIS TO CALCULATE INTRA-

PARTICLE RESISTANCE 

  

To calculate the macroscopic electrical conductivity of the nanocomposite, the 

resistance within particles need to be calculated. In appendix A, it was demonstrated that 

the resistance in each conductive particle with n contact points can be represented by an 

equivalent network of n(n-1)/2 resistors, each connecting two of the contact points. 

Considering the totally random size of particles and number and position of contact points, 

finite element analysis (FEA) is an effective method to calculate the resistance of the 

equivalent resistors within each particle. The conductive particle in single carbon 

nanofiber is turbostratic carbon which has orthotropic electrical conductivity due to its 

layered graphitic structure. To calculate the resistance within the turbostratic carbon 

particle, the electrical conduction equation in orthotropic medium was first replaced with 

an equivalent isotropic medium as follows. The electric flux in 2D medium can be 

expressed as: 

𝐽𝑥 = −𝜎11
𝜕𝜑

𝜕𝑥
− 𝜎12

𝜕𝜑

𝜕𝑦
                                                     (C1) 

𝐽𝑦 = −𝜎21
𝜕𝜑

𝜕𝑥
− 𝜎22

𝜕𝜑

𝜕𝑦
                                               (C2) 

 

where 𝜑  is the electric potential, 𝜎𝑖𝑗  is the electric conductivity and J is the current 

density. Since x and y axis are lined up with the principal directions of the domains (a- 
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and c-axis, respectively), σ12 = σ21 = 0. In the steady state within the orthotropic medium, 

there is no current source, thus, 

𝜎1
𝜕2𝜑

𝜕𝑥2
+ 𝜎2

𝜕2𝜑

𝜕𝑦2
= 0                                                (C3) 

The electric conduction equation for an orthotropic medium can be transformed to 

a standard electric conduction equation for isotropic medium, with the new independent 

coordinate variables, X and Y defined as,  

𝑋 = √𝜎/𝜎1𝑥                                                           (C4) 

𝑌 = √𝜎/𝜎2𝑦                                                    (C5)          

where 𝜎 is the equivalent conductivity of the isotropic medium, defined as 𝜎 = √𝜎1𝜎2, 

In the new coordinate system, equation (B1) becomes, 

𝜎 (
𝜕2𝜑

𝜕𝑋2
+
𝜕2𝜑

𝜕𝑌2
) = 0                                             (C6) 

The electric current leaving/entering the particle along the x (or y) edge between 

y1 and y2 (or x1 and x2) can be calculated in the new coordinates as,  

𝐼𝑥 = ∫ 𝐽𝑥𝑑𝑦
𝑦2

𝑦1
= ∫ √𝜎𝜎1

𝜕𝜑

𝜕𝑋

𝑑𝑌

√
𝜎

𝜎2

𝑦2

𝑦1
= 𝜎∫

𝜕𝜑

𝜕𝑋
𝑑𝑌 

√
𝜎

𝜎2
𝑦2

√
𝜎

𝜎2
𝑦1

                            (C7) 

𝐼𝑦 = ∫ 𝐽𝑦𝑑𝑥
𝑥2

𝑥1
= ∫ √𝜎𝜎2

𝜕𝜑

𝜕𝑌

𝑑𝑋

√
𝜎

𝜎1

𝑥2

𝑥1
= 𝜎 ∫

𝜕𝜑

𝜕𝑌
𝑑𝑋

√
𝜎

𝜎1
𝑥2

√
𝜎

𝜎1
𝑥1

                             (C8) 

To calculate the current flux in new coordinates, the regular finite element analysis 

method can be applied. In this work, each particle has several contact points. Considering 

the size of hexagonal carbon structure in turbostratic carbon, the minimum length for the 
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contact point is set to be 0.14 nm (minimum distance between carbon atoms). At first, the 

rectangle shape with arbitrary size with contact points representing individual turbostratic 

particle was meshed using triangular elements. An example for a meshed particle with 

three contact points is shown in Fig.C1 

 

Mesh convergence analysis was carried out and the number of elements was set to 

50,000 to achieve mesh independent results. After meshing each particle, the Dirichlet 

boundary condition was applied to the particle. That is, at each contact point, V=1 or V=0 

was applied depending on the calculation sequence which was specified in the text, and 

all other portions of the edges of the particle were subjected to boundary conditions of 

dV/dx = 0 or dV/dy = 0 to make sure that there is not current flow except out of / into the 

sample other than from the contact points. 

As shown in Equation C2, the calculation of input/output currents needed to 

estimate particle internal resistance values requires the calculation of potential gradients, 

 

Figure C1. Regular meshing in FEA and applied Dirichlet boundary conditions 
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which are typically very large right at the contact points. The calculation of large gradients 

can introduce large numerical errors to the resistance calculations. To overcome this 

problem and to calculate the input/output flows from each contact point, we considered a 

small box around each contact point, such that the contact point lies on one of its edges 

(Fig.C2). Along that edge, due to the specified boundary conditions, the current can only 

enter/exit the box only through the contact point. Therefore, due to conservation of charge 

principle (in the steady state) the current exiting/entering the box on three other edges is 

equal to the current entering/exiting the box through the contact point. Hence, the former 

was calculated directly as a measure of the latter. The potential gradient is significantly 

lower in the former compared to the latter, considerably reducing the computational errors.   

 

 

Figure C2. Turbostratic particle with three contact points and contact point current 

flow calculation 


