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ABSTRACT

Building operations consume about 40% of the total energy consumption in the US,

with Heating Ventilation and Air-Conditioning (HVAC) comprising a significant portion

of it. HVAC system of a typical commercial building consists of several components –

cooling towers, chillers, Air Handling Units (AHUs), fans dampers, etc. Improving the

performance of these components has the potential for large energy and cost savings. Im-

plementing better control methodologies for regulating these components can be the first

step in this direction for building managers, as it requires minimal retrofitting. Advanced

control methodologies such as Model Predictive Control (MPC) can help realize this po-

tential.

Three reasons for the inefficient operation of traditional control methodologies are

identified in this dissertation, the improper tuning of PI controllers for nonlinear systems,

a decentralized control architecture that doesn’t perform any global optimization, and lack

of planning for future operating conditions. The dissertation makes a contribution towards

addressing the aforementioned areas of inefficiencies by offering a solution in the form of

alternative control architectures such as cascaded control, and optimal control algorithms

such as MPC.

The dissertation first provides the results of a survey that demonstrates the widespread

nature of the phenomenon of hunting (undesired oscillations) in building HVAC systems.

An algorithm to detect the presence of hunting in real time is proposed and implemented on

data obtained from real buildings on the campus of Texas A&M University. A description

of the cascaded control architecture is provided along with a simulation example to show

how it can mitigate the problem of hunting.

The dissertation addresses the other two reasons for inefficient operation, namely
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the decentralized control architecture and lack of planning for the future by proposing

a method that would allow the process of implementing advanced control algorithms such

as MPC to be automated and easy to implement. Currently implementing MPC on large

scale building HVAC systems remains a major bottleneck as it requires the development

of models that are accurate and easy to compute. This dissertation makes a contribution

towards this front by proposing a modeling algorithm that can be automated and scaled

to systems comprising hundreds of components. The modeling algorithm is verified using

data from a real office building. Static models are developed for the Air Handling Unit

(AHU) pressure subsystem which includes the AHU fan, and Variable Air Volume (VAV)

boxes serving conditioned air to the rooms. In addition to the static models, dynamic mod-

els are developed for the AHU temperature subsystem comprising a heat exchanger that

uses chilled water (CHW) to cool the air passing through the AHU. Dynamic models are

also developed for the temperatures of 9 of the 11 rooms of the office building, thereby

demonstrating that the proposed algorithm can be implemented for multi-zone systems.

The dissertation also makes a contribution towards the implementation of advanced

controls by providing a method by which the black-box models can be used to imple-

ment MPC on building HVAC systems. MPC using models developed from the proposed

modeling algorithm is applied to a high-fidelity simulation model of the office building.

Results of the simulation show that MPC can provide significant energy savings over the

traditional control algorithms.
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1. INTRODUCTION

Commercial and residential buildings accounted for 41% of the total energy consump-

tion in the US in 2014 [1]. In developed countries, the consumption of electricity by build-

ing operations is growing at the rate of 0.5-5% every year [2]. The building operations

however, are far from optimal, and there is a large potential for energy and cost savings

that can be achieved in this sector. There has been a growing effort to realize the energy

and cost savings by seeking to reduce building energy demands and consumption. For

instance, the Department of Energy (DOE) has been responsible for several states within

the U.S to enforce energy codes which allow for 25 % lesser energy consumption in com-

mercial buildings compared to the previous commercial energy codes. Furthermore, there

have been voluntary programs such as Energy Star which have resulted in commercial

buildings consuming 35 % less energy on average compared to similar buildings not part

of the program [3].

One of the ways in which the energy consumption and demands can be reduced is

by using more state-of-the-art equipment which have higher efficiencies and also mini-

mize the energy loss to the surroundings. For example, some of the measures to reduce

energy consumption in buildings include replacing the existing lighting with high effi-

ciency LEDs, replacing the chiller with a higher Seasonal Energy Efficiency Ratio (SEER)

value, increasing the insulation of the walls, etc. Such solutions however involve expen-

sive retrofittings and modernizations [4] . Another approach by which significant energy

savings can be achieved and also has minimal retrofitting requirements, is to implement

advanced controls to regulate building operations such as Heating, Ventilation, and Air-

Conditioning (HVAC), lighting, blind control etc.

Among building operations, HVAC systems are the principal consumers of energy.
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The primary objective of HVAC systems is to condition the building space for occupants

and equipment. Depending on the environmental conditions, space conditioning may ac-

count for over 50% of the energy consumption of a building [2]. As stated above, adopt-

ing advanced control methodologies can be the first step towards reducing this energy

consumption. But HVAC controls still remains a major untapped avenue with regards to

optimizing the performance of building operations. A significant gap exists between the

control theory that is available in literature, and the controls applied on building HVAC

systems.

The most widely implemented control algorithms in buildings are Proportional Integral

(PI), and Rule-Based Controllers (RBCs). For example, a survey of the HVAC systems at

the Texas A& M University showed that all HVAC components were controlled using sim-

ple PI-type control [5]. The widespread use of these algorithms is mainly due to their ease

of implementation. The control outputs are easy to compute and have data requirements

that are easy to obtain. The ease of implementation, however, comes at the price of HVAC

operations being inefficient.

Just by switching to more advanced control algorithms, significant improvement in en-

ergy efficiency over the aforementioned traditional control methodologies can be obtained.

One such advanced control methodology is Model Predictive Control (MPC). There are,

however, several bottlenecks to making the switch from traditional to advanced control

algorithms. For example, the implementation of MPC on real building systems relies on

mathematical models that predict the behavior of the system being regulated. Develop-

ment of reliable models that can be scaled to HVAC systems with hundreds or thousands

of components is one of the principal bottleneck to its wide spread implementation on real

buildings. In addition to problems with model development, there are not many papers in

literature that have tested the MPC algorithm on large scale building HVAC systems.

This dissertation makes contributions towards two fronts. First, by proposing a black-
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box modeling method that can be automated and scaled. The modeling method is also

verified using data from a real working office building. Second by developing models of

a high fidelity simulation system and applying MPC under varying operating conditions.

The simulation results are used to quantify the energy savings that can be obtained over

traditional control methodologies.

The rest of the chapter is organized as follows. Section 1 presents the reasons for

the inefficiencies in traditional control. Section 2 provides a background and literature

review of the modeling methods available in literature for implementing MPC, and the

problems associated with each method. Section 3 discusses how MPC can be used to

improve the efficiency of building HVAC operation. Section 4 describes the different

control architectures by which MPC can be applied. Finally in Section 5, an outline of the

dissertation is presented.

1.1 Reasons for Inefficiencies in Traditional Control Practices

There are three main reasons for inefficient operation of HVAC systems that employ

traditional control that are identified in this thesis, namely, poor controller tuning, decen-

tralized control architecture, and lack of planning for future disturbances and operating

conditions. The first reason that is explored in this dissertation is the improper tuning of

the proportional and integral gains of the PI-type controllers.

The gains of the proportional and integral components of the controller are generally

tuned for a particular operating condition of the HVAC system. But when the operating

conditions change as a result of changing weather conditions, changing internal loads etc.,

the previously tuned gains of the controller may no longer be suitable. The gains become

unsuitable primarily due to the nonlinear and time-varying nature of HVAC systems. At

the new operating condition, the controller with improper gains is no longer able to ac-

curately track the setpoint assigned to it. This results in undesired oscillations also called
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Figure 1.1: Steady State Gain as a Function of Valve Position

hunting of HVAC components.

For example, consider a chilled water (CHW) valve that regulates the amount of CHW

flowing through the heat exchanger of an Air-Handling Unit (AHU). A PI controller is used

to regulate the CHW valve opening to track a certain AHU discharge air temperature. The

valve characteristics are nonlinear which means that for a same change in valve position

the change in flow rate of the CHW is different when the valve is partially open compared

to when the valve is fully open. A PI controller which is tuned for an operating condition

corresponding to a fully open valve position, causes oscillations in CHW flow when the

valve is partially open. The oscillation in the CHW flow in turn causes an oscillation in

the discharge air temperature of the AHU resulting in hunting behavior. Figure 1.1 shows

another nonlinear relationship where the steady-state gain of the discharge air temperature

per unit increase in the return flow rate, changes with the flow rate.

The first step in trying to reduce the undesired oscillatory behavior in the HVAC com-

ponents is to detect its presence and prevalence. In Chapter 2 of this dissertation an al-

gorithm is proposed to detect the presence of hunting in HVAC components in real time.

Next, a survey is performed across the various buildings of the Texas A&M University
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campus to find the prevalence of hunting in CHW valves and fan speeds. An alternative to

the traditional feedback control architecture called cascaded control is described. The cas-

caded control architecture has the potential to to reduce the problem of hunting in building

HVAC systems. A simulation example is provided that demonstrates the same.

The second reason for inefficiency of traditional control in buildings arises due to the

fact that the control architecture employed is decentralized. HVAC operations involve

highly interconnected subsystems with often times competing requirements. For example

in a chiller system, a lower supply condenser water temperature results in lower cost of

operation for cooling CHW. At the same time a lower supply condenser water temper-

ature requires higher speed of the cooling tower fan thereby consuming greater energy.

In decentralized control architecture, each HVAC component has its own controller that

regulates its actuator without taking into account the interaction with the neighboring sys-

tems. In the example above, the PI controller for the chiller seeks to track a CHW supply

temperature setpoint without accounting for the impact on the fan speed of the cooling

tower. Computing the optimal CHW setpoint temperature would require a knowledge of

how the setpoint temperature affects the fan speed of the cooling tower. Since in decen-

tralized control such interactions are not considered, the control setpoint generated results

in suboptimal performance.

The third reason identified in this dissertation occurs due to the fact that the existing

control methodologies do not take into account predictions of future disturbances which

may be possible to forecast such as utility prices, weather conditions, occupancy etc. There

are several components in the HVAC system that can be used to plan ahead by making use

of the predictions of the aforementioned disturbances thereby saving energy and improv-

ing performance. One such example is making use of the building thermal mass to store

cooling energy during the night time when the temperature and electricity prices are low.

The stored energy can be used at a later time when the outside temperature and/or electric-
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ity prices are higher to meet the cooling requirements. The PI-type control methodologies

have no such planning capabilities.

1.2 Modeling of Building HVAC Systems

Some of the reasons for the inefficiencies associated with traditional control of building

HVAC systems are listed above. Advanced algorithms such as MPC have the capability

of vastly improving the efficiency of HVAC operation. The second and third reasons for

inefficient operation associated with traditional control, namely, the decentralized archi-

tecture and lack of planning for future disturbances can be addressed by implementing

MPC. MPC addresses the inefficiency caused due to the decentralized nature of traditional

control by taking into considerations interactions between the various HVAC systems in its

computation of component setpoints. For instance, in the chiller example MPC takes into

consideration the energy consumption of both the chiller and cooling tower fan in com-

puting the discharge temperature setpoint of CHW. In addition to performing component

level optimization, MPC addresses the third reason for inefficient operation of traditional

control by making use of predictions of future operating conditions to plan the best set of

actions.

In order to perform component level optimization, and estimate the optimal set of

inputs over a future time period, MPC requires a model of the system being regulated.

This section provides a background and literature review of the methods that can be used

to model building HVAC system behavior.

The opportunity for large savings by implementing MPC, and the difficulty in devel-

oping a reliable model has led to intense research in the area of building modeling [6]. A

survey of the modeling approaches for building HVAC systems is provided in [7]. The

modeling methods available in literature can be broadly classified into three categories –

white box, gray-box, and black-box models [8]. The modeling methods differ in their
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complexity, accuracy, and the amount of information that is required to develop them.

Figure 1.2 shows a graphic representation of the three types of approaches. A description

of the state-of-the-art corresponding to each modeling method, and the pros and cons of

adopting the methods for implementing MPC on large scale building HVAC systems is

provided as follows.

Figure 1.2: Three Types of Building Modeling Approaches Available in Literature

1.2.1 White-Box Modeling Method

White-box models such as EnergyPlus [9], and TRNSYS [10] make use of extensive

mathematical equations developed from first principles of physics. They provide the most

accurate description of the thermal dynamics of the building compared to other modeling

methods. In order to perform simulations and predict outputs using white-box models,

however, requires a detailed description of the components of the system. For example,

developing an EnergyPlus model of a building requires information about the building

plans, construction materials, placement of windows and doors, geographical location etc.

A flow diagram of the steps associated with running simulations using a white-box model

such as EnergyPlus is shown in Figure 1.3.

Inputs are entered into the EnergyPlus model which constitute static and dynamic val-
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ues classified based on whether the values remain constant or are varying throughout the

simulation. The static inputs include parameters such as the aforementioned building con-

stants, system parameters, and plant parameters. The term system is used to describe the

components associated with the distribution of cooling energy such as the AHU fan and

heat exchanger. The term plant is used to describe the components such as chiller and cool-

ing towers which deal with the primary cooling fluid like CHW. The dynamic inputs on

the other hand include factors such as outside air conditions, occupancy, control setpoints

such as discharge air temperature setpoint, room temperature setpoint, etc. The values of

the dynamic inputs can be varied at each simulation time step.

The simulation engine then uses the aforementioned static and dynamic inputs pro-

vided by the user to perform the thermodynamic calculations to compute the values of the

simulation outputs. Simulation outputs include room temperature and humidity, energy

consumption of the components, etc.

Although the white-box models are the most accurate method available for modeling

building HVAC systems, the information required to model is difficult to obtain, and even

if available, is extremely time consuming and difficult to build. In addition, the complexity

of the equations to be solved make the white-box models unfeasible for implementation of

on-line model based control.

Notwithstanding the complexity, there have been attempts made at using EnergyPlus

models for online control. For example in [11] an EnergyPlus model of a building in

Colorado was created to optimize window operations that facilitate natural ventilation in

conjunction with mechanical cooling. In order to use the white-box models for control,

authors in [11] coupled the simulation engine of EnergyPlus with a computational software

such as MATLAB. The simulation outputs generated by EnergyPlus were read by the

computational software which then produced a series of candidate values for the window

opening using an optimization algorithm at each time step. EnergyPlus simulations were
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Figure 1.3: Layout Showing Flow of Data of a White-Box Model Coupled with MATLAB

run for each candidate value. From among the simulations, the window operation that

provided the best objective function value was selected to advance the simulation.

In order to find optimal cooling schedules for a building, a particle swarm optimization

algorithm was used in [12]. In the paper, the cooling schedules were regulated by a single

optimization variable,namely, the opening and closing times of windows. In the particle

swarm algorithm several EnergyPlus simulations are run corresponding to each particle

in the solution space. A particle corresponds to a feasible solution to the optimization

problem. The particle that resulted in the objective function being minimized is selected

as the solution. Particles are generated based on a combination of randomized and rule

based decisions. Simulations were performed over a year and the authors were able to

demonstrate that by using night-time cooling strategies cooling energy could be saved by

up to 40%.

The examples above showed instances of white-box models being used for online con-

trol. The authors optimized a single control variable namely the window operation of
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buildings. In order to advance the simulation or real building operation by one time step,

several paths that the building system can take in the time-step under question were tested

by running EnergyPlus simulations corresponding to each path. Each path represents a

different window operation. The window operation schedule that provided the best result

is then applied to advance by one time step.

Since the only variable being optimized in the aforementioned examples is the window

operating schedule, the solution space was one dimensional. But an efficient operation of

building HVAC system requires the optimization of several components. As the number of

components increases the dimensions of the solution space also increases and the number

of particles in the swarm to be tested grows exponentially. Hence the process of running

several simulations at each time step to determine the optimal operation becomes infea-

sible when trying to optimize the entire building HVAC operation and not just window

opening schedules.

Although not suited for implementing control, the white-box models can serve as a

simulation environment. The high level of accuracy makes them a perfect platform to

test various modeling and control strategies under a wide range of operating conditions

which would generally not be possible to perform on a real building. In this dissertation

the EnergyPlus simulation environment is used to compare the traditional PI-type control

with MPC.

1.2.2 Gray-Box Modeling Method

The white-box modeling approach described above is a forward modeling approach

where the model development starts with a physical description of the building. Inverse

modeling approaches on the other hand are developed using an empirical approach. The

properties of the system are expressed in terms of inputs and parameters that are deter-

mined using statistical tools [13]. Gray-box modeling method is an inverse modeling

10



approach that is a hybrid of white-box and the inverse modeling method.

The gray-box methods in literature for modeling of building HVAC systems are used to

estimate the cooling or heating loads of the building space being conditioned. The build-

ing heating and cooling loads are estimated by predicting the cooling or heating energy

required to maintain the temperature and humidity of the thermal zones [13]. The cooling

or heating energy required for maintaining the temperature and humidity has two principal

components, namely, sensible loads and latent loads.

Latent loads are the loads associated with the moisture content in the air. They are

added to a thermal zone mainly by respiration from occupants and infiltration of humid

outside air. Sensible loads on the other hand are loads that result in the change in the

temperature of the air. They arise due to transfer of heat from the surfaces of the zone

such as walls, floors and ceilings to the room air. The source of sensible zone loads can be

both internal and external. The internal sensible loads arise due to the heat emitted by the

occupants, room lighting and equipment etc. The external zone loads arise due to factors

such as solar radiation, conduction between walls and outside air etc [13]. Sensible zone

loads have a significantly greater impact on the total zone load and is the primary focus of

most building modeling methods available in literature.

The most widely used gray-box method for modeling sensible loads of thermal zones is

the Resistance-Capacitance (RC) network approach. The thermal dynamics of a building

zone is converted into an equivalent RC circuit. The RC network approach is based on the

transfer function 1.1 proposed by Braun in [14] which predicts the sensible cooling load

required to maintain the temperature of a thermal zone.

Q̇zs(t) =
n∑
i=0

aiToa(t− i) + biTz(t− i) + ciQ̇int(t− i) + diQ̇sol(t− i) +
m∑
i=1

Q̇zs(t− i)

(1.1)
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The thermal energy gained by a particular zone at time instant t (Q̇zs(t)) is a function of

the past outside air temperatures (Toa), the past temperatures of the zone (Tz), the internal

heat loads (Q̇int), and the external solar radiation (Q̇sol). The parameters ai, bi, ci, di, and

ei are experimentally determined using statistical analysis.

In [13], Braun proposed that the transfer function shown in 1.1 can be represented in a

state space form as shown in Equation 1.2

dx

dt
= Ax+Bu

y = Cx+Du

(1.2)

by assigning the driving forces such as outside air temperature, internal and external solar

loads etc as the inputs u, the sensible load as the output y and selecting a state vector x

that comprises the temperature of various nodes in the building. Braun further showed that

the state space description shown in Equation 1.2 can be expressed as an equivalent RC

circuit. An example of how the building thermodynamics is represented by an equivalent

RC circuit is shown in Figure 1.4 .

In the RC circuit the thermal masses of the rooms are treated as capacitance, and the

resistance to the flow of heat between two zones or between the zones and the outside

air are represented as thermal resistors. Each room comprises two distinct thermal masses.

The temperature of the air in the room corresponds to the lower thermal mass C1a and C2a,

and the temperature of the walls, ceilings and floors corresponds to the higher thermal mass

C11 and C22. The temperature of the thermal masses form the nodes of the RC circuit. The

selection of nodes is a design parameter that depends on the number of sensor available

for model identification. For example the nodes can correspond to the thermal zone air

temperatures. In addition, if there are sensors that measure wall temperatures, they can be

treated as separate nodes to develop a more accurate higher order model.
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Figure 1.4: An Equivalent RC Circuit for a System Containing Two Thermal Zones

In Figure 1.4 R1a and R2a correspond to the thermal resistance between the outside air

temperature and the wall temperatures of the two rooms, and R11 and R22 correspond to

the thermal resistance between the wall and room air temperatures. The objective of the

identification procedure is then to find the values of the thermal resistors and capacitance

values using nonlinear regression analysis. The RC modeling procedure described above

was used in [13] to estimate the cooling load of a building with two thermal zones and was

shown to have an error less than 2% when compared to simulations run for a period of one

year on a white-box model.

The RC network approach has been utilized in several papers [4],[15], [16], [17], [18]

for the implementation of MPC in building HVAC systems. For example, in [4] an entire

4 story building on which MPC was implemented was divided into two thermal zones.

The heating load required for the zones was modeled using the RC network approach.

MPC was used to compute the optimal supply heating water temperatures to heat the

thermal masses corresponding to the two zones. Energy savings between 15% to 28%

were obtained depending on the operating conditions.

One of the common themes in the papers discussed above is that they gray-box model

identification is performed by approximating a multi-zone building into a two zone system

as was done in [4], or develop the model under experimental conditions by intentionally

perturbing the operating conditions to obtain data suitable for identifying the parameters of
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the RC circuit as was done in [19]. The main reason for making simplifying assumptions

such as reducing number of zones, or setting up experimental conditions for identifying the

RC parameters is that gray-box modeling is not trivial. Popular identification algorithms

such as subspace and parametric identification methods are not suitable for identifying the

RC parameter values [20]. Methods for estimating the RC parameter generally involve

nonlinear regression such as that used in [21]

Although gray-box models are simpler to develop than white-box models, developing

them for large scale systems is still difficult and time consuming. The difficulty arises due

to the fact that the number of parameters to be estimated by nonlinear regression methods

increases exponentially as the number of zones to be modeled increases. In addition to

computational requirements, the process of automating the model development becomes

more challenging due to the information requirement of graybox models. Gray-box mod-

els require a complete knowledge of the internal structure of the building. In order to

increase the accuracy of the models, the papers in literature have also used information

about the building description such as thickness of walls, etc to estimate the resistance and

capacitance values of the equivalent RC network such as in [13]. The papers in literature

have also used incident solar light on the outer building walls as inputs to the model. In-

formation such as building wall thickness, orientation of the walls, internal structure of the

rooms, and incident solar radiation on walls is not easily available.

Thus, the information requirement, computational burden required for the nonlinear

regression analysis to compute the gray-box model parameters, and the fact that the RC

modeling method is suitable only to model thermal zones make the gray-box modeling

method less suitable for automating the development of models and scaling the process

for HVAC systems with a large number of components.
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1.2.3 Black-Box Modeling Method

Although, the two approaches described above provide a more accurate description

of the underlying physics, the complexity, and the amount of information that is required

to develop the models make them unfeasible to be implemented on large scale systems.

Black box modeling approach on the other hand is developed purely from data. The mod-

els may be of lower fidelity but offer the best scope in automating the process of model

development for large scale subsystems.

The output being modeled by the black-box approach is generally continuous in nature

like room temperature, humidity etc. The sensors employed by the Building Energy Man-

agement System (BEMS), however, take measurements at fixed intervals of time, giving

the output a discrete nature. The discrete output is modeled as a function of the previously

measured output and input values. For example, sensors at an office building at the Texas

A&M University campus in [5] measure room temperatures, volume flow rates, discharge

air temperature, and weather conditions. By using the black-box modeling approach the

room temperature at time instant t is expressed as a function of the room temperature, and

other input values measured before t.

Not all the factors that influence the output being modeled are generally captured by

the BMS sensor data. For instance in the above example where the room temperature is

being modeled, factors such as solar incidence, cloud cover, wind-driven infiltration, etc.

affect the output but are not measured by the BMS sensors. In the black-box modeling

approach the unmeasured inputs are assumed to be stochastic in nature, generally Gaussian

with zero mean and variance 1. The modeling approach uses statistical tools to extract the

influence of these stochastic inputs from historical data. Thus the output modeled by the

linear parametric black-box approach is written as a sum of deterministic and stochastic

components.
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Based on the structure of the linear function used to describe the relationship between

the inputs and the outputs, the linear black-box modeling methods can be classified into

two methods, parametric and subspace identification. In the linear parametric method,

the relationship is expressed as a linear combination of contributions from past measured

input and output values. For example, consider the parametric relationship shown in Equa-

tion 1.3

y(t) =a1y(t− 1) + a2y(t− 2) + ...+ anay(t− na) + b1u(t− 1) + b2u(t− 2)+

...+ bnb
u(t− nb) + c0e(t) + c1e(t− 1) + ...+ cnce(t− nc)

(1.3)

where y(t) is the output at time t, u is the deterministic input, e is the stochastic input, and

a1, a2, ..., b1, b2, ...bnb
, c1, ..., cnc are the parameters that determine the contribution of the

respective past input or output value.

Equation 1.3 shows just one of the ways in which the linear parametric function can

be expressed. For example consider another linear parametric equation shown in Equa-

tion 1.4.

y(t) =a1y(t− 1) + a2y(t− 2) + ...+ anay(t− na) + b1u(t− 1) + b2u(t− 2)+

...+ bnb
u(t− nb) + e(t)

(1.4)

Equations 1.3 and 1.4 differ in how the deterministic and stochastic components are as-

sumed to influence the output. In 1.4, the output is assumed to be independent of the past

values of the stochastic input. The different ways of expressing the linear relationship

are called as model structures. The most commonly used model structures in literature

are ARX, ARMAX, Box-Jenkins (BJ) and Output Error (OE). Once a model structures is

selected, the parameters of the structure are identified using standard statistical tools. De-

pending on the statistical tool used to identify the parameters, the linear parametric method
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Figure 1.5: Black-Box Modeling Methods

can be further divided into Prediction Error Method (PEM) and MPC Relevant Identifica-

tion (MRI) method. A discussion of how to select the model structure, and a comparison

of the PEM and MRI methods is provided in Chapter 3.

The second approach for linear black-box modeling explored in this dissertation is the

subspace identification method. In the subspace identification method the input and output

relationship is expressed as a state space equation as shown in Equation 1.5,

x(t+ 1) =Ax(t) +Bu(t) +Ke(t)

y(t) =Cx(t)

(1.5)

where A,B,C and K are the state space matrices to be determined by statistical analysis.

The states used to describe the model are purely mathematical and bear no physical sig-

nificance. A detailed description of the two black-box modeling approaches is provided in

Chapter 3. Figure 1.5 shows the different types of linear black-box modeling approaches

popular in literature.

There are several papers available in literature that use the aforementioned black-box
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approaches for modeling building thermal dynamics [22],[23],[24],[25]. In [22] linear

parametric models with ARX and ARMAX structures were developed for a naturally ven-

tilated greenhouse. The output selected was the air temperature within the greenhouse,

and the inputs selected were the outside air temperature and humidity, solar radiation, and

cloudiness of the sky. The authors were able to develop black-box models that provide ac-

curate predictions of the air temperature. In order to maintain the accuracy of the models,

however, the model parameters were regularly tuned to account for the changing operating

conditions. In [26], the authors demonstrated that linear parametric black-box models can

be developed to model room temperature and humidity of a two-zone office building with

full occupancy using ARX, ARMAX, BJ, and OE model structures. The models were

verified using data collected for over a period of nine months.

Although the papers provide good predictive models, there are certain inherent prob-

lems associated with the black-box modeling approach that are not addressed in litera-

ture. Black-box models are least computationally intensive compared to the other two

approaches, and require the least amount of data for development. The drawbacks of the

black-box modeling approach however is that they are developed with minimal underlying

physics principles. As a result the predictions made by the model correspond to a specific

set of operating conditions. There is no guarantee that the predictions made by the model

would be accurate under a different set of operating conditions. This generates a question

that remains largely unanswered in literature. Does a black-box model with good predic-

tive properties translate into a good model for control? Furthermore, black-box models

require a certain quality of input excitation to obtain models with good input-output re-

lationships [27]. The question that arises as a result is whether the data obtained during

the normal course of building operation is of sufficient quality, or whether experimental

conditions where inputs are intentionally excited are required to develop a good model.

In addition to the two problems associated with black-box modeling mentioned above,
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there are two areas in which the available literature on black-box modeling is lacking.

Firstly, none of the papers include both buildings and AHU with all of the details [28].

Most of the papers model only the room temperatures. Optimizing the building HVAC

operation requires models of other components such as the AHU fan, heat exchanger etc.

Secondly, black-box models are developed only for systems with one or two rooms. Most

buildings have several rooms with interconnecting dynamics. If the process of implement-

ing MPC needs to be automated, a method to model multi-zone buildings is required.

Chapter 3 of this dissertation seeks to address the aforementioned shortcomings in lit-

erature by contributing on two fronts. Firstly by proposing a linear parametric modeling

algorithm that automates the process of model development. The proposed modeling al-

gorithm can use either the PEM or the MRI approaches. A comparison of the proposed al-

gorithm using PEM and MRI approaches is made with the subspace identification method.

The comparison is performed by making use of data from real working multi-zone office

building. In addition to the room temperatures, the AHU discharge air temperature and the

volume flow rates through each room are also modeled. Secondly, the dissertation con-

tributes by using models developted from the proposed modeling method to apply MPC

on a high fidelity simulation model of the office building. Thereby showing that black-box

models not only provide accurate descriptions of the building HVAC systems, but can also

be used to implement model based control.

1.3 Model Predictive Control

The previous section provides a background of the various approaches available in

literature to model building HVAC systems. The objective of the modeling methods is not

just to predict system behavior, but also to be able to use the predictions for model based

control. The model based control investigated in this dissertation is MPC.

MPC does not comprise of a single strategy, but a collection of various control methods

19



which seek to minimize a certain objective function [29]. For building HVAC systems,

the objective function is designed so as to meet the thermal comfort requirements of the

occupants and machinery and at the same time minimize the energy consumption of the

HVAC components. Thus the objective function is generally expressed as a sum of a

measure of thermal comfort, and the cost of operations of the various subsystems such as

the AHU fan, heat exchanger, chiller etc.

A relationship is then sought between the objective function that is required to be

minimized and the control setpoints that regulate the system. Examples of some of the

control setpoints that need to be optimized include the AHU discharge air temperature

setpoint, the CHW supply temperature setpoint, etc. The models that are developed using

any one of the methods described in the preceding section help in identifying a relationship

between the objective function and the control setpoints. The relationship is then used by a

mathematical optimization program to determine the set of control inputs that minimize the

objective function. The control setpoints are optimized not just for the current time instant

but over a future prediction horizon. The optimal inputs corresponding to the current

time-step are then applied to the real system. Figure 1.6 shows a schematic of how MPC

computes the optimal control setpoints.

There are two mechanisms by which the optimal inputs computed by MPC are able

to realize an improvement over traditional control algorithms – load shifting, and com-

ponent optimization [19]. Load shifting is the process of taking actions before-hand an-

ticipating changes in demand conditions. For example, precooling the building so as to

reduce the amount of cooling required during peak demand, storing energy for later use

etc. Component optimization is the process of computing the optimal control action for

each component in a large system with several inter-connected subsystems, with quite of-

ten competing requirements. For example, there are several combinations of discharge air

temperature, and flow rates that can provide the same amount of cooling to a thermal zone.

20



Figure 1.6: Flow-Diagram Showing the Measured Past and the Future Predicted Inputs
and Outputs for Applying MPC

MPC seeks to find the optimal combination of discharge air temperature and flow rate that

would provide the desired cooling with minimum energy consumption.

There are several papers in literature that propose methods for improving HVAC con-

trols by focusing on the load shifting strategy of MPC. The load shifting strategy of MPC

can be adopted by making use of thermal energy storage devices such as building masses,

cooling water tanks etc. The central idea behind the load shifting strategy is to use these

storage devices to store thermal energy during off-peak hours when the electricity prices

are generally lower and/or the ambient conditions favor a more efficient operation. One of

the earliest examples of using predictions for control of building HVAC systems was done

in [30]. Different control strategies were tested on a simulation model of simple domestic

hot water system with a solar collector. Simulations showed that the control strategies that

used weather prediction data performed better than the non-predictive control strategies.

In [31] a TRNSYS model of a 5 zone building was created in order to test a predictive

control strategy that would optimize a global temperature reference setpoint that used the

building thermal storage (passive storage), and the charging and discharging rates of a
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chilled water storage tank (active storage) based on predictions of weather data and util-

ity prices. The authors then tested the impact of the accuracy of weather predictions on

the effectiveness of the predictive controller in [32]. The authors demonstrated through

simulations that with good weather prediction models, a short-term prediction model can

realize significant savings when the off-peak and on-peak electricity rates vary. In [4]

MPC was implemented on a real building in Prague to find the optimal supply water tem-

perature of a heating system for two zones. The heating system of the building consists

of beams placed in the ceilings of the rooms to utilize the building thermal capacity. The

authors found that depending on the weather conditions and insulation levels savings of

about 15% to 28 % were obtained compared to a non-predictive control algorithm.

In [33], an improvement in performance of building climate control was achieved on

a simulation model with the use of MPC coupled with weather predictions. In [15], three

main subsystems were modeled – chillers and cooling towers, a thermal energy storage

tank, and a campus load model. The control variables that were optimized were the refer-

ence temperature exiting the cooling towers, the mass flow rate of the chilled water supply,

the reference temperature of the water supplied by the chillers, and the start-up time of the

chillers and cooling towers. The performance of MPC was compared to a baseline per-

formance where there was no optimal control involved. An improvement of 19.1% was

enabled by implementing MPC. In [34], MPC was implemented on a Swiss office building

to compute the optimal setpoints for the supply temperature and the flow rates of the AHU,

supply water temperature and operating mode of the Thermally Activated Building Sys-

tem (TABS), and the blind commands. MPC provided better performance than a standard

rule-based controller over the course of an entire year of simulation.

The papers discussed above demonstrated the effectiveness of using MPC on certain

specific aspects of the HVAC system such as the supply water temperature of the heating

system, or the charging and discharging rate of chilled water etc. HVAC systems, however,
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consists of several different components and the type of components used varies from

building to building. In order to extract the full potential of energy savings that can be

achieved, a methodology for implementing MPC on a comprehensive list of the most

common building HVAC components was done in [19]. A brief description of the process

adopted in the paper, and the challenges of its implementation that still remain are provided

below.

1.3.1 Higher and Lower Level Components

The test bed for the implementation of MPC in [19] is a campus building in Berke-

ley. MPC is applied by first dividing the HVAC components into an hierarchical structure

comprising two levels – an Energy Conversion Level (ECL), and an Energy Distribution

Level (EDL). ECL consists of components associated with the generation and distribution

of chilled water which is the primary fluid through which cooling energy is supplied to the

various buildings on the campus. The components include chillers, cooling towers, chilled

water storage tanks, pumps etc. The energy distribution level consists of components asso-

ciated with the supply and distribution of the conditioned air providing thermal comfort to

the occupants of the buildings. The components include the heat exchanger, supply fans,

and the thermal zones of the building. Figure 1.7a and 1.7b provide a graphical represen-

tation of the two levels of HVAC components. A description of the control strategy and

components in each level, and the method that was used to model each of the components

[19] is provided below.

1.3.2 High Level MPC

The aim of the higher level MPC is to minimize the energy consumption of the com-

ponents in its level and at the same time meet the building cooling load requirements.

The first step is to design an objective function that expresses the energy consumption and

discrepancies in achieving the cooling load requirements in a single unit (generally a $
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(a) Energy Conversion Level

(b) Energy Distribution Level

Figure 1.7: Flow Diagram Showing the HVAC Components of the Two Hierarchical Lev-
els

amount) such as in Equation 1.6

Jmpchl (t) =

np∑
i=1

Ĵch(t|t+ i) + Ĵct(t|t+ i) + Ĵp(t|t+ i) + Êbl(t|t+ i) (1.6)

where Ĵch, Ĵct, and Ĵp are the cost of operations of the chiller, cooling tower, and pumps

respectively. Êbl is the penalty on not meeting the cooling load requirements, and np is

the number of time steps in the prediction horizon over which the objective function is to

be minimized. The notation t|t + i is used to indicate an i-step-ahead prediction made at

time instant t. The symbolˆis used to indicate estimated values.

MPC seeks to compute optimal control inputs corresponding to ECL represented by

24



Umpc
hl , that minimize the objective function above as shown in Equation 1.7

Umpc
hl = argmin

Uhl∈Dhl

Jmpchl (1.7)

where Dhl is the domain containing all possible values of the control input Uhl. As is

evident from Equation 1.7, in order to compute the optimal control inputs, a relationship

between the objective function Jmpchl and the control inputs Uhl is required. This relation-

ship is depends on the dynamics of each of the components as shown in Equation 1.8

Jmpchl = fmpc(fch, fct, fp, fst) (1.8)

where fmpc is the relationship between the objective function and the outputs being mod-

eled, f∗ is the function representing the dynamics of the component ∗ (ch = chiller, ct

= cooling tower, p = pumps, st = storage tank) that provides a relationship between the

outputs and the control inputs Umpc
hl .

The next step in the application of MPC is to determine low order relationships f∗

for each component. The relationship f∗ is generally expressed in terms of control and

disturbance inputs, and the output being modeled. The previous section provided model-

ing approaches that can be used to identify the relationships f∗. This section provides a

description of what relationships need to be identified corresponding to each HVAC com-

ponent. The control and disturbance inputs, and outputs corresponding to each component

of ECL is shown in Figure 1.5. The red and black arrows correspond to control and dis-

turbance inputs respectively, and the blue and green arrows correspond to outputs used

in the construction of the MPC objective function, and outputs which help in identifying

interactions between neighboring subsystems, respectively. A brief description of how the

components of ECL were modeled in [15] is provided below.
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(a) Chiller Inputs and Outputs (b) Cooling Tower Inputs and Outputs

(c) Storage Tank Inputs and Outputs (d) Building Load Inputs and Outputs

Figure 1.8: Inputs and Outputs of the Components in the Energy Conversion Level

1.3.2.1 Chiller

The outputs of interest of the chiller system, are the CHW supply temperature, the

chiller energy, and the condenser water return temperature. A static model of the chiller

is used in [15], where the CHW supply temperature is assumed to be equal to the CHW

setpoint temperature. In order to model the chiller energy consumption several simula-

tions of a high fidelity model of the chiller were run under different operating conditions.

The simulation results were used to construct a 5-d lookup table where the output was the

chiller energy and the inputs were the CHW setpoint temperature T setchw, the mass flow rate

of CHW ṁchw, the supply condenser water temperature Tcws, the CHW return temperature

Tchwr, and the outside air wet bulb temperature Twb. The condenser water return temper-

ature was computed using the conservation of energy principle where the heat lost by the

26



CHW is equal to heat gained by the condenser water. The control inputs that affect the

energy consumed by the chiller are the mass flow rate and temperature of the chilled wa-

ter, and the supply temperature of the condenser water. In [19], the relationship between

the inputs and the outputs of the chiller were not found using any of the linear parametric

method described in the previous section. Instead a nonlinear static function was used. The

static function in the form of a 5-d lookup table was obtained from [15] by running sev-

eral simulations of a high fidelity model of the chiller corresponding to different operating

conditions.

1.3.2.2 Cooling Tower

The cooling tower consists of a fan whose speed is regulated to meet a certain con-

denser water supply temperature. The outputs of interest of the cooling tower are the

condenser water supply temperature, and the cooling tower fan energy consumption. As

was done with the chiller system, a static model was again considered by the authours

in [15]. The supply condenser water temperature is assumed to be equal to its setpoint

temperature. The local controller in the cooling tower regulates the cooling tower fan to

supply condenser water at the desired temperature. A similar approach as was adopted

for the chiller model is used to model the energy consumed by the cooling tower fan. Re-

gression analysis was performed to identify coefficients of a fifth degree polynomial that

provided a relationship between fan speed and Tcws, Tcwr, Twb, and mass flow rate of the

condenser water ṁcws [35]. Regression entailed the determination of 27 parameters. The

cooling tower fan energy was then approximated as a cubic function of the fan speed.

1.3.2.3 Cooling Water Storage Tank

The dynamics of the cooling water storage tank were modeled in [15] by first assuming

it to contain two lumped masses, warmer water at the top with a height za and temperature

of Ta, and colder water at the bottom with height zb and temperature Tb. The outputs of
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interest are the heights and temperature of the warm and cold lumped masses. The outputs

are computed as a function of ṁchws, Tchws, the mass flow rate and the return temperature

of CHW supplied to the building ṁcmp, and Tcmp,r.

1.3.2.4 Building Load

Building loads in [15] are modeled using the RC equivalent circuit method described

in Section 1.2.2. In [15], the building being investigated was divided into two zones,

and the capacitance and resistance values of the equivalent RC circuit were determined

through nonlinear regression analysis. In order to increase the accuracy of the model,

measurements of the incident solar radiation were also made.

1.3.3 Low Level MPC

The components considered in EDL were the cooling coils, AHU fan, and the thermal

zones. The objective of the low level MPC is to minimize the energy consumption of the

cooling coil and fan, at the same time maintain occupancy comfort. As was done with the

high level MPC, an objective function is first designed that penalizes energy consumption,

and deviations of predicted temperatures from set point values over a horizon as shown in

Equation 1.9

Jmpclll (t) =

np∑
i=1

Ĵcc(t|t+ i) + Ĵfan(t|t+ i) + Ĵcomf (t|t+ i) (1.9)

where Ĵcc and Ĵfan are the energy consumed by the cooling coil and the AHU fan respec-

tively, and Ĵcomf is a penalty for not meeting the thermal comfort requirements.

The control inputs that were optimized in [19] were the AHU discharge air temper-

ature, the recirculation damper position, the volume flow rate across the VAV boxes and

the CHW vavlve position of the AHU heat exchanger. The optimal control inputs were
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computed by minimizing the objective function in Equation 1.9. A brief description of the

modeling methods employed in [15] to compute the optimal inputs is provided below.

1.3.3.1 Cooling Coil

The output of interest of the cooling coil model is the cooling energy required to cool

the air through the AHU. In [15], a constant efficiency cooling coil model is assumed. The

energy expended is proportional to the cooling load on the air side of the heat exchanger.

Thus the cooling coil energy is obtained as a function of the mass flow rate of the air

through the AHU ṁahu, the inlet air temperature Ta,in, and the discharge air temperature

Tchw. Since a static model is assumed, the discharge air temperature is assumed to be equal

to its setpoint T setchw.

1.3.3.2 Fan Model

The output of interest in the fan model is the energy consumed by the fan. In [15]

the fan energy is assumed to be a quadratic function of the mass flow rate ṁahu. The

parameters to the quadratic function were determined through regression analysis with

measured data.

1.3.3.3 Thermal Zone

The thermal zones in [15] were modeled as an RC equivalent circuit described in Sec-

tion 1.2.2. The output of interest in the thermal zone models is the temperature of the

zone.

The description of the objective function, and the component models showed the steps

taken in [15] in order to implement MPC on a real building. The models of the com-

ponents of ECL were developed using nonlinear regression of data obtained from either

experiments or high fidelity simulation models. The models and the experimental data

were specific to the building under study. As the experiments and simulation models cor-
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responded specifically to the building on which MPC was being tested, the process cannot

be adopted for automation and wide spread implementation.

When considering MPC on only the EDL components, gray-box models were used in

modeling the temperature of the zones. For the reasons specified in Section 1.2.2 gray-

box models are not feasible for the application of MPC being automated. Chapter 3 of

the thesis makes a contribution towards automating the process of model development of

the components of EDL, and in Chapter 4, MPC is applied on a high-fidelity simulation

model to demonstrated the usefulness of the developed models for model-based control.

1.4 Modeling Architecture

The previous section described how MPC has the potential to improve the efficiency

of building HVAC systems, and also the bottlenecks that still remain in its widespread

implementation. This dissertation seeks to address the challenges in implementing MPC

by proposing an automated modeling method, and verifying its use in model-based control

on a high-fidelity simulation model.

Another question that this dissertation seeks to address is the control architecture that

is most suitable for the implementation of MPC. Implementing MPC on building HVAC

systems requires regulators that perform a large variety of operations. Some of these

operations include storing the identified models of the subsystems, receiving real-time

data from the BEMS sensors, updating the model states, computing the optimal control

trajectory, relaying the computed setpoints to the actuators etc. Due to the large scale

of building HVAC systems, performing the aforementioned operations results in a big

storage, computational, and communication burden on the regulators. Depending upon the

number of regulators used, and how information is exchanged between them, the control

architecture used to solve the MPC problem can be broadly divided into three categories

namely centralized, decentralized and distributed. A description of the architectures is
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provided below.

1.4.1 Centralized MPC

Figure 1.9 shows an example of a centralized control architecture used to implement

MPC on building HVAC systems. A centralized architecture consists of a single regulator

that solves the MPC problem of the entire system. The MPC problem corresponding

to a centralized architecture constitutes computing optimal setpoints over the prediction

horizon for each subsystem by minimizing a single centralized objective function. For

example in Figure 1.9, a single regulator is used to find the optimal setpoints for the chiller

subsystem T setchw, AHU heat exchanger T setahu, fan subsystem P set
eds, and the thermal zones

T seti , where i ∈ 1, 2, ...nr and nr is the number of thermal zones. A list of the tasks

performed by the regulator is shown in Table 1.1.

Table 1.1: Tasks Performed by the Regulator in the Centralized MPC Architecture

Task Description
Storage Storing Subsystem Models and historical data
Computation Update system states for each subsystem
Computation Compute optimal setpoints for each subsystem
Communication Output data from BMS sensors to Regulator
Communication Setpoint values from regulator to actuators

Implementation of centralized MPC for large scale systems such as building HVAC

becomes difficult as the complexity of each of the tasks increases exponentially as the

number of subsystems increase. A centralized architecture also results in reliability and

robustness problems [36]. For example if one of the components of the HVAC system is

replaced, the entire centralized model and objective function needs to be updated.
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Figure 1.9: Layout Showing a Centralized MPC Architecture

1.4.2 Decentralized MPC

The layout of a decentralized control architecture is shown in Figure 1.10. In a de-

centralized control architecture there is a regulator associated with each component of

the HVAC system. There is however, no information exchange that occurs between the

regulators. Each regulator optimizes the component to which it has been assigned. A

decentralized control architecture may work well only in the cases where the coupling

between the dynamics of the various subsystems is small.

1.4.3 Distributed MPC

Figure 1.11 shows a layout of the distributed control architecture. A distributed archi-

tecture is similar to decentralized, except that some amount of information is exchanged

between the regulators of each subsystem. The information that is exchanged between

the regulators generally consists of data corresponding to the interacting dynamics of the

subsystems. Depending upon the protocol used to exchange information, the distributed
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Figure 1.10: Layout Showing a Decentralized MPC Architecture

control architecture can be divided into non iterative and iterative systems [36]. In a non

iterative system information is exchanged between the regulators only once every time

step, whereas, in an iterative system information is exchanged several times in a single

time step.

The distributed control architecture can also be divided according to the type of objec-

tive function that is minimized by the local regulators. Each regulator may minimize its

own objective function (independent algorithm) or all regulators may minimize a single

global objective function (cooperating algorithms) [36]. An independent distributive MPC

may reach a Nash equilibrium which is not a global optimal solution. In a Nash equilib-

rium each subsystem is at its own local optimal position. Once a Nash equilibrium point is

reached, a global optimal position cannot be reached since that would require the operat-
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Figure 1.11: Layout Showing a Distributed MPC Architecture

ing condition to move away from the local optimum position thereby increasing the local

cost function. An iterative independent distributive MPC was implemented in a simulation

environment in [37]. An RC-equivalent gray-box model of a three zone building was used

as the simulation test bed. Regulators corresponding to each thermal zone minimized their

own local objective function to compute the optimal heating. Information of the predicted

temperatures over the horizon was exchanged between the regulators of the neighboring

thermal zones.

An alternative iterative setup called a cooperative distributive control was proposed in

[38] and [39] where all the subsystems minimize a single global objective function. In

order to achieve the global optimal solution, however, each regulator requires the model of
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every other component in the system, and every iteration requires communication of the

future optimal control set and states. In [40] a method called as Neighbor Communication

Optimal method (NC Opt) to reach the global optimal solution was proposed. The method

uses an iterative independent distributed approach. The authors were able to show that by

judiciously designing the objective function of each component a global optimal solution

in steady state can be achieved by exchanging information between regulators of neigh-

boring subsystems. Each subsystem solves its own objective function. The cost function

of the local subsystems is modified to include penalites based on how the output of the cur-

rent local subsystem affects its neighbor. This method vastly reduces the communication

burden of the conventional cooperative distributed algorithms.

The authors in [40] showed that a Pareto optimal solution can be obtained in steady

state by judiciously designing the objective function of each component. In this disserta-

tion, the algorithm proposed in [40] is adopted to apply dynamic MPC with a distributed

control architecture. Chapter 5 of the dissertation provides the results of applying MPC

with the distributed architecture on a high fidelity simulation model of an office building.

Simulation results are compared with that of centralized MPC.

1.5 Organization of Dissertation

The remainder of the dissertation is organized as follows. Chapter 2 describes the phe-

nomenon of hunting in building HVAC systems. The results of a survey are presented

which shows the widespread nature of the phenomenon. An automated modeling al-

gorithm is proposed and verified to detect hunting in real time. An alternative control

architecture is offered as a solution along with a simulation example showcasing how

the architecture can reduce the occurrence of hunting. Chapter 3 proposes an automated

black-box modeling algorithm. The algorithm is then verified using data from BEMS of

a real office building. Simulations of a high fidelity model of the office building are per-
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formed where MPC uses the models developed from the proposed algorithm. Three types

of black-box approaches are compared both in their prediction accuracy and their ability

to be used in model-based control such as MPC. Chapter 4 provides a comparison of two

types of control methodologies, the traditional PI-type control, and MPC. A description of

the simulation environment used for the comparison, and the steps taken by MPC is also

presented. Chapter 5 provides a description of an alternative control architecture through

which MPC can be applied on building HVAC systems. A comparison of the performance

achieved by the two types of control architectures in a simulation environment are also

presnted. Conclusions and recommendations for future work are provided in Chapter 6.
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2. UNDESIRED OSCILLATIONS IN HVAC SYSTEMS

1 Some of the reasons for suboptimal performance of HVAC systems using conven-

tional PI-type control algorithms were introduced in the previous chapter, undesired oscil-

lations or hunting, the decentralized architecture, and lack of planning for future operating

conditions. This chapter seeks to address one of those reasons for the inefficient operation,

specifically undesired oscillations or hunting of HVAC components.

The chapter is organized as follows. First, a discussion of the probable causes for

hunting is provided, followed by a methodology for identifying hunting in real-time. The

algorithm is then applied to data obtained from the BEMS of 10 buildings at the Texas

A&M university campus. The results of a survey documenting the prevalence of hunting

in those buildings is provided. Finally a solution to the problem of hunting is offered in the

form of an alternative control architecture, called cascaded control. A simulation example

demonstrating how cascaded control can reduce hunting is also provided. The chapter is

a summary of the joint work that was performed by the author and Christoper Price [5],

[41]. From the aforementioned topics included in the chapter, the unique contribution of

the author comprises the algorithm to identify the presence of hunting from real-time data,

and the survey of HVAC components to show the prevalence of hunting in buildings.

2.1 Undesired Oscillations or Hunting

Most buildings employ PI-type control for HVAC systems, mainly due to the simplicity

of its implementation [42]. The control outputs are easy to compute, and the data required

for computation are easily obtained. HVAC systems, however, are time varying and in-

herently nonlinear. For example, consider the relationship between the steady state value

1Part of the data reported in this chapter is reprinted with permission from "Identification and elimination
of hunting behavior in HVAC systems," by Chintala,R., Price, C., & Rasmussen, BP., 2015. ASHRAE
TRANSACTIONS, 121, 294, ©2015 ASHRAE TRANSACTIONS.
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of room temperature and the damper of the Variable Air Volume (VAV) box serving the

room. Figure 2.1 shows the rate of change of the steady state value of the the temperature

of room i (Ti) per percentage change in the damper position (δTi/δDi), as a function of

the damper position Di. As is evident from the figure, the steady state gain δTi/δDi is

much higher when the damper opening is small compared to when the opening is large.

In the traditional control architecture, damper position is regulated by PI control to

track a given room temperature setpoint. The gains of the PI controller are generally

designed for a fixed operating condition. If these design conditions correspond to when

the damper opening is large, the PI gains would tend to be high as more control effort

is needed to make a change in the steady state value of the room temperature. Over the

course of normal operation, however, operating conditions change and the large PI gains

may cause the measured temperature to oscillate about the set point temperature instead of

accurately tracking it. The oscillations of the measured temperature in turn results in the

oscillations of the damper position as it is dependent on the error between the measured

and reference temperatures. These undesired oscillations in the output and input under

non-design conditions are called hunting.

The example above showed how inherent nonlinearity in the system components can

cause hunting. In addition to process nonlinearity, hunting can occur due to degradation in

components such as valve stiction [43]. Thus presence of hunting can also be an indication

that some of the system components may have to be replaced.

Other than nolinearity, there are several other causes of undesired oscillations in build-

ing control loops such as improper control tuning, oscillating disturbances or oscillations

in neighboring control loops etc. For example, in the example above oscillations in the

VAV damper due to high PI gains causes an oscillation in the measured room tempera-

ture. A cooling demand is generally calculated as a function of the error between the

measured and reference room temperatures. The cooling demand is used in the calcula-
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Figure 2.1: Volume Flow Rate as a Nonlinear Function of Damper Position

tion of the AHU discharge air temperature. Oscillations in measured room temperature

may cause oscillations in the cooling demand calculation which in turn cause oscillations

in the CHW valve of the AHU which regulates the discharge air temperature. The ex-

ample shows how oscillations in one control loop can cause oscillations in another. Such

oscillations are undesirable since they result in increased energy consumption such as in

fans, component wear and tear in valves and dampers, and unsatisfactory performance in

regulating the desired signals.

2.2 Detecting the Presence of Hunting

As is stated in the previous section, hunting causes increased energy consumption, and

wear and tare of components of valves and dampers. In addition, hunting also results in

poor control performance. Hunting causes oscillations in the value of the output thereby

not tracking the assigned set point value accurately [44]. Hence preventing the occurrence

of hunting is essential for a more efficient operation of building HVAC systems.
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The first step in reducing the occurrence of hunting, however, is to detect its presence.

Building HVAC systems contain hundreds of control loops and components that may be

susceptible to hunting. Individually monitoring each of theses components is infeasible.

Several methods of detecting oscillations have been presented in literature [43], [44],[45],

[46]. A brief discussion of one of these methods is provided below.

Detection of hunting requires more than just checking for the presence of oscillations.

Not all oscillations in control loops and the components involved are undesired. Some

oscillations may occur due to the presence of oscillating disturbances which would require

the control actions itself to be oscillatory. For example, the cooling load on buildings is

influenced by outside weather conditions which for the most part are oscillatory with a

time period of one day. The algorithm for detecting hunting should be able to distinguish

between oscillations which are necessary to meet the objectives of the control system, and

the undesired oscillations or hunting behavior.

The available literature on hunting mostly deals with process industries. The principal

obstacles of detecting undesired oscillations in process industries is the fact that the fre-

quency of oscillations vary widely, and the oscillations are not necessarily sinusoidal. In

[43], Hagguland proposed a simple online oscillation detection algorithm to identify the

undesired oscillations in control loops in process industries. The algorithm proposed by

Hagguland is mainly used to detect the presence of stiction in valves. Hagglund argues

that in process industries, PI controllers are conservatively tuned, and is unlikely for poor

controller tuning to cause hunting. The oscillations due to stiction in valves correspond to

low and mid range frequencies. The undesired oscillations are thus detected by placing an

upper and lower bound on the frequencies of oscillations of a certain aspect of the oper-

ation. The frequencies of oscillations within these bounds are identified as hunting. The

steps taken by Hagglund to detect these frequencies is provided below.

In order to detect the oscillations, the algorithm looks at the behavior of the control

40



error e(t) defined in Equation 2.1

e(t) = yr(t)− ym(t) (2.1)

where yr(t) is the reference signal, and ym(t) is the measured output at time t. The error

signal is first used to compute an Integrated Absolute Error (IAE) denoted by Ie , which is

the integral of the error signal between two successive zero crossings as shown in Equa-

tion 2.2

Ie =

∫ ti

ti−1

e(t)dt (2.2)

where ti−1 and ti correspond to the time instances of the zero crossings.

The algorithm then looks into two aspects of IAE to determine whether there are unde-

sired oscillations in the control loop, namely, the amplitude and frequency. If the control

performance is good, then the time elapsed between successive zero crossings of the error

signals is small thereby resulting in a small amplitude of IAE. A threshold value denoted

by I lime is selected, and a load disturbance is said to have occurred whenever the IAE is

greater than the threshold, i.e. Ie > I lime . I lime also serves as an upper bound on the fre-

quencies of oscillations detected by the algorithm. When the frequency of oscillation is

high, there is less time elapsed between the zero crossings resulting in a smaller IAE value.

Hence, high frequency oscillations which have an IAE value less than I lime are excluded.

The second aspect that the algorithm looks at is the frequency of the load disturbances.

As stated in the preceding paragraph I lime places an upper bound on the frequency of

load disturbances. In addition to the upper bound, a lower bound is also placed on the

frequency of load disturbances. This is done by selecting another design parameter nlim

which sets the lower threshold of the number of load disturbances that need to occur over
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an observation period Tobs before the oscillations can be classified as hunting.

The simplicity of the algorithm lies in the fact that it requires just two parameters to

be specified by the user. The user just needs to determine the range of frequencies which

could possibly occur due to the presence of stiction in valves.

2.2.1 Hunting in Building HVAC Systems

The previous section provided a description of how hunting can be identified in pro-

cess industries. The main obstacle in detecting hunting in process industries is that the

operations may be subjected to a wide range of frequencies, which makes it difficult to

distinguish between desired and undesired oscillations. This dissertation places a focus

primarily on the oscillations that are present in building HVAC systems. An argument is

made in this chapter that detecting hunting in building HVAC systems is much easier than

in process industries as they are not subject to a wide range of oscillating disturbances.

As is stated in Section 2.2, the hunting algorithm should be able to distinguish between

oscillations in the control loop due to load disturbances and the undesired oscillations.

Oscillations due to load disturbances are part of the control system design. The main

sources of load disturbances that occur in building HVAC systems are due to the changes

in outside weather conditions, and internal heat loads. Oscillating disturbances due to

outside weather conditions have a time period of 1 day, whereas internal heat loads due

to occupancy, equipment etc. are non-oscillatory in nature. Internal heat loads generally

contain large periods of constancy interspersed with step changes in values. Control loops

responding to these disturbances would also exhibit similar behavior.

Figure 2.2 shows oscillations of the fan speed and the CHW valve of an AHU serving

one of the buildings at the Texas A&M University campus. As is evident from the figure,

the CHW valve and fan speed oscillate with two distinct frequencies. The time period

corresponding to the fan speed oscillations is 1 day and the time period corresponding
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to the CHW valve is approximately 1 hour. The oscillations in fan speed occur in order

to meet the cooling demands of the building which oscillate at the same frequency of 1

day due to external weather. There are however, no load disturbances that oscillate with

the frequency corresponding to the CHW valve. These oscillations are thus most likely a

result of hunting behavior.

Figure 2.2: Oscillations Showing Fan Speed and CHW Valve Having Different Frequen-
cies

2.2.2 Algorithm to Detect Hunting in Building HVAC Systems

In this chapter, a simple algorithm is proposed which detects the presence of the hunt-

ing in building HVAC systems. There are two aspects which make the algorithm much

easier than the one proposed by Hagguland in [43] for detecting hunting in process indus-

tries. First, the distinct nature of the frequency of the load disturbances makes it easier to

separate the desired and undesired oscillations. Secondly, the algorithm uses just the mea-

sured values of the process variables, instead of using the error function as was proposed

by Hagguland in [43] which would require that the set point values of the variables also

be recorded by the BEMS.
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The proposed algorithm looks into two aspects of the process variable being studied in

order to determine whether the oscillations corresponding to it constitute hunting, namely,

the amplitude and frequency. There are three criteria based on the amplitude and frequency

of oscillations that are placed by the hunting detection algorithm. First, the peak-to-peak

amplitude of the oscillations should be greater than a certain design valueAlim. If the peak-

to-peak magnitude of the oscillation is less than Alim then the oscillations are considered

to be negligible for the purpose of detecting hunting. The second criteria is that there

needs to be a minimum number of oscillations nlim in a certain observation period Tlim

for the oscillations to be detected by the algorithm. This criteria is included to eliminate

oscillations due to random disturbances such as occupancy. The third and final criteria for

the algorithm to detect hunting is that the frequency of oscillation fosc must be greater than

1
day

. A detailed description of the algorithm is provided as follows.

The first step of the algorithm is the introduction of three iteration variables, namely,

ihunt which is the index of the starting point of the data set being investigated for hunt-

ing, iosc which is the index for the starting point of a subset of the data being studied

for the presence of oscillations, and j which is the index of the current data point being

investigated. All three iteration variables are initialized to 1.

In the second step of the algorithm, four more variables are initialized, Amax = 0,

Amin = 0, nosc = 0, and nsgn = 0. The variables Amax and Amin keep track of the

maximum and minimum value of the process variable in the subset which is being studied

for the detection of an oscillation. After the detection of the oscillation, the variables

are reset to 0. The variable nosc keeps track of the number of oscillations that have been

detected in the observation period Tobs. The variable nsgn keeps track of the number of sign

changes in the process variable. The value of nsgn is reset to 0 every time an oscillation is

detected.

The algorithm then proceeds by determining the sign (positive or negative) of the
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change in the value of the process variable between two successive time instances. The

sign corresponding to the current time instant j is determined by the variable Snew =

Yj+1 − Yj and the sign corresponding to the previous time instant j − 1 is stored in the

variable Sold = Yj − Yj−1. The symbol Y represents the process variable being studied,

and the subscript j denotes the time step. A sign change is said to have occurred if Snew

and Sold have opposite signs. When a sign change occurs the value of the variable nsgn is

incremented by 1.

An oscillation constitutes three sign changes. Hence when the value of nsgn is 3, an

oscillation is said to have occurred. When detecting a new oscillation, the time step at

which the first sign change occurs is assigned to the variable iosc. If j is the index of the

data point at which nsgn is incremented to 3, then all the data points from the index iosc to

j are considered to be part of the oscillation. The value of the variables Amin and Amax

are assigned the maximum and minimum values of the process variable in the time span

between iosc and j. If the peak-to-peak amplitude is greater than the threshold value Alim,

then the oscillation is considered significant and the variable nosc is incremented by 1.

When the number of oscillations detected is equal to 2, then the algorithm checks if the

2 oscillations occurred within the observation period Tlim. If yes, then hunting is said to

have occurred, and all the data points within the two oscillations (ihunt to j) are included

in the set of data points constituting hunting. When the next sign change occurs, the index

ihunt and iosc are assigned the value j corresponding to the data point under consideration.

If the second oscillation is detected after Tlim, however, hunting is not said to have

occurred yet. The variable ihunt is assigned the index corresponding to the start of the next

oscillation. The process continues till the entire data set is analysed.

A summary of the steps taken to detect the algorithm is provided below. Figure 2.3

contains a schematic representation of the algorithm.
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• Step 1: Initialize ihunt = 1, iosc = 1, j = 1.

• Step 2: Initialize Amax = 0, Amin = 0, and nosc = 0.

• Step 3: Compute the variables used in the detection of sign changes in the difference

of successive values of the process variables.

Sold =Snew

Snew =Yj+1 − Yj
(2.3)

• Step 4: Check if Sold and Snew have the same sign. If they have a different sign then

increment the value of the variable nsgn as shown below.

nsgn =


nsgn (Sold > 0 && Snew > 0) || (Sold < 0 && Snew < 0)

nsgn + 1 (Sold < 0 && Snew > 0) || (Sold < 0 && Snew > 0)

(2.4)

• Step 5:: If the number of sign changes = 3 then an oscillation is said to have oc-

curred. The peak-to-peak value of the oscillation is computed by determining the

maximum and minimum values of the process variable in the oscillation as shown

below.

Amax =


Amax nsgn < 3

max{Y (iosc), Y (iosc + 1), ..., Y (j)} nsgn = 3

(2.5)

Amin =


Amin nsgn < 3

min{Y (iosc), Y (iosc + 1), ..., Y (j)} nsgn = 3

(2.6)

• Step 6: Increment the number of oscillations if the peak-to-peak value of the oscilla-

tion is greater than the threshold. If an oscillation has occurred but the peak-to-peak
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value is less than the threshold then reset the value of the iteration variables iosc and

ihnt as shown below.


nosc = nosc + 1 Amax − Amin > Alim && nsgn = 3

iosc = j, ihunt = j Amax − Amin < Alim && nsgn = 3

Amin = 0, Amax = 0 Amax − Amin < Alim && nsgn = 3

(2.7)

• Step 7: If 2 oscillations occur within the observable time period Tlim then hunting is

said to have occurred, and the hunting data set Yhunt is augmented as shown below.


Yhnt = [Yhnt, {Y (ihnt), Y (ihnt + 1), ..., Y (j)}] nosc = 2 && t < Tlim

ihunt = iosc, iosc = j nosc = 2 && t > Tlim

Amin = 0, Amax = 0, nosc = 1 nosc = 2 && t > Tlim

(2.8)

• Step 8: Increment the iteration variable j = j + 1. Repeat steps 3 through 8, until

data set is analyzed.

Figure 2.3: Flow Diagram Showing the Application of the Hunting Algorithm
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2.2.3 Application of the Algorithm on Real Building Data

A description of the proposed algorithm to detect hunting in real time for process vari-

ables corresponding to building HVAC systems is provided in the preceding subsection.

In this subsection, the algorithm is applied on data obtained from BEMS of a real build-

ing. The process variable on which the hunting algorithm is applied is the CHW valve

opening. The BEMS sensors sample data once every 15 minutes. CHW valve data was

collected for a period of 20 days. The two design parameters of the algorithm Alim and

Tlim are assigned the values 15% and 2 hours, respectively. Figure 2.4 shows the results of

applying the algorithm. The hunting algorithm identifies the times when oscillations with

a peak-to-peak magnitude of greater than 15% occur.

Figure 2.4: Results of Applying the Algorithm on CHW Valve Opening Data Sampled
Once Every 15 Minutes
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Figure 2.5: CHW valve Opening Data Sampled at 1 Minute and 15 Minute Intervals

The preceding paragraph shows the results of applying the data that is sampled at 15

minute intervals. A slow sampling rate may lead to aliasing of the property being mea-

sured. A 15 minute sampling rate may not be able to completely capture the dynamics of

a higher frequency due to aliasing. In order to determine whether the proposed algorithm

can identify the presence of hunting when the sampling frequency is high, a comparison is

made between the results obtained by applying the algorithm on two data sets measuring

the same process variable but with different frequencies. The CHW valve opening of an

AHU is sampled at 1 minute intervals for a duration of 4 days. Another set of data was

created by taking every 15th data point of the data set sampled at 1 minute. Figure 2.5

shows the CHW opening data corresponding to sampling rates of 1 minute and 15 min-

utes. The hunting algorithm is applied to both sets of data. The design parameter Alim
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Figure 2.6: Results of Applying the Hunting Algorithm on CHW Valve Opening Data
Sampled at One Minute and 15 Minute Intervals

for both sets of data is assigned 15%, and the parameter Tlim is assigned a value 2 hrs for

the data sampled at 15 minute intervals, and 8 minutes for the data sampled at one minute

intervals. The values 2 hrs and 8 minutes both correspond to 8 sample steps of their respec-

tive data sets. Figure 2.6 shows the periods of operation where hunting is identified by the

algorithm in the one minute and 15 minute sampling data. Although, the 15 minute data

does not capture all the dynamics of the oscillation, the algorithm is still able to identify

the periods of time when hunting is observed.

In order to demonstrate how hunting in one control loop can cause hunting in another

control loop, the alogrithm is applied on data collected over period of 60 days of two

process variables, the average damper opening of the VAVs of all rooms, and the AHU fan
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Figure 2.7: Fan Speed and Average Damper Opening Data Sampled Once at 15 Minute
Intervals

speed. Figure 2.7 shows a 10 day period of the data of the fan speed and average damper

opening. Figure 2.8 shows the results of applying the algorithm on the fan and damper

data. As is evident from Figure 2.8, the periods of time for which the hunting is observed

is same for both the process variables.

2.3 Survey of Hunting Behavior in Campus Buildings

In the previous section, a simple algorithm for the detection of hunting in building

HVAC systems in real time is proposed. The algorithm is then verified by applying it on

CHW opening data sampled at different frequencies. A demonstration is also made to

show that due to the interconnected nature of HVAC systems, hunting might be present

simultaneously in several control loops. In this section the results of a survey that was
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Figure 2.8: Fan Speed and Average Damper Opening Data Showing the Occurrence of
Simultaneous Hunting

performed to determine the prevalence of hunting in building HVAC systems are provided.

Ten buildings of the Texas A&M University campus were selected for the purpose of

the survey. From among the several components corresponding to the HVAC systems of

the buildings being studied, AHUs are selected as they are the primary source for provid-

ing conditioned air to all the building zones. Presence of hunting phenomenon in AHUs

probably indicates hunting in other components of the HVAC system. A schematic of the

AHU serving the buildings is provided in Figure 2.9. AHUs take in a mixture of outside air

and return air with the help of a pressure differential that is created by the AHU fan. The

mixed air passes through a heat exchanger that uses CHW for conditioning. The amount

of CHW used for cooling is regulated by a CHW valve. The hunting algorithm is applied

52



Table 2.1: Prevalence of Hunting in Fans in Buildings

Building Number of Number of Fans % Duration for which
Number Fans Observed Exhibiting Hunting Hunting was Observed

1 3 1 11
2 10 0 –
3 2 0 –
4 1 1 23
5 3 0 –
6 2 0 –
7 2 0 –
8 8 7 6-26
9 6 0 –

10 3 0 –

Table 2.2: Prevalence of Hunting in CHW Valves in Buildings

Building Number of Number of Fans % Duration for which
Number Fans Observed Exhibiting Hunting Hunting was Observed

1 3 2 6-19
2 10 10 33-78
3 2 2 6-7
4 1 1 27
5 5 4 7-31
6 6 2 12-39
7 2 0 –
8 8 6 7-12
9 6 5 14-31

10 3 0 1–

to two of the process variables of the AHU, the fan speed, and the CHW valve opening.

Data sampled at 15 minute intervals were collected for two of the process variables

corresponding to the AHUs serving the buildings, the AHU fan speed, and the AHU CHW

valve. The algorithm is applied on the collected data to determine the number of com-

ponents that exhibit hunting, and also the percentage duration for which the phenomenon
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Figure 2.9: Schematic Representation of a Typical AHU

is observed. Tables 2.1 and 2.2 show the results of the survey of AHU fans and CHW

valves, respectively. The results of the survey show that 70% of the CHW valves exhibited

hunting for 6% to 78% of the time, and 22% of the fans studied exhibited hunting for 6%

to 26% of their operation time. The results indicate that hunting is a widespread problem

and that measures to minimize the occurrence of hunting have a significant potential to

improve HVAC operations and reduce energy.

2.4 Cascaded Control Strategy

The previous section provided the results of a survey that demonstrated the widespread

nature of the problem of hunting in building HVAC systems. This section is a summary of

the contribution by Christopher Price which was performed as part of a joint work along

with the author in [5]. A solution to the problem of hunting is proposed in the form of

an alternative control architecture to the traditional feedback control, called as cascaded

control. The cascaded control architecture is applied on a simulation model of an AHU to

demonstrate its capacity to reduce the phenomenon of hunting.

Cascaded control architectures have been shown to reduce the phenomenon of hunting
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in building HVAC systems [47]. In [47] Elliot and Rasmussen demonstrated that the cas-

caded control architecture reduces hunting in Vapor Compression Cycle (VCC) systems.

The first step in VCC is to pass the refrigerant used for cooling through an expansion valve

that causes an abrupt change in pressure. The refrigerant which was initially in gaseous

phase converts into a cool two-phase liquid. The two-phase liquid is then passed through

the evaporator where through the process of forced convection provides the necessary

cooling to the liquid to be cooled. The heat transfer process is most efficient when the re-

frigerant is transformed from the liquid phase to vapor phase. Minimizing the refrigerant

superheat (SH) by the expansion valve would result in a more efficient operation, however,

the refrigerant may enter the compressor in liquid phase which is undesirable. Two sources

of nonlinearity exist while regulating the expansion valve, the relationship between the re-

frigerant mass flow rate, and the super heat dynamics which vary drastically with operating

conditions. The presence of these nonlinearities result in a well documented phenomenon

of hunting in VCC systems.

Figure 2.10: Block Diagram Representation of VCC Cascaded Loop

In [47], the authors show that implementing a cascaded control architecture can elim-

inate the phenomenon of hunting in VCC systems. The cascaded control architecture in

this section is explained with the help of the VCC system. The cascaded control architec-

ture corresponding to the VCC system is shown in Figure 2.10. As is shown in the figure,
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the cascaded control loop comprises a fast inner loop, and a slow outer loop. The inner

loops comprises a proportional gain K, and the outer loop is a PID controller C(s). The

transfer function corresponding to the faster inner loop is shown in Equation 2.9

Q(s) =
K ·Ψ(ν) ·G2(s)

1 +K ·Ψ(ν) ·G1(s)
(2.9)

where Ψ(ν) represents the nonlinear relationship between the vavlve position and the mass

flow rate of the refrigerant of the VCC system, G1(s) represents the transfer function

between the mass flow rate of the refrigerant and the superheat temperature TSH , and

G2(s) represents the transfer function between the pressure Pset and TSH . The equation

shows that the nonlinear characteristics of the valve Ψ(ν) appears both in the numerator

and denominator of the inner loop transfer function. If the magnitude of the inner loop

proportional gain K is sufficiently large, then the transfer function Q(s) approaches 1 as

shown in Equation 2.10.

lim
K→∞

Q(0) = 1 (2.10)

Since the transfer function of the inner loop approach a constant steady-state value as the

magnitude of the proportional gain K is increased, the dynamics as seen by the outer

loop become linear. As the inner loop dynamics become linear the system behaves in a

similar fashion under varying operating conditions, thereby, reducing the phenomenon of

hunting. A simulation example is provided in the following section where cascaded control

is applied on an AHU model to eliminate the occurrence of hunting in CHW valves.

2.4.1 Cascaded Control on an AHU Simulation Model

Before providing the simulation results of applying the cascaded control architecture,

a brief description of the AHU model is provided. Warm air passes through a finned heat

exchanger. The heat exchanger is supplied with CHW with a mass flow rate of q(δ) where
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Figure 2.11: A Schematic of the AHU Heat Exchanger Simulation Model

δ is the valve position. CHW cools the warm air through a process of forced convection.

The dynamics of the heat exchanger are modeled using a finite volume approximation

which uses the model of a single row cooling coil proposed by Zhou in [48]. The tubing is

divided into N sections, and the discharge air at the end of each finite volume is calculated

with the help of the coil-side and water-side equations shown in 2.11.

Cw ·
∂Tw
∂t

+ cp,w · q(δ) ·
∂Tw
∂x

+ kw(Tw − Tc) = 0

Cc ·
∂Tc
∂t

+ κ(Tc − Ta,in) + κ(Tc − Tw) = 0

Ta,out = Ta,in + εa · (Tc − Ta,in)

(2.11)

In the equations above, Cw and Cc are the heat capacities of the water and coil surface,

respectively, cp,w is the specific heat capacity of water, and Tw and Tc are the water and coil

surface temperatures, respectively. The variables Ta,in and Ta,out refer to the inlet and out-

let temperature of the air at the finite volume. The heat transfer coefficient εa is computed

using an NTU method, and the thermal conductivities κ of the air and water are a function

of the inner tube diameter and heat transfer effectiveness. A more detailed description of

the AHU cooling coil model is provided in [41]. Figure 2.11 shows a schematic of the

AHU heat exchanger model.

The AHU model described above is used to run several simulations to demonstrate
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Figure 2.12: Response Characteristics of the AHU Heat Exchanger Under Different Mass
Flow Conditions

the nonlinear characteristics of the relationship between chilled water valve position and

the discharge air temperature. The simulations vary in the mass flow rate of the air that

passes through the AHU heat exchanger. The mass flow rates are varied from 10-90 %

of the maximum flow. The inlet temperature of the mass flow rate of the air is set at

720C. The change in the discharge air temperature for a negative step change in CHW

flow rate is recorded. The same step change in CHW flow is applied to all the simulations.

Figure 2.12 shows how the steady state gain of the change in discharge air temperature per

unit decrease in CHW flow rate changes with the mass flow rate of the air. As is evident

from the figure, the largest steady state gain is 30 times the smallest gain. Figure also

shows the time constant of the heat exchanger dynamics associated with each simulation.

The largest time constant is about 12 times the shortest. Due to the nonlinear nature of the

heat exchanger dynamics, the performance of a PI controller used to regulate the discharge

air temperature would heavily depend on the operating condition. The variations in the

operating conditions thus results in hunting phenomenon.

A cascaded control loop architecture is then applied to the simulation model to regulate

the discharge air temperature. A schematic showing the application of cascaded control

on the AHU heat exchanger is shown in Figure 2.13. The simulations are run with the

discharge air temperature set at 570F . Outside air conditions and mass flow rate of the inlet
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Figure 2.13: Flow Diagram Showing the Cascaded Control Loop to Regulate Dsicharge
Air Temperature

Figure 2.14: Simulation Results Showing the Discharge Air Temperature Using Different
Controls

air are varied based on measurements made by the BEMS of an office building between

6 AM and 6:30 PM on 5/21/2014. Simulation results are shown in Figure 2.14. For
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Table 2.3: Simulation Results Corresponding to Low Demand PI, High Demand PI, and
Cascaded Control

Metric Low Demand PI High Demand PI Cascaded
RMS 0.2490F 0.0620F 0.0890F
MAE 1.230F 0.550F 0.730F

Total Valve Travel 214 999 474
Hunting No Yes No

comparison purposes, simulations are also run with PI controllers which are tuned under

high demand and low demand conditions. The figure shows that the simulations which

are run with a PI controller tuned for high demand conditions exhibits hunting behavior

with a magnitude of 5-15% during times when the chilled water demand is low. The

simulations which are run with PI controller tuned under low demand conditions exhibits

no hunting, but shows poor control performance. The cascaded controller provides the

most consistent performance of the three controllers. Table 2.3 shows the Root Mean

Squared Error (RMS), Maximum Absolute Error (MAE), and total travel time associated

with each type of controller.

2.5 Conclusion

Hunting is one of the aspects of improper functioning of building HVAC components

that may result in suboptimal performance and increased energy costs. Detection is the

first step that should be taken in tackling this problem. A simple detection algorithm for

the presence of hunting is presented in this paper. The detection is performed by using only

the measured value of the process variable being observed and does not require that the set

point values be recorded. The algorithm makes use of the fact that the oscillations, which

are part of the control design of the HVAC components, have much smaller frequencies

than those caused by variations in outside weather conditions.

Using the detection algorithm, a survey was performed on the AHUs of 10 buildings
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at Texas A& M University finding that 70% of the CHW valves for 6% to 78% of the

time, and 22% of the fans studied exhibited hunting for 6% to 26% of their operation time.

It was also observed that due to system interconnections, hunting was observed in more

than one subsystem associated with the same AHU during the same time periods. The

survey demonstrates that hunting is a significant problem in building HVAC components,

and reducing its occurrence would allow for significant improvements in performance and

reducing costs.

A cascaded loop architecture is proposed in this chapter to deal with the nonlinearities

inherent in the HVAC system dynamics and reduce the occurrence of hunting. Simulation

using a finite volume model of AHU forced convection dynamics were able to reproduce

the hunting behavior identified in a majority of units found on the campus of Texas A&

M University. Large variations in system steady-state gains and time constants as well as

nonlinearities due to heat transfer combine to cause oscillatory behavior in chilled water

valves. These changing gains make performance of static PI controllers heavily depen-

dent on conditions during controller tuning. The cascaded loop architecture successfully

eliminates hunting behavior in simulation while providing consistent performance across

all operating conditions. By reducing total actuator travel, component lifespan will be

lengthened. Consistent performance means that HVAC technicians will not be required to

re-tune control loops seasonally thus substantially reducing service overhead. Overall, the

cascaded approach offers a cost savings approach that eliminates undue ware on system

actuators while eliminating the need for seasonal tuning of PI control loops. Also because

implementation only involves the addition of one standard proportional control loop, the

cascaded approach is readily implementable in the HVAC field.

Future research in this area will include the implementation of the cascaded loop on

real building systems including some of those surveyed in this paper. Real cost savings

and performance associated with this control strategy will be recorded and compared with
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traditional PI control. Tuning methods for the cascaded loop will also be investigated in

terms of effective procedures for optimal performance. Application of the cascaded ap-

proach will also be investigated in other HVAC systems due to similar nonlinear behavior.

Control problems such as VAV damper or fan speed control display the same condition

dependent behavior and will benefit from cascaded loop control.
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3. BLACK-BOX LINEAR SYSTEM IDENTIFICATION OF

BUILDING HVAC SYSTEMS

In Chapter 1 of the dissertation, three reasons for inefficient operation of traditional

control practices in building HVAC systems were introduced. The first reason is the im-

proper tuning of the gains of the PI-type controllers. One of the consequences of improper

tuning is the phenomenon of hunting. The preceding chapter provided the results of a

survey that showed the widespread nature of the hunting phenomenon in buildings, and

also offered a solution in the form of an alternate control architecture, namely cascaded

control. A simulation example was provided that demonstrated how the cascaded control

architecture has the potential to reduce the amount of hunting.

The second reason for inefficient operation is that there is no optimization performed

at the global level. This is due to the decentralized nature of the control architecture

employed. In decentralized control each component is actuated to a setpoint value which

is determined without consideration of its effects on the neighboring subsystems. For

example, consider the chilled water (CHW) discharge temperature setpoint assigned to the

chiller system. Whilst a higher setpoint temperature leads to a more efficient operation of

the chiller, it also results in increased pump energy use to satisfy the cooling demands of

the building. The chiller systems are commonly designed to provide full cooling load at

around 420F [49]. Building operators generally fix the CHW setpoint temperature at 420F

to reduce the pump energy consumption and meet the building cooling load requirements.

This leads to inefficient operation as the cooling load requirements are below the maximum

for most of the time. Varying the CHW setpoint temperature based on the cooling load

requirements would allow for a more efficient operation.

The third reason for inefficient operation is the lack of planning for future operating
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conditions. For instance, say the occupancy of a room in the building starts at 8:00 am.

The PI-type control methodologies employed in most buildings begin cooling the room

from 8:00 am. Due to the thermal inertia of the walls,floor etc., however, the temperature

of the room does not reach the desired temperature until some time after. This results in

an initial period of time where the occupant thermal comfort needs are not met. If the

occupancy schedule of the building is known in advance, strategies such as precooling the

building can reduce these periods of discomfort.

The second and third reasons for inefficient operation described in the preceding para-

graphs can be addressed by using more advanced control algorithms such as MPC. One of

the biggest challenges of implementing MPC, however, is the development of models that

can accurately predict the behavior of building HVAC systems with computational require-

ments that would allow for real-time control. This chapter seeks to address this problem

by proposing an algorithm that automates the process of model development making the

implementation of MPC more feasible and scalable.

The remainder of the chapter is organized as follows. First, a discussion of the various

modeling approaches for building HVAC systems and the problems associated with each

approach is presented in Section 1. The discussion of the approaches is followed in Section

2 by a mathematical description of the modeling method that has been adopted. Section

3 then presents the proposed algorithm for automating the process of model development,

followed by a verification of the algorithm by using data obtained from a real working

office building. Since the primary purpose of model development in this dissertation is the

application of model-based control, the proposed algorithm is verified by applying MPC

on a high fidelity simulation model of the office building in Section 4. The chapter ends

with a summary and analysis of the results obtained from the simulations in Section 5.
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3.1 Introduction

The modeling methods available in literature can be broadly be classified as white-

box, gray-box, and black-box methods. The modeling methods differ in the amount of

information required to develop them, and the computational burden required for their

simulation and prediction of outputs. Figure 3.1 shows the different modeling approaches

available in the current literature.

Figure 3.1: Modeling Approaches for Building HVAC Systems in Literature

3.1.1 White-Box Modeling Method

White-box models are developed from a detailed understanding of the underlying

physics. They provide the most accurate descriptions of the thermal dynamics of the

buildings. There are two reasons, however, as to why white-box models are not suit-

able for application of MPC on real building systems. Firstly, the accuracy of the models

is contingent on the accuracy of the information required to develop them. In addition,
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the information required, is not easily available. For example, the EnergyPlus white box

models require information such as building material, building area and dimensions, place-

ments of doors and windows, insulation levels, etc., which are not easy to obtain.

Secondly, the simulation of white-box models is computationally intensive. This makes

the implementation of MPC infeasible for the following reason. Consider a solution

space which includes the set of all possible values of the control setpoints that need to

be optimized. For example if there are n control setpoints represented by the vector

U set = [uset1 , uset2 , ..., usetn ], then the solution space is n-dimensional. Each point in the

solution space represents a control setpoint vector with unique set of values. The ob-

jective of MPC is to determine the optimal point Umpc ∈ U set that minimizes a certain

objective function Jmpc. White-box models do not provide any simple analytical relation-

ship between the objective function Jmpc and the control setpoint vector U set. Hence the

standard mathematical optimization tools cannot be used to compute Umpc. Optimization

using white-box models can be performed, however, by running simulations correspond-

ing to each point in the solution space, and selecting the control input set that results in the

least value of Jmpc. As the number of control inputs to be optimized increases, however,

such a method quickly becomes infeasible since the number of points to be tested grows

exponentially large with the increase in the number of inputs to be optimized.

3.1.2 Gray-Box Modeling Method

Gray-box models are a hybrid between white-box models which are built from first

principles of physics, and an empirical approach where the models are developed purely

from data obtained through Building Energy Management Systems (BEMS). In the gray-

box approach, building thermodynamics are represented by an equivalent Resistance-

Capacitance (RC) circuit. For example, the building walls and floors, and the room air

are treated as thermal capacitors and form the nodes of the circuit. The flow of heat from
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any two nodes, for instance between the room air and the room walls, or the room walls

and the outside air, is assumed to pass through a thermal resistor. The modeling approach

then entails the determination of the values of the resistances and capacitance through an

empirical process involving nonlinear regression. An example of an equivalent RC circuit

of a two-zone building is reproduced in Figure 3.2. In the figure C11 and C22, and C1a

and C2a are the thermal capacitance of the walls and air, respectively, of the two thermal

zones. The symbols R11, R22, R12, R1a, and R2a are the thermal resistances.

Figure 3.2: Schematic Showing an Equivalent RC Circuit for a Two Zone Building

There are again two reasons why the gray-box modeling method is not suitable for

the purpose of automating the process of model development of building HVAC systems.

Firstly, building the equivalent RC circuit requires a complete knowledge of the internal

structure of the rooms. The placement of the thermal resistors requires a knowledge of

how the rooms are located in relation to each other. The second reason for not using

the gray-box approach is that there are no standard regression methods available for the

determination for the values of the thermal resistors and capacitors.

3.1.3 Black-Box Modeling Method

Unlike white-box and gray-box models, black-box models are developed purely from

data. Outputs and inputs of the system to be modeled are first defined, followed by
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the identification procedure which involves determining a statistical relationship between

them. The growing use of BEMS that measure various aspects of the building HVAC sys-

tem such as room temperatures, flow rates, AHU discharge air temperature and pressure,

etc. makes the development of black-box models suitable for automating model develop-

ment. Due to the ease of development and the ability to automate and scale the process,

the black-box modeling approach is selected in this dissertation for the purpose of imple-

menting MPC.

Although black-box models are easy to develop, there are two inherent drawbacks

associated with the approach. Firstly, the data used to develop the models need to be

of a certain quality, i.e. the inputs and outputs need to be sufficiently perturbed for the

identification procedure to capture the dynamics of the system being modeled. Under the

normal course of building operation, the inputs might not be sufficiently perturbed for the

identification of a reliable model. Intentionally perturbing the inputs under experimental

conditions may not always be feasible.

Secondly, as the building HVAC system employs hundreds of components there exists

a high degree of collinearity between various subsystems. Since the black-box approach

is purely statistical, the identification process may result in a model that shows a causal

relationship between two subsystems with high collinearity but no interconnected dynam-

ics. For example, consider two rooms in a multi-zone building which are not physically

adjacent to each other. The two rooms may have high degree of collienarity as they may

share similar occupancy schedules, setpoint temperatures, etc. The black-box approach

may lead to a model that shows interconnected dynamics between the two rooms which

would be highly unlikely given that they are not neighbors.

In addition to the two problems mentioned above, there are two additional areas in

which the current literature on black-box modeling is lacking. Firstly, none of the papers

include both buildings and AHU with all of the details [28]. Most of the papers model only
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the room temperatures. Optimizing the building HVAC operation requires models of other

components such as the AHU fan, heat exchanger etc. Secondly, the model is developed

with little or no underlying physics. The predictions made by the model correspond to

a specific set of operating conditions under which the model has been trained. There is

no guarantee that the predictions made by the model would be accurate under a different

set of operating conditions. This generates a question that remains largely unanswered in

literature. Does a black-box model with good predictive properties translate into a good

model for control?

In this research an automated modeling algorithm is proposed that seeks to address the

aforementioned problems in the black-box approach and the shortcomings in the literature.

The modeling algorithm is first verified by showing good prediction properties on data

obtained from a real working office building comprising 11 rooms. The algorithm is then

verified for its usefulness in applying model-based control by applying MPC on high-

fidelity simulation models of the office building. A comparison of the predictive properties

and the MPC results of three different black-box approaches is also presented.

3.2 Black-Box Modeling Theory

The output being modeled by the black-box approach is generally continuous in nature

like room temperature, humidity etc. The sensors employed by BEMS, however, take mea-

surements at fixed intervals of time giving the output a discrete nature. The discrete output

is modeled as a function of the previously measured output and input values. For example,

sensors at an office building at the Texas A&M University campus in [50] measure room

temperatures, volume flow rates, discharge air temperature, and weather conditions. By

using the black-box modeling approach the room temperature at time instant t is expressed

as a function its past values, and the other aforementioned input values measured before t.

Not all the factors that influence the output being modeled are generally captured by
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BEMS sensor data. For instance in the above example where the room temperature is

being modeled, factors such as solar incidence, cloud cover, wind-driven infiltration, etc.

affect the output but are not measured by the sensors. In the black-box modeling approach

the unmeasured inputs are assumed to be stochastic in nature, generally Gaussian with

zero mean and variance 1. The modeling approach uses statistical tools to extract the

influence of these stochastic inputs from historical data. Thus the output modeled by the

linear parametric black-box approach is written as a linear function of deterministic and

stochastic inputs.

Based on the structure of the function used to describe the relationship between the

inputs and the outputs, the linear black-box modeling methods can be classified into two

categories, linear parametric and subspace identification as shown in Figure 3.1. A descrip-

tion of the underlying theory behind each of the two approaches is provided as follows.

3.2.1 Linear Parameteric Approach

As stated in the preceding section, the discrete-time output can be expressed as a sum

of deterministic and stochastic components as shown in Equation 3.1

y(t) = G(q)u(t) +H(q)e(t) (3.1)

where u is the deterministic input, e is the stochastic input, and G(q) and H(q) correspond

to the deterministic and stochastic transfer functions, respectively. The symbol q is a time

shift operator. For example, q−2y(t) refers to y(t − 2). The objective of the modeling

method is to determine the transfer functions G(q) and H(q).

In the linear parametric approach, the transfer functions G(q) and H(q) are expressed
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as rational functions of the time shift operator q as shown in Equation 3.2.

G(q) =
B(q)

F (q) · A(q)
; H(q) =

C(q)

D(q) · A(q)
(3.2)

The numerator and denominator functions A(q), B(q), C(q), D(q), and F (q) are polyno-

mials in the time shift operator q as shown in Equation 3.3

A(q) = 1 + a1q
−1 + a2q

−2 + ...anaq
−na

B(q) = 1 + b1q
−1 + b2q

−2 + ...bnb
q−nb

C(q) = 1 + c1q
−1 + c2q

−2 + ...cncq
−nc

D(q) = 1 + d1q
−1 + d2q

−2 + ...dnd
q−nd

F (q) = 1 + f1q
−1 + f2q

−2 + ...fnf
q−nf

(3.3)

where na, nb, nc, nd, and nf are parameters that determine the model order. Model order

is the determination of how many past values of the input or output that need to be con-

sidered. For example, consider nb which is the model order corresponding to input u. If

nb = 2, then the output at time instant t is influenced by two past input values, i.e, u(t−1)

and u(t− 2).

The discrete time output expressed in Equation 3.2 can be expressed using a subset of

the functions A(q), B(q), C(q), D(q), and F (q). Not all the functions need to be present

at the same time. Depending on which functions are selected to represent the output, the

parametric equation in 3.2 can be classified into different structures, with ARX, ARMAX,

Box-Jenkins (BJ), and Output Error (OE) being the most widely used. The model struc-

tures differ in how the deterministic and stochastic inputs affect the dynamics of the output.
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An example of the ARX model structure is shown in Equation 3.4.

y(t) =
B(q)

A(q
u(t) +

1

A(q)
e(t) (3.4)

In the ARX model structure, the deterministic and stochastic inputs are assumed to have

the same system poles. The linear functions used in building the ARMAX, BJ, and OE

model structures are shown in Table 3.1. The linear parametric approach for system iden-

Table 3.1: Polynomial Values for Different Model Structures

Model Structure Functions Used
ARX A(q), B(q)

ARMAX A(q), B(q), C(q)
BJ B(q), C(q), D(q), F (q)
OE B(q), F (q)

tification thus entails the process of first selecting the model order and structure, followed

by the parameters corresponding to it. For example, if the ARX model structure is selected

with model orders na and nb, then regression analysis is used to identify arx where arx is

the parameter set shown in Equation 3.5.

θarx = [a1, a2, ...ana , b1, b2, ..., bnb
]T (3.5)

The algorithm used to select the model order and structure is provided in Section 3.

The model parameters are computed by performing regression analysis between measured

outputs and the outputs predicted by the model. Before providing a description of the

regression analysis, the analytical relationship between the output predictions of the model

and the model parameters is presented below.
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3.2.1.1 One-Step-Ahead Prediction

A description of the symbols and notations used in the computation of the predicted

output is first provided. Let the current time instant be t, then a k-step-ahead predicted

output is denoted by ŷ(t|t+ k). The symbolˆis used to indicate a predicted value, and the

notation t|t+ k is used to indicate a k-step-ahead prediction made at time instant t.

If an assumption is made that y(s) and u(s) are known for s ≤ t, then the one step

ahead predicted value of the output ŷ(t|t + 1) can be expressed in terms of the trasnfer

functions G(q) and H(q) in Equation 3.2 as follows.

ŷ(t|t− 1) = H−1(q)G(q)u(t) + [1−H−1(q)]y(t) (3.6)

The derivation of the relationship shown above is provided in [51]. The one-step-ahead

predicted output corresponding to each of the four model structures studied in this paper,

can be obtained by expressing G(q) and H(q) in terms of the corresponding linear equa-

tions A(q), B(q), C(q), D(q), and F (q) substituting it in Equation 3.6. An example of the

one-step-ahead prediction corresponding to the ARX model is shown in Equation 3.7.

ŷ(t|t− 1) = B(q)u(t) + [1− A(q)]y(t) (3.7)

3.2.1.2 k-Step-Ahead Prediction

The preceding section provided a description of the one-step-ahead predicted value of

the output. For the application of MPC, the output predictions beyond just one time step

are required. An analytical relationship between a k-step-ahead predicted output and the

model structure functions A(q), B(q), C(q), D(q), and F (q) is difficult to derive. Hence,

in this chapter, the a k-step-ahead predicted output is obtained through an iterative process.
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The iteration equations corresponding to the ARMAX model structure are as shown below.

ŷt+1|t =B(q)u(t) + [1− A(q)]y(t) + [C(q)− 1]ε(t)

ŷt+2|t =B(q)u(t+ 1) + [1− A(q)]ŷt+1|t + [C(q)− 1]ε̂t+1|t

...

ŷt+np|t =B(q)u(t+ np − 1) + [1− A(q)]ŷt+np−1|t+

[C(q)− 1]ε̂t+np−1|t

(3.8)

In the iterative process shown above, the estimated value of the stochastic input ê is com-

puted as shown in Equation 3.9.

ê(t|t+ k) =


0 k ≥ 0

y(t+ k)− ŷt+k−1|t+k k < 0

(3.9)

Since the stochastic input is assumed to have zero mean, in Equation 3.9 the estimated

value of e for all future time steps is assumed to be 0. The estimated value of the stochas-

tic inputs for the past time steps is the error between the measured and one-step-ahead

predicted value.

With the help of the relationships shown in Equation 3.6, and 3.8 regression analysis

can be performed to determine the model parameters (the coefficients of the functions

A(q), B(q), C(q), D(q), and F (q)). Depending on the objective function minimized in

the regression analysis, the linear parametric approach is further classified into Prediction

Error Method (PEM) and MPC Relevant Identification Method (MRI). A mathematical

description of the two methods is provided below.
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3.2.1.3 Prediction Error Method

In PEM, regression analysis is performed between the measured output and the one-

step-ahead predicted value of the output. The parameters of the model are computed by

minimizing the quadratic norm of the error between the measured and predicted values.

For example the parameters corresponding to the ARX model structure θpemarx shown in

Equation 3.5 are obtained as shown in Equation 3.10.

θpemarx = argmin
θarx

V pem(θarx, Z
Nest

) (3.10)

The superscript pem is used to refer to the fact that the parameters were obtained using

PEM. In the equation above, N est is the number of samples of the output in the training

data set used to estimate the parameters, ZNest contains the input-output data correspond-

ing to the training data set. V pem is the quadratic norm associated with PEM and is a

function of the error between the measured and one-step-ahead predicted values of the

output as shown in Equation 3.11.

V pem =
1

N est

Nest∑
i=1

{y(i)− ŷ(i− 1|i)}2 (3.11)

3.2.1.4 MPC Relevant Identification

In PEM, the model parameters are identified by minimizing the norm of the error

between the measured and one-step-ahead predicted output. MPC uses output predictions

of not just one time step ahead, but over a future time period called as prediction horizon.

For example if the prediction horizon spans np time steps, and say the current time interval

is t, MPC uses the predictions ŷ(t|t + 1), ŷ(t|t + 2), ..., ŷ(t|t + np). Hence in the MRI

method, the parameter values are determined by taking into consideration the prediction
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errors over the entire horizon. The norm corresponding to the MRI method is shown in

Equation 3.12. .

V mri =
1

np · (N est − np)

Nest∑
i=1

Nest∑
i=1

{y(i)− ŷ(i− 1|i)}2 (3.12)

The model parameters corresponding to the ARMAX model structure obtained by mini-

mizing the norm above are shown in Equation 3.13.

θmriarmax = argmin
θarmax

V mri(θarmax, Z
Nest

) (3.13)

The MRI norm is nonlinear and non-convex, hence a global optimal solution is not guar-

anteed by the optimization algorithm used to determine the model parameters.

3.2.2 Subspace Identification

The objective of the subspace identification algorithm is to find a state-space represen-

tation of the system. Whereas, conventional algorithm such as PEM, and MRI, try to find a

relationship between the inputs and outputs, subspace algorithms places emphasis on sys-

tem states [52]. A summary of the various subspace identification algorithms is provided

in [53]. In this thesis the N4SID algorithm in MATLAB was used to determine the state

space matrices.

3.3 Automated Black-Box Modeling Algorithm

The previous section provided a mathematical description of the various black-box

modeling approaches available in literature. In this section, an algorithm is proposed that

uses these approaches to automate the process of model development for building HVAC

systems. The section also presents the results obtained by implementing the algorithm on

data obtained from a real working office building.
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The first step in the development of a model of the dynamics of a system is to select

its inputs and outputs. Since the primary purpose of the models is for their application in

model-based control, in this research the outputs are selected based on the quantities that

are of interest to MPC. For example, while modeling the thermal dynamics of the room,

the room temperature is selected as an output since it is used by MPC to measure thermal

comfort. The input selection, however, is not as trivial. There may be several factors that

may affect the dynamics of the output and identifying these factors is not straightforward.

The proposed modeling algorithm thus seeks to determine the inputs which would help

capture most of the dynamics of the output. In addition, the determination of these inputs

is performed in a way that would allow the process to be easily automated.

3.3.1 Initializing the Set of Selected Inputs

A set of all possible inputs uposi that affect the dynamics of the output is first con-

structed. The subscript i refers to the subsystem being modeled. There are two criteria that

are applied while constructing uposi . Firstly, including the input must make physical sense,

and secondly, the input is measured by one of the sensors of BEMS.

Another set of inputs is constructed useli which contains the list of inputs that have

been selected by the modeling algorithm. The set of selected inputs is a subset of uposi ,

i.e., useli ⊂ uposi . The set of selected inputs is populated in an iterative manner and is first

initialized to contain only the outside air temperature Toa and the control input uci corre-

sponding to the subsystem, i.e. usel(0)i = [Toa, u
c
i ] . The outside air temperature is selected

as a default input since it affects the dynamics of all the building HVAC components. The

number in parenthesis as a superscript to useli indicates the iteration number.

3.3.2 Selecting the Best Model Order and Structure

After initializing the set of selected inputs, the identification process entails the selec-

tion of a model order and structure that best represents the dynamics of the system. In this
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dissertation, the selection is made using an exhaustive process. Several model order and

structure combinations are generated. The model structures are restricted to those listed in

Table 3.1, and the model orders are restricted to a maximum value of 2. For example, in

the BJ model structure, the model order is determined by 4 parameters nb, nc, nd, and nf .

Each of these parameters can take a value either 1 or 2, thus giving a total of 16 possible

BJ models. Similarly, the ARX, ARMAX, and OE model structures can each have 4, 8,

and 4 models up to order 2, respectively. Thus a total of 32 model structure and order com-

binations are investigated. Model orders only up to 2 were investigated since in [26] and

[54] the authors demonstrated that while modeling the thermal dynamics of the building,

data older than 2 time steps did not have a significant impact on the output.

For each combination of model order and structure, the model parameters are identified

using either the PEM or MRI methods, by minimizing the norm in Equation 3.11 or 3.12,

respectively. The training data set ZNest(j) used in the computations of the aforementioned

norms contains the output values Y est
i = [yi(1), yi(2), ..., yi(N

est)], and the input values

U
sel(j),est
i = [u

sel(j)
i (1), u

sel(j)
i (2), , u

sel(j)
i (N est)]′, where j is the current iteration number.

The set of 32 models under investigation are denoted by the vectorM (j).

The models M (j) are then tested based on their accuracy of output predictions. If

the models are intended for use by MPC which optimizes control input values over a

prediction horizon spanning np time-steps ahead, then np-step-ahead output predictions

are computed corresponding to each model inM . The predictions are computed using an

iterative process such as in Equation 3.8. The data set used to make the output predictions

represented by the vector ZNval which is different from the traingin data comprises the

output values Y val
i = [yi(1+N est), yi(2+N est), ..., yi(N

val+N est)] , and the input values

U
sel(j),val
i = [u

sel(j)
i (1 + N est), u

sel(j)
i (2 + N est), , u

sel(j)
i (N val + N est)]′. The predicted

values from each model are then compared to the corresponding measured output values.

The accuracy of prediction is measured using a fit percentage computed with the help of
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Equation The model that provides the best fit percentage ffp, is selected.

ffp =

(
1−

√√√√ ∑Nval−np

i=Nest+1 {y(i+ np)− ŷ(i|i+ np)}2∑Nval−np

i=Nest+1 {y(i+ np)− 1
Nval−np

∑N
i=np

y(i)}2

)
(3.14)

The model with the highest fit percentage is selected as a candidate model as shown in

Equation 3.15.

M∗(j) = argmax
M(j)∈M (j)

ffp(M (j)) (3.15)

The fit percentage corresponding to the chosen modelM∗(j) is represented by f ∗(j)fp . The fit

percentage of the candidate model of the current iteration is compared to the fit percentage

of the candidate model from the previous iteration. The candidate model of the current

iteration is then kept or discarded based on the comparison of the fit percentages as shown

in Equation 3.16.

M∗(j) =


M∗(j) f

∗(j)
fp ≥ f

∗(j−1)
fp

M∗(j−1) f
∗(j)
fp < f

∗(j−1)
fp

(3.16)

If the candidate model at the current iteration is the same as that of the previous iteration,

then the iterations are terminated and M∗(j) is chosen as the to represent the dynamics

of the system being modeled. The selected input set corresponds to that of the previous

iteration, i.e. useli = u
sel(j−1)
i .

3.3.3 Augmenting the Set of Selected Inputs

The proposed algorithm uses an additive approach in selecting the set of significant

inputs, i.e., the algorithms starts with an initial set of inputs usel(0)i , and is augmented by a

single input every iteration. The process for selecting the candidate input to be augmented

in useli is described below.

Consider the set of selected inputs in the jth iteration usel(j)i , and the set of possible
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inputs uposi . A third set of inputs referred to as the unselected inputs uunsel(j)i is constructed

from the aforementioned sets by including all the inputs in uposi that are not present in

u
sel(j)
i as shown in Equation 3.17.

u
unsel(j)
i = uposi ∩ (u

sel(j)
i ){ (3.17)

In the j + 1th iteration, usel(j)i is augmented by one of the inputs from u
unsel(j)
i . The in-

put that is augmented is denoted by uaug(j)i . The augmentation only happens, however, if

the inclusion of uaug(j)i increases the accuracy of output prediction. Before providing a de-

scription of how the accuracy of output prediction is measured, the method for determining

uaugi is first presented as follows.

The training data set ZNest(j) and the model M∗(j) are used to compute one-step-ahead

predicted values of the output, Ŷ est
i (t|t + 1) using Equation 3.6. The predicted values

are used in the computation of the residual vector (error between measured and predicted

values) êest as follows.

êest(t|t+ 1) = Y est
i − Ŷ est

i (t|t+ 1) (3.18)

If a causal relationship exists between a particular input not included in the set useli and the

output, then the predicted output Ŷ est
i (t|t + 1) does not capture the dynamics associated

with that input. The uncaptured dynamics thus forms a part of the residuals êest . There is

expected to be a strong cross correlation between the input not included and the residuals.

Thus the algorithm uses cross correlation values between the input vector Uunsel(j),est
i =

[u
unsel(j)
i (1), u

unsel(j)
i (2), , u

unsel(j)
i (N est)]′ and the residuals êest.

Instead of considering the absolute values of these vectors,however, difference vectors

corresponding to Uunsel(j)
i and êest are constructed. A difference vector is created by
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taking the difference between successive elements of the vector and is denoted by placing

the symbol δ before the vector. For example, the difference vectors of Uunsel(j)
i and êest

are denoted by δUunsel(j)
i and δêest. An example for calculating the kth element of these

vectors is shown below.

δê(k|k + 1) =ê(k|k + 1)− ê(k − 1|k)

δu
unsel(j)
i (k) =u

unsel(j)
i (k)− uunsel(j)i (k − 1)

(3.19)

The reason for considering difference vectors is to reduce the possibility of including an

input which has high collinearity with the output but has no causal relationship. The differ-

ence vector is associated with changes in values over successive time steps. It is unlikely

for the output to consistently change in the same direction as the input under consideration

if there exists no causal relationship. The input that has the maximum crosscorrelation

value with the residuals represented by uaug(j)i is augmented to useli as shown in Equa-

tion 3.20.

uaugi = argmax
uposi −useli

r(δeest, δU
sel(j)
i ) (3.20)

where the function r(x, y) represents the cross correlation between vectors x and y. The

augmented input set shown in Equation 3.21 is used in determining the candidate model

for the next iteration.

u
sel(j+1)
i = [u

sel(j)
i , uaugi ] (3.21)

An example of how cross correlation of difference vectors can be used in selecting the

inputs is shown with the help of the following example. The temperature of room 1 of an

office building (described in the next section) is being modeled. The set of selected inputs

is initialized to include only the outside air temperature, i.e. usel(1)1 = [Toa]. The training

data set obtained from the BEMS of the office building corresponds to a duration of 14
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days. The data set is broken down into 14 subsets denoted by nslot = 14 and cross corre-

lation values are found between difference vectors of the residuals δêest(1) and the control

input δU c
1 corresponding to each data subset. For comparison purposes cross correlation

values are also shown between the residuals and the difference vector of the temperature

of room 6 δT6. Room 6 is not adjacent to room 1, hence, the cross correlation values are

expected to be small. Figure 3.3 shows the cross correlation values corresponding to the

aforementioned sets of data. As expected, the cross correlation values between δêest(1)

and δU c
1 is much greater than the cross correlation values between the δêest(1) and δT6.

Figure 3.3: Cross Correlation Values Between Difference Vectors of Residuals and Inputs

3.3.4 Summary of the Automated Linear Parametric Black-Box Modeling Algo-

rithm

The steps taken to develop the automated linear parametric black-box model of sub-

system i is summarized as follows.

• Step 0: Construct the set of possible inputs uposi based on the available BEMS data,

and a physical understanding of the dynamics of the subsystem. Initialize the itera-

tion number j = 1, and the set of selected inputs usel(0)i = [Toa, u
c
i ].
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• Step 1: Construct a set M (j) which contains 32 models with unique model struc-

ture and model order combinations. Model structures belong to either the ARX,

ARMAX, BJ, or OE, and the model order parameters na, nb, nc, nd, nf can take the

value either 1 or 2. The set of inputs of the models inM (j) is usel(j)i .

• Step 2: Construct the training data set ZNest(j)
= [Y est

i ,U
sel(j),est
i ], and the valida-

tion data set ZNest(j)
= [Y est

i ,U
sel(j),est
i ]. The parameters N est and N val are the

number of samples in the estimation and validation data set, respectively.

• Step 3: Compute the parameters of the 32 models of M (j) using the PEM or MRI

methods as shown below.

θpem = argmin
θ

V pem(θ, ZNest)

θmri = argmin
θ

V mri(θ, ZNest)

(3.22)

• Step 4: Compute the np-step-ahead predicted output corresponding to each model

of M (j) using the iterative process such as in Equation 3.8 on the validation data

set. Fit percentages corresponding to each of the predictions is computed using

Equation 3.14. The model that provides the best fit percentage on the validation

data set is selected as the candidate model as shown below.

M∗(j) = argmax
M∈M (j)

ffp(M) (3.23)

The fit percentage corresponding to the candidate model is denoted by f ∗(j)fp . If the fit

percentage of the candidate model of the current iteration is less than that of the past

iteration, then iterations are stopped and the model corresponding to the previous

iteration is selected to represent the dynamics of the subsystem, i.e. Mi = M∗(j−1).
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• Step 5: Compute the residual vector êestt|t+1 corresponding to the model M∗(j) using

the equation shown below.

êestt|t+1 = Y est − Ŷ est
t|t+1 (3.24)

Construct the set of unselected inputs uunsel(j)i = uposi ∩ (u
sel(j)
i ){. Construct the

difference vectors corresponding to êestt|t+1 and Uunsel(j)
i using Equation 3.19.

• Step 6: The difference vectors computed in Step 6, δêestt|t+1 and δUunsel(j)
i are divided

into subsets, with each subset containing nslots data points. Cross correlation values

are found between δêestt|t+1 and each input of δUunsel(j)
i corresponding to each subset.

The input with the maximum average cross correlation value is selected to augment

the input set usel(j)i as shown in the equations below.

uaugi = argmax
uposi −useli

r(δeest, δU
sel(j)
i ) (3.25)

u
sel(j+1)
i = [u

sel(j)
i , uaugi ] (3.26)

• Step 7: Increment the value of the iteration variable j and repeat Steps 1 through

6. The algorithm stops at Step 4 when the augmented input set usel(j+1)
i does not

increase the fit percentage of the candidate model M∗(j).

3.4 Black-Box Modeling Results

In this section, the results obtained by applying the automated modeling algorithm

described in the previous section are presented. The modeling algorithm uses the linear

parametric method, and the parameters of the model can be identified either by PEM or the

MRI approaches. A comparison of the identification results obtained from models whose

parameters are identified using the PEM and MRI methods, respectively are provided. In
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addition to the two linear parametric approaches, the results obtained from the subspace

identification method described in Section 3.2.2 are also provided for comparison. The

models are developed by using data from the BEMS of a real working office building. A

description of the office building and its HVAC system is first provided.

3.4.1 Description of the Office Building

Chapter 1 of the dissertation provided a classification of the building HVAC systems,

where the components were divided into two levels, the Energy Conversion Level (ECL)

and the Energy Distribution Level (EDL). The ECL corresponds to the components dealing

with the primary cooling fluid such as chilled water (CHW). These components include

the chiller, cooling towers, etc. The EDS components are associated with the conditioned

air that is distributed to the building zones to provide occupancy comfort. The components

of EDS include the AHU heat exchanger, the AHU fan, the thermal zones of the building,

etc. In this dissertation only the components corresponding to EDS are considered. The

reasons for including only the EDS components is provided in Chapter 1.

The office building for which black-box models are developed in the Chapter, is single-

storied comprising 11 rooms. The floor plan of the building is shown in Figure 3.4. The

EDS components of the office building being are shown with the help of a schematic in

Figure 3.5 reproduced from Chapter 1. The office building is served by a single AHU

that provides conditioned air to the rooms of the building. The AHU comprises a heat

exchanger that utilizes CHW supplied at a fixed temperature of 440F by a campus-wide

CHW distribution system. The CHW supply is used to cool a mixture of outside air and

return air that is drawn by the AHU system. In order to maintain the air flow through the

AHU a pressure differential is created with the help of a fan. The air that is cooled by

the AHU heat exchanger is distributed with the help of Variable Air Volume (VAV) boxes

placed in each room. The data corresponding to the EDL components available through
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Figure 3.4: Layout of the EMO Building

Figure 3.5: Components of the Office Building Corresponding to EDL

the BEMS of the office building is shown in Table.

In order to regulate the EDL components in Figure 3.5, the building employs a PI-type

supervisory control that computes three setpoints, the end static pressure setpoint P set
eds re-

quired to maintain the pressure differential of the AHU system, the AHU discharge air

temperature T setahu measured at the exit of the heat exchanger, and the volume flow rate set-

point through the VAV box of each room. The volume flow rate setpoints is represented by

the vector V set = [V set
1 , V set

2 , ..., V set
nr

], where the number in the subscript is the room in-

dex and the nr is the total number of rooms. A detailed description of how the setpoints are

computed by the traditional PI-type control, and the MPC algorithms is provided in Chap-

ter 4. The computation of the setpoints by MPC, however, requires models that describe
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the behavior of the system. This section shows how the proposed modeling algorithm can

be used to develop model for the HVAC components in corresponding to EDL.

The modeling of the dynamics of the components corresponding to EDL is performed

by first constructing three subsystems, the AHU pressure subsystem, the AHU tempreature

subsystem, and the room temperature subsystem. The subsystems are constructed based on

the outputs which are of interest for implementing MPC. For example, one of the outputs

of interest for implementing MPC is the fan energy cost. Modeling the fan energy cost

requires a model of the end static pressure, and the total volume flow rate through the

AHU. Hence the AHU pressure subsystem models the outputs, end static pressure Peds,

and the volume flow rate through the AHU Vahu which is the sum of the volume flow rate

through each of the VAV boxes. A description of the inputs and outputs corresponding to

the aforementioned subsystems, and the results of applying the model on data from the

real building are provided as follows.

3.4.2 AHU Pressure Subsystem

Figure 3.6 shows a schematic of the AHU pressure subsystem. The subsystem com-

prises the AHU fan, and the VAV boxes. The fan creates a pressure differential called the

end static pressure Peds which maintains a positive air flow through the AHU and VAV

boxes. The outputs of interest of the AHU pressure subsystem, are the end static pressure

Peds, and the volume flow rate through the AHU Vahu.

The end static pressure Peds depends on several factors such as the fan speed, the

construction of the AHU, the damper openings etc. Obtaining a black-box model by taking

into consideration is unfeasible. The dynamics of the fan, however, are fast. A static

model of the pressure can be used to sufficiently model the pressure subsystem over time

scales that are of relevance for the building HVAC system. Hence in this research, An

approximation is made by assuming that Peds is actuated to its setpoint value P set
eds by the
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Figure 3.6: A Schematic of the AHU Pressure Subsystem

next control timestep as shown in Equation 3.27

P̂eds(t|t+ 1) = P set
eds(t) (3.27)

While modeling the volume flow rate through the AHU Vahu an assumption is made

that there is no loss of air through the duct system. Hence Vahu is equal to the sum of the

volume flow rates through the VAV boxes of each room as shown below.

V̂ahu(t|t+ 1) =
nr∑
i=1

V̂i (3.28)

Following the same reasoning as the one for modeling Peds, only a static model for the

volume flow rate is considered. The flow rate through the VAV box of room i (say) is

dependent on the damper position Di, and the pressure difference across the VAV Peds.

The flow rate Vi is proportional to the square root of the pressure Peds and to the cross-

88



Figure 3.7: Regression Analysis Between Measured and Predicted Values of Volume Flow
Rate of Room 1

sectional area of the damper opening. Hence, Vi is modeled as shown in Equation 3.29.

V̂i(t|t+ 1) = (ai ·Di(t|t+ 1) + bi ·D2
i (t|t+ 1)P̂eds(t|t+ 1) (3.29)

The parameters ai and bi are found through regression analysis.

Data sampled at 5 minute intervals of the end static pressure setpoint P set
eds, volume flow

rate V1, and damper position D1 of the office building described in the previous section

were collected for a period of 7 days. Since the end static pressure was not sampled by the

BEMS, the setpoint values P set
eds were used for regression analysis. The parameters a1 and

b1 were obtaining by minimizing the quadratic norm of the error between predicted and

measured volume flow rates. Figure 3.7 shows a comparison of the surface representing

the predicted volume flow rates as a function of Peds and D1 with the measured values.

Figure 3.8 shows a comparison of the measured and predicted values of the volume flow

rate of room 1.
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Figure 3.8: A Comparison of the Measured and Predicted Values of the Volume Flow Rate
of Room 1

Table 3.2: Regression Values for Volume Flow Model of VAV 1

Parameter Value
a1 0.2665
b1 0.4786

3.4.3 AHU Temperature Subsystem

Figure 3.9 shows the inputs and outputs of the AHU temperature subsystem. The

output of interest of the AHU temperature subsystem is the discharge air temperature Tahu.

In this disseration a model of the dynamics of Tahu is developed by applying the algorithm

proposed in Section 3.

The first step in the algorithm after identifying the output is to create a list of possible

inputs that affect its dynamics. In order to identify the list of possible inputs, the equation

describing the conservation of energy principle across the AHU heat exchanger shown in
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Figure 3.9: A Schematic of the AHU Temperature Subsystem

Equation is investigated

ṁahu · cair · δTahu = ṁchw · cchw · δTchw + Q̇s,ahu (3.30)

where ṁahu and ṁchw are the mass flow rates through the AHU heat exchanger of the

air and CHW respectively, cair and cchw are the specific heat capacities of air and water

repsectively, δTahu and δTchw are the change in temperatures from outlet to inlet of the heat

exchanger of the air and CHW, respectively. The symbol Q̇s,ahu is used to represent the

rate of heat loss to the surroundings. The factors affecting the discharge air temperature

of the air thus include the ratio of the flow rates of CHW and air, i.e. ṁchw

ṁahu
and the inlet

water temperature Tchw,in. The mass flow rate of CHW is not available through the BEMS

sensors of the office building being studied, hence it is expressed as a quadratic function

of the CHW valve opening Vchw. In addition, the heat lost to the surroundings is assumed

to be a function of the outside air temperature and humidity. The list of possible inputs

thus considered in modeling the AHU temperature subsystem is shown in Table 3.3.

After constructing the list of possible inputs uposahu of the AHU temperature subsystem,

data sampled at 5 minute intervals is collected for a period of 28 days. The first 21 days
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Table 3.3: Inputs and Output for AHU Temperature Subsystem

Inputs uposi Output
Toa

Vchw/Vahu Tahu
V 2
chw/Vahu
RHoa

Figure 3.10: Measured and Predicted Values of the Discharge Air Temperature

are used for training the data, and the last 7 days are used for model verification. The

result of applying the proposed modeling algorithm with PEM and MRI approaches, and

the subspace identification method is shown in Figure 3.10. The model structure and order

selected, and the fit percentages obtained corresponding to each approach is provided in

Table 3.5.

3.4.4 Room Temperature Subsystem

The output of interest of the room temperature subsystem is as the name indicates the

temperature of the room. Consider the differential equation used in [55] used to describe
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the room temperature dynamics

Micp
∂Ti
∂t

= mvavcp(Tahu − Ti) +Qs,i (3.31)

where Mi is the thermal mass of the room i, cp is the heat capacity, mvav, and Tvav are the

mass flow rate, and temperature of the conditioned air through the VAV of the room, and

Qs,i are the heat loads on the room. From Equation 3.31 we see that the room temperature

is impacted by the product of the mass flow rate and the discharge air temperature. Hence

Vi · Tahu is selected as the control input (assuming the density of air remains constant).

The factors that could potentially impact Qs,i and are also measured by the BEMS sensors

are the outside air temperature and humidity (Toa and Roa), and the temperature of the

neighboring rooms (Tj , j ∈ {j1, j2, ...jnsur
i
}). jk is the kth surrounding room„ and nsur

is the total number of surrounding rooms of room i. Hence the list of possible inputs

considered in this paper while modeling the temperature of room i are Toa, RHoa, Tjs, and

Vi · Tahu.

Another aspect to consider while modeling room temperatures is the high degree of

collinearity which may exist between the different subsystems, which can result in nu-

merical problems [56]. For example, two rooms in a building say room i, and j, may

have the same temperature set points and work schedules. Since black-box modeling is

a purely statistical technique, while modeling the temperature of room i, the model may

incorrectly identify a large input gain corresponding to room j. In order to reduce the pos-

sibility of misidentifying gains due to collinearity, the difference in temperatures Tj − Ti

(corresponding to the example above) is chosen as the input. Table 3.4 contains the list of

inputs considered for the room temperature subsystem.

After constructing the list of possible inputs, the modeling algorithm is applied on the

data that is obtained through the BEMS of the office building. The duration of the training
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Table 3.4: Inputs and Output for Room Temperature Subsystem

Inputs uposi Output
Toa − Ti
Vi · Tahu Ti

Tj − Ti j ∈ {j1, j2, ..., jnsur}

Figure 3.11: Measured and Predicted Temperature of Room 1

and validation data is the same as that for the AHU temperature subsystem. The results

obtained by applying the proposed modeling algorithm with PEM and MRI approaches,

and the subspace identification method is shown in Table 3.5. A comparison between

the 12-step-ahead predicted output comoputed by the identified model, and the measured

temperatures of room 1 on the validation

It is convenient to represent them by using equivalent state-space matrices as shown in
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Table 3.5: Summary of Results Obtained by Implementing the Proposed Algorithm on the
Different Subsystems

PEM MRI Subspace
Room useli Structure Order Fit useli Structure Order Fit Fit

1 [Toa, u
ctr
1 ] BJ [2, 1, 2, 1] 74.0 [Toa, u

ctr
1 ] ARX [2, 1] 78.5 85.6

2 [Toa, u
ctr
2 , T1] ARX [1, 1] 86.0 [Toa, u

ctr
2 , T1] ARMAX [1, 2, 2] 86.0 88.5

3 [Toa, u
ctr
3 , T5] BJ [1, 1, 1, 1] 79.6 [Toa, u

ctr
3 , T1] ARMAX [2, 2, 2] 75.9 83.1

4 [Toa, u
ctr
1 ] BJ [1, 1, 1, 1] 68.0 [Toa, u

ctr
4 ] ARMAX [2, 1, 1] 68.4 76.1

5 [Toa, u
ctr
1 , T8] BJ [1, 1, 2, 2] 77.3 [Toa, u

ctr
1 , T2, T3] ARX [2, 2] 77.7 84.9

6 [Toa, u
ctr
1 , T8] BJ [1, 1, 1, 1] 85.0 [Toa, u

ctr
1 , T2, T3] ARMAX [2, 1, 1] 77.9 85.5

7 [Toa, u
ctr
1 , T11] BJ [1, 1, 2, 1] 66.4 [Toa, u

ctr
1 , T2] ARMAX [1, 2, 2] 63.8 70.3

8 [Toa, u
ctr
1 ] ARMAX [2, 1, 2] 79.9 [Toa, u

ctr
1 ] ARX [2, 1] 79.2 85.6

9 [Toa, u
ctr
1 ] ARMAX [2, 1, 2] 71.8 [Toa, u

ctr
1 ] ARMAX [2, 1, 1] 71.2 82.9

AHU [Toa,
Vchw
Vahu

,
V 2
chw

Vahu
] BJ [1, 1, 2, 1] 46.5 [Toa, u

ctr
1 ] ARMAX [2, 1, 1] 71.2 82.9

Equation 3.32.

x(k + 1) =Aix(k) +Biu
sel
i (k) +Kie(k)

y(k) =Cix(k)

(3.32)

In order to reduce the possibility of collinearity, some of the inputs were expressed as a

difference in temperature with the output of the subsystem. For example, while modeling

the temperature of room 1, say the inputs selected were usel1 = [Toa, u
c
1, T2− T1, T3− T1]′.

The output of the subsystem is T1, and some of the selected inputs are also defined in

terms of the output. A more convenient state-space representation would be to express the

subsystem inputs without containing the output term. So instead T2−T1, the input would

just be T2.

In order to be able to express the inputs independent of the output, the vector Ei is

introduced to identify the inputs which contain T1 in their expression. For the example

provided above, E1 would be as shown below.

E1 = [0 0 1 1]′ (3.33)
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Substituting the value of Ti = Cix(k) + e(k) in Equation 3.32, we obtain the state space

representation of the output of subsystem i as shown in Equation 3.34.

x(k + 1) =(Ai −BiEiCi)x(k) +Biu
sel
i (k) + (Ki −BiEi)e(k)

y(k) =Cix(k)

(3.34)

3.5 Model Verification by Applying MPC in a Simulation Environment

The previous section provided the results of applying the modeling algorithm on data

obtained through the BEMS of a real office building. Black-box models are developed

for the AHU pressure subsystem, AHU temperature subsystem, and the room temperature

subsystem. A static model is used to predict the behavior of the AHU pressure subsystem,

and the modeling algorithm proposed in Section 3 is used to develop dynamic models of

the AHU discharge air temperature, and room temperatures. The dynamic models were

developed using the PEM and MRI approach, and the subspace identification method.

The modeling approaches provided good predictions of the output when applied to data

that was collected from the BEMS of an office building.

The main objective of developing the models, though, is not just to be able to predict

the outputs but to be able to use them in model-based control. Since the models were

developed corresponding to a certain operating condition, there is no guarantee that the

models will have good prediction or control capabilities when a new control methodology

is employed or when the operating conditions change. Hence in this section the modeling

methods are tested in their ability to be used for model-based control under different oper-

ating conditions. Since testing the modeling and control methods under different operating

conditions is not feasible on a real working office building, a high-fidelity simulation sys-

tem is used instead. A schematic of the simulation environment corresponding to EDL

is shown in Figure 3.12. The simulation environment comprises white-box models of the
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Figure 3.12: Simulation System to Test the Performance of Different Modeling Methods
by Applying MPC

AHU heat exchanger, and an EnergyPlus model of the office building described in Section

3. The The AHU pressure system is simulated using the static model described in Section

4.

The simulation environment is regulated by a control methodology that computes the

end static pressure setpoint P set
eds, the flow setpoints to each roomV set = [V set

1 , V set
2 , ..., V set

nr
],

and the AHU discharge air temperature setpoint T setahu. In Chapter 4 two types of control

methodologies are tested on the simulation environment, traditional PI-type control, and

MPC. A detailed description of the simulation environment, and the process by which the

control methodologies compute the aforementioned setpoints are provided.

Results of applying MPC are included in this chapter to compare the modeling methods

for their use in model-based control under different operating conditions. Models of the

room temperatures are developed from the simulation data using the proposed algorithm

with PEM and MRI approaches, and the subspace identification method. The three sets of

models are then used to implement MPC on the simulation system. The comparison of the

models is based on the cost of operation as computed by the simulation system.
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3.5.1 Modeling Results on Simulation Environment

Simulations are run using the traditional PI-type control methodology for a period of

30 days from June 1st to June 30th of a typical year in College Station, Texas. The three

approaches of developing black-box models (PEM, MRI, and Subspace Identification)

are used to develop models from the simulation data. Figure shows the simulated and

a 12-step-ahead predicted temperature of room 4 using the PEM approach. Table 3.6

shows a comparison of the fit percentages obtained while computing the 12-step-ahead

predicted on the validation data. Although, all the modeling approaches provide accurate

predictions, the subspace identification method provides the best average fit percentage of

82.8%.

Figure 3.13: Model Predicted and EnergyPlus Simulated Temperature of Room 4

3.5.2 Description of the Operating Conditions used for Simulation

The models from the three approaches above are then tested for their use in model-

based control. The tests include applying the three sets of models to implement MPC on

the simulation system under different operating conditions. A total of 9 simulation exper-

iments with unique operating conditions are performed using each of the three types of

models. The 9 unique operating conditions are obtained by varying three aspects of the
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Table 3.6: Prediction Fit Percentages Obtained by Applying the Modeling Algorithm on
EnergyPlus Data

Room Number
/Modeling Approach PEM MRI SS

1 80.1 81.6 81.5
2 82.5 83.7 83.9
3 80.7 80.7 82.9
4 79.1 80.5 80.4
5 82.1 82.5 82.6
6 83.8 82.6 84.8
7 82.8 83.9 83.9
8 82.7 84.8 85.6
9 79.8 80.2 81.3

10 79.0 79.2 81.4

simulation, the objective function parameters, the outside air temperature and humidity,

and occupancy. Before providing a description of the operating conditions, a brief de-

scription of the objective function minimized by MPC is provided. In this dissertation, the

cost of operation of the building HVAC system is measured by taking into consideration

the cost of running the AHU fan and heat exchanger, and the cost of not meeting the ther-

mal comfort requirements of the occupants. The cost of operation at time step t is thus

expressed as shown in Equation 3.35.

Jop(t) = rfan ·Efan(t) + rhe ·Efan(t) + rsalE
comf (t) (3.35)

where Jop is the total cost of operation, Efan and Ehe are the energy associated with the

AHU fan and heat exchanger operation, and Ecomf is a measure of occupancy comfort.

The parameters rfan and rhe correspond to the unit price of fan and heat exchanger energy,

and rsal is the weight put on the occupants comfort. In this dissertation rsal is computed

based on the occupant’s yearly salary.
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MPC seeks to minimize the cost of operation over a future time period called as a

prediction horizon. If np is the number of time steps in the prediction horizon, then the

estimated cost over that period can be expressed as shown in Equation 3.36.

Ĵop(t) =

np∑
i=1

rfan · Êfan(t|t+ i) + rhe · Êfan(t|t+ i) + rsalÊ
comf (t|t+ i) (3.36)

MPC uses predictions of future disturbances such as outside air temperature and humidity,

occupancy, etc. and the black-box models to obtain a relationship between the estimated

cost of operation and the control setpoints to be optimized. Mathematical optimization is

then performed to obtain the set of control inputs that provide the least value of Ĵop(t) as

shown in Equation 3.37.

umpc(t) = argmin
uset

Ĵop(t) (3.37)

where umpc is the optimal values corresponding to the set of control setpoints uset com-

puted by MPC. In this chapter the set of control setpoints to be optimized uset comprises

P set
eds, V

set, and T setahu.

Simulation experiments 1 through 4 are performed corresponding to the weather con-

ditions on June 1st of the EnergyPlus weather file of College Station, TX. The weather

conditions represent a typical hot and humid day in Texas. The simulations 1 through 4

differ in the objective function parameters rfan, rhe, and rsal. The parameters rfan, and

rhe are assigned the values that were determined to be the best estimates of real world unit

costs of fan and cooling energy per time step. The parameter rsal is the average salary

of the occupant per time step if the yearly salary is ryrsal. In simulations 1 through 4 the

parameter ryrsal is changed by an order of magnitude, with a smaller value of ryrsal placing a

smaller penalty on occupancy discomfort.

The process of varying ryrsal is repeated in simulations 5 through 8. The simulations
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differ from the first four in the outside weather conditions. The weather conditions corre-

spond to August 1st of the EnergyPlus weather file of College Station. Finally, simulation

9 represents a special occupancy condition where only room 2 is occupied. A summary of

the operating conditions and cost parameters corresponding to each simulation is summa-

rized in Table 3.7.

Table 3.7: Parameters Corresponding to Various Operating Conditions

Operating Max Max
Condition Temp (0C) Humidity (%) rfan rhe ryrsal Occupancy

1 35 93 1.101e-6 1.078e-7 20,000 Full
2 35 93 1.101e-6 1.078e-7 2,000 Full
3 35 93 1.101e-6 1.078e-7 200 Full
4 35 93 1.101e-6 1.078e-7 20 Full
5 40 89 1.101e-6 1.078e-7 20,000 Full
6 40 89 1.101e-6 1.078e-7 2,000 Full
7 40 89 1.101e-6 1.078e-7 200 Full
8 40 89 1.101e-6 1.078e-7 20 Full
9 35 93 1.101e-6 1.078e-7 20 Room 1

3.5.3 MPC Simulation Results

Three simulations are run for each operating condition in Table 3.7. The three sim-

ulations correspond to the three different black-box modeling approaches (PEM, MRI,

and subspace identification) used to apply MPC to the simulation environment. Results

corresponding to the operating condition 1 are first provided.

Operating condition 1 corresponds to a maximum outside air temperature of 350C and

a maximum relative humidity of 93%. The cost parameters rfan, and rhe represent the best

estimates of the cost of operation of the AHU fan, and heat exchanger, respectively. The

parameter ryrsal refers to the occupant’s yearly salary which is set at $20,000.
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The parameter ryrsal is used to compute the cost of occupancy comfort. The occupancy

comfort cost of a particular occupied room is designed so that if the temperature of that

room lies between a high temperature setpoint, and a low temperature setpoint then the

cost is zero. If the temperature of lies outside the two temperature setpoint bounds, then

a nonlinear relationsip exists between the comfort cost and the temperature, and the occu-

pant’s yearly salary. Greater the salary greater the penalty for the room temperature not

lying between the temperature bounds. Thus an efficient HVAC operation would corre-

spond to the room temperature tracking the higher setpoint as this results in zero comfort

cost and at the same time would require the least fan and cooling energy. The control per-

formance of the MPC simulations corresponding to operating condition 1 using the three

modeling approaches is presented below.

Figure 3.14 shows the simulated temperature of room 1 when MPC is applied using the

three modeling approaches. The figure also shows the two temperature setpoint bounds,

and the outside air temperature during the simulation period. MPC simulations that use

the PEM and MRI approaches are able to closely track the upper bound of the temperature

setpoint. By looking at the magnified portion of the figure, we see that MPC that uses

the PEM approach is able to more closely track the higher temperature setpoint. When

MPC is applied with the subspace models, however, no thermal comfort is provided to the

occupants. The room temperature drifts towards the outside air temperature conditions.

Figure 3.15 shows the end static pressure and discharge air temperature setpoint com-

puted by MPC using the different black-box modeling approaches. The figure shows MPC

using the PEM and MRI approaches seeking the optimal combination of end static pressure

and discharge air temperature setpoints, whereas, MPC with subspace models provides no

cooling and assigns the setpoint of the end static pressure to the maximum permissible

value. The comfort cost, the cost of the AHU fan and heat exchanger cooling energy, and

the total cost of operation corresponding to the three modeling approaches are shown in
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Figure 3.14: Simulation Temperatures of Room 1 with the Application of MPC Using
Different Modeling Approaches

Figure 3.15: End Static Pressure and Discharge Air Temperature Computed by MPC Using
Different Modeling Approaches

Figure

The results obtained by running simulations corresponding to the operating conditions

1 through 9 are summarized in Table 3.8. MPC applied using models developed by the

PEM and MRI methods provided consistent good performance under varying operating

condtions, whereas MPC applied using the subspace modeled fared poorly in all simula-

tions as it did not provide any cooling to the thermal zones. The results indicate that a good

prediction fit percentage is not a sufficient condition for a model to be used for purpose
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Figure 3.16: Comfort Cost, Cost of AHU Fan and Heat Exchanger Cooling Energy
achieved by MPC Using Different Modeling Approaches

of application of control. The results in Table 3.8 show that the subspace identification

percentage provided the best fit percentages on the data used to develop the model. The

problem of collinearity that is associated with black-box modeling is probably the main

reason for the subspace identification method to have identified a model not suited for the

purpose of control.

Table 3.8: Costs Achieved by Applying MPC on the Simulation System Using Different
Modeling Approaches

Operating Comfort Cost ($) AHU Fan and HE cost ($) Total cost ($)
Condition PEM MRI SS PEM MRI SS PEM MRI SS

1 1.34 7.44 273.25 0.46 0.28 0.03 1.79 7.72 273.27
2 0.27 1.36 27.53 0.35 0.20 0.03 0.63 1.56 27.56
3 0.09 1.73 2.75 0.17 0.05 0.03 0.26 1.78 2.78
4 0.26 0.17 0.27 0.03 0.05 0.03 0.29 0.22 0.30
5 1.8 8.09 277.96 0.48 0.31 0.03 2.28 8.40 278.00
6 0.28 1.71 27.80 0.35 0.35 0.03 0.64 1.93 27.83
7 0.11 1.80 2.78 0.18 0.18 0.03 0.29 1.85 2.81
8 0.26 0.27 0.28 0.03 0.03 0.03 0.30 0.30 0.31
9 0.11 0.27 31.94 0.43 0.16 0.03 0.53 0.43 31.94
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3.6 Conclusions

Black-box modeling approaches offer the simplest methods of developing models for

large scale building HVAC systems. In this thesis, a modeling algorithm was proposed

that can automate the process of selecting the model order, structure and the inputs to the

various subsystems either using the PEM, or MRI approaches. The subsystem models

identified by the linear parametric methods can be combined to form a centralized model.

The identified models were then verified by comparing multi-step-ahead predictions and

measured values of the outputs of the subsystems using data from a real office building.

A centralized room-temperature model was also identified using a MIMO approach with

subspace identification algorithms. The results show that black-box modeling approaches

have the capability to provide good predictions using data from normal working condi-

tions. Subspace algorithms provided the best fit percentages among the three identification

approaches.

A good prediction model does not necessarily translate into a good model for control.

In order to reflect some of the underlying physics for each subsystem. The proposed al-

gorithm using the linear parametric approach takes into account some of the underlying

physics that govern each subsystem. This is done by including inputs that are most likely

to impact the outputs, and using difference in temperatures as inputs in order to reduce

the possibility of collinearity. The MIMO system identified using subspace identification

algorithm however, did not consider any of the physics principles. As a result MPC imple-

mented on a simulated model of the office building in EnergyPlus showed that the PEM

and MRI models performed much better than subspace models in reducing the cost of the

objective function under different operating conditions.
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4. CENTRALIZED MPC

The preceding chapter provided a methodology to accurately predict building HVAC

system behavior with the help of statistical models developed using black-box system

identification techniques. The models were verified using both simulation data, and data

from a real office building. The primary use of the black-box models, however, is not

just to be able to predict system behavior, but to be able to use those predictions to im-

plement optimal model based control methodologies such as MPC. This chapter provides

a description of how the identified models are used to implement MPC to regulate the

components corresponding to the energy conversion level of the building HVAC systems.

Simulation experiments are then carried out using high-fidelity models of the HVAC com-

ponents to demonstrate the capabilities of MPC where the predictions are obtained from

black-box models. A comparison of MPC with the existing PI-type control methodology

is also performed on the simulation test-bed.

4.1 Simulation Models

Chapter 1 of the thesis provided a description of how the building HVAC systems can

be classifed into two levels, namely, the energy conversion level and the energy distribution

level. This thesis seeks to demonstrate the utility of implementing MPC derived from

black-box models by considering only the components in the energy distribution level. The

components corresponding to the energy distribution level are reproduced in Figure 4.1

for ease of reference. Implementation of MPC only on the energy distribution level serves

as a first step to a more widespread implementation where components from the energy

conversion level are also regulated by MPC.

Ideally the experimental test-bed for demonstrating the utility of MPC would be a real

building system as simulation models do not capture all the dynamics of the real system.

106



Figure 4.1: HVAC Components Corresponding to the Energy Distribution Level

In this thesis, however, high fidelity simulation models of the HVAC components are used

as an experimental test-bed instead. To the best knowledge of the authors, the use of

black-box models to implement centralized MPC on real HVAC buildings has not been

performed before. Hence the use of simulation models would serve as a proof-of-concept

before the control methodology can be applied to real buildings.

Successful demonstration of the proposed control methodology on simulation systems

would make building managers more accepting to the idea of implementing black-box

driven MPCs on real world building HVAC systems. In addition to serving as a stepping

stone, the simulation environment allows the control methodologies to be tested under

wide range of operating conditions. For example in the simulation environment, parame-

ters such as outside air conditions, relative humidity, occupancy, etc can be varied between

a wide range of values. Confidence in the control methodology increases when it can be

demonstrated that a satisfactory performance of the HVAC components can be achieved

under such wide range of conditions.

In this chapter, a juxtaposition of two types of control methodologies, namely, PI and

MPC is made by comparing their performance using simulation models. Figure 4.2 shows

a schematic of how either of the two aforementioned control systems are applied to the

simulation system. The control methodologies are used to compute three types of set-
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Figure 4.2: A Schematic of the Control Methodology and Simulation System

points namely, the AHU discharge air temperature setpoint T setahu, the AHU end static pres-

sure setpoint P set
eds, and the volume flow rate setpoint through the VAV box of each room

represented by the vector V set = [V set
1 , V set

2 , ..., V set
nsel

] where V set
i is the flow rate setpoint

of room i, and nsel is the number of rooms of the office building whose flow rates are being

optimized. The setpoints are computed at fixed intervals of time referred to as the control

time step tc.

The aforementioned setpoints are used to regulate the three subsystem of the energy

distribution level. A brief description of the simulation models of the components of the

energy distribution level used in this thesis is provided below.

4.1.1 AHU Volume Flow Simulation Model

The objective of the AHU volume flow simulation model is used to estimate the volume

flow V EP = [V EP
1 , V EP

2 , ...V EP
nsel

] of the conditioned air that is distributed through the

VAV box placed in each room, given the volume flow setpoints V set and the end static

pressure setpoint P set
eds computed by the control system. The superscript EP refers to the

EnergyPlus environment. There are two main types of components of the AHU volume

flow system, namely, the AHU fan, and the VAV box which is placed in each room. The
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Figure 4.3: Recorded Data and Regression Fit of End Static Pressure, Damper Fraction,
and Volume Flow Fraction

AHU fan creates a pressure differential Peds which causes a mixture of outside and return

air to be drawn to the AHU heat exchanger and finally through the VAV boxes. The fan

speed is regulated by a PI controller in order for Peds to track the setpoit P set
eds. In this thesis,

an assumption is made that the dynamics of the fan are much faster compared to the AHU

heat exchanger, and the room temperature dynamics. As a result, while simulating the fan

model it is assumed that the desired end static pressure setpoint is reached within the next

control time step.

The next step in the simulation model is to estimate the volume flow rate through the

VAV box of room i denoted by V EP
i given an end static pressure Peds, and a volume flow

rate setpoint V set
i . While the setpoints are computed at every control time step, the outputs

of the simulation model are computed at ever simulation time step. The simulation time

step referred as ts corresponds to the time step used by the EnergyPlus simulation. In this

thesis, the control time step is selected to be 5 minutes, whereas the simulation timestep is

1 minute.

The volume flow rate V EP
i depends primarily on two factors, namely, the damper

opening and the pressure differential created by the AHU fan Peds. The flow rate through
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Figure 4.4: Flow Diagram Showing the AHU Volume Flow Simulation Model

the VAV box is proportional to the cross-sectional area of the damper opening, and to the

square root of the pressure difference across the damper. The parameters corresponding

to the relationship between volume flow V EP
i , damper opening Di, and Peds were exper-

imentally obtained by performing regression analysis on data obtained from a real office

building in Chapter 3. The relationship is reproduced in Equation 4.1 for ease of reference.

In the equation, ai and bi are parameters obtained from the regression analysis. Figure 4.3

shows the regression fit between the damper position, volume flow rate and end static

pressure setpoints for one of the rooms obtained using data from the real office building .

Vi = (a ·Di + b ·D2
i ) ·
√
Peds (4.1)

At each simulation time step, the damper position is computed with the help of a PI

controller driven by the error between the setpoint V set
i and the simulated output V EP

i from

the previous simulation time step. Substituting the damper position computed by the PI

controller, and the end static pressure in Equation 4.1, the value of the current simulation

flow rate is estimated. A schematic representation of the process used to compute V EP
i is

shown in Figure 4.4.
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4.1.2 AHU Heat Exchanger Simulation Model

The heat exchanger of the AHU of the building under consideration uses chilled water

(CHW) as a coolant that cools a mixture of outside air and return air drawn in by the

pressure differential created by the AHU fan. CHW with a temperature of around 6.50C

is supplied to the AHU heat exchanger from a campus-wide water cooling system. The

objective of the AHU simulation model is to simulate the aforementioned water-cooled

heat exchanger by estimating the discharge air temperature of the AHU Tahu at every

simulation time step, when a setpoint temperature T setahu is provided by the control system.

A local PI controller provides the actuation required for the discharge air temperature to

track the setpoint value by regulating a CHW damper that controls the mass flow rate of the

CHW (mchw). Other than the mass flow rate of the CHW, Tahu depends on other factors

such as the supply water temperature Tw,in and the mass flow rate (ṁa) , temperature

(Ta,in), and humidity Ha,in of the air being cooled by the heat exchanger. A schematic

of the inputs and outputs of the AHU simulation model are shown in Figure 4.5 . The

simulation model used in this thesis also provides as outputs the relative humidity of the

discharge air Ha,out and the outlet water temperature Tw,out. A brief description of the

physics used to develop the model is provided below. A more complete description of the

model can be obtained from [41].

The simulation model uses a finite volume approach to model the air and water temper-

atures through the heat exchanger. The basic equations used to describe the heat transfer

process was derived by Hansen [57] and Zhou [48]. The chilled water tubing of the heat

exchanger is divided into N sections, and for each section the water and coil temperature

dynamics are calculated using Equations 4.2, and 4.3, respectively. The temperature of the

water is affected by the convective heat transfer with the coil surface, and also the temper-

ature and flow rate of the water entering the finite volume. The coil surface temperature

111



Figure 4.5: Flow Diagram Showing the AHU Cooling Simulation Model

at a particular section is affected by the the convective heat transfer with the air and water

passing through each section.

Cw ·
∂Tw
∂t

+ cp,w · q(δ) ·
∂Tw
∂x

+ hw · Pt(Tw − Tc) = 0 (4.2)

Cc ·
∂Tc
∂t

+ cp,a · ṁa · εa · (Tc − Ta,in) + κ(Tc − Tw) = 0 (4.3)

In the equations above symbols C, cp, T, q, δh, P and ε stand for specific heat capacity,

heat capacity, temperature, mass flow rate, valve position, convective coefficient, inner

perimeter, and heat transfer effectiveness, respectively. The subscripts, w, t, c, and a stand

for water, tubing, coil, and air, respectively.

The temperature of the air exiting each finite volume of the heat exchanger is given by

Equation 4.4.

Ta,out = Ta,in + ε · (Tc − Ta,in) (4.4)

The discharge air temperature exiting the heat exchanger is obtained by taking the average

of all the N sections. A SIMULINK model that uses the above finite volume approach was

developed by Liang [], and is used as the AHU heat exchanger model in this thesis. The

gains of the PI controller used to regulate the mass flow rate were tuned by trial and error.
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Figure 4.6: Isometric View of the EnergyPlus Model of the Office Building

4.1.3 EnergyPlus Model

An EnergyPlus model shown in Figure 4.6 is used to simulate the room temperatures

of the office building described in Chapter 3. The first step in developing the EnergyPlus

model is to define the parameters of the model that remain constant throughout the simu-

lation period. These parameters can be broadly divided into three types, namely, building

parameters, system parameters, and plant parameters. There are several parameters asso-

ciated with each of the aforementioned type. For example, the building parameters include

building dimensions, materials, placement of windows and doors, etc. The system param-

eters which describe the components of the energy distribution level include the size of

the VAV boxes, the AHU fan power, the power rating of the heat exchangers etc. The

plant parameters which describe the components of the energy conversion level include

the chiller capacity, the cooling tower capacity, etc. The comprehensive list of parameters

allows the EnergyPlus simulations to accurately capture the dynamics of the real building.

In cases where information about the real building is not available default values are used

to run the simulation.

In addition to the time-constant parameters described above, the room temperature

dynamics also depends on time-varying inputs which can themselves be classified as dis-
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turbance and control inputs. The disturbance inputs constitute all factors which influence

the room temperature dynamics but whose values cannot be manipulated by the control

system. For example, the outside air temperature, humidity, wind speed, occupancy etc.

influence the room temperature dynamics but their values cannot be regulated. In this

chapter the two control methodologies PI and MPC are compared by running several sim-

ulations under varying operating conditions achieved by using different sets of disturbance

inputs.

Control inputs corresponding to the EnergyPlus simulations are inputs whose values

can be varied during each simulation step. The purpose of using the EnergyPlus simulation

model in this chapter is to study how the room temperature and humidity evolve when

subject to the conditioned air provided by the volume flow and temperature simulation

systems. Thus the control inputs to the EnergyPlus simulatin in this chapter are the volume

flow rates V EP and the discharge air temperature Tahu.

The EnergyPlus software, however, is not built for testing and comparing control

methodologies. V EP and TEPahu cannot be directly fed into the simulation. The control

inputs that are generally used to run the simulations are instead room temperature set-

points. EnergyPlus assumes perfect knowledge of the environment and calculates a cool-

ing load of each of the rooms based on the room temperature setpoints. The simulation

engine then makes use of the plant and system description to compute its own discharge

air temperature and flow rates. Since the cooling load calculations are based on a perfect

knowledge of the thermal loads acting on the building, such a setup does not accurately

reflect a real-world scenario.

In order to overcome this problem, the feedback between the room temperature system

and the AHU system is removed by deleting the fields through which the room tempera-

ture setpoints are entered. This is represented by a red ’X’ mark in Figure 4.7. With the

feedback from between the AHU system and rooms removed, the user can provide their
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Figure 4.7: Schematic of the EnergyPlus Simulation

own external AHU discharge air temperature setpoint at every simulation time step. The

flow rates to the rooms are instead controlled by manipulating the variable that governs

the minimum permissible air through each of the VAV boxes. Thus by deleting the room

temperature setpoint fields, and altering the minimum flow rate requirements, the Energy-

Plus simulations in this chapter are run with V EP and TEPahu as control inputs. A schematic

showing the EnergyPlus inputs, simulation engine, and outputs is shown in Figure 4.7.

4.2 Control Architectures

The previous section described the components of the simulation system, and how the

setpoints computed by the control system are translated to simulation outputs. Figure 4.2

shows a schematic of how the setpoints computed in this chapter,P set
eds, T

set
ahu, and V set are

implemented on the simulation system. This section provides a description of two control

methodologies, namely, the existing PI-type control methodology and the proposed MPC

methodology are used to compute the aforementioned setpoints.
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4.2.1 PI Control Methodology

The existing PI-type control methodology is driven by user defined set points T ref =

[T ref1 , T ref2 , ...T refnsel
] which constitute the desired room temperatures. The control method-

ology then uses the user-defined room temperature setpoints to first compute the flow

setpoints V set followed by the AHU end static pressure and discharge air setpoints P set
eds

and T setahu,,respectively. The algorithm used to compute the aforementioned setpoints is

provided below.

The algorithm starts off by calculating a cooling demandL = [L1, L2, ...Lnsel
] for each

room. Cooling demand is a numerical scale ranging from 0 to 100 and is computed as an

output of a PI controller. The PI controller is driven by the error between the reference and

measured room temperatures , i.e. T refi −Ti where i is the room under consideration. The

cooling demand values are used in the computation of the flow setpoints for each room

and the discharge air temperature. A higher cooling demand of a particular room results

in higher flow setpoint, and a higher cumulative cooling demand (cooling demand from

all the rooms being served by the AHU) results in a lower AHU discharge air temperature

setpoint.

The VAV box of each room is associated with a minimum and maximum flow rate,

V min
i and V max

i , respectively. A minimum flow rate is maintained in order to meet the

fresh air requirements of the building. The maximum flow rate is a limitation placed due

to physical constraints resulting from the construction of the VAV boxes, ducts, rated fan

power etc. The flow setpoint of the VAV box i is calculated by using a linear relationship

with the cooling demand of room i, with upper and lower bounds of V max and V min

respectively, being placed on its value as shown in Equation 4.5.

fflow(Li) = V set
i = Li ·

V max
i − V min

i

100
+ V min

i (4.5)
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Figure 4.8: Flow Diagram of the Current PI Control Methodology Being Implemented on
the Office Building

The flow rate of the conditioned air Vi is actuated to its setpoint value V set
i is used by

a local PI controller as discussed in Section 4.1.1. The PI controller is driven by the error

between the V set
i and Vi to regulate the damper position Di. The control algorithm uses

the damper position from all the rooms (Dvav = [D1, D2, ...Dnsel
]) to compute the end

static pressure setpoit P set
eds.

In order to compute P set
eds a pressure demand Eahu is computed by taking the weighted

average of the damper position of each room as shown in Equation 4.6.

fpres(L) = Eahu = 0.4 ·max(D) + 0.4 · 1

nsel

nsel∑
i=1

Di (4.6)

Pressure demand Eahu is a numerical value between 0 and 100 and is a measure of the

total air flow requirement of all the rooms. A higher value of Eahu results in a higher P set
eds

value which in turn results in greater air flow through the VAV boxes. The setpoint P set
eds

is assigned the value equal to the output signal of a local PI controller which is driven by
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the error between a setpoint value for the pressure demand Eset
ahu and the calculated value

Eahu. Eset
ahu is a design value which is selected by trial and error. For the simulations

in this chapter and the real office building, Eset
ahu is assigned a value of 60. The value of

P set
eds is constrained between Pmin

eds and Pmax
eds to account for actuator saturation. Figure 4.8

contains a graphical representation of the procedure used to compute P set
eds.

The next step in the algorithm is to compute the AHU discharge air temperature set-

point T setahu. While the cooling demand value of a room is used in the computation of the

flow setpoint of the corresponding VAV box, a weighted average of the cooling demand

of each room is used in the calculation of the T setahu. The weighted average of the cool-

ing demand of each room is first used to compute a cooling capacity demand Qahu using

Equation 4.7.

fahu(L) = Qahu = 0.4 ·max(L) + 0.4 · 1

nsel

nsel∑
i=1

Li (4.7)

Cooling capacity demand is also a numerical value between 0 and 100 and is a measure

of the amount of cooling that is required to be performed by the AHU heat-exchanger.

Greater the cooling capacity demand, lower is the value of Tahuset resulting in a greater

cooling requirement. Similar to the method by which P set
eds was computed, T setahu is assigned

the value corresponding to the output signal of a local PI controller that is driven by the

error between the cooling capacity demand and its reference value Qset
ahu. Qset

ahu is also a

design value and is selected by trial and error. In the real building system and the simula-

tions Qref
ahu is assigned a value 60. The setpoint values are constrained between Tminahu and

Tmaxahu to account for actuator saturation. Figure 4.8 shows a schematic of how the setpoint

value T setahu is computed.

4.2.2 MPC Architecture

The previous section provided a description of how PI controllers were used to com-

pute the setpoints P set
eds, T

set
ahu, and V set. Instead of using PI controllers, the MPC methodol-
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ogy computes the aforementioned setpoints by minimizing an objective function denoted

by Jmpc. Before describing the objective function and the procedure adopted by MPC to

compute the setpoints, a definition of the terms and symbols that are used in the description

are first provided below.

At each control time instant say t, unlike the PI-type control methodology, MPC does

not compute the setpoints just for the current control time step interval, but also for a future

time period known as the prediction horizon. If the time step of the simulation is ts, and

the number of time instances for which MPC optimizes the setpoints is npred, then the

prediction horizon of MPC is tpred = ts · npred. MPC computes optimal setpoints for all

the time instances in the prediction horizon [t, t+1, ..., t+npred−1], but only the setpoints

corresponding to the current time instant t are applied to the simulation system or the real

building.

The setpoints corresponding to the time instant t + k computed at time instant t are

represented by the vector U set
t|t+k = [V set(t|t + k)′, P set

eds(t|t + k), T setahu(t|t + k)]′. The

representation t|t + k is used to denote a k-step-ahead prediction made at time instant

t. The set of setpoints corresponding to the entire prediction horizon are represented by

the vector U set
h = [U c

t|t,U
c
t|t+1, ...,U

c
t|t+npred

]′. The subscript h refers to the prediction

horizon. If the setpoints over the prediction horizon are computed by MPC then they

are represented by the vector Umpc
h = [Umpc

t|t ,Umpc
t|t+1, ...,U

mpc
t|t+npred

]′. Figure 4.9 shows

a schematic of the inputs and outputs corresponding to the application of MPC at time

instant t. The outputs that are measured by the sensors at time instant t are denoted by Yt,

and the outputs predicted by the model used for implementing MPC are represented by the

vector Ŷh = [Yt|t+1,Yt|t+2, ...,Yt|t+npred
].

At time instant t MPC computes the setpoints corresponding to the entire prediction
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horizon by minimizing an objective function as shown in Equation 4.8.

Umpc
h = argmin

Uset

Jmpc (4.8)

In this thesis, the objective function is designed to be a function of the cost of energy

consumption of the HVAC components of the energy distribution level, and a measure of

occupancy comfort over the prediction horizon. A more detailed description is provided in

the following sections. In order for the MPC solver to perform the minimization expressed

in the equation above, a relationship fmpc between the objective function, and the setpoints

U c
h is required as shown in Equation 4.9.

Jmpc = fmpc(U
c
h) (4.9)

Black-box models described in Chapter 3 are used in this thesis to identify statistical re-

lationships between the outputs and inputs of the components of the energy distribution

level. These black-box models provide output predictions Ŷh over the entire prediction

horizon, which are used by the MPC solver to perform the objective minimization. Since

the models don’t accurately predict the outputs of the simulation system or the real build-

ing, the predictions made by the black-box models are updated at each time instant. For

example at time instant t + 1, the black-box models receive the simulation/real building

outputs Yt+1 and the inputs corresponding to time instant t,i.e. u(t) in order to update its

statesX(t+1). The updated states are then used to make new predictions over the predic-

tion horizon Ŷh(t+1). A complete description of the inputs and outputs of each black-box

subsystem model, and how the states corresponding to the model are updated is provided

in the following section. Figure 4.10 shows a schematic of the functions performed by the

MPC methodology.
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Figure 4.9: Schematic Showing the Measured and Predicted Inputs and Outputs Corre-
sponding to the Application of MPC

Figure 4.10: Flow Diagram of the Proposed MPC Control Methodology for the Office
Building
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4.3 Black-Box Models of the Simulated System

The previous section provided a description of how the MPC methodology uses pre-

dictions from black-box models to minimize an objective function and compute optimal

setpoints over a prediction horizon., MPC solver minimizes the objective function Jmpc

with the help of a relationship between the cost function and the setpoints fmpc as shown

in Equation 4.9. Since there are three main components of the energy distribution level,

the mpc objective function is divided into three main components Jfan, Jhe, and Jcomf

corresponding to the AHU volume flow subsystem, AHU heat exchanger subsystem, and

the room temperature subsystem, respectively, as shown in Equation 4.10.

Jmpc = Jfan + Jhe + J comf (4.10)

The relationship fmpc can also similarly be divided into three components as shown in

Equation 4.11.

fmpc = ffan + fhe + fcomf (4.11)

The objective of the black-box models in this thesis is to identify the components of the

function fmpc shown above. This section provides a description of the black-box models

which are used by the MPC. As was stated earlier.

4.3.1 AHU Volume Flow Black-Box Model

The principal component in the AHU volume flow system that consumes energy is

the AHU fan. Thus the objective function corresponding to the AHU volume flow system

Jfan is chosen to be a function of the energy consumed by the AHU fan over the prediction

122



horizon as shown in Equation 4.12

Jfan = rfan ·
npred∑
i=1

Efan(i) (4.12)

where rfan is the energy cost, andEfan(i) is the energy consumed by the fan in the ith time

step. The energy consumed by the AHU fan is obtained from the fan law in Equation 4.13

Efan(i) = ηfan · Vahu(i) · Peds(i) (4.13)

where ηfan is the efficiency of the fan and Vahu(i) =
∑nsel

j=1 Vj(i) is the volume flow rate

across the fan and is the sum of the flow rates across the VAV boxes of all the rooms.

The objective of the black-box model is to estimate the energy consumption of the fan

at time instant t over the prediction horizon as a function of the setpoints U c
h. In order to

estimate the fan energy, an assumption is made that the volume flow rate across the fan at a

future time instant t+k is a scalar multiple of the actual volume as shown in Equation 4.14

V̂ahu(t|t+ k) = kfanVahu(t+ k) (4.14)

where kfan is the scalar constant and V̂ahu is the predicted volume flow rate across the fan.

The energy consumed by the fan over the sample time tk is then predicted by using the

Equation 4.15.

Êfan
t|t+k = kfan · ηfan · V̂ahu(t|t+ k) · P set

eds(t|t+ k) (4.15)

4.3.2 AHU Heat Exchanger Black-Box Model

In this thesis, the cost of operating the AHU heat exchanger is measured in terms of

the amount of chilled water used for cooling. The objective function corresponding to the

AHU heat exchanger Jhe is chosen to be a function of the heat energy gained by CHW
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used for cooling the AHU air over the prediction horizon as shown in Equation 4.16

Jhe = rchw ·
npred∑
i=1

Ehe(i) = rchw ·
npred∑
i=1

mchw(i) · (Tw,out(i)− Tw,in(i) (4.16)

where rchw is the cost of CHW operation, mchw is the mass of CHW used in the sample

time i, are the outlet and inlet CHW temperatures, respectively.

The CHW energy gained over the prediction horizon is estimated by the black-box

model, by using the energy conservation principle, i.e., the heat gained by the CHW sys-

tem, is equal to the heat lost by the AHU air. In addition, while estimating the CHW

energy, an assumption is made that the AHU discharge air setpoint is equal to the mea-

sured/simulated temperature. The CHW energy is thus estimated using Equation 4.17

Êhe =

npred∑
i=1

ρa · V̂ahu(i) · (Tout(i)− T setahu(i) (4.17)

where ρa is the density of air and Tout is the outside air temperature.

4.3.3 Room Temperature Subsystem

The third component of the objective function J comf corresponds to the room temper-

ature subsystem. As stated earlier, the minimization of the objective function requires a

relationship between the objective function and the setpoints over the prediction horizon

as shown in Equation 4.18.

J comf = f comf (U c
h) (4.18)

The comfort of the occupants of the room, however, is measured as a function of the

temperature of the rooms. Hence in order to express the comfort cost J comf in terms

of the setpoints U c
h, a relationship of the setpoints with the temperature of the rooms

T = [T1, T2, ..., Tnsel
] is first required. The objective of the black-box models is thus to
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Table 4.1: Inputs to the Room Temperature Subsystems

Inputs Output
Toa

−Vi ∗ (Ti − Tahu) Ti
Tj , where j ∈ Rsur

i

hoa

identify the relationship as shown in Equation 4.19

Th = f room(U c
h) (4.19)

where the subscript h in Th is used to denote the temperature of the rooms over the pre-

diction horizon. The relationship between the room temperatures and the comfort cost is

described in the following section.

In order to identify the relationship f room, black-box models of the room temperature

dynamics of each room are identified using the algorithm proposed in Chapter 3. The

relationship is expressed in terms of the state-space equation as shown in

xi(k + 1) = Aixi(k) +Biui(k) +Kie(k)

Ti(k) = Cixi(k)

(4.20)

where xi are the states, Ai, Bi, Ci, Ki are the state space matrices, and ui are the inputs to

the room temperature subsystem i. The list of possible inputs from which ui is obtained are

reproduced in Table 4.1 for ease of reference. In the table Toa and hoa refer to the outside

air temperature and humidity, respectively, and Rsur
i is the list of surrounding rooms. A

description of inputs, outputs and how the state space matrices are identified are provided

in Chapter 3. A comprehensive state space equation is then created by combining the state
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space matrices of each room as shown in Equation 4.21

x(k + 1) = Ax(k) +Bu(k) +Ke(k)

T (k) = Cx(k)

(4.21)

where x refers to the states and A,B,C,K are the state space matrices of the comprehen-

sive model. The state space matrices A,B,C,K are built from the subsystem state space

models using Equation 4.22

A =



A1 +
∑

j∈Rsel
1

Bj
1Cj 0 0 . . . 0

0 A2 +
∑

j∈Rsel
2

Bj
2Cj 0 . . . 0

...
... . . . . . .

...

0 0 0 . . . A2 +
∑

j∈Rsel
nsel

Bj
nsel

Cj



B =



Boa
1 Bc

1 0 . . . Bhoa
1

Boa
2 0 Bc

2 . . . Bhoa
2

... 0 0
. . . ...

Boa
nsel

0 . . . Bc
nsel

Bhoa
nsel


C = diag(Ci) ;K = diag(Ki); i ∈ {1, 2, ...nsel}

(4.22)

where Rsel
i is the set of surrounding rooms which are inputs to room i, Boa

i is the column

matrix of Bi corresponding to the input Toa, Bc
i is the column matrix corresponding to the

control input uctri = −Vi · (Ti−Tahu), and Bhoa
i is the column matrix corresponding to the

input hoa.

Since the black-box model does not accurately predict the simulation/real building

outputs, the states of the centralized state space system are updated at each time instant
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based on the most recent measured outputs and inputs as shown in Equation 4.23.

x(k) = Ax(k − 1) +Bu(k − 1)

x(k) = x(k) +K(T (k)− Cx(k)

(4.23)

After updating the states, predictions of room temperatures over the prediction horizon in

terms of the future disturbance inputs, and control setpoints can be made over the predic-

tion horizon by using Equation 4.24 . While making the predictions an assumption is made

that the VAV flows, and AHU discharge air temperature are equal to the setpoint values.

x(k + 1) = Ax(k) +Bu(k)

T̂k|k+1 = Cx(k + 1)

x(k + 2) = Ax(k + 1) +Bu(k + 1)

T̂k|k+2 = Cx(k + 2)

...

x(k + npred) = Ax(k + npred − 1) +Bu(k + npred − 1)

T̂k|k+npred
= Cx(k + npred)

(4.24)

4.4 Implementing Centralized MPC

The previous section provided a description of how black-box models of HVAC sys-

tems provide predictions that can be used by MPC. This section provides a description of

how the MPC solver shown in Figure 4.10 computes the optimal variables over the pre-

diction horizon Umpc
h by making use of the predictions from the black-box models. The

section is divided into 4 parts. The first part contains a description of the optimization

variables and the values within which they are constrained. The second part contains a

description of the objective function being minimized. The third part provides a method to
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compute the gradient and hessian of the objective function which is used by the optimizer

to perform the minimization.

4.4.1 Optimization Variables and Constraints

The variables optimized by MPC correspond to the setpoints of the three subsystems

of the energy distribution level over the entire prediction horizon tpred. The variables are

represented by the vector Umpc
h as shown in Equation 4.25.

Umpc
h =[V set

1 (k|k), V set
2 (k|k), . . . , V set

nsel
(k|k), . . . , V set

nsel
(k|k + npred − 1),

T setahu(k|k), P set
eds(k|k), . . . , P set

eds(k|k + npred − 1)]′
(4.25)

In order to reduce the computational burden, T setahu is kept constant through out the predic-

tion horizon. The number of optimization variables nvar are thus given by Equation 3.34.

nvar = nsel · npred + 1 + npred (4.26)

The physical and actuator limitations subject the optimization variables (Umpc
h ) to the

nonlinear inequality constraints. For example the volume flow through the VAV boxes of

each room is required to be greater than a certain minimum flow V min in order to provide

fresh air to the occupants. The maximum air flow through the VAV box is constrained by

the physical limits of the VAV box, and the pressure differential Peds. The relationship

expressed in Equation 4.1 is used to set the upper bound on the volume flow of the VAV

boxes V max. The constraint inequality for the volume flow setpoints is expressed in 4.27.

V min
i < V set

i (t|t+ k) < V max
i = (a+ b)

√
P set
eds(t|t+ k)

∀t, i ∈ {1, 2, ..., nsel}, k ∈ {1, 2, ..., npred}
(4.27)

Due to the physical constraints of the chiller providing CHW, and the AHU fan, the set-
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points for the AHU discharge temperature, and the AHU end static pressure are con-

strained between upper and lower bounds Tminahu and Pmin
eds , and Tmaxahu and Pmax

eds , respec-

tively, as shown in the inequality 4.28.

Tminahu < T setahu < Tmaxahu

Pmin
eds < P set

eds(t|t+ k) < Pmax
eds , ∀t, k ∈ {1, 2, ..., npred}

(4.28)

4.4.2 MPC Objective Function

The main objective of the MPC solver is to compute setpoints that minimize energy

consumption without compromising occupant comfort. To serve this end, a cost func-

tion is designed which penalizes the energy consumption of the AHU fan, the amount of

CHW used by the heat exchanger, and departures from thermal comfort. The three compo-

nents of the cost function shown in Equation 4.10 are computed by using Equations 4.12,

4.16, and 4.18. The aforementioned equations however depend on measurements made

by the sensors during simulation or operation. The optimal setpoints, however, are ob-

tained minimizing the objective function over a future time period. Hence, MPC solver

uses predictions of the cost function components using the black-box models described in

the previous section. A description of the predictions of the cost function components are

provided below.

4.4.2.1 AHU Volume Flow Predicted Cost

A k-time-step ahead prediction of the AHU fan energy made at time instant t is ex-

pressed in Equation 4.15. The component of the cost function corresponding to the AHU

volume flow simulation Ĵfan is over the prediction horizon is estimated using the predicted
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fan energy as shown in Equation 4.29

Ĵfan = rfan ·
npred∑
k=1

Êfan
t|t+k (4.29)

In this thesis, the cost of energy rfan is varied for the different simulation test cases

discussed in the following section.

4.4.2.2 AHU Heat Exchanger Predicted Cost

The cost of operation of the AHU heat exchanger is measured in terms of the CHW

used for cooling the outside air. A k-time-step ahead prediction of the CHW energy made

at time instant t is expressed in Equation 4.17. The cost function estimate corresponding

to the AHU heat exchanger over the prediction horizon is computed using the estimated

CHW energy as shown in Equation 4.30.

Ĵhe = rchw ·
npred∑
k=1

Êhe
t|t+k (4.30)

Similar to the fan energy cost, the CHW energy cost rchw is varied for the different simu-

lation test cases.

4.4.2.3 Comfort Cost

Whereby the cost components corresponding to the AHU fan and heat exchanger can

be objectively measured in terms of the energy consumption and mass of CHW used,

the thermal comfort cost is a subjective assessment of occupancy comfort. One way to

measure comfort is to estimate the impact the environmental conditions may have on the

productivity of the occupant. The environmental conditions that impact a person’s produc-

tivity may entail several factors such as the task being performed, clothing, metabolic rate,

wind speed, temperature, humidity etc. In order to make the computation of the thermal

130



cost easier, however, the aforementioned factors with the exception of temperature and

humidity are assumed to be constant. A relationship between temperature and humidity

with a person’s productivity is then sought.

A summary of the effects of thermal comfort on productivity in a laboratory environ-

ment was provided by Wyon in [58] . The laboratory tasks were divided into two types,

namely, thinking and typing. The results of the survey showed that for thinking tasks the

productivity reduced by dropped by 30% at 270C for a neutral temperature of 210C, and

for typing tasks the same loss of productivity occurred at 250C. As stated earlier, however,

the loss in productivity does not just depend on temperature but a host of other factors.

The temperatures in the results summarized by Wyon were converted into a thermal

scale called Predicted Mean Vote (PMV) by Kosonen in [59]. PMV is a scale developed

by Fagner [60] that takes into account all the aforementioned factors that impact occupant

comfort and represents them by a single scalar value. The scale ranges from -3 to 3, with

a negative value indicating cold sensations and a positive value indicating hot sensations.

A regression analysis was then performed by Kosonen to express the loss of productivity

values in terms of PMV for thinking and typing tasks. The results of the regression analysis

for thinking tasks is summarized in Equation

ri(t|t+ k) =β0 + β1p̂i(t|t+ k) + β2p̂i(t|t+ k) + β3p̂
2
i (t|t+ k)+

β4p̂i(t|t+ k)p̂i(t|t+ k) + β5p̂
2
i (t|t+ k)

(4.31)

where p̂i(t|t + k) is the k-step-ahead predicted PMV of room i, r is the productivity loss

ration, and βj j ∈ {0, 1, .., 5} are the regression coefficients whose values are summarized

in Table 4.2.

Computation of the productivity loss ratio in the above equation requires a prediction

of PMV of the rooms over the predition horizon. PMV is a highly nonlinear function of

131



Table 4.2: Parameter Values of the PMV and Productivity Functions Obtained through
Regression Analysis

Parameter Value Parameter Value
α0 -5.83 α5 0
α1 -0.20 β0
α2 -0.005 β0
α3 0.001 β0
α4 0.0005

several factors, but for the purposes of simulations in this thesis, PMV is expressed in terms

of only temperature and humidity, while keeping all the other parameters constant. PMV

corresponding to temperature values between 150C and 35C , and humidity values between

0 and 100 were computed using the procedure described by Fagner. A regression analysis

was then performed on the resulting data to obtain the quadratic relationship shown in

Equation 4.32.

pi(t|t+ k) =α0 + α1T̂i(t|t+ k) + α2ĥi(t|t+ k) + α3T̂
2
i (t|t+ k)+

α4T̂i(t|t+ k)ĥi(t|t+ k) + α5ĥ
2
i (t|t+ k)

(4.32)

where ĥi is the predicted relative humidity of room i, and αj j ∈ {0, 1, .., 5} are parameters

obtained through regression analysis whose values are summarized in Table 4.2. Since

the relative humidity of the rooms were not modeled, the predictions ĥi(t|t + k) ∀k ∈

{1, 2, ..., npred} were assigned the last measured value hi(t) . Rooms temperatures over

the prediction horizon are computed using Equation 4.24.

4.4.3 Solution to the MPC Objective Function

Optimal values of the setpoints over the prediction horizonUmpc
h are obtained by min-

imizing the objective function Ĵmpc subject to the constraints 4.28 and 4.27 as show in
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Equation 4.33

Umpc
h = argmin

Uc
h

Ĵmpc (4.33)

where Ĵmpc is the predicted cost of operation. Ĵmpc is computed using Equation 4.34

Ĵmpc = Ĵfan + Ĵhe + Ĵ comf (4.34)

The optimization problem is nonlinear and non convex. The interior-point method algo-

rithm is used to minimize the constrained cost function. Interior point algorithm uses the

gradient, and hessian of the cost function and the constraints in order to find the local

minima. The numerical optimization solvers in MATLAB perform much faster when an

analytical expression of the gradient and hessian is provided. A brief description of how

the gradient, and hessian were computed is provided below.

4.4.3.1 Gradient of Objective Function

The gradient of the objective function is the sum of the gradients of the predicted fan

cost (∇Ĵfan), gradient of predicted heat exchanger cost (∇Ĵhe), and gradient of predicted

comfort cost (∇Ĵco) as shown in Equation.

∇Ĵmpc = ∇Ĵfan +∇Ĵhe +∇Ĵ comf (4.35)

The gradient of each cost component can be further divided into gradient w.r.t flow set-

points V set, the AHU discharge air temperature setpoint T setahu, and the end static pressure

setpoints over the prediction horizon P set
eds as shown in Equation 4.36.

∇Ĵfan =

[
∂Ĵfan

∂V set ,
∂Ĵfan

∂T set
ahu
, ∂Ĵ

fan

∂P set
eds

]′
∇Ĵhe =

[
∂Ĵhe

∂V set ,
∂Ĵhe

∂T set
ahu
, ∂Ĵ

he

∂P set
eds

]′
∇Ĵ co =

[
∂Ĵco

∂V set ,
∂Ĵco

∂T set
ahu
, ∂Ĵco

∂P set
eds

]′ (4.36)
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∂Jcl

∂V
∗t|j
m

= ηhe · rcl · ts · ρa · T t|joa , j ∈ {0, 1, ..., npred}

∂Jcl

∂T
∗t|0
ahu

= −ηhe · rcl · ts · ρa ·
npred∑
j=1

V
t|j−1
ahu , j ∈ {0, 1, ..., npred}

∂Jcl

∂P
∗t|j
eds

= 0, j ∈ {0, 1, ..., npred}

(4.37)

∂Jf

∂V
∗t|j
m

= rf ·
ts

3.6 · 106
· P t|j

eds, j ∈ {0, 1, ..., npred}

∂Jf

∂T
∗t|0
ahu

= 0

∂Jf

∂P
∗t|j
eds

= rf ·
ts

3.6 · 106
· V t|j

ahu, j ∈ {0, 1, ..., npred}

(4.38)

The gradient of the comfort cost can be obtained by first computing the gradient of the

predicted room temperatures, which is derived in an iterative manner shown below.

• Step 1: Compute gradients at current timestep t using Equation 4.39.

∂u
ctr(t|0)
l

∂V
∗t|0
l

= −(T
t|0
l − T

∗t|0
ahu ); l ∈ {1, 2, ...nsel}

∂xt|1

∂V
∗t|0
l

= B
∂u

t|0
ctr

∂V
∗t|0
l

∂T̂ t|1

∂V
∗t|0
l

= C
∂xt|1

∂V
∗t|0
l

(4.39)

• Step 2: Using 4 nested for loops, with i = 1 : npred − 1, j = 1 : i, l = 1 : nsel, and

m = 1 : nsel, iteratively compute the gradients using Equations 4.40, and 4.41.
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∂u
ctr(t|i)
l

∂V
∗t|j
m

=



− (T̂
t|i
l − T

∗t|0
ahu ) if l = m & i = j

else

− V ∗t|il

∂T̂
t|i
l

∂V
∗t|j
m

(4.40)

∂xt|i+1

∂V
∗t|j
m

= A
∂xt|i

∂V
∗t|j
m

+B
∂u

t|i
ctr

∂V
∗t|j
m

∂T̂ t|i+1

∂V
∗t|j
m

= C
∂xt|i+1

∂V
∗t|j
m

(4.41)

• Step 3: A similar iterative procedure is adopted to find the gradient of the predicted

temperatures w.r.t T ∗ahut|0

.

• Step 4: Equation 4.42 is used to compute the gradient w.r.t the comfort cost.

∂Jco

∂V
∗t|j
m

=

npred∑
i=1

nsel∑
l=1

∂Jco

∂pmv
∗t|i
l

· ∂pmv
∗t|i
l

∂T
∗t|i
l

· ∂T
∗t|i
l

∂V
∗t|j
m

∂Jco

∂T
∗t|0
ahu

=

npred∑
i=1

nsel∑
l=1

∂Jco

∂pmv
∗t|i
l

· ∂pmv
∗t|i
l

∂T
∗t|i
l

· ∂T
∗t|i
l

∂T
∗t|0
ahu

∂Jco

∂P
∗t|j
eds

= 0

(4.42)

4.4.3.2 Hessian of Objective Function

The hessian of the cost function is the sum of the hessian of Jco, Jf , and Jc. The

only non zero component of the hessian of the cooling cost is w.r.t the variables involving

volume flow rate and the AHU discahrge air temperature computed as shown in Equa-
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tion 4.43. Similarly the only nonzero component of the hessian of the fan cost is w.r.t the

variables involving volume flow setpoint, and end static pressure shown in Equation 4.44.

∂2Jc

∂V
∗t|i
l ∂T

∗t|0
ahu

= −rc (4.43)

∂2Jf

∂V
∗t|i
l ∂T

∗t|0
ahu

= rf (4.44)

The Hessian of the comfort cost w.r.t two flow setpoint variables is computed itera-

tively using the following algorithm. A similar algorithm can be used to find the hessian

involving T ∗t|0ahu . The hessian of the comfort cost involving P ∗eds is 0.

• Step 1: Using 6 nested for loops, with i = 1 : npred − 1, j = 1 : i,k = 1 : j,

l = 1 : nsel, m = 1 : nsel, and n = 1 : nsel, iteratively compute the Hessians using

Equations 4.45, and 4.46.

∂2u
ctr(t|i)
l

∂V
∗t|j
m ∂V

∗t|k
n

=



− ∂T̂
t|i
l

∂V
∗t|k
n

if l = m & i = j

else

− V ∗t|il

∂2T̂
t|i
l

∂V
∗t|j
m · ∂V ∗t|kn

(4.45)

∂2xt|i+1

∂V
∗t|j
m ∂V

∗t|k
n

= A
∂2xt|i

∂V
∗t|j
m · ∂V ∗t|kn

+B
∂2u

t|i
ctr

∂V
∗t|j
m · ∂V ∗t|kn

∂2T̂ t|i+1

∂V
∗t|j
m · ∂V ∗t|kn

= C
∂2xt|i+1

∂V
∗t|j
m · ∂V ∗t|kn

(4.46)
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• Step 3: The hessian of the comfort cost w.r.t two flow setpoint variables is given by

Equation 4.47.

∂2Jco

∂V
∗t|j
m ∂V

∗t|k
n

=

npred∑
i=1

nsel∑
l=1

∂2Jco

∂(pmv
∗t|i
l )2

·(
∂(pmv

∗t|i
l )

∂T̂
t|i
l

)2

· ∂T̂
t|i
l

∂V
∗t|j
m

· ∂T̂
t|i
l

∂V
∗t|k
n

+
∂Jco

∂pmv
∗t|i
l

·

∂(pmv
∗t|i
l )

∂T̂
t|i
l

· ∂2T̂
t|i
l

∂V
∗t|j
m ∂V

∗t|k
n

(4.47)

4.5 MPC Operation

In order to compare the performance of centralized MPC and the traditional PI control

strategy several simulations are run with varying operating conditions. The simulations

can be categorized into two sets depending on the parameter that is varied to enforce the

changing operating conditions. The first set of simulations correspond to operating condi-

tions that are varied by changing the cost parameters rfan, rhe, and ryrsal. The second set of

simulations correspond to operating conditions that are varied by changing the outside air

temperature and humidity. For each operating conditions, three simulations are run corre-

sponding to centralized MPC, PI control with setpoint corresponding to the upper bound

for comfort, and PI control with temperature setpoints corresponding to the lower bound

for comfort. The results of the comparison are provided below.

4.5.1 Changing Cost Parameters

The cost parameters of the objective function are varied to generate three operating

conditions to simulate high cooling costs, high fan costs, and real-world estimation of

costs. The cost parameters corresponding to each operationg condition are shown in Ta-
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ble 4.3.

Table 4.3: Cost Parameters

Operation rclng rfan ryrsal
High Cooling Cost 1.101e− 6 1.1078e− 5 200

High Fan Cost 1.101e− 4 1.1078e− 7 200
Real World Cost 1.101e− 6 1.1078e− 7 20, 000

The first operating condition corresponds to high cooling costs. The result of apply-

ing centralized MPC with high cooling cost is shown with the help of Figure 4.11 which

shows the simulated temperature of room 1. For comparison purposes, the simulated tem-

perature of room 1 is shown with two PI type controls (high temperature setpoint PI, low

temperature setpoint PI) applied to the simulation system. The figure also shows the sim-

ulated temperature of room 1 when no control is applied. The end static pressure setpoint

Ped, and the volume flow rates through each room V set are set to the lowest permissi-

ble values, and the discharge air temperature T setahu is set to the highest permissible value.

The end static pressure setpoint and discharge air temperature setpoint computed by the

three controllers are shown in Figure The same process is repeated with high fan cost and

real world cost parameters. The results corresponding to the two operating conditions are

shown in Figures. A summary of the cost achieved by the controllers for each operating

condition is summarized in Table . The results show that for each type of controller, MPC

outperforms the PI type controllers.

As is evident from the above results MPC performs component level optimization by

seeking to find the combination of flow rates, end static pressure and discharge air temper-

ature setpoints that would result in the least value of the objective function. Furthermore

the summary of the results in Table 4.4 show that MPC performs better than the PI type
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Figure 4.11: Simulated Temperature of Room 1 Under High Cooling Cost Conditions with
Different Control Methodologies

Figure 4.12: Simulated End Static Pressure and Discharge Air Temperature Under High
Cooling Cost Conditions with Different Control Methodologies

controllers under a wide range of conditions.

4.5.2 Changing Outside Air Conditions

In order to compare the performance of MPC with PI-type controllers under varying

weather conditions, three sets of simulations are run. The operating condition correspond-

ing to each set of simulation is summarized in Table. The operating conditions are varied

by varying the day of the simulation. The first condition corresponds to the weather con-
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Figure 4.13: Simulated Temperature of Room 1 Under High Fan Cost Conditions with
Different Control Methodologies

Figure 4.14: Simulated End Static Pressure and Discharge Air Temperature Under High
Fan Cost Conditions with Different Control Methodologies

ditions on April 1st of the EnergyPlus weather file of College Station, TX. The second and

third operating conditions correspond to the days June 1st, and August 1st respectively.

The results of the comparison are summarized in Table

4.5.3 Effect of Prediction Horizon

In this section, the effect of the prediction horizon on the performance of MPC is

studied. Three simulations are run corresponding to a prediction horizon of 6, 12, and 18
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Figure 4.15: Simulated Temperature of Room 1 Under Real-World Cost Conditions with
Different Control Methodologies

Figure 4.16: Simulated End Static Pressure and Discharge Air Temperature Under Real-
World Cost Conditions with Different Control Methodologies

time steps, respectively. In units of time, the prediction horizon of the three simulations

steps are 0.5 hours, 1 hour, and 1.5 hours, respectively. A comparison of the cost achieved

with real world cost parameters on June 1st is shown in Table.

Simulations are run with estimates real world objective function parameters, and out-

side air conditions corresponding to June 1st of the EnergyPlus weather file of College

Station. Table 4.6 shows the summary of the costs achieved by applying MPC with vary-
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Table 4.4: Summary of the Costs Achieved with Varying Objective Function Parameter
Values

Real World Cost Conditions
Cost/Control PI high setpoint PI low setpoint MPC

Comfort Cost ($) 103.18 24.44 1.33
AHU fan and HE cost ($) 0.44 0.68 0.46

Total Cost($) 103.63 25.12 1.79
High Cooling Cost Conditions

Comfort Cost ($) 1.03 0.24 0.84
AHU fan and HE cost ($) 7.16 9.23 4.14

Total Cost($) 9.47 8.19 4.98
High Fan Cost Conditions

Comfort Cost ($) 1.03 0.24 2.49
AHU fan and HE cost ($) 37.89 59.92 1.77

Total Cost($) 38.92 60.17 4.26

Table 4.5: Summary of the Costs Achieved Under Varying Outside Air Conditions

April 1st
Cost/Control PI high setpoint PI low setpoint MPC

Comfort Cost ($) 38.6 16.15 15.77
AHU fan and HE cost ($) 0.03 0.08 0.11

Total Cost($) 38.63 16.23 15.88
June 1st

Comfort Cost ($) 103.18 24.44 1.33
AHU fan and HE cost ($) 045 0.68 0.46

Total Cost($) 103.63 25.13 1.79
August 1st

Comfort Cost ($) 96.33 22.94 1.40
AHU fan and HE cost ($) 0.47 0.71 0.45

Total Cost($) 96.80 23.65 1.85

ing lengths of prediction horizon.
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Table 4.6: Summary of the Costs Achieved with Different Prediction Horizons

April 1st
Cost/Prediction horizon 0.5 hrs 1 hr 1.5 hr

Comfort Cost ($) 1.33 0.90 0.97
AHU fan and HE cost ($) 0.46 0.45 0.48

Total Cost($) 1.80 1.35 1.46

4.6 Conclusion

One of the significant bottlenecks to the application of MPC is the development of reli-

able and easy to compute models. This chapter demonstrated that the black-box modeling

algorithm proposed in Chapter 3 which can be developed and automated by just using

data from BEMS has the potential to be used to apply MPC on real building systems.

A method was presented whereby, the models can be used to implement MPC on EDL

components of the building HVAC systems. Results from high-fidelity simulation models

showed that MPC using linear black-box models can outperform the traditional PI-type

controllers under varying operating conditions.
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5. COMPARISON OF CENTRALIZED AND DISTRIBUTED MPC

In Chapter 4 a methodology was proposed whereby models developed using black-

box identification methods were used to implement MPC using a centralized architec-

ture. The proposed methodology was verified using high fidelity simulation models of the

HVAC components of the energy distribution level. A comparison of the simulation re-

sults showed that MPC consumed 10% less energy than a PI-type control which is widely

used by BMSs. The reduction in energy usage was achieved without any adverse impact

on occupancy comfort.

Although implementing MPC resulted in lesser energy consumption in simulations,

the centralized nature of the control architecture poses a few challenges for real-world ap-

plication. Building HVAC components comprise hundreds of components. Implementing

centralized MPC requires a single optimizer that contains models of the subsystem dynam-

ics and their interactions with each other. The optimizer minimizes a centralized objective

function to compute setpoints corresponding to all the subsystems being regulated. As the

number of components increase, the computational burden required to calculate optimal

setpoints may make the implementation infeasible.

In addition to the computational burden, centralized architecture reduces the flexibil-

ity and modularity of the HVAC operation. Several changes to the system dynamics may

occur over the course of the HVAC operation. For example, components may be mod-

ified or replaced, operating conditions may change due to changes in setpoints, climatic

conditions etc. The centralized model and objective function has to be updated every time

such a change occurs. In order to make the control approach more modular and flexi-

ble, a methodology for implementing MPC on building HVAC systems using a distributed

control architecture is proposed in this chapter. In the distributed architecture, each sub-
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Figure 5.1: A Schematic Showing the Application of MPC with a Distributed Architecture

system is assigned its own local MPC optimizer. The optimizer computes the setpoints

of only the subsystem it is assigned. For example the MPC optimizer for room 1 only

computes the volume flow rate setpoint V set
i for the VAV box serving room 1. Figure 5.1

is used to illustrate the application of MPC using a distributive architecture on the simula-

tion system described in Chapter 4. In the figure the red dotted line is used to indicate the

communication between the optimizers.

As opposed to the optimizer of the centralized MPC, each DMPC optimizer contains

limited knowledge of the entire system. The optimizer contains knowledge of its own

subsystem and a portion of the knowledge of the rest of the system which it receives

via communication with other DMPC optimizers. Depending on the objective function

minimized, and the amount of information that is exchanged between the optimizers, there

are several different algorithms available in literature to apply MPC using a distributed

control architecture.

In this chapter, the algorithm proposed by Elliot in [61] called the Neighbor Com-
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Figure 5.2: A Schematic Showing the Inputs and Outputs of the Subsystem i and the Data
Communicated to and by Optimizer i.

munication Optimal Control (NC Opt) algorithm is adopted to compute the subsystem

setpoints. Elliot showed that by judiciously selecting the objective function of each opti-

mizer, a global optimal solution can be achieved by each optimizer communicating with

only a limited number of other optimizers. The NC-Opt algorithm is extended in this

chapter to include dynamic systems and is referred to as the NC DMPC algorithms. This

chapter provides a methodology, whereby, the NC DMPC algorithm in conjunction with

the automated black-box modeling algorithm can be used to apply MPC on building HVAC

systems. The subsequent sections in this chapter provide a description of the procedure

used to compute the setpoints of each subsystem, and the simulation results of applying

the methodology on the building HVAC simulation system in Figure 5.1.

5.1 NC DMPC Algorithm Preliminaries and Procedure

In the NC DMPC algorithm, each optimizer computes the setpoints corresponding to

the subsystem it is assigned to. Before detailing the procedure to compute the setpoints,

the terms and definitions used by algorithm is presented with the help of Figure 5.2. The
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figure shows a schematic representation of a subsystem i being regulated by its optimizer.

The blue arrows are used to the physical interactions between the subsystems and their op-

timizers, while the red arrows correspond to the exchange of data between the optimizers.

5.1.1 NC DMPC Algorithm Preliminaries

There are several factors which influence the dynamics of any HVAC subsystem.

While modeling the dynamics, however, only those factors which are measured by the

BMS sensors are taken into consideration. The inputs considered for modeling the dy-

namics can be classified into three categories, exogenous disturbance inputs, inputs from

upstream neighbors, and control setpoints computed by the DMPC optimizer. For exam-

ple, for subsystem i in Figure 5.2, di, vi, and useti are the exogenous disturbance inputs,

inputs from upstream neighbors, and control setpoint, respectively. The models for each

subsystem are developed by taking into consideration the aforementioned categories of

inputs.

The term neighboring in the preceding paragraph does not correspond to physical prox-

imity of the subsystems. Instead two subsystems are said to be neighbors if they have

interconnecting dynamics. The output of an upstream neighbor acts as an input to a down-

stream neighbor. For instance taking the example of subsystem i again in Figure 5.2,

subsystem j is an upstream neighbor, and subsystem k is a downstream neighbor to i.

The outputs of the subsystem that are tracked by the optimizer are also classified into

two categories. If the output of a subsystem acts as an input to its downstream neighbor,

then it is referred to as a downstream output. On the other hand if the output is used in

the computation of the cost of operation of the subsystem, then it is referred to as the

component output. An output can simultaneously be downstream and component output.

Referring to the Figure 5.2 once again, the downstream output and the component output

of subsystem i are zi and yi, respectively.
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As was discussed in Chapter 4, MPC computes the optimal setpoints not just for the

current time instant (say t) but for a future time period known as the prediction horizon

tpred. The computation of the optimal setpoints over the prediction horizon, requires pre-

dictions of the downstream and component outputs over the same horizon. In this chapter,

the predictions of these outputs for each type of subsystem of the energy distribution level

are made using the system identification procedure described in Chapter 3. A brief de-

scription of the models is provided again in the next section for ease of reference. The

predictions of the outputs over the horizon using the models can be expressed as shown in

Equation 5.1

ŷh,i =f comph,i (d̂h,i, v̂h,i,u
set
i,h)

ẑh,i =fdh,i(d̂h,i, v̂h,i,u
set
i,h)

(5.1)

where f comph,i and fdh,i are the identified models corresponding to the component and down-

stream outputs, respectively. The vectors d̂h,i, v̂h,i, and useti,h refer to the estimated values

over the prediction horizon of the three types of inputs to subsystem i. The vectors ŷh,i and

ẑh,i refer to the predictions of the component and downstream outputs, respectively over

the prediciton horizon. Theˆsymbol over a variable is used to indicate that their values are

estimated either using a forecast, or predicted with the help of a model. The subsript h is

assigned to a vector when it contains elements corresponding to the prediction horizon.

As was stated earlier, the optimizer does not contain all the information it requires

to reach the global optimal solution. In order to perform the optimization, the DMPC

optimizer receives two pieces of information from neighboring subsystems. The first piece

of information is the output predictions of the upstream neighbors. The output predictions

from the upstream neighbors are the upstream inputs of the subsystem under consideration
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as shown below for subsystem i in Figure 5.2.

ẑh,j = v̂h,i (5.2)

The second piece of information that is required by the optimizer are the sensitivity

vector. The sensitvity vector is denoted by the symbolψh,k,i where the subscript k refers to

the downstream optimizer sending the information, and i refers to the optimizer receiving

the information. The sensitivity vector comprises the sensitivity values over the prediction

horizon, i.e., ψh,k,i = [ψk,i(t|t + 1), ψk,i(t|t + 2), ..., ψk,i(t|t + npred)]
′, where npred is the

number of control time steps in the prediction horizon. The expression t|t + r is used to

indicate an r-step-ahead prediction made at time instant t. Sensitivity values are a measure

of how the downstream output impacts the operational cost of the downstream neighbor.

The method to compute the sensitivity values is provided in the next section.

5.1.2 Construction of the NC DMPC Objective Function

The setpoints computed by the optimizer i over the prediction horizon are denoted by

the vector udmpch,i (t) = [udmpci (t), udmpci (t+1), ..., udmpci (t+npred−1)]′. The setpoint vector

udmpch,i (t) is computed by minimizing an objective function Ĵdmpch,i as shown in Equation5.3

udmpch,i = argmin
uset
h,i

Ĵdmpch,i (5.3)

where useth,i(t) = [useti (t), useti (t+ 1), ..., useti (t+ npred − 1)]′ is the vector of control input

setpoints. The objective function Ĵdmpch,i is composed of two parts as shown in Equation 5.4.

Ĵdmpch,i = Ĵ comph,i + Ĵ senh,i (5.4)

The first part Ĵ comph,i referred to as component cost, is an estimate of the cost of oper-
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ation of the subsystem over the prediction horizon. For example, for the AHU Pressure

subsystem the component cost is the cost of energy expended by the AHU fan. The com-

ponent cost is measured as a function of the component output as shown in Equation 5.5.

Ĵ comph,i (t) = f ch,i(ŷh,i(t)) (5.5)

The second part of the objective function Ĵdmpch,i , referred to as the sensitivity cost, is

a measure of how the downstream output ẑh,i affects the operational costs of the down-

stream subsystem over the prediction horizon. The sensitivity cost is constructed with the

help of the predictions of the downstream output, and the sensitivity vectors sent by the

downstream optimizers as shown in Equation 5.6.

Ĵ senh,i (t) =

nd
i∑

k=1

ψh,k,i(t)
′ · ẑh,i(t) (5.6)

In the equation above ndi is the number of downstream neighbors of subsystem i. The rth

element of the sensitivity vector ψh,k,i(t) is computed by taking the partial derivative of

the cost function of subsystem k with respect to the r-step-ahead predicted value of the

downstream output of i as shown in Equation 5.7.

ψk,i(t|t+ r) =
∂Ĵdmpch,k (t)

∂ẑi(t|t+ r)
(5.7)

A sumamry of the variables and functions associated with the NC DMPC procedure for

subsystem i is provided in Table 5.1.
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Table 5.1: Summary of the Variables and Functions of the NCDMPC Procedure for Sub-
system i

Inputs Description
di exogenous inputs
vi upstream inputs
useti control setpoint

Outputs Description
yi component output
zi downstream output

Data received by optimizer i Description
v̂h,i outputs from upstream neighbors
ψh,k,i sensitivities from downstream neighbors

where k ∈ {1, 2, ..., ndi }
Data sent by optimizer i Description

ẑh,i Predictions of downstream output
ψh,i,j sensitivities to upstream neighbors

Equations Description
ŷh,i = f comph,i (d̂h,i, v̂h,i,u

set
i,h) model of component output

ẑh,i = fdh,i(d̂h,i, v̂h,i,u
set
i,h) model of downstream output

udmpch,i = argmin
uset
h,i

Ĵdmpch,i optimal inputs over prediction horizon

Ĵdmpch,i = Ĵ comph,i + Ĵ senh,i parts of the objective function

Ĵ comph,i (t) = f ch,i(ŷh,i(t)) component cost

Ĵ senh,i (t) =
∑nd

i
k=1ψh,k,i(t)

′ · ẑh,i(t) sensitivity cost

ψi,j(t|t+ r) =
∂Ĵdmpc

h,i (t)

∂ẑj(t|t+r) r-step-ahead element of sensitivity
vector sent to subsystem j
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5.1.3 NC DMPC Algorithm Pseudo-Code

As was stated in the previous section the DMPC optimizers do not have all the infor-

mation to carry out the optimization procedure by themselves. Information is exchanged

between neighboring optimizers. For example, optimier i receives predictions of upstream

inputs v̂h,i and sensitivities from downstream neighborsψh,k,i from downstream neighbors

where k ∈ {1, 2, ..., ndi }. However, the upstream and downstream optimizers themselves

require data from their respective neighbors to compute the predictions and sensitivity val-

ues. Hence, in the NC DMPC procedure information is exchanged between the optimizers

in an iterative manner at each control time step. These iterations are referred to as com-

munication iterations. In this chapter, the communication iteration number is referred to

by placing it in parenthesis and as a superscript to the variable under consideration.

For instance, consider again the example of subsystem i in Figure 5.2. At control time

instant t and communication iteration number r, optimizer i receives the each communica-

tion iteration, the optimizer i receives the predictions v̂(r−1)h,i (t) from the upstream neighbor

j, and the sensitvity vector ψ(r−1)
h,k,i (t) from the downstream neighbor k. The optimizer i

then computes the optimal setpoint vectorudmpc(r)i (t) using Equation 5.3. After computing

u
dmpc(r)
i (t) optimizer i then computes the downstream output predictions ẑ(r)h,i (t) and the

senstivity vectorψh,i,k(t)(r) which it passes on to the downstream and upstream neighbors,

respectively. The process of computing the optimal setpoints and communicating predic-

tions and sensitivities continues until the maximum allowable number of communication

iterations nmaxcom , or when there is no significant change in the value of the computed set-

points between successive iterations. A summary of the algorithm to compute the setpoints

for subsystem i is provided below as a pseudo code.

• Step 0: Initialize the communication iteration number r = 0, and the prediction

vectors of the component and downstream outputs, and the sensitivity vectors to be
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passed on to upstream systems ŷ(0)
h,i (t),ẑ(0)h,i (t), ψ(0)

h,i,j(t) j ∈ {1, 2, ..., nui } , where

nui is the number of upstream neighbors. The vectors are generally initialized using

values from previous control time step.

• Step 1: Optimizer i communicates ẑ(r)h,i (t) to its downstream neighbors, andψh,i,j(t)

j ∈ {1, 2, ..., nui } to its upstream neighbors. At the same time the optimizer i re-

ceives v̂(r)h,i (t) from upstream neighbors, and ψ(r)
h,i,k(t) k ∈ {1, 2, ..., ndi } from down-

stream neighbors.

• Step 2: Increment the iteration number r = r + 1. The communication data from

Step 1 is used to compute udmpc(r)h,i using Equation 5.3.

• Step 3: Optimizer i computes the component and downstream outputs ŷ(r)
h,i (t) and

ẑ
(r)
h,i (t) using Equation 5.1, and the sensitivities to the upstream neighbors ψ(r)

h,i,j(t)

using Equation 5.7.

• Step 4: If udmpc(r)h,i − udmpc(r−1)h,i < uδ or r > nmaxcom stop iterations, else repeat steps

1 through 4. If the change in the value of udmpc(r)h,i between successive iterations is

less than the threshold value or the maximum number of iterations is reached then

the iterations are stopped.

• Step 5: Apply the first element of the vector computed in Step 3 udmpc(r)i (t) to the

subsystem i.

5.2 Distributed Model Predictive Control

Whereas centralized MPC contains a single optimizer that computes the setpoints of

all the subsystems, in the NC DMPC approach there are several local optimizers each

serving their own subsystem. Each optimizer seeks to compute global optimal setpoints

of the subsystem it regulates. The term global optimal is used to refer to the solution that
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minimizes the centralized cost function designed in Chapter 4 in Equation. As was stated

in the previous section, by judiciously designing the objective function of each optimizer,

the NC DMPC method approaches the global optimal solution.

The NC DMPC approach in this chapter is applied in simulation to the components

corresponding to the energy distribution level. The trhee subsystems corresponding to the

energy distribution level are the AHU pressure subsystem, AHU temperature subsystem,

and the room temperature subsystem. The following subsections provide a description of

how the NC DMPC algorithm is used to compute optimal setpoints of the aforementioned

subsystems.

5.2.1 Optimal Setpoints for the AHU Pressure Subsystem

The AHU Pressure subsystem comprises the AHU fan which creates a pressure dif-

ferential called the end static pressure Peds in the AHU. The pressure differential causes

a mixture of the outside and return air to flow through the AHU heat exchanger and be

delivered to the VAV boxes of each room. Peds is actuated to a setpoint value P set
eds with a

help of a local PI controller that regulates the fan speed. Greater the value of P set
eds, greater

is the fan speed required. The objective of the pressure optimizer is to determine the value

of P set
eds at each control time step, so as to ahieve a global optimal solution using the NC

DMPC algorithm.

Computation of optimal values of P set
eds using the NC DMPC procedure requires a

model of the outputs of the pressure subsystem. The end static pressure Peds and the

energy expended by the fan Efan are the two outputs of the pressure subsystem that are

tracked. Peds acts as a downstream output as it affects the amount of conditioned air that

is received by the room temperature subsystems. A model of the dynamics of the fan re-

quires a knoweldge of the construction of the AHU, the type of fan used, the dampers in

each room etc. The pressure dynamcis, however, are much faster than the room tempera-
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ture dynamics. Hence, in this chapter, while modeling Peds the pressure dynamics are not

included. An assumption is made that in a single control time step the AHU fan is able to

actuate Peds to its setpoint value as shown in Equation 5.8.

P̂eds(t|t+ 1) = P set
eds(t) (5.8)

The output Efan is selected as the component output, since the cost of operation of

the pressure subsystem is determined by the energy expended by the fan. The energy

expended by the fan is obtained from fan laws which state that the fan power is equal to

the product of the volume flow rate, and the pressure differential across the fan. The one-

step-ahead estimation made at time instant t of the fan energy expended is thus obtained

using Equation 5.9

Êeds(t|t+ 1) = ηfan · P̂eds(t|t+ 1) · V̂ahu(t|t+ 1) (5.9)

where ηfan is the efficiency of the fan motor, and V̂ahu is the estimate of the volume flow

rate flowing through the AHU fan. V̂ahu is an upstream input obtained by summing the

volume flow rates through each of the VAV boxes being served by the AHU, as shown in

Equation 5.10

V̂ahu(t|t+ 1) =
nr∑
i=1

V̂i(t|t+ 1) (5.10)

where nr is the number of rooms.

The pressure optimizer computes the optimal values for P set
eds over the prediction hori-

zon by minimizing an objective function Ĵdmpch,eds as shown in Equation 5.11.

P dmpc
h,eds = argmin

P set
h,eds

Ĵdmpch,eds (5.11)
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The AHU Pressure subsystem objective function is made up of two parts, componet cost

Ĵ comph,eds and sensitivity cost Ĵ senh,eds as shown in Equation 5.12.

Ĵdmpch,eds = Ĵ comph,eds + Ĵ senh,eds (5.12)

The component cost Ĵ comph,eds is equal to the cost of the energy expended by the AHU fan

over the prediction horizon and is expressed by using Equation 5.13.

Ĵ comph,eds = rfan ·
npred∑
k=1

Êfan(t|t+ k) (5.13)

The sensitivity cost Ĵ senh,eds is constructed with the help of the sensitivity values ψh,i,ahu

received from the downstream neighbors i ∈ {1, 2, ..., ndahu} as shown in Equation 5.14.

Ĵ senh,eds =

nsel∑
i=1

ψh,i,ahu(t) · P̂ (5.14)

For the pressure subsystem, the downstream neighbors are all the rooms served by the

AHU, i.e., ndahu = nr. The sensitivity vector ψh,i,eds contains the sensitivity values of

the objective function of subsystem i (Ĵdmpch,i ) to the estimated values of the downstream

output P̂h,eds. The r-step-ahead sensitivity value corresponding to the vector ψh,i,eds is as

shown in Equation 5.15.

ψi,eds(t|t+ r) =
∂Ĵdmpch,i

∂P̂eds(t|t+ r)
(5.15)

A detailed discussion of how the sensitiviy vector ψh,i,eds is computed is provided in Sec-

tion 5.3. Table 5.2 provides a summary of inputs, outputs, and equations used in the

computation of the optimal setpoint vector corresponding to the AHU Pressure subsys-

tem. With the help of these variables and functions the NC DMPC algorithm described in
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the previous section is applied to compute the optimal setpoint vector P set
h,eds.

Table 5.2: Summary of the Variables and Functions of the NCDMPC Procedure for AHU
Pressure Subsystem

Inputs Description
di = [] no exogenous inputs

vi = [V1, V2, ..., Vnr ] volume flow rates from all the rooms
useti = P set

eds end static pressure setpoint
Outputs Description
yi = Efan energy expended by fan
zi = Peds end static pressure

Data received by optimizer Description
V̂h,i, i ∈ {1, 2, ..., nr} flow rates from all the rooms

ψh,i,eds , i ∈ {1, 2, ..., nr} sensitivity vectors from all the rooms
Data sent by optimizer i Description

P̂h,eds predictions of end static pressure
ψh,eds,i, i ∈ {1, 2, ..., nr} sensitivities to all the rooms

Equations Description
P̂eds(t|t+ 1) = P set

eds(t) model of end static pressure

Êeds(t|t+ 1) = ηfan · P̂eds(t|t+ 1) · V̂ahu(t|t+ 1) model of energy expended by fan

P dmpc
h,eds = argmin

P set
h,eds

Ĵdmpch,eds optimal values of end static pressure

Ĵ senh,eds =
∑nsel

i=1 ψh,i,ahu(t) · P̂ objective function parts

Ĵ comph,eds = rfan ·
∑npred

k=1 Êfan(t|t+ k) component cost

Ĵ senh,eds =
∑nsel

i=1 ψh,i,ahu(t) · P̂ sensitivity cost

ψi,eds(t|t+ r) =
∂Ĵdmpc

h,i

∂P̂eds(t|t+r)
r-step-ahead element of sensitivity
vector received from subsystem i
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5.2.2 Optimal Setpoints for the AHU Temperature Subsystem

The AHU temperature subsystem comprises a heat exchanger which conditions the air

flowing through the AHU before being delivered to the rooms. The discharge air temper-

ature Tahu is actuated to a setpoint value T setahu with the help of a valve that regulates the

amount of CHW flowing through the heat exchanger. The objective of the temperature op-

timizer is to determine the value T setahu at each control time step to achieve a global optimal

solution.

Proceeding in the similar fashion as that of the pressure subsystem, models of the

outputs of the AHU temperature subsystem are identified. The outputs of the AHU tem-

perature subsystem that are tracked in this chapter are the discharge air temperature Tahu,

and the cooling energy corresponding to the CHW usage of the heat exchanger Ehe. The

temperature Tahu is selected as the downstream output since it affects the amount of cool-

ing received by each room. Similar to the procedure adopted while modeling the AHU

end static pressure, the dynamics of the discharge air temperature are ignored since they

are much faster than the room temperature dynamics. The discharge air temperature is

assumed to have reached its setpoint value T setahu by the next control time step as shown in

Equation 5.16.

T̂ahu(t|t+ 1) = T setahu(t) (5.16)

The output Ehe is selected as the component output, since the cost of CHW used for

cooling the air through the AHU determines the cost of operation of the subsystem. The

cooling energy obtained from CHW is estimated by using the principle of energy conser-

vation as shown in Equation 5.17

Êhe(t|t+ 1) = ηhe · ρair · V̂ahu(t|t+ 1) · (Toa(t+ 1)− T̂ahu(t|t+ 1)) (5.17)
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where ηhe is the efficiency of the heat exchanger, ρair is the density of air, and Toa is the

temperature of air entering the AHU.

The optimal setpoint T dmpc
h,ahu over the prediction horizon is computed by minimizing

the objective function corresponding to the temperature subsystem Ĵdmpch,ahu as shown in

Equation 5.18.

T dmpc
h,ahu = argmin

T set
h,ahu

Ĵdmpch,ahu (5.18)

The objective funciton Ĵ comph,ahu comprises of two parts, the component cost Ĵ comph,ahu, and the

sensitivity cost Ĵ senh,ahu as shown in Equation 5.19.

Ĵdmpch,ahu = Ĵ comph,ahu + Ĵ senh,ahu (5.19)

The component cost Ĵ comph,ahu is obtained by using the estimate of the cooling energy in

Equation 5.17 as shown below

Ĵ comph,ahu =

npred∑
k=1

rchw · Êhe(t|t+ k) (5.20)

where rchw is the unit cost of chilled water usage.

As is the case for the pressure subsystem, the downstream neighbors of the temper-

ature subsystem are each of the rooms being served by the AHU. The sensitivity cost is

constructed from the sensitivity vectorsψh,i,ahu passed on from the downstream subsystem

optimizers i ∈ {1, 2, ..., nr} as shown in Equation 5.21.

Ĵ senh,ahu =

nsel∑
i=1

ψh,i,ahu · T̂h,ahu (5.21)

A discussion of how the sensitivities of ψh,i,eds is computed is provided in the Section 5.3.

A summary of all the equations used in the computation of T̂ dmpc
h,ahu is provided in Table.
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Table 5.3: Summary of the Variables and Functions of the NCDMPC Procedure for AHU
Temperature Subsystem

Inputs Description
di = [] no exogenous inputs

vi = [V1, V2, ..., Vnr ] volume flow rates from all the rooms
useti = T setahu end static pressure setpoint

Outputs Description
yi = Ehe cooling energy of heat exchanger
zi = Tahu discharge air temperature

Data received by optimizer Description
V̂h,i, i ∈ {1, 2, ..., nr} flow rates from all the rooms

ψh,i,ahu , i ∈ {1, 2, ..., nr} sensitivity vectors from all the rooms
Data sent by optimizer Description

T̂h,ahu predictions of discharge air temperature
ψh,ahu,i, i ∈ {1, 2, ..., nr} sensitivities to all the rooms

Equations Description
T̂ahu(t|t+ 1) = T setahu(t) model of discharge air temperature

Êhe(t|t+ 1) = ηhe · ρair·
V̂ahu(t|t+ 1) · (Toa(t+ 1)− T̂ahu(t|t+ 1)) model of cooling energy

T dmpc
h,ahu = argmin

T set
h,ahu

Ĵdmpch,ahu optimal values of discharge

air temperature setpoints
Ĵdmpch,ahu = Ĵ comph,ahu + Ĵ senh,ahu objective function parts

Ĵ comph,ahu =
∑npred

k=1 rchw · Êhe(t|t+ k) component cost

Ĵ senh,ahu =
∑nsel

i=1 ψh,i,ahu · T̂h,ahu sensitivity cost

ψi,ahu(t|t+ r) =
∂Ĵdmpc

h,i

∂T̂ahu(t|t+r)
r-step-ahead element of sensitivity
vector received from subsystem i

5.2.3 Optimal Setpoints for Room Temperature Subsystem

Computation of the optimal setpoints for the room temperature subsystems first re-

quires an objective way of measuring thermal comfort. A brief description of the method
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used to measure thermal comfort is first provided.

The principal objective of the HVAC system is to provide adequate thermal comfort

to the occupants. There are several factors which determine thermal comfort such as hu-

midity, temperature, clothing, metabolism etc. For the sake of simplicity, however, in

this paper, thermal comfort of the occupants is measured as a function of only the ambi-

ent room temperature and humidity with other factors assumed to remain constant. The

temperature and humidity of the room are converted into a single numerical value called

Predicted Mean Vote (PMV) which serves as a measure for thermal comfort. The scale

ranges from -3 for with the negative value indicating cold ambient conditions to +3 with

the positive value indicating warm ambient conditions.

The value of PMV is measured as a deviation from a thermally neutral temperature

(temperature at which occupant neither feels warm or cold). The thermally neutral tem-

perature can be altered based on the clothing level of the occupant. In this paper, an upper

(23C) and a lower (21.5C) thermally neutral temperatures are considered. An assumption

is made that within the temperature range of the upper and lower thermally neutral tem-

peratures, the occupants can maintain their desired level of comfort simply be adjusting

their level of clothing. For temperatures above 230C the Equation 5.22 is used, and for

temperatures below 21.50C the Equation 5.23 is used to calculate the value of the PMV of

the room.

rpmvi = a0 + a1Ti + a2Ri + a3T
2
i + a4TiRi (5.22)

rpmvi = b0 + b1Ti + b2Ri + b3T
2
i + b4TiRi (5.23)

In the equations above rpmvi refers to the PMV value of room i, and Ri is the relative

humidity in percentage. The values of the coefficients are provided in Table 5.4. A detalied

description of the process used to compute PMV values is provided in Chapter 4.

In order to have consistent units with the cost of operation of the AHU pressure and
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Table 5.4: Coefficients used to Compute PMV Values

Coefficient Value Coefficient Value
a0 -4.42 b0 -5.53
a1 0.16 b1 0.19
a2 -4e-3 b2 -4.5e-3
a3 9e-4 b3 1.1e-3
a4 4.2e-4 b4 4.7e-4

temperature subsystem ($), a relationship between thermal comfort and loss in productiv-

ity is sought. An occupant’s productivity in a work environment is linked to their thermal

comfort. A relationship between thermal comfort scale PMV and an occupant’s produc-

tivity loss in an office setting involving thinking tasks was proposed in . In Chapter 4, a

quadratic fit between PMV and loss of productivity rpl was obtained from the relationship

proposed in []. The quadratic fit is reproduced in Equation 5.24.

rpli = 8.53 + 37.97rpmvi − 12.65(rpmvi )2 (5.24)

The productivity loss is multiplied with the occupant’s average salary per control time step

to measure thermal comfort in dollars.

The measure of thermal comfort described above is used in the construction of the ob-

jective function of the room temperature subsystem. The objective function of the room

temperature subsystem is then used in the computation of the optimal flow rate setpoints

V set
i where i ∈ 1, 2, ..., nr. The procedure to compute the setpoints using the objective

function follows the same process as that of the AHU temperature and pressure subsys-

tems. The method is described below.

The first task in computing the optimal setpoints is to define the outputs and inputs

to the system. The outputs of the room temperature subsystems i that are tracked are
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the temperature Ti and the volume flow rate through the VAV Vi. The temperature Ti is

selected as the component output since its used in the measurement of thermal comfort.

Although, the measurement of thermal comfort also requires the relative humidity of the

roomRi, it is treated as an unmodeled disturbance in this chapter for the sake of simplicity.

The downstream outputs are selected to be the volume flow rate Vi and the temperature Ti

(acts both as a component output and donwstream output). The volume flow rate Vi is one

of the factors that determine the fan energy and cooling energy requirement of the AHU

temperature and pressure subsystems. The temperature Ti may act as an input affecting

the dynamics of the neighboring room temperatures. Hence Vi and Ti are selected as the

downstream outputs of subsystem i.

A model of the room temperature Ti is developed by using the system identification

techniques described in Chapter 3. The system identification procedure identifies state

space matrices that define the relationship between the output Ti and the inputs useli . In

order to determine the state space matrices, a list of possible inputs uposi that potentially im-

pact the dynamics of the temperature of room i is first selected. The set of possible inputs

is a vector containing the outside air temperature Toa, the control input uci = Vi(Ti−Tahu),

surrounding room temperatures Tj where j ∈ N sur
i and the outside ari relative humidity

Roa as shown in Table 5.5. The set N sur
i contains the indices of all the neighboring room

temperatures of i.

Table 5.5: List of Possible Inputs for Modeling Ti

Input Description
Toa outside air temperature

uci = Vi(Ti − Tahu) control input
Tj where j ∈ N sur

i surrounding room temperatures
Roa outside air realtive humidity
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The algorithm then selects a list of significant inputs useli from uposi . The inputs Tao,

and uci are always considered as significant inputs, hence, the input set useli takes the form

[Toa, u
c
i ,u

rem
i ], where uremi is a set of the remaining significant inputs. The state space

matrices that define the relationship between Ti and usei are then identified and expressed

as shown in Equation 5.25

ẋ(k + 1) =Aix(k) +Biu
sel
i (k) +Kie(k)

T̂i(k) =Cix(k)

(5.25)

where x is a vector containing the states, and Ai, Bi, Ci, and Ki are the identified state

space matrices.

The second output that is modeled is the flow rate through the VAV box Vi. The model

of the flow through the VAV box adopts the same procedure as that of the Tahu and Peds,

i.e, the dynamics of the flow rate are not included in the model as they are much faster

than the room temperature dynamics. An assumption is made that Vi is able to track its

setpoint value V s
i et by the next control time step as shown in Equation 5.26.

V̂i,t|t+1 = V set
i (t) (5.26)

The optimal flow setpoints V dmpc
h,i over the prediction horizon is computed by mini-

mizing the objective function Ĵdmpch,i as shown in Equation 5.27.

V dmpc
h,i = argmin

V set
h,i

Ĵdmpch,i (5.27)

The objective function Ĵdmpch,i comprises of two parts, the component cost Ĵ comph,i and the
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sensitivity cost Ĵ senh,i as shown in Equation 5.28.

Ĵdmpch,i = Ĵ comph,i + Ĵ senh,i (5.28)

The productivity loss ratio described earlier in the section is used in the construction of the

component cost. First, the state space relationship defined in Equation5.25 are used to pre-

dict the temperatures over the prediction horizon T̂h,i. Using the predicted temperatures

and the last measured value of the room relative humidity Ri(t), the PMV values of the

room over the prediction horizon r̂pmvh,i are computed using either Equation 5.23 or Equa-

tion 5.22 as the case may be. The PMV values are then used to compute the productivity

loss ratio over the prediction horizon rplh,i using Equation 5.24. Finally, the component cost

is computed using rplh,i as shown in Equation 5.29

Ĵ comph,i (t) =

npred∑
k=1

rsali · r
pl
i,t|t+k (5.29)

where rsali is the occupant’s average salary per duration of the control time step.

The second part of the objective function is the sensitivity cost Ĵ senh,i . The sensitivity

cost is constructed with the help of the sensitivity values associated with the downstream

outputs. As stated earlier the room temperature subsystem, has two downstream outputs,

Vi and Ti. The downstream subsystems corresponding to the output Vi are the AHU tem-

perature and pressure subsystems. Sensitivity vectors ψh,eds,i and ψh,ahu,i are sent by the

AHU pressure and temperatuer optimizers, respectively.

The downstream subsystems corresponding to the output Ti are the neighboring room

temperatures which have Ti as one of their significant input. The neighbor with Ti as a

significant input (room j say) sends the sensitivity vector ψh,j,i to the optimizer i. A dis-

cussion of how all sensitivity vectors are computed is provided in the next section. Con-
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struction of the sensitivity cost, first requires the identification of the downstream outputs

of the subsystem. There are two downstream outputs of the room temperature subsystem

that are tracked, the volume flow rate Vi and the temperature Ti. The downstream neigh-

bors corresponding to the output Vi are the AHU pressure and temperature subsystem. The

total flow rate of the conditioned air through the AHU is the sum of the flow rates through

the VAV box of each room. Hence a change in the value of Vi affects the total fan and

cooling energy of the pressure and temperature subsystems, respectively.

The estimated values of the flow rates over the prediction horizon V̂h,i are sent to

the downstream neighbors’ optimizers. V̂h,i is used to compute the sensitivities to the

cost function ψh,eds,i and ψh,ahu,i corresponding to the AHU pressure and temperature

subsystem, respectively. A discussion of how to calculate the aforementioned sensitivities

is provided in the next section. The sensitivity vectors are used to construct the sensitivity

cost as shown below.

Ĵ senh,i = ψh,eds,i · V̂h,i +ψh,ahu,i · V̂h,i +
∑

j∈Nsur
i

ψh,j,i · T̂h,i (5.30)

The objective function corresponding to the room temperature subsystem in Equation 5.28

can be expressed with the help of the component cost and the sensitivity cost in Equa-

tions 5.29 and 5.30. The NCDMPC algorithm in the previous section is then used in the

computaiton of V set
i for all i ∈ {1, 2, ..., nr}. A summary of the inputs, outputs and

equations associated with the computation of V set
i is provided in Table 5.6.

5.3 Sensitivity to Cost Computation

The construction of the sensitivity cost of each subsystem in the previous section re-

quires sensitivity vectors from downstream neighbors. This section provides a description

of how the sensitivity vector associated with each type of subsystem is computed.
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Table 5.6: Summary of the Variables and Functions of the NCDMPC Procedure for Room
i Temperature Subsystem

Inputs Description
di = [Toa, Roa] exogenous inputs
vi = [Peds, Tahu] upstream inputs
useti = V set

i volume flow rate setpoint
Outputs Description
yi = Ti component output

zi = [Vi, Ti] downstream outputs
Data received by optimizer Description
P̂h,eds, T̂h,ahu, T̂j j ∈ N sur

i predictions from upstream
ψh,ahu,i , ψh,eds,i, ψh,eds,i sensitivityfrom downstream
Data sent by optimizer Description

T̂h,i V̂h,i predictions of downstream outputs
ψh,i,j j ∈ N sur

i , ψh,i,eds, ψh,i,ahu sensitivities to upstream inputs
Equations Description

ẋ(k + 1) = Aix(k) +Biu
sel
i (k) +Kie(k) state space model

T̂i(k) = Cix(k)

V̂i,t|t+1 = V set
i (t) volume flow rate model

V dmpc
h,i = argmin

V set
h,i

Ĵdmpch,i optimal volume flow rate setpoints

Ĵdmpch,i = Ĵ comph,i + Ĵ senh,i objective function parts

Ĵ comph,i (t) =
∑npred

k=1 rsali · r
pl
i,t|t+k component cost

Ĵ senh,i = ψh,eds,i · V̂h,i+ sensitivity cost
ψh,ahu,i · V̂h,i +

∑
j∈Nsur

i
ψh,j,i · T̂h,i

ψeds,i(t|t+ r) =
∂Ĵdmpc

h,eds

∂V̂i(t|t+r)
sensitivity from AHU pressure optimizer

ψahu,i(t|t+ r) =
∂Ĵdmpc

h,ahu

∂V̂i(t|t+r)
sensitivity from AHU temp optimizer

ψj,i(t|t+ r) =
∂Ĵdmpc

h,j

∂T̂i(t|t+r)
sensitivity from optimizer j
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5.3.1 Sensitivity to Downstream Output of AHU Pressure Subsystem

The downstream output corresponding to the AHU pressure subsystem is the end static

pressure Peds, and the downstream neighbors of the pressure subsystem are all the rooms

being served by the AHU. Each room temperature optimizer computes the sensitvity vector

ψh,i,eds which the sensitivity of its objective function Ĵdmpch,i to the predictions of end static

pressure P̂h,eds.

The sensitivity vector computed at control time step t, ψh,i,eds(t), is composed of sen-

sitivity values corresponding to each future time step of the prediction horizon as shown

in Equation 5.31.

ψh,i,eds(t) = [ψi,ahu(t|t+ 1), ψi,ahu(t|t+ 2), ..., ψi,ahu(t|t+ npred)] (5.31)

The computation of the element ψi,eds(t|t + k) of the sensitivity vector requires a knowl-

edge of how P̂eds(t|t+k) impacts the component cost function of the downstream neighbor

Ĵ comph,i (t) as shown in Equation 5.32.

ψi,eds(t|t+ k) =
∂Ĵ comph,i (t)

∂P̂eds(t|t+ k)
(5.32)

However, since a direct relationship between Ph,eds and Ĵ comph,i has not been directly mod-

eled, the partial derivative in the equation above is computed through a series of interme-

diary variables as shown in Equation 5.33.

ψi,eds(t|t+ k) =
∂Ĵ comph,i (t)

∂P̂eds(t|t+ k)
=

npred∑
j=1

∂Ĵ comph,i (t)

∂rpmvi (t|t+ j)
· ∂r

pmv
i (t|t+ j)

∂T̂i(t|t+ j)
·

∂T̂i(t|t+ j)

∂V̂i(t|t+ k)
· ∂V̂i(t|t+ k)

∂P̂eds(t|t+ k)

(5.33)

168



The method to compute each of the partial derivatives in the equation above is described

below.

The first partial
∂Ĵcomp

h,i (t)

∂rpmv
i (t|t+j) derivative corresponds to the relationship between the com-

ponent cost and the k-step-ahead PMV value . This relationship is obtained from Equa-

tions 5.29 and 5.24 and is expressed below.

∂Ĵ comph,i (t)

∂rpmvi (t|t+ j)
= rsali · (c1 + 2c2 · rpmvi (t|t+ j)) (5.34)

The second partial derivative
∂V pmv

i,t|t+j

∂T̂i,t|t+j
corresponds to the relationship between the j-

step-ahead predicted temperature and the corresponding PMV value. The relationship is

obtained by using either Equation5.22 or 5.23 depending on whehter the predicted tem-

perature is greater than 230C or less than 21.50C. Where the predicted temperature is

between 21.50C and 230C there is no change in the PMV value, hence the derivative is 0.

The partial derivative is computed as shown below.

∂rpmvi (t|t+ j)

∂T̂i(t|t+ j)
=


a1 + 2a3 · T̂i(t|t+ j) + a4 ·Ri(t) T̂i(t|t+ j) ≥ 230C

b1 + 2b3 · T̂i(t|t+ j) + b4 ·Ri(t) T̂i(t|t+ j) ≤ 21.50C

0 21.5 < T̂i(t|t+ j) < 23

(5.35)

The third partial derivative ∂T̂i,t|t+j

∂V̂i,t|t+k
corresponds to the relationship between the j-step

ahead predicted temperature and the k − 1-step-ahead flow rate setpoint. In order to find

the the relationship, consider the state space model of room temperature in Equation 5.25.

The state space equation is rewritten with the input set usei expanded into its constituent
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elements in Equation 5.36.

x(k + 1) =Aix(k) +Boa
i Toa +Bc

iV
set
i (k) · (Ti(k)− Tahu(k)) +Brem

i uremi +Kie

Ti(k) =Cix(k)

(5.36)

In the equation above, the matrices Boa
i , Bc

i , and Bref
i are the column vectors of Bi

corresponding to the inputs Toa, V set
i (k)(Ti(k) − Tahu(k)) and uremi , respectively. The

control input of the state space is bilinear in nature, i.e. the control input contains terms

which involve the product of two variables V set
i (k) and Ti(k). In addition, the control input

is dependent on the output of the previous time step. These factors make it difficult to find

a simple algegraic relationship between the j-step-ahead prediction of temeprature and the

k−1th flow rate setpoint V set
i (t+k−1). Instead of determining the algebraic relationship

between the two variables, the partial derivatives ∂T̂i(t|t+j)
∂V̂i(t|t+k)

∀j ∈ {1, 2, ..., npred} and k ∈

{1, 2, ..., npred} is obtained through an iterative procedure.The procedure is detailed with

the help of the following algorithm.

• Step 0 Initialize iteration variables j = 1 and k = 1.

• Step 1 Compute the partial derivative shown below using the last measured values

of room and AHU discharge air temperature (Ti(t) and Tahu(t)).

∂xi(t+ j)

∂V set
i (t+ k − 1)

=
∂xi(t+ 1)

∂V set
i (t)

= −Bu
i · (Ti(t)− Tahu(t)

∂T̂i(t|t+ 1)

∂V set
i (t)

= C
∂xi(t+ 1)

∂V set
i (t)

(5.37)

• Step 2 Increment the value of j by 1. j = j + 1.

• Step 3 Compute the partial derivative of the j-step-ahead temperature with respect
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to the k − 1 step ahead flow setpoint using the equations below.

∂xi(t+ j)

∂V set
i (t+ k − 1)

=


Ai

∂xi(t+j−1)
∂V set

i (t+k−1) −B
c
iV

set
i (t+ j − 1) ∂T̂i(t+j−1)

∂V set
i (t+k−1) j > k

−Bc
i (T̂i(t|t+ j − 1)− T̂ahu(t|t+ j − 1)) j == k

0 j < k

(5.38)
∂T̂i(t|(t+ j))

∂V set
i (t+ k − 1)

= C
∂xi(t+ j)

∂V set
i (t+ k − 1)

(5.39)

• Step 4 Depending on the value of j and k perform one of the following steps.



Repeat iterations (Steps 2 to 4) j < npred && k < npred[
k = k + 1,Set j = k − 1

Repeat iterations (Steps 2 to 4)
] j == npred && k < npred

stop iterations j == npred && k == npred

(5.40)

In order to compute the fourth partial derivative ∂V set
i (t+k−1)

∂P̂eds(t|t+j)
consider the simulation

model of the VAV box derived in Chapter 3 and reproduced below in Equation 5.41

V̂i(t|t+ 1) =

[
a ·Di(t|t+ 1) + b ·D2

i (t|t+ 1)

]√
P̂eds(t|t+ 1) (5.41)

where a and b are parameters obtained through regression analysis, and Di is the damper

position of the VAV box i. The maximum flow rate through the VAV box occurs when the

damper position is fully open, i.e. Di = 1. The maximum possiple flow rate at t + 1 for

end static pressure value of Peds(t|t+ 1) is given by V fd
i (t+ 1) and is expressed as shown

in Equation 5.42

V̂ fd
i (t|t+ 1) = (a+ b)

√
P̂eds(t|t+ 1) (5.42)
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When a flow setpoint value V set
i (t) is provided to the VAV box, a local PI controller

regulates the damper position Di to actuate the flow rate V̂i(t|t + 1) to equal to V set
i (t)

as long as V set
i (t) is less than V̂ fd

i (t|t + 1). Hence under all cases where V set
i (t) is less

than V̂ fd
i (t|t + 1) the desired flow rate can be achieved by the loacl controller simply by

regulating the damper position. Hence a small change in the value of P̂eds(t|t+ 1) has no

impact on the room temperature dynamics when the damper is not fully open.

In the limiting case, however, i.e. when the dampers are fully open the following

equation holds.

V set
i (t) = V̂ fd

i (t|t+ 1) = V̂i(t|t+ 1) = (a+ b)

√
P̂eds(t|t+ 1) (5.43)

The local controller cannnot increase the damper position to meet an increase in the flow

set point value. A change in P̂eds(t|t+1) thus affects the flow rate through the room. Thus

the partial derivative ∂V set
i (t+k−1)

∂P̂eds(t|t+j)
has a nonzero value only during the limiting case. By

using Equations and , the fourth partial derivative can be computed as follows.

∂V set
i (t+ k − 1)

∂P̂eds(t|t+ k)
=


a+b

2
√
P̂eds(t|t+k)

D̂i(t|t+ k) > 0.95

0 D̂i(t|t+ k) < 0.95

(5.44)

5.3.2 Sensitivity to Downstream Outputs of AHU Temp Subsystem

The downstream output corresponding to the AHU temperature subsystem is the dis-

charge air temperature Tahu, and the downstream neighbors are all the rooms being served

by the AHU. Each room temperature optimizer computes ψh,i,ahu which is sent to the

AHU temperature optimizer.

The sensitivity value ψh,ahu,i is the partial derivative of the objective function of room

i,Ĵdmpch,i , with respect to the predicted AHU discharge air temperature T̂ahu. In this paper

172



a single setpoint for the ahu discharge air temperature for the entire prediction horizon is

selected to reduce the computational burden. As as result, the sensitivity vector ψh,ahu,i

consists of a single element as shown in Equation 5.45.

ψi,ahu(t) =
∂Ĵ comph,i (t)

∂T̂ahu(t+ 1)
(5.45)

Following the same procedure that is used to compute ψahu,i(t), the partial derivative
∂Ĵcomp

h,i (t)

∂T set
ahu(t)

is computed with the help of intermediary variables as shown in Equation 5.46.

ψi,ahu(t) =
∂Ĵ comph,i (t)

∂T̂ahu(t|t+ k)
=

npred∑
j=1

∂Ĵ comph,i (t)

∂rpmvi (t|t+ j)
· ∂r

pmv
i (t|t+ j)

∂T̂i(t|t+ j)
·

∂T̂i(t|t+ j)

∂T̂ahu(t|t+ k)

(5.46)

Since the setpoint value T setahu is assumed to be constant throughout the prediction hori-

zon, the predicted ahu discharge air temperature T̂ahu(t|t + k) is the same as T setahu ∀k ∈

{1, 2, ..., npred}.

The first two partial derivatives in Equation 5.46 are the same as those described in

Section 5.3.1. The state space system expressed in Equation 5.36 shows the relationship

between the room temperature at time t and the AHU discharge air temperature at time

t− 1. The relationship is used in an iterative manner to compute ∂V̂i(t|t+j)
∂T̂ahu(t|t+k)

. The value of

j and k are first initialized to 1. The iteration variable j is then incremented by 1 until it

reaches the value npred. For each value of j the partial derivative ∂T̂i(t|t+j)
∂T set

ahu(t+k−1)
is computed

using Equations 5.47 and 5.48. Since the value of T̂ahu(t|t+ k) is assumed to be constant

for ∀k ∈ {1, 2, ..., npred} its value is kept constant in the iteration.
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∂xi(t+ j)

∂T setahu(t+ k − 1)
=


BVi(t) j == 1

A ∂xi(t+j−1)
∂T set

ahu(t+k−1)
+BV̂i(t|t+ j − 1) j > 1

(5.47)

∂T̂i(t|t+ j)

∂T setahu(t+ k − 1)
= C

∂xi(t+ j)

∂T setahu(t+ k − 1)
(5.48)

5.3.3 Sensitivity to Downstream Outputs of Room Temp Subsystem

The two downstream outputs of the room temperature subsystem i are the flow rate

through the VAV box Vi and the temperature Ti. Each downstream output is associated

with its own downstream subsystems and sensitivity vectors. The sensitivity vectors cor-

responding to Vi is first provided below.

The downstream subsystems corresponding to Vi are the AHU pressure and temper-

ature subsystems. The pressure and temperature optimizers send the sensitivity vectors

ψh,eds,i and ψh,ahu,i, respectively, to the room temperature optimizer i. The sensitivity

vectors are composed of the sensitivity values corresponding to each time step of the pre-

diction horizon as shown below.

ψh,eds,i = [ψeds,i(t+ 1), ψeds,i(t+ 2), ..., ψeds,i(t+ npred)]

ψh,ahu,i = [ψahu,i(t+ 1), ψahu,i(t+ 2), ..., ψahu,i(t+ npred)]

(5.49)

The volume flow rate through a particular VAV box is a fraction of the total volume

flow rate through the AHU. Increase in the flow rate of the conditioned air to the room, thus

increases the total flow rate through the AHU, thereby increasing the fan energy cost and

heat exchanger cooling energy cost. The sensitivity values ψeds,i(t+k) and ψahu,i(t+k) are

the measure of how the k-step ahead flow rates of the VAV box i impact the AHU pressure

and temperature objective functions, respectively. The sensitivity value ψeds,i(t + k) is
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Figure 5.3: Outside Air Temperature and Relative Humidity on Day of Simulation

computed using Equations 5.9 and 5.13 and is expressed as shown below.

ψeds,i(t+ k) = rfan · ηfan · P̂eds(t|t+ k) (5.50)

The sensitivity value ψahu,i(t + k) is computed using Equations 5.17 and 5.20 and is ex-

pressed as shown below.

ψahu,i(t+ k) = rfan · ηfan · P̂eds(t|t+ k) (5.51)

5.4 Results

Energy Plus simulations are run for a period of 1 day with the outside air conditions

taken from the weather file corresponding to the location College Station in Texas on June

1st. The outside air temperature and humidity are shown in Figure 5.3. The occupancy of

the rooms of the building is changed randomly between the times 7:00 am and 6:00 pm.

The occupancy of the rooms 1 to 4 on the day of the simulation is shown in Figure

The NC DMPC algorithm is applied to compute the setpoints corresponding to the

AHU end static pressure and discharge air temperature, and flow rates through the VAV
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Figure 5.4: Occupancies of Rooms 1 to 4

box of each rooms. The values of the objective function parameters rfan, rchw, and risal

corresponding to real world operation which were derived in Chapter 4 are first used to

run the NC DMPC simulations . In addition to simulations where the parameters reflect

real world operation, simulations are also performed corresponding to two special cases.

The special cases reflect operating conditions with high fan energy cost, and high cooling

energy cost,respectively. Although the special cases do not reflect a real-world scenario,

they provide an insight into how the algorithm regulates the AHU end static pressure and

discharge air temperature, and the volume flow rates to the rooms.

Table 5.7: Cost Parameters Associated with Different Operating Conditions

Case rfan rhe ryrsal ($)
Real world 1.101e-6 1.078 e-7 20,000

High fan cost 1.101e-4 1.078 e-7 200
High cooling cost 1.101e-6 1.078 e-5 200
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Table 5.8: Summary of the Costs Associated with Different Control Methodolgies Under
Real World Cost Operation

PI (low sp) PI (high sp) centralized MPC NC DMPC
Total cost 25.12 103.63 1.79 1.91

Comfort cost 24.44 103.18 1.33 1.61
HVAC operation cost 0.680 0.44 0.46 0.30

Table 5.9: Summary of the Costs Associated with Different Control Methodolgies Under
High Fan Cost Operation

PI (high sp) PI (low sp) centralized MPC NC DMPC
Total cost 60.17 38.92 4.26 4.22

Comfort cost 0.24 1.03 2.49 2.44
HVAC operation cost 59.92 37.89 1.77 1.77

Table 5.10: Summary of the Costs Associated with Different Control Methodolgies Under
High Cooling Cost Operation

PI (high sp) PI (low sp) centralized MPC NC DMPC
Total cost 9.47 8.19 4.98 3.88

Comfort cost 0.24 1.03 0.84 2.73
HVAC operation cost 9.24 7.16 4.14 1.14

5.4.1 Real World Cost Operation

The objective function parameters rfan, rchw, and risal corresponding to real world

operation are shown in Table 4.3 . A prediction horizon of tpred = 30 minutes is selected

which corresponds to 6 control time steps, i.e. npred = 6. The results of applying the NC

DMPC algorithm is shown with the help of simulated temperatures of room 1 in Figure 5.5.

The figure also shows the temperatures ’higher productivity limit’ and ’lower productivity

limit’ which represent the bounds within which there is no loss in productivity of the

occupants. In addition, the figure also shows the simulated temperatures using the existing
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Figure 5.5: Room 1 Temperature Simulation Results

PI-type control methodology to compute the setpoints. There are two simulations that are

run using the PI-type control methodology. First, where the setpoint temperatures are equal

to the higher productivity limit temperatures, and second where the setpoint temperatures

are equal to the lower productivity limit temperatures. Figure shows a comparison of the

AHU end static pressure setpoint and the discharge air temperature setpoint computed by

the NC DMPC algorithm with the setpoints computed by the two PI control operations.

The results above demonstrate the two methods by which MPC seeks to improve upon
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Figure 5.6: End Static Pressure and Discharge Air Temperature Simulation Results

the performance achieved by PI-type control, component optimization and planning ahead

by looking at the prediction horizon. There are several different combinations of volume

flow rates and discharge air temperatures that can provide the same amount of cooling.

However, the most economical operation is achieved by setting the dishcarge air temper-

ature to the lowest allowable value (100C) and then providing the necessary amount of

cooling by regulating the end static pressure. In addition, the ability to forecast future

cooling requirements results in the NCDMPC algorithm pre cooling the room. As can be

seen in Figure 5.5, the room starts cooling at 6:30 am using the NCDMPC algorithm and

the occupancy of the room starts at 7:00 am.

A comparison of the hourly cost achieved using the NC DMPC algorithm with the two

simulations with PI-type (higher productivity setpoint, and lower productivity setpoint)

control, and the centralized MPC simulation are shown in Figure 5.7. The two peaks

associated with the PI operation at around 7:00 am and 10:30 am, occur due to the fact

that PI control does not precool the room. As a result there is a an initial period of time

where the occupant’s thermal comfort requirements are not met. The time taken to cool the
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Figure 5.7: A Comparison of the Hourly Costs Achieved Using Various Control Method-
ologies with Real World Cost Parameters
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room to the desired level depends on its thermal capacity. Hence, greater the thermal mass

of the building, greater is the time taken to reach the desired temperature. Table shows the

total cost achieved over the entire day using each of the aforementioned types of control

methodologies. A summary of the costs achieved is shown in Table 5.8.

Figure 5.8: Room 1 Temperature Simulation Results with High Fan Cost
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Figure 5.9: AHU End Static Pressure and Discharge Air Temperature Setpoints Computed
by the NC DMPC Algorithm

5.4.2 High Fan Energy Cost

In order to simulate high fan energy cost conditions the parameter rfan is increased 100

fold, and rsali is decreased 100 times as shown in Table 4.3. Using the same conditions

as those described in real-world-cost scenario, the simulations are run with the new set of

parameters. The simulted temperature of room 1 under different control methodologies is

shown in Figure 5.8. In addition to the DMPC and PI type a control simulations, a baseline

simulation was run with no control algorithm applied. The end static pressure , and dis-

charge air temperature, and room flow setpoints were assigned the minimum permissble

values. The simulation where the no control methodology is applied is represented by the

legend ’no control’ in the figure. A summary of the costs achieved is shown in Table 5.9.

The AHU end static pressure and discharge air temperature setpoints corresponding to

high fan cost operation is shown in Figure 5.9. A comparison of the hourly cost achieved

using the various control methodologies and the cost parameters corresponding to high fan
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Figure 5.10: A Comparison of the Hourly Costs Achieved Using Various Control Method-
ologies and High Fan Energy Cost Parameters
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energy operation is shown in Figure 5.10.

Figure 5.11: Room 1 Temperature Simulation Results with High Cooling Cost

5.4.3 High Cooling Energy Cost

The cost parameters associated with the high cooling energy cost are shown in Ta-

ble 4.3. The simulations are again run under the same conditions as the previous two
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Figure 5.12: AHU End Static Pressure and Discharge Air Temperature Setpoints Com-
puted by the NC DMPC Algorithm with High Cooling Cost

cases, but with the high cooling energy cost parameters. The simulated temperature ob-

tained using the NC DMPC algorithm, with the defult ’no control’ algorithm is shown in

Figure 5.11. The AHU end static pressure and discharge air temperature computed by the

NC DMPC algorithm is shown in Figure 5.12. The figure also shows a comparison with

the setpoints computed by the algorithm in case 1 (real world cost parameters). Finally

Figure 5.13 shows the comparison of the hourly costs associated with different control

methodologies with cost parameters corresponding to high cooling energy operation. A

summary of the costs achieved is shown in Table 5.10.

As expected under the high cooling cost conditions, the DMPC algorithm sets the

AHU discharge air temperature to the maximum allowable value (180C). A high cooling

cost value also affects the amount of air that passes through the AHU. A greater volume

flow rate would put a greater cooling load on the heat exchanger. Hence, as can be seen

in Figure 5.12, the end static pressure setpoint values corresponding to high cooling cost

operation is lower than the setpoint values computed with real world cost parameters.
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Figure 5.13: A Comparison of the Hourly Costs Achieved Using Various Control Method-
ologies and High Cooling Energy Cost Parameters
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Whereas, high fan operation cost parameters affects only the end static pressure setpoint

values, a high cooling cost operation results in higher AHU discharge air temperature

setpoints as well as lower end static pressure setpoints.

Since the setpoints calculated by PI -type control is independent of the cost parame-

ters, it is able to achieve better occupancy comfort. However, since the cost parameters

were selected such that the cooling costs far outweigh the comfort cost, the NC DMPC

algorithm is able to achive a much lower cost of operation. The NC DMPC algorithm

is also able to achieve a lower cost of operation than centralized MPC. This is probably

due to the fact that the numerical algorithm used to minimize the objective function of

the centralized MPC cost did not find the global optimal solution but instead found local

minimas.
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6. CONCLUSIONS AND FUTURE WORK

The dissertation identified three common reasons as to why traditional control algo-

rithms such as PI-type and RBCs result in inefficient operation of building HVAC systems,

improper tuning of the gains of the PI controllers resulting in hunting behavior, decentral-

ized architecture resulting in suboptimal performance, and the lack of planning for future

disturbances and operating conditions. This dissertation seeks to address the aforemen-

tioned problems by proposing solutions in the form of alternative control architectures

such as cascaded control, and optimal control algorithms such as MPC. THe contribution

of the dissertation classified into three categories summarized as follows.

6.1 Algorithm to Detect the Presence of Hunting

The first step in reducing the phenomenon of hunting is to detect its presence. A simple

algorithm that can detect the presence of hunting in process variables of HVAC system

operation such as CHW valve opening and fan speed is proposed. The algorithm is then

implemented on data from 10 buildings at the Texas A&M University campus. The results

of the survey showed that hunting is a wide spread pheonomenon. The dissertation also

provided a brief description of the contribution of Price [41] where a solution is offered

in the form of an alternative control architecture called as cascaded control. A simulation

example of the AHU heat exchanger is provided where the cascaded controller is shown

to eliminate the behavior of hunting.

6.2 Automated Black-Box Modeling Algorithm

In order to be able to implement advanced control algorithms such as MPC, models

that can accurately describe the dynamics of the various components involved are required.

This dissertation proposes a linear black-box modeling algorithm that can automate the
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process of developing models which becomes especially useful for large HVAC systems

which have hundreds of components and buildings comprising multiple zones. In addition

to being easy to compute, the proposed models can be developed just by using data from

BEMS. The modeling algorithm is verified on data obtained from a real working office

building. Static models are developed for the AHU pressure system, and dynamics models

are developed for the AHU heat exchanger, and the building room temperatures. The

models are able to provide accurate predictions of the process variables by using data under

non experimental conditions. In addition, the proposed modeling method is compared to

another black-box method popular in literature, subspace identification. No significant

differences were found in the accuracy of their predictions.

6.3 Applying MPC on Simulation Models

The modeling method is then applied to high-fidelity simulation models of the build-

ing HVAC components. The developed models are then used to implement MPC on the

simulation system. Comparison of the simulation results between MPC and the existing

PI-type control showed that the performance of MPC is significantly greater when tested

under a wide range of operating conditions. The dissertation also provides a comparison

of the different control architectures by which MPC can be applied. Although, the con-

trol performance of both the distributed and centralized are comparable, the computation

requirements of centralized MPC will grow exponentially as the number of components

increase. Hence a distributed architecture is more suitable when dealing with large scale

systems.

6.4 Future Work

There are several areas related to the research of this dissertation that have not yet

been fully explored. The first area is the application of MPC on a real building system.

MPC is applied in this dissertation on high-fidelity simulation models, which although
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accurate do not capture all the disturbances and dynamics that a real building might be

subjected to. Hence demonstrating the proposed methodology on a real building system

would give building managers more confidence in implementing the procedure on a wider

scale. The second area in which future work can be done is by including more components

under the ambit of MPC. This dissertation considered only the AHU fan, heat exchanger

and building room temperature models. By including other components such as chiller,

cooling tower, room humidity etc. MPC can provide a more efficient operation.

190



REFERENCES

[1] U. DoE, “Buildings energy databook,” Energy Efficiency & Renewable Energy De-

partment, 2011.

[2] L. Perez-Lombard, J. Ortiz, and C. Pout, “A review on buildings energy consumption

information,” Energy and buildings, vol. 40, no. 3, pp. 394–398, 2008.

[3] R. Energy, “Energy efficiency trends in residential and commercial buildings,” 2010.

[4] J. Siroky, F. Oldewurtel, J. Cigler, and S. Privara, “Experimental analysis of model

predictive control for an energy efficient building heating system,” Applied Energy,

vol. 88, no. 9, pp. 3079–3087, 2011.

[5] R. Chintala, C. Price, S. Liang, and B. Rasmussen, “Identification and elimination of

hunting behavior in hvac systems,” ASHRAE Transactions, vol. Accepted, 2015.

[6] S. Privara, J. Cigler, Z. Vana, F. Oldewurtel, and E. Zacekova, “Use of partial least

squares within the control relevant identification for buildings,” Control Engineering

Practice, vol. 21, no. 1, pp. 113–121, 2013.

[7] X. Li and J. Wen, “Review of building energy modeling for control and operation,”

Renewable and Sustainable Energy Reviews, vol. 37, no. 0, pp. 517 – 537, 2014.

[8] S. Estrada-Flores, I. Merts, B. De Ketelaere, and J. Lammertyn, “Development and

validation of grey-box models for refrigeration applications: a review of key con-

cepts,” International Journal of Refrigeration, vol. 29, no. 6, pp. 931–946, 2006.

[9] D. B. Crawley, L. K. Lawrie, C. O. Pedersen, and F. C. Winkelmann, “Energy plus:

energy simulation program,” ASHRAE journal, vol. 42, no. 4, pp. 49–56, 2000.

[10] “Transient system simulation tool.” http://www.trnsys.com.

191



[11] P. May-Ostendorp, G. P. Henze, C. D. Corbin, B. Rajagopalan, and C. Felsmann,

“Model-predictive control of mixed-mode buildings with rule extraction,” Building

and Environment, vol. 46, no. 2, pp. 428–437, 2011.

[12] C. D. Corbin, G. P. Henze, and P. May-Ostendorp, “A model predictive control op-

timization environment for real-time commercial building application,” Journal of

Building Performance Simulation, vol. 6, no. 3, pp. 159–174, 2013.

[13] J. E. Braun and N. Chaturvedi, “An inverse gray-box model for transient building

load prediction,” HVAC&R Research, vol. 8, no. 1, pp. 73–99, 2002.

[14] J. E. Braun, “Reducing energy costs and peak electrical demand through optimal

control of building thermal storage,” ASHRAE transactions, vol. 96, no. 2, pp. 876–

888, 1990.

[15] Y. Ma, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, and P. Haves, “Model predictive

control for the operation of building cooling systems,” IEEE Transactions on Control

Systems Technology, vol. 20, no. 3, pp. 796–803, 2012.

[16] K.-h. Lee and J. E. Braun, “Reducing peak cooling loads through model-based con-

trol of zone temperature setpoints,” in American Control Conference, 2007. ACC’07,

pp. 5070–5075, IEEE, 2007.

[17] W. Zhang, J. Lian, C.-Y. Chang, and K. Kalsi, “Aggregated modeling and control of

air conditioning loads for demand response,” IEEE transactions on power systems,

vol. 28, no. 4, pp. 4655–4664, 2013.

[18] M. Sourbron, C. Verhelst, and L. Helsen, “Building models for model predictive

control of office buildings with concrete core activation,” Journal of building perfor-

mance simulation, vol. 6, no. 3, pp. 175–198, 2013.

192



[19] Y. Ma, A. Kelman, A. Daly, and F. Borrelli, “Predictive control for energy efficient

buildings with thermal storage: Modeling, stimulation, and experiments,” IEEE Con-

trol Systems, vol. 32, no. 1, pp. 44–64, 2012.

[20] Y. Lin, T. Middelkoop, and P. Barooah, “Identification of control-oriented thermal

models of rooms in multi-room buildings,” in Proceedings of the 2012 IEEE 51st

Annual Conference on Decision and Control (CDC), Maui, HI, USA, pp. 10–13,

2012.

[21] P. Bacher and H. Madsen, “Identifying suitable models for the heat dynamics of

buildings,” Energy and Buildings, vol. 43, no. 7, pp. 1511–1522, 2011.

[22] H. Frausto, J. Pieters, and J. Deltour, “Modelling greenhouse temperature by means

of auto regressive models,” Biosystems Engineering, vol. 84, no. 2, pp. 147 – 157,

2003.

[23] D. Loveday and C. Craggs, “Stochastic modelling of temperatures for a full-scale oc-

cupied building zone subject to natural random influences,” Applied Energy, vol. 45,

no. 4, pp. 295–312, 1993.

[24] J. Boaventura Cunha, C. Couto, and A. Ruano, “Real-time parameter estimation of

dynamic temperature models for greenhouse environmental control,” Control Engi-

neering Practice, vol. 5, no. 10, pp. 1473–1481, 1997.

[25] S. Wang and X. Xu, “Simplified building model for transient thermal performance

estimation using ga-based parameter identification,” International Journal of Ther-

mal Sciences, vol. 45, no. 4, pp. 419–432, 2006.

[26] G. Mustafaraj, J. Chen, and G. Lowry, “Development of room temperature and rel-

ative humidity linear parametric models for an open office using bms data,” Energy

and Buildings, vol. 42, no. 3, pp. 348–356, 2010.

193



[27] T. Bohlin and S. F. Graebe, “Issues in nonlinear stochastic grey box identifica-

tion,” International journal of adaptive control and signal processing, vol. 9, no. 6,

pp. 465–490, 1995.

[28] R. Z. Homod, “Review on the hvac system modeling types and the shortcomings of

their application,” Journal of Energy, vol. 2013, 2013.

[29] J. M. Maciejowski, Predictive control: with constraints. Pearson education, 2002.

[30] W. Grunenfelder and J. Todtli, “The use of weather predictions and dynamic pro-

gramming in the control of solar domestic hot water systems,” in 3rd Mediterranean

Electrotechnical Conference (Melecon). Madrid, Spain, 1985.

[31] G. P. Henze, C. Felsmann, and G. Knabe, “Evaluation of optimal control for active

and passive building thermal storage,” International Journal of Thermal Sciences,

vol. 43, no. 2, pp. 173–183, 2004.

[32] G. P. Henze, D. E. Kalz, C. Felsmann, and G. Knabe, “Impact of forecasting ac-

curacy on predictive optimal control of active and passive building thermal storage

inventory,” HVAC&R Research, vol. 10, no. 2, pp. 153–178, 2004.

[33] F. Oldewurtel, D. Gyalistras, M. Gwerder, C. Jones, A. Parisio, V. Stauch,

B. Lehmann, and M. Morari, “Increasing energy efficiency in building climate con-

trol using weather forecasts and model predictive control,” in Clima-RHEVA World

Congress, no. EPFL-CONF-169735, 2010.

[34] D. Sturzenegger, D. Gyalistras, M. Gwerder, C. Sagerschnig, M. Morari, and R. S.

Smith, “Model predictive control of a swiss office building,” in Clima-RHEVA World

Congress, pp. 3227–3236, 2013.

[35] P. Haves, “Model predictive control of hvac systems: Implementation and testing at

the university of california, merced,” Lawrence Berkeley National Laboratory, 2010.

194



[36] R. Scattolini, “Architectures for distributed and hierarchical model predictive

control–a review,” Journal of process control, vol. 19, no. 5, pp. 723–731, 2009.
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