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ABSTRACT

Building operations consume about 40% of the total energy consumption in the US,
with Heating Ventilation and Air-Conditioning (HVAC) comprising a significant portion
of it. HVAC system of a typical commercial building consists of several components —
cooling towers, chillers, Air Handling Units (AHUs), fans dampers, etc. Improving the
performance of these components has the potential for large energy and cost savings. Im-
plementing better control methodologies for regulating these components can be the first
step in this direction for building managers, as it requires minimal retrofitting. Advanced
control methodologies such as Model Predictive Control (MPC) can help realize this po-
tential.

Three reasons for the inefficient operation of traditional control methodologies are
identified in this dissertation, the improper tuning of PI controllers for nonlinear systems,
a decentralized control architecture that doesn’t perform any global optimization, and lack
of planning for future operating conditions. The dissertation makes a contribution towards
addressing the aforementioned areas of inefficiencies by offering a solution in the form of
alternative control architectures such as cascaded control, and optimal control algorithms
such as MPC.

The dissertation first provides the results of a survey that demonstrates the widespread
nature of the phenomenon of hunting (undesired oscillations) in building HVAC systems.
An algorithm to detect the presence of hunting in real time is proposed and implemented on
data obtained from real buildings on the campus of Texas A&M University. A description
of the cascaded control architecture is provided along with a simulation example to show
how it can mitigate the problem of hunting.

The dissertation addresses the other two reasons for inefficient operation, namely
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the decentralized control architecture and lack of planning for the future by proposing
a method that would allow the process of implementing advanced control algorithms such
as MPC to be automated and easy to implement. Currently implementing MPC on large
scale building HVAC systems remains a major bottleneck as it requires the development
of models that are accurate and easy to compute. This dissertation makes a contribution
towards this front by proposing a modeling algorithm that can be automated and scaled
to systems comprising hundreds of components. The modeling algorithm is verified using
data from a real office building. Static models are developed for the Air Handling Unit
(AHU) pressure subsystem which includes the AHU fan, and Variable Air Volume (VAV)
boxes serving conditioned air to the rooms. In addition to the static models, dynamic mod-
els are developed for the AHU temperature subsystem comprising a heat exchanger that
uses chilled water (CHW) to cool the air passing through the AHU. Dynamic models are
also developed for the temperatures of 9 of the 11 rooms of the office building, thereby
demonstrating that the proposed algorithm can be implemented for multi-zone systems.
The dissertation also makes a contribution towards the implementation of advanced
controls by providing a method by which the black-box models can be used to imple-
ment MPC on building HVAC systems. MPC using models developed from the proposed
modeling algorithm is applied to a high-fidelity simulation model of the office building.
Results of the simulation show that MPC can provide significant energy savings over the

traditional control algorithms.
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1. INTRODUCTION

Commercial and residential buildings accounted for 41% of the total energy consump-
tion in the US in 2014 [1]. In developed countries, the consumption of electricity by build-
ing operations is growing at the rate of 0.5-5% every year [2]. The building operations
however, are far from optimal, and there is a large potential for energy and cost savings
that can be achieved in this sector. There has been a growing effort to realize the energy
and cost savings by seeking to reduce building energy demands and consumption. For
instance, the Department of Energy (DOE) has been responsible for several states within
the U.S to enforce energy codes which allow for 25 % lesser energy consumption in com-
mercial buildings compared to the previous commercial energy codes. Furthermore, there
have been voluntary programs such as Energy Star which have resulted in commercial
buildings consuming 35 % less energy on average compared to similar buildings not part
of the program [3].

One of the ways in which the energy consumption and demands can be reduced is
by using more state-of-the-art equipment which have higher efficiencies and also mini-
mize the energy loss to the surroundings. For example, some of the measures to reduce
energy consumption in buildings include replacing the existing lighting with high effi-
ciency LEDs, replacing the chiller with a higher Seasonal Energy Efficiency Ratio (SEER)
value, increasing the insulation of the walls, etc. Such solutions however involve expen-
sive retrofittings and modernizations [4] . Another approach by which significant energy
savings can be achieved and also has minimal retrofitting requirements, is to implement
advanced controls to regulate building operations such as Heating, Ventilation, and Air-
Conditioning (HVAC), lighting, blind control etc.

Among building operations, HVAC systems are the principal consumers of energy.



The primary objective of HVAC systems is to condition the building space for occupants
and equipment. Depending on the environmental conditions, space conditioning may ac-
count for over 50% of the energy consumption of a building [2]. As stated above, adopt-
ing advanced control methodologies can be the first step towards reducing this energy
consumption. But HVAC controls still remains a major untapped avenue with regards to
optimizing the performance of building operations. A significant gap exists between the
control theory that is available in literature, and the controls applied on building HVAC
systems.

The most widely implemented control algorithms in buildings are Proportional Integral
(PI), and Rule-Based Controllers (RBCs). For example, a survey of the HVAC systems at
the Texas A& M University showed that all HVAC components were controlled using sim-
ple PI-type control [S]. The widespread use of these algorithms is mainly due to their ease
of implementation. The control outputs are easy to compute and have data requirements
that are easy to obtain. The ease of implementation, however, comes at the price of HVAC
operations being inefficient.

Just by switching to more advanced control algorithms, significant improvement in en-
ergy efficiency over the aforementioned traditional control methodologies can be obtained.
One such advanced control methodology is Model Predictive Control (MPC). There are,
however, several bottlenecks to making the switch from traditional to advanced control
algorithms. For example, the implementation of MPC on real building systems relies on
mathematical models that predict the behavior of the system being regulated. Develop-
ment of reliable models that can be scaled to HVAC systems with hundreds or thousands
of components is one of the principal bottleneck to its wide spread implementation on real
buildings. In addition to problems with model development, there are not many papers in
literature that have tested the MPC algorithm on large scale building HVAC systems.

This dissertation makes contributions towards two fronts. First, by proposing a black-



box modeling method that can be automated and scaled. The modeling method is also
verified using data from a real working office building. Second by developing models of
a high fidelity simulation system and applying MPC under varying operating conditions.
The simulation results are used to quantify the energy savings that can be obtained over
traditional control methodologies.

The rest of the chapter is organized as follows. Section 1 presents the reasons for
the inefficiencies in traditional control. Section 2 provides a background and literature
review of the modeling methods available in literature for implementing MPC, and the
problems associated with each method. Section 3 discusses how MPC can be used to
improve the efficiency of building HVAC operation. Section 4 describes the different
control architectures by which MPC can be applied. Finally in Section 5, an outline of the

dissertation is presented.
1.1 Reasons for Inefficiencies in Traditional Control Practices

There are three main reasons for inefficient operation of HVAC systems that employ
traditional control that are identified in this thesis, namely, poor controller tuning, decen-
tralized control architecture, and lack of planning for future disturbances and operating
conditions. The first reason that is explored in this dissertation is the improper tuning of
the proportional and integral gains of the PI-type controllers.

The gains of the proportional and integral components of the controller are generally
tuned for a particular operating condition of the HVAC system. But when the operating
conditions change as a result of changing weather conditions, changing internal loads etc.,
the previously tuned gains of the controller may no longer be suitable. The gains become
unsuitable primarily due to the nonlinear and time-varying nature of HVAC systems. At
the new operating condition, the controller with improper gains is no longer able to ac-

curately track the setpoint assigned to it. This results in undesired oscillations also called
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hunting of HVAC components.

For example, consider a chilled water (CHW) valve that regulates the amount of CHW
flowing through the heat exchanger of an Air-Handling Unit (AHU). A PI controller is used
to regulate the CHW valve opening to track a certain AHU discharge air temperature. The
valve characteristics are nonlinear which means that for a same change in valve position
the change in flow rate of the CHW is different when the valve is partially open compared
to when the valve is fully open. A PI controller which is tuned for an operating condition
corresponding to a fully open valve position, causes oscillations in CHW flow when the
valve is partially open. The oscillation in the CHW flow in turn causes an oscillation in
the discharge air temperature of the AHU resulting in hunting behavior. Figure 1.1 shows
another nonlinear relationship where the steady-state gain of the discharge air temperature
per unit increase in the return flow rate, changes with the flow rate.

The first step in trying to reduce the undesired oscillatory behavior in the HVAC com-
ponents is to detect its presence and prevalence. In Chapter 2 of this dissertation an al-
gorithm is proposed to detect the presence of hunting in HVAC components in real time.

Next, a survey is performed across the various buildings of the Texas A&M University
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campus to find the prevalence of hunting in CHW valves and fan speeds. An alternative to
the traditional feedback control architecture called cascaded control is described. The cas-
caded control architecture has the potential to to reduce the problem of hunting in building
HVAC systems. A simulation example is provided that demonstrates the same.

The second reason for inefficiency of traditional control in buildings arises due to the
fact that the control architecture employed is decentralized. HVAC operations involve
highly interconnected subsystems with often times competing requirements. For example
in a chiller system, a lower supply condenser water temperature results in lower cost of
operation for cooling CHW. At the same time a lower supply condenser water temper-
ature requires higher speed of the cooling tower fan thereby consuming greater energy.
In decentralized control architecture, each HVAC component has its own controller that
regulates its actuator without taking into account the interaction with the neighboring sys-
tems. In the example above, the PI controller for the chiller seeks to track a CHW supply
temperature setpoint without accounting for the impact on the fan speed of the cooling
tower. Computing the optimal CHW setpoint temperature would require a knowledge of
how the setpoint temperature affects the fan speed of the cooling tower. Since in decen-
tralized control such interactions are not considered, the control setpoint generated results
in suboptimal performance.

The third reason identified in this dissertation occurs due to the fact that the existing
control methodologies do not take into account predictions of future disturbances which
may be possible to forecast such as utility prices, weather conditions, occupancy etc. There
are several components in the HVAC system that can be used to plan ahead by making use
of the predictions of the aforementioned disturbances thereby saving energy and improv-
ing performance. One such example is making use of the building thermal mass to store
cooling energy during the night time when the temperature and electricity prices are low.

The stored energy can be used at a later time when the outside temperature and/or electric-



ity prices are higher to meet the cooling requirements. The PI-type control methodologies

have no such planning capabilities.
1.2 Modeling of Building HVAC Systems

Some of the reasons for the inefficiencies associated with traditional control of building
HVAC systems are listed above. Advanced algorithms such as MPC have the capability
of vastly improving the efficiency of HVAC operation. The second and third reasons for
inefficient operation associated with traditional control, namely, the decentralized archi-
tecture and lack of planning for future disturbances can be addressed by implementing
MPC. MPC addresses the inefficiency caused due to the decentralized nature of traditional
control by taking into considerations interactions between the various HVAC systems in its
computation of component setpoints. For instance, in the chiller example MPC takes into
consideration the energy consumption of both the chiller and cooling tower fan in com-
puting the discharge temperature setpoint of CHW. In addition to performing component
level optimization, MPC addresses the third reason for inefficient operation of traditional
control by making use of predictions of future operating conditions to plan the best set of
actions.

In order to perform component level optimization, and estimate the optimal set of
inputs over a future time period, MPC requires a model of the system being regulated.
This section provides a background and literature review of the methods that can be used
to model building HVAC system behavior.

The opportunity for large savings by implementing MPC, and the difficulty in devel-
oping a reliable model has led to intense research in the area of building modeling [6]. A
survey of the modeling approaches for building HVAC systems is provided in [7]. The
modeling methods available in literature can be broadly classified into three categories —

white box, gray-box, and black-box models [8]. The modeling methods differ in their



complexity, accuracy, and the amount of information that is required to develop them.
Figure 1.2 shows a graphic representation of the three types of approaches. A description
of the state-of-the-art corresponding to each modeling method, and the pros and cons of
adopting the methods for implementing MPC on large scale building HVAC systems is

provided as follows.
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Figure 1.2: Three Types of Building Modeling Approaches Available in Literature

1.2.1 White-Box Modeling Method

White-box models such as EnergyPlus [9], and TRNSYS [10] make use of extensive
mathematical equations developed from first principles of physics. They provide the most
accurate description of the thermal dynamics of the building compared to other modeling
methods. In order to perform simulations and predict outputs using white-box models,
however, requires a detailed description of the components of the system. For example,
developing an EnergyPlus model of a building requires information about the building
plans, construction materials, placement of windows and doors, geographical location etc.
A flow diagram of the steps associated with running simulations using a white-box model
such as EnergyPlus is shown in Figure 1.3.

Inputs are entered into the EnergyPlus model which constitute static and dynamic val-



ues classified based on whether the values remain constant or are varying throughout the
simulation. The static inputs include parameters such as the aforementioned building con-
stants, system parameters, and plant parameters. The term system is used to describe the
components associated with the distribution of cooling energy such as the AHU fan and
heat exchanger. The term plant is used to describe the components such as chiller and cool-
ing towers which deal with the primary cooling fluid like CHW. The dynamic inputs on
the other hand include factors such as outside air conditions, occupancy, control setpoints
such as discharge air temperature setpoint, room temperature setpoint, etc. The values of
the dynamic inputs can be varied at each simulation time step.

The simulation engine then uses the aforementioned static and dynamic inputs pro-
vided by the user to perform the thermodynamic calculations to compute the values of the
simulation outputs. Simulation outputs include room temperature and humidity, energy
consumption of the components, etc.

Although the white-box models are the most accurate method available for modeling
building HVAC systems, the information required to model is difficult to obtain, and even
if available, is extremely time consuming and difficult to build. In addition, the complexity
of the equations to be solved make the white-box models unfeasible for implementation of
on-line model based control.

Notwithstanding the complexity, there have been attempts made at using EnergyPlus
models for online control. For example in [11] an EnergyPlus model of a building in
Colorado was created to optimize window operations that facilitate natural ventilation in
conjunction with mechanical cooling. In order to use the white-box models for control,
authors in [11] coupled the simulation engine of EnergyPlus with a computational software
such as MATLAB. The simulation outputs generated by EnergyPlus were read by the
computational software which then produced a series of candidate values for the window

opening using an optimization algorithm at each time step. EnergyPlus simulations were
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Figure 1.3: Layout Showing Flow of Data of a White-Box Model Coupled with MATLAB

run for each candidate value. From among the simulations, the window operation that
provided the best objective function value was selected to advance the simulation.

In order to find optimal cooling schedules for a building, a particle swarm optimization
algorithm was used in [12]. In the paper, the cooling schedules were regulated by a single
optimization variable,namely, the opening and closing times of windows. In the particle
swarm algorithm several EnergyPlus simulations are run corresponding to each particle
in the solution space. A particle corresponds to a feasible solution to the optimization
problem. The particle that resulted in the objective function being minimized is selected
as the solution. Particles are generated based on a combination of randomized and rule
based decisions. Simulations were performed over a year and the authors were able to
demonstrate that by using night-time cooling strategies cooling energy could be saved by
up to 40%.

The examples above showed instances of white-box models being used for online con-

trol. The authors optimized a single control variable namely the window operation of



buildings. In order to advance the simulation or real building operation by one time step,
several paths that the building system can take in the time-step under question were tested
by running EnergyPlus simulations corresponding to each path. Each path represents a
different window operation. The window operation schedule that provided the best result
is then applied to advance by one time step.

Since the only variable being optimized in the aforementioned examples is the window
operating schedule, the solution space was one dimensional. But an efficient operation of
building HVAC system requires the optimization of several components. As the number of
components increases the dimensions of the solution space also increases and the number
of particles in the swarm to be tested grows exponentially. Hence the process of running
several simulations at each time step to determine the optimal operation becomes infea-
sible when trying to optimize the entire building HVAC operation and not just window
opening schedules.

Although not suited for implementing control, the white-box models can serve as a
simulation environment. The high level of accuracy makes them a perfect platform to
test various modeling and control strategies under a wide range of operating conditions
which would generally not be possible to perform on a real building. In this dissertation
the EnergyPlus simulation environment is used to compare the traditional PI-type control

with MPC.
1.2.2 Gray-Box Modeling Method

The white-box modeling approach described above is a forward modeling approach
where the model development starts with a physical description of the building. Inverse
modeling approaches on the other hand are developed using an empirical approach. The
properties of the system are expressed in terms of inputs and parameters that are deter-

mined using statistical tools [13]. Gray-box modeling method is an inverse modeling
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approach that is a hybrid of white-box and the inverse modeling method.

The gray-box methods in literature for modeling of building HVAC systems are used to
estimate the cooling or heating loads of the building space being conditioned. The build-
ing heating and cooling loads are estimated by predicting the cooling or heating energy
required to maintain the temperature and humidity of the thermal zones [13]. The cooling
or heating energy required for maintaining the temperature and humidity has two principal
components, namely, sensible loads and latent loads.

Latent loads are the loads associated with the moisture content in the air. They are
added to a thermal zone mainly by respiration from occupants and infiltration of humid
outside air. Sensible loads on the other hand are loads that result in the change in the
temperature of the air. They arise due to transfer of heat from the surfaces of the zone
such as walls, floors and ceilings to the room air. The source of sensible zone loads can be
both internal and external. The internal sensible loads arise due to the heat emitted by the
occupants, room lighting and equipment etc. The external zone loads arise due to factors
such as solar radiation, conduction between walls and outside air etc [13]. Sensible zone
loads have a significantly greater impact on the total zone load and is the primary focus of
most building modeling methods available in literature.

The most widely used gray-box method for modeling sensible loads of thermal zones is
the Resistance-Capacitance (RC) network approach. The thermal dynamics of a building
zone is converted into an equivalent RC circuit. The RC network approach is based on the
transfer function 1.1 proposed by Braun in [14] which predicts the sensible cooling load

required to maintain the temperature of a thermal zone.

n

Qus(t) = > aToa(t — i) + bTo(t — i) + ciQune(t — 1) + diQuar(t — i) + Y _ Qualt — 1)
=1

1=0

(1.1)
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The thermal energy gained by a particular zone at time instant t (Q.s (t)) is a function of
the past outside air temperatures (7,,), the past temperatures of the zone (7)), the internal
heat loads (Q,-m), and the external solar radiation (Qsol). The parameters a;, b;, ¢;, d;, and
e; are experimentally determined using statistical analysis.

In [13], Braun proposed that the transfer function shown in 1.1 can be represented in a

state space form as shown in Equation 1.2

d_m = Ax + Bu
dt (1.2)
y=Cx+ Du

by assigning the driving forces such as outside air temperature, internal and external solar
loads etc as the inputs u, the sensible load as the output y and selecting a state vector x
that comprises the temperature of various nodes in the building. Braun further showed that
the state space description shown in Equation 1.2 can be expressed as an equivalent RC
circuit. An example of how the building thermodynamics is represented by an equivalent
RC circuit is shown in Figure 1.4 .

In the RC circuit the thermal masses of the rooms are treated as capacitance, and the
resistance to the flow of heat between two zones or between the zones and the outside
air are represented as thermal resistors. Each room comprises two distinct thermal masses.
The temperature of the air in the room corresponds to the lower thermal mass C', and Cs,,
and the temperature of the walls, ceilings and floors corresponds to the higher thermal mass
C11 and Cs,. The temperature of the thermal masses form the nodes of the RC circuit. The
selection of nodes is a design parameter that depends on the number of sensor available
for model identification. For example the nodes can correspond to the thermal zone air
temperatures. In addition, if there are sensors that measure wall temperatures, they can be

treated as separate nodes to develop a more accurate higher order model.
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Figure 1.4: An Equivalent RC Circuit for a System Containing Two Thermal Zones

In Figure 1.4 R, and Ry, correspond to the thermal resistance between the outside air
temperature and the wall temperatures of the two rooms, and R;; and Ry correspond to
the thermal resistance between the wall and room air temperatures. The objective of the
identification procedure is then to find the values of the thermal resistors and capacitance
values using nonlinear regression analysis. The RC modeling procedure described above
was used in [13] to estimate the cooling load of a building with two thermal zones and was
shown to have an error less than 2% when compared to simulations run for a period of one
year on a white-box model.

The RC network approach has been utilized in several papers [4],[15], [16], [17], [18]
for the implementation of MPC in building HVAC systems. For example, in [4] an entire
4 story building on which MPC was implemented was divided into two thermal zones.
The heating load required for the zones was modeled using the RC network approach.
MPC was used to compute the optimal supply heating water temperatures to heat the
thermal masses corresponding to the two zones. Energy savings between 15% to 28%
were obtained depending on the operating conditions.

One of the common themes in the papers discussed above is that they gray-box model
identification is performed by approximating a multi-zone building into a two zone system
as was done in [4], or develop the model under experimental conditions by intentionally

perturbing the operating conditions to obtain data suitable for identifying the parameters of
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the RC circuit as was done in [19]. The main reason for making simplifying assumptions
such as reducing number of zones, or setting up experimental conditions for identifying the
RC parameters is that gray-box modeling is not trivial. Popular identification algorithms
such as subspace and parametric identification methods are not suitable for identifying the
RC parameter values [20]. Methods for estimating the RC parameter generally involve
nonlinear regression such as that used in [21]

Although gray-box models are simpler to develop than white-box models, developing
them for large scale systems is still difficult and time consuming. The difficulty arises due
to the fact that the number of parameters to be estimated by nonlinear regression methods
increases exponentially as the number of zones to be modeled increases. In addition to
computational requirements, the process of automating the model development becomes
more challenging due to the information requirement of graybox models. Gray-box mod-
els require a complete knowledge of the internal structure of the building. In order to
increase the accuracy of the models, the papers in literature have also used information
about the building description such as thickness of walls, etc to estimate the resistance and
capacitance values of the equivalent RC network such as in [13]. The papers in literature
have also used incident solar light on the outer building walls as inputs to the model. In-
formation such as building wall thickness, orientation of the walls, internal structure of the
rooms, and incident solar radiation on walls is not easily available.

Thus, the information requirement, computational burden required for the nonlinear
regression analysis to compute the gray-box model parameters, and the fact that the RC
modeling method is suitable only to model thermal zones make the gray-box modeling
method less suitable for automating the development of models and scaling the process

for HVAC systems with a large number of components.
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1.2.3 Black-Box Modeling Method

Although, the two approaches described above provide a more accurate description
of the underlying physics, the complexity, and the amount of information that is required
to develop the models make them unfeasible to be implemented on large scale systems.
Black box modeling approach on the other hand is developed purely from data. The mod-
els may be of lower fidelity but offer the best scope in automating the process of model
development for large scale subsystems.

The output being modeled by the black-box approach is generally continuous in nature
like room temperature, humidity etc. The sensors employed by the Building Energy Man-
agement System (BEMS), however, take measurements at fixed intervals of time, giving
the output a discrete nature. The discrete output is modeled as a function of the previously
measured output and input values. For example, sensors at an office building at the Texas
A&M University campus in [5] measure room temperatures, volume flow rates, discharge
air temperature, and weather conditions. By using the black-box modeling approach the
room temperature at time instant ¢ is expressed as a function of the room temperature, and
other input values measured before ¢.

Not all the factors that influence the output being modeled are generally captured by
the BMS sensor data. For instance in the above example where the room temperature is
being modeled, factors such as solar incidence, cloud cover, wind-driven infiltration, etc.
affect the output but are not measured by the BMS sensors. In the black-box modeling
approach the unmeasured inputs are assumed to be stochastic in nature, generally Gaussian
with zero mean and variance 1. The modeling approach uses statistical tools to extract the
influence of these stochastic inputs from historical data. Thus the output modeled by the
linear parametric black-box approach is written as a sum of deterministic and stochastic

components.
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Based on the structure of the linear function used to describe the relationship between
the inputs and the outputs, the linear black-box modeling methods can be classified into
two methods, parametric and subspace identification. In the linear parametric method,
the relationship is expressed as a linear combination of contributions from past measured
input and output values. For example, consider the parametric relationship shown in Equa-
tion 1.3

y(t) =ary(t — 1) + agy(t — 2) + ... + an, y(t — ng) + byu(t — 1) + bou(t — 2)+ (13)

o F by u(t — np) + coe(t) + cre(t — 1) + ... + cpe(t — ne)

where y(t) is the output at time ¢, u is the deterministic input, e is the stochastic input, and
ap, @z, ...,b1, 09, ...b,,, 1, ..., ¢, are the parameters that determine the contribution of the
respective past input or output value.

Equation 1.3 shows just one of the ways in which the linear parametric function can
be expressed. For example consider another linear parametric equation shown in Equa-
tion 1.4.

y(t) =a1y(t — 1) + agy(t — 2) + ... + a,, y(t — ng) + byu(t — 1) + bou(t — 2)+ (14

o+ b u(t — np) + e(t)

Equations 1.3 and 1.4 differ in how the deterministic and stochastic components are as-
sumed to influence the output. In 1.4, the output is assumed to be independent of the past
values of the stochastic input. The different ways of expressing the linear relationship
are called as model structures. The most commonly used model structures in literature
are ARX, ARMAX, Box-Jenkins (BJ) and Output Error (OE). Once a model structures is
selected, the parameters of the structure are identified using standard statistical tools. De-

pending on the statistical tool used to identify the parameters, the linear parametric method
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can be further divided into Prediction Error Method (PEM) and MPC Relevant Identifica-
tion (MRI) method. A discussion of how to select the model structure, and a comparison
of the PEM and MRI methods is provided in Chapter 3.

The second approach for linear black-box modeling explored in this dissertation is the
subspace identification method. In the subspace identification method the input and output

relationship is expressed as a state space equation as shown in Equation 1.5,

z(t + 1) =Ax(t) + Bu(t) + Ke(t)

y(t) =C(t)

(1.5)

where A, B, C and K are the state space matrices to be determined by statistical analysis.
The states used to describe the model are purely mathematical and bear no physical sig-
nificance. A detailed description of the two black-box modeling approaches is provided in
Chapter 3. Figure 1.5 shows the different types of linear black-box modeling approaches
popular in literature.

There are several papers available in literature that use the aforementioned black-box
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approaches for modeling building thermal dynamics [22],[23],[24],[25]. In [22] linear
parametric models with ARX and ARMAX structures were developed for a naturally ven-
tilated greenhouse. The output selected was the air temperature within the greenhouse,
and the inputs selected were the outside air temperature and humidity, solar radiation, and
cloudiness of the sky. The authors were able to develop black-box models that provide ac-
curate predictions of the air temperature. In order to maintain the accuracy of the models,
however, the model parameters were regularly tuned to account for the changing operating
conditions. In [26], the authors demonstrated that linear parametric black-box models can
be developed to model room temperature and humidity of a two-zone office building with
full occupancy using ARX, ARMAX, BJ, and OE model structures. The models were
verified using data collected for over a period of nine months.

Although the papers provide good predictive models, there are certain inherent prob-
lems associated with the black-box modeling approach that are not addressed in litera-
ture. Black-box models are least computationally intensive compared to the other two
approaches, and require the least amount of data for development. The drawbacks of the
black-box modeling approach however is that they are developed with minimal underlying
physics principles. As a result the predictions made by the model correspond to a specific
set of operating conditions. There is no guarantee that the predictions made by the model
would be accurate under a different set of operating conditions. This generates a question
that remains largely unanswered in literature. Does a black-box model with good predic-
tive properties translate into a good model for control? Furthermore, black-box models
require a certain quality of input excitation to obtain models with good input-output re-
lationships [27]. The question that arises as a result is whether the data obtained during
the normal course of building operation is of sufficient quality, or whether experimental
conditions where inputs are intentionally excited are required to develop a good model.

In addition to the two problems associated with black-box modeling mentioned above,
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there are two areas in which the available literature on black-box modeling is lacking.
Firstly, none of the papers include both buildings and AHU with all of the details [28].
Most of the papers model only the room temperatures. Optimizing the building HVAC
operation requires models of other components such as the AHU fan, heat exchanger etc.
Secondly, black-box models are developed only for systems with one or two rooms. Most
buildings have several rooms with interconnecting dynamics. If the process of implement-
ing MPC needs to be automated, a method to model multi-zone buildings is required.
Chapter 3 of this dissertation seeks to address the aforementioned shortcomings in lit-
erature by contributing on two fronts. Firstly by proposing a linear parametric modeling
algorithm that automates the process of model development. The proposed modeling al-
gorithm can use either the PEM or the MRI approaches. A comparison of the proposed al-
gorithm using PEM and MRI approaches is made with the subspace identification method.
The comparison is performed by making use of data from real working multi-zone office
building. In addition to the room temperatures, the AHU discharge air temperature and the
volume flow rates through each room are also modeled. Secondly, the dissertation con-
tributes by using models developted from the proposed modeling method to apply MPC
on a high fidelity simulation model of the office building. Thereby showing that black-box
models not only provide accurate descriptions of the building HVAC systems, but can also

be used to implement model based control.
1.3 Model Predictive Control

The previous section provides a background of the various approaches available in
literature to model building HVAC systems. The objective of the modeling methods is not
just to predict system behavior, but also to be able to use the predictions for model based
control. The model based control investigated in this dissertation is MPC.

MPC does not comprise of a single strategy, but a collection of various control methods
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which seek to minimize a certain objective function [29]. For building HVAC systems,
the objective function is designed so as to meet the thermal comfort requirements of the
occupants and machinery and at the same time minimize the energy consumption of the
HVAC components. Thus the objective function is generally expressed as a sum of a
measure of thermal comfort, and the cost of operations of the various subsystems such as
the AHU fan, heat exchanger, chiller etc.

A relationship is then sought between the objective function that is required to be
minimized and the control setpoints that regulate the system. Examples of some of the
control setpoints that need to be optimized include the AHU discharge air temperature
setpoint, the CHW supply temperature setpoint, etc. The models that are developed using
any one of the methods described in the preceding section help in identifying a relationship
between the objective function and the control setpoints. The relationship is then used by a
mathematical optimization program to determine the set of control inputs that minimize the
objective function. The control setpoints are optimized not just for the current time instant
but over a future prediction horizon. The optimal inputs corresponding to the current
time-step are then applied to the real system. Figure 1.6 shows a schematic of how MPC
computes the optimal control setpoints.

There are two mechanisms by which the optimal inputs computed by MPC are able
to realize an improvement over traditional control algorithms — load shifting, and com-
ponent optimization [19]. Load shifting is the process of taking actions before-hand an-
ticipating changes in demand conditions. For example, precooling the building so as to
reduce the amount of cooling required during peak demand, storing energy for later use
etc. Component optimization is the process of computing the optimal control action for
each component in a large system with several inter-connected subsystems, with quite of-
ten competing requirements. For example, there are several combinations of discharge air

temperature, and flow rates that can provide the same amount of cooling to a thermal zone.
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Figure 1.6: Flow-Diagram Showing the Measured Past and the Future Predicted Inputs
and Outputs for Applying MPC

MPC seeks to find the optimal combination of discharge air temperature and flow rate that
would provide the desired cooling with minimum energy consumption.

There are several papers in literature that propose methods for improving HVAC con-
trols by focusing on the load shifting strategy of MPC. The load shifting strategy of MPC
can be adopted by making use of thermal energy storage devices such as building masses,
cooling water tanks etc. The central idea behind the load shifting strategy is to use these
storage devices to store thermal energy during off-peak hours when the electricity prices
are generally lower and/or the ambient conditions favor a more efficient operation. One of
the earliest examples of using predictions for control of building HVAC systems was done
in [30]. Different control strategies were tested on a simulation model of simple domestic
hot water system with a solar collector. Simulations showed that the control strategies that
used weather prediction data performed better than the non-predictive control strategies.
In [31] a TRNSYS model of a 5 zone building was created in order to test a predictive
control strategy that would optimize a global temperature reference setpoint that used the

building thermal storage (passive storage), and the charging and discharging rates of a
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chilled water storage tank (active storage) based on predictions of weather data and util-
ity prices. The authors then tested the impact of the accuracy of weather predictions on
the effectiveness of the predictive controller in [32]. The authors demonstrated through
simulations that with good weather prediction models, a short-term prediction model can
realize significant savings when the off-peak and on-peak electricity rates vary. In [4]
MPC was implemented on a real building in Prague to find the optimal supply water tem-
perature of a heating system for two zones. The heating system of the building consists
of beams placed in the ceilings of the rooms to utilize the building thermal capacity. The
authors found that depending on the weather conditions and insulation levels savings of
about 15% to 28 % were obtained compared to a non-predictive control algorithm.

In [33], an improvement in performance of building climate control was achieved on
a simulation model with the use of MPC coupled with weather predictions. In [15], three
main subsystems were modeled — chillers and cooling towers, a thermal energy storage
tank, and a campus load model. The control variables that were optimized were the refer-
ence temperature exiting the cooling towers, the mass flow rate of the chilled water supply,
the reference temperature of the water supplied by the chillers, and the start-up time of the
chillers and cooling towers. The performance of MPC was compared to a baseline per-
formance where there was no optimal control involved. An improvement of 19.1% was
enabled by implementing MPC. In [34], MPC was implemented on a Swiss office building
to compute the optimal setpoints for the supply temperature and the flow rates of the AHU,
supply water temperature and operating mode of the Thermally Activated Building Sys-
tem (TABS), and the blind commands. MPC provided better performance than a standard
rule-based controller over the course of an entire year of simulation.

The papers discussed above demonstrated the effectiveness of using MPC on certain
specific aspects of the HVAC system such as the supply water temperature of the heating

system, or the charging and discharging rate of chilled water etc. HVAC systems, however,
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consists of several different components and the type of components used varies from
building to building. In order to extract the full potential of energy savings that can be
achieved, a methodology for implementing MPC on a comprehensive list of the most
common building HVAC components was done in [19]. A brief description of the process
adopted in the paper, and the challenges of its implementation that still remain are provided

below.
1.3.1 Higher and Lower Level Components

The test bed for the implementation of MPC in [19] is a campus building in Berke-
ley. MPC is applied by first dividing the HVAC components into an hierarchical structure
comprising two levels — an Energy Conversion Level (ECL), and an Energy Distribution
Level (EDL). ECL consists of components associated with the generation and distribution
of chilled water which is the primary fluid through which cooling energy is supplied to the
various buildings on the campus. The components include chillers, cooling towers, chilled
water storage tanks, pumps etc. The energy distribution level consists of components asso-
ciated with the supply and distribution of the conditioned air providing thermal comfort to
the occupants of the buildings. The components include the heat exchanger, supply fans,
and the thermal zones of the building. Figure 1.7a and 1.7b provide a graphical represen-
tation of the two levels of HVAC components. A description of the control strategy and
components in each level, and the method that was used to model each of the components

[19] is provided below.
1.3.2 High Level MPC

The aim of the higher level MPC is to minimize the energy consumption of the com-
ponents in its level and at the same time meet the building cooling load requirements.
The first step is to design an objective function that expresses the energy consumption and

discrepancies in achieving the cooling load requirements in a single unit (generally a $
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amount) such as in Equation 1.6

np

TiPe(t) =Y Ten(tlt + 1) + Tea (]t + 1) + Tp(t]t +4) + Ey(tlt +4)  (1.6)
i=1
where J;, J., and fp are the cost of operations of the chiller, cooling tower, and pumps
respectively. E, is the penalty on not meeting the cooling load requirements, and n,, is
the number of time steps in the prediction horizon over which the objective function is to
be minimized. The notation ¢|t + 7 is used to indicate an i-step-ahead prediction made at
time instant ¢. The symbol "is used to indicate estimated values.

MPC seeks to compute optimal control inputs corresponding to ECL represented by
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U, ™, that minimize the objective function above as shown in Equation 1.7

U™ = argmin J;*° (1.7)

Uni€Dpy
where Dy, is the domain containing all possible values of the control input Uj;. As is
evident from Equation 1.7, in order to compute the optimal control inputs, a relationship
between the objective function J;;” and the control inputs Uy, is required. This relation-

ship is depends on the dynamics of each of the components as shown in Equation 1.8

J}TlLPC = fmpc(fchafctafm fst) (18)

where f,,,. is the relationship between the objective function and the outputs being mod-
eled, f, is the function representing the dynamics of the component * (ch = chiller, ct
= cooling tower, p = pumps, st = storage tank) that provides a relationship between the
outputs and the control inputs U, ;™.

The next step in the application of MPC is to determine low order relationships f.
for each component. The relationship f, is generally expressed in terms of control and
disturbance inputs, and the output being modeled. The previous section provided model-
ing approaches that can be used to identify the relationships f,.. This section provides a
description of what relationships need to be identified corresponding to each HVAC com-
ponent. The control and disturbance inputs, and outputs corresponding to each component
of ECL is shown in Figure 1.5. The red and black arrows correspond to control and dis-
turbance inputs respectively, and the blue and green arrows correspond to outputs used
in the construction of the MPC objective function, and outputs which help in identifying
interactions between neighboring subsystems, respectively. A brief description of how the

components of ECL were modeled in [15] is provided below.
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1.3.2.1 Chiller

The outputs of interest of the chiller system, are the CHW supply temperature, the
chiller energy, and the condenser water return temperature. A static model of the chiller
is used in [15], where the CHW supply temperature is assumed to be equal to the CHW
setpoint temperature. In order to model the chiller energy consumption several simula-
tions of a high fidelity model of the chiller were run under different operating conditions.
The simulation results were used to construct a 5-d lookup table where the output was the
chiller energy and the inputs were the CHW setpoint temperature 75 | the mass flow rate
of CHW 1.4, the supply condenser water temperature 7,5, the CHW return temperature

T hwr», and the outside air wet bulb temperature 7),,. The condenser water return temper-

ature was computed using the conservation of energy principle where the heat lost by the
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CHW is equal to heat gained by the condenser water. The control inputs that affect the
energy consumed by the chiller are the mass flow rate and temperature of the chilled wa-
ter, and the supply temperature of the condenser water. In [19], the relationship between
the inputs and the outputs of the chiller were not found using any of the linear parametric
method described in the previous section. Instead a nonlinear static function was used. The
static function in the form of a 5-d lookup table was obtained from [15] by running sev-
eral simulations of a high fidelity model of the chiller corresponding to different operating

conditions.
1.3.2.2 Cooling Tower

The cooling tower consists of a fan whose speed is regulated to meet a certain con-
denser water supply temperature. The outputs of interest of the cooling tower are the
condenser water supply temperature, and the cooling tower fan energy consumption. As
was done with the chiller system, a static model was again considered by the authours
in [15]. The supply condenser water temperature is assumed to be equal to its setpoint
temperature. The local controller in the cooling tower regulates the cooling tower fan to
supply condenser water at the desired temperature. A similar approach as was adopted
for the chiller model is used to model the energy consumed by the cooling tower fan. Re-
gression analysis was performed to identify coefficients of a fifth degree polynomial that
provided a relationship between fan speed and 7.5, T, Trwp, and mass flow rate of the
condenser water 1,5 [35]. Regression entailed the determination of 27 parameters. The

cooling tower fan energy was then approximated as a cubic function of the fan speed.
1.3.2.3 Cooling Water Storage Tank

The dynamics of the cooling water storage tank were modeled in [15] by first assuming
it to contain two lumped masses, warmer water at the top with a height z, and temperature

of T,, and colder water at the bottom with height 2, and temperature 7;,. The outputs of
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interest are the heights and temperature of the warm and cold lumped masses. The outputs
are computed as a function of 1¢pys, Tenws, the mass flow rate and the return temperature

of CHW supplied to the building 72c,p,, and Ty, .
1.3.2.4 Building Load

Building loads in [15] are modeled using the RC equivalent circuit method described
in Section 1.2.2. In [15], the building being investigated was divided into two zones,
and the capacitance and resistance values of the equivalent RC circuit were determined
through nonlinear regression analysis. In order to increase the accuracy of the model,

measurements of the incident solar radiation were also made.
1.3.3 Low Level MPC

The components considered in EDL were the cooling coils, AHU fan, and the thermal
zones. The objective of the low level MPC is to minimize the energy consumption of the
cooling coil and fan, at the same time maintain occupancy comfort. As was done with the
high level MPC, an objective function is first designed that penalizes energy consumption,
and deviations of predicted temperatures from set point values over a horizon as shown in

Equation 1.9

np

TiPe(t) = Jeeltlt + 1) + Tpan(tlt + 1) + Teomp (L]t + 1) (1.9)
i=1
where J,. and J tan are the energy consumed by the cooling coil and the AHU fan respec-
tively, and Teom ¢ 1s a penalty for not meeting the thermal comfort requirements.
The control inputs that were optimized in [19] were the AHU discharge air temper-
ature, the recirculation damper position, the volume flow rate across the VAV boxes and

the CHW vavlve position of the AHU heat exchanger. The optimal control inputs were
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computed by minimizing the objective function in Equation 1.9. A brief description of the

modeling methods employed in [15] to compute the optimal inputs is provided below.
1.3.3.1 Cooling Coil

The output of interest of the cooling coil model is the cooling energy required to cool
the air through the AHU. In [15], a constant efficiency cooling coil model is assumed. The
energy expended is proportional to the cooling load on the air side of the heat exchanger.
Thus the cooling coil energy is obtained as a function of the mass flow rate of the air
through the AHU 1iv,y,,, the inlet air temperature 77, ;,,, and the discharge air temperature
Tehw- Since a static model is assumed, the discharge air temperature is assumed to be equal

to its setpoint T3¢

chw*

1.3.3.2 Fan Model

The output of interest in the fan model is the energy consumed by the fan. In [15]
the fan energy is assumed to be a quadratic function of the mass flow rate r4,. The
parameters to the quadratic function were determined through regression analysis with

measured data.
1.3.3.3 Thermal Zone

The thermal zones in [15] were modeled as an RC equivalent circuit described in Sec-
tion 1.2.2. The output of interest in the thermal zone models is the temperature of the
zone.

The description of the objective function, and the component models showed the steps
taken in [15] in order to implement MPC on a real building. The models of the com-
ponents of ECL were developed using nonlinear regression of data obtained from either
experiments or high fidelity simulation models. The models and the experimental data

were specific to the building under study. As the experiments and simulation models cor-
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responded specifically to the building on which MPC was being tested, the process cannot
be adopted for automation and wide spread implementation.

When considering MPC on only the EDL components, gray-box models were used in
modeling the temperature of the zones. For the reasons specified in Section 1.2.2 gray-
box models are not feasible for the application of MPC being automated. Chapter 3 of
the thesis makes a contribution towards automating the process of model development of
the components of EDL, and in Chapter 4, MPC is applied on a high-fidelity simulation

model to demonstrated the usefulness of the developed models for model-based control.
1.4 Modeling Architecture

The previous section described how MPC has the potential to improve the efficiency
of building HVAC systems, and also the bottlenecks that still remain in its widespread
implementation. This dissertation seeks to address the challenges in implementing MPC
by proposing an automated modeling method, and verifying its use in model-based control
on a high-fidelity simulation model.

Another question that this dissertation seeks to address is the control architecture that
is most suitable for the implementation of MPC. Implementing MPC on building HVAC
systems requires regulators that perform a large variety of operations. Some of these
operations include storing the identified models of the subsystems, receiving real-time
data from the BEMS sensors, updating the model states, computing the optimal control
trajectory, relaying the computed setpoints to the actuators etc. Due to the large scale
of building HVAC systems, performing the aforementioned operations results in a big
storage, computational, and communication burden on the regulators. Depending upon the
number of regulators used, and how information is exchanged between them, the control
architecture used to solve the MPC problem can be broadly divided into three categories

namely centralized, decentralized and distributed. A description of the architectures is
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provided below.
1.4.1 Centralized MPC

Figure 1.9 shows an example of a centralized control architecture used to implement
MPC on building HVAC systems. A centralized architecture consists of a single regulator
that solves the MPC problem of the entire system. The MPC problem corresponding
to a centralized architecture constitutes computing optimal setpoints over the prediction
horizon for each subsystem by minimizing a single centralized objective function. For
example in Figure 1.9, a single regulator is used to find the optimal setpoints for the chiller
subsystem 75 = AHU heat exchanger 75", fan subsystem P:¢!, and the thermal zones

T2, where ¢ € 1,2,...n, and n, is the number of thermal zones. A list of the tasks

7

performed by the regulator is shown in Table 1.1.

Table 1.1: Tasks Performed by the Regulator in the Centralized MPC Architecture

Task Description

Storage Storing Subsystem Models and historical data
Computation Update system states for each subsystem
Computation Compute optimal setpoints for each subsystem
Communication | Output data from BMS sensors to Regulator
Communication | Setpoint values from regulator to actuators

Implementation of centralized MPC for large scale systems such as building HVAC
becomes difficult as the complexity of each of the tasks increases exponentially as the
number of subsystems increase. A centralized architecture also results in reliability and
robustness problems [36]. For example if one of the components of the HVAC system is

replaced, the entire centralized model and objective function needs to be updated.
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Figure 1.9: Layout Showing a Centralized MPC Architecture

1.4.2 Decentralized MPC

The layout of a decentralized control architecture is shown in Figure 1.10. In a de-
centralized control architecture there is a regulator associated with each component of
the HVAC system. There is however, no information exchange that occurs between the
regulators. Each regulator optimizes the component to which it has been assigned. A
decentralized control architecture may work well only in the cases where the coupling

between the dynamics of the various subsystems is small.
1.4.3 Distributed MPC

Figure 1.11 shows a layout of the distributed control architecture. A distributed archi-
tecture is similar to decentralized, except that some amount of information is exchanged
between the regulators of each subsystem. The information that is exchanged between
the regulators generally consists of data corresponding to the interacting dynamics of the

subsystems. Depending upon the protocol used to exchange information, the distributed
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control architecture can be divided into non iterative and iterative systems [36]. In a non
iterative system information is exchanged between the regulators only once every time
step, whereas, in an iterative system information is exchanged several times in a single
time step.

The distributed control architecture can also be divided according to the type of objec-
tive function that is minimized by the local regulators. Each regulator may minimize its
own objective function (independent algorithm) or all regulators may minimize a single
global objective function (cooperating algorithms) [36]. An independent distributive MPC
may reach a Nash equilibrium which is not a global optimal solution. In a Nash equilib-
rium each subsystem is at its own local optimal position. Once a Nash equilibrium point is

reached, a global optimal position cannot be reached since that would require the operat-
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Figure 1.11: Layout Showing a Distributed MPC Architecture

ing condition to move away from the local optimum position thereby increasing the local
cost function. An iterative independent distributive MPC was implemented in a simulation
environment in [37]. An RC-equivalent gray-box model of a three zone building was used
as the simulation test bed. Regulators corresponding to each thermal zone minimized their
own local objective function to compute the optimal heating. Information of the predicted
temperatures over the horizon was exchanged between the regulators of the neighboring
thermal zones.

An alternative iterative setup called a cooperative distributive control was proposed in
[38] and [39] where all the subsystems minimize a single global objective function. In

order to achieve the global optimal solution, however, each regulator requires the model of
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every other component in the system, and every iteration requires communication of the
future optimal control set and states. In [40] a method called as Neighbor Communication
Optimal method (NC Opt) to reach the global optimal solution was proposed. The method
uses an iterative independent distributed approach. The authors were able to show that by
judiciously designing the objective function of each component a global optimal solution
in steady state can be achieved by exchanging information between regulators of neigh-
boring subsystems. Each subsystem solves its own objective function. The cost function
of the local subsystems is modified to include penalites based on how the output of the cur-
rent local subsystem affects its neighbor. This method vastly reduces the communication
burden of the conventional cooperative distributed algorithms.

The authors in [40] showed that a Pareto optimal solution can be obtained in steady
state by judiciously designing the objective function of each component. In this disserta-
tion, the algorithm proposed in [40] is adopted to apply dynamic MPC with a distributed
control architecture. Chapter 5 of the dissertation provides the results of applying MPC
with the distributed architecture on a high fidelity simulation model of an office building.

Simulation results are compared with that of centralized MPC.
1.5 Organization of Dissertation

The remainder of the dissertation is organized as follows. Chapter 2 describes the phe-
nomenon of hunting in building HVAC systems. The results of a survey are presented
which shows the widespread nature of the phenomenon. An automated modeling al-
gorithm is proposed and verified to detect hunting in real time. An alternative control
architecture is offered as a solution along with a simulation example showcasing how
the architecture can reduce the occurrence of hunting. Chapter 3 proposes an automated
black-box modeling algorithm. The algorithm is then verified using data from BEMS of

a real office building. Simulations of a high fidelity model of the office building are per-
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formed where MPC uses the models developed from the proposed algorithm. Three types
of black-box approaches are compared both in their prediction accuracy and their ability
to be used in model-based control such as MPC. Chapter 4 provides a comparison of two
types of control methodologies, the traditional PI-type control, and MPC. A description of
the simulation environment used for the comparison, and the steps taken by MPC is also
presented. Chapter 5 provides a description of an alternative control architecture through
which MPC can be applied on building HVAC systems. A comparison of the performance
achieved by the two types of control architectures in a simulation environment are also

presnted. Conclusions and recommendations for future work are provided in Chapter 6.
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2. UNDESIRED OSCILLATIONS IN HVAC SYSTEMS

! Some of the reasons for suboptimal performance of HVAC systems using conven-
tional PI-type control algorithms were introduced in the previous chapter, undesired oscil-
lations or hunting, the decentralized architecture, and lack of planning for future operating
conditions. This chapter seeks to address one of those reasons for the inefficient operation,
specifically undesired oscillations or hunting of HVAC components.

The chapter is organized as follows. First, a discussion of the probable causes for
hunting is provided, followed by a methodology for identifying hunting in real-time. The
algorithm is then applied to data obtained from the BEMS of 10 buildings at the Texas
A&M university campus. The results of a survey documenting the prevalence of hunting
in those buildings is provided. Finally a solution to the problem of hunting is offered in the
form of an alternative control architecture, called cascaded control. A simulation example
demonstrating how cascaded control can reduce hunting is also provided. The chapter is
a summary of the joint work that was performed by the author and Christoper Price [5],
[41]. From the aforementioned topics included in the chapter, the unique contribution of
the author comprises the algorithm to identify the presence of hunting from real-time data,

and the survey of HVAC components to show the prevalence of hunting in buildings.
2.1 Undesired Oscillations or Hunting

Most buildings employ PI-type control for HVAC systems, mainly due to the simplicity
of its implementation [42]. The control outputs are easy to compute, and the data required
for computation are easily obtained. HVAC systems, however, are time varying and in-

herently nonlinear. For example, consider the relationship between the steady state value

"Part of the data reported in this chapter is reprinted with permission from "Identification and elimination
of hunting behavior in HVAC systems," by Chintala,R., Price, C., & Rasmussen, BP., 2015. ASHRAE
TRANSACTIONS, 121, 294, ©2015 ASHRAE TRANSACTIONS.
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of room temperature and the damper of the Variable Air Volume (VAV) box serving the
room. Figure 2.1 shows the rate of change of the steady state value of the the temperature
of room i (7T;) per percentage change in the damper position (07;/0D;), as a function of
the damper position D;. As is evident from the figure, the steady state gain 07;/JD; is
much higher when the damper opening is small compared to when the opening is large.

In the traditional control architecture, damper position is regulated by PI control to
track a given room temperature setpoint. The gains of the PI controller are generally
designed for a fixed operating condition. If these design conditions correspond to when
the damper opening is large, the PI gains would tend to be high as more control effort
is needed to make a change in the steady state value of the room temperature. Over the
course of normal operation, however, operating conditions change and the large PI gains
may cause the measured temperature to oscillate about the set point temperature instead of
accurately tracking it. The oscillations of the measured temperature in turn results in the
oscillations of the damper position as it is dependent on the error between the measured
and reference temperatures. These undesired oscillations in the output and input under
non-design conditions are called hunting.

The example above showed how inherent nonlinearity in the system components can
cause hunting. In addition to process nonlinearity, hunting can occur due to degradation in
components such as valve stiction [43]. Thus presence of hunting can also be an indication
that some of the system components may have to be replaced.

Other than nolinearity, there are several other causes of undesired oscillations in build-
ing control loops such as improper control tuning, oscillating disturbances or oscillations
in neighboring control loops etc. For example, in the example above oscillations in the
VAV damper due to high PI gains causes an oscillation in the measured room tempera-
ture. A cooling demand is generally calculated as a function of the error between the

measured and reference room temperatures. The cooling demand is used in the calcula-

38



50 90
40 - 172
9
@
307 154 __
[] L
® >
020+ 136
>
T
©
2
n
10 - 118
0 1 1 Il Il Il 1 1 1 0

10 20 30 40 50 60 70 80 90
Initial Damper Position (%)

Figure 2.1: Volume Flow Rate as a Nonlinear Function of Damper Position

tion of the AHU discharge air temperature. Oscillations in measured room temperature
may cause oscillations in the cooling demand calculation which in turn cause oscillations
in the CHW valve of the AHU which regulates the discharge air temperature. The ex-
ample shows how oscillations in one control loop can cause oscillations in another. Such
oscillations are undesirable since they result in increased energy consumption such as in
fans, component wear and tear in valves and dampers, and unsatisfactory performance in

regulating the desired signals.
2.2 Detecting the Presence of Hunting

As 1s stated in the previous section, hunting causes increased energy consumption, and
wear and tare of components of valves and dampers. In addition, hunting also results in
poor control performance. Hunting causes oscillations in the value of the output thereby
not tracking the assigned set point value accurately [44]. Hence preventing the occurrence

of hunting is essential for a more efficient operation of building HVAC systems.
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The first step in reducing the occurrence of hunting, however, is to detect its presence.
Building HVAC systems contain hundreds of control loops and components that may be
susceptible to hunting. Individually monitoring each of theses components is infeasible.
Several methods of detecting oscillations have been presented in literature [43], [44],[45],
[46]. A brief discussion of one of these methods is provided below.

Detection of hunting requires more than just checking for the presence of oscillations.
Not all oscillations in control loops and the components involved are undesired. Some
oscillations may occur due to the presence of oscillating disturbances which would require
the control actions itself to be oscillatory. For example, the cooling load on buildings is
influenced by outside weather conditions which for the most part are oscillatory with a
time period of one day. The algorithm for detecting hunting should be able to distinguish
between oscillations which are necessary to meet the objectives of the control system, and
the undesired oscillations or hunting behavior.

The available literature on hunting mostly deals with process industries. The principal
obstacles of detecting undesired oscillations in process industries is the fact that the fre-
quency of oscillations vary widely, and the oscillations are not necessarily sinusoidal. In
[43], Hagguland proposed a simple online oscillation detection algorithm to identify the
undesired oscillations in control loops in process industries. The algorithm proposed by
Hagguland is mainly used to detect the presence of stiction in valves. Hagglund argues
that in process industries, PI controllers are conservatively tuned, and is unlikely for poor
controller tuning to cause hunting. The oscillations due to stiction in valves correspond to
low and mid range frequencies. The undesired oscillations are thus detected by placing an
upper and lower bound on the frequencies of oscillations of a certain aspect of the oper-
ation. The frequencies of oscillations within these bounds are identified as hunting. The
steps taken by Hagglund to detect these frequencies is provided below.

In order to detect the oscillations, the algorithm looks at the behavior of the control
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error e(t) defined in Equation 2.1

e(t) = yr(t) = ym(t) 2.1

where y,.(t) is the reference signal, and v,,(t) is the measured output at time ¢. The error
signal is first used to compute an Integrated Absolute Error (IAE) denoted by I, , which is
the integral of the error signal between two successive zero crossings as shown in Equa-

tion 2.2

t;
[e:/ e(t)dt (2.2)
ti—1

where ¢;_; and ¢; correspond to the time instances of the zero crossings.

The algorithm then looks into two aspects of IAE to determine whether there are unde-
sired oscillations in the control loop, namely, the amplitude and frequency. If the control
performance is good, then the time elapsed between successive zero crossings of the error
signals is small thereby resulting in a small amplitude of IAE. A threshold value denoted
by I%™ is selected, and a load disturbance is said to have occurred whenever the IAE is
greater than the threshold, i.e. I, > I'™. ['™ also serves as an upper bound on the fre-
quencies of oscillations detected by the algorithm. When the frequency of oscillation is
high, there is less time elapsed between the zero crossings resulting in a smaller IAE value.
Hence, high frequency oscillations which have an IAE value less than '™ are excluded.

The second aspect that the algorithm looks at is the frequency of the load disturbances.
As stated in the preceding paragraph I'™ places an upper bound on the frequency of
load disturbances. In addition to the upper bound, a lower bound is also placed on the
frequency of load disturbances. This is done by selecting another design parameter 7,

which sets the lower threshold of the number of load disturbances that need to occur over
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an observation period 7 ;s before the oscillations can be classified as hunting.
The simplicity of the algorithm lies in the fact that it requires just two parameters to
be specified by the user. The user just needs to determine the range of frequencies which

could possibly occur due to the presence of stiction in valves.
2.2.1 Hunting in Building HVAC Systems

The previous section provided a description of how hunting can be identified in pro-
cess industries. The main obstacle in detecting hunting in process industries is that the
operations may be subjected to a wide range of frequencies, which makes it difficult to
distinguish between desired and undesired oscillations. This dissertation places a focus
primarily on the oscillations that are present in building HVAC systems. An argument is
made in this chapter that detecting hunting in building HVAC systems is much easier than
in process industries as they are not subject to a wide range of oscillating disturbances.

As is stated in Section 2.2, the hunting algorithm should be able to distinguish between
oscillations in the control loop due to load disturbances and the undesired oscillations.
Oscillations due to load disturbances are part of the control system design. The main
sources of load disturbances that occur in building HVAC systems are due to the changes
in outside weather conditions, and internal heat loads. Oscillating disturbances due to
outside weather conditions have a time period of 1 day, whereas internal heat loads due
to occupancy, equipment etc. are non-oscillatory in nature. Internal heat loads generally
contain large periods of constancy interspersed with step changes in values. Control loops
responding to these disturbances would also exhibit similar behavior.

Figure 2.2 shows oscillations of the fan speed and the CHW valve of an AHU serving
one of the buildings at the Texas A&M University campus. As is evident from the figure,
the CHW valve and fan speed oscillate with two distinct frequencies. The time period

corresponding to the fan speed oscillations is 1 day and the time period corresponding
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to the CHW valve is approximately 1 hour. The oscillations in fan speed occur in order
to meet the cooling demands of the building which oscillate at the same frequency of 1
day due to external weather. There are however, no load disturbances that oscillate with
the frequency corresponding to the CHW valve. These oscillations are thus most likely a

result of hunting behavior.
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Figure 2.2: Oscillations Showing Fan Speed and CHW Valve Having Different Frequen-
cies

2.2.2 Algorithm to Detect Hunting in Building HVAC Systems

In this chapter, a simple algorithm is proposed which detects the presence of the hunt-
ing in building HVAC systems. There are two aspects which make the algorithm much
easier than the one proposed by Hagguland in [43] for detecting hunting in process indus-
tries. First, the distinct nature of the frequency of the load disturbances makes it easier to
separate the desired and undesired oscillations. Secondly, the algorithm uses just the mea-
sured values of the process variables, instead of using the error function as was proposed
by Hagguland in [43] which would require that the set point values of the variables also

be recorded by the BEMS.
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The proposed algorithm looks into two aspects of the process variable being studied in
order to determine whether the oscillations corresponding to it constitute hunting, namely,
the amplitude and frequency. There are three criteria based on the amplitude and frequency
of oscillations that are placed by the hunting detection algorithm. First, the peak-to-peak
amplitude of the oscillations should be greater than a certain design value Ay;,,. If the peak-
to-peak magnitude of the oscillation is less than A;;,, then the oscillations are considered
to be negligible for the purpose of detecting hunting. The second criteria is that there
needs to be a minimum number of oscillations n;;, in a certain observation period 7};,,
for the oscillations to be detected by the algorithm. This criteria is included to eliminate
oscillations due to random disturbances such as occupancy. The third and final criteria for
the algorithm to detect hunting is that the frequency of oscillation f,;. must be greater than
dle. A detailed description of the algorithm is provided as follows.

The first step of the algorithm is the introduction of three iteration variables, namely,
thunt Which is the index of the starting point of the data set being investigated for hunt-
ing, 7,5, Which is the index for the starting point of a subset of the data being studied
for the presence of oscillations, and j which is the index of the current data point being
investigated. All three iteration variables are initialized to 1.

In the second step of the algorithm, four more variables are initialized, A,,,, = 0,
Apin = 0, nose = 0, and ngy, = 0. The variables A,,,, and A,,;, keep track of the
maximum and minimum value of the process variable in the subset which is being studied
for the detection of an oscillation. After the detection of the oscillation, the variables
are reset to 0. The variable n,. keeps track of the number of oscillations that have been
detected in the observation period T;;,. The variable 4, keeps track of the number of sign
changes in the process variable. The value of g, is reset to O every time an oscillation is
detected.

The algorithm then proceeds by determining the sign (positive or negative) of the
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change in the value of the process variable between two successive time instances. The
sign corresponding to the current time instant j is determined by the variable S,,., =
Y;+1 — Y and the sign corresponding to the previous time instant j — 1 is stored in the
variable S,y = Y; — Y;_1. The symbol Y represents the process variable being studied,
and the subscript j denotes the time step. A sign change is said to have occurred if S,
and S,;q have opposite signs. When a sign change occurs the value of the variable ng, is
incremented by 1.

An oscillation constitutes three sign changes. Hence when the value of 7, is 3, an
oscillation is said to have occurred. When detecting a new oscillation, the time step at
which the first sign change occurs is assigned to the variable 4. If j is the index of the
data point at which ng,, is incremented to 3, then all the data points from the index ¢, to
j are considered to be part of the oscillation. The value of the variables A,,;, and A,,q.
are assigned the maximum and minimum values of the process variable in the time span
between i,,. and j. If the peak-to-peak amplitude is greater than the threshold value A;;,,,
then the oscillation is considered significant and the variable n,. is incremented by 1.

When the number of oscillations detected is equal to 2, then the algorithm checks if the
2 oscillations occurred within the observation period 7};,. If yes, then hunting is said to
have occurred, and all the data points within the two oscillations (i, to j) are included
in the set of data points constituting hunting. When the next sign change occurs, the index
Thunt and 7, are assigned the value j corresponding to the data point under consideration.

If the second oscillation is detected after 7};,,, however, hunting is not said to have
occurred yet. The variable 7, is assigned the index corresponding to the start of the next
oscillation. The process continues till the entire data set is analysed.

A summary of the steps taken to detect the algorithm is provided below. Figure 2.3

contains a schematic representation of the algorithm.
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o Step 1: Initialize ipypr = 1, tose = 1, 7 = 1.
o Step 2: Initialize A, = 0, Apin = 0, and nyse = 0.

» Step 3: Compute the variables used in the detection of sign changes in the difference

of successive values of the process variables.

Sold :Snew
(2.3)

Snew :}/j—i—l - Y}

o Step 4: Check if S,y and S,,.,, have the same sign. If they have a different sign then

increment the value of the variable ng, as shown below.

Nsgn (Sold > 0&& Snew > 0) || (Sold < 0&& Snew < 0)
Nggn = 2.4)

Nsgn + 1 (Sold < 0&& Spew > 0) H (Sold < 0&& Spew > 0)

o Step 5:: If the number of sign changes = 3 then an oscillation is said to have oc-
curred. The peak-to-peak value of the oscillation is computed by determining the
maximum and minimum values of the process variable in the oscillation as shown

below.
4

Amax Nsgn < 3
Amax = (25)

max{Y(iosc), Y(iosc + 1)7 LR Y(])} nSQn = 3

\
(

Amin nsgn <3

min{Y (iose), Y (iose + 1), . Y(§)} Mg = 3

\
* Step 6: Increment the number of oscillations if the peak-to-peak value of the oscilla-

tion is greater than the threshold. If an oscillation has occurred but the peak-to-peak
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value is less than the threshold then reset the value of the iteration variables ¢,,. and

inne as shown below.

4

Nosc = Mose T 1 Amax - Amm > Alim && Nggn = 3
< Lose = j7 Thunt = j Ama:c - Amin < Alim && Nsgn = 3 (27)
A

Amin = 07 Amax =0

\

max Am'm < Alim && Nsgn = 3

 Step 7: If 2 oscillations occur within the observable time period 7};,, then hunting is

said to have occurred, and the hunting data set Y},,,,; is augmented as shown below.

(

Yhnt = [Yhnt7 {Y@hnt); Y(ihnt + 1)7 ceey Y(])}] Nose = 2 && t < Eim
ihunt = ioscy iosc = .] Nose = 2&&t > Ezm (28)

Amin - 07 Amam = 07 Nose = 1 Nose = 2&&t > Ezm

\

» Step 8: Increment the iteration variable 7 = 7 4+ 1. Repeat steps 3 through 8, until

data set is analyzed.

214 oscillation

Figure 2.3: Flow Diagram Showing the Application of the Hunting Algorithm

47



2.2.3 Application of the Algorithm on Real Building Data

A description of the proposed algorithm to detect hunting in real time for process vari-
ables corresponding to building HVAC systems is provided in the preceding subsection.
In this subsection, the algorithm is applied on data obtained from BEMS of a real build-
ing. The process variable on which the hunting algorithm is applied is the CHW valve
opening. The BEMS sensors sample data once every 15 minutes. CHW valve data was
collected for a period of 20 days. The two design parameters of the algorithm A;;,, and
T}im are assigned the values 15% and 2 hours, respectively. Figure 2.4 shows the results of
applying the algorithm. The hunting algorithm identifies the times when oscillations with

a peak-to-peak magnitude of greater than 15% occur.
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Figure 2.4: Results of Applying the Algorithm on CHW Valve Opening Data Sampled
Once Every 15 Minutes
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Figure 2.5: CHW valve Opening Data Sampled at 1 Minute and 15 Minute Intervals

The preceding paragraph shows the results of applying the data that is sampled at 15
minute intervals. A slow sampling rate may lead to aliasing of the property being mea-
sured. A 15 minute sampling rate may not be able to completely capture the dynamics of
a higher frequency due to aliasing. In order to determine whether the proposed algorithm
can identify the presence of hunting when the sampling frequency is high, a comparison is
made between the results obtained by applying the algorithm on two data sets measuring
the same process variable but with different frequencies. The CHW valve opening of an
AHU is sampled at 1 minute intervals for a duration of 4 days. Another set of data was
created by taking every 15th data point of the data set sampled at 1 minute. Figure 2.5
shows the CHW opening data corresponding to sampling rates of 1 minute and 15 min-

utes. The hunting algorithm is applied to both sets of data. The design parameter A;;,,
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Figure 2.6: Results of Applying the Hunting Algorithm on CHW Valve Opening Data
Sampled at One Minute and 15 Minute Intervals

for both sets of data is assigned 15%, and the parameter 7};,, is assigned a value 2 hrs for
the data sampled at 15 minute intervals, and 8 minutes for the data sampled at one minute
intervals. The values 2 hrs and 8 minutes both correspond to 8 sample steps of their respec-
tive data sets. Figure 2.6 shows the periods of operation where hunting is identified by the
algorithm in the one minute and 15 minute sampling data. Although, the 15 minute data
does not capture all the dynamics of the oscillation, the algorithm is still able to identify
the periods of time when hunting is observed.

In order to demonstrate how hunting in one control loop can cause hunting in another
control loop, the alogrithm is applied on data collected over period of 60 days of two

process variables, the average damper opening of the VAVs of all rooms, and the AHU fan
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Figure 2.7: Fan Speed and Average Damper Opening Data Sampled Once at 15 Minute
Intervals

speed. Figure 2.7 shows a 10 day period of the data of the fan speed and average damper
opening. Figure 2.8 shows the results of applying the algorithm on the fan and damper
data. As is evident from Figure 2.8, the periods of time for which the hunting is observed

is same for both the process variables.
2.3 Survey of Hunting Behavior in Campus Buildings

In the previous section, a simple algorithm for the detection of hunting in building
HVAC systems in real time is proposed. The algorithm is then verified by applying it on
CHW opening data sampled at different frequencies. A demonstration is also made to
show that due to the interconnected nature of HVAC systems, hunting might be present

simultaneously in several control loops. In this section the results of a survey that was
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Figure 2.8: Fan Speed and Average Damper Opening Data Showing the Occurrence of
Simultaneous Hunting

performed to determine the prevalence of hunting in building HVAC systems are provided.

Ten buildings of the Texas A&M University campus were selected for the purpose of
the survey. From among the several components corresponding to the HVAC systems of
the buildings being studied, AHUs are selected as they are the primary source for provid-
ing conditioned air to all the building zones. Presence of hunting phenomenon in AHUs
probably indicates hunting in other components of the HVAC system. A schematic of the
AHU serving the buildings 1s provided in Figure 2.9. AHUs take in a mixture of outside air
and return air with the help of a pressure differential that is created by the AHU fan. The
mixed air passes through a heat exchanger that uses CHW for conditioning. The amount

of CHW used for cooling is regulated by a CHW valve. The hunting algorithm is applied
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Table 2.1: Prevalence of Hunting in Fans in Buildings

Building Number of Number of Fans % Duration for which
Number Fans Observed Exhibiting Hunting Hunting was Observed

1 3 1 11

2 10 0 -

3 2 0 -

4 1 1 23

5 3 0 -

6 2 0 -

7 2 0 -

8 8 7 6-26

9 6 0 -

10 3 0 -

Table 2.2: Prevalence of Hunting in CHW Valves in Buildings

Building Number of Number of Fans % Duration for which
Number Fans Observed Exhibiting Hunting Hunting was Observed

1 3 2 6-19

2 10 10 33-78

3 2 2 6-7

4 1 1 27

5 5 4 7-31

6 6 2 12-39

7 2 0 -

8 8 6 7-12

9 6 5 14-31

10 3 0 1-

to two of the process variables of the AHU, the fan speed, and the CHW valve opening.
Data sampled at 15 minute intervals were collected for two of the process variables

corresponding to the AHUs serving the buildings, the AHU fan speed, and the AHU CHW

valve. The algorithm is applied on the collected data to determine the number of com-

ponents that exhibit hunting, and also the percentage duration for which the phenomenon
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Figure 2.9: Schematic Representation of a Typical AHU

is observed. Tables 2.1 and 2.2 show the results of the survey of AHU fans and CHW
valves, respectively. The results of the survey show that 70% of the CHW valves exhibited
hunting for 6% to 78% of the time, and 22% of the fans studied exhibited hunting for 6%
to 26% of their operation time. The results indicate that hunting is a widespread problem
and that measures to minimize the occurrence of hunting have a significant potential to

improve HVAC operations and reduce energy.
2.4 Cascaded Control Strategy

The previous section provided the results of a survey that demonstrated the widespread
nature of the problem of hunting in building HVAC systems. This section is a summary of
the contribution by Christopher Price which was performed as part of a joint work along
with the author in [5]. A solution to the problem of hunting is proposed in the form of
an alternative control architecture to the traditional feedback control, called as cascaded
control. The cascaded control architecture is applied on a simulation model of an AHU to
demonstrate its capacity to reduce the phenomenon of hunting.

Cascaded control architectures have been shown to reduce the phenomenon of hunting
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in building HVAC systems [47]. In [47] Elliot and Rasmussen demonstrated that the cas-
caded control architecture reduces hunting in Vapor Compression Cycle (VCC) systems.
The first step in VCC is to pass the refrigerant used for cooling through an expansion valve
that causes an abrupt change in pressure. The refrigerant which was initially in gaseous
phase converts into a cool two-phase liquid. The two-phase liquid is then passed through
the evaporator where through the process of forced convection provides the necessary
cooling to the liquid to be cooled. The heat transfer process is most efficient when the re-
frigerant is transformed from the liquid phase to vapor phase. Minimizing the refrigerant
superheat (SH) by the expansion valve would result in a more efficient operation, however,
the refrigerant may enter the compressor in liquid phase which is undesirable. Two sources
of nonlinearity exist while regulating the expansion valve, the relationship between the re-
frigerant mass flow rate, and the super heat dynamics which vary drastically with operating
conditions. The presence of these nonlinearities result in a well documented phenomenon

of hunting in VCC systems.

Valve Position Mass Flow Rate
Superheat Slow ControlLoop . FastinnerLoop Q(s) _74 - _74_ ———
Set Point | | Superheat

Tret

Tsn

- -

Figure 2.10: Block Diagram Representation of VCC Cascaded Loop

In [47], the authors show that implementing a cascaded control architecture can elim-
inate the phenomenon of hunting in VCC systems. The cascaded control architecture in
this section is explained with the help of the VCC system. The cascaded control architec-

ture corresponding to the VCC system is shown in Figure 2.10. As is shown in the figure,
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the cascaded control loop comprises a fast inner loop, and a slow outer loop. The inner
loops comprises a proportional gain K, and the outer loop is a PID controller C'(s). The

transfer function corresponding to the faster inner loop is shown in Equation 2.9

Q(s) = K -U(v)-Gys)

STEK-U0) - Gi(s) 29)

where V(1) represents the nonlinear relationship between the vavlve position and the mass
flow rate of the refrigerant of the VCC system, G(s) represents the transfer function
between the mass flow rate of the refrigerant and the superheat temperature 75y, and
G4 (s) represents the transfer function between the pressure Py.; and Tsy. The equation
shows that the nonlinear characteristics of the valve ¥ (v) appears both in the numerator
and denominator of the inner loop transfer function. If the magnitude of the inner loop
proportional gain K is sufficiently large, then the transfer function )(s) approaches 1 as
shown in Equation 2.10.

lim Q(0) =1 (2.10)

K—o0

Since the transfer function of the inner loop approach a constant steady-state value as the
magnitude of the proportional gain K is increased, the dynamics as seen by the outer
loop become linear. As the inner loop dynamics become linear the system behaves in a
similar fashion under varying operating conditions, thereby, reducing the phenomenon of
hunting. A simulation example is provided in the following section where cascaded control

is applied on an AHU model to eliminate the occurrence of hunting in CHW valves.
24.1 Cascaded Control on an AHU Simulation Model

Before providing the simulation results of applying the cascaded control architecture,
a brief description of the AHU model is provided. Warm air passes through a finned heat

exchanger. The heat exchanger is supplied with CHW with a mass flow rate of ¢(J) where
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Figure 2.11: A Schematic of the AHU Heat Exchanger Simulation Model

0 is the valve position. CHW cools the warm air through a process of forced convection.
The dynamics of the heat exchanger are modeled using a finite volume approximation
which uses the model of a single row cooling coil proposed by Zhou in [48]. The tubing is
divided into N sections, and the discharge air at the end of each finite volume is calculated

with the help of the coil-side and water-side equations shown in 2.11.

oT,, oT,, B
Cw' W_‘_Cp’w (](6) . %—Fk’w(Tw—TC) —0
Ce - % + k(T — Toin) + (T, — Tw) = 0 (2.11)

Ta,out = Ta,in + €4 - (Tc - Ta,in)

In the equations above, C',, and C are the heat capacities of the water and coil surface,
respectively, ¢, ,, 1s the specific heat capacity of water, and T;, and I are the water and coil
surface temperatures, respectively. The variables 717, ;, and 7, ,,,; refer to the inlet and out-
let temperature of the air at the finite volume. The heat transfer coefficient €, is computed
using an NTU method, and the thermal conductivities « of the air and water are a function
of the inner tube diameter and heat transfer effectiveness. A more detailed description of
the AHU cooling coil model is provided in [41]. Figure 2.11 shows a schematic of the
AHU heat exchanger model.

The AHU model described above is used to run several simulations to demonstrate
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Figure 2.12: Response Characteristics of the AHU Heat Exchanger Under Different Mass
Flow Conditions

the nonlinear characteristics of the relationship between chilled water valve position and
the discharge air temperature. The simulations vary in the mass flow rate of the air that
passes through the AHU heat exchanger. The mass flow rates are varied from 10-90 %
of the maximum flow. The inlet temperature of the mass flow rate of the air is set at
72°C. The change in the discharge air temperature for a negative step change in CHW
flow rate is recorded. The same step change in CHW flow is applied to all the simulations.
Figure 2.12 shows how the steady state gain of the change in discharge air temperature per
unit decrease in CHW flow rate changes with the mass flow rate of the air. As is evident
from the figure, the largest steady state gain is 30 times the smallest gain. Figure also
shows the time constant of the heat exchanger dynamics associated with each simulation.
The largest time constant is about 12 times the shortest. Due to the nonlinear nature of the
heat exchanger dynamics, the performance of a PI controller used to regulate the discharge
air temperature would heavily depend on the operating condition. The variations in the
operating conditions thus results in hunting phenomenon.

A cascaded control loop architecture is then applied to the simulation model to regulate
the discharge air temperature. A schematic showing the application of cascaded control
on the AHU heat exchanger is shown in Figure 2.13. The simulations are run with the

discharge air temperature set at 57°F'. Outside air conditions and mass flow rate of the inlet
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Figure 2.14: Simulation Results Showing the Discharge Air Temperature Using Different
Controls

air are varied based on measurements made by the BEMS of an office building between

6 AM and 6:30 PM on 5/21/2014. Simulation results are shown in Figure 2.14. For
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Table 2.3: Simulation Results Corresponding to Low Demand PI, High Demand PI, and
Cascaded Control

Metric Low Demand PI High Demand PI Cascaded
RMS 0.249°F 0.062°F 0.089'F
MAE 1.23°F 0.55°F 0.73°F
Total Valve Travel 214 999 474
Hunting No Yes No

comparison purposes, simulations are also run with PI controllers which are tuned under
high demand and low demand conditions. The figure shows that the simulations which
are run with a PI controller tuned for high demand conditions exhibits hunting behavior
with a magnitude of 5-15% during times when the chilled water demand is low. The
simulations which are run with PI controller tuned under low demand conditions exhibits
no hunting, but shows poor control performance. The cascaded controller provides the
most consistent performance of the three controllers. Table 2.3 shows the Root Mean
Squared Error (RMS), Maximum Absolute Error (MAE), and total travel time associated

with each type of controller.
2.5 Conclusion

Hunting is one of the aspects of improper functioning of building HVAC components
that may result in suboptimal performance and increased energy costs. Detection is the
first step that should be taken in tackling this problem. A simple detection algorithm for
the presence of hunting is presented in this paper. The detection is performed by using only
the measured value of the process variable being observed and does not require that the set
point values be recorded. The algorithm makes use of the fact that the oscillations, which
are part of the control design of the HVAC components, have much smaller frequencies
than those caused by variations in outside weather conditions.

Using the detection algorithm, a survey was performed on the AHUs of 10 buildings
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at Texas A& M University finding that 70% of the CHW valves for 6% to 78% of the
time, and 22% of the fans studied exhibited hunting for 6% to 26% of their operation time.
It was also observed that due to system interconnections, hunting was observed in more
than one subsystem associated with the same AHU during the same time periods. The
survey demonstrates that hunting is a significant problem in building HVAC components,
and reducing its occurrence would allow for significant improvements in performance and
reducing costs.

A cascaded loop architecture is proposed in this chapter to deal with the nonlinearities
inherent in the HVAC system dynamics and reduce the occurrence of hunting. Simulation
using a finite volume model of AHU forced convection dynamics were able to reproduce
the hunting behavior identified in a majority of units found on the campus of Texas A&
M University. Large variations in system steady-state gains and time constants as well as
nonlinearities due to heat transfer combine to cause oscillatory behavior in chilled water
valves. These changing gains make performance of static PI controllers heavily depen-
dent on conditions during controller tuning. The cascaded loop architecture successfully
eliminates hunting behavior in simulation while providing consistent performance across
all operating conditions. By reducing total actuator travel, component lifespan will be
lengthened. Consistent performance means that HVAC technicians will not be required to
re-tune control loops seasonally thus substantially reducing service overhead. Overall, the
cascaded approach offers a cost savings approach that eliminates undue ware on system
actuators while eliminating the need for seasonal tuning of PI control loops. Also because
implementation only involves the addition of one standard proportional control loop, the
cascaded approach is readily implementable in the HVAC field.

Future research in this area will include the implementation of the cascaded loop on
real building systems including some of those surveyed in this paper. Real cost savings

and performance associated with this control strategy will be recorded and compared with
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traditional PI control. Tuning methods for the cascaded loop will also be investigated in
terms of effective procedures for optimal performance. Application of the cascaded ap-
proach will also be investigated in other HVAC systems due to similar nonlinear behavior.
Control problems such as VAV damper or fan speed control display the same condition

dependent behavior and will benefit from cascaded loop control.
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3. BLACK-BOX LINEAR SYSTEM IDENTIFICATION OF

BUILDING HVAC SYSTEMS

In Chapter 1 of the dissertation, three reasons for inefficient operation of traditional
control practices in building HVAC systems were introduced. The first reason is the im-
proper tuning of the gains of the PI-type controllers. One of the consequences of improper
tuning is the phenomenon of hunting. The preceding chapter provided the results of a
survey that showed the widespread nature of the hunting phenomenon in buildings, and
also offered a solution in the form of an alternate control architecture, namely cascaded
control. A simulation example was provided that demonstrated how the cascaded control
architecture has the potential to reduce the amount of hunting.

The second reason for inefficient operation is that there is no optimization performed
at the global level. This is due to the decentralized nature of the control architecture
employed. In decentralized control each component is actuated to a setpoint value which
is determined without consideration of its effects on the neighboring subsystems. For
example, consider the chilled water (CHW) discharge temperature setpoint assigned to the
chiller system. Whilst a higher setpoint temperature leads to a more efficient operation of
the chiller, it also results in increased pump energy use to satisfy the cooling demands of
the building. The chiller systems are commonly designed to provide full cooling load at
around 42°F' [49]. Building operators generally fix the CHW setpoint temperature at 42° F’
to reduce the pump energy consumption and meet the building cooling load requirements.
This leads to inefficient operation as the cooling load requirements are below the maximum
for most of the time. Varying the CHW setpoint temperature based on the cooling load
requirements would allow for a more efficient operation.

The third reason for inefficient operation is the lack of planning for future operating
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conditions. For instance, say the occupancy of a room in the building starts at 8:00 am.
The PI-type control methodologies employed in most buildings begin cooling the room
from 8:00 am. Due to the thermal inertia of the walls,floor etc., however, the temperature
of the room does not reach the desired temperature until some time after. This results in
an initial period of time where the occupant thermal comfort needs are not met. If the
occupancy schedule of the building is known in advance, strategies such as precooling the
building can reduce these periods of discomfort.

The second and third reasons for inefficient operation described in the preceding para-
graphs can be addressed by using more advanced control algorithms such as MPC. One of
the biggest challenges of implementing MPC, however, is the development of models that
can accurately predict the behavior of building HVAC systems with computational require-
ments that would allow for real-time control. This chapter seeks to address this problem
by proposing an algorithm that automates the process of model development making the
implementation of MPC more feasible and scalable.

The remainder of the chapter is organized as follows. First, a discussion of the various
modeling approaches for building HVAC systems and the problems associated with each
approach is presented in Section 1. The discussion of the approaches is followed in Section
2 by a mathematical description of the modeling method that has been adopted. Section
3 then presents the proposed algorithm for automating the process of model development,
followed by a verification of the algorithm by using data obtained from a real working
office building. Since the primary purpose of model development in this dissertation is the
application of model-based control, the proposed algorithm is verified by applying MPC
on a high fidelity simulation model of the office building in Section 4. The chapter ends

with a summary and analysis of the results obtained from the simulations in Section 5.
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3.1 Introduction

The modeling methods available in literature can be broadly be classified as white-
box, gray-box, and black-box methods. The modeling methods differ in the amount of
information required to develop them, and the computational burden required for their

simulation and prediction of outputs. Figure 3.1 shows the different modeling approaches

available in the current literature.

Modeling Methods

L )
White-box Modeling Gray-box Modeling Black-box Modeling
Methods Methods Methods
Linear Parametric Subspace
Identification

Prediction Error

MPC Relevant
Identification

Figure 3.1: Modeling Approaches for Building HVAC Systems in Literature

3.1.1 White-Box Modeling Method

White-box models are developed from a detailed understanding of the underlying
physics. They provide the most accurate descriptions of the thermal dynamics of the
buildings. There are two reasons, however, as to why white-box models are not suit-
able for application of MPC on real building systems. Firstly, the accuracy of the models

is contingent on the accuracy of the information required to develop them. In addition,

65



the information required, is not easily available. For example, the EnergyPlus white box
models require information such as building material, building area and dimensions, place-
ments of doors and windows, insulation levels, etc., which are not easy to obtain.
Secondly, the simulation of white-box models is computationally intensive. This makes
the implementation of MPC infeasible for the following reason. Consider a solution
space which includes the set of all possible values of the control setpoints that need to
be optimized. For example if there are n control setpoints represented by the vector
U = [uf®, us, ..., us"], then the solution space is n-dimensional. Each point in the
solution space represents a control setpoint vector with unique set of values. The ob-
jective of MPC is to determine the optimal point U"?¢ € U* that minimizes a certain
objective function J™P¢. White-box models do not provide any simple analytical relation-
ship between the objective function J™ ¢ and the control setpoint vector U**. Hence the
standard mathematical optimization tools cannot be used to compute U"?¢. Optimization
using white-box models can be performed, however, by running simulations correspond-
ing to each point in the solution space, and selecting the control input set that results in the
least value of J"'P¢. As the number of control inputs to be optimized increases, however,

such a method quickly becomes infeasible since the number of points to be tested grows

exponentially large with the increase in the number of inputs to be optimized.
3.1.2 Gray-Box Modeling Method

Gray-box models are a hybrid between white-box models which are built from first
principles of physics, and an empirical approach where the models are developed purely
from data obtained through Building Energy Management Systems (BEMS). In the gray-
box approach, building thermodynamics are represented by an equivalent Resistance-
Capacitance (RC) circuit. For example, the building walls and floors, and the room air

are treated as thermal capacitors and form the nodes of the circuit. The flow of heat from
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any two nodes, for instance between the room air and the room walls, or the room walls
and the outside air, is assumed to pass through a thermal resistor. The modeling approach
then entails the determination of the values of the resistances and capacitance through an
empirical process involving nonlinear regression. An example of an equivalent RC circuit
of a two-zone building is reproduced in Figure 3.2. In the figure C';; and Cy, and C,
and (', are the thermal capacitance of the walls and air, respectively, of the two thermal

zones. The symbols Ry, Ras, Ri2, R14, and Ry, are the thermal resistances.

Figure 3.2: Schematic Showing an Equivalent RC Circuit for a Two Zone Building

There are again two reasons why the gray-box modeling method is not suitable for
the purpose of automating the process of model development of building HVAC systems.
Firstly, building the equivalent RC circuit requires a complete knowledge of the internal
structure of the rooms. The placement of the thermal resistors requires a knowledge of
how the rooms are located in relation to each other. The second reason for not using
the gray-box approach is that there are no standard regression methods available for the

determination for the values of the thermal resistors and capacitors.
3.1.3 Black-Box Modeling Method

Unlike white-box and gray-box models, black-box models are developed purely from

data. Outputs and inputs of the system to be modeled are first defined, followed by
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the identification procedure which involves determining a statistical relationship between
them. The growing use of BEMS that measure various aspects of the building HVAC sys-
tem such as room temperatures, flow rates, AHU discharge air temperature and pressure,
etc. makes the development of black-box models suitable for automating model develop-
ment. Due to the ease of development and the ability to automate and scale the process,
the black-box modeling approach is selected in this dissertation for the purpose of imple-
menting MPC.

Although black-box models are easy to develop, there are two inherent drawbacks
associated with the approach. Firstly, the data used to develop the models need to be
of a certain quality, i.e. the inputs and outputs need to be sufficiently perturbed for the
identification procedure to capture the dynamics of the system being modeled. Under the
normal course of building operation, the inputs might not be sufficiently perturbed for the
identification of a reliable model. Intentionally perturbing the inputs under experimental
conditions may not always be feasible.

Secondly, as the building HVAC system employs hundreds of components there exists
a high degree of collinearity between various subsystems. Since the black-box approach
is purely statistical, the identification process may result in a model that shows a causal
relationship between two subsystems with high collinearity but no interconnected dynam-
ics. For example, consider two rooms in a multi-zone building which are not physically
adjacent to each other. The two rooms may have high degree of collienarity as they may
share similar occupancy schedules, setpoint temperatures, etc. The black-box approach
may lead to a model that shows interconnected dynamics between the two rooms which
would be highly unlikely given that they are not neighbors.

In addition to the two problems mentioned above, there are two additional areas in
which the current literature on black-box modeling is lacking. Firstly, none of the papers

include both buildings and AHU with all of the details [28]. Most of the papers model only
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the room temperatures. Optimizing the building HVAC operation requires models of other
components such as the AHU fan, heat exchanger etc. Secondly, the model is developed
with little or no underlying physics. The predictions made by the model correspond to
a specific set of operating conditions under which the model has been trained. There is
no guarantee that the predictions made by the model would be accurate under a different
set of operating conditions. This generates a question that remains largely unanswered in
literature. Does a black-box model with good predictive properties translate into a good
model for control?

In this research an automated modeling algorithm is proposed that seeks to address the
aforementioned problems in the black-box approach and the shortcomings in the literature.
The modeling algorithm is first verified by showing good prediction properties on data
obtained from a real working office building comprising 11 rooms. The algorithm is then
verified for its usefulness in applying model-based control by applying MPC on high-
fidelity simulation models of the office building. A comparison of the predictive properties

and the MPC results of three different black-box approaches is also presented.
3.2 Black-Box Modeling Theory

The output being modeled by the black-box approach is generally continuous in nature
like room temperature, humidity etc. The sensors employed by BEMS, however, take mea-
surements at fixed intervals of time giving the output a discrete nature. The discrete output
is modeled as a function of the previously measured output and input values. For example,
sensors at an office building at the Texas A&M University campus in [50] measure room
temperatures, volume flow rates, discharge air temperature, and weather conditions. By
using the black-box modeling approach the room temperature at time instant ¢ is expressed
as a function its past values, and the other aforementioned input values measured before ¢.

Not all the factors that influence the output being modeled are generally captured by
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BEMS sensor data. For instance in the above example where the room temperature is
being modeled, factors such as solar incidence, cloud cover, wind-driven infiltration, etc.
affect the output but are not measured by the sensors. In the black-box modeling approach
the unmeasured inputs are assumed to be stochastic in nature, generally Gaussian with
zero mean and variance 1. The modeling approach uses statistical tools to extract the
influence of these stochastic inputs from historical data. Thus the output modeled by the
linear parametric black-box approach is written as a linear function of deterministic and
stochastic inputs.

Based on the structure of the function used to describe the relationship between the
inputs and the outputs, the linear black-box modeling methods can be classified into two
categories, linear parametric and subspace identification as shown in Figure 3.1. A descrip-

tion of the underlying theory behind each of the two approaches is provided as follows.
3.2.1 Linear Parameteric Approach

As stated in the preceding section, the discrete-time output can be expressed as a sum

of deterministic and stochastic components as shown in Equation 3.1

y(t) = G(q)u(t) + H(q)e(t) (3.1

where w is the deterministic input, e is the stochastic input, and G(¢) and H (¢) correspond
to the deterministic and stochastic transfer functions, respectively. The symbol ¢ is a time
shift operator. For example, q~2y(t) refers to y(t — 2). The objective of the modeling
method is to determine the transfer functions G/(¢) and H (q).

In the linear parametric approach, the transfer functions G(q) and H(q) are expressed
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as rational functions of the time shift operator q as shown in Equation 3.2.

Glq) =5~ H@) = =7 (3.2)

The numerator and denominator functions A(q), B(q), C(q), D(q), and F'(q) are polyno-

mials in the time shift operator ¢ as shown in Equation 3.3

A(q) =14+ a1q +aq >+ ..an, ¢ ™

B(q) = 1+4big " +bog >+ ..by,g ™

ClQ)=1+caqg ' +eqg?+ . cng™ (3.3)
D(q) =1+dig " +dog? + ...dpyg ™

F(q) =1 + flqil + f2q72 + ...fnqunf

where n,, ny, ne, ng, and ny are parameters that determine the model order. Model order
is the determination of how many past values of the input or output that need to be con-
sidered. For example, consider n; which is the model order corresponding to input u. If
ny, = 2, then the output at time instant ¢ is influenced by two past input values, i.e, u(t — 1)
and u(t — 2).

The discrete time output expressed in Equation 3.2 can be expressed using a subset of
the functions A(q), B(q), C(q), D(q), and F(q). Not all the functions need to be present
at the same time. Depending on which functions are selected to represent the output, the
parametric equation in 3.2 can be classified into different structures, with ARX, ARMAX,
Box-Jenkins (BJ), and Output Error (OE) being the most widely used. The model struc-

tures differ in how the deterministic and stochastic inputs affect the dynamics of the output.
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An example of the ARX model structure is shown in Equation 3.4.

e(t) (3.4)

In the ARX model structure, the deterministic and stochastic inputs are assumed to have
the same system poles. The linear functions used in building the ARMAX, BJ, and OE

model structures are shown in Table 3.1. The linear parametric approach for system iden-

Table 3.1: Polynomial Values for Different Model Structures

Model Structure Functions Used
ARX A(g), B(q)
ARMAX A(g), B(9), C(q)
BJ B(q),C(q), D(q), F(q)
OE B(q), F(q)

tification thus entails the process of first selecting the model order and structure, followed
by the parameters corresponding to it. For example, if the ARX model structure is selected

arx

with model orders n, and n;, then regression analysis is used to identify “"* where “"” is

the parameter set shown in Equation 3.5.

eamt - [a17a27”'anaab17b27"'7bnb]T (35)

The algorithm used to select the model order and structure is provided in Section 3.
The model parameters are computed by performing regression analysis between measured
outputs and the outputs predicted by the model. Before providing a description of the
regression analysis, the analytical relationship between the output predictions of the model

and the model parameters is presented below.
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3.2.1.1 One-Step-Ahead Prediction

A description of the symbols and notations used in the computation of the predicted
output is first provided. Let the current time instant be ¢, then a k-step-ahead predicted
output is denoted by ¢(t|t + k). The symbol “is used to indicate a predicted value, and the
notation t|t + k is used to indicate a k-step-ahead prediction made at time instant ¢.

If an assumption is made that y(s) and u(s) are known for s < ¢, then the one step
ahead predicted value of the output ¢(¢|t + 1) can be expressed in terms of the trasnfer

functions G(q) and H(q) in Equation 3.2 as follows.

gtlt —1) = H ()G (g)u(t) + [1 — H (q)]y(t) (3.6)

The derivation of the relationship shown above is provided in [51]. The one-step-ahead
predicted output corresponding to each of the four model structures studied in this paper,
can be obtained by expressing G(¢) and H(q) in terms of the corresponding linear equa-
tions A(q), B(q),C(q), D(q), and F(q) substituting it in Equation 3.6. An example of the

one-step-ahead prediction corresponding to the ARX model is shown in Equation 3.7.

g(tlt — 1) = Blq)u(t) + [1 — A(g)ly(t) (3.7

3.2.1.2 k-Step-Ahead Prediction

The preceding section provided a description of the one-step-ahead predicted value of
the output. For the application of MPC, the output predictions beyond just one time step
are required. An analytical relationship between a k-step-ahead predicted output and the
model structure functions A(q), B(q),C(q), D(q), and F'(q) is difficult to derive. Hence,

in this chapter, the a k-step-ahead predicted output is obtained through an iterative process.
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The iteration equations corresponding to the ARMAX model structure are as shown below.

Jer11e =B(q)u(t) + [1 — A(g)]y(t) + [C(q) — 1]e(?)
Yool =B(@u(t +1) + [1 — A(@)]Js11e + [Cq) — gy

(3.8)
Utnylt =B(@u(t +np — 1) + [1 — A(Q)]Tt4np—11t+

[C(q) — 1]€t+np71|t

In the iterative process shown above, the estimated value of the stochastic input é is com-

puted as shown in Equation 3.9.

0 k>0
e(tlt + k) = (3.9)

y(t + k) = Jerp—1prx k<0

Since the stochastic input is assumed to have zero mean, in Equation 3.9 the estimated
value of e for all future time steps is assumed to be 0. The estimated value of the stochas-
tic inputs for the past time steps is the error between the measured and one-step-ahead
predicted value.

With the help of the relationships shown in Equation 3.6, and 3.8 regression analysis
can be performed to determine the model parameters (the coefficients of the functions
A(q), B(q),C(q), D(q), and F(q)). Depending on the objective function minimized in
the regression analysis, the linear parametric approach is further classified into Prediction
Error Method (PEM) and MPC Relevant Identification Method (MRI). A mathematical

description of the two methods is provided below.
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3.2.1.3 Prediction Error Method

In PEM, regression analysis is performed between the measured output and the one-
step-ahead predicted value of the output. The parameters of the model are computed by
minimizing the quadratic norm of the error between the measured and predicted values.
For example the parameters corresponding to the ARX model structure 62¢" shown in

arx

Equation 3.5 are obtained as shown in Equation 3.10.

0™ = argmin VP (Bgre, ZV°) (3.10)

arx
earz

The superscript pem is used to refer to the fact that the parameters were obtained using
PEM. In the equation above, N is the number of samples of the output in the training
data set used to estimate the parameters, ZV*"" contains the input-output data correspond-
ing to the training data set. V?“" is the quadratic norm associated with PEM and is a
function of the error between the measured and one-step-ahead predicted values of the

output as shown in Equation 3.11.

}Vest
V= S ) — il 110 @11
=1

3.2.1.4 MPC Relevant Identification

In PEM, the model parameters are identified by minimizing the norm of the error
between the measured and one-step-ahead predicted output. MPC uses output predictions
of not just one time step ahead, but over a future time period called as prediction horizon.
For example if the prediction horizon spans n, time steps, and say the current time interval
is t, MPC uses the predictions §(t|t + 1), §(t|t + 2), ..., §(t|t + n,). Hence in the MRI

method, the parameter values are determined by taking into consideration the prediction
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errors over the entire horizon. The norm corresponding to the MRI method is shown in

Equation 3.12. .

Nest Nest

eri — Nest Z Z {y — y 17— 1| )} (312)

=1 i=1

The model parameters corresponding to the ARMAX model structure obtained by mini-
mizing the norm above are shown in Equation 3.13.

o = argmin V™" (Qarmaz ZNESt) (3.13)

armax
Garmaac

The MRI norm is nonlinear and non-convex, hence a global optimal solution is not guar-

anteed by the optimization algorithm used to determine the model parameters.
3.2.2 Subspace Identification

The objective of the subspace identification algorithm is to find a state-space represen-
tation of the system. Whereas, conventional algorithm such as PEM, and MRI, try to find a
relationship between the inputs and outputs, subspace algorithms places emphasis on sys-
tem states [52]. A summary of the various subspace identification algorithms is provided
in [53]. In this thesis the N4SID algorithm in MATLAB was used to determine the state

space matrices.
3.3 Automated Black-Box Modeling Algorithm

The previous section provided a mathematical description of the various black-box
modeling approaches available in literature. In this section, an algorithm is proposed that
uses these approaches to automate the process of model development for building HVAC
systems. The section also presents the results obtained by implementing the algorithm on

data obtained from a real working office building.
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The first step in the development of a model of the dynamics of a system is to select
its inputs and outputs. Since the primary purpose of the models is for their application in
model-based control, in this research the outputs are selected based on the quantities that
are of interest to MPC. For example, while modeling the thermal dynamics of the room,
the room temperature is selected as an output since it is used by MPC to measure thermal
comfort. The input selection, however, is not as trivial. There may be several factors that
may affect the dynamics of the output and identifying these factors is not straightforward.
The proposed modeling algorithm thus seeks to determine the inputs which would help
capture most of the dynamics of the output. In addition, the determination of these inputs

is performed in a way that would allow the process to be easily automated.

3.3.1 Initializing the Set of Selected Inputs

pos
%

A set of all possible inputs u; = that affect the dynamics of the output is first con-

structed. The subscript i refers to the subsystem being modeled. There are two criteria that
are applied while constructing ©?. Firstly, including the input must make physical sense,
and secondly, the input is measured by one of the sensors of BEMS.

Another set of inputs is constructed 1 which contains the list of inputs that have

i

pos
1 b}

been selected by the modeling algorithm. The set of selected inputs is a subset of u

pos
i

ie., ui® C ul”. The set of selected inputs is populated in an iterative manner and is first

initialized to contain only the outside air temperature 7, and the control input u corre-

sel(0)

sponding to the subsystem, i.e. u; = [T,q, u§] . The outside air temperature is selected

as a default input since it affects the dynamics of all the building HVAC components. The

sel
i

number in parenthesis as a superscript to u;“ indicates the iteration number.

3.3.2 Selecting the Best Model Order and Structure

After initializing the set of selected inputs, the identification process entails the selec-

tion of a model order and structure that best represents the dynamics of the system. In this
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dissertation, the selection is made using an exhaustive process. Several model order and
structure combinations are generated. The model structures are restricted to those listed in
Table 3.1, and the model orders are restricted to a maximum value of 2. For example, in
the BJ model structure, the model order is determined by 4 parameters ny, n., ng, and ny.
Each of these parameters can take a value either 1 or 2, thus giving a total of 16 possible
BJ models. Similarly, the ARX, ARMAX, and OE model structures can each have 4, 8,
and 4 models up to order 2, respectively. Thus a total of 32 model structure and order com-
binations are investigated. Model orders only up to 2 were investigated since in [26] and
[54] the authors demonstrated that while modeling the thermal dynamics of the building,
data older than 2 time steps did not have a significant impact on the output.

For each combination of model order and structure, the model parameters are identified
using either the PEM or MRI methods, by minimizing the norm in Equation 3.11 or 3.12,
respectively. The training data set ZV°"' () used in the computations of the aforementioned
norms contains the output values Y, = [y;(1), y;(2), ..., :(N®")], and the input values
UeOhest — 1290 (1) 450)(2), U (Nest)]’, where j is the current iteration number.
The set of 32 models under investigation are denoted by the vector M ().

The models M) are then tested based on their accuracy of output predictions. If
the models are intended for use by MPC which optimizes control input values over a
prediction horizon spanning n,, time-steps ahead, then n,-step-ahead output predictions
are computed corresponding to each model in M. The predictions are computed using an
iterative process such as in Equation 3.8. The data set used to make the output predictions
represented by the vector ZV **" which is different from the traingin data comprises the
output values Y;"% = [y;(1+N®) y;(2+N¢st), ..., y;( N+ N¢t)] , and the input values
Ul — ) (1 4 Nesty 00 (2 4 Nesty, 2919 (Nval 4 Nest))' The predicted

values from each model are then compared to the corresponding measured output values.

The accuracy of prediction is measured using a fit percentage computed with the help of
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Equation The model that provides the best fit percentage f,, is selected.

S ey {wi +ny) — (il + ) Y2 ) (3.14)

ffp = (1 - Nval _p, N .
Zi:Nest.il {y(Z + np) - ]\/‘v+_np Z’i:np y(l)}Q

The model with the highest fit percentage is selected as a candidate model as shown in
Equation 3.15.

M) = argmaz ffp(M(j)) (3.15)
MG enG)

The fit percentage corresponding to the chosen model M *U) is represented by f};()j ). The fit
percentage of the candidate model of the current iteration is compared to the fit percentage
of the candidate model from the previous iteration. The candidate model of the current
iteration is then kept or discarded based on the comparison of the fit percentages as shown
in Equation 3.16.

1) — M*0) f}ﬁ}()j) > f}k;(oj_l) a6

MFGE=1) f < f*(] 1)
If the candidate model at the current iteration is the same as that of the previous iteration,
then the iterations are terminated and M/ *\) is chosen as the to represent the dynamics
of the system being modeled. The selected input set corresponds to that of the previous
el sel(j—1)

iteration, i.e. u;® = u;

3.3.3 Augmenting the Set of Selected Inputs

The proposed algorithm uses an additive approach in selecting the set of significant

sel(0)

inputs, i.e., the algorithms starts with an initial set of inputs v, ", and is augmented by a

single input every iteration. The process for selecting the candidate input to be augmented
in u3¢ is described below.

el(7)

Consider the set of selected i