
PROGRAMMABLE MEDIUM ACCESS CONTROL FOR WIRELESS NETWORKS

A Dissertation

by

MUN ON SIMON YAU

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, P. R. Kumar
Committee Members, Gregory H. Huff

Srinivas Shakkottai
Radu Stoleru

Head of Department, Miroslav M. Begovic

May 2018

Major Subject: Computer Engineering

Copyright 2018 Mun On Simon Yau

ABSTRACT

The field of wireless communication is changing rapidly, with increasing numbers

of wireless applications being touted as everyday staples in the future. Some examples

of these applications include Virtual Reality (VR), Augmented Reality (AR), Internet Of

Things (IoT), tactile internet, smart power grids, unmanned traffic management systems,

remote medical procedures, disaster network deployment, sensor networks, and cloud

computing, to name just a few. However, for many of these applications to fulfill their

stated potential, the required system performance that wireless networks need to have can-

not be achieved with current deployments. One of the major factors in the performance of

wireless networks is the Medium Access Control (MAC) layer.

The MAC layer serves as the junction between the Physical (PHY) and Network (NET)

layers, and its efficiency is key to the performance of communication networks. This is

especially critical for wireless networks, since wireless transmissions introduce interfer-

ence into the system which can be detrimental to the performance of wireless networks.

While the MAC layer consists of both software and hardware components, researchers

overwhelmingly only perform computer simulations to verify the performance of their

protocols, leaving the potential impact of hardware on the performance largely untested.

Unlike the Physical (PHY) and Network (NET) layers, there is little experimental verifica-

tion of the performance of novel protocols suggested for the MAC layer. Hence, protocols

developed for the MAC layer do not get verified at a level commensurate with the claims

of the protocols, thus generating no momentum to drive the adoption of new protocols.

The end result is that the protocols in current use are little more than variants of the orig-

inal ALOHA protocol proposed in 1970. So motivated, in this dissertation, I present a

platform for implementation and experimentation of next-generation wireless MAC pro-

tocols, along with a novel architecture that uses a hardware-software decoupling principle

ii

to achieve flexibility without loss in performance and show how these platforms can aid

prototyping of MAC protocols in the future. In addition to that, I will also present a MAC

protocol for mmWave networks that can be implemented directly on the IEEE 802.11ad

standards.

iii

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supervised by a dissertation committee consisting of Professor P. R.

Kumar, Professor Srinivas Shakkottai, and Professor Gregory Huff of the Department of

Electrical and Computer Engineering, and Professor Radu Stoleru of the Department of

Computer Science and Engineering.

The scheduling code for Chapter 2 was jointly developed by Kartic Bhargav, Rajarshi

Bhattacharyya, Ping-Chun Hsieh, and myself. Experiments in this chapter were performed

by Rajarshi, Ping-Chun and myself. In Chapter 3, Ping-Chun developed the host code for

running experiments for a fixed period of time. He also developed the timeout mechanism

which was used primarily for the Max-Weight protocol described in this chapter. Bharad-

waj Satchidanandan developed the simulation code for the mmWave protocol in Chapter

4. All other work conducted for the dissertation was completed independently by me.

Funding Sources

This work was made possible in part by the National Science Foundation (NSF) under

Contract Numbers CCF-1619085 and CNS-1302182.

Its contents are solely the responsibility of the authors and do not necessarily represent

the official views of the NSF.

iv

NOMENCLATURE

3GPP 3rd Generation Partnership Project

A-BFT Association Beamforming Training

AP Access Point

AR Augmented Reality

ATI Announcement Time Interval

BHI Beacon Header Interval

BI Beacon Interval

BSS Basic Service Set

BTI Beacon Transmission Interval

CE Channel Estimation

CEF Channel Estimation Field

CPU Central Processing Unit

CSMA Carrier-Sense Multiple Access

DCF Distributed Coordination Function

DTI Data Transmission Interval

FIFO First-In-First-Out

FPGA Field-programmable Gate Array

ICN Information-centric Networking

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

v

LAA License-Assisted Access

LoS Line-of-sight

LTE Long Term Evolution

MAC Medium Access Control

MCS Modulation and Coding Scheme

mmWave Millimeter Wave

MU-MIMO Multi-user Multiple-Input-Multiple-Output

NET Network

NOMA Non-orthogonal Multiple Access

OFDM Orthogonal Frequency-Division Multiplexing

OFDMA Orthogonal Frequency-Division Multiple Access

PCF Point Coordination Function

PHY Physical

PIFS PCF Interframe Space

RF Radio Frequency

SC-PHY Single-Carrier PHY

SDN Software-defined Networking

SDR Software-defined Radio

SIFS Short Interframe Space

SNR Signal-to-Noise Ratio

STF Short Training Field

Ttc Topological Coherence Time

TDMA Time-Division Multiple Access

TRN Beamforming Training Field

vi

ULA Uniform Linear Array

USRP Universal Software Radio Peripheral

VR Virtual Reality

WARP Wireless Open-Access Research Platform

WLAN Wireless Local Area Network

WMP Wireless MAC Processors

vii

TABLE OF CONTENTS

Page

ABSTRACT . ii

CONTRIBUTORS AND FUNDING SOURCES . iv

NOMENCLATURE . v

TABLE OF CONTENTS . viii

LIST OF FIGURES . x

LIST OF TABLES. xiii

1. INTRODUCTION. 1

2. PULSE: A PLATFORM FOR ULTRA-LOW LATENCY WIRELESS SCHEDUL-
ING EXPERIMENTATION . 4

2.1 Introduction. 4
2.2 Related Work . 8
2.3 Design of PULSE . 9

2.3.1 Basic MAC Functions for Wireless Scheduling. 10
2.3.2 Mechanism-Policy Separation . 10
2.3.3 Flexible MAC Through Host-FPGA Separation . 11

2.4 Implementation of PULSE. 12
2.4.1 Packet Generation . 13
2.4.2 Queueing, Deadlines and Types of Flows . 13
2.4.3 Scheduling and Transmission Procedures . 15
2.4.4 Retransmission . 17

2.5 Measuring Host-to-FPGA Interfacing Latency and Round-Trip Latency 19
2.6 Experimental Results . 24

2.6.1 Capacity Regions . 26
2.6.2 Throughput Performance. 26
2.6.3 Changing the Arrival Process . 28

2.7 Conclusion. 30

3. WIMAC: PLATFORM FOR RAPID IMPLEMENTATION OF MEDIUM AC-
CESS CONTROL PROTOCOLS. 32

viii

3.1 Introduction. 32
3.2 Related Work . 35
3.3 Key Design Principles for MAC Platform . 37
3.4 Architectural Design of The Platform. 39

3.4.1 Identifying Distinguishing Features . 39
3.4.2 Designing MAC Protocols in Software and Decoupling 40
3.4.3 Enabling Reconfiguration on the Fly . 42

3.5 Implementation of Different Classes of MAC Protocols . 44
3.5.1 Link Performance . 44
3.5.2 CSMA. 45
3.5.3 CHAIN . 46
3.5.4 Max-Weight Scheduling Policy . 50
3.5.5 A Meta Protocol . 56

3.6 Extensibility of Platform. 59
3.7 Conclusion. 60

4. MEDIUM ACCESS CONTROL FOR DIRECTIONAL MILLIMETER WAVE
WIRELESS NETWORKING . 62

4.1 Introduction. 62
4.2 Related Work . 65
4.3 Design Methodology of TrackMAC . 66

4.3.1 Topological Coherence Time . 67
4.3.2 TrackMAC: A Novel Directional MAC Protocol . 68

4.4 Implementation of TrackMAC Within the IEEE 802.11ad Specifications . . . 72
4.5 Simulation Results . 76
4.6 Conclusions and Future Work . 81

5. CONCLUSIONS . 83

REFERENCES . 85

ix

LIST OF FIGURES

FIGURE Page

2.1 The scheduling problem with N flows. 5

2.2 Architecture of PULSE.. 14

2.3 Packet transmission in PULSE. 18

2.4 Empirical CDF of Host-to-FPGA latency for payload size = 1500 bytes
and data rate = 54Mbps. 21

2.5 Empirical CDFs of round-trip latency for various data rates and payload
sizes. 22

2.6 Timely-throughput vs. Deadline for 20 packets generated every 11 ms. 23

2.7 Experimental setup with host machines and USRP-2153R’s being used as
wireless AP and clients. 23

2.8 Capacity regions for the different Policies with 5 ms deadline and 0.99
delivery ratio. 25

2.9 Throughputs for KRT=4 and KNRT=4. 31

2.10 Throughputs for KRT=3 and KNRT=6. 31

2.11 Throughputs for KRT=3, KNRT=5 for client 1, KRT1=4, KNRT=6 for
client 2. 31

2.12 Throughputs for KRT=7, KNRT=4 for client 1, KRT1=3, KNRT=5 for
client 2. 31

2.13 Throughputs for the second arrival process with P(KRT1) = 0.8, P(KNRT1)
= 0.3, P(KRT2) = 0.1, P(KNRT2) = 0.5. 31

2.14 Deficit growth for the KRT=4 and KNRT=4 for both clients. 31

3.1 Example of a generic function block in WiMAC. 41

3.2 Example of reconfiguration packet. 43

x

3.3 System throughput under CSMA and CHAIN vs different CWmin: (a)
CWmin = 4, (b) CWmin = 8, (c) CWmin = 16, (d) CWmin = 32.. 47

3.4 Example of piggyback transmissions with three clients and an AP in CHAIN. 48

3.5 Piggyback transmission block in WiMAC. 49

3.6 How (a) downlink and (b) uplink transmissions are done in Max-Weight.. . . 51

3.7 Block used in Max-Weight to obtain the TX queue length of the node. 52

3.8 Block used in Max-Weight to associate different clients with their respec-
tive (weighted) queue lengths. 52

3.9 Example of Max-Weight scheduling with two clients. 54

3.10 System throughput under Max-Weight scheduling versus different timeout
thresholds. 57

3.11 How different functional blocks interact with each other in the Meta Protocol. 58

3.12 System throughput under different protocols. The system uses CSMA
from 0 to 54s, then CHAIN until 98s, and finally the Meta Protocol un-
til the end. 59

3.13 A possible implementation of a sleep block in hardware. 61

4.1 A mmWave network operating in infrastructure mode. 67

4.2 Division of time into macroslots, of macroslots into microslots. 69

4.3 Structure of a Beacon Interval. 72

4.4 Overlay of 802.11ad PHY packets on microslots and macroslots on 802.11ad
BI. 74

4.5 802.11ad PHY packet structure. 75

4.6 Azimuth pattern of a λ/2-spaced 64-element ULA at 60.48GHz. 77

xi

4.7 Tracking performance of the AP for three different STA translational speeds
(5m/s, 10m/s, and 20m/s). Plotted against time are (i) the azimuth direction
of a particular randomly chosen STA out of the 25 associated STAs, and
(ii) the azimuth direction in which the AP points its transmit beam when
it communicates with that particular STA. For STA translational speeds of
5m/s and 10m/s, the AP is able to track the movement of the STA, whereas
for STA translational speed of 20m/s, the AP is unable to do so. 78

4.8 Average received signal power vs. translational speed of STAs. The ab-
scissa denotes the avg. speed at which the STAs move, and the ordinate
denotes the avg. power level at which the MAC payload is received. The
averaging is performed over STAs. 79

4.9 Azimuth pattern of the ULA with steering weights corresponding to 3.2◦

azimuth.. 80

4.10 Tracking performance of AP and STAs for different rotational speeds. The
abscissa denotes the avg. rotational speed of the STAs and the ordinate
represents the angle between the directions of the transmitter’s beam and
the intended receiver’s beam, averaged over both STAs and time. The
network was simulated for one beacon interval. 81

4.11 Average received signal power vs. rotational speed of STAs. The abscissa
denotes the avg. speed at which the STAs rotate, and the ordinate denotes
the avg. power level at which the MAC payload is received. The averaging
is performed over STAs. 82

xii

LIST OF TABLES

TABLE Page

2.1 Partial list of mechanisms in PULSE. 12
2.2 Host-to-FPGA latency results . 21

2.3 Round-trip latency results . 22

2.4 Loss ratios of real-time flows . 29

3.1 Link throughput for different modulation schemes and coding rates 45

3.2 System throughput under Round-Robin scheduling and Max-Weight schedul-
ing . 55

xiii

1. INTRODUCTION

Wireless networks have come a long way since their inception, and have become the

de facto standard for devices that connect to the internet. As the number of wireless de-

vices continues to increase, wireless network systems have to meet increasingly stringent

performance demands to accommodate these devices. Furthermore, the applications that

are being proposed for next-generation wireless devices go beyond the standard metrics of

throughput and fairness. For example, Virtual Reality (VR) and Augmented Reality (AR)

require high throughputs with strict latency guarantees, while unmanned traffic manage-

ment systems require high reliability. On the other hand, Internet of Things (IoT) and

sensor networks typically require low energy rather than low latencies, while remote med-

ical procedures, and to a certain extent smart power grids, typically require both high

reliability and low latencies [1]. These applications, spanning a wide range, have different

performance goals which can be in conflict with each other, and next-generation wireless

networks will need to provide high system performance as well as the flexibility to support

all the different system requirements. To achieve this goal of performance and flexibility,

researchers have been working on key enabling technologies to increase the performance

and efficiency of wireless networks.

For example, at the Physical (PHY) layer, advancements have been made in Radio

Frequency (RF) electronics on the RF front end, as well as the data flow and processing

speeds of the encoding and decoding chains of radios. These improvements allow for wire-

less communication to be performed in extremely high frequency bands, such as mmWave

bands (from 30GHz to 300GHz), which were previously thought to be unusable [2, 3].

By leveraging these bands for communication, the amount of spectrum available for wire-

less communication can be increased by several orders of magnitude. In addition to that,

1

researchers have shown that the spectral efficiency and Signal to Noise Ratio (SNR) of

wireless communication can be greatly increased by using Multiple Input Multiple Output

(MIMO) [4, 5], Non-Orthogonal Multiple Access (NOMA) [6, 7] and advanced inter-

ference cancellation techniques. These technologies also serve to improve the efficiency

of the Medium Access Control (MAC) layer. Multiuser MIMO (MU-MIMO) [8] builds

upon the principles of MIMO to schedule multiple users at the same time, whereas in-

terference cancellation allows full-duplex wireless communication on the same frequency

bands. MIMO also allows for beamforming signals in a desired direction, and can be used

to reduce interference to surrounding nodes.

The MAC layer also functions as the junction between the PHY layer and the Net-

working (NET) layer, and is therefore responsible for scheduling data from the NET layer

to the PHY layer. In most commercial deployments today, the MAC layer works on a

simplistic First In First Out (FIFO) basis, with minimal control over how to schedule the

different flows from the NET layer. Researchers have proposed many scheduling policies

to improve the efficiency and flexibility of the MAC layer, such as in [9, 10, 11, 12, 13,

14, 15, 16, 17].

At the network layer, Software Defined Networking (SDN) [18, 19], virtualization and

network slicing [20, 21, 22, 23, 24, 22] have given increased control for network utilization

and configuration options. Furthermore, research is also being done to shift the traditional

paradigm of connecting two endpoints to one of connecting users with their desired content

through Information-centric networking (ICN) [25]. With ICN, content is cached within

multiple nodes in the network as opposed to data centers. This can potentially reduce the

latency users that experience when requesting content of interest.

These advancements, however, are not without their challenges. For the PHY layer

technologies, researchers have prototyped hardware systems to prove the claims of their

improvements. Similarly, since the NET layer technologies are typically implemented

2

in software, NET layer researchers are able to prototype their technologies in software

and verify the claims of improvements that can be made about the NET layer perfor-

mance. When it comes to the MAC layer, matters are not as simple since the MAC layer

is very tightly intertwined with the PHY layer. In fact, apart from MAC layer technolo-

gies that leverage the use of PHY layer technologies, such as MU-MIMO and Orthogonal

Frequency-Division Multiple Access (OFDMA), MAC layer protocol performance evalu-

ation largely rests on computer simulation for verification of the claims of performance,

or any claims of improving performance over other suggested protocols. There has been

precious little experimentation of MAC protocols. Moreover, since the MAC layer serves

as the junction between the PHY and NET layer, it deals with both hardware and software,

and without experimentation, some problems with MAC protocols can easily be over-

looked when only simulations are performed for verification, as I will show in Chapter

3.

In this dissertation, I will focus on the challenges associated with prototyping next gen-

eration MAC protocols, and will present a platform for experimentation with scheduling

protocols for low-latency applications, an architecture for flexible MAC designs which can

reduce prototyping time for next-generation MAC protocols. I will also introduce a key

concept, called the in mmWave MAC protocol design, called topological coherence time,

and propose a protocol for a scheduled MAC protocol for mmWave networking.

3

2. PULSE: A PLATFORM FOR ULTRA-LOW LATENCY WIRELESS

SCHEDULING EXPERIMENTATION

2.1 Introduction

In this chapter, I will focus on the scheduling problem for heterogeneous flows in

next-generation wireless networks; in particular on how researchers can experiment with

protocols that provide delay guarantees in wireless networks. A strict latency require-

ment is currently one of the most critical challenges for next-generation wireless networks.

Emerging applications, such as VR [26], factory IoT, and tactile Internet [27], require an

end-to-end latency between 1 to 10 millseconds (ms) to provide seamless user experience.

However, existing wireless networks cannot provide such stringent latency guarantees. For

example, the round-trip time of Long Term Evolution (LTE) is estimated to be at least 20

ms, including the transmission time, scheduling overhead, and processing delay [28]. In

practice, the current LTE technology can only support voice or video streaming applica-

tions with round-trip time in the range of 20-60 ms [29]. For Wi-Fi networks, due to the

nature of random access, the round-trip time could vary from several ms to hundreds of

ms depending on the traffic load [30]. Therefore, compared to the current technology, the

latency budget is expected to be at least one order of magnitude smaller in next-generation

wireless networks.

To provide strict per-packet latency guarantees, numerous theoretical solutions have

been proposed to accommodate per-packet deadline constraints in wireless scheduling.

[31] and [32] propose a theoretical framework to study wireless network scheduling with

per-packet deadline constraints. In the framework of [31], N flows are scheduled by a

single Access Point (AP) as shown in Figure 2.1. Each packet in the flow is associated

with a deadline. Packets that are not delivered on time are dropped. In [32] this is extended

4

to multi-hop wireless networks.

Figure 2.1: The scheduling problem with N flows.

Subsequently, this framework has been applied to many other scenarios, such as utility

maximization [14], scheduling for both latency-constrained and best-effort traffic [15],

broadcast traffic [16], and multicast traffic [17], as described in [33]. The performances

of these protocols are usually measured by timely-throughput, i.e., the time average of the

amount of data delivered within their deadlines. While the above proposals are promising,

there has been no implementation of these ultra-low-latency wireless protocols. In this

chapter, we allow for N flows, which consist of real-time or non-real-time flows. Real-

time flows contain packets with deadlines, and non-real-time flows contain packets without

deadlines. (For packets without deadlines, queue lengths become an important metric for

measuring performance of the protocol.)

To prototype these ultra-low-latency wireless protocols and achieve timely-throughput

that closely matches what is achieved in practice, a powerful software-defined radio (SDR)

platform with dedicated architectural design is required to provide enough latency budget

as well as to minimize the software and the hardware processing and interfacing over-

5

head. Various SDR architectures have been proposed to mitigate the interfacing over-

head between the software host and the hardware, which can include Field-Programmable

Gate Arrays (FPGA). Just to name a few, [34] proposes a split-functionality framework

to significantly reduce the communication overhead between the software host and the

hardware. Similarly, [35] introduces Decomposable MAC Framework to identify basic

functional components according to both timeliness and degree of code reuse. However,

neither of them considers per-packet deadline constraints nor provides any experimental

results for ultra-low-latency wireless networks.

This platform aims to bridge the gap between theory and implementation for wire-

less networks with strict per-packet latency constraints. We propose PULSE, a software-

defined wireless platform for prototyping ultra-low-latency scheduling protocols. To achieve

the required per-packet latency performance, PULSE needs to address the following chal-

lenges:

1. Enforce per-packet deadline on a software-defined wireless platform. PULSE

aims to support per-packet latency as low as 1 ms. When packets arrive at the soft-

ware host, they are first queued and start waiting for transmission according to some

scheduling policy. The deadline of each packet in the queue needs to be tracked and

checked before transmission. A packet that already missed its deadline should be

dropped from the queue. Moreover, due to the nature of SDRs, packet transmission

is carried out on the hardware while packet scheduling is often done on the soft-

ware host. Therefore, it is not directly clear how deadlines should be maintained

and checked on a software-defined platform if there is no synchronization between

the software and the hardware. Moreover, it usually requires non-trivial efforts to

provide an accurate reference timer shared by the software host and the hardware.

In Section 2.4.3, I present a simple design that tracks packet deadlines accurately

6

using only timestamps of the software host, without any synchronization between

the software host and the hardware.

2. Low interfacing latency between the software host and the hardware. There are

three major factors that affect the end-to-end latency: (i) queuing delay on the soft-

ware host, (ii) interfacing latency between the software host and the hardware, and

(iii) the hardware processing time. Queuing delay depends mainly on the schedul-

ing policy, and the hardware processing time can usually be made small due to the

high clock rate supported by current technology. Therefore, with a proper choice

of the scheduling policy and the hardware component, interfacing latency between

the software host and the hardware needs to be minimized in order to achieve ultra-

low latency. In Section 2.5, I present a simple experiment that demonstrates the

interfacing latency of PULSE is indeed small compared to packet deadlines.

3. Achieve realistic per-flow timely-throughput. Ultra-low latency needs to come

with realistic timely-throughput. Given the same physical data rate, the overhead of

enforcing per-packet deadlines could be quantified by the difference in total MAC-

layer throughput between the networks with and without packet deadlines. In Sec-

tion 2.6.1, through an experimental study on system capacity, PULSE is shown to

achieve almost the same MAC-layer throughput as that with no deadlines.

4. Support functions working on heterogeneous time scales. MAC layer functions

operate on very different time scales. For example, an acknowledgement (ACK)

response needs to be performed within tens of microseconds. The transmission time

of a typical data packet of 1500 Bytes at 20Mbps is between 0.5 to 1 ms. The target

per-packet deadline is between 1 to 10 ms. The parameters of wireless protocols

usually change over a period of at least several seconds to several minutes. In Sec-

tion 2.3, I describe the separation principles of PULSE which inherently incorporate

7

the heterogeneity in time scale.

5. Support various ultra-low-latency downlink applications. For example, VR re-

quires latency as low as 1 ms with moderate timely-throughput while factory au-

tomation needs ultra-low packet loss rate with latency of about 5-10 ms. PULSE

is able to support applications with totally different performance requirements and

provide a programmable environment for different wireless protocols.

To tackle the above challenges, PULSE follows three major design principles. First, as

a software-defined wireless testbed, PULSE follows the Host-FPGA separation principle

for both high flexibility and performance. Next, PULSE addresses the heterogeneous time

scales of MAC functions by applying Mechanism-Policy separation. Third, to support

a broad class of scheduling policies, we borrow ideas from both WiFi as well as LTE

standards, and build up a set of basic MAC functions required by most of the wireless

protocols.

The rest of the chapter is organized as follows. Section 2.2 summarizes the related

works on low-latency wireless networks. Section 2.3 describes the design principles of

PULSE. The implementation of PULSE is detailed in Section 2.4. Section 2.5 discusses

the interfacing latency. Section 2.6 provides an extensive experimental study on ultra-low-

latency protocols. Finally, Section 2.7 concludes the chapter.

2.2 Related Work

Most of the existing experimental studies for wireless LANs focus primarily on max-

imizing system throughput or throughput-based network utility. For example, to achieve

maximium throughput, the well-known backpressure algorithm has been tailored and im-

plemented for various scenarios, such as multi-hop wireless networks [36], Time Division

Multiple Access (TDMA)-based MAC protocol [37] and wireless networks with intermit-

tent connectivity [38]. Besides, for wireless LAN with random access, [39] implements an

8

enhanced version of 802.11 Distributed Coordination Function (DCF) and demonstrates

that it achieves near-optimal throughput as well as fairness with the original DCF. How-

ever, all of the above studies provide no support for packets with latency constraints. To ad-

dress latency requirement for industrial control applications, RT-WiFi, a WiFi-compatible

TDMA-based protocol, has been proposed and implemented on commercial 802.11 in-

terface cards [40]. However, it cannot achieve both ultra-low latency and satisfactory

timely-throughput performance for each user at the same time due to the nature of TDMA.

On the cellular side, several preliminary studies of 5G provide candidate solutions to

enhance the low-latency capability via either numerical and experimental evaluation. [41]

studies the trade-off between latency budget and required bandwidth by applying the con-

ventional OFDM framework to 5G networks through numerical analysis. However, these

numerical results do not take the possible signaling and processing overheads into account.

[42] provides experimental study for latency performance of 5G millimeter-wave networks

with beamforming. However, this solution relies heavily on the beam-tracking technique

and frame structure employed by cellular networks and cannot be directly applied to wire-

less LAN applications. [43] demonstrates a wireless testbed that is potentially capable of

supporting millisecond-level end-to-end latency requirement. However, it supports only

single link and does not take wireless scheduling issue into account.

2.3 Design of PULSE

Our objective was to develop a platform for testing ultra-low latency protocols that

require scheduling on a per packet basis, with a focus on downlink protocols. In this

section, I will explain the basic design principles upon which PULSE was built to achieve

the goals described in the previous sections.

9

2.3.1 Basic MAC Functions for Wireless Scheduling

Our platform borrows ideas from both the WiFi and LTE standards. From the WiFi

side, we use features such as Carrier Sense for loose synchronization between the nodes

and some robustness to interference. We also use the same interframe space timing in-

tervals as WiFi for transmission (and reception) of packets. Furthermore, ACKs are sent

immediately following transmission of data packets after a Short Interframe Space (SIFS)

period, specified in [44] which allows us to know in a short period of time whether the

packet was transmitted successfully. On the other hand, we use a completely centralized

framework for scheduling the different queues, which is similar to what LTE does. By us-

ing ideas from WiFi and LTE, we are able to obtain a deployment that is both lightweight

and can be incorporated more easily into our framework for ultra low latency scheduling.

2.3.2 Mechanism-Policy Separation

In our design of PULSE, we utilize a mechanism-policy separation used in [45]. Mech-

anisms are functions or hardware blocks used to handle the low-level operations of packet

transmissions over the network, whereas policy refers to the high-level specification of the

scheduling protocol itself. This mechanism-policy separation builds on the framework of

Wireless MAC Processors, introduced by Tinnirello et al in [46].

Each mechanism has a set of inputs, outputs, events, conditions to check and possible

actions that can be performed. Inputs and outputs of a mechanism take the form of register

values (e.g. channel state and average energy), or an array of bytes (e.g. my address and

packet).

Mechanisms provide the set of actions and events, and also act as condition check-

ers, whereas the policy side specifies the set of enabling functions, the parameters for the

conditions, the set of update functions and the transition relations for the state machine

of the scheduling protocol. Maintaining the distinction between the different mechanisms

10

and their associated events, actions, and conditions, allows us to design new mechanisms

more cleanly, and reuse previously developed mechanisms. In addition to the mechanisms

used in [45] and [46], we implement mechanisms to allow for deadline checking, packet

dropping, controlling the packet arrival process, as well as features to increment and decre-

ment some notion of “deficit” according to user-specified conditions, where a “deficit” is

roughly the difference between what is aimed at versus what has been delivered. Deficits

can be used in various ways to achieve some performance guarantees for delay-sensitive

traffic, or to control the ratio of service times between real-time and non-real-time flows.

We will focus more on these mechanisms since they allow us to achieve certain guarantees

on delay-sensitive traffic. These mechanisms can also be changed at runtime, allowing

us to switch between different protocols on-the-fly. The implementation details of these

mechanisms are laid out in Section 2.4. It should be noted that in the design of our testbed,

mechanisms are implemented both on the FPGA as well as on the host machine. Further-

more, the inputs and outputs for each mechanism can be modified accordingly to allow for

cross-layer designs. For example, the update deficit mechanism can use the packet’s Mod-

ulation and Coding Scheme (MCS) as an input for the function to increment or decrement

the deficits.

2.3.3 Flexible MAC Through Host-FPGA Separation

For flexible MAC scheduling decisions, we employed a Host-FPGA separation, where

high-level MAC functions such as packet scheduling and packet dropping are done on the

host, and low-level functions such as packet encoding/decoding, carrier sensing, ACK pro-

cessing, and CRC checking are done on the FPGA. This is done to allow for easy changes

in packet scheduling decisions, while still being able to achieve the latency requirements

for the platform.

11

Table 2.1: Partial list of mechanisms in PULSE

Mechanism Input Ouptut Description

Packet Generation
Interarrival times
Probability of generation
Max packets generated

Packets
Generates packets
based on user
specified parameters.

Prepend Deadlines

Current tick count
Deadline
Packets
Queue references

N/A

Prepends deadlines to
incoming packets and
puts the packets
into the correct queues.

Packet Dropping
Queue references
Current tick count

Packet
dropped?

Drops packets if
deadlines have elapsed.

Update States

Queue references
Packet dropped?
ACK received count
ACK timeout count
Current state

Updated
states

Updates the states
associated with
each flow.

Scheduling Decision
Current state
Policy to use

Flow to
schedule
(or
retransmit)

Decides which flow
to schedule based
on specified policy.

Retransmission

Current tick count
Queue references
ACK received count
ACK timeout count
Re-TX attempts

N/A

Stores transmitted
packet, and
retransmits if ACK
was not received
and deadline has not
elapsed.

2.4 Implementation of PULSE

The implementation details of PULSE is discussed in this section, namely, the flow of

events, and the design of mechanisms for the nodes. A partial list of all mechanisms can

be found in Table 2.1.

Since our platform focuses on downlink scheduling, the mechanisms shown here are

geared towards that, although most can be reused for uplink scheduling as well. Starting

with the National Instruments 802.11 Application Framework, we have implemented ad-

ditional mechanisms on the Host machine and on a USRP-2953R for flexible scheduling

12

protocols. To support packets with strict deadlines, PULSE presents a data transmission

procedure which enables per-packet scheduling on the host while keeping the FPGA de-

sign simple. The overall system architecture is summarized in Figure 2.2.

2.4.1 Packet Generation

For packet generation, we implement a packet generation mechanism that allows three

main parameters that can be tweaked to replicate the different kinds of traffic that a user

might want to experiment with: 1) interarrival times, 2) probability that packets get gener-

ated, 3) number of packets that are generated. Packets can be generated with interarrival

times up to 1 ms in resolution, with a certain number of packets being generated at each

time. In addition to that, packets can be generated deterministically or stochastically. At

each interrival time, users can specify the probability that a certain number of packets get

generated. Furthermore, the number of packets can be set to be a fixed number, or can take

on a random number based on a distribution. For our purposes, in the random case, we use

a simple uniform distribution for the number of packets that are generated. The maximum

number of packets that can be generated is specified by the user. These arrival patterns

and rates are by no means exhaustive, but it is sufficient for us to justify the performance

of the platform and of particular protocols that we have implemented. (The details of the

results are in Section 2.6.)

2.4.2 Queueing, Deadlines and Types of Flows

Each data flow, either real-time or non-real-time, is associated with a queue on the

Host. To add deadlines to the packets, we implement a simple mechanism to prepend

deadlines to each packet arriving at the queue. The input of this block is the current tick

count of the system, the deadline, the incoming packet, and all the references to the queues

associated with each flow. This block takes the current tick count of the system, adds the

correct tick count corresponding to the deadline of the packet and prepends it to the packet

13

Figure 2.2: Architecture of PULSE.

14

before adding it to the correct queue. For real-time flows, when a packet is generated

(according to the Packet Generation mechanism), the corresponding deadline identifier,

in the format of Host reference timer, is prepended onto the packet and then the packet

is queued for scheduling. Since the absolute packet deadlines of each flow are assumed

to form a non-deceasing sequence, every queue on the Host is always inherently arranged

in an earliest-deadline-first manner. (Note, this may not be true if packet deadlines are

changed frequently in a non-increasing manner. However, applications typically just re-

quire a baseline performance guarantee, so this is valid for most cases. In the event that

deadlines for packets are not arranged in an earliest-deadline-first manner, we can sort

the packets while packets are being transmitted.) On the other hand, for non-real-time

flows, the packet deadlines are set to be negative one for simplicity and better modularity

in design.

2.4.3 Scheduling and Transmission Procedures

Once packets are generated and the packets are in their respective queues, scheduling

is performed and repeated on a per-packet basis. In PULSE, scheduling is aided by the

use of several mechanisms to achieve our desired latency goals. First, we have a packet

dropping mechanism which scans the head-of-line packet of each queue, and drops the

packets that have expired. This block only requires the references of each queue, and the

current tick count of the system as inputs. It also has an output to inform other mechanisms

whether or not a packet has been dropped. Next, we have a mechanism to update the state

of the flows. Its job is to update the deficits associated with each flow based on whether

or not an ACK was received and if a packet has been dropped from the queue. It uses the

references of the queues, ACK received count, ACK timeout count, and the output of the

packet dropping mechanism as its inputs. Lastly, we have a scheduling decision block that

decides which flow to schedule based on the current states of the flows. This mechanism

15

uses the deficits associated with each flow, the ACK counters for each of the flow, and the

output of the packet dropping mechanism as inputs. All scheduling-related mechanism

blocks are executed on the Host.

Scheduling and transmission executions are triggered when at least one queue is non-

empty, and the scheduling state is UNLOCKED. The scheduling state becomes LOCKED

as soon as a packet has been scheduled and is being processed for transmission. The state

becomes UNLOCKED again when either of the two following FPGA events happen: an

ACK reception or an ACK timeout. A successful ACK reception happens when an ACK

packet is decoded successfully. This in turn increments the number of ACKs that have

been received. The Host machine polls the register that stores the number of ACKs that

have been received, and when the numbers differ from one iteration of the while loop to the

next, the Host registers an ACK reception. For ACK timeouts, we implement a mechanism

that starts a counter after a packet has been transmitted on the FPGA. If an ACK is not

received within a specified time period (set to be 75 microseconds), the count for timeout

is increased on the FPGA. As in the case of ACK reception, if the count for ACK timeouts

that the Host polls from the FPGA differs from one while loop iteration to the next, an ACK

timeout event is registered. The timing of loop executions is described further in Section

2.5. In every loop cycle, exactly one packet is scheduled for transmission. Before making

a scheduling decision, the Host first “cleans up” the queues and updates the deadline-

related state information by dropping expired packets in each queue using the mechanisms

detailed above. Given the computing power of the Host, this cleanup can be finished

almost instantaneously compared to the transmission time of a packet. (We should note

that there will be more overhead if a batch of packets have expired, since we are only

dropping one packet per loop execution, but this time is also negligible relative to the

packet transmission time.) Given the queues in a clean state, the flow scheduler sets the

priorities of the flows according to the scheduling policy and schedules the flow with a

16

non-empty queue and the highest priority. The scheduled queue then sends the head-of-

line packet to the Prepare ICP Packet block, which removes the deadline identifier and

appends the ICP header to the packet. The ICP header carries the information required by

the FPGA, such as packet length, modulation and coding scheme, source MAC address,

destination MAC address, and flow identifier, etc. Upon receiving the scheduled packet

from the Host, the FPGA simply triggers the required channel access procedure of the

MAC layer as well as the physical transmission procedure in the PHY layer. By placing all

the scheduling complexity on the Host, the design of PULSE can be easily reproduced on

an existing wireless interface card. The AP packet transmission procedure is summarized

in Algorithm 1 and the function blocks associated with the transmission procedure are

depicted in Figure 2.3.

2.4.4 Retransmission

As reliable transmission is often required by mission-critical low-latency applications,

PULSE also supports retransmission for both real-time and non-real-time flows to recover

packet losses. Note that while MAC-layer retransmission is usually implemented in the

hardware for conventional SDRs to minimize latency, the retransmission block of PULSE

is located in the Host for two reasons: (i) Packet deadlines need to be checked before any

retransmission. Since deadlines are tracked in the Host, it is straightforward to handle

retransmission in the Host. (ii) The Host-to-FPGA interfacing latency is low enough for

supporting retransmission in the Host.

In PULSE, retransmission is built on top of the scheduling and data transmission pro-

cedure described in Section 2.4.3. An additional retransmission mechanism with retrans-

mission queue is created on the Host for temporarily storing the duplicate of the scheduled

packet in the current loop cycle. The inputs to this block are the references to all the

queues, the ACK counts for the flows, and the maximum retransmission attempts which

17

DMA
Channel

Flow
Scheduler

Prepare
ICP

Packet

ICP
Packet
to MAC
MPDU

TX

Flow 1

Flow 2

Flow N

Carrier
Sense Backoff

HOST FPGA

RF
Front
End

Figure 2.3: Packet transmission in PULSE.

can be easily configured in the Host according to the user specified scheduling policy. If

an ACK timeout is received and the maximum retransmission count is not met, then the

scheduler attempts to retransmit the same packet in the next cycle; otherwise, the duplicate

packet is removed from the retransmission queue.

The ICP packet is sent to the SDR’s FPGA fabric via a Direct Memory Access (DMA)

Channel. All PHY layer processing required to transmit the packet is performed on the

FPGA using the mechanisms provided by the 802.11 AF [47]. While the platform supports

mechanisms for random backoff, we set backoffs to zero since our scheduling algorithms

are completely centralized.

After the packet is transmitted, the Received Packet mechanism determines whether

an ACK was received or not. If an ACK was received, then the ACK count is incremented.

Otherwise, the ACK timeout count is incremented. Received packets are then sent back

to the Host for processing, again via a DMA Channel. Concurrently, the Host polls the

FPGA registers for transmitted packet count, ACK count, and ACK timeout count, and

updates the deficits accordingly based on these counts.

18

Algorithm 1: AP transmission procedure.
1 Initialize the state variables and the Host queues;
2 while station is ON do
3 update Host queues and state variables;
4 schedule the flow with the highest priority;
5 send the scheduled packet to Prepare ICP Packet;
6 state of flow scheduler← LOCKED;
7 while state of flow schedule is LOCKED do
8 if receive ACK response then
9 state of flow scheduler← UNLOCKED;

10 end
11 end
12 end

2.5 Measuring Host-to-FPGA Interfacing Latency and Round-Trip Latency

The interfacing latency between the software and the hardware significantly affects the

achievable link throughput of a software-defined wireless testbed. As discussed in Section

2.4, flow scheduling is repeated on a per-packet basis in a loop where scheduling-related

function blocks are executed. The time between two consecutive loop executions depends

on the round-trip transmission time of each packet plus the Host-to-FPGA interfacing la-

tency. The interfacing latency between Host and FPGA needs to be low enough to support

a packet deadline as low as 1 ms. Meanwhile, round-trip latency, which is defined as the

elapsed time between a packet arrival at the Host and the ACK reception of the packet,

inidcates the minimum achievable per-packet deadline of a wireless platform. To measure

interfacing latency and round-trip latency, we devise a simple experiment by using the

FPGA counter for the timestamps of the packet events.

The experiment can be summarized as follows:

1. Test packets of fixed payload size arrive at the Host periodically. The period is set to be

large enough such that at each time there is only 1 test packet waiting for transmission

19

in the Host queue. This completely eliminates the effect of queueing delay in the Host.

2. When a test packet arrives at the Host, it is given a timestamp denoted by th (read by

the Host from an FPGA register) and then forwarded immediately to the FPGA through

a DMA Channel.

3. When the FPGA detects the new test packet, the FPGA starts processing the ICP header

and retrieves th from the header. Along with the current FPGA counter denoted by tf ,

the Host-to-FPGA interfacing latency can be derived as tf − th.

4. The packet is then transmitted. When the corresponding ACK is received, FPGA reads

the current timestamp tr and calculates the round-trip latency as tr − th.

In the experiments, both latency metrics for 50000 packets was measured with a fixed

interarrival time of 10 ms. Figure 2.4 shows the empirical cumulative distribution function

(CDF) of the Host-to-FPGA interfacing latency for packets with 1500 bytes payload at a

data rate of 54Mbps. The mean interfacing latency is around 192 µs, and the 90, 95, and

99th percentiles are 233.4, 257.6, and 316.1 µs, respectively. Table 2.2 further summarizes

the statistics of the interfacing latency for different data rates and payload sizes. It can

be seen that both the mean and the percentiles of the Host-to-FPGA latency are almost

invariant, regardless of data rate and payload size. Therefore, PULSE indeed exhibits low

and predictable interfacing latency.

Next, Figure 2.5 shows the empirical CDF of round-trip latency, and Table 2.2 sum-

marizes the statistics of round-trip latency for different data rates and payload sizes. Since

round-trip latency consists of both transmission time and Host-to-FPGA interfacing la-

tency, it varies with the physical data rate and the payload size. For the six test cases

listed in Table 2.2, the maximum 99th percentile round-trip latency is 933.7 µs. There-

fore, PULSE is indeed able to guarantee a round-trip latency of less than 1 ms with high

20

probability even for large packet sizes and moderate physical data rates.

0 0.1 0.2 0.3 0.4 0.5 0.6

Measured Host-to-FPGA Latency (ms)

0

0.2

0.4

0.6

0.8

1

E
m

p
ir
ic

a
l
C

D
F

54 Mbps,1500 Bytes

Figure 2.4: Empirical CDF of Host-to-FPGA latency for payload size = 1500 bytes and
data rate = 54Mbps.

Table 2.2: Host-to-FPGA latency results

Data rate
(Mbps)

Payload size
(bytes)

Host-to-FPGA latency (µs)
Mean 90% 95% 99%

54 500 185.2 227.6 251.5 301.8
54 1000 189.7 235 259 315
54 1500 192.2 233.4 257.6 316.1
24 500 187.8 228.4 252.7 305.7
24 1000 188.3 230.6 254.3 304
24 1500 189.2 231.5 255 304.6

21

0 0.5 1 1.5 2
Measured Round-Trip Latency (ms)

0

0.2

0.4

0.6

0.8

1

E
m

p
ir
ic

a
l
C

D
F

54 Mbps,500 Bytes

54 Mbps,1000 Bytes

54 Mbps,1500 Bytes

24 Mbps,500 Bytes

24 Mbps,1000 Bytes

24 Mbps,1500 Bytes

Figure 2.5: Empirical CDFs of round-trip latency for various data rates and payload sizes.

Table 2.3: Round-trip latency results

Data rate
(Mbps)

Payload size
(bytes)

Round-trip latency (µs)
Mean 90% 95% 99%

54 500 377.0 419.2 443.4 494.4
54 1000 459.9 505.1 529.2 585.0
54 1500 536.9 578.5 602.3 660.8
24 500 479.5 520.2 544.4 598.1
24 1000 646.6 688.9 712.7 762.8
24 1500 817.9 860.2 883.9 933.7

As further verification of the system, we also plot the received throughput of clients

against packet deadlines. This is to ensure that packets are not transmitted when they have

expired. For this test, 20 packets arrive deterministically on the AP every 11 ms. (Note,

packets are only expired when the current time exceeds the deadlines. Hence even 0 ms

deadlines give some throughput.) As can be seen from Figure 2.6, the throughput increases

22

0 2 4 6 8 10
Deadline (ms)

0

5

10

15

20

T
im

e
ly

-T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

Timely-Throughput vs Deadline

Figure 2.6: Timely-throughput vs. Deadline for 20 packets generated every 11 ms.

linearly as deadline increases, which shows that expired packets are indeed getting dropped

by the AP.

Figure 2.7: Experimental setup with host machines and USRP-2153R’s being used as
wireless AP and clients.

23

2.6 Experimental Results

In this section, I present experimental results for a network with one AP and two down-

link clients (as shown in Figure 2.7) in various scenarios. Each client is associated with

one real-time flow with per-packet deadlines as well as one non-real-time flow without

deadline constraints. Each of the nodes (AP and clients) is a USRP-2153R [48] that is

connected to a Windows laptop acting as the Host machine. A specific scenario will have

a certain arrival process, as well as predefined requirements for deadlines and delivery ra-

tios for the real-time flows. These experiments were run using 1500B packets and IEEE

802.11a MCS 7 (54Mbps theoretical link data rate). We consider four scheduling policies:

Largest Deficit First (LDF) [31], Longest Queue First (LQF), Round Robin (RR), and Ran-

dom. Based on the definition of deficit introduced in [31], LDF schedules the real-time

flows with the largest deficit and selects non-real-time flows with the largest queue length

if the real-time flows are empty. Ties are broken randomly. LQF, as the name suggests,

schedules the flow with the longest queue, with ties broken randomly. The Random policy

randomly picks a flow to schedule from among non-empty queues. RR schedules flows in

the following order: real-time flow for client 1, real-time flow for client 2, non-real-time

flow for client 1, and then non-real-time flow for client 2. If any of the queues are empty,

it schedules the next queue. A point to note is that dropping expired packets is not done

in most implementations today. To ensure a fair comparison, we decided to enable packet

dropping for all policies, which improves the performance for all policies.

The results are presented in this section as follows. In Section 2.6.1, I present the ca-

pacity regions of a single client under the different policies for one scenario to show the

achievable regions of our system. Then, in Section 2.6.2, the throughputs of the policies

under different scenarios is shown to compare the system performance. In these sections,

packets are generated every 5 ms and the number of packets generated is uniformly dis-

24

tributed from 0 to KRT for real-time flows, and KNRT for the non-real-time flows. A

different arrival process is used in Section 2.6.3 to have packets arrive more frequently, to

show that ultra low latencies with 1 ms deadlines are indeed achievable.

0 5 10 15

K
RT

0

5

10

15

20

K
N

R
T

LDF Policy

Achievable

Non-Achievable

0 5 10 15

K
RT

0

5

10

15

20

K
N

R
T

LQF Policy

Achievable

Non-Achievable

0 5 10 15

K
RT

0

5

10

15

20

K
N

R
T

Random Policy

Achievable

Non-Achievable

0 5 10 15

K
RT

0

5

10

15

20

K
N

R
T

Round-Robin Policy

Achievable

Non-Achievable

Figure 2.8: Capacity regions for the different Policies with 5 ms deadline and
0.99 delivery ratio.

25

2.6.1 Capacity Regions

For our capacity region experiments, we defined achievable regions as regions where

the system deficits (accumulated when packets are dropped) and queue lengths of the

clients do not grow to infinity. Per-packet deadline is set to 5 ms and the delivery ratio is

set to 0.99, which means that the deficit increases by 0.99 every time a packet is dropped,

and decreases by 0.01 when a packet is successfully delivered. In other words, if we

require 99% of real-time packets to arrive in 5 ms, we say the policy can achieve that for

any incoming packet rate where the deficits do not grow to infinity. As we can see from

Figure 2.8, the LDF policy has a bigger achievable region than LQF, Random and RR.

Random and RR have similar capacity regions, but Random performs slightly better than

RR when KRT is higher, and worse when KRT is smaller. This is because the amount of

time waiting for service is bounded for RR, so for a small number of real-time packets,

they will always be served before the packets expire. On the other hand, when KRT is

high, RR will not be able to serve the packets in time, but Random has a chance of serving

the packets before they expire. LQF works better for higher values of KRT than Random

and RR, since it would schedule real-time flows more frequently, but suffers significantly

when the value of KNRT is higher than KRT , since non-real-time flows will be scheduled

first. LDF always schedules real-time flows first, so the drop off in the capacity region is

linear until KRT = 11, after which the deficits start increasing to infinity for this delivery

ratio and deadline. In this scenario, all policies can support up to KRT = 11, and serve up

to 20 packets every 5 ms.

2.6.2 Throughput Performance

Using the capacity region plots, we can know what arrival rates our platform is capa-

ble of supporting. However, this does not tell us much about how system performance is

affected in terms of the throughputs for real-time and non-real-time flows when operating

26

in different scenarios. For brevity, in this section, throughputs for real-time flows will

be referred to as timely-throughput, and throughputs for non-real-time flows will just be

referred to as throughputs. So, we next ran experiments for multiple clients, each with a

real-time and non-real-time flow, under various scenarios to see how each protocol per-

formed. We ran two symmetric scenarios (clients have the same traffic and requirements),

and two asymmetric scenarios. In the first scenario, we had KRT = 4 and KNRT = 4 for

both clients, with deadlines set to 3 ms and delivery ratio set to 0.98. As we can see in Fig-

ure 2.9, while most protocols perform relatively well, LDF has a higher timely throughput

and overall throughput for both clients. Next, we increased non-real-time traffic (KNRT

= 6) and decreased real-time traffic (KRT = 3), and changed the requirements of the real-

time flows to 2 ms deadlines and 0.95 delivery ratios to see how the system performs with

lower latencies. This could be an example of two clients downloading a large file while

streaming videos. As we can see in Figure 2.10, LQF has the worst performance since it

tends to serve non-real-time traffic first, followed by Random and RR. LDF has the best

performance in both these symmetrical scenarios.

For the first asymmetrical scenario, we set KRT = 3 and KNRT = 5 for client 1, KRT =

4 andKNRT = 6 for client 2. For client 1, the deadline of real-time packets was set to 2 ms,

with 0.97 delivery ratio, whereas client 2 has a deadline of 3 ms with 0.98 delivery ratio i.e.

client 1 has a real-time flow requirement where 97% of packets have to arrive in 2 ms and

client 2 has a real-time flow requirement where 98% of packets arrive in 3 ms. As we can

see in Figure 2.11, LDF outperforms the other policies in terms of timely throughput and

overall throughput. This difference is even more apparent when the asymmetry between

the requirements of both clients is increased. In our second asymmetrical scenario, we

set KRT = 7 and KNRT = 4 for client 1, KRT = 3 and KNRT = 5 for client 2. Client

1’s deadline was set to 5 ms with 0.98 delivery ratio, and client 2’s deadline was 2 ms

with 0.99 delivery ratio. This could be a case where client 1 is streaming a video where

27

5 ms latency is tolerable but it generates a lot of traffic, and client 2 is running a control

application that does not produce as many packets but has stricter latency and delivery

ratio requirements. We see that Random and RR do not provide a good timely throughput

for client 1, while LQF does not perform well for client 2. LDF outperforms all policies

in both clients since it smartly schedules client 1 and client 2’s real-time flows so that both

requirements are met, without sacrificing overall system throughput. Note that since we

are operating on the boundaries of LDF, the deficits of LQF, Random and RR are growing

to infinity as well. The deficit evolution from the first symmetrical scenario is shown in

Figure 2.14.

Even though the throughputs do not differ by much, the picture becomes very different

when the number of real-time packets that were dropped is examined. Using the deficits of

the clients, the loss ratios of the real-time flows for all the scenarios above were calculated.

(Since the deficit of LDF stays at 0, the most we can conclude is the loss ratio is below 1

- delivery ratio). As can be seen in Table 2.4, the loss ratios of LQF, Random and RR are

much higher than LDF. The biggest difference is for the fourth scenario, when LDF can

maintain less than 1% loss rate for Client 2, but LDF, Rand and RR experience loss rates

of 63.5%, 29.5% and 21.4% respectively.

2.6.3 Changing the Arrival Process

In our final experiment, we modified the arrival process to further evaluate the policies

under more stringent deadline requirements. Instead of packets being generated every

5 ms, packets can now be generated every 1 ms. However, instead of generating them

uniformly from 0 to KRT (or KNRT), a single packet is generated with some probability,

which is specified for each flow by the client. Let P(KRTi) and P(KNRTi) be the probability

of generating a packet for client i’s real-time flow and non-real-time flow respectively. As

in the previous experiment, the contrasts are most stark in the asymmetrical case, which is

28

Table 2.4: Loss ratios of real-time flows

Arrival Rate Deadline (ms) Delivery Ratio Policy Loss Ratio (%)
C1 C2 C1 C2 C1 C2

KRT1 = 4

3 3 0.98 0.98

LDF <2 <2
KNRT1 = 4 LQF 23.51 17.12
KRT2 = 4 Rand 15.17 15.62
KNRT2 = 4 RR 15.07 16.03
KRT1 = 3

2 2 0.95 0.95

LDF <5 <5
KNRT1 = 6 LQF 60.24 54.97
KRT2 = 3 Rand 26.48 27.22
KNRT2 = 6 RR 19.96 21.27
KRT1 = 3

2 3 0.97 0.98

LDF <3 <2
KNRT1 = 5 LQF 61.45 27.35
KRT2 = 4 Rand 27.2 18.07
KNRT2 = 6 RR 20.09 17.13
KRT1 = 7

5 2 0.98 0.99

LDF <2 <1
KNRT1 = 4 LQF 7.18 63.51
KRT2 = 3 Rand 17.01 29.46
KNRT2 = 5 RR 19.14 21.42

presented in the following scenario. Client 1 has P(KRT1) = 0.8, P(KNRT2) = 0.3 with the

real-time flow requirement of 2 ms and 0.99 delivery ratio. This could be a user streaming

a video while downloading some files in the background. Client 2 on the other hand has

P(KRT2) = 0.1, P(KNRT2) = 0.5 with a deadline of 0 ms and 0.99 delivery ratio. Note that

packets are only expired when the current time exceeds the deadlines, and hence even 0

ms deadlines give some throughput. This could be a mission-critical application which

does not generate much traffic but requires control packets to be delivered within 1 ms.

As we can see in Figure 2.13, client 1’s timely throughput is lower for Random and RR,

while LQF causes client 2’s timely throughput to suffer. However, LDF is able to support

both clients and give good timely throughput and throughputs as well. Furthermore, this

also shows that the system is capable of delivering packets under 1 ms.

These results show that our system is indeed capable of supporting experimentation of

policies for ultra-low latency applications with various packet arrival patterns and deadline

requirements.

29

2.7 Conclusion

Applications today have increasingly stringent requirements, especially in terms of

latency and throughput. This presents next generation networks with one of their critical

challenges: providing some measure of guarantee for applications with strict latency and

throughput requirements. There exist theoretical frameworks to develop protocols that

are able to do this, but there is still a gap between theory and implementation of these

protocols. We aim to bridge this gap by developing PULSE, which I have shown to be

capable of supporting per-packet scheduling for downlink with latencies on the order of 1

ms, with realistic system throughputs. PULSE was developed with reprogrammability in

mind, so new scheduling policies can be more easily implemented and experimented on it.

Using PULSE, the performance of LDF, LQF, Random and RR was tested under various

scenarios and showed that LDF performs equally well or better than the other policies in

all scenarios. The difference between LDF and the other policies is even more apparent

when the loss ratios of the policies under different traffic loads is observed.

30

LDF LQF Rand RR LDF LQF Rand RR
0

2

4

6

8

10
T

h
ro

u
g
h
p
u
t
(M

b
p
s
)

RT Throughput

NRT Throughput

Client 1 Client 2

Figure 2.9: Throughputs for KRT=4
and KNRT=4.

LDF LQF Rand RR LDF LQF Rand RR
0

2

4

6

8

10

12

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

RT Throughput

NRT Throughput

Client 1 Client 2

Figure 2.10: Throughputs for KRT=3
and KNRT=6.

LDF LQF Rand RR LDF LQF Rand RR
0

2

4

6

8

10

12

T
h
ro

u
g
h
p
u
t
(M

b
p
s
)

RT Throughput

NRT Throughput

Client 1 Client 2

Figure 2.11: Throughputs forKRT=3,
KNRT=5 for client 1, KRT1=4,
KNRT=6 for client 2.

LDF LQF Rand RR LDF LQF Rand RR
0

2

4

6

8

10

12

14

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

RT throughput

NRT Throughput

Client 1 Client 2

Figure 2.12: Throughputs forKRT=7,
KNRT=4 for client 1, KRT1=3,
KNRT=5 for client 2.

LDF LQF Rand RR LDF LQF Rand RR
0

2

4

6

8

10

12

14

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

RT throughput

NRT Throughput

Client 1 Client 2

Figure 2.13: Throughputs for the sec-
ond arrival process with P(KRT1) =
0.8, P(KNRT1) = 0.3, P(KRT2) = 0.1,
P(KNRT2) = 0.5.

0 5 10 15 20 25 30

Time (s)

0

500

1000

1500

2000

2500

3000

D
e

fi
c
it

LDF

LQF

Rand

RR

Figure 2.14: Deficit growth for the
KRT=4 and KNRT=4 for both clients.

31

3. WIMAC: PLATFORM FOR RAPID IMPLEMENTATION OF MEDIUM ACCESS

CONTROL PROTOCOLS

3.1 Introduction

In the previous chapter, we discussed how we can implement and experiment with

scheduling algorithms for next-generation wireless networks. In this chapter, I will show

how the performance of these kinds of protocols can be further improved by providing an

architecture that allows packet-by-packet scheduling, while also reducing the prototyping

time for next-generation MAC protocols. The traffic served by WiFi has been increasing

exponentially due to the rapid development of emerging applications, such as multime-

dia streaming. Moreover, wireless standards organizations are planning to offload more

cellular data traffic onto unlicensed bands to relieve the increasingly dense cellular net-

works. For example, 3rd Generation Partnership Project (3GPP) group has been develop-

ing License-Assisted Access (LAA) technology for coexistence of WiFi and LTE, which

is expected to be a feature in Release 13 of LTE [49]. Commensurately, wireless networks

need to keep evolving to face the challenge of providing higher throughput as well as

other critical performance metrics, such as low latency and power saving. A wide variety

of wireless protocols have therefore been proposed to meet these requirements. To accel-

erate the testing and deployment of new innovations, rapid and flexible experimentation of

new protocols is becoming increasingly critical for wireless research.

Wireless protocols for different layers of the protocol stack often follow different

strategies vis-à-vis experimentation. For PHY layer protocols, it is of utmost importance

to meet the stringent timing requirements of high-throughput wireless protocols. Based

on hardware design with dedicated FPGAs or digital signal processors, PHY layer experi-

mentation can be conducted to establish the realistic performance of time-critical wireless

32

protocols with respect to their specifications due to sufficient hardware design flexibil-

ity. On the other hand, the network layer is often required to handle complex network

topologies and make appropriate routing decisions. Therefore, experimentation of net-

work layer protocols is mostly done through abstraction in the software domain for higher

programmability. For example, OpenFlow [50] enables experimentation of network layer

protocols by programming the flow tables in Ethernet switches and routers, so that network

layer protocols can be tested completely via software. Hence, through extensive abstrac-

tion provided in the software domain, the barriers to deploying network layer protocols

can be greatly reduced.

Differing from the physical layer and networking layer, the implementation of MAC

protocols presents its own challenges. Since the MAC layer serves as the junction be-

tween the PHY layer and other high level layers, it is required to interface with the PHY

layer closely and smoothly. Therefore, MAC designers are often challenged by the co-

design of MAC and PHY which often requires substantial efforts across disciplines. As a

consequence, very few of the newly proposed MAC protocols have been experimentally

tested or implemented [9, 10, 11, 12, 13]. Furthermore, these rare exceptions are either

designed specifically for wireless sensor networks which target low-power and low-rate

applications, or are limited to unrealistically low throughput performance. For commodity

products, MAC functionalities are often integrated with the PHY components on a single

network interface card, which makes them almost impossible to modify. As a result, new

wireless MAC protocols often need to be implemented from scratch and thus require much

longer time for experimental evaluation.

To reduce the prototyping time for MAC protocols, software-defined Radio (SDR)

is a promising solution with the required flexibility. In general, SDRs consist of three

major parts: RF front end, baseband hardware, and software host. Typically, hardware

development takes longer than software, and this is also true for SDRs. Therefore, it is

33

preferable to perform as many functions as possible in the software domain for maximum

programmability. However, heavy signal exchange between the software and hardware

can introduce substantial latency (usually around hundreds of microseconds) and thus de-

grade the overall throughput. Hence, the flexibility-latency tradeoff dilemma is one major

challenge for modern high-throughput MAC implementation.

With the aim of enabling quick prototyping as well as achieving flexibility and low

latency, this chapter presents a platform for rapid implementation of wireless MAC pro-

tocols for WiFi. The main design philosophy of this platform, called WiMAC, is to de-

couple the specifications of MAC protocols from the underlying hardware. WiMAC iden-

tifies distinguishing features of classes of MAC protocols, and implements these features

as separate functional blocks in the hardware. In this way, WiMAC achieves high func-

tion reusability in the hardware domain and meets the strict latency requirement of MAC

protocols. Second, WiMAC specifies the interaction between these functional blocks com-

pletely through software. Therefore, WiMAC offers a flexible way for MAC configura-

tion in software, and an efficient way to stride through MAC design iterations without

making any changes in hardware domain. To show the practicality of WiMAC, I present

design examples of a broad range of MAC protocols, ranging from Carrier Sensing-based

protocols, such as Carrier Sense Multiple Access (CSMA) [51], and coordination-based

protocols, like CHAIN [52], to queue length based algorithms, such as Max-Weight [53].

While these protocols are very diverse, WiMAC does make the experimentation easily

performable through the proposed decoupling framework. As an additional illustration,

we implement an example of a meta protocol, which allows developers to switch between

different classes of MAC protocols during runtime with hardware unchanged. In all cases,

WiMAC makes feasible rapid implementation, and preserves both design flexibility and

realistic throughput performance.

34

3.2 Related Work

In commercial wireless network interface cards, MAC layer functionality needs to be

configured by driver suites that are specific to individual chipsets, such as the ath family

for Atheros chipsets and the rt2x00 family for Ralink chipsets. These drivers can only con-

trol very limited functions and have no access to the fundamental MAC functions, such

as packet format and frame timing. To enable customized MAC on commodity hardware,

Neufeld et al. propose SoftMAC [54], a software platform built on an Atheros chipset

and the corresponding open-source software. By overriding key features of the Institute

of Electrical and Electronics Engineers (IEEE) 802.11 protocols [44], SoftMAC offers

flexibility to reconfigure important functions such as header formats and backoff schemes.

Other platforms like MadMAC [55] and FlexMAC [56] follow similar design strategies

to implement customized MAC protocols on commercial 802.11 hardware. However,

built on commodity hardware, these platforms suffer from limited scope of redefinable

functions and fail to support protocols outside the CSMA-based category. Following a

different approach, Doerr et al. [57] propose MultiMAC to enable switching between

multiple MAC protocols for better performance in a changing environment. Despite the

protocol-level adaptability, this platform does not offer the required flexibility in MAC

implementation.

To achieve the required flexibility for MAC implementation, a variety of wireless plat-

forms have further leveraged the software radio paradigm. For example, the GNU’s Not

Unix (GNU) Radio [58] software toolkit offers a flexible environment for protocol imple-

mentation. With minimal hardware design, GNU Radio shifts most of the implementa-

tion efforts to the software domain. However, this software-based platform is limited to

narrow-band protocols due to severe latency, as discussed in [59]. To resolve the latency is-

sue, Sora [60] exploits advanced parallel computation on multi-core processors to achieve

35

throughput comparable to the current-generation Wireless Local Area Network (WLAN)

protocols. However, the complexity in the software domain makes MAC implementation

difficult for MAC designers. In the family of FPGA-based software radio platforms, Wire-

less Open Access Research Platform (WARP) [61] is a popular high-performance hard-

ware platform for MAC and PHY research. By using FPGA and PowerPC core, WARP

allows full access to both MAC and PHY functions and thus achieves high flexibility.

Similar to WARP, Airblue [62] is an FPGA-based cross-layer design platform. By imple-

menting both the MAC and PHY on the FPGA, Airblue is able to run at a speed compa-

rable to commodity IEEE 802.11 hardware. However, these FPGA-based platforms focus

primarily on flexibility and latency performance, and therefore do not guarantee quick

prototyping of MAC protocols.

To achieve quick prototyping of user-definable MAC protocols, various architectures

for SDR have been explored with the aim of realizing fast MAC composition. Nychis et

al. [63] propose a split functionality architecture, which achieves better code reuse by

identifying a core set of time-critical MAC functions, such as backoff, carrier sensing, and

precise scheduling in time. These time-critical functions are located as close to the radio

hardware as possible to reduce bus latency between the host and radio front end. This

architecture is implemented on the GNU Radio and Universal Software Radio Peripheral

(USRP) hardware to highlight the latency improvement. Similarly, Ansari et al. [64] intro-

duce Decomposable MAC Framework to identify basic functional components according

to both timeliness and degree of code reuse. Built on this component-based framework,

Zhang et al. [65] propose TRUMP, a toolchain that enables runtime composition of MAC

protocols. Modelled by the underlying state machines, MAC protocols are described in a

meta language and synthesized by a wiring engine from the basic building blocks. How-

ever, when new features are added to the system, extensive changes have to be made to the

system, such as modifying the compiler and the dependency tables. Furthermore, they do

36

not show how new functions are added to the system or how different classes of MAC pro-

tocols, such as power-saving MAC protocols, can be implemented using TRUMP. In [66]

Tinirello et al. present Wireless MAC Processor (WMP), which is built specifically on

commodity WLAN cards. In addition to modifying the firmware or software of wireless

cards, WMP goes one step further to define a set of MAC commands as well as triggering

events and conditions, which is similar to the instruction set of a Central Processing Unit

(CPU). Similar to [65], WMP reads the MAC state machines written in machine language,

and then realizes MAC composition with an execution engine. However, WMP only sup-

ports a limited set of MAC protocols since it is difficult to include the required new MAC

functionality outside the inherent command set on commodity hardware, such as selecting

backoff times based on different probability functions.

3.3 Key Design Principles for MAC Platform

The main goal is to enable rapid implementation of a wide range of MAC protocols to

determine the realistic performance of these protocols. In order to do so, we identify key

design principles that would help in achieving the desired goal and incorporate them into

the design of WiMAC.

• Focus on “Next Gen” protocols. Increasingly more applications have requirements

beyond maximizing throughput while maintaining fairness. Examples of goals of

these protocols include maximizing a network utility function [67], energy sav-

ings [68], reliable communication [69], maintaining some level of quality of service

(QoS) [70], or even a combination of any of these. These “Next Gen” protocols, re-

quire support of very different kinds of functions. The platform should be designed

to easily incorporate the features required by these protocols.

• MAC vs PHY decoupling. In many cases, the MAC protocol is very tightly cou-

pled with the PHY layer. This is due to the fact that MAC protocols are required

37

to react to the PHY layer with very stringent timeliness. Changes made in either

layer usually necessitate a change in the other layer, with very few exceptions. This

makes it extremely challenging to develop MAC protocols that differ significantly

from the existing protocols. To ensure the platform is capable of implementing

MAC protocols rapidly, we have to ensure that changes in either layer can be made

independently of the other.

• Designing MAC protocols in software. It is generally easier to develop algorithms

in software than it is in hardware. MAC protocols are no different. Being able to

design MAC protocols in software will allow for more flexible algorithms. This

will enable implementation of a larger class of algorithms. Additionally, designing

MAC protocols in software will reduce the time taken to implement these protocols.

However, not everything can be done in software, since we still have to meet the

quick response time required by MAC protocols.

• Hardware vs Software decoupling. Because a wide range of features of MAC pro-

tocols require hardware support, a platform that supports different classes of MAC

protocols requires a mixture of hardware and software components. On the other

hand, we want the ability to develop components in these domains independently

from each other; changes in software should not require a change in hardware, or

vice versa. Hence, hardware and software components need to be decoupled from

each other.

• Allows cross-layer design. Cross-layer designs have the potential of increasing

the performance of a given system. There have been some proposals for cross-

layer MAC protocols such as [71, 72, 73, 74]. Experimentation with such protocols

requires the platform to have the capability of supporting cross-layer design. Even

though the MAC and PHY layer are decoupled in the design of the platform, it is

38

flexible enough to allow exchange of information between both layers if so desired.

• Supports protocol changes at runtime. This feature increases the range of pro-

tocols the platform will be able to support, since dynamic MAC protocols can also

be implemented on the platform. Furthermore, it aids comparative experimentation

since we can switch between different MAC protocols to observe the performance

of each protocol.

3.4 Architectural Design of The Platform

This section provides details on the implementation of the platform, showing how dis-

tinguishing features can be implemented generically to achieve decoupling and flexibility

in design of MAC protocols while meeting latency requirements of a MAC protocol.

3.4.1 Identifying Distinguishing Features

The first WiMAC task is to identify distinguishing features of different classes of pro-

tocols. As one example, one such distinguishing feature is clearly Carrier Sensing. Once

Carrier Sense is implemented, it opens up a whole class of protocols that researchers can

experiment with, such as CSMA. By identifying such distinguishing features of different

classes of protocols, one can quickly obtain an initial set of functions that will allow rapid

implementation of a wide range of protocols. As a starting point, we decided to implement

the following distinguishing features of different classes of MAC protocols. Other features

can be implemented too, as shown later.

• Carrier Sense: Determines whether the channel is clear.

• Power Control: Tells the node to increase or decrease transmit power, and by how

much. Changing transmit power affects the block error rate of transmissions, the

interference levels of neighboring nodes, and the network topology.

39

• Piggyback Transmissions: Instead of a node initiating data packet transmissions

by itself, piggyback transmissions allow nodes to listen to their surroundings and

transmit data packets immediately after a certain packet is heard.

• Queue Length Information: Knowing the queue length information can provide

us with information about the delay and network utilization.

More details are given in the next section when I describe specific protocols that have

been implemented.

3.4.2 Designing MAC Protocols in Software and Decoupling

The second task was to figure out how to overcome the main challenge: how to design

MAC protocols easily in software while still achieving hardware performance. Being

able to implement every MAC function in software provides the flexibility to implement

a wide range of protocols very easily. However, due to the latency between the hardware

and software interfaces, this is not possible. MAC functions have to be implemented in

hardware in order to meet the timing requirements of a MAC. This makes it more difficult

for rapid implementation of MAC protocols, since developing protocols on hardware takes

longer than developing in software. Furthermore, hardware designs are typically less agile

than software designs.

To achieve the goal of rapid implementation while still meeting the timing require-

ments, we therefore decided to design WiMAC in the following way:

1. Each MAC function in hardware has controls that allow users to specify parameters

that will change how the block functions. For example, in the Backoff block, users

can specify how to increment CW, the size of the contention window. The Backoff

block then chooses a random number between [0, CW] to pick as its next backoff

count. While this provides some flexibility to the protocol, it does not increase the

40

Figure 3.1: Example of a generic function block in WiMAC.

range of protocols the platform is capable of supporting.

2. In addition to controls, we also add three types of registers to each of the blocks.

The first type of registers is Status Registers. They allow us to obtain the output

of the block for it to interact with other blocks in the MAC. The second type of

registers are Input Register Names. These registers tell the blocks what registers to

use as inputs to the block. Finally, the third type of registers are Comparison Value

Registers. They specify how and what values to compare the input values with.

3. Finally, users specify the Input Register Names that each block should use as inputs,

and the comparison values for each of these inputs on the host machine.

In this three pronged way, we are able to achieve the goal of having a flexible platform

and still meet the strict timing requirements of a MAC. As an example, suppose we want

to specify "Enable piggyback transmissions if queue length is more than 10". Then on

the host machine, we set the status register of the Queue length block as the input register

41

of the Piggyback Transmission block, and the comparison value register to be "more than

10". Now, when the output of Queue Length exceeds 10, the Piggyback Transmission will

be enabled.

While significant changes in the hardware will always necessitate changes in the soft-

ware, we can alleviate the changes that need to be made by fixing the names of the hard-

ware blocks, the number of input and output registers for each block, and the output regis-

ter names and types for all hardware blocks. By doing so, the same software code can still

be used even when hardware changes are made. An example of a function block is shown

in Figure 3.1. The number of input registers can vary from block to block, but once the

block has been implemented, we do not change the number of inputs. The same applies to

the outputs, except we require that output register names and types be the same as well.

3.4.3 Enabling Reconfiguration on the Fly

With the above architecture, it becomes possible to make protocol changes on the

fly. To take it one step further, any valid node should be able to change other nodes.

We do not specify what the requirements are for a valid node. (This has no security

implications since this is a platform for experimentation). For the purposes of this chapter,

let us assume all nodes can change every node. This is done in two steps: 1) Creating a

reconfiguration packet, and 2) developing a protocol to transmit reconfiguration packets.

The reconfiguration packet has the following fields.

• Packet Type. This is to specify the type of packet is a reconfiguration packet.

• Block Name. Specifies the hardware block to be configured.

• Input Register Name. Name of the register to be used as one of the input registers

of the block given by Block Name.

• Comparison Value. Value to compare the input register values with.

42

Figure 3.2: Example of reconfiguration packet.

• Control Name. Specifies the name of the control parameter.

• Control Value. Changes the value of the control to this Control Value.

Packets start with a Packet Type, followed by a Block Name. For each Block Name,

there can be any number of Input Register Names, but each Input Register Name has to

be followed by a Comparison Value. Three bits are used in Comparison Value to indicate

whether to check for equality, greater than, less than, or do not care. This is followed

by however many bits required for the data type. If we do not care about the value, the

comparison value register is filled up with the number of zeros corresponding to the type

of data in the Input Register. Then come the Control Names and Control Values. Each

Control Name has to be followed by a Control Value. Multiple Block Names can be

included in the packet. An example of a reconfiguration packet is shown in Figure 3.2.

To transmit these packets, we use a simple protocol. A designated node selects other

nodes it wants to transmit reconfiguration packets to. Then, starting with the lowest num-

bered node, it transmits the packet after Point Coordination Function (PCF) Interframe

Space (PIFS) time [44] to avoid collisions with data packets or ACK packets. If it receives

an ACK, it moves on to the next node and repeats this process. If it does not receive an

43

ACK, it retransmits up to a designated number of times. If it still does not receive an

ACK after all the retransmissions, it just moves on to the next node. Thus, it is possible

for some nodes to remain unconfigured. Unconfigured nodes keep running the previous

MAC protocol that they were configured with. The AP then informs the user which nodes

successfully received the reconfiguration packet.

Being able to reconfigure packets on the fly provides hardware/software decoupling,

and a mechanism to perform comparative tests between different MAC protocols more

readily.

3.5 Implementation of Different Classes of MAC Protocols

In this section, I will show how WiMAC can be used to implement completely differ-

ent classes of MAC protocols. This section is structured as follows. First, the performance

of a link with different coding and modulation rates is presented to show that this plat-

form is capable of supporting realistic bit rates. Then, I present the results of the platform

implementing CSMA, since it is the most widely used MAC protocol. After that, the im-

plementation of CHAIN [52], is presented as an exemplar of a protocol that uses piggyback

transmissions to increase the uplink efficiency. Next, the implementation of Max-Weight,

a centralized control algorithm that has been designed for theoretically achieving optimal

throughput [53] is presented. Finally, I demonstrate how MAC protocols can be easily

changed on the fly on WiMAC through an example of meta protocol.

3.5.1 Link Performance

For the experiments, we used NI USRP 2153R, which is an FPGA-based SDR by

National Instruments. The experiments were run at the center frequency of 2.437GHz.

Subcarrier format follows the IEEE 802.11a 20MHz standards. To reduce interference

from external sources, set the RX gain of each of the nodes was manually set to be 19 dB,

and the transmit power to be 10 dBm, with the exception of the meta protocol case. The

44

performance of a single link is summarized in Table 3.1. For implementation of protocols,

the modulation and coding scheme (MCS) was set to 64QAM with 3/4 coding rate.

Table 3.1: Link throughput for different modulation schemes and coding rates

Modulation Coding Rate Link Throughput (Mbps)

BPSK
1/2 5.7
3/4 8.4

QPSK
1/2 11.0
3/4 16.0

16QAM
1/2 20.7
3/4 29.5

64QAM
2/3 37.1
3/4 41.2

3.5.2 CSMA

CSMA [51] is known to be one of, if not, the most widely used wireless MAC pro-

tocol nowadays. In CSMA, medium access is achieved by employing the "listen before

talk" mechanism. Before transmitting, each wireless node senses the channel to ensure

it is clear. If the channel is clear, and the node has a packet to transmit, the node starts

decrementing its backoff counter, which is a random number chosen from [0, CW]. The

backoff counter stops if the channel becomes occupied either by other wireless nodes, or

by external noise. Once the channel is sensed to be clear again, the backoff counter re-

sumes. When the counter reaches 0, the node starts its transmission. CSMA is typically

used with Distributed Coordination Function [44]. In DCF, CW is doubled when a node

transmits but does not receive an ACK, up to CWmax. When it receives an ACK (after

a successful transmission) CW is set to CWmin. Since CSMA is a contention-based pro-

tocol, the efficiency of CSMA decreases as more nodes enter the network. The results

of CSMA are shown in comparison with CHAIN in Figure 3.3. When CWmin is small,

45

collisions happen frequently, and thus throughput drops as nodes enter the system. This is

the case when CWmin = 4. As CWmin increases, collisions occur less frequently, but the

system spends a lot of time idling when there are few nodes in the system. The waste in

network resources lead to lower throughputs as shown in Figure 3.3.

3.5.3 CHAIN

To increase the uplink efficiency of a network, CHAIN [52] proposes a mechanism

called piggyback transmission. As mentioned in the previous section, this feature allows

users to transmit immediately after a certain packet is heard. Specifically, in CHAIN,

piggyback transmissions occur after a node decodes an ACK sent to its predecessor. When

this happens, the node transmits a data packet after SIFS time. This reduces the amount

of time spent on contending for the channel, thus increasing uplink efficiency. When

this event does not occur, CHAIN operates just like CSMA with DCF, making it fully

compatible with DCF.

An example of this exchange is shown in Figure 3.4. In this set up, three clients C1,

C2, and C3 are connected to an AP, with C1 preceding C2, and C2 preceding C3.

• (e1) C1 sends a data packet to the AP.

• (e2) AP responds by sending an ACK to C1. At the same time, C2 overhears the

ACK for C1.

• (e3) Since C1 precedes C2, C2 sends a data packet immediately after a SIFS period.

• (e4) AP responds by sending an ACK to C2. At the same time, C3 overhears the

ACK for C2.

• (e5) Since C2 precedes C3, C3 sends a data packet immediately after a SIFS period.

46

(a)
2 3 4 5 6

26

28

30

32
CHAIN CSMA

(b)
2 3 4 5 6

28

30

32

(c)
2 3 4 5 6

26

30

34

(d)
Number of nodes

2 3 4 5 6

S
ys

te
m

 T
h

ro
u

g
h

p
u

t
(M

b
p

s)

24

28

32

CWmin = 8

CWmin = 32

CWmin = 4

CWmin = 16

Figure 3.3: System throughput under CSMA and CHAIN vs different CWmin: (a) CWmin
= 4, (b) CWmin = 8, (c) CWmin = 16, (d) CWmin = 32.

47

While we could have decided to set “Enable Piggyback?” as a control on the piggy-

back transmission block, we decided not to, so that other blocks could enable and disable

piggyback transmission based on some parameter instead of just controlling it from the

host. As it is, the Piggyback Transmission block was implemented as follows. The input

registers are whether to enable piggyback, packet type of last decoded packet, destination

address of last decoded packet, and reset output. The output register shows whether an

event that triggers piggyback transmission has occured, and, in CHAIN, is connected to

the TX packet block. Comparison registers are packet type for piggyback transmissions

and the address that triggers piggyback (also known as piggyback address), and they have

to be equal in this case.

Figure 3.4: Example of piggyback transmissions with three clients and an AP in CHAIN.

To implement piggyback transmissions in CHAIN, the comparison register packet type

was set to ACK packets, and comparison register to the precedent address. When a new

48

packet gets decoded, the packet type is checked to see whether it is an ACK packet, and

if it is, whether or not the addresses match. If both of these two conditions are satisfied,

the output register sends a piggyback transmission. Then, the TX packet block knows

that it needs to send a piggyback transmission, and does so after SIFS time. When a

transmission happens, the piggyback transmission block is reset using reset output on the

piggyback transmission block. The piggyback transmission block in WiMAC is shown in

Figure 3.5.

We compared the uplink results of CHAIN and CSMA for two to six nodes, for CWmin

values of 4, 8, 16, and 32. The results are shown in Figure 3.3. As can be seen, CHAIN

increases uplink throughput by up to 16.2% in the case of six nodes and CWmin = 32.

This is because collision rarely happens in this case, allowing piggyback transmissions to

occur fairly often.

Figure 3.5: Piggyback transmission block in WiMAC.

49

However, even in the case where CWmin = 4, piggyback transmission help to offset

the effects of frequent collisions by a significant amount. No such realistic numbers have

ever been presented before, which is a statement generally true of most MAC protocols

proposed in the literature.

3.5.4 Max-Weight Scheduling Policy

The class of Max-Weight scheduling policies has been extensively studied in network-

ing theory since the seminal chapter of [75]. As indicated by its name, at each decision

time, the Max-Weight scheduling policy chooses the schedule that maximizes the total

weight, which is usually defined by the state information of each client, such as the queue

length of the packet buffer and the transmission rate of the wireless channel. Max-Weight

scheduling has been shown to theoretically achieve throughput optimality, i.e. the ability

to meet the throughput requirements whenever possible, without knowing any information

about the packet arrival processes. Max-Weight scheduling has been applied to various

setups of wireless networks to achieve optimal throughput performance [76, 77, 78, 79].

Moreover, Max-Weight scheduling has also been proved to achieve good delay perfor-

mance under some conditions [80, 81]. Despite the progress in theoretical studies, how-

ever, there has been no realistic implementation of Max-Weight protocols. The flexibility

of WiMAC was utilized to explore the real performance of Max-Weight scheduling.

As a centralized control algorithm, Max-Weight is especially suitable for infrastructure

networks. In this chapter, we consider a single-hop wireless network with an AP and

multiple clients directly connected to the AP. We define the weight of each link as the

queue length of the packet buffer of the corresponding link (as in [53]). Under the Max-

Weight policy, the AP schedules the uplink packets by selecting the client with the largest

queue length at each decision time. For downlink transmission, since the AP has full

control over the channel as well as the queue length information of each link, the AP can

50

Figure 3.6: How (a) downlink and (b) uplink transmissions are done in Max-Weight.

deliver packets to the clients by using the typical data plus ACK scheme, as shown in

Figure 3.6(a).

On the other hand, for uplink transmission, there are two characteristic features in

the Max-Weight protocol implementation. First, contrary to contention-based protocols

(such as CSMA), under Max-Weight scheduling the AP is responsible for triggering the

transmission of all the clients to achieve contention-free medium access. To implement

this mechanism, we add a new packet type called Ready to Receive (RTR) for the AP

to allocate the wireless medium. As shown in Figure 3.6(b), each client only transmits

data to the AP when it receives the RTR request. Note that the transmission triggered by

the AP shares similarity with the piggyback transmission in CHAIN. The only difference

lies in that, instead of checking for an ACK of a precedent, each client checks for a RTR

in the packet header. Accordingly, the same feature that allows piggyback transmissions

also allows for AP-triggered transmissions. This example demonstrates the benefit of

identifying distinguishing features of MAC protocols.

The second feature of the Max-Weight protocol is using queue length information for

51

Figure 3.7: Block used in Max-Weight to obtain the TX queue length of the node.

Figure 3.8: Block used in Max-Weight to associate different clients with their respective
(weighted) queue lengths.

scheduling transmissions. In order to apply Max-Weight scheduling, the AP needs to know

the queue lengths of all the clients before it allocates the channel to a client. One straight-

forward approach is to poll every client to collect the required queue length information.

However, the polling overhead can possibly overwhelm the whole network as discussed

in [82]. To deliver the queue length information without incurring polling overhead, the

clients are designed to append the queue length information in the header of each data

packet. The feature of queue length information is implemented as two functional blocks

in hardware:

52

• For TX: Acquire the queue lengths from the number of elements in the packet buffer.

Input is set to the transmit queue, and there are no controls from the host. This block

is shown in Figure 3.7. Note, while in Max-Weight there is only one TX queue, the

block is implemented to allow support of more than one queue.

• For RX: Read the source address of the received packet and decode the queue length

field. Information of the above two fields is stored in output registers. For this block,

the inputs are source address, queue length of the last decoded packet, and a reset.

Outputs are the source address and queue length of the last decoded packet, and

there is also a weighted queue length option that can weight each queue by weights

specified from the host. This block is shown in Figure 3.8.

This way, the AP is able to obtain the up-to-date queue length of the scheduled client.

However, if a client has not been scheduled for a long time, the queue length kept in the

AP may become out-of-date and result in bad schedules. To handle this problem, a Time

to Update (ToU) function is added to keep track of the difference between current time

and the time of the last transmission for each client. When the time since last RTR of

a client exceeds the timeout threshold, the AP transmits RTR immediately to update the

queue length.

Figure 3.9 provides an example of how Max-Weight scheduling is performed for up-

link. In the set up, there is one AP scheduling for two clients, C1 and C2. QL1 and QL2

refer to the queue lengths of C1 and C2 respectively.

The events in Figure 3.9 are described as follows:

• (e1) The AP starts with QL1 = 15 and QL2 = 11. Under Max-Weight scheduling,

the AP schedules C1, which has the largest queue length.

• (e2) After one RTR, QL1 becomes 14 and is still larger than QL2. The AP keeps

scheduling C1.

53

Figure 3.9: Example of Max-Weight scheduling with two clients.

• (e3) New data packets join the buffer of C2. However, QL2 is not updated and stays

at 11.

• (e4) After one RTR, QL1 becomes 13 and is still larger than QL2. The AP keeps

scheduling C1.

• (e5) New data packets join the buffer of C1.

• (e6) The time since last RTR of C2 exceeds the timeout threshold.

• (e7) QL1 = 40 > QL2 = 11. However, due to (e6), the ToU function triggers RTR to

C2.

• (e8) QL2 is updated after (e7). Now, since QL1 = 40 < QL2 = 41, the AP schedules

C2.

• (e9) After one RTR, QL2 becomes 40, which equals QL2. The AP breaks the tie by

choosing the one with the smallest ID (C1 in this example).

54

• (e10) After one RTR, QL2 becomes 39, which is less than QL2. The AP schedules

C1.

The timeout threshold provides an upper bound for the delay of queue length updates.

By using the queue length information with bounded delay, Max-Weight scheduling can

still preserve throughput optimality as discussed in [83]. Moreover, since the ToU function

handles only high-level instruction of the AP, it is implemented completely in the software

domain and can be changed during runtime. This further shows the benefit of decoupling

software from hardware in WiMAC.

Table 3.2: System throughput under Round-Robin scheduling and Max-Weight scheduling

Case
System Throughput (Mbps)
Round-Robin Max-Weight

1 9.8 14.6
2 17.0 21.9
3 24.8 30.1

Next, we evaluated the performance of the Max-Weight scheduling policy for an uplink

network with one AP and five clients. The data packets join the buffer of each client at a

specified rate. The packet generation rates (in packets per second) of the five clients are as

follows:

• Case 1: (50, 150, 250, 350, 450)

• Case 2: (75, 225, 375, 525, 675)

• Case 3: (100, 300, 500, 700, 900)

Each packet has a size of 1500 bytes. First, the Max-Weight scheduling is compared

with the Round-Robin scheduling policy, which is utilized in the IEEE 802.11 PCF for

55

contention-free medium access. Table 3.2 shows the overall RX throughput of the AP

under these two protocols. In all the three cases, the system throughput is improved by

more than 20% under Max-Weight scheduling. This is because Round-Robin scheduling

allocates the channel equally to each client, resulting in clients with low packet generation

rate wasting much network resources due to their empty buffers. Second, the RX through-

put of the AP is shown with different timeout thresholds in Figure 3.10. One may observe

that the RX throughput can degrade seriously when timeout is set below 20 ms or above 2

second. When the timeout is small, the AP wastes network resources by sending RTRs to

the clients with no packets in the queue. On the other hand, when timeout is too large, the

AP makes poor scheduling decisions due to the out-of-date queue length information.

Through this implementation, the issue of the overhead of obtaining up-to-date in-

formation is highlighted, which is not discussed in the existing literature and simulation

results. Hence, WiMAC indeed supports wireless researchers exploring the potential prob-

lems through implementation.

3.5.5 A Meta Protocol

In this section, a meta protocol was developed from the initial set of features after

implementing WiMAC . For this protocol, a hybrid between CSMA and CHAIN was

implemented and deployed as the nodes were running. This protocol was chosen to be

implemented since the throughput can be expected to fall somewhere between CSMA

and CHAIN, so where the protocol changes occur can easily be seen on the graph. The

meta protocol is as follows: Suppose we have an infrastructure topology with one AP and

multiple clients. When the queue length of any client is less than a certain threshold, use

CSMA. However, when any client’s queue length is more than the threshold, the node will

enable piggyback transmissions. Intuitively, we want to allow clients with higher queue

lengths to transmit more frequently.

56

0.001 0.01 0.1 1 10
24

26

28

30

32
Case 3

0.001 0.01 0.1 1 10

S
ys

te
m

 T
h

ro
u

g
h

p
u

t
(M

b
p

s)

18

20

22

24

Case 2

Timeout (sec)
0.001 0.01 0.1 1 10
10

12

14

16

Case 1

Figure 3.10: System throughput under Max-Weight scheduling versus different timeout
thresholds.

The Get Queue Length block, the Decode Header block, and the Piggyback Transmis-

sion block were utilized to implement this protocol. First, the TX queue length is obtained

and used as one of the inputs on the Piggyback Transmission block. Then the correspond-

ing comparison register is set to check for greater than or equal the queue threshold. Two

outputs, packet type and destination address, from the Decode Header block are also used

as inputs to the Piggyback Transmission block. The comparison registers were set to check

57

for equality in both of these cases: ACK packets for the packet type input, and piggyback

address for the destination address input. Interactions between these blocks are shown in

Figure 3.11.

Figure 3.11: How different functional blocks interact with each other in the Meta Protocol.

For the experiment, each node was set to generate 1000 packets per second, with packet

size set to 1500 Bytes. The queue length threshold is set to 2000 packets. In Figure 3.12,

we show how the throughput changes as the protocol changes from CSMA to CHAIN and

finally to the Meta Protocol. The system was run for around 54s under CSMA, and then for

around 44s under CHAIN. After CHAIN, the protocol was switched to the proposed Meta

Protocol. As we can see, at around 54s the throughput jumps, since CHAIN achieves

a higher uplink throughput than CSMA. At around 98s, the throughput drops back to

CSMA, since no node has queue length beyond the threshold. Hence, every node is on

CSMA. After a short period of time, some of the nodes will have a higher queue length

58

than the threshold. Those nodes will start piggybacking over their precedent’s ACKs. This

pushes the system throughput slightly higher than CSMA but still lower than CHAIN.

This simple meta protocol is used to show how completely new protocols can be im-

plemented by connecting different types of blocks, and how protocols can be changed on

the fly. Implementation of this protocol also demonstrates how protocols can be designed

completely heuristically on WiMAC if so desired.

Time (sec)
0 50 100 150S

y
s

te
m

 T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

24

26

28

30

32

34

Meta
Protocol

CHAINCSMA

Figure 3.12: System throughput under different protocols. The system uses CSMA from
0 to 54s, then CHAIN until 98s, and finally the Meta Protocol until the end.

3.6 Extensibility of Platform

As the platform develops, we anticipate that new blocks will be added to the system to

support different classes of MAC protocols providing extensibility. We demonstrate how

new blocks can be easily added to the system, and how these blocks can be used in existing

or future protocols.

59

As an example, let us suppose we want to add a feature that allows a node to sleep.

Sleep is a required and widely used feature in energy saving protocols such as [68].

To incorporate sleeping as one of the functions that MAC designers can use when

implementing their protocol, we first have to create a generic sleep function block. A

sleep function block could look like the following: Control registers to decide whether

or not to enable sleep mode. Input registers to specify the condition(s) to check before

sleeping or waking, outputs of the blocks that trigger when certain events occur, the length

of time to sleep, and force wake. The output registers could be the sleep status of the node,

and the remaining time to sleep. A possible implementation of the sleep block is shown in

Figure 3.13.

Now, suppose we want to use this block alongside the blocks that have been imple-

mented. We can implement protocols that have any combination of the features that have

been implemented. For example, suppose we have an AP that knows the number of nodes

in the system. It could tell Client 1 to sleep after transmission and Client 2 to piggyback

onto Client 1’s transmissions, unless the number of packets in the queue is more than a

certain threshold. Or if a client piggybacks when it has a high backoff count, it has to sleep

for a period of time before it transmits again. That way, it saves its energy, and the system

gets to maintain its fairness.

These are just a couple of examples on how implementing a new feature opens up a

new class of protocols that can be implemented, without compromising on performance

or the flexibility of the system. As such new features get added to the system, the number

of protocols that the platform will be able to support will increase exponentially.

3.7 Conclusion

WiMAC seeks to provide a flexible platform to implement a wide range of protocols

while meeting the strict timing requirements of a MAC. Such experimentation can reveal

60

Figure 3.13: A possible implementation of a sleep block in hardware.

issues not considered in the design. An example is shown in the chapter. While Max-

Weight has long been touted to require only queue state information from the nodes, we

discovered that packet incoming rates, in conjunction with timeout length, impact the op-

timality of the protocol. This is just a glimpse of the potential issues concerning new

MAC designs that can quickly be discovered from experimentation, and how potential de-

sign flaws can be resolved quickly. WiMAC has been designed to be easily extensible to

support new classes of MAC protocols to explore such problems.

61

4. MEDIUM ACCESS CONTROL FOR DIRECTIONAL MILLIMETER WAVE

WIRELESS NETWORKING

∗

4.1 Introduction

As the usage and demand of wireless networks continues to expand, the Federal Com-

munications Commission in the US has released new spectrum in the millimeter wave band

(mmWave) for licensed (27.5-28.35 GHz, 37-38.6 GHz, and 38.6-40 GHz) and unlicensed

(64-71 GHz) use. Indeed, one of the key enabling technologies of 5G wireless networks

is to operate in bandwidths between 30 GHz and 300 GHz. The vast amount of spectrum

available in the mmWave bands allows for significantly higher bandwidth that could po-

tentially improve the network performance by orders of magnitude. However, developing

wireless technology in this band is not without challenges. One key challenge is the high

attenuation at mmWave frequencies. Specifically, it follows from the Friis formula

PR = PTGRGT (
λ

4πr
)2,

that in free space, the path loss of the signal scales as 1
f2 where f is the frequency of the

transmitted signal. In the above, PT and PR denote the transmitted and received signal

powers respectively, GT and GR denote the transmit and receive antenna gains respec-

tively, r denotes the distance between the transmitter and the receiver, and λ = c
f

is the

wavelength of the transmitted signal. This in turn implies that for a given transmit and

receive antenna gains, the signal power attenuation at 60GHz, which is the frequency band

∗ c©2018 IEEE. Reprinted, with permission, from Satchidanandan B., Yau S. and Kumar P. R., Aziz
A., Ekbal A. and Kundargi N., TrackMAC: An IEEE 802.11ad-Compatible Beam Tracking-Based MAC
Protocol for 5G Millimeter-Wave Local Area Networks, 10th International Conference on Communication
Systems and Networks (COMSNETS), Jan 2018 [84]

62

of interest in this chapter, is about 27dB higher than that at 2.5GHz.

In order to overcome this high attenuation, it is imperative to increase the antenna

gains GR and GT . Fortunately, the antenna dimensions scale inversely with the operating

frequency and consequently, embedding tens to even hundreds of antennae in a small

form factor becomes feasible at 60GHz, allowing one to perform transmit and receive

beamforming, thereby increasing the antenna gains in certain directions [85, 86, 87, 88, 89,

90, 91, 92, 93]. Indeed, the antenna gains GT and GR for a given antenna aperture scale as

f 2, and consequently, one now obtains a power attenuation that is 27dB lower at 60GHz as

compared to 2.5GHz [94]. The combination of high bandwidth and higher received power

at 60GHz makes mmWave communications an ideal technology to achieve multi-gigabit-

per-second wireless communications which has applications in several domains including

wireless backhauling and real-time high-definition video streaming.

Employing highly directional beams for transmission and reception introduces certain

novel challenges for MAC design. Specifically, highly directional beams introduce the

problem of deafness described in [95], and traditional MAC protocols such as CSMA/CA

(CSMA with collision avoidance), which rely on the omnidirectional nature of transmis-

sions and receptions, may no longer be effective in orchestrating the medium access. Sec-

ondly, the fact that the nodes are directional necessitates the transmitter to keep track of

where every station (STA) is, which could be a significant challenge when the STAs are

mobile. Note that in such a scenario, it is not only the position of the nodes in the system

that affects the network performance, but also their orientations. In other words, as the

directional STAs physically move or rotate in a cell, the AP has to track these changes

and adapt its transmissions and receptions accordingly. Likewise, each STA has to adapt

its transmissions and receptions in response to its own displacement and rotation. Certain

other challenges such as blockage also feature in millimeter-wave bands which the MAC

protocol has to take into account.

63

In light of the above challenges unique to millimeter-wave networks, it becomes nec-

essary to develop new directional MAC protocols for these networks which address the

problems of deafness, mobility, and blockage. In this chapter, I present TrackMAC, a

directional MAC protocol which has certain important beneficial features as described be-

low.

First, TrackMAC allows for both scheduled service periods as well as contention-based

channel access, and does so while taking into account the mobility of the nodes, both trans-

lational as well as rotational, based on a conservative estimate of how quickly a node can

move and rotate. In this context, we introduce the notion of Topological Coherence Time

Ttc of a directional wireless network. Roughly speaking, this is the maximum duration

during which the topology of the network remains “constant." This quantity depends pri-

marily on the mobility of the nodes in the network, but could also be influenced by the

beamwidths of the antennae. We discuss this in more detail in the following sections.

One of the key bottlenecks affecting the performance of a mmWave network is the

delay associated with discovering the relative position and orientation between the AP and

a STA. To address this issue, TrackMAC is designed in such a manner that with a small

overhead, the need for constant rediscovery of the network topology by the centralized

scheduler or AP is eliminated.

Importantly, as we show in Section 4.4, TrackMAC has a significant architectural ad-

vantage: It can be implemented squarely within the framework of the IEEE 802.11ad

standard. Specifically, TrackMAC can be realized by reprogramming only the scheduling

layer of an IEEE 802.11ad network stack.

While the issue of blockage of millimeter waves by objects such as the human body,

office furniture, etc., is not explicitly addressed in this chapter, the features of protocols that

address it, such as multihop relaying [94], can well be implemented within the framework

of TrackMAC in a relatively straightforward fashion.

64

In summary, the contributions of this chapter are three-fold:

1. The introduction of the notion of topological coherence time of a directional wireless

network, which is potentially a key parameter for designing efficient directional

MAC protocols.

2. TrackMAC, a directional MAC protocol which takes into account the topological

coherence time, the directionality of the nodes, and which continually tracks ev-

ery associated STA with a small overhead, thereby removing the need for constant

rediscovery of mobile nodes.

3. Implementation of TrackMAC within the specifications of the IEEE 802.11ad stan-

dard.

The rest of the chapter is organized as follows. In Section 4.2, I present related work in

this area, and the key distinctions between these efforts and our work is also outlined. Sec-

tion 4.3 describes TrackMAC, the proposed MAC protocol. Section 4.4 presents certain

key features of the IEEE 802.11ad standard, and also describes how TrackMAC can be im-

plemented within the specifications of the standard by reprogramming only the scheduling

layer of the network. Section 4.5 presents some simulation results, and Section 4.6 con-

tains some concluding remarks.

4.2 Related Work

Before mmWave was widely viewed as a feasible technology for increasing usable

spectrum for wireless networks, there had been several studies examining the use of di-

rectional MAC protocols to improve spatial reuse for sub-6GHz ad hoc wireless networks

[96, 97, 98, 99, 100, 101, 102, 103, 104, 105]. However, these papers do not consider

mobility of the nodes and consequently, may not perform well in an indoor scenario with

mobile nodes. In [97, 106, 107, 100], the authors focus on directional MAC protocols for

65

ad hoc networks. However, protocols designed for ad hoc networks can incur significant

overhead and cause significant degradation to the efficiency of an infrastructure wireless

network. Furthermore, these protocols were not designed for mmWave bands, and they

rely on assumptions that do not apply in these bands.

In [108], the authors briefly mention handling of mobility in a Wide Area Network

(WAN) but do not consider how mobility affects the scheduling of nodes. Reference [109]

proposes a MAC protocol that works in mobile scenarios and also details how the loca-

tion of the stations are updated. However, this work is not based on the IEEE 802.11ad

standard, and so, it may not be possible to implement it within the specifications of the

standard. Similarly, in [110], the authors develop an algorithm for avoiding blockage and

dealing with mobility. However, they require all associated STAs to inform the AP of

the transmission rates between them and all other STAs every 10ms (for the scheduling

decisions), which may not be compatible with IEEE 802.11ad. Full details of the IEEE

802.11ad specifications can be found in [111].

Reference [112] provides a directional MAC implementation on top of the current

IEEE 802.11ad standard. However, like some of the papers cited above, it too does not

consider mobility of the nodes.

4.3 Design Methodology of TrackMAC

Consider a mmWave infrastructure wireless network as shown in Figure 4.1. The role

of the AP is to (i) communicate with the STAs already associated with it, and (ii) enable

new nodes in its vicinity to join the network by associating them with it. The latter is

commonly known as Initial Access (IA). In what follows, we describe the protocol for

both the IA phase as well as for the data transmission phase.

66

Figure 4.1: A mmWave network operating in infrastructure mode.

4.3.1 Topological Coherence Time

One of the key parameters that determines the exact design of the proposed MAC

protocol is the topological coherence time, denoted by Ttc. Akin to the notion of the co-

herence time of a wireless channel, the topological coherence time is a measure of how fast

the network topology changes. To illustrate this notion in a very simple context, consider a

mmWave network with just one AP and one STA. Suppose also that each of these nodes is

equipped with an antenna array with a 3dB beamwidth of, say, 10◦. For simplicity, suppose

that there is only one dominant path from the AP to the STA, and that it is the Line-of-Sight

(LoS) path. Let the AP’s beam and the STA’s beam be perfectly aligned at time t = 0. As

time progresses, the STA moves and rotates, so that the STA’s beam becomes misaligned

with respect to the AP’s beam. Consequently, the link gain GTGR, where GT and GR are

the transmit and receive antenna gains respectively, fluctuates from its peak value. The

topological coherence time is defined as the time t until which any link’s gain degrades

67

no more than 3dB from its peak value. Clearly, in this example, the topological coherence

time is a function of the maximum rotational and translational speeds of the STAs. For

instance, if the STAs are assumed to be stationary and the maximum rotational speed of

the STAs is 360 degrees/s, a very conservative estimate, then, for a 3dB beamwidth of 10◦,

the topological coherence time is of the order of 5
360
≈ 14ms.

In a more general scenario, the topological coherence time may not be expressible

explicitly in terms of just the mobility parameters of the STAs, but nevertheless, it is a

quantity that, like channel coherence time, is measurable in an order of magnitude sense.

4.3.2 TrackMAC: A Novel Directional MAC Protocol

In what follows, we describe the TrackMAC protocol as well as the methodology by

which the parameters of the protocol are designed. For the sake of exposition, we make

use of a running example to illustrate the design methodology.

In the proposed MAC protocol, time is divided into a series of slots known as “macroslots."

The duration of each macroslot, denoted by TM , is set to be TM = Ttc

p
, where p ≥ 2 is an

arbitrary design parameter. In our running example, we take p = 2. Also for our example,

we assume Ttc to be of the order of 10ms, so that the macroslot duration is TM = 5ms.

Now, depending on the maximum number of STAs that are to be supported by an AP,

each macroslot is further subdivided into several slots known as “microslots." Specifically,

if N is the maximum number of STAs that are to be associated with an AP, then, each

macroslot is divided into N microslots, so that each microslot extends for a duration of

Tm = TM

N
. In our example, we suppose that the AP is not expected to serve more than

N = 25 STAs at a time, so that each macroslot consists of 25 microslots. It follows that

each microslot extends to a duration of Tm = 200µs. This structure of macroslots and

microslots is illustrated in Figure 4.2.

Now, during the data transmission phase (as opposed to IA phase), each STA associated

68

Figure 4.2: Division of time into macroslots, of macroslots into microslots.

with the AP is scheduled by the AP in certain microslots. The only constraint for the AP

is that it schedules each STA at least once in each macroslot. Note that since by design

the time difference between any two microslots belonging to adjacent macroslots is lesser

than the topological coherence time, the AP knows the direction in which it has to point its

beam in each microslot in order to communicate with the intended STA. Once the link is

established during a microslot, the AP and the STA consume some training overhead time

to refine their beam directions. This ensures that the STA never strays too far away from

the stored direction in the AP’s direction table, and can always be tracked as long as the

AP schedules the STA at least once in each macroslot. Subject to just this one constraint,

the AP can schedule the STAs in any manner that maximizes the network utility. In fact,

as long as the AP satisfies this scheduling constraint, it can also allocate certain microslots

in each macroslot for contention-based access (CBAP). Any contention protocol designed

for directional nodes can be employed in this time period. Finally, the ACK frames are

transmitted by the STAs at the end of each microslot using time division duplexing.

Next, we describe and evaluate the MAC overhead required for the functioning of

TrackMAC. In addition to beam refinement, training overhead time should be and is allot-

69

ted in each microslot for the purposes of (i) symbol timing recovery, (ii) channel estima-

tion, and (iii) frame synchronization. We now estimate the amount of overhead required

for each of these.

Based on indoor channel measurement studies at mmWave frequencies, the delay

spread of the channel in a typical indoor office-like environment is at most 500ns [113].

This mandates that the channel estimation (CE) pilots be at least 500ns in duration. While

allocating a CE pilot duration that is an order of magnitude larger than the channel delay

spread may be preferable for smoothing the channel estimate in the presence of noise, any

allocation higher than the delay spread is sufficient for estimating the channel impulse re-

sponse. While in our running example we allocate 5µs for CE pilots, which is an order of

magnitude larger than the delay spread of the channel, an allocation of about 650ns would

be in adherence with the 802.11ad standard as explained in the next section. Next, we

examine how often within a microslot the channel has to be estimated. This depends on

the channel coherence time. For a typical indoor speed of about v = 1.5m/s, the doppler

spread D of the channel at 60GHz is about D = fcv
c

= 300Hz, corresponding to a channel

coherence time that is of the order of 1
D
= 3.33ms. Since this an order of magnitude larger

than the microslot duration, it is sufficient to allocate just 5µs per microslot out of the

200µs available for channel estimation.

Typically, standard sequences, such as Golay sequence or Zadoff-Chu sequence, of

various possible lengths are chosen as training symbols for timing recovery and frame

synchronization owing to certain autocorrelation properties that they exhibit. For example,

as shown in [114] in the context of mmWave links, a sequence length of 2048 symbols

provides robust symbol timing recovery. We use the same training length in our running

example. Consequently, for a symbol duration of Ts = 1
W

= 0.46ns that is typical in

the 60GHz band for a bandwidth W = 2.16GHz (in adherence with the IEEE 802.11ad

standard), this translates to a pilot duration for timing recovery of about 1µs. Finally, while

70

training symbol duration for beam refinement can also be chosen freely, in our running

example, we allocate between 10µs and 15µs for this, which again is in adherence with

802.11ad.

Adding all of the above pilot durations, we obtain a total overhead of approximately

20µs per microslot, which leaves about 180µs per microslot for transmission of the MAC

payload. This in turn translates to a total MAC overhead of about 10%.

In addition to the above training overheads, some specified time tcontrol may be allo-

cated in each microslot for exchanging control information. Although we do not do this in

this chapter in order to adhere with 802.11ad specifications, in general this could be done,

and during this time, the AP and the STA could exchange information such as queue back-

log, packet deadlines, channel quality index, the microslot in the next macroslot in which

the STA is scheduled, etc. Note that this allows the AP to schedule the STAs adaptively

every macroslot based on their queue backlogs, required deadlines, etc.

In order to allow for initial access, we designate one macroslot periodically as “IA

macroslot.” In our example, we suppose that one macroslot in every twenty macroslots is

designated as an IA macroslot. In an IA macroslot, the AP transmits a beacon in one of

the pre-defined sectors using a low-order modulation scheme such as BPSK and a low rate

code. A STA that wishes to associate with the network configures its antenna in a quasi-

omnidirectional mode similar to the IA procedure of IEEE 802.11ad described in the next

section. While the quasi-omnidirectional reception leads to low received SNR, the fact

that the beacon, which is only a few bits in length (not more than 1000 bits in 802.11

systems), is transmitted at a very low rate enables the STA to reliably decode the beacon.

Once the beacon is decoded, the AP and the STA perform the beamforming procedure

specified in the 802.11ad standard [111] to align their beams. Some specified duration of

the IA macroslot is also allocated to communicate the schedule of every associated STA

until the next IA macroslot.

71

We do not specify a duration for the IA phase, but the longer this period is, the higher

the probability of an STA being associated with the AP. Consequently, more STAs can be

associated with the AP during a single IA phase. On the other hand, if this period is set too

short, an STA may require many IA phases before finally being associated with the AP (or

reassociated with the AP if the AP fails to track the STA). Once the STA associates with

the AP, the latter stores the location of the newly associated STA in its direction table, and

also specifies its schedule till the next IA Macroslot.

4.4 Implementation of TrackMAC Within the IEEE 802.11ad Specifications

Before we describe how TrackMAC can be implemented within the specifications of

the 802.11ad standard, we provide a brief overview of certain key specifications of the

standard. Some basic familiarity with the standard is assumed of the reader in this section.

A more comprehensive description of the standard can be found in [115, 116], and the

standard itself can be found in [111].

Consider a Basic Service Set (BSS) operating in infrastructure mode – the AP is con-

nected to all other STAs. Similar to legacy 802.11 standards, the 802.11ad divides the

time axis into Beacon Intervals (BI). While the exact duration of a BI can be chosen by the

system designer, it has to be chosen in the range of 100ms and 1000ms. In most practical

deployments, it is chosen to be in the order of about 100ms.

Figure 4.3: Structure of a Beacon Interval.

72

Figure 4.3 illustrates the structure of a BI. As shown, each BI is composed of two

phases - the Beacon Header Interval (BHI) and the Data Transmission Interval (DTI).

The BHI duration is not specified in the standard, and is free to be chosen by the system

designer. Typically, the BHI is in the order of a few milliseconds, and the DTI consumes

the bulk of the BI. In our example, we dedicate about 2ms for BHI, and about 98ms for

DTI.

The BHI is further subdivided into three phases - the Beacon Transmission Interval

(BTI), followed by an Association Beamforming Training (A-BFT) interval, and finally

the Announcement Time Interval (ATI). During the BTI, the AP transmits a beacon direc-

tionally in certain predefined sectors as mentioned before using MCS 0. This is the lowest

rate MCS scheme defined in the 802.11ad standard, and offers maximum error protection.

This MCS is typically used prior to beamforming to exchange critical control information

in a robust fashion [115], but never for data transmission since it is severely limited in

terms of data rate.

The A-BFT period is used for associating and beamforming training of the new STAs.

Specifically, during the A-BFT phase, the AP and the STA transmit and receive pilot se-

quences in different predefined sectors to converge on the best transmit and receive sectors.

While these sectors, being predefined, are quantized and provide coarse beamforming,

finer beam refinement could also be performed to converge on optimal beam directions.

Finally, during the ATI, the AP informs every associated STA the schedule during

DTI. Specifically, during DTI, some time periods can be dedicated for servicing specific

STAs, while other time periods could be designated for contention-based channel access.

Whatever the schedule is, the AP informs each associated STA of the schedule.

The DTI begins after the ATI. Each DTI can support multiple data transmissions to

different STAs, and they can be scheduled in any fashion by the scheduling layer. The

standard supports a hybrid access method, i.e., both scheduled and contention-based trans-

73

missions are supported during the DTI.

Figure 4.4 illustrates how TrackMAC can be implemented within the 802.11ad frame-

work. Specifically, with respect to the MAC layer, the IA macroslots in our protocol

essentially are designed in such a way that microslots 1 thru 10 of the IA macroslots are

designated for BHI. This translates to a BHI duration of 2ms (recall that each microslot is

200µs long). To attain a BI duration of 100ms, one IA macroslot is interleaved between

every 19 macroslots (recall that a macroslot is 5ms long). The overlay of macroslots on an

802.11ad BI is shown in Figure 4.4.

Figure 4.4: Overlay of 802.11ad PHY packets on microslots and macroslots on 802.11ad
BI.

Finally, a physical layer packet of 802.11ad can be of three types, viz., control PHY,

single-carrier PHY (SC-PHY), and Orthogonal Frequency Division Multiplexing (OFDM)

PHY. All physical-layer packets of 802.11ad have the same set of fields - the Short Training

Field (STF) for signal detection and symbol timing recovery, the Channel Estimation Field

74

(CEF), the PHY Header field which contains all necessary information to decode the MAC

payload, the MAC payload, and finally the beamforming training field (TRN). It is only the

duration of each field and the MCS used in the MAC payload that is different for different

PHY packet types. The structure of a PHY packet with different fields marked is shown in

Figure 4.5.

The beamforming training field of a PHY packet consists of pilot sequences that are

transmitted by the AP in different sectors adjacent to the direction in which the MAC

payload is transmitted. The number of sectors along which training sequences are to be

transmitted can range from 0 to 64 in multiples of 4.

Figure 4.5: 802.11ad PHY packet structure.

Also shown in Figure 4.4 is the overlay of PHY packets used in 802.11ad on the mi-

croslots. Specifically, a PHY packet of 802.11ad has all the fields present in a microslot

defined in TrackMAC. Furthermore, the duration of the different fields of the 802.11ad

PHY packet is in conformity with those of a microslot. The STF of the 802.11ad SC-PHY

packet, which serves the purpose of pilot symbols for symbol timing recovery, is about

1.2µs long, which is the about the same duration alloted in a microslot for timing recov-

ery. Similarly, the channel estimation field of an 802.11ad SC-PHY packet is 645.12ns,

which can be mapped to the channel estimation pilots in a microslot. Finally, the beam-

forming training fields in 802.11ad can range anywhere from a little more than 10µs to

75

about 180µs depending on the number of sectors that pilot symbols should be transmitted

in. However, note that since the time difference between two consecutive channel accesses

of a STA is never more than the topological coherence time in TrackMAC, it is enough

for beamforming training sequences to be transmitted in just S = 4 sectors adjacent to

the direction of payload transmission, for typical beamwidths used. For this choice of S,

the duration of the training field extends to a little more than 10µs in 802.11ad, which

conforms to the beamforming training field duration in a microslot defined in TrackMAC.

The aforementioned mapping ensures that the scheduling algorithm running on top

of an 802.11ad MAC layer organizes medium access, as well as the physical layer trans-

missions, are in adherence with both TrackMAC and the 802.11ad specifications. The

scheduling algorithm needs to only satisfy the constraint that every STA is scheduled at

least once in every macroslot in order to track every mobile STA associated with it.

4.5 Simulation Results

As described in Section 4.3, an important feature of the proposed scheduling frame-

work or the TrackMAC is its ability to track every mobile station that is associated with

it. One of the primary purposes of our simulations is to evaluate the tracking efficacy of

TrackMAC. Towards this, we evaluate in our simulations (i) the tracking performance of

the AP when it employs the proposed scheduling algorithm, and (ii) the average received

signal strength for different mobility parameters, a key physical layer performance metric.

In our simulations, each node (AP or STA) is equipped with a Uniform Linear Array

(ULA) of 64 elements, which gives it the ability to beamform. The inter-element spacing

in the ULA is set to λ/2 = 25mm, where λ = c
fc

is the carrier wavelength. Figure 4.6

shows the azimuth pattern of such an array. The 3dB beamwidth of the array is about 1.6◦.

We simulate the system in a “fully loaded" condition, i.e., the number of STAs asso-

ciated with the AP equals the number of microslots. The number of microslots is set to

76

 Directivity (dBi), Broadside at 0.00 degrees

 D
ir

ec
ti

v
it

y
 (

d
B

i)

Azimuth Cut (elevation angle = 0.0
°
)

 -30

 -20

 -10

 0

 10

-150

30

60

-120

90

-90

120

-60

150

-30

180 0

Figure 4.6: Azimuth pattern of a λ/2-spaced 64-element ULA at 60.48GHz.

25 in our simulations, resembling the design in our running example. Also, the network is

simulated for a duration of 200ms which equals two beacon intervals.

In a LoS indoor environment and for typical translational and rotational velocities of

users, the dominant factor that determines the topological coherence time is the rotational

speed of the STAs. Motivated by this, we first present the simulation results of a scenario

in which the STAs are stationary but rotate at a speed chosen uniformly at random with

a given upper bound. In this case, the receiver uses the training fields (TRN) to steer

its beam in the direction of best received signal strength. If the receiver, in addition to

rotating about its position, also moves, then the AP has to track the STAs. In a second

77

scenario, we simulate this case with the STAs having their receive beams directed towards

the transmitter, but are mobile, thereby requiring the AP to track them as they move in the

azimuth. In this case, the STAs move at a speed chosen uniformly at random with a given

upper bound.

0 20 40 60 80 100 120 140 160 180

Time (ms)

-60

-40

-20

0

20

40

60

80

D
eg

re
es

Rx azimuth (Avg. speed = 5m/s)

Tx beam azimuth (Avg. speed = 5m/s)

Rx azimuth (Avg. speed = 10m/s)

Tx beam azimuth (Avg. speed = 10m/s)

Rx azimuth (Avg. speed = 20m/s)

Tx beam azimuth (Avg. speed = 20m/s)

Figure 4.7: Tracking performance of the AP for three different STA translational speeds
(5m/s, 10m/s, and 20m/s). Plotted against time are (i) the azimuth direction of a particular
randomly chosen STA out of the 25 associated STAs, and (ii) the azimuth direction in
which the AP points its transmit beam when it communicates with that particular STA.
For STA translational speeds of 5m/s and 10m/s, the AP is able to track the movement of
the STA, whereas for STA translational speed of 20m/s, the AP is unable to do so.

Figure 4.7 and Figure 4.8 illustrate the tracking performance of the AP as the re-

ceiver’s azimuth varies. The receiver is assumed to be beamformed towards the AP, and

the beamforming training field transmitted in the PHY packet of the AP consists of train-

78

0 5 10 15 20

Average STA speed (m/s)

48

50

52

54

56

58

60

62

A
v

er
ag

e
re

ce
iv

ed
 p

o
w

er
 i

n
 d

B

Figure 4.8: Average received signal power vs. translational speed of STAs. The abscissa
denotes the avg. speed at which the STAs move, and the ordinate denotes the avg. power
level at which the MAC payload is received. The averaging is performed over STAs.

ing symbols for four sectors. Since the 3dB beamwidth of the antenna is about 1.6◦, the

training sectors of the PHY packet are chosen to be ±1.6◦ and ±3.2◦ relative to the di-

rection in which the payload is transmitted. Figure 4.9 shows the array pattern when the

antenna beam is steered using steering weights corresponding to 3.2◦ in the azimuth. It

can be seen from Figure 4.7 that TrackMAC is able to track translational speeds that are

fairly high for indoor scenarios (upwards of 10m/s), and deteriorates as the STA speed

becomes larger and larger. Figure 4.8 plots the average power level at which the MAC

payload is received a function of STA speed. Specifically, if xm,n denotes the signal re-

ceived by STA m, m = 1,, 25 during macroslot n, n = 1,, 40 (the network is

simulated for 2 BIs which equals 200ms or equivalently, 40 macroslots), then the figure

79

plots 1
25

∑25
m=1

1
40

∑40
n=1

||xm,n||2
T

.Here, T is the length of MAC payload during a microslot.

In our simulations, T = 41768 octets. Since the focus is on simulating the MAC protocol,

no PHY aspects such as small-scale fading or noise are simulated.

 Directivity (dBi), Broadside at 0.00 degrees

 D
ir

ec
ti

v
it

y
 (

d
B

i)
Azimuth Cut (elevation angle = 0.0

°
)

 -30

 -20

 -10

 0

 10

-150

30

60

-120

90

-90

120

-60

150

-30

180 0

Figure 4.9: Azimuth pattern of the ULA with steering weights corresponding to 3.2◦ az-
imuth.

Figure 4.10 and Figure 4.11 illustrate the tracking performance of the protocol in the

presence of STA rotation. The AP is now assumed to be beamformed in the direction of

STAs. As in the previous set of simulations, here too the beamforming training field of

the STAs consist of training symbols for sectors ±1.6◦ and ±3.2◦ relative to the direction

in which the payload is transmitted. Figure 4.10 shows the average misalignment between

the AP and the STA’s beams as a function of the STA’s rotational speed, and Figure 4.11

plots the average received payload signal power in a microslot. For nominal rotational

80

velocities expected of users, the misalignment between the beams, and also the average

received signal power, are not severely degraded.

0 2 3 4 5 6 7 8 9 10

Average rotational speed of STAs (radians/s)

0

5

10

15

20

25

A
v

g
.

T
x

-R
x

 b
ea

m
 m

is
al

ig
n

m
en

t
(d

eg
re

es
)

Figure 4.10: Tracking performance of AP and STAs for different rotational speeds. The
abscissa denotes the avg. rotational speed of the STAs and the ordinate represents the
angle between the directions of the transmitter’s beam and the intended receiver’s beam,
averaged over both STAs and time. The network was simulated for one beacon interval.

4.6 Conclusions and Future Work

This chapter presented TrackMAC, a directional MAC protocol for indoor mmWave

infrastructure wireless networks with mobile users. The high directionality of the nodes in

such networks necessitates the AP and each station to track each other over time, prefer-

ably with small overheads, in order to obtain sufficient link budget in mmWave bands. A

protocol that achieves this was presented, and the required MAC overheads were analyzed.

81

0 2 3 4 5 6 7 8 9 10

Average rotational speed of STAs (radians/s)

54

56

58

60

62

64

66

68

70

72

74

A
v

er
ag

e
re

ce
iv

ed
 p

o
w

er
 i

n
 d

B

Figure 4.11: Average received signal power vs. rotational speed of STAs. The abscissa
denotes the avg. speed at which the STAs rotate, and the ordinate denotes the avg. power
level at which the MAC payload is received. The averaging is performed over STAs.

It was shown that for typical indoor speeds, tracking could be achieved with a MAC over-

head of about 10%. The tracking performance was evaluated using computer simulations.

Finally, it was shown that TrackMAC can be implemented squarely within the specifica-

tions of the IEEE 802.11ad standard developed for mmWave wireless local area networks.

This is achieved by employing a certain class of scheduling algorithms in the scheduling

layer of an 802.11ad network stack. However, as discussed in previous chapters, simu-

lation alone is not sufficient to verify the performance of the protocol. Future work for

TrackMAC includes prototyping the protocol on a mmWave platform and evaluating its

performance.

82

5. CONCLUSIONS

The advancements in wireless communication have come a long way since its incep-

tion and they are showing no signs of slowing down. In fact, wireless networks will play

a bigger role in our everyday lives in the future. As next-generation wireless technologies

are developed, researchers are faced with new challenges to solve in order to make these

technologies viable for next-generation wireless applications. Verifcation of the solutions

to these challenges are performed differently, depending on which networking layer the

challenges fall under. At the PHY layer, verification of developed technologies is per-

formed by prototyping the hardware, and performing measurements and experiments on

the hardware. At the NET layer, verification is performed by performing extensive net-

work simulations. In some cases, researchers have even started using hardware switches

and routers to evaluate the performance of new networking protocols when simulations

are unable to sufficiently capture the behavior of the network. In both these cases, the

verification methods correspond well to the hardware or software domains the layer pri-

marily operates in. Since the PHY layer is in the hardware domain, verification should be

(and is) performed in the hardware domain. Similarly, since the NET layer is performed

primarily in the software domain, verification using simulations can capture the behavior

of the network adequately. In cases where the protocol has hardware dependencies, net-

working researchers may bring use hardware routers and switches to verify their claims.

At the MAC layer, however, even though it operates in both the hardware and software do-

main, verification of protocols is typically only done in simulation. This does not provide

sufficient evidence that the protocol will work just as well, since the performance of the

protocol with the hardware will remain largely untested. Furthermore, a simulation-only

verification approach for MAC protocols may overlook some issues that are not found in

83

simulations as I have shown earlier. To have confidence on the claims of proposed MAC

protocols, the protocols should be implemented on hardware to verify their performance

in an emulated scenario.

In this dissertation, I have designed and developed platforms that can be used for ex-

perimentation of next-generation MAC protocols. In PULSE, we were able to experiment

with scheduling real-time and non-real-time flows on a packet-by-packet basis with sub

millisecond latency. However, since scheduling was performed in software, there was an

overhead on the order of 100-200ms for transmission and reception of ACKs. One op-

tion to reduce this overhead is by using the WiMAC architecture presented in Chapter 3.

By using the architecture, we can schedule packets on the FPGA without losing flexibil-

ity on the scheduling policies. In addition to that, the architecture is extensible, and new

mechanisms can be added to WiMAC to rapidly prototype MAC protocols in the future.

Finally, I have presented a MAC protocol for mmWave that takes into account the different

propagation characteristics of transmissions in these bands, which include directionality

of transmission and the need to track mobile users in Chapter 4. I have introduced the

notion of topological coherence time, which is the period where the topology of the net-

work can be assumed to be stationary. This value is highly dependent on the mobility of

the users and the frequency of communication. Simulation results have been presented to

give a sense of how this protocol might perform, but building a platform to implement the

protocol is still necessary for evaluating the performance of the protocol.

84

REFERENCES

[1] GSMA, G. Intelligence, GSMA, and G. Intelligence, “Understanding 5G: Perspec-

tives on future technological advancements in mobile,” GSMA Intelligence Under-

standing 5G, no. December, pp. 3–15, 2014.

[2] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K.

Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for

5G cellular: It will work!,” IEEE Access, vol. 1, pp. 335–349, 2013.

[3] R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An

Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems,”

IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 436–453,

2016.

[4] E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta, “Massive MIMO for next gen-

eration wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186–

195, 2014.

[5] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and

F. Tufvesson, “Scaling up MIMO : Opportunities and challenges with very large

arrays,” IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 40–60, 2013.

[6] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-

orthogonal multiple access (NOMA) for cellular future radio access,” in IEEE Ve-

hicular Technology Conference, 2013.

[7] R. Razavi, M. Dianati, and M. A. Imran, “Non-Orthogonal Multiple Access

(NOMA) for future radio access,” in 5G Mobile Communications, pp. 135–163,

2016.

85

[8] J. Duplicy, B. Badic, R. Balraj, R. Ghaffar, P. Horváth, F. Kaltenberger, R. Knopp,

I. Z. Kovács, H. T. Nguyen, D. Tandur, and G. Vivier, “MU-MIMO in LTE systems,”

Eurasip Journal on Wireless Communications and Networking, vol. 2011, 2011.

[9] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC protocol for wireless

sensor networks,” in Proc. of IEEE INFOCOM, vol. 3, pp. 1567–1576, 2002.

[10] T. van Dam and K. Langendoen, “An adaptive energy-efficient mac protocol for

wireless sensor networks,” in Proc. of the 1st International Conference on Embed-

ded Networked Sensor Systems (SenSys), pp. 171–180, 2003.

[11] H.-S. So, J. Walrand, and J. Mo, “McMAC: A parallel rendezvous multi-channel

MAC protocol,” in Proc. of IEEE Wireless Communications and Networking Con-

ference (WCNC), pp. 334–339, March 2007.

[12] W. Hu, H. Yousefi’zadeh, and X. Li, “Load Adaptive MAC: A hybrid MAC proto-

col for MIMO SDR MANETs,” IEEE Transactions on Wireless Communications,

vol. 10, pp. 3924–3933, November 2011.

[13] L. Tang, Y. Sun, O. Gurewitz, and D. Johnson, “PW-MAC: An energy-efficient

predictive-wakeup MAC protocol for wireless sensor networks,” in Proc. of IEEE

INFOCOM, pp. 1305–1313, April 2011.

[14] I.-H. Hou and P. Kumar, “Utility maximization for delay constrained qos in wire-

less,” in INFOCOM, 2010 Proceedings IEEE, pp. 1–9, IEEE, 2010.

[15] J. J. Jaramillo and R. Srikant, “Optimal Scheduling for Fair Resource Allocation in

Ad Hoc Networks With Elastic and Inelastic Traffic,” IEEE/ACM Transactions on

Networking, vol. 4, no. 19, pp. 1125–1136, 2011.

[16] I.-H. Hou, “Broadcasting delay-constrained traffic over unreliable wireless links

with network coding,” IEEE/ACM Transactions on Networking, vol. 23, no. 3,

86

pp. 728–740, 2015.

[17] K. S. Kim, C.-p. Li, and E. Modiano, “Scheduling multicast traffic with deadlines in

wireless networks,” in INFOCOM, 2014 Proceedings IEEE, pp. 2193–2201, IEEE,

2014.

[18] Open Networking Foundation, “SDN Architecture Overview,” Onf, pp. 1–5, 2013.

[19] A. Malik, J. Qadir, B. Ahmad, K. L. Alvin Yau, and U. Ullah, “QoS in IEEE 802.11-

based wireless networks: A contemporary review,” 2015.

[20] X. Li, M. Samaka, H. A. Chan, D. Bhamare, L. Gupta, C. Guo, and R. Jain, “Net-

work Slicing for 5G: Challenges and Opportunities,” IEEE Internet Computing,

vol. 21, no. 5, pp. 20–27, 2017.

[21] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network Slicing in

5G: Survey and Challenges,” 2017.

[22] X. Zhou, R. Li, T. Chen, and H. Zhang, “Network slicing as a service: Enabling

enterprises’ own software-defined cellular networks,” IEEE Communications Mag-

azine, vol. 54, no. 7, pp. 146–153, 2016.

[23] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualization,” Com-

puter Networks, vol. 54, no. 5, pp. 862–876, 2010.

[24] F. Douglis and O. Krieger, “Virtualization,” 2013.

[25] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A survey of

information-centric networking,” IEEE Communications Magazine, vol. 50, no. 7,

pp. 26–36, 2012.

[26] “NSF Workshop on Ultra-Low Latency Wireless Networks,” November 2016.

[27] ITU-T, “The Tactile Internet,” August 2014.

87

[28] H. Holma and A. Toskala, LTE for UMTS: Evolution to LTE-advanced. John Wiley

& Sons, 2011.

[29] M. Laner, P. Svoboda, P. Romirer-Maierhofer, N. Nikaein, F. Ricciato, and

M. Rupp, “A comparison between one-way delays in operating HSPA and LTE net-

works,” in Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks

(WiOpt), 2012 10th International Symposium on, pp. 286–292, IEEE, 2012.

[30] K. Sui, M. Zhou, D. Liu, M. Ma, D. Pei, Y. Zhao, Z. Li, and T. Moscibroda, “Char-

acterizing and improving WiFi latency in large-scale operational networks,” in Pro-

ceedings of the 14th Annual International Conference on Mobile Systems, Applica-

tions, and Services, pp. 347–360, ACM, 2016.

[31] I. H. Hou, V. Borkar, and P. R. Kumar, “A Theory of QoS for Wireless,” in IEEE

INFOCOM 2009, pp. 486–494, April 2009.

[32] R. Singh and P. R. Kumar, “Decentralized throughput maximizing policies for

deadline-constrained wireless networks,” in Proceedings of the IEEE Conference

on Decision and Control, vol. 54rd IEEE Conference on Decision and Control,CDC

2015, pp. 3759–3766, 2015.

[33] I.-H. Hou and P. Kumar, Packets with Deadlines: A Framework for Real-Time Wire-

less Networks, vol. 6. 2013.

[34] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and P. Steenkiste, “Enabling mac pro-

tocol implementations on software-defined radios.,” in NSDI, vol. 9, pp. 91–105,

2009.

[35] J. Ansari, X. Zhang, A. Achtzehn, M. Petrova, and P. Mahonen, “Decomposable

mac framework for highly flexible and adaptable mac realizations,” in New Fron-

tiers in Dynamic Spectrum, 2010 IEEE Symposium on, pp. 1–2, IEEE, 2010.

88

[36] A. Warrier, S. Janakiraman, S. Ha, and I. Rhee, “DiffQ: Practical differential back-

log congestion control for wireless networks,” in INFOCOM 2009, IEEE, pp. 262–

270, IEEE, 2009.

[37] R. Laufer, T. Salonidis, H. Lundgren, and P. Le Guyadec, “XPRESS: A cross-layer

backpressure architecture for wireless multi-hop networks,” in Proceedings of the

17th annual international conference on Mobile computing and networking, pp. 49–

60, ACM, 2011.

[38] J. Ryu, V. Bhargava, N. Paine, and S. Shakkottai, “Back-pressure routing and rate

control for ICNs,” in Proceedings of the sixteenth annual international conference

on Mobile computing and networking, pp. 365–376, ACM, 2010.

[39] J. Lee, H. Lee, Y. Yi, S. Chong, E. W. Knightly, and M. Chiang, “Making 802.11

DCF near-optimal: Design, implementation, and evaluation,” IEEE/ACM Transac-

tions on Networking, vol. 24, no. 3, pp. 1745–1758, 2016.

[40] Y.-H. Wei, Q. Leng, S. Han, A. K. Mok, W. Zhang, and M. Tomizuka, “RT-WiFi:

Real-time high-speed communication protocol for wireless cyber-physical control

applications,” in Real-Time Systems Symposium (RTSS), 2013 IEEE 34th, pp. 140–

149, IEEE, 2013.

[41] O. N. Yilmaz, Y.-P. E. Wang, N. A. Johansson, N. Brahmi, S. A. Ashraf, and

J. Sachs, “Analysis of ultra-reliable and low-latency 5G communication for a fac-

tory automation use case,” in Communication Workshop (ICCW), 2015 IEEE Inter-

national Conference on, pp. 1190–1195, IEEE, 2015.

[42] S. Yoshioka, Y. Inoue, S. Suyama, Y. Kishiyama, Y. Okumura, J. Kepler, and M. Cu-

dak, “Field experimental evaluation of beamtracking and latency performance for

5G mmWave radio access in outdoor mobile environment,” in Personal, Indoor, and

89

Mobile Radio Communications (PIMRC), 2016 IEEE 27th Annual International

Symposium on, pp. 1–6, IEEE, 2016.

[43] J. Pilz, M. Mehlhose, T. Wirth, D. Wieruch, B. Holfeld, and T. Haustein, “A Tactile

Internet demonstration: 1ms ultra low delay for wireless communications towards

5G,” in Proc. of INFOCOM WKSHPS, pp. 862–863, IEEE, 2016.

[44] IEEE, “IEEE Standard for Local and metropolitan area networks, Part 11: Wireless

LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,”

IEEE Std 802.11-2012, 2012.

[45] S. Yau, L. Ge, P.-C. Hsieh, I. Hou, S. Cui, P. Kumar, A. Ekbal, N. Kundargi,

et al., “Wimac: Rapid implementation platform for user definable mac proto-

cols through separation,” in ACM SIGCOMM Computer Communication Review,

vol. 45, pp. 109–110, ACM, 2015.

[46] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, and F. Gringoli, “Wireless

mac processors: Programming mac protocols on commodity hardware,” in INFO-

COM, 2012 Proceedings IEEE, pp. 1269–1277, IEEE, 2012.

[47] “LabVIEW Communications 802.11 Application Framework 1.1,” 2015.

[48] “USRP-2953,” 2014.

[49] “Feasibility study on licensed-assisted access to unlicensed spectrum.” http://

www.3gpp.org/dynareport/36889.htm, June 2014.

[50] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner, “OpenFlow: Enabling innovation in campus networks,”

SIGCOMM Comput. Commun. Rev., vol. 38, pp. 69–74, Mar 2008.

90

http://www.3gpp.org/dynareport/36889.htm
http://www.3gpp.org/dynareport/36889.htm

[51] L. Kleinrock and F. Tobagi, “Packet switching in radio channels: Part i–Carrier

Sense Multiple-Access modes and their throughput-delay characteristics,” IEEE

Transactions on Communications, vol. 23, pp. 1400–1416, Dec 1975.

[52] Z. Zeng, Y. Gao, K. Tan, and P. R. Kumar, “CHAIN: Introducing minimum

controlled coordination into random access MAC,” in Proc. IEEE INFOCOM,

pp. 2669–2677, 2011.

[53] M. Markakis, E. Modiano, and J. Tsitsiklis, “Max-Weight scheduling in queue-

ing networks with heavy-tailed traffic,” IEEE/ACM Transactions on Networking,

vol. 22, pp. 257–270, Feb 2014.

[54] M. Neufeld, J. Fifield, C. Doerr, A. Sheth, and D. Grunwald, “SoftMAC–flexible

wireless research platform,” in the 4th ACM Workshop on Hot Topics in Networks,

2005.

[55] A. Sharma, M. Tiwari, and H. Zheng, “Madmac: Building a reconfiguration radio

testbed using commodity 802.11 hardware,” in 1st IEEE Workshop on Networking

Technologies for Software Defined Radio Networks, pp. 78–83, Sept 2006.

[56] M.-H. Lu, P. Steenkiste, and T. Chen, “FlexMAC: A wireless protocol develop-

ment and evaluation platform based on commodity hardware,” in Proceedings of

the Third ACM International Workshop on Wireless Network Testbeds, Experimen-

tal Evaluation and Characterization, pp. 105–106, 2008.

[57] C. Doerr, M. Neufeld, J. Fifield, T. Weingart, D. Sicker, and D. Grunwald, “Multi-

MAC - an adaptive MAC framework for dynamic radio networking,” in First IEEE

International Symposium on New Frontiers in Dynamic Spectrum Access Networks

(DySPAN), pp. 548–555, Nov 2005.

91

[58] “GNU Radio.” http://gnuradio.org/redmine/projects/

gnuradio/wiki.

[59] T. Schmid, O. Sekkat, and M. B. Srivastava, “An experimental study of network

performance impact of increased latency in software defined radios,” in Proc. of the

Second ACM International Workshop on Wireless Network Testbeds, Experimental

Evaluation and Characterization (WinTECH), pp. 59–66, 2007.

[60] K. Tan, J. Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y. Zhang, H. Wu, W. Wang,

and G. M. Voelker, “Sora: High performance software radio using general purpose

multi-core processors,” in Proc. of the 6th USENIX Symposium on Networked Sys-

tems Design and Implementation (NSDI), pp. 75–90, 2009.

[61] A. Khattab, J. Camp, C. Hunter, P. Murphy, A. Sabharwal, and E. W. Knightly,

“WARP: A flexible platform for clean-slate wireless medium access protocol de-

sign,” SIGMOBILE Mob. Comput. Commun. Rev., vol. 12, pp. 56–58, Jan 2008.

[62] M. C. Ng, K. E. Fleming, M. Vutukuru, S. Gross, Arvind, and H. Balakrishnan,

“Airblue: A system for cross-layer wireless protocol development,” in Proc. of the

6th ACM/IEEE Symposium on Architectures for Networking and Communications

Systems (ANCS), pp. 4:1–4:11, 2010.

[63] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and P. Steenkiste, “Enabling MAC

protocol implementations on software-defined radios,” in Proc. 6th USENIX Sym-

posium on Networked Systems Design and Implementation (NSDI), pp. 91–105,

2009.

[64] J. Ansari, X. Zhang, A. Achtzehn, M. Petrova, and P. Mahonen, “Decomposable

MAC framework for highly flexible and adaptable MAC realizations,” in Proc.

IEEE Symposium on New Frontiers in Dynamic Spectrum, pp. 1–2, 2010.

92

http://gnuradio.org/redmine/projects/gnuradio/wiki
http://gnuradio.org/redmine/projects/gnuradio/wiki

[65] X. Zhang, J. Ansari, G. Yang, and P. Mahonen, “TRUMP: Efficient and flexible

realization of medium access control protocols for wireless networks,” to appear in

IEEE Transactions on Mobile Computing, vol. PP, 2015.

[66] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, and F. Gringoli, “Wireless

MAC processors: Programming MAC protocols on commodity hardware,” in Proc.

IEEE INFOCOM, pp. 1269–1277, 2012.

[67] I.-H. Hou and P. R. Kumar, “Utility maximization for delay constrained QoS in

wireless,” in Proc. IEEE INFOCOM, pp. 1–9, 2010.

[68] Z. Zeng, Y. Gao, and P. R. Kumar, “SOFA: A sleep-optimal fair-attention sched-

uler for the power-saving mode of WLANs,” in Proc. International Conference on

Distributed Computing Systems (ICDCS), pp. 87–98, 2011.

[69] D. Jiang and L. Delgrossi, “IEEE 802.11p: Towards an international standard for

wireless access in vehicular environments,” in IEEE Vehicular Technology Confer-

ence (VTC), pp. 2036–2040, May 2008.

[70] I.-H. Hou, V. Borkar, and P. Kumar, “A theory of QoS for wireless,” in Proc. of

IEEE INFOCOM, pp. 486–494, April 2009.

[71] S. Shakkottai, T. Rappaport, and P. Karlsson, “Cross-layer design for wireless net-

works,” IEEE Communications Magazine, vol. 41, pp. 74–80, Oct 2003.

[72] V. Kawadia and P. Kumar, “A cautionary perspective on cross-layer design,” IEEE

Wireless Communications, vol. 12, pp. 3–11, Feb 2005.

[73] T. ElBatt and A. Ephremides, “Joint scheduling and power control for wireless ad

hoc networks,” IEEE Transactions on Wireless Communications, vol. 3, pp. 74–85,

Jan 2004.

93

[74] S. Kumar, D. Cifuentes, S. Gollakota, and D. Katabi, “Bringing cross-layer MIMO

to today’s wireless LANs,” in Proc. of the ACM SIGCOMM, pp. 387–398, 2013.

[75] L. Tassiulas and A. Ephremides, “Stability properties of constrained queueing sys-

tems and scheduling policies for maximum throughput in multihop radio networks,”

IEEE Transactions on Automatic Control, vol. 37, pp. 1936–1948, Dec 1992.

[76] M. Neely, E. Modiano, and C. Rohrs, “Dynamic power allocation and routing for

time-varying wireless networks,” IEEE Journal on Selected Areas in Communica-

tions, vol. 23, pp. 89–103, Jan 2005.

[77] X. Lin, N. Shroff, and R. Srikant, “A tutorial on cross-layer optimization in wireless

networks,” IEEE Journal on Selected Areas in Communications, vol. 24, pp. 1452–

1463, Aug 2006.

[78] A. Eryilmaz and R. Srikant, “Joint congestion control, routing, and MAC for stabil-

ity and fairness in wireless networks,” IEEE Journal on Selected Areas in Commu-

nications, vol. 24, pp. 1514–1524, Aug 2006.

[79] L. Georgiadis, M. J. Neely, and L. Tassiulas, “Resource allocation and cross-layer

control in wireless networks,” Found. Trends Netw., vol. 1, pp. 1–144, Apr 2006.

[80] M. Neely, “Order optimal delay for opportunistic scheduling in multi-user wire-

less uplinks and downlinks,” IEEE/ACM Transactions on Networking, vol. 16,

pp. 1188–1199, Oct 2008.

[81] A. Ganti, E. Modiano, and J. Tsitsiklis, “Optimal transmission scheduling in sym-

metric communication models with intermittent connectivity,” IEEE Transactions

on Information Theory, vol. 53, pp. 998–1008, March 2007.

[82] K.-H. Chou and W. Lin, “Performance analysis of packet aggregation for IEEE

802.11 PCF MAC-based wireless networks,” IEEE Transactions on Wireless Com-

94

munications, vol. 12, pp. 1441–1447, April 2013.

[83] A. Eryilmaz, R. Srikant, and J. Perkins, “Stable scheduling policies for fading wire-

less channels,” IEEE/ACM Transactions on Networking, vol. 13, pp. 411–424, April

2005.

[84] Y. S. Satchidanandan B., E. A. Kumar P. R., Aziz A., and K. N., “Trackmac: An ieee

802.11ad-compatible beam tracking-based mac protocol for 5g millimeter-wave lo-

cal area networks,” in 10th International Conference on Communication Systems

and Networks (COMSNETS), 2018.

[85] J. M. Gilbert, C. H. Doan, S. Emami, and C. B. Shung, “A 4-Gbps uncompressed

wireless HD A/V transceiver chipset,” in IEEE Micro, vol. 28, pp. 56–64, 2008.

[86] S. Piersanti, L. A. Annoni, and D. Cassioli, “Millimeter waves channel measure-

ments and path loss models,” in 2012 IEEE International Conference on Communi-

cations (ICC), pp. 4552–4556, 2012.

[87] Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,”

IEEE Communications Magazine, vol. 49, no. 6, pp. 101–107, 2011.

[88] E. Ben-Dor, T. S. Rappaport, Y. Qiao, and S. J. Lauffenburger, “Millimeter-wave

60 GHz outdoor and vehicle AOA propagation measurements using a broadband

channel sounder,” in GLOBECOM - IEEE Global Telecommunications Conference,

2011.

[89] T. S. Rappaport, E. Ben-Dor, J. N. Murdock, and Y. Qiao, “38 GHz and 60 GHz

angle-dependent propagation for cellular & peer-to-peer wireless communications,”

in IEEE International Conference on Communications, pp. 4568–4573, 2012.

[90] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K.

Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile communications for

95

5G cellular: It will work!,” IEEE Access, vol. 1, pp. 335–349, 2013.

[91] T. E. Bogale and L. B. Le, “Massive MIMO and mmWave for 5G Wireless HetNet:

Potential Benefits and Challenges,” IEEE Vehicular Technology Magazine, vol. 11,

no. 1, pp. 64–75, 2016.

[92] G. R. Maccartney and T. S. Rappaport, “73 GHz millimeter wave propagation mea-

surements for outdoor urban mobile and backhaul communications in New York

City,” in 2014 IEEE International Conference on Communications, ICC 2014,

pp. 4862–4867, 2014.

[93] T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, “Wideband

millimeter-wave propagation measurements and channel models for future wireless

communication system design,” IEEE Transactions on Communications, vol. 63,

no. 9, pp. 3029–3056, 2015.

[94] S. Singh, F. Ziliotto, U. Madhow, E. M. Belding, and M. Rodwell, “Blockage and

directivity in 60 GHz wireless personal area networks: From cross-layer model

to multihop MAC design,” IEEE Journal on Selected Areas in Communications,

vol. 27, no. 8, pp. 1400–1413, 2009.

[95] S. Singh, R. Mudumbai, and U. Madhow, “Distributed coordination with deaf

neighbors: Efficient medium access for 60 GHz mesh networks,” Proceedings -

IEEE INFOCOM, 2010.

[96] M. Takai, J. Martin, R. Bagrodia, and A. Ren, “Directional carrier sensing for di-

rectional antennas in mobile ad hoc networks,” International symposium on Mobile

ad hoc networking & computing, vol. 3, pp. 183–193, 2002.

[97] V. Shankarkumar and N. Vaidya, “Medium access control protocols using direc-

tional antennas in ad hoc networks,” in Proceedings IEEE INFOCOM 2000. Con-

96

ference on Computer Communications. Nineteenth Annual Joint Conference of the

IEEE Computer and Communications Societies (Cat. No.00CH37064), pp. 13–21,

2000.

[98] Y.-B. K. Y.-B. Ko, V. Shankarkumar, and N. Vaidya, “Medium access control proto-

cols using directional antennas in ad hoc networks,” Proceedings IEEE INFOCOM

2000. Conference on Computer Communications. Nineteenth Annual Joint Confer-

ence of the IEEE Computer and Communications Societies (Cat. No.00CH37064),

vol. 1, no. c, pp. 13–21, 2000.

[99] A. Nasipuri, S. Ye, J. You, and R. E. Hiromoto, “A MAC Protocol for Mobile Ad

Hoc Networks Using Directional Antennas,” Proc. of IEEE INFOCOM, pp. 1214–

1219, 2000.

[100] R. R. Choudhury, X. Yang, N. H. Vaidya, and R. Ramanathan, “Using directional

antennas for medium access control in ad hoc networks,” Proceedings of the 8th

annual international conference on Mobile computing and networking - MobiCom

’02, p. 59, 2002.

[101] M. Gong and R. Stacey, “A directional CSMA/CA protocol for mmWave wireless

PANs,” Wireless . . . , pp. 1–6, 2010.

[102] M. X. Gong, D. Akhmetov, R. Want, and S. Mao, “Directional CSMA/CA protocol

with spatial reuse for mmWave wireless networks,” GLOBECOM - IEEE Global

Telecommunications Conference, pp. 1–5, 2010.

[103] Q. Chen, X. Peng, J. Yang, and F. Chin, “Spatial reuse strategy in mmWave WPANs

with directional antennas,” GLOBECOM - IEEE Global Telecommunications Con-

ference, pp. 5392–5397, 2012.

97

[104] C. S. Sum, Z. Lan, R. Funada, J. Wang, T. Baykas, M. A. Rahman, and H. Harada,

“Virtual time-slot allocation scheme for throughput enhancement in a millimeter-

wave multi-Gbps WPAN system,” IEEE Journal on Selected Areas in Communica-

tions, vol. 27, no. 8, pp. 1379–1389, 2009.

[105] I. K. Son, S. Mao, M. X. Gong, and Y. Li, “On frame-based scheduling for di-

rectional mmWave WPANs,” in Proceedings - IEEE INFOCOM, pp. 2149–2157,

2012.

[106] T. Korakis, G. Jakllari, and L. Tassiulas, “A {MAC} protocol for full exploitation of

directional antennas in ad-hoc wireless networks,” ACM Int. Symposium on Mobile

Ad-Hoc Networking & Computing, pp. 98–107, 2003.

[107] E. Shihab, S. Member, L. Cai, J. Pan, and S. Member, “A Distributed Asnchronous

Directional-to-Directional MAC Protocol for Wireless Ad Hoc Networks,” Ieee Tvt,

vol. 58, no. 9, pp. 5124–5134, 2009.

[108] H. Shokri-Ghadikolaei, C. Fischione, G. Fodor, P. Popovski, and M. Zorzi, “Mil-

limeter wave cellular networks: A MAC layer perspective,” IEEE Transactions on

Communications, vol. 63, no. 10, pp. 3437–3458, 2015.

[109] T. Korakis, G. Jakllari, and L. Tassiulas, “CDR-MAC: A protocol for full exploita-

tion of directional antennas in ad hoc wireless networks,” IEEE Transactions on

Mobile Computing, vol. 7, no. 2, pp. 145–155, 2008.

[110] Y. Niu, Y. Li, D. Jin, L. Su, and D. Wu, “Blockage robust and efficient schedul-

ing for directional mmwave wpans,” IEEE Transactions on Vehicular Technology,

vol. 64, no. 2, pp. 728–742, 2015.

[111] “ISO/IEC/IEEE International Standard for Information technology–

Telecommunications and information exchange between systems–Local and

98

metropolitan area networks–Specific requirements-Part 11: Wireless LAN Medium

Access Control (MAC) and Physical Layer (,” pp. 1–634, 2014.

[112] Q. Chen, J. Tang, D. Wong, X. Peng, and Y. Zhang, “Directional cooperative

MAC protocol design and performance analysis for IEEE 802.11ad WLANs,” IEEE

Transactions on Vehicular Technology, vol. 62, no. 6, pp. 2667–2677, 2013.

[113] P. F. Smulders and A. G. Wagemans, “Frequency-domain measurement of the mil-

limeter wave indoor radio channel,” IEEE Transactions on Instrumentation and

Measurement, vol. 44, no. 6, pp. 1017–1022, 1995.

[114] R. Kimura, R. Funada, Y. Nishiguchi, M. Lei, T. Baykas, C.-S. Sum, J. Wang,

A. Rahman, Y. Shoji, H. Harada, et al., “Golay sequence aided channel estimation

for millimeter-wave wpan systems,” in Personal, Indoor and Mobile Radio Com-

munications, 2008. PIMRC 2008. IEEE 19th International Symposium on, pp. 1–5,

IEEE, 2008.

[115] T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and J. C. Widmer,

“IEEE 802.11ad: Directional 60 GHz communication for multi-Gigabit-per-second

Wi-Fi [Invited Paper],” IEEE Communications Magazine, vol. 52, no. 12, pp. 132–

141, 2014.

[116] T. Nitsche, C. Cordeiro, A. B. Flores, E. W. Knightly, E. Perahia, and I. N. P. Aper,

“Radio Communications IEEE 802 . 11ad : Directional 60 GHz Communication

for,” no. December, pp. 132–141, 2014.

99

	ABSTRACT
	CONTRIBUTORS AND FUNDING SOURCES
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	PULSE: A PLATFORM FOR ULTRA-LOW LATENCY WIRELESS SCHEDULING EXPERIMENTATION
	Introduction
	Related Work
	Design of PULSE
	Basic MAC Functions for Wireless Scheduling
	Mechanism-Policy Separation
	Flexible MAC Through Host-FPGA Separation

	Implementation of PULSE
	Packet Generation
	Queueing, Deadlines and Types of Flows
	Scheduling and Transmission Procedures
	Retransmission

	Measuring Host-to-FPGA Interfacing Latency and Round-Trip Latency
	Experimental Results
	Capacity Regions
	Throughput Performance
	Changing the Arrival Process

	Conclusion

	WIMAC: PLATFORM FOR RAPID IMPLEMENTATION OF MEDIUM ACCESS CONTROL PROTOCOLS
	Introduction
	Related Work
	Key Design Principles for MAC Platform
	Architectural Design of The Platform
	Identifying Distinguishing Features
	Designing MAC Protocols in Software and Decoupling
	Enabling Reconfiguration on the Fly

	Implementation of Different Classes of MAC Protocols
	Link Performance
	CSMA
	CHAIN
	Max-Weight Scheduling Policy
	A Meta Protocol

	Extensibility of Platform
	Conclusion

	MEDIUM ACCESS CONTROL FOR DIRECTIONAL MILLIMETER WAVE WIRELESS NETWORKING
	Introduction
	Related Work
	Design Methodology of TrackMAC
	Topological Coherence Time
	TrackMAC: A Novel Directional MAC Protocol

	Implementation of TrackMAC Within the IEEE 802.11ad Specifications
	Simulation Results
	Conclusions and Future Work

	CONCLUSIONS
	REFERENCES

