
  

EFFECTS ON RADIORESISTANCE BY THE TUMOR MICROENVIRONMENT  

 

A Dissertation 

by 

PANKAJ M PATEL  

 

Submitted to the Office of Graduate and Professional Studies of 
Texas A&M University 

in partial fulfillment of the requirements for the degree of 
 

DOCTOR OF PHILOSOPHY  

 

Chair of Committee,  Gamal Akabani  
Committee Members, John R. Ford 
 Michael A. Deveau  
 John W. Poston, Sr.  
Head of Department, Yassin A. Hassan 

 

May 2018 

 

Major Subject: Nuclear Engineering  

 

Copyright 2018 Pankaj Patel



 

 ii 

ABSTRACT 

 

 

One of the primary reasons in vitro therapeutic models lack high levels of efficacy is the 

inability to accurately model the natural tumor environment.  These models only 

incorporate homogenous tumor cells and lack the complex nature of the tumor 

microenvironment. The extracellular matrix (ECM) found in tumors provides the 

structure and growth factors needed to undergo phenotypical changes such as Epithelial 

Mesenchymal Transition (EMT). EMT provides tumor cells with stem-cell-like 

characteristics and a resistance to treatment. Tumor spheroids coated in Matrigel® 

provide a three-dimensional testing modality that mimics radiation responses seen in 

clinical models. Interactions between tumor cell lines (SJSA osteosarcoma and SKBR3 

breast cancer) and the laminin-rich ECM in three-dimensional culture provide a tumor 

niche that increases growth rate and more accurately represents treatment response. 

Radiation treatment given in fractionations showed changes in E cadherin expressions 

and NF-kB expression. This testing modality helps identify biomarkers associated with 

increased resistance to treatment. Creating a testing environment that allows in vitro 

therapeutic modeling to accurately represent in vivo tumor environments increases the 

efficacy of such studies.   
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CHAPTER I  

MECHANISMS AND TREATMENT PARADIGMS OF CANCER 

 

 

Over the past four decades cancer has been one of the most troubling diseases known to 

man. Each step in discovery unfolded a new level of complexity and with it a new 

challenge for scientists to overcome. Knowledge gained by studying the mechanisms, 

progression, and pathology of cancer revealed the complex multi-variable nature of a 

single cancerous cell and its environment. Each new piece of information lead to 

advancements in diagnostics and therapeutics. As knowledge of cancer and its 

mechanisms progress, the treatments in which we apply become significantly more 

complex (De Palma & Hanahan, 2012).  

 

1.1. Multistage Carcinogenesis  

The multistage carcinogenesis model is an outline of the processes that dictate initial 

mutation all the way to metastasis. The model breaks down carcinogenesis into four 

distinct stages: (1) tumor initiation based on oncogenic transformations, (2) tumor 

promotion based on specific cancer cell pathways, (3) malignant conversion based on 

specific micro-environmental factors, and (4) tumor progression based on cell kinesis, 

detachment, invasion, migration resulting in circulating tumor cells, tissue homing, and 

capillary exit and colonization resulting in metastases. Tumors are initiated by mutations 

created by carcinogens that have led to DNA methylation in areas that typically promote 
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tumor suppression (Jones & Baylin, 2002). A carcinogen is a complex term composed of 

two distinct components, initiators and promoters. In order for an oncogenic 

transformation to take place, an initiation must be followed by a series of promoter 

events. Initiators react with DNA in an irreversible manner. Tumor promotion requires 

the accumulation of events to select for mutations of a malignant phenotype. Promoters 

typically have irreversible effects as long as an initiation event has occurred. 

Inflammation soon follows, creating a notable sign of malignancy. Inflammation leads 

to an increase in genetic factors such as ODC, TGF-a, TGF-b, interleukins, and other 

cytokines. Without sufficient promotion, initiation events are likely to regress back to 

more normal function. Complete carcinogens are compounds that have the ability to 

cause both initiation and promotion. Examples of known complete carcinogens are BaP, 

aflatoxins, MOCA, NNK, asbestos, and radiation. Tumor promotion produces 

hyperplasia. For cancer to fully form, cellular changes must be made in order to reflect 

the malignant phenotype. The number of cells that are exposed to a mutation, the 

increased probability of a malignant conversion (Weston A, 2003). The malignant 

phenotype corresponds with traditional processes, associated with carcinogenesis on a 

cellular level. The malignant phenotype starts to alter various cellular processes such as 

up-regulation of oncogenes, down-regulation of tumor suppressor genes, 

immunosuppression, cellular immortality, and the beginnings of tumor invasion. Figure 

1 shows the acquired capabilities of cells under the malignant phenotype. These are also 

known as the Hallmarks of Cancer (Hanahan & Weinberg, 2011).  
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Figure 1. There are six features that are recognized as the Hallmarks of Cancer. Each 
individual element contributes to the progression of cancer. Reprinted from (Hanahan & 
Weinberg, 2011). 

 

Transition into the final period of the multistage carcinogenetic model occurs when there 

is a drastic increase in the aggressive characteristics of these malignant cells. The end 

result of this transition yields metastatic tumors which are invasions outside the original 

tumor site. At this stage in carcinogenesis, due to the high number of mutations, 

treatment plans are mostly palliative or incredibly aggressive with lower chances of 

success.   
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1.2. Six Hallmarks of Cancer Biology 

1.2.1. Sustaining Proliferative Signaling 

Cancer cells have robust methodologies for continuous proliferation. These cells alter a 

wide variety of signaling pathways and control negative feedback loops within these 

pathways. The genes associated with high cellular proliferation are known as oncogenes. 

Cancer cells alter and upregulate oncogenes to sustain high levels of proliferation. For 

the past twenty years oncogenes have been a pivotal part of targeted therapies by 

preventing proliferative pathways from hyperactivity. One of the most notable and 

frequent mutations is the ras gene. The ras mutation occurs in about 30% of all human 

tumors (Fernandez-Medarde & Santos, 2011). A mutation in the ras gene affects the 

MAP kinase pathway and provides a drastic increase in cellular proliferation within a 

variety of cell types. Another well-known pathway, that becomes overly active within 

cancerous cells, is the PI3-kinase pathway. Mutations within the PI3-kinase pathway 

cause a variety of cellular ramifications including high cellular proliferation and anti-

apoptotic regulation (Liu et al., 2013). Figure 2 shows the various downstream factors 

that are effected by both ras and PI3-Kinase pathways.  

 

Cellular mechanisms have the ability to continuously regulate pathways through a 

variety of negative feedback loops. Recent studies have highlighted the ability of cancer 

cells to mutate feedback loops within a system. Mutations within Ras GTPase, an 

enzyme responsible for shutting down the ras pathway, have shown to increase the 

proliferative efforts of cancer cells. Another example of feedback mutation involves 



 

 5 

PTEN phosphatase, which is active in the PI3-kinase pathway. PTEN phosphatase 

deactivates PIP3, a downstream by-product of an overactive PI3-kinase pathway. 

Understanding these negative feedback loops are essential for advanced therapeutics that 

are designed to shutdown specific proliferative pathways (Hielscher & Gerecht, 2015).     

 

 

 

Figure 2. The Ras/raf pathway and PI3-kinase pathway both have a long line of 
downstream mediators that lead to increase cellular proliferation within a variety of 
cancer cell types. Reprinted from (Hielscher & Gerecht, 2015).  
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1.2.2. Evading Growth Suppressors 

Another notable genetic discovery that goes hand in hand with oncogenes are tumor 

suppressor genes. The human body has the ability to detect and eradicate many small 

mutations that could lead to malignancies. These processes ensure that random 

mutations and small amounts of change within the DNA do not become cancerous. 

These processes are dictated by genes known as tumor suppressor genes. Tumor 

suppressor genes play a main role in the control of the cell cycle. Alterations within the 

DNA can be accommodated by terminating the cell cycle and commencing repair 

mechanisms for the damaged DNA. The first notable tumor suppressor gene discovery 

was that of the Rb protein. Mutations in the gene that account for the Rb protein can lead 

to a variety of cellular issues on which cancer cells are dependent. The Rb protein is 

responsible for the G1 checkpoint within the cell cycle. Functionally, the Rb protein 

suppresses the transcription of the genes needed for the S-phase of the cell cycle to 

proceed. Without functional Rb proteins, the G1 checkpoint is completely ignored and 

cellular damage may remain unrepaired during replication (Giacinti & Giordano, 2006).  

 

One of the most important cellular pathways in radiation response deals with p53. The 

protein that is considered the guardian of the genome. This protein is responsible for the 

mechanisms that decide the fate of a cell directing it to divide or start the apoptotic 

pathway (Gottlieb & Oren, 1996). Similar to the importance of the ras pathway, 

mutations in the p53 pathway have been linked to over 50% of tumors (Hollstein, 

Sidransky, Vogelstein, & Harris, 1991). Both p53 and Rb proteins are easy targets for 
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tumor cells to take advantage of; this is because they play a large role in in cellular 

homeostasis. Evading growth suppressors is one of the key parts in cancer progression 

due to the natural ability of the cell to correct for abnormalities within our DNA.   

 

1.2.3. Resisting Cell Death 

Cellular death is a means by which the body rids cells that are unusable and no longer 

functioning. Three main methods for cellular death within humans includes apoptosis, 

necrosis, and autophagy. Cancerous cells do an impeccable job of turning these 

processes off and prolonging survival even when many normal cellular functions have 

been lost. Apoptotic mechanisms are in place within cells in order to eliminate damaged 

cells. The p53 pathway described above can designate a cell for apoptosis if cellular 

damage is too high to repair. Once that process has started, cells are typically bound to 

their fates. With this being said, cancer cells can alter both extrinsic and intrinsic 

pathways associated with apoptosis. The intrinsic pathway deals with pro-apoptotic 

proteins such as Bax and Bak and anti-apoptotic proteins such as Bcl-2. Anti-apoptotic 

proteins are upregulated and designed to block cytochrome C from being released by 

mitochondria and prevent the chain of events that leads to apoptosis (Wong, 2011). The 

extrinsic pathway deals more with receptor-based mutations and prevents external 

signaling from starting an apoptotic cascade. Autophagy is another cellular response in 

the presence of stress. Unlike apoptosis, autophagy doesn’t render the cell useless 

because it breaks down cellular components to be used by surrounding cells. However 

studies have been shown that over-stressed cells, such as those subjected to vast amounts 
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of chemotherapy or radiation therapy, have the ability to use autophagy pathways to 

shrink and stay dormant (White & DiPaola, 2009).  This can eventually lead to problems 

further in time if cellular activity and proliferation ever recommence. Lastly, tumors 

have vast regions of necrotic tissue that can lead to cancer progression. Unlike cells that 

have undergone autophagy or apoptosis, necrotic cells can still function to help recruit 

inflammatory cells and release regulatory factors (Lotfi, Kaltenmeier, Lotze, & 

Bergmann, 2016). Inflammatory cells can assist the progression of a tumor by advancing 

angiogenesis. While some cells within a tumor are subject to death, a population of 

cancerous cells have a way of either avoiding or utilizing pathways associated with 

death as a mechanism for cancer progression.  

 

1.2.4. Inducing Angiogenesis  

Originally tumors were thought to enable pro-angiogenic factors later on in their life 

span. As the tumor developed the need for increased amounts of nutrients seemed 

necessary in order to survive (Z. Huang & Bao, 2004). Studies have shown that 

angiogenic factors are required early on in the life span of the tumor, but it is not entirely 

clear as to why. Tumors activate an “angiogenic switch” that starts to form new 

vasculature within and around the tumor (Hanahan & Folkman, 1996). However, this 

vasculature is far from normal. The strength of the walls and the functionality is much 

different than the normal vessels seen within the body. Tumor vasculature has excessive 

branching, a leaky nature, and enlarged vessels (McDonald & Baluk, 2005). The 

differences in vasculature between normal and malignant tumor tissues are shown in 
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Figure 3 (Vaupel, 2004). The major structural and functional irregularities of tumor 

vessels are (a) missing differentiation, (b) large diameter, (c) convoluted vessels, (d) 

aberrant branching, (e) paucity of pericytes, (f) increased vascular permeability and 

plasma leakage, (g) unstable direction of flow and flow stasis, and (h) formation of RBC 

aggregates.  

 

 

 

Figure 3. Differences in vasculature between normal and malignant tumor tissue for 
colon, subcutis, and skeletal muscle. Adapted from (Vaupel, 2004).  
 

 

All of these characteristics are key components in the sustained growth that tumors 

experience. Tumors typically utilize factors such as VEGF, TSP-1, and FGF to influence 

their surrounding environment. Tumors also recruit cells into their created environment 
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so that they can flip the angiogenic switch. Recent studies have shown that tumors 

recruit specific cell types such as macrophages, neutrophil, and myeloid progenitor cells 

before triggering the angiogenic switch (Ferrara, 2010). Not all cancer types are the 

same; a few cancers contain low amounts of vasculature such as pancreatic ductal 

adenocarcinomas (Olive et al., 2009). Conversely, there are tumors containing copious 

amounts of growth factors that induce angiogenesis and are highly vascularized such as 

infantile hemangioma (Sepulveda & Buchanan, 2014; van der Zee et al., 2010). A 

variety of cells and growth factors all contribute to the angiogenic phenomenon seen in 

most tumors. Figure 4 shows the complex nature of a tumor microenvironment including 

the vasculature and growth factors that contribute toward advance stages of 

tumorigenesis (Korkaya, Liu, & Wicha, 2011). Tumors depend on the increased 

nutrition that angiogenesis provides. Without sustained angiogenesis, many resistant 

properties of the tumor would likely fade away.  
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Figure 4. Tumors recruit various cell types and growth factors to increase angiogenesis 
and eventually begin to travel elsewhere within the body. The larger the tumor becomes, 
the more complex its microenvironment becomes. Reprinted from (Korkaya et al., 
2011).  
 

 

1.2.5. Cellular Immortality  

Cellular aging is one of the most studied topics in recent history. It has direct 

applicability to many health-related topics and a strong correlation with cancer cells. 

The process of cellular aging in cells is inversely related to cancer survival. The main 

process associated with aging within cells is the shortening of telomeres during 

replication. Chromosomes have telomeres to protect DNA from degradation and fusion 

with other chromosomes during replication. Once the limited number of telomere 

sequences have been lost in normal cells, the cell goes through senescence or apoptosis. 
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However, in cancer cells, the upregulation of a protein known as telomerase allows for 

the extension of lost telomeric sequence. Cancer cells that have upregulated their 

telomerase activity are considered “immortalized cells.” Immortalized cells have the 

ability to continuously replicate without the standard loss of their telomeres during each 

division. Cancer cell lines used for research purposes have drastically high telomerase 

activity and are viable for many passages without hindering the dependability of the cell 

line (Hanahan & Weinberg, 2011). Recent studies have questioned the time point in 

which cancer cells utilize telomerase activity. Premalignant phenotypes have lower 

telomerase activity in order to increase the probability of genetic mutations to occur 

during replication. Once the malignant phenotype has been established, cancer cells 

increase their telomerase activity to provide stability and protection from fates such as 

senescence and apoptosis (Raynaud et al., 2010).  

 

1.2.6. Activating Invasion and Metastasis   

Therapeutic advancements have equipped oncologists with the means to fight cancer 

very well at early stages. As screening and diagnostic methods improve, the likelihood 

for survival of those affected with cancer increases. If tumors go unnoticed and are 

allowed to progress, then treatment and survival becomes increasingly difficult. By the 

time a tumor progresses to a metastatic site, many cellular processes have been activated 

and the environment of the original tissue has been drastically altered. For a tumor to 

start migrating toward other areas within the body, many phenotypical changes must 

occur. Metastasis from the primary tumor can be characterized into a series of four steps. 
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The first step is commonly known as the Epithelial-Mesenchymal Transition, EMT. 

Similar to the “angiogenic switch” this complex change in phenotype requires heavy 

interaction with the extracellular matrix and a variety of cells. The first notable change 

occurs with the loss of E-cadherin between adjacent cells. E-cadherin is a binding 

protein that allows cell to cell adhesion. To down regulate E-cadherin expression, cells 

start to upregulate transcription factors such as SNAIL, ZEB, SLUG, and TWIST 

(Serrano-Gomez, Maziveyi, & Alahari, 2016). These transcription factors bind to E-

cadherin promoters and deactivate them. After the loss of adhesion, cells are no longer 

bound to each other and have increased motility allowing for migration to occur. Tumor 

cells may physical change their shape allowing for the ease of movement within and 

beyond their primary site. Figure 5 shows the physical changes that primary tumor cells 

demonstrate during EMT (Pradella, Naro, Sette, & Ghigna, 2017). With the loss of 

adherent junctions, cancer cells also excrete matrix-degrading enzymes (Hanahan & 

Weinberg, 2011). Local invasion of the adjacent normal tissue starts with the secretion 

of IL-4 by cancer cells. IL-4 secretion induces the recruitment of macrophages located 

around the tumor to start assisting in the extracellular matrix degradation process. 

Macrophages start to secrete metalloproteinases (MMPs) and cysteine cathepsin 

proteases which break down the surrounding extracellular matrix creating room to move, 

invade, and migrate (Joyce & Pollard, 2009; Palermo & Joyce, 2008).  
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Figure 5. EMT calls for a variety of transcriptional factors that eventually alter cellular 
adhesion junctions allowing for physical change to occur. A) Shows the regulation of 
specific transcriptional factors during EMT (SNAIL, ZEB, TWIST). B) The physical 
changes can be seen as the cell wraps into an amoeboid like structure with there is a loss 
of the adhesion junctions as EMT progresses. C) Shows the regulation of proteins 
associated with EMT (ESRP, RBM47, MNBL1, SRSF1, RBFOX2). D) Depiction of 
how all the factors listed above lead to phenotypical alterations in surface proteins over 
the transition. Reprinted from (Pradella et al., 2017).     
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The next phase in the metastatic process, intravasation, is the ability of cells to enter the 

bloodstream and lymphatic vessels. As tumor cells gain the ability to travel in the initial 

invasion process, they typically migrate toward blood vessels. Cells attempt to cross the 

endothelial barrier at a relatively high rate however, only about 0.01% of cells that cross 

the barrier form secondary tumors (Chiang, Cabrera, & Segall, 2016). Once cells have 

crossed the endothelial barrier, they are considered circulating tumor cells. These 

circulating tumor cells have many factors working against them. These factors include 

the sheer stress caused by blood flow rates and the increased immunological components 

present within the bloodstream or lymphatic vessels. Once in the bloodstream, 

circulating tumor cells are often dormant for long periods of time. There are a variety of 

factors that may contribute toward dormancy. It is likely that the ability of cells to 

escape circulation and establish secondary tumors is incredibly low. Not much is known 

about the extravasation of cancer cells from the bloodstream. Cancer cells may exit 

circulation at random however, they lack the ability to start proliferation in all 

environments. Studies have shown that these metastatic cells interact poorly with foreign 

microenvironments (G. P. Gupta et al., 2005). Over time the metastatic cells change and 

alter their surrounding while recruiting additional cell types required for full metastatic 

sites to develop (Barkan, Green, & Chambers, 2010). Alternatively, there have been 

cases that have shown a connection to the primary tumor and the release of suppression 

factors into the bloodstream. This releases is visible in cases where metastatic sites 

appeared only after the primary tumor was resected (Retsky, Demicheli, Hrushesky, 
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Baum, & Gukas, 2008). Regardless of how circulating cells exit the bloodstream, a 

unique set of parameters must come together for tumor cells to survive in a foreign 

environment. Similar to the initial proliferation stage, secondary tumors must recruit a 

variety of growth factors and supplementary cells to survive.  

 

1.3. Treatment Modalities  

1.3.1. Surgery  

Surgery continues to be the primary strategy for tumor control in solid cancer. Surgical 

treatment aims to remove the entire tumor, debulk the tumor, or ease cancer symptoms. 

There are several types of surgeries used depending of the type of tumor and clinical 

presentation of the patient. Wide local excision is the most common type, followed by 

organ conserving or minimally invasive surgery.  In wide local excision approaches, a 

large cut is made to remove the tumor and a small margin of normal tissue with or 

without lymph node dissection. For the case of minimally invasive surgical procedures, 

a few small cuts are made. This reduces postoperative pain, speeds recovery, and results 

in less loss of form and function. A laparoscope is inserted into one of the small cuts for 

direct observation inside the body with a camera. Surgical tools are inserted through the 

remaining cuts to remove tumor and minimal amounts of healthy tissue. Surgery can be 

combined with other surgical strategies such as cryosurgery, lasers, hyperthermia, and 

photodynamic therapy. It is here that the TNM classification becomes relevant. TNM is 

based on tumor size (T), lymph node involvement (N), and metastases (M). As an 

example, the TNM classification for breast cancer is given in Table 1. The American 
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Joint Committee on Cancer (AJCC) and the International Union of Cancer Control 

presents the AJCC Cancer Staging Manual, which is the gold standard to help the cancer 

patient management team determine the correct stage for patients and for establishing 

the best and most appropriate care plan (AJCC cancer staging manual, 2016). 

 

 

Table 1. TNM Staging for Breast Cancer. 

T T1 
Size < 2 cm 

T2 
Size 2-5 cm 

T3 
Size > 5 cm 

T4 
Tumor extends 
to skin or chest 

wall 

N N0 
No lymph node 

involvement 

N1 
Metastases to 

ipsilateral 
movable 

axillary LNs 

N2 
Metastases to 

ipsilateral 
fixed axillary 

or IM LNs 

N3 
Metastases to 
intraclavicular 
supraclavicular 

LN or to 
axillary IM 

LNs 

M M0 
No distant 
metastases 

M1 
Distant 

metastases 
  

 

 

1.3.2. Chemotherapy 

The most widely used strategy for the treatment of cancer continues to be chemotherapy. 

However, chemotherapy is not specific as it is driven by diffusion processes at the 

cellular level and attacks normal and cancerous cells.  Chemotherapy is used for curative 

intent or as a palliative treatment to reduce the symptoms of terminal cancer. It is used in 

conjunction with radiation and surgery to attain higher treatment efficacy. There are 

seven basic classes of chemotherapy based on mechanism of action. These are (1) 
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alkylating agents such as Cytoxan that chemically affect DNA (Cycle specific: All), (2) 

antimetabolites, such as 5-FU and Gemzar that substitute the normal blocks (Cycle 

specific: S), (3) anthracyclines such as Adriamycin inducing DNA damage and inhibit 

topoisomerase (Cycle specific: All), (4) anti-tumor antibiotics such as Bleomycin that 

induce severe DNA damage (Cycle specific: All), (5) topoisomerase inhibitors such as 

Irinotecan that produce DNA complexes and topoisomerase together (Cycle specific: S, 

G2), (6) vinca alkaloids such as vincristine that binds to tubulin and interferes with 

mitosis (Cycle specific: M), and (7) taxanes such as Taxol and Taxotere that prevent 

microtubule from dissociating (Cycle specific: M).  

 

1.3.3. Cancer Immunotherapy 

Cancer immunotherapy has made significant advances in the treatment of cancer. Cancer 

immunotherapy is commonly divided into two distinct strategies. These include 

targeting the tumor directly and activation of the immune system against cancer cells. 

Direct tumor targeting requires direct “contact” with tumor cells and derivatives of 

tumor tissue. Direct tumor targeting can be carried out by using (a) naked monoclonal 

antibodies, such as trastuzumab, and inhibitors, such as imatinib (Gleevec©), which 

disrupts specific biological pathways for tumor growth, (b) radiolabeled monoclonal 

antibodies using full antibodies or their fragments, such as 131I-labeled anti-CD20 MAb 

(BEXXAR©), 90Y-labeled rituxiumab (Zevalin©) for the treatment of NHL, and 223RaCl 

(Xofygo©) for the treatment of castration-resistance metastatic prostate cancer, (c) 

antibody-drug conjugates (ADC), which combine the specificity of a monoclonal 
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antibody for the delivery of a highly potent cytotoxic agent, and (d) immunotoxins using 

engineered oncolytic viruses, such as those using adenovirus, retrovirus, and measles. 

Strategies that activate the immune system use (a) vaccines using oncolytic viruses, (b) 

immune checkpoint inhibitors or antagonists, (c) co-stimulatory agonists and co-

inhibitory antagonists (Peggs, Quezada, & Allison, 2009), and (d) cellular therapies 

using chimeric antigen receptor. Immune checkpoint inhibitors and antagonist target the 

programmed cell death protein receptor (PD-1, also known as CD279), which is 

expressed on the surface of many cancer cells, or programed cell death ligand (PD-L1 

and PD-L2, also known as CD279 and CD273 respectively) which are commonly 

expressed in surface T-cells. Cellular therapies using chimeric antigen receptor are 

designed using T-cells from the same patient and modified using adoptive cell transfer 

and re-injected into the patient to seek and attacked tumor cells (Prasad, 2018).  

 

1.3.4. Radiation Therapy 

A fundamental treatment modality of cancer is radiotherapy, which is used 

concomitantly with chemotherapy and surgery. Currently, surgery and radiation therapy 

are the most optimal strategies to rid cancer from patients suffering from well localized, 

solid cancers. The time scale effects of radiation in biological tissue are divided into a 

physical phase, chemical phase, and biological process. During the physical phase, 

radiation interaction occurs between 10-18 and 10-14 s. During the chemical phase, there 

are physicochemical processes in which affected atoms and molecules react with other 

atoms and molecules and ionization and excitation lead to breakage of chemical bonds 
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and production of free radicals. Free radical reactions are complete within approximately 

1 ms of radiation exposure. Afterwards, there is a competition between species via 

scavenging and fixation reactions. The biological phase is the most complex process in 

radiobiology, where the vast majority of the lesions produced by radiation are repaired. 

The cells that have acquired irrecoverable damage will attempt to proceed down 

pathways associated with cellular death. However, these cells may divide before dying. 

In most cases radiation effects are quite different between normal and tumor tissues. The 

killing of normal stem cells and loss of differentiated normal cells causes the 

manifestation of normal-tissue damage during the weeks and months after radiation 

exposure. Radiotherapy effects have been studied using classical radiobiology, which is 

macroscopic in nature and did not explain late responding tissues. Focus was placed on 

dose fractionation, phenomenological repair in terms of sub-lethal and potentially lethal 

damage, and using the linear-quadratic model (LQ Model). On the other hand, modern 

radiotherapy is now being studied using a systems-radiobiology approach. This 

approach takes into consideration the molecular pathways and networks, and use –omics 

approaches, such as genomics, proteomics, and metabolomics. This includes those of the 

tumor microenvironment to enhance the therapeutic effects of radiotherapy. In addition, 

it accounts for the spatiotemporal pathophysiology of tumors, including radiation 

hormesis, angiogenesis, hypoxia, and growth factors (Sanders, 2017). 
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1.4. Radioresistance  

The classical approach to the radiobiology of cancer is based on the 6 R’s. These are (1) 

repair of DNA damage, (2) redistribution of cells in the cell cycle, (3) repopulation, (4) 

re-oxygenation of hypoxic tumor regions, (5) Radiosensitivity, and (6) Remote cellular 

effects. In classical radiobiology, the rate of failure will be determined by the 6 R’s of 

radiobiology. However, today there is compelling evidence that many solid cancers are 

organized hierarchically and contain a small group of cells commonly referred as cancer 

stem cells (CSCs). These cells exhibit stem-cell properties and have been found to be 

inherently resistant to conventional radiation therapy and chemotherapy (Moncharmont 

et al., 2012; Pajonk, Vlashi, & McBride, 2010; Vlashi, McBride, & Pajonk, 2009). 

These CSCs have the ability to renew indefinitely, drive invasion, and metastases. The 

CSCs have an enhanced repair mechanism of DNA, it has been shown that for high-

grade gliomas, CSCs have a greater activation of DNA damage checkpoint in response 

to radiation, and repaired radiation-induced damage (Bao et al., 2006).  The mechanisms 

for radiation resistance are based on (a) quiescence propensity of CSC, (b) enhanced 

repair of DNA, (c) upregulated cell cycle control mechanism, (d) hypoxia, reactive 

oxygen species and enhanced radical scavenging, (e) interactions with stroma cells and 

the microenvironment (Moncharmont et al., 2012). The CD markers used to identify 

CSCs in various solid cancer is given in Table 2.   
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Table 2. Common cell surface markers used to identify and enrich CSC in various solid 
tumors  a) In breast and ovarian tumors CD24low/−, whereas in the pancreas CD24+ both 
in combination with CD44+  (Allan, 2011). 

CSC marker and enrichment technique Tumor type 
CD44+ Breast, Prostate, Colon, HNSCC, 

Pancreas, Ovarian 
CD24a Breast, Ovarian, Pancreas 
CD133+ Breast, Brain, Prostate, Colon, Liver, 

Ovarian 
ESA+ Breast, Pancreas 
EpCAM Colon 
CD49f+ Breast 
Side population (SP) Breast, Brain, Lung, Ovarian, Skin 
ALDH+ Breast, AML, MM 
CD34+ AML, Lung 
DLL1high DNERhigh Breast 
CD271 Skin 

  

 

1.4.1. Radioresistance: NF-kB Pathway    

A variety of biological pathways influence the ability of cells to be radioresistant. A 

large number of radioresistant cells are considered to be cancer stem cells or cells that 

have acquired stem-like characteristics. The main pathways associated with 

radioresistance are PI3K, ras, GLUT-1, and p53. All of these pathways have well known 

downstream effects which lead to cell survival such as alterations in the NF-kB protein 

levels. NF-kB is a protein that has been linked to tumor resistance in both chemotherapy 

and radiation therapy (C. Y. Wang, Cusack, Liu, & Baldwin, 1999).  

 

NF-kB is mainly found within the cytoplasm of cells, in its latent inactive form through 

binding through an inhibitor. Once cellular stress signals are active, downstream effects 
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lead to the ubiquitination of IkB. IkB is the key protein in activation of NF-kB. Once 

NF-kB is free of IkB it can translocate to the nucleus. NF-κB is a pleiotropic mediator of 

specific gene regulation involving various biological activities, it is responsible for the 

upregulation of genes associated with the suppression of apoptosis and necrosis, 

immune, inflammatory, and cell growth responses (Orlowski & Baldwin, 2002; Xia, 

Shen, & Verma, 2014).  

 

IR has shown to increase NF-kB binding to DNA and increase survival mechanisms 

within cancer cells (Brach et al., 1991). Figure 6 shows cellular responses after IR 

impacts the cell. PIP3 is only one of the many possible upstream pathway that relates IR 

to NF-kB levels. There have been multiple upstream effectors that contribute to 

increased NF-kB levels. These factors include cytokines, ERK pathway, ATM, HER-2 

activation, and many more (Li & Sethi, 2010). All of these factors activate NF-kB and 

release a variety of radioresistant responses. Studies have shown activation of the ERK 

pathway from low levels of radiation. Tumor cells responded with anti-apoptotic 

mechanisms, these responses correlate ERK interactions with NF-kB (T. Wang et al., 

2005).  Cytokines released by immune cells after ionized radiation (IR) interact with 

surface receptors on tumor cells which activate NF-kB (Blonska, You, Geleziunas, & 

Lin, 2004). One such cytokine is TNF-a which is released by T cells and macrophages 

after IR. TNF-a leads to activation of NF-kB by interactions with NIK. NIK is involved 

with the inactivation of IkB which activates NF-kB (S. Y. Lee, Lee, & Choi, 1997). 
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Activation of NF-kB leads to a variety of outcomes that benefit tumor cells and cause 

resistance to treatment. NF-kB is an important aspect for tumor survival and 

development after treatment, inhibitors of NF-kB have shown promise in increasing 

radio-sensitivity and chemo-sensitivity within a variety of cancers (Li & Sethi, 2010).  

 

 

 

Figure 6. Radiation and ECM effects on tumor cells. Radiation increases NF-kB binding 
to DNA which releases a variety of pro-survival signals. ECM effects on tumor cells 
increase actin polymerization which is necessary for invadopodia growth.   
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1.4.2. Radioresistant E-Cadherin Pathway 

E cadherin loss in tumor cells is a notable sign of oncogenic progression. The three main 

survival attributes that link loss of E cadherin to oncogenic progression are cell motility, 

invasiveness, and resistance to treatment (Yang et al., 2006). These three tumor 

attributes also go hand in hand with the EMT phenotype. The EMT phenotype is 

established late within primary tumor progression. Tumor cells undergo EMT in order to 

invoke more aggressive and invasive properties (Kang & Pantel, 2013). These changes 

are necessary for tumor cells to break away from the primary tumor and journey off to 

metastatic sites (Thiery, Acloque, Huang, & Nieto, 2009). Thus, EMT is highly 

associated with the loss of adherent junctions on tumor cells such as E cadherin (Kalluri 

& Weinberg, 2009). EMT promoting factor SNAIL alters tumor morphology by down 

regulating E cadherin levels which can be seen in Figure 5. Loss of E cadherin facilitates 

these morphological changes by reducing cell to cell adhesion (Theys et al., 2011). Once 

adhesion is lost tumor cells increase factors that assist with ECM degradation, such as 

invadopodia, to help migrate toward blood vessels (Bonnans, Chou, & Werb, 2014; Paz, 

Pathak, & Yang, 2014). 

 

Radiation plays an important role in the EMT process. The EMT phenotype is associated 

with radioresistance and chemoresistance (Kyjacova et al., 2015). Breast cancer cells 

with lower E cadherin content display greater radioresistant properties that cells with 

higher E cadherin levels (Theys et al., 2011). E cadherin levels are therefore inversely 

related to treatment resistance. E cadherin loss due to EMT promoters such as SNAIL 
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have been documented to provide resistance to chemo and radiation treatments 

(Behrens, Mareel, Van Roy, & Birchmeier, 1989; Singh & Settleman, 2010). SNAIL 

plays a role in E cadherin mediated radioresistance. Radiation upregulates SNAIL 

activity which positively affects radioresistant pathways such as PI3k and Erk1 (Vega et 

al., 2004). Radiation would therefore cause resistance to treatment inducing EMT within 

tumor cells. Downregulation of E cadherin can enhance radioresistant properties of 

tumor cells and progress oncogenesis by EMT. 
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CHAPTER II  

CANCER MODELING 

 

 

Most research in cancer therapeutics is dedicated towards better understanding cancer 

and its environment. This knowledge leads to increases in effectiveness of therapy 

modalities. Despite the vast number of projects, dedicated toward improving 

therapeutics, progress remains fairly slow. This is primarily due to the success rate that 

studies have when transitioning from animal models to clinical trials. Animal models 

have been essential tools for testing the side effects and efficacy of drugs prior to human 

trials. Despite their importance only about 8% of animal studies actually bear successful 

translation into clinical trials (Mak, Evaniew, & Ghert, 2014). Although they have many 

advantages, animal models end up costly and inaccurate. The average timeline and 

success rate for drug discovery is approximately 10-15 years with a success rate under 

1%.  The time and cost spent on a single drug makes it critical that every phase of 

testing be as accurate as possible. Typically, drug discovery starts with extensive cell 

culture testing prior to a preclinical phase. The preclinical stage is generally the stage in 

which animal studies begin. Improving the accuracy prior to the preclinical stage is a 

strategy that is constantly being explored. One of the main focuses for researchers is the 

transition from 2D to 3D cell culture systems. Three-dimensional systems have always 

shown more aggressive and resistance tumor models than their two-dimensional 

counter-parts. Increase in resistance is due to increased surface interaction of one cell to 
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a variety of others. Three-dimensional models have recently tried to incorporate 

components found within natural tumor microenvironments in order to increase efficacy 

of studies. Not all components of the tumor microenvironment are easily incorporated 

into tumor models. However, therapeutic studies involving the ECM have shown great 

progress in recent years. As the importance of the ECM continues to be explored, three-

dimensional modeling continues to improve on the incorporation of these variables (P. 

Lu, Weaver, & Werb, 2012).  

 

2.1. Tumor Microenvironment  

The tumor microenvironment has been overlooked as an incredibly important aspect of 

oncogenesis. Previously tumors were seen as a collection of homogenous cells that 

continued to proliferate at high levels. In the past few decades scientists have discovered 

that tumors are much more complex. Not only do tumors require a heterogeneous mix of 

cells in order to survive, they also need many non-cellular components in order to 

progress through oncogenesis. 

 

2.1.1. Angiogenic Cells 

Inducing angiogenesis is one the major hallmarks associated with cancer. Tumors go 

through significant changes and activate processes that lead to the activation of the 

“angiogenic switch”. The angiogenic switch starts the formation of new vasculature 

required for tumor growth. Endothelial cells help tumor cells construct new vasculature 

by increasing the amount of growth factors that help induce angiogenesis (Loupakis et 
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al., 2010). Pericytes work alongside endothelial cells to help create and sustain blood 

flow. Pericytes are used as a supportive structure which help account for the hydrostatic 

pressure created by blood flow (Hanahan & Weinberg, 2011).  Angiogenic cells are an 

essential part of the tumor microenvironment by aiding in the creation of new 

vasculature needed for tumor survival. 

 

2.1.2. Leukocytes 

Immune cells within the body play an important role in tumor progression. Contrary to 

expectations, leukocytes make up a majority of the stromal cells around a tumor (de 

Visser & Coussens, 2006). The most prominent cell types include: macrophages, 

granulocytes, natural killer cells, CTLs, and B-cells (De Palma & Hanahan, 2012; 

Hanahan & Weinberg, 2011). Pro-inflammatory cells are the most utilized cell in tumor 

progression. Inflammatory cells such a macrophages and granulocytes provide 

restructuring of the ECM while increasing cell motility (Allavena, Sica, Solinas, Porta, 

& Mantovani, 2008; Kandalaft, Motz, Duraiswamy, & Coukos, 2011). These cells also 

provide protection from the adaptive immune system. The adaptive immune system is 

present in a delicate balance between harmful and beneficial. Adaptive immune cells 

such as B-cells and CTLs can attack tumor cells by the administration of 

immunotherapeutics. But they also play a large role in recruitment of inflammatory cells 

(Hanahan & Weinberg, 2011; Ruffell, DeNardo, Affara, & Coussens, 2010). 

Inflammatory cells play a large role in cancer progression. Inflammatory cells secrete 

copious amounts of necessary oncogenic factors such as MMPs, proteases, VEGF, EGF, 
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FGF2, chemokines, and cytokines (Joyce & Pollard, 2009; Pahler et al., 2008). 

Inflammatory cells have been shown to help tumors evade the adaptive immune system 

cells by expressing certain cell markers that neutralize CTLs and natural killer cells 

(Bunt, Clements, Hanson, Sinha, & Ostrand-Rosenberg, 2009; Qian & Pollard, 2010). 

Leukocytes play an interesting role in cancer progression and have become a popular 

therapeutic target for many cancer sub-types.  

 

2.1.3. Fibroblasts 

Cancer-associated fibroblasts, (CAFs) are one of the most influential cell types aside 

from primary tumor cells (Kalluri & Zeisberg, 2006). CAFs assist tumor cells by 

synthesizing ECM, releasing growth factors necessary for angiogenesis, recruiting 

macrophages, and enhancing tumor growth (Erez, Truitt, Olson, Arron, & Hanahan, 

2010). CAFs are responsible for the formation of the desmoplastic stroma. Presence of 

the desmoplastic stroma is associated with the level of invasiveness present within a 

variety of tumor subtypes. Desmoplastic stroma plays a role in the transition between 

invasive cells and normal tissue (Egeblad, Nakasone, & Werb, 2010). CAFs are 

responsible for many aspects of tumor progression and survival. CAFs provide 

resistance to specific anti-VEGF chemotherapeutics (Orimo et al., 2005). Overall, CAFs 

have a pivotal role in oncogenic progression and survival.    
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2.1.4. Cancer Stem Cells  

Stem cells are cells within a normal tissue which are undifferentiated and have the 

ability to create a variety of cell types. In recent years tumors have been found to 

possess a cell type which can mimic the properties of normal stem cells. These tumor 

cells have the ability to proliferate new tumors when injected into in vivo hosts (Cho & 

Clarke, 2008). These cells are known as cancer stem cells. Cancer stem cells were first 

found in hematological cancers as a source of constant cancer cell proliferation (Dick, 

Bhatia, Gan, Kapp, & Wang, 1997). Cancer stem cells are found in almost all tumor 

types, however, their exact origin in the oncogenic process remains unknown (Hanahan 

& Weinberg, 2011).  

 

Cancer stem cells possess traits similar to those of cells going through EMT. Studies 

theorize that differentiated cells may gain stem like characteristics by going through 

EMT (Singh & Settleman, 2010). Cancer stem cells are resistant to therapy just like 

many cells that go through EMT (Deonarain, Kousparou, & Epenetos, 2009). Cancer 

stem cells have been treated with specific drugs that induce differentiation as a possible 

treatment option (P. B. Gupta et al., 2009).  

 

Cancer stem cells have been seen as the underlying reason for cancer reoccurrence after 

treatment (Buck et al., 2007; Phillips, Petrie, Creighton, & Garcia, 2010). Not only do 

cancer cells impact reoccurrence rate they also play a pivotal role in cancer metastasis 
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(Hermann et al., 2007). Cancer stem cells make great targets for therapeutics due to their 

resistance to treatment and their role in metastatic disease. 

 

2.1.5. Extracellular Matrix 

The extracellular matrix within a tumor is a variety of macromolecules such as collagen 

(I, II, III, and IV), laminin, fibronectin, biglycan, entactins, and other matricellular 

proteins (Insua-Rodriguez & Oskarsson, 2016). These proteins interact with the various 

other cell types within the tumor microenvironment. Stromal cells such as CAFs and 

immune cells facilitate the biochemical changes within the ECM. Providing the structure 

needed for cancer progression (Bhowmick, Neilson, & Moses, 2004; Orimo et al., 

2005). Abnormal ECM plays a large role in many of the hallmarks of cancer. Abnormal 

ECM contributes to angiogenesis by having a large amount of collagen IV within the 

tumor microenvironment. Collagen IV and XVIII break down into a variety of smaller 

proteins such as endostatin, tumstatin, canstatin, and hexstatin which aid in the 

formation or inhibition of new blood vessels (Mott & Werb, 2004). The ECM also aids 

in the branching process of angiogenesis by guiding and aiding in endothelial cell 

survival (Bignon et al., 2011).  The ECM also plays a vital role in inhibiting and 

promoting various leukocytes. The ECM inhibits a variety of immune cells from 

interacting with the primary tumor by creating physical barriers which cells cannot pass 

(S. Wang et al., 2006). Laminin binds to integrin receptors on the surface of neutrophils. 

Neutrophils stay trapped within the binding region between the basement membrane and 

the endothelium (Dangerfield, Larbi, Huang, Dewar, & Nourshargh, 2002). The ECM 
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provides small scale interactions with all types of immune cells within the tumor 

microenvironment.  

 

The ECM also provides structural rigidity which promotes tumor invasiveness. The 

degradation of the ECM increases invadopodia activity which is directly linked to tumor 

cell invasiveness (Parekh & Weaver, 2009). In vivo tumor cells must overcome a variety 

of physical barriers in order to metastasize to other areas of the body. ECM presence is 

required for tumor cells to phenotypically change into aggressive metastatic cells. The 

rate of tumor progression is directly related to the ability of tumor cells to interact with 

the supporting ECM (Weaver, 2006). ECM components interact with tumor cells, 

fibroblasts, leukocytes, angiogenic cells, and cancer stem cells. Interaction between 

these components is what is known as the tumor microenvironment.  

 

2.2. Two-Dimensional Modeling 

A typical bench top research study always involves some form of two-dimensional cell 

culture analysis. As the limitations of two-dimensional cell culture are constantly 

brought to light, researchers merely use this method to save time and funds 

(Edmondson, Broglie, Adcock, & Yang, 2014). Finding basic phenotypical expressions 

of cancer cells and scientific principles unrelated to interactions with the environment is 

the extent of data these studies can provide. Typically, a more robust animal or three-

dimensional model is required for increased reliability when it comes to therapeutic 

research. When dealing with the progression of cancer, most changes are due to more 
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than just the cancer cell itself. Progression severely depends on the recruitment of a 

variety of cells and interaction with the extracellular matrix. Two-dimensional studies 

fail to address the complex process that cancer goes through. Once cells have progressed 

through a majority of oncogenesis they are considerably resistant to many types of 

treatment. Thus, therapeutic analysis on a two-dimensional level yields incredibly 

inaccurate results compared to the realistic nature occurred in more complex systems.   

 

2.3. Three-Dimensional Modeling 

Two-dimensional modeling has been the most widely used modality for therapeutic 

testing. However there has been a recent shift in the utilization of three-dimensional 

models. Two-dimensional models fail to incorporate a variety of factors seen in in vivo 

tumor models.  Three-dimensional models have shown increased drug resistance, higher 

proliferation rates, and phenotypical changes (Knowlton, Onal, Yu, Zhao, & Tasoglu, 

2015). There is a large variety of research paradigms that use three-dimensional 

modeling prior to animal modeling. These three-dimensional models include various 

scaffolding techniques, the hanging drop model, and transwell-based modeling. Of these 

models, the hanging drop is widely used in industry due to the ease with which it is 

carried out.  Tumor engineering focuses around a complex concept focusing on 

mimicking the natural environment in which tumor cells reside. Biopsies have been a 

model for the various synthetic materials and spacing needed in order to mimic the 

natural environment in which tumors grow. There are a variety of synthetic scaffolding 

techniques each with a unique set of properties. Techniques vary in polymer type and 
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spacing, which influence cell line compatibility. Table 3 outlines different scaffolding 

techniques and the cell lines associated with a variety of methods. Tumor engineering 

focuses on complex oncogenic issues seen from a variety clinical cases. Research on the 

complex microenvironment and clinical data have significantly altered the way tumor 

engineers approach creating environments that are habitable for tumors.   
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Table 3. List of synthetic production techniques and the polymer composition associated 
with compatible cells lines for each (Bolgen, 2016).   

Scaffold Type/ 
Production 
Technique 

Polymer Tumor Cell Line 

Microsphere 
Dextran, 

Sephadex G-50 
Colon HCT-116 and 

HepG2 

Microsphere Polystyrene Breast MCF-7 

Microsphere PLGA/PLA Breast MCF-7 

Electrospinning PCL Ewing Sarcoma TC-71 

Electrospinning PGA-TMC, Gelatin Pancreas 
CD24+, 

CD44+ 

Solvent-casting 
and particulate 

leaching 
PLGA Oral OSCC-3 

Freeze Drying 
Chitosan, 
Alginate 

Brain 
U-87MG, 
U-118MG 

Freeze Drying Chitosan Breast MCF-7 

Gas foaming and 
particulate-

leaching 
PLGA Breast MCF-7 

Three-
Dimensional 

Printing 
Polystyrene Lymphoma 

HBL2, 

Z138 

 

 

 



 

 37 

Materials and spacing are the key components that are involved in tumor engineering. 

Cells do not naturally migrate within the three-dimensional structure. This leads to 

difficulties in seeding scaffolds no matter how well the natural environment is 

mimicked. Production techniques have a variety of pros and cons. However, due to the 

infancy of tumor engineering, researchers utlize a trial and error methodology. Once the 

production method isolates a suitable scaffold for a specific cell type then alterations and 

small changes can be made in order to further mimic the tumor environment.  

 

2.3.1. Electrospinning 

Electrospinning is a process that uses given polymer and creates a fine mat-like mesh of 

fibers. The key luxury of electrospinning is the control of variables such as fiber size and 

polymer type. Polymer is housed in a syringe type apparatus which is released onto a 

collecting structure. An applied electric field allows for charge to build between the 

plate and the collecting device. Voltage is applied to the polymer and eventually 

adhesion forces holding the polymer together are overcome and a thin fiber is collected 

on the other side. Electrospinning has been around for many decades but has only 

recently been used in tumor engineering applications. Electrospun scaffolds have housed 

a variety of cell types including breast cancer, Ewing sarcoma, and pancreatic cancer. 

Pancreatic studies have shown that cells can be grown with electrospun PGA-TCM. 

These cells show anti-tumorigenesis mechanisms involved in chemotherapeutics (He et 

al., 2013). Triple negative breast cancer studies have shown increased representation of 

the original niche of breast cancer stem cell populations (Palomeras et al., 2016). 
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Increasing the natural environment of tumor cells not only provides an increase in 

growth but changes the internal expressions within a cell. Modeling conducted with 

Ewing sarcoma cells have shown to drastically increase expression in IGF-1 when 

compared to its two-dimensional counterpart (Fong et al., 2013). Electrospinning can be 

used as a method for therapeutic research within a variety of cells types. The most 

notable quality for electrospun scaffold is the ability to alter fiber density and a wide 

range of polymer availability.  

 

2.3.2. Solvent-casting and Particulate-leaching 

Solvent casting and particulate leaching utilizes the chemical nature of polymers and 

porogens in order to create a porous scaffold. The production method for this scaffold 

starts with a polymer solution with a uniform distribution of porogens with a desired 

volume. The solvent is extracted leaving a hard polymer and porogen mix. Since the 

porogens are non-soluble in the polymer solution they can be leached out by dissolving 

them in water. Figure 7 shows the relative technique that solvent casting and particulate 

leaching follow (Bolgen, 2016).  
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Figure 7. Step by step procedure of solvent-casting and particulate-leaching. Solvent 
casting and particulate-leaching is a three-dimensional scaffolding technique that utilizes 
chemical properties of polymers and porogens to create hard porous structure made out 
of synthetic materials (Bolgen, 2016).  
 

 

2.3.3. Freeze Drying 

Researchers typically seek out the least complicated production technique for scaffolds. 

Freeze drying utilizes sublimation as a way to easily and effectively create porous 

scaffolds. Choosing polymers and solvents with drastically different sublimation 

temperatures yields homogenous pores within a scaffold. After initial mixing of the 

polymer and solvent the resulting solution is frozen creating ice crystals within the 

polymer mix. A low-pressure system, partial vacuum, extracts the ice crystals resulting 

in the desired scaffold. A chitosan-HA freeze-dried scaffold has been used to proliferate 

U-118 MG human GBM in a multidrug chemotherapeutic study. Ultimately, leading to 

an increase within malignant cultures that possessed greater invasiveness and drug 

resistance (Florczyk et al., 2013). Typical specifications for scaffolds made via freeze-

drying are: pore diameter between 55-243 µm; porosity between 33-68%; and low 
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incorporation of vascular structures (T. Lu, Li, & Chen, 2013). Low incorporation of 

vasculature hinders the use of such scaffolds when trying to mimic the natural 

environment.  

 

2.3.4. Three-Dimensional Printing 

Three-dimensional printing has become one of the most exciting biomedical 

advancements in recent years. Three-dimensional printing techniques have the ability to 

replicate much of the structure found in native tumors. Over the last decade three-

dimensional printing has attempt to create functional organs and revitalize damaged 

tissue. Recently advancements in the machinery and techniques behind 3D printing 

utilize computer-generated models in order to design and mimic the complexity seen 

within a variety of tissue types (Stanton, Samitier, & Sanchez, 2015). Three-dimensional 

printing gives engineers the ability to control variables easily such as spacing between 

structures, use of biocompatible materials, and implementation of ECM components 

(Charbe, McCarron, & Tambuwala, 2017). With improvements in CAD and bioinks, 

complex structures such as vasculature have been incorporated into tumor models. 

Three-dimensional tumor models have the ability to interact with the ECM, embed 

necessary growth factors, and contain supportive stromal cells (Samavedi & Joy, 2017). 

Three-dimensional printers aim to properly incorporate cells within bioinks to print 

structures containing cells. Imbedding cells within a printed structure eliminates the 

need for seeding scaffolds after fabrication, which is a complex process that often causes 

unwanted variability. MCF-7 breast cancer cells have been used in 3D-printed spheroid 
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studies, showing uniform distribution of cells within the printed structure. MCF-7 cells 

were combined with in a gelatin-based mixture and used as the bioink for tumor 

spheroid production (Ling et al., 2015). SU3 glioma stem cells have been printed with a 

mixture of gelatin and sodium alginate in order to provide a drug resistant testing 

modality. SU3 and U87 printed models have shown increased resistance to TMZ 

compared to the two-dimensional counterpart (Dai, Ma, Lan, & Xu, 2016). Printed 

models have been used to show increases in phenotypes that mimic migratory cells and 

can simulate metastatic processes (T. Q. Huang, Qu, Liu, & Chen, 2014; Soman et al., 

2012). Many other in vivo tumor characteristics have been modeled using three-

dimensional printing these include metastasis, interactions with auxiliary cell types, and 

increased therapeutic resistance (Samavedi & Joy, 2017). 

 

2.3.5. Decellularized Scaffolds 

Decellularized scaffolds have been used by tissue engineers as a method for exact 

replication of the natural environment seen in tissues. Decellularized tissue is tissue that 

has been removed from an animal and cleared of all nuclear material from the previous 

host. Detergent-based removal of the nucleated cells will leave the extracellular matrix 

and small growth factors which are vital for recellularization. The decellularized models 

are a great basis for recreating a tumor outside an in vivo host. These recreated tumors 

have almost all the non-cellular components and factors that one will see within a 

clinical tumor. The decellularization process is difficult to characterize and conduct 

uniformly however once a process has been perfected, it can be commercialized for use 
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within synthetic systems. Successful decellularized tissue has been used in recent years 

as a means for tissue engineering. Decellularized tumors have been used as a scaffold for 

recellularization of MCF-7 breast cancer cells, SW-480 colorectal adenocarcinoma cells, 

and KYSE-510 esophageal squamous cell carcinoma cells. Not all cell types mentioned 

repopulated well in decellularized tissue (W. D. Lu et al., 2014). Decellularized tissues 

have complex processes that still need to be perfected before commercialized use can 

begin. 

 

2.3.6. Hydrogel  

As cancer modeling continues to show the importance of the tumor microenvironment, 

testing modalities attempt to further replicate the ECM. Tumor cells need the ECM in 

order to further oncogenesis. Natural gels are biocompatible materials such as collagen, 

fibrin, chitosan, and hyaluronic acid that are used as basic scaffolding material (Butcher, 

Arulpragasam, & Minchin, 2004). However, these components lead to variabilities due 

to a variety of unknown factors present such as growth factors (Tibbitt & Anseth, 2009). 

Hydrogels are commercially made synthetic materials that mimic many of the natural 

ECM components. Many hydrogels also include purified forms of ECM components 

such as laminin or collagen. Hydrogels provide a solid 3D structure for cells to grow in 

while taking into consideration variables such as biocompatibility, biodegradation, 

porosity, and surface chemistry.  

 



 

 43 

Matrigel®, a form of hydrogel, scaffolds have been used to mimic the natural tumor 

microenvironment for MCF-7 breast cancer cells. The in vitro breast cancer model 

showed high replicability of the tumor niche. The model successfully replicated cluster 

organization and cellular morphology of in vivo breast cancer cells (Cavo et al., 2016). 

Matrigel® has been used in a variety of cell types as a basis for replication of the natural 

tumor microenvironment. Matrigel® has been used with A253 epidermoid carcinoma 

and B16F10 melanoma lines in order to enhance growth rate of injected tumor cells 

(Asghar et al., 2015; Webber, Bello, Kleinman, & Hoffman, 1997). Matrigel® scaffolds 

have also been used in co-culture situations to provide necessary stromal cells involved 

in oncogenesis. Hydrogels have been widely used in tumor engineering as a solid tool in 

replicating the tumor microenvironment and establishing the tumor niche.  

 

2.4. Research Model 

This research aims to create a three-dimensional model which includes native tumor 

components. A three-dimensional model was created using a 96 well plate with a conical 

bottom to help induce spheroid formation.  The native tumor environment was replicated 

by coating spheroids with Corning® Matrigel® BM matrix. This matrix allowed 

spheroids to interact with components that mimic the native tumor extracellular matrix. 

Radiation was given to this model to identify similarities observed in clinical settings. 

Osteosarcoma (SJSA) and breast cancer (SKBR3) were the available cell lines used in 

the creation of the tumor spheroids.  
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CHAPTER III  

MATERIALS AND METHODS 

 

 

3.1. Spheroid Formation  

SJSA and SKBR3 tumor spheroids were formed using 4 Corning® 96 Well spheroid 

microplates. These plates contain an ultra-low attachment surface and geometric 

properties that allow spheroid formation to occur easily and directly in the center of the 

well. SKBR3 cells were passaged 3 times and plated at 20k cells/well. SJSA cells were 

passage 10 times and were plated at 20k cells/well. Cells were taken from a 20 mL 

sample which contained 2x105 cells/mL and seeded with a volume of 100 µL/well. 

Plates were separated into four categories: (1) SKBR3 High-Dose, (2) SKBR3 Low-

Dose, (3) SJSA High-Dose, and (4) SJSA Low-Dose. Every testing condition was 

replicated a total of four times to maintain proper redundancies and account for small 

variabilities.  

 

3.2. Matrigel® Preparation  

Corning® Matrigel® BM matrix is a unique extract of EHS mouse tumor. Corning® 

Matrigel® BM matrix forms a gel at room temperature. Tumor ECM is generally 

composed of a variety of collagens, laminin, fibronectin, SPARC, and entactin 

(Giussani, Merlino, Cappelletti, Tagliabue, & Daidone, 2015). Matrigel® is primarily 

composed of laminin (60%), collagen (30%), entactin, and a variety of growth factors.  
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High concentration Corning® Matrigel® BM matrix was placed overnight in a 4°C 

freezer to thaw. Since Matrigel® forms a gel above 10°C, pre-cooled pipet tips were used 

to avoid unwanted gel formation.  High concentration Corning® Matrigel® BM matrix 

was placed on ice once out of the 4°C environment. Once thawed, 2 mL of Matrigel® 

was pipetted in 8ml chilled DMEM media, creating a 20% concentration of Matrigel®. 

The 10 mL vial was then labeled and placed within -20°C storage. After approximately 

five minutes, the vial was taken out and vortexed gently to mix Matrigel®, creating a less 

viscous solution.  

 

A similar process was conducted with the creation of 40% concentration of Matrigel®. 4 

mL of Matrigel® was pipetted in 6 mL DMEM media. The 10 mL vial was labeled and 

place within -20°C storage. After approximately five minutes, the vial was taken out and 

vortexed gently in order to mix Matrigel®, creating a less viscous solution. Both 

solutions were then placed on ice.  

 

3.3. Generation of Matrigel® Coated Spheroids and Media Replacement 

To create Matrigel® coated spheroids, media must first be carefully extracted from each 

well on the day following initial plate seeding (Day 2). Media extraction from the 

Corning® 96 Well spheroid microplates was done using a 3 mL syringe and a 26G 

needle. Corning® 96 Well spheroid microplates were tilted at a 45° angle while media 

was carefully extracted for each well. Approximately, 80 µL/well was extracted; an ideal 
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extraction should not move the spheroid from the center of well after completion. Once 

all media was extracted, 80µL/well of varying Matrigel® concentrations were put back 

in. 0% Matrigel® concentration simply used 80 µL/well of DMEM.  Other Matrigel® 

concentrations used 80 µL/well of the desired concentration. All Matrigel® culture was 

done using chilled tips to avoid gel formation. Media was inserted carefully in order to 

avoid disrupting the spheroid  

 

The same extraction process was utilized to replace the media. Media extraction from 

the Corning® 96 Well spheroid microplates was done using a 3 mL syringe and a 26G 

needle. Corning® 96 Well spheroid microplates were tilted at a 45° angle while media 

was carefully extracted for each well. Spheroids coated in Matrigel® did not have an 

exact amount of media to extract due to the gel formation within the well. Media was 

extracted until spheroid started to migrate toward the edge of the well. Approximately, 

50 µL/well was extracted and then replaced with 50 µL/well in order to provide fresh 

media. Media changes were done on Day 2 (80 µL/well), Day 12 (50 µL/well), and Day 

22 (50 µL/well). 

 

3.4. Radiation Treatment of Tumor Spheroids  

Radiation treatment was carried out on a clinical helical TomoTherapy unit maintained 

within the College of Veterinary Medicine & biomedical Sciences at Texas A&M 

University. The helical TomoTherapy platform combines IMRT delivery with helical 

CT image guidance. Helical TomoTherapy is a unique form of radiation therapy that 
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delivers radiation 360 degress around the patient as the patient translates through the 

gantry. Helical TomoTherapy generates complex dose distributions allowing for 

aggressive tumor management while minimizing normal tissue toxicity.  

A custom 3D printed phantom containing two 96 well plates stacked directly on top of 

each other were simulated on a Siemens Somatom Definition AS CT simulator with a 

0.6 mm slice thickness. Two sets of contours were constructed, one for the low dose 

plates (2 Gy, 1.5 Gy, 1Gy) and one for the high dose plates (10.0 Gy, 8.0 Gy, 6.0 Gy, 

and 4.0 Gy) using VelocityAI. Each set contained a contour representing each dose level 

separated by a contour representing the dose gradient between the two. Both sets of 

contours were transferred to the helical tomotherapy planning station and two plans were 

made, one with the low dose plate contours and one with the high dose plate contours.  

Treatment planning for the two plans were conducted using beamlet mode with a 

Normal dose grid (0.184 cm X 0.184 cm). A jaw width of 1.05 cm and a nominal 

modulation factor of 3.2 were used for both optimization.  Pitch, defined as distance of 

couch travel per gantry rotation relative to beam width, was set at 0.215 for both plans.     

All plans were run using Tomo H™ System Planning Station build 5.1.2.12.   

 

TomoH PlanningStation was used to create an initial IMRT Plan Report. The planning 

station utilizes a CT image taken prior to treatment and creates dose profiles given a 

variety of input. Specific conditions can be given an importance value to indicate where 

dose should and should not be given. Figure 8 shows expected dose levels given to the 

low dose plates from sagittal, transverse, and coronal views.  
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Figure 8. Optimization views of delivered dose for low dose plates calculated from the 
TomoH PlanningStation. Low dose plates contained controls and dose fractionations of 
2 Gy, 1.5 Gy, and 1 Gy.   
 

 

Figure 9 shows expected dose levels given to the high dose plates from sagittal, 

transverse, and coronal views. Beam on time for high dose plates lasted approximately 

30 minutes and low dose plates ran for approximately 10 minutes. SJSA and SKBR3 

plates were placed on top of each other during the radiation treatment which can be seen 

in Figure 8 and Figure 9. 

 

Plans were carried out in three distinct time periods. Day 8, Day 13, and Day 14 were 

the three radiation times for each plan. On all three of those days the treatment plan was 
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carried out in the same manner. Total doses for the low dose plates were (6 Gy, 4.5 Gy, 

3 Gy) and for the high dose plates (30.0 Gy, 24.0 Gy, 18.0 Gy, and 12.0 Gy) 

 

 

 

Figure 9. Optimization views of delivered dose for high dose plates calculated from the 
TomoH PlanningStation. High dose plates contained dose fractionations of 4 Gy, 6 Gy, 
8 Gy and 10 Gy.   
 

 

3.5. Live/Dead Characterization  

Live/Dead analysis was conducted on Day 24 to verify pockets of live cells and necrotic 

regions within the tumor. Live staining was conducted using Calcein-AM and dead 

staining using Propidium Iodine solutions. Plates were stained individually and then 
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imaged prior to the start of the next plate. Staining solution for each plate was created by 

combining 40 µL of Propidium Iodine, 10 µL of Calcein-AM, and 10 mL of PBS. At 

these concentrations 100 µL staining solution was added per well. Incubation lasted for 

approximately 40 minutes, and then plates were imaged. Confocal imaging sliced tumor 

spheroids into approximately 30 slices. Then, these images were stacked and analyzed 

for live regions within individual tumor spheroids.   

 
3.6. NFkB Characterization  

An InstantOne® ELISA was used to quantify NF-kB levels within tumor spheroids. 

ELISA is a detecting assay used in situations with low target protein content, as it 

provides a wide range of sensitivity. InstantOne® ELISA plates utilize the sandwich 

antibody method. However, capture antibodies and detection antibodies can be 

combined at the same time. As the capture antibody binds to the plate and specific 

antigen (NF-kB), the detection antibody also binds to the antigen. This method allows 

for less time-consuming steps and easier protocols to follow.  

 

At day 24 50 µL of media was removed per well by the same protocol mentioned above. 

Corning® 96 Well spheroid microplates were placed in -80°C storage to promote ice 

crystal formation within tumor spheroids. Ice crystals within a sample penetrates cell 

membranes and helps break apart tumor spheroids. The low temperature also reverses 

some bond formation within the Matrigel® coating. Both of these aspects are essential in 

order to create proper cell lysates prior to use of the ELISA. After a 24h period, cells 
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were thawed and 100 µL of cell Lysis mix was added per well. Plates were placed on a 

microplate shaker (400 rpm) at room temperature for 10 minutes. Plates were then 

incubated at 37°C for 90 minutes. Once incubation time was completed, the plates were 

placed back on to the microplate shaker (400 rpm) for 10 minutes. The samples were 

then ready for an antibody cocktail which contained both capture antibody and detection 

antibody. 50 µL of cell lysate and 50µL of antibody cocktail was added to ELISA strips. 

The strips were placed on a plastic microplate holder which was then foiled and left for 

incubation. Incubation was conducted on a microplate shaker (300 rpm) at room 

temperature for an hour. Once incubation of antibodies and cell lysates completed, wells 

were washed via plate washer. The plate washer aspirated all fluid from the wells and 

then dispensed 200 µL of wash buffer. This process was conducted three times until 

plates were considered thoroughly washed. After the final wash, strips were gently 

tapped upside down to remove any remaining wash solution. One hundred microliters of 

detection reagent was added to each well. The plate was then foiled and left to incubate 

on the plate shaker (300 rpm) at room temperature for 30 mins. After incubation, 100µl 

of stop solution was added to each well. Plates were placed in a spectrophotometric plate 

reader set at 450 nm to measure fluorescence of each well. Measured fluorescence is 

directly related to the amount of NF-kB present in each sample.  

 

The ELISA plate used two spheroids sets for every treatment condition as redundancies. 

A total of seven different dose fractionations, three different Matrigel® concentrations, 
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and two different cell lines occupied 84 wells within the 96 well ELISA. The remaining 

wells were used to establish controls.  

 

3.7. EMT Phenotype Assessment  

A human E Cadherin EIA kit was used to establish the number of cells expressing EMT 

phenotypes.  The human E-cadherin EIA Kit by ThermoFisher Scientific quantitatively 

determines the amount of soluble E cadherin present in the lysates created from tumor 

spheroids. The ELISA utilizes a sandwich method similar to the InstantOne™ NF-kB 

ELISA. However, the EIA kits use a two-step procedure rather than combining capture 

antibodies with detection antibodies. Each well within EIA kits contain immobilized 

antibodies which binds desired antigens (E cadherin). Labeled antibody, which is anti-

human E cadherin labeled with peroxidase, creates a sandwich effect. This binds E 

cadherin from one side while immobilized antibodies bind it to the plate. Finally, 

substrate is added and reacts with anti-human E cadherin to create a yellow color. The 

hue is proportionate to the amount of E cadherin present.  

 

On day 24, 50 µL of media was removed per well using the same protocol mentioned 

above. Corning® 96 Well spheroid microplates were placed in -80°C storage to promote 

ice crystal formation within tumor spheroids. Ice crystals within a sample penetrate cell 

membranes and help break apart tumor spheroids. The low temperature also reverses 

some bond formation within the Matrigel® coating. Both of these aspects are essential in 

order to create proper cell lysates prior to use of the EIA. After a 24 hour period, cells 
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were thawed and 100 µL of cell Lysis mix was added per well. Plates were placed on a 

microplate shaker (400 rpm) at room temperature for 10 minutes. Plates were then 

incubated at 37°C for 90 minutes. Once incubation time was completed plates were 

placed back on to the microplate shaker (400 rpm) for 10 minutes. Samples and controls 

were then ready to be added to the EIA plate. One hundred microliters of cell lysate was 

added to the EIA plate and left for incubation. Plates were sealed with foil prior to 

incubation, which lasted 120 minutes at 37°C. Once primary incubation was completed, 

wells were washed via a plate washer. The plate washer aspirated all fluid from the wells 

and then dispensed 400 µL of wash buffer. This process was conducted three times until 

plates were considered thoroughly washed. After the final wash, strips were gently 

tapped upside down to remove any remaining wash solution. 100 µL of anti-human E 

cadherin, labeled with peroxidase, was then added to each well. Plates were foiled and 

left to incubate at 37°C for 60 mins. Once secondary incubation completed, wells were 

washed via a plate washer. The plate washer aspirated all fluid from the wells then 

dispensed 400µl of wash buffer. This process was conducted four times until plates were 

considered thoroughly washed. After final wash, strips were gently tapped upside to 

remove any remaining wash solution. 100 µL of substrate was added to each well. Plates 

were foiled and left to incubate at room temperature for 15 minutes. 100 µL of substrate 

was added to each well. Plates were then placed on a microplate shaker (400 rpm) in 

room temperature for 10 minutes. Once all steps were completed, plates were placed 

within a spectrophotometric plate reader. This was set at 450nm to measure the 
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fluorescence of each well. Measured fluorescence is directly related to the amount of E 

cadherin present in each sample.  

 

The EIA plate used two spheroids sets for every treatment condition as redundancies. A 

total of seven different dose fractionations, three different Matrigel® concentrations, and 

two different cell lines occupied 84 wells within the 96 well ELISA. The remaining 

wells were used to establish controls. E cadherin sample was given to establish controls, 

that had concentrations of 2700 ng/mL, 1350 ng/mL, 675 ng/mL, 338 ng/mL, 169 

ng/mL, and 84 ng/mL. 
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CHAPTER IV  

RESULTS 

 

  

4.1. Control Growth    

The Corning® 96 well spheroid microplate supported continual growth for both SJSA 

and SKBR3 cell lines. However, due to the non-adherent nature of the SKBR3 cell line, 

tumor spheroids were not produced. SKBR3 breast cancer cells could not proliferate into 

a three-dimensional shape. Figure 10 shows an image focusing only on the outer most 

cells of the well. As the depth microscope is adjusted the image becomes sharper and the 

inner most cells can be seen with clarity. This observation indicates that the cells are 

aligned along bottom of the U-shaped well rather than stacked on top each other. 

Therefore, growth was modeled as a flat two-dimensional surface. SKBR3 cells have 

been shown to exhibit grape-like morphology. Grape-like cells have less cell-to-cell 

adhesion and form poor colonies (G. Y. Lee, Kenny, Lee, & Bissell, 2007). For this 

reason, SKBR3 cells form poor three-dimensional structures and cannot be used as a 

model for tumor spheroid analysis. 
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Figure 10. Confocal image of SKBR3 cells seeded into a 96 well spherical plate. Growth 
can be seen as a non-three-dimensional structure as the cells have highly adhered to the 
bottom of the well and slightly to adherent to adjacent cells.  
 

  

Growth studies that involved SJSA osteosarcoma cells showed similar stacking 

properties, which are seen in in vivo studies. Figure 11 shows the drastic difference 

between SJSA osteosarcoma cells and SKBR3 breast cancer cells.  
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Figure 11. Images taken of SKBR3 cells (left) compared to the SJSA osteosarcoma cells 
(right). Distinct differences can be seen in the cell-to-cell adherence between the tightly 
bound SJSA cells compared to the spread out SKBR3 cells.   
 

 

4.1.1.   Spheroid Formation Without Matrigel® 

Controls were used primarily as a base line for comparison against radiation and ECM 

effects. Control samples display typical tumor spheroid growth patterns. Figure 12 

shows the growth of SJSA cells over the course of 24 days.  
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Figure 12. Growth for the SJSA cells over 24-day period. Distinct shrinkage can be seen 
from Day 1 to Day 8, followed by a visible growth of the tumor spheroid. 
 

 

4.1.1.1. Cellular Density and Growth 

SJSA cells within the 96 well spherical microplate were initially seeded with an initial 

concentration of 2.0 x 104 cells per well. These cells spread out over the bottom layer of 

the plate before converging toward each other. The relative size of the spheroid initially 

shrinks and as time progresses, it starts to upregulate adherent junctions and increases 

cellular density. This is seen by observing the opaqueness of the control spheroid on 

Day 1 versus the distinct darkness on Day 8 in Figure 12.  The spheroid starts to increase 

its volume around Day 8 which is why an 8-day cell cycle is considered for the SJSA 

cells. The average growth per day, in respect to volume, can be seen in Figure 13 over 

the entire 24-day period.  
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Figure 13. The average growth with respect to volume per day that the control spheroid 
exhibited. Negative growth indicates shrinkage of the tumor spheroid. Shrinkage can be 
observed from Day 1 to Day 5 with an average reduction in volume of 12 percent per 
day.  
 

4.1.1.2. Invasiveness 

Invasiveness is exhibited as cells start to alter their phenotype and progress through 

oncogenesis. Control spheroids without the presence of Matrigel® do not have the ability 

to change their phenotype due to the lack of initial ECM presence.  

 

4.1.2.   Spheroid Formation with Matrigel® 

Spheroids were coated with Matrigel® on Day 2. Cells were allowed to grow into and 

utilize the ECM as a tool to alter cellular expression. Distinct visual difference can be 

seen in spheroids grown in Matrigel®. The most notable visual effect is the extension of 

invadopodia into the ECM. Figure 14 distinctly shows the presence of invadopodia 

within the Matrigel® coated spheroids in comparison to controls.  
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Figure 14. Tumor spheroid grown in Matrigel® (left) has a distinct presence of 
invadopodia by Day 5 of growth. Compared to control samples (right) that present no 
extension beyond the outer edges of the spheroid.  
 

 

4.1.2.1. Cellular Density and Growth  

SJSA cells were seeded with an initial concentration of 2.0 x 104 cells per well and 

spread out over the bottom layer of the plate. Due to the presence of ECM factors, 

Matrigel® coated spheroids do not shrink. Due to the presence of ECM components, the 

cells no longer seek each other and increase adherent junctions. The cells spread into the 

Matrigel® and continued to grow without decreasing in size. Two concentrations of 

Matrigel® were used to assess the approximate impact of Matrigel® within the system. 

The growth with respect to volume can be seen in Figure 15 over a 20-day period for 

both 20% and 40% Matrigel® concentrations. After 20 days, many of the spheroids grew 
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out of the visual range of the microscope. Consequently, images were not taken past that 

point.  

 

 

 

Figure 15. Growth of spheroids coated in Matrigel® over a 20-day time period. Constant 
growth can be seen from both samples without clear distinction between 20% Matrigel® 
concentrations and 40% Matrigel® concentrations.  
 

Spheroid volume for Matrigel® controls continuously increase over the experiment 

interval. However, there is no distinct difference in growth between the 20% 

concentration and the 40% concentration. The tumor volume seems to be unaffected by 

the amount of Matrigel® past 20%, which appears to be enough to saturate the tumor. 

Figure 16 shows the difference between controls and Matrigel® coated spheroids on 

growth rate. There is a distinct difference in the initial growth rate of Matrigel® coated 

spheroids. 
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Figure 16. Growth comparison per day of initial control samples with and without 
Matrigel®. Both 20 and 40 percent concentrations are similar in growth per day and 
drastically differ from no Matrigel® spheroids.  
 

 

Spheroids without Matrigel® exhibit distinct growth properties in the beginning and 

show some similarities by Day 20. However, due to the initial differences in growth, the 

presence of Matrigel® drastically changes the size of the tumor spheroid by Day 20.  

 

4.1.2.2. Invasiveness  

Spheroids interact with the Matrigel® in order to alter their phenotype and demonstrate 

progression through oncogenesis. One phenotypically alteration is the morphological 

changes seen within the spheroids. Figure 17 shows the presence of invadopodia in 

spheroids containing 20% Matrigel® and 40% Matrigel®. 
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Figure 17. Progression of spheroid coated in Matrigel® at different concentrations. There 
are no distinct visual differences in invadopodia between 20% and 40% concentrations 
of Matrigel®.  
 

 

Tumor spheroids coated in Matrigel® can be broken down into two distinct regions. The 

first region is primarily a solid dense area in the center and the second region includes 

surrounding cells that have interactions with Matrigel® through invadopodia. Figure 18 
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demonstrates the growth exhibited by the dense area in the center of the spheroid, with 

varying concentrations of Matrigel®.  

 

 

 

Figure 18. Growth progression of dense area within SJSA spheroids over 20-day period. 
Spheroids with both 20% and 40% Matrigel® concentrations show similar internal 
growth patterns.  
 

 

The dense region within a spheroid exhibits similar growth patterns regardless of the 

initial Matrigel® concentration, with the exception of the first 8 days. With Matrigel® 

present, cells have the ability to attach to the ECM provided rather than attaching to 

themselves as seen in controls. Due to the interactions with Matrigel®, the spheroids no 

longer condense in the first eight days. Once Day 8 is reached, the internal region within 

spheroids demonstrate similar growth patterns with or without Matrigel®. As seen in 
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Figure 15, spheroids grow much larger than the field of view making it hard for the 

microscope to image well. 

 

As a result, the full growth rate of the invadopodia becomes difficult to calculate past 

Day 8. Figure 17 shows consistent growth between Day 5 and Day 8 of the invadopodia. 

Past Day 8, growth cannot be seen but is assumed to continue. Invadopodia growth is 

indicative of invasive characteristics present within in vivo tumors.  

 

4.2. Radiation Growth 

The radioresistant properties that the ECM provides tumors in vivo is incredibly difficult 

to replicate in an in vitro environment. Utilizing Matrigel® as a tool to replicate the 

interactions between cells and the ECM enhances the ability to bridge the gap between 

in vivo studies and in vitro studies. Similarly, radiation has been seen as a tool to 

drastically reduce tumor sizes more effectively than some chemotherapy drugs. 

However, the adverse effects of radiation therapy are well known and certain dose levels 

progress oncogenesis. Growth studies on SJSA cells indicate radiation fractionations 

that can be suitable as a treatment mechanism. 

 

4.2.1 Spheroid Formation Without Matrigel® 

Radiation therapy conducted on SJSA osteosarcoma cells without the presence of 

Matrigel® has revealed the extreme radioresistance of the cell line. Even at extremely 

high dose levels, SJSA osteosarcoma cells have continued to survive in a minimal 
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capacity. Reduction in tumor volume is apparently at 10 Gy dose fractionations (total 30 

Gy) and stoppage in growth is facilitated by 4 Gy dose fractionation (total 12 Gy). 

Figure 19 is a visual representation of the tumor spheroids over time at various dose 

levels. Dose levels can be split into three distinct categories: low, mid, and high dose 

fractionations. Table 4 outlines the dose fractionations by category and the total dose 

received by each spheroid in the respective category.  
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Figure 19. SJSA spheroids growth over time at different total doses and dose per 
fractionations. Reduction in tumor size is apparent as dose level increases. Spheroids 
were irradiated after Day 8 and received a total of three fractions.  
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Table 4. Radiation ranges, fractionations, and total dose values given to SJSA 
osteosarcoma cells.  

Dose Range Low  Mid  High  

Dose per 
Fractionation 

(Gy) 
0-2 4 6-10 

Total Dose 
(Gy)  0-6 12 18-30 

 

 

4.2.1.1. Cellular Density and Growth 

Radiation can be seen to directly impact the growth of SJSA osteosarcoma cells in a 

variety of ways. In the low-dose category, controls grow at a normal expected rate. Dose 

fractions of 1 Gy have an adverse impact on growth, rather than impeding growth the 

dose enhances growth. Dose fractions of 2 Gy demonstrate growth reduction compared 

to controls. However, growth continues at a slower rate and almost doubles in size by 

Day 24. The mid-range dose level, 4 Gy fractionations, demonstrated a relative stoppage 

in growth by Day 24. At high dose levels, spheroids hovered around the same volume 

for a few days followed by a decrease in size most notably by the 10 Gy fractionation. 

Figure 20 shows the normalized growth patterns for each radiation condition. Spheroids 

were normalized to Day 8 due to the predicted 8-day cell cycle seen in the control group.  
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Figure 20. SJSA spheroids normalized size over time at different dose fractionations. 
Spheroids were normalized to the size seen on Day 8 due to the cell cycle duration. 
Spheroids were irradiated on Day 8, 13, and 14. Size decrease are observed in the 6, 8, 
and 10 dose fractionations.  
 

 

A total size comparison of non-Matrigel® spheroids for each dose level is demonstrated 

in Figure 21. Spheroids took approximately 5 days after the first irradiation to show a 

size reduction.  
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Figure 21. Total comparison of tumor spheroids (without Matrigel®) shows the impact 
that radiation has on growth. Tumor volumes were normalized to Day 8 due to cell cycle 
considerations.  
 

 

The final sizes for many of the conditions drastically differ and it is unknown how much 

of the bulk tumor still remains alive post radiation. Live/Dead analysis indicated the 

amount of the SJSA cells that were still alive within the tumor spheroid as well as cells 

that had gone through necrosis. Figure 22 shows the relative number of live cells within 

the tumor spheroids for each radiation condition.  
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Figure 22. Live/Dead imaging of SJSA tumor spheroids post irradiation at different total 
absorbed doses. Live cells (green) are present throughout most of the tumor spheroid. 
An increase in dead cells (red) can be seen in higher dose levels. Spheroids were 
adjusted to display similar sizes.  
 

 

Tumor spheroids did not display a fully observable necrotic region. However, stains may 

have not reached the center of the spheroid. Stains within the 1 Gy and 2 Gy 

fractionations had difficulty reaching the center of the spheroid. However, cell death can 

be observed clearly at higher absorbed doses. Spheroids shown in Figure 22 seem to be 

similar in size, however, they are adjusted to appear that way for clarity purposes. As the 

dose received by the spheroid increases the number of dead cells increases as well, 

establishing a correlation between increased dose and number of dead cells.   
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4.2.2. Spheroid Formation with Matrigel®  

SJSA spheroids were grown in Matrigel® as a representation of the natural tumor 

microenvironment which increases the radioresistance of the spheroid. Tumor spheroids 

coated with Matrigel® were given the same radiation fractionations as the spheroids 

without Matrigel®. Compared to spheroids lacking Matrigel®, the spheroids with both 

20% and 40% Matrigel® show increases in final volume and very radioresistant 

tendencies. Figure 23 shows the growth comparison of Matrigel® coated spheroids 

compared to non-Matrigel® spheroids.   

 

 

 

Figure 23. SJSA growth comparison of different radiation fractionations and Matrigel® 
concentrations (0%, 20%, and 40%).  Cells within Matrigel® coated spheroids grew well 
past the size of spheroids without and Matrigel® (Control) regardless of the amount of 
radiation applied.  
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Growth rate was clearly altered by the presence of Matrigel® regardless of the 

concentration. There is clear radioresistance in spheroids grown in the presence of 

Matrigel®. High doses of radiation tend to limit growth of the spheroid. Growth of the 

dense center and invadopodia regions of the spheroid can be seen in Figure 24 and 

Figure 25.  
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Figure 24. The growth associated with tumor spheroids coated in 20% Matrigel®. 
Spheroids received radiation treatments in varying dose fractionations. The 
microscope’s field of view inhibits the ability to accurately quantify the total volume of 
a few spheroids.  
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Figure 25. The growth associated with tumor spheroids coated in 20% Matrigel®. 
Spheroids received radiation treatments in varying dose fractionations. The 
microscope’s field of view inhibits the ability to accurately quantify the total volume of 
a few spheroids. 
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4.2.2.1. Cellular Density and Growth 

Spheroid growth becomes difficult to process once the cells grows out of visual acuity. 

However, clear patterns can be observed within each radiation condition. Figure 26 

shows the relative volume within each radiation condition.  

Figure 26. The total growth of SJSA spheroids containing 20% Matrigel® and varying 
dose fractionation. Growth is normalized to the start of irradiation (day 8). Spheroids 
tend to decrease in size as the fractionation dose increases.  
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Figure 27. The total growth of SJSA spheroids containing 40% Matrigel® and varying 
dose fractionation. Growth is normalized to the start of irradiation (Day 8). Spheroids 
exhibit a gradient in which the final volume of the spheroid decreases as the amount of 
dose applied to the spheroid increases. 
 

 

Matrigel® has a clear impact on the final volume and appearance of the spheroid. 

However, the concentration of Matrigel® does not play a factor in changing the 

radioresistance spheroids exhibit.  

 

Spheroids coated in Matrigel® possess distinct increases in density at the center of the 

spheroid which can be seen in Figure 24 and Figure 25. These dense areas would not 

have much interaction with Matrigel®. Dense areas within spheroids follow similar 

growth patterns as control spheroids when subjected to radiation treatment. Figure 28-
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Figure 31 outline the growth similarities between spheroids without Matrigel® and the 

inner dense region of spheroids which were coated in Matrigel®.  

 

 

 

Figure 28. Radiation effects on growth between control spheroids without Matrigel® and 
the inner dense regions of spheroids coated in Matrigel®. Spheroids were irradiated with 
0 Gy and 1 Gy fractionations.  
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Figure 29. Radiation effects on growth between control spheroids without Matrigel® and 
the inner dense regions of spheroids coated in Matrigel®. Spheroids were irradiated with 
2 Gy and 4 Gy fractionations. 
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Figure 30. Radiation effects on growth between control spheroids without Matrigel® and 
the inner dense regions of spheroids coated in Matrigel®. Spheroids were irradiated with 
6 Gy and 8 Gy fractionations. 
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Figure 31. Radiation effects on growth between control spheroids without Matrigel® and 
the inner dense regions of spheroids coated in Matrigel®. Spheroids were irradiated with 
0 Gy and 10 Gy fractionations.  
 

 

Inner regions within spheroids coated in Matrigel® have similar growth patterns as 

control spheroids. Figure 28 - Figure 31 replicate the same growth patterns within the 

same radiation conditions as controls. Inner regions within spheroids coated in Matrigel® 

reduce in size as dose levels increase, similar to control spheroids. Table 5 shows the 

comparison of normalized sizes at day 20 between control spheroids and dense regions 

within Matrigel® coated spheroids.  
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Table 5. Comparison between normalized sizes of dense regions within Matrigel® coated 
spheroids compared to control spheroids lacking Matrigel®. Volumes were normalized 
to the day irradiation initiated (Day 8). Three fractionations occurred (Days 8, 13, and 
14) 

Normalized Size (Day 20) 
Fractionation 

Dose (Gy) No Matrigel® 20% Matrigel® 40% Matrigel® 

0 223% 166% 168% 
1 153% 151% 142% 
2 135% 125% 151% 
4 120% 145% 147% 
6 97% 109% 123% 
8 85% 131% 102% 
10 82% 85% 87% 

  

 

As radiation levels increase the size of control spheroids clearly starts to decrease by day 

20. Matrigel® coated spheroids demonstrate more radioresistant properties, decreases in 

volume only happen as the fractionation dose becomes quite large. Interactions with 

Matrigel® has a clear impact within the center of the tumor as well. Interactions may be 

morphologically noticeable only on the outside but paracrine signaling clearly increases 

radioresistance within the center of the tumor spheroid as well.  

 

4.2.2.2. Invasiveness 

The invasiveness of spheroids containing Matrigel® is directly linked to the amount of 

invadopodia growth observed. Spheroids were irradiated with total dose between 0 – 30 

Gy at different dose fractionations. Figure 24 and Figure 25 demonstrate the inability to 

see invadopodia growth past day 8. The only expectation is growth associated with 10 

Gy fractionations. Most of the invadopodia growth can still be seen due to the reduction 
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in volume of the dense center within the tumor. Invadopodia growth is difficult to access 

in images where the dense center has significantly positive growth. Positive growth 

within the center of the spheroid is associated with 0 Gy – 8 Gy fractionation conditions. 

Figure 32 and Figure 33 show progression of the invadopodia radii at various radiation 

levels. However, only 10 Gy conditions should be taken into account as the entire image 

could not be taken and various parts of the invadopodia cannot be measured.  

 

 

 

Figure 32. Shows invadopodia radii growth as a function of time for various radiation 
levels for spheroids coated in 20% Matrigel®. 0 Gy – 8 Gy radiation levels are slightly in 
accurate as the field of view for the microscope fails to capture all of the image.  
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Figure 33. Shows invadopodia radii growth as a function of time for various radiation 
levels for spheroids coated in 40% Matrigel®. 0 Gy – 8 Gy radiation levels are slightly in 
accurate as the field of view for the microscope fails to capture all of the image. 
 

 

The highest radiation fraction given to the tumor spheroids was 10 Gy and has shown to 

reduce growth in control spheroids as well as the dense center of Matrigel® coated 

spheroids. However, invadopodia growth remains steady in 10 Gy fractionation 

spheroids. This is a reflection of the radioresistant aspect of tumor spheroids coated in 

Matrigel®. Cells that have increased invadopodia have clearly progressed further in the 

oncogenic process than most. Increased resistance to treatment and morphological 

changes are associated with cells that are going through EMT. The addition of Matrigel® 
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to spheroids furthers cells down the oncogenic process by demonstrating morphological 

changes as well as internal changes related to increased resistant to treatment.  

 

4.3. Protein Analysis  

Spheroids coated in Matrigel® have increased resistance to treatment compared to tumor 

spheroids without Matrigel®. These spheroids also appear significantly further along the 

oncogenic process by demonstrating EMT type characteristics. Increases in resistance 

and EMT characteristics can be measured by a variety of protein expression. NF-kB and 

E-cadherin are possible proteins that demonstrate how much resistance a tumor spheroid 

has and how far along the oncogenic process it is.  

 

4.3.1. NF-kB Protein Levels  

NF-kB protein content is utilized for measuring pathways associated with interactions 

between cells and b1 integrin. Matrigel® provides a variety of ECM components 

including laminin which binds to integrin receptors located on the periphery of cells. In 

turn, upregulation of integrin receptors due to the presence of laminin creates 

downstream effects for NF-kB. Post irradiation NF-kB content yields indications for 

proteins possibly responsible for radioresistance within tumor spheroids.  

 

4.3.1.1. Standards and Controls 

Controls for NF-kB were established by samples provided within the ELISA kit. 

Relative quantities for NF-kB protein presence were analyzed to establish a relationship 
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between radioresistance and protein quantity. Control spheroids without Matrigel® were 

used to establish standard levels of NF-kB present within the tumor spheroid at day 24. 

Figure 34 outlines the differences in NF-kB levels at day 24 for various dose 

fractionation within tumor spheroids.  

 

 

 

Figure 34. NF-kB protein levels within control tumor spheroids at day 24 for each dose 
fractionation given. Control spheroids lack Matrigel®. Increases in NF-kB protein 
content can be seen as the dose level increases. 
 

 

Control spheroids lack Matrigel® and have little radioresistance compared to spheroids 

coated in Matrigel®. Control spheroids have increased NF-kB levels as the total dose 

given to the spheroid increased. This is primarily due to the survival pathways 

associated with radiation treatment.  
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4.3.1.2. NF-kB Levels Post Radiation 

NF-kB levels present within tumor spheroids coated in Matrigel® were expected to 

differ drastically from control spheroids. However, Figure 35 shows only slightly 

elevated levels of NF-kB in Matrigel® coated spheroids. Increases were observed in 

40% Matrigel® coated spheroids which indicates slight radioresistance within tumor 

spheroids.  

Figure 35. NF-kB levels associated with all tumor spheroids at day 24. Relative protein 
content associated with various dose levels and Matrigel® concentrations can be 
observed. Slight increases in NF-kB can be seen in 40% Matrigel® concentration. 
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NF-kB levels do not increase drastically as spheroids increase in radioresistance. NF-kB 

levels do not fluctuate with dose levels and are seemingly uncorrelated. NF-kB levels 

for control spheroids increase as dose fractionations approach 4 Gy then decrease as 

higher fractionation occur. NF-kB levels in spheroids coated in Matrigel® are highest at 

1Gy, 6 Gy, and 8 Gy fractionations. High NF-kB levels at mid-range dose fractionations 

were expected but only seen in 1 Gy fractionation treatments. Increases in NF-kB is not 

likely the primary protein associated radioresistance observed in tumor spheroids with 

heavy ECM interactions. However, there is some indication that increased levels of NF-

kB can indicate slight radioresistance as seen in spheroids with higher Matrigel® 

concentrations.  

 

NF-kB levels were also measured for plates containing SKBR3 breast cancer cells. 

Spheroid growth analysis and E cadherin levels were not reported for SKBR3. This was 

due to the inability of SKBR3 cells to make spheroids and the lack of interaction 

between SKBR3 cells and Matrigel®. However, increases in NF-kB after treatment have 

been observed in breast cancer cells (Ahmed, Zhang, & Park, 2013). Figure 36 shows 

elevated NF-kB levels for higher dose fractionations. 
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Figure 36. NF-kB levels associated with SKBR3 tumor spheroids at day 24. Relative 
protein content associated with various dose levels and Matrigel® concentrations can be 
observed. Increases in NF-kB can be seen at higher dose levels. 
 

 

4.3.2. E-Cadherin Protein Presence  

E-cadherin content in tumors is heavily associated with the EMT transition. Spheroids 

coated in Matrigel® are visually undergoing the EMT process. However, loss of E-

cadherin is the main component of the EMT phenotype.   

 

4.3.2.1. Standards and Controls 

Soluble E cadherin is present only in samples that do not express an EMT phenotype. 

Controls were established from the ELISA kit in order to quantify E cadherin levels in 

tumor spheroids.  
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An ELISA standard curve for E cadherin can be seen in Figure 37. Seven known 

dilutions of E Cadherin were measured to create a standard curve. A polynomial fit was 

applied to obtain an equation that correlates measured florescence to E cadherin content. 

The final equation obtained is as follows:  

𝐸	𝐶𝑎𝑑ℎ𝑒𝑟𝑖𝑛 = 5 ∗ (√5 ∗ √40000 ∗ 𝐹𝑙𝑜𝑟𝑒𝑠𝑐𝑒𝑛𝑐𝑒 − 2019 − 25)		 

 

 

 

Figure 37. Standard curve for E cadherin ELISA kits. Standards were diluted to reflect a 
variety of measurable E-cadherin levels (2700 ng, 1350 ng, 675 ng, 338 ng, 169 ng, and 
84 ng) as well as a negative control.  
 

 

4.3.2.2. E-Cadherin Levels Post Radiation 

E cadherin content was measured against dose levels and Matrigel® content. Figure 38 

shows the E cadherin content at day 24 for all conditions. Increased E Cadherin levels 
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are seen in spheroids without Matrigel®. Non-Matrigel® spheroids also have decreased E 

cadherin content at high dose levels. Loss of E cadherin symbolizes the transition toward 

the EMT phenotype. Cells that express the EMT phenotype are also radioresistant. 

Growth studies confirm that spheroids coated in Matrigel® are more radioresistant than 

non-Matrigel® spheroids. Loss of E cadherin positively correlates with radioresistance in 

tumor spheroids.  

 

 

 

Figure 38. E Cadherin content (ng/mL) at day 24 of tumor spheroids with and without 
Matrigel® after radiation treatment. Clear increases in E cadherin content can be seen by 
non-Matrigel® spheroids.   
 

 

E cadherin levels shown in Figure 38 indicate that Matrigel® coated spheroids have less 

E cadherin present on the surface compared to non-Matrigel® spheroids. Matrigel® 
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coated spheroids also exhibit a spike in E cadherin content around 8 Gy. These 

measurements have a substantial range and are not considered to be accurate. Figure 39, 

40, and Figure 41 show the typical errors associated with each measurement in non-

Matrigel® and Matrigel® spheroids for each treatment condition. 

 

 

 

Figure 39. Error associated with E-cadherin content in non-Matrigel® spheroids given 
various radiation treatments. Errors are consistent throughout each fractionation level 
given.  
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Figure 40. Error associated with E-cadherin content in spheroids coated with 20% 
Matrigel®. Errors are separated by the radiation fractionations given. Errors are 
consistent throughout each fractionation with the exception of a large error at 8 Gy.  
 

 

 

Figure 41. Error associated with E-cadherin content in spheroids coated with 20% 
Matrigel®. Errors are separated by the radiation fractionations given. Errors are 
consistent throughout each fractionation with the exception of a large error at 8 Gy. 



 

 94 

E cadherin content ranged within 200-400 ng/mL in non-Matrigel® samples, while E 

cadherin content in Matrigel® coated spheroids ranged from 0-200 ng/ml. Errors bars 

associated with Matrigel® spheroids span over 200 ng/mL and clearly indicate the 8 Gy 

measurements are statistically insignificant. ELISA assays are accurate however, many 

procedural errors often occur. That is why samples are recommended to be done in 

duplicates. Overall, E cadherin content has a positive inverse correlation with 

radioresistance and EMT phenotype expression.  



 

 95 

CHAPTER V  

DISCUSSION 

 

 

The purpose of this dissertation was to create a tumor model that replicated an 

environment similar to what is seen in vivo. A model that provides oncogenic 

progression through the presence of the extracellular matrix and three-dimensional 

structuring. This goal was to create effective and accurate testing models for cancer 

therapeutics. These models will identify biomarkers that can be used to help isolate and 

target treatment resistance cell types. These testing models enhance the efficacy of 

research done at the pre-clinical stage. 

 

The goal of enhanced pre-clinical models is to replicate in vivo characteristics of tumors 

outside the host environment. The biggest concern for therapeutic testing using in vitro 

modeling is high sensitivity to all forms of treatment. In vitro modeling lacks a wide 

variety of survival pathways typically expressed in most cancers. The model proposed 

here reduced radiation sensitivity by the inclusion of the extracellular matrix found 

within tumors.  

 

Matrigel® coated spheroids were found to be more resistant to radiation treatment than 

spheroids lacking Matrigel®. Matrigel® enhanced the expression of the EMT phenotype 

seen in late primary tumor cells. Cancer progression is directly linked to the EMT 
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phenotype and is not seen in spheroids where no Matrigel® is present. The EMT 

phenotype is associated with the morphological changes seen in tumor spheroids. The 

presence of invadopodia helps establish a phenotype consistent with tumor cells that are 

further along in oncogenesis. Tumor cells use invadopodia to break down the 

surrounding extracellular matrix and extend drastically past the initial spheroid 

boundary. These invasive characteristics are expressions based on the EMT of tumor 

cells. Once cells express the EMT phenotype other cellular pathways associated with 

EMT are active as well. This research established radiation resistance and the EMT 

phenotype in SJSA tumor cells by the use of Matrigel®. The presence of extracellular 

matrix components clearly enhances radioresistance of tumor cells by activating 

pathways associated with EMT.  

 

Clinical biomarkers are currently in use for identifying cell types in a tumor that may be 

unaffected by radiation treatment. Some of these biomarkers include androgen receptors, 

NF-kB, AHSG, PAI-2, NOMO2, KLC4, YAP-1, and c-MET. Increased androgen 

receptor expression in patients with triple negative breast cancer was highly linked with 

reoccurrence after radiation treatment (Speers et al., 2017). AHSG is a potential 

biomarker for radioresistance seen in prostate cancer (Chang et al., 2017). PAI-2, 

NOMO2, and KLC4 are used in identification of radioresistant cells in lung cancer (Yun 

et al., 2016). NF-kB was identified as a biomarker/target for silencing to reduce 

radioresistance in osteosarcoma cells (Zuch et al., 2012). Combination of YAP-1 and c-

MET are used to identify squamous cell carcinoma (head and neck) (Akervall et al., 



 

 97 

2014). Generalized biomarkers, that apply to most cancer to identify radioresistance 

have been theorized, these include TGF-b and IL-6 (Centurione & Aiello, 2016).  

 

NF-kB has been established as a biomarker for radioresistance in osteosarcoma cells 

(Eliseev et al., 2005). NF-kB has also been used as a biomarker as an indicator of 

radioresistance in laryngeal cancer (Yoshida et al., 2010). The relation of NF-kB levels 

and radioresistance is well documented in specific cancer types. This research did not 

observe a strong correlation between increases in NF-kB levels as absorbed dose 

increased in SJSA cell lines. However, there were some indications that increased levels 

of NF-kB were present after radiation was given. NF-kB levels in spheroids without 

Matrigel® are lowest without IR. Once irradiated NF-kB levels in spheroids without 

Matrigel® are slightly elevated at all dose levels. Resistance to treatment is seen in 

conditions where Matrigel® is coated around the spheroid. With the exception of 4 Gy 

fractionations (12 Gy total), NF-kB levels are generally higher in spheroids coated in 

Matrigel®. This research observed that in SKBR3 cell lines, NF-kB levels were 

drastically increased at higher radiation doses. This researched confirm that NF-kB 

could be used as a biomarker to indicate resistance to radiation. However, from this 

research data suggests that NF-kB levels as an indicator of radioresistance heavily 

depend on cell type. The suggestion that the tumor ECM contributes to greater activation 

of NF-kB levels does not correlate with the data recorded. This suggests that NF-kB 
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levels are kept high once cellular stress signals have been received by the cell regardless 

of interactions from the extracellular matrix.  

 

E cadherin levels have been studied alongside radioresistance in the form of cellular 

transformation. E cadherin loss is widely used as a measure of oncogenic progression 

and EMT. E cadherin as a biomarker for radioresistance has been utilized for patients 

with cervical cancer and esophageal squamous cell carcinoma (Da, Wu, Liu, Wang, & 

Li, 2017; Kilic, Cracchiolo, Gabel, Haffty, & Mahmoud, 2015; Zhang, Liu, Zhao, Hou, 

& Huang, 2014). However, many studies regarding biomarkers are conducted in a 

clinical setting. Finding from this research indicate that the inclusion of Matrigel® in 

three-dimensional spheroids allows for phenotypical changes associated with EMT and 

radioresistance. This research also indicates that spheroids coated in Matrigel® are 

significantly more radioresistant. These spheroids have little to no levels of E cadherin. 

An analysis of Matrigel® coated spheroids found that E cadherin loss correlates with 

radioresistance in spheroids. E cadherin loss was guided by the presence of Matrigel®, 

therefore ECM contributions to radioresistance through E cadherin seem significant. 

Therefore, E cadherin levels become a prime candidate for indications of radioresistance 

prior to and post radiation treatment.  

 

The goal of this research was to apply therapeutic analysis on testing a modality that 

simulated the complexity seen in in vivo tumors. A correlation between resistance and 

known biomarkers such as NF-kB and E cadherin, confirmed the use of 3D spheroids 
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coated in Matrigel® as a strong testing modality. Future research should build upon the 

inclusion of the ECM and mimic more components of the natural tumor environment. 

Inclusion of components such as fibroblast many increase the resistance to treatment 

seen in heterogeneous tumors. These studies will shed light on the mechanisms guiding 

treatment resistance that is seen in vivo. Other promising routes for this testing modality 

will be the use of patient derived tumor cells to populate tumor growth ex vivo. The 

added components of the tumor microenvironment will help facilitate growth and model 

tumor response to treatment. This application in the field of personalized medicine has 

the potential for direct clinical applicability. Patient derived tumor spheroid models 

should be used as a prerequisite for more advanced treatment models such as patient 

derived xenographs.  

 

This research model aimed to encompass many cell types. However, the data presented 

here shows that the inclusion of the extracellular matrix does not assist some cell types 

in forming spheroids. The nature of some cell lines is such that they do not form 

spheroids in culture often. This research model aimed to help provide structural 

extracellular matrix support and help induce spheroid formation. Cell lines such as 

SKBR3 have not formed spheroids in other culture systems (Manuel Iglesias et al., 

2013).  The necessary support provided by the extracellular matrix did not help 

formation of SKBR3 tumor spheroids. This cell line was used to see the applicability of 

this research model across various cell lines and confirmed that SKBR3 cells do not 

form spheroids even with extracellular matrix support. The research model presented 
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here works for a limited number of cell types. Future work may establish a list of cell 

types that spheroids formation will occur in. Future work should reduce the seeding 

concentration of each well to approximately 1k cells/well. This adjustment will ensure 

that the growth of each spheroid will not pass the field of view for a 10x microscope. 

Lower cell concentrations will also result in higher impacts associated with treatment 

response. Lastly, this model can be used in conjunction with three-dimensional assays 

which monitor cell growth over time. This quantitative measurement can be used with 

volumetric data to help establish tumor growth with a high efficacy. This model has the 

potential for inclusion of various components of the tumor microenvironment. This 

model should eventually include cancer associated fibroblast to determine their impact 

on treatment resistance.   
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CHAPTER VI 

CONCLUSIONS 

 

 

There is great potential for the application of three-dimensional modeling involving all 

the components of the tumor microenvironment. Current culture systems simply lack the 

ability to accurately reflect and incorporate the necessary aspects of oncogenesis. A 

variety of aspects influence tumor progression and have the ability to increase efficacy 

of in vitro studies.  

 

This research aimed to establish a testing modality that integrated the tumor extracellular 

matrix into spheroid culture with ease. The testing modality aimed to confirmed the 

protein levels of well-known biomarkers, NF-kB and E cadherin, as a tool to verify 

phenotypical changes associated with radioresistance. This was accomplished by coating 

spheroids with Matrigel® and exposing spheroids to radiation therapy. These studies 

confirm results seen in clinical studies relating loss of E cadherin and the EMT 

phenotype to radioresistance. Although results for NF-kB levels in SJSA osteosarcoma 

cells did not follow many correlations seen in osteosarcoma patients, NF-kB levels for 

SKBR3 breast cancer cells mimicked clinical studies.  The successful inclusion of the 

extracellular matrix in therapeutic studies yielded radiation responses similar to those 

seen in clinical studies.  
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