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ABSTRACT 

 

 

Long-term soil moisture monitoring sites are a source of data both for drought 

forecasting and hydrological and land surface modeling validation. Uncertainties in soil 

moisture monitoring data are not well documented and more knowledge can improve the 

interpretations based on these data.  Texas has 23 locations with long-term soil moisture 

monitoring, supported by the Soil Climate Analysis Network (SCAN) and the U.S. 

Climate Reference Network. Both networks use Stevens Water HydraProbes for 

measuring soil moisture and one manufacturer-provided calibration equation for all 

locations. The Texas SCAN sites contain soils with vertic properties and soils with large 

texture discontinuities with depth, which may create distinct sources of uncertainties in 

soil moisture measurement. The objectives of this study were to 1) compare the default 

calibration to soil specific calibrations made in the lab and in-situ, 2) assess temporal and 

spatial uncertainties associated with using the HydraProbe, and 3) report errors and 

recommend methods for reducing uncertainty in SCAN data. Calibration equations were 

developed in the laboratory and in-situ for an Alfisol and a Vertisol. These two soils 

were also monitored over 18 months to 1 m depth with HydraProbes and a neutron 

moisture meter. Additionally, nine SCAN locations were sampled at three soil moisture 

conditions, field capacity, very dry and somewhere in between. Results showed root 

mean squared errors (RMSE) of 0.077, 0.051, and 0.035 m3m-3 for the default, lab, and 

in-situ calibrations for the Alfisol and 0.167, 0.077, and 0.045 m3m-3 for the Vertisol. 
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The data varied from 0.045 to 0.174 m3m-3 RMSE and 0.004 to 0.120 m3m-3 bias for 

individual SCAN sites. Soil properties of clay, pH, CEC, exchangeable cations, or bulk 

density did not explain trends in SCAN errors; however, a positive linear relationship 

between SCAN prediction errors and soil moisture was found. This study uniquely 

documents temporal and spatial variability in long-term soil monitoring networks in 

Texas and provides some documentation of errors to modelers and land use planners 

using soil moisture data for model evaluation. 
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

 

Measurements of soil moisture are used by many science disciplines and natural 

resource planners. For example, at the field scale, measurements of soil moisture are 

used in agriculture for irrigation scheduling, at the regional scale, these measurements 

are used for natural resource management such as drought forecasting, and at the 

continental scale, these measurements are used to better understand changes in land use 

and climate and test or validate models that simulate soil moisture and land-surface 

exchanges (Klein et al., 1997; Butler et al., 1999; Bratton et al., 2000; Robock et al., 

2000). As a general rule, end users of soil moisture monitoring data generally do not 

discuss the uncertainty in these soil moisture measurements even though the strength of 

any conclusion based on these measurements depends on knowledge of the error or 

uncertainty. Regardless, these data are very much needed and currently used long-term 

monitoring networks for soil moisture continue to expand and be available for download 

on the internet (Soil Survey Staff, 2017). 

To address the need of long-term soil moisture data, several long-term soil 

moisture monitoring networks throughout the United States have been established. A 

few examples of such networks are: Soil Climate Analysis Network (SCAN) (Soil 

Survey Staff et al., 2017), the United States Climate Reference Network (USCRN) (Bell 

et al., 2013; Diamond et al., 2013) and the Oklahoma Mesonet (Brock et al., 1995; 
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McPherson et al., 2007). These long-term soil moisture monitoring networks, however, 

do not report errors that maybe caused by site-specific soil property variation across 

location and depth, installation procedures, no instrument bias associated with the use of 

default manufacturer calibrations. The usefulness of these soil data could be improved 

by assessment of soil-specific or general uncertainty associated with the variability of 

soil properties.  

These unaccounted errors are concerning to users of these monitoring networks, 

particularly in Texas because of the types of soils that are predominate across the state. 

Texas has many soils that are high in clay and many soils that have an abrupt texture 

change with depth. The high clay soils are unique because they change volume with 

moisture changes and hence can form cracks upon drying. These cracks might cause a 

contact loss with soil moisture monitoring equipment. Soils with an abrupt texture 

change have a different hydrology than the high clay soils; a very sandy soil over a very 

clayey soil might exaggerate biases associated with using factory calibrations due to a 

texture differences. Additionally, Texas soils can have wide variation in clay types 

which result in differences in specific surface area and cation exchange capacity, two 

soils with the same clay content but different mineralogies. Particularly, some high-clay 

soils of Texas are high in smectitic clays that shrink and swell causing loss of contact 

with soil moisture monitoring devices(Veldkamp and O’Brien, 2000; Hamed et al., 

2006; Ojo et al., 2015; RoTimi Ojo et al., 2015). 

With so many possible combinations of properties known to affect soil moisture 

measurements, the question of accuracy and or bias in the long-term monitoring 



 

3 

 

networks arises. To address concern of errors of long-term soil moisture monitoring 

networks, this study aims to compare the manufacturer calibration to soil-specific 

laboratory and in-situ field calibrations, as well as evaluate error associated with 

manufacture calibration in representative soils of Texas. This study focuses on sites 

across Texas that are monitored by the SCAN network. Upon completion of this project, 

this project will allow for a comparison of manufacture calibration versus soil-specific 

calibration, estimate of error associated with Texas soils, and provide correction 

information for current SCAN sites. 

The overall objective of this study is to quantify and understand the source of 

bias and/or error in soil moisture measurements for SCAN. My specific objective is to 

assess the spatial and temporal reliability and accuracy of soil moisture probes installed 

for soil moisture observation as well as provide estimations of the uncertainty of these 

probes across Texas soils. Accordingly, this research pursues answers to the following 

questions: (i) How different is a soil-specific calibration for soil moisture measurements 

using the HydraProbe SDI-12?, (ii) What is the level of accuracy of the SCAN soil 

moisture measurements between and within SCAN sites?, and (iii) Can the HydraProbe 

errors be corrected using knowledge of soil characterization data? The study findings 

will provide a basis for effective calibration procedures and provide quantitative results 

on the uncertainty of SCAN soil moisture data in Texas. Even though it focuses on the 

HydraProbe, the results will provide valuable guidelines for similar soil moisture probes 

and long-term soil moisture monitoring networks.  

 



 

4 

 

Literature Review 

Long-term soil moisture monitoring networks are mostly used by researchers for 

development of soil moisture remote sensing missions as well as agricultural and 

environmental management, weather forecasting, and other associated endeavors (Cosh 

et al., 2016). These networks aim to provide real time continuous soil moisture data in a 

non-destructive method. A properly functioning network requires the ability to transmit 

the information in real time, log data measurements, and respond to changes in soil 

moisture. USCRN and SCAN achieve this functionality by using the Stevens Water 

HydraProbe. USCRN consists of 114 stations placed throughout the contiguous US in a 

wide range of vegetation such as grassland, desert, shrub land, and pasture as well as a 

range of soil textures from sandy loam to clay (Bell et al., 2013; Diamond et al., 2013). 

The Oklahoma Mesonet achieves this functionality by using a variety of soil moisture 

sensors. The Oklahoma Mesonet consists of 121 stations placed mostly on grasslands 

and is representative of soil variability across Oklahoma (Board of Regents of the 

University of Oklahoma, 2017).  

In 1990, a plan was proposed to establish a national soil climate network to meet 

the growing demands of global climate change community, modelers, resource 

managers, soil scientists, ecologist, and others. In 1999, SCAN was established for 

agricultural, resource, and watershed management purposes to monitor soil climate. The 

SCAN network was installed and is maintained by the USDA NRCS. SCAN is currently 

composed of 218 stations across the U.S. and Puerto Rico. All stations within the 

network have a standard configuration with some variation upon user request. Data 



 

5 

 

collected by SCAN include air temperature, relative humidity, wind speed and direction, 

solar radiation, barometric pressure, soil dielectric constant, bulk soil electrical 

conductivity, soil moisture, precipitation, and soil temperature at depths of 2, 4, 8, 20 

and 40 inches which are approximately 0.05, 0.10, 0.20, 0.50, and 1.00 m at hourly 

intervals (Schaefer et al., 2007). These data are acquired remotely and available online at 

the NRCS website. Soil moisture, soil dielectric constant, bulk soil electrical 

conductivity, and soil temperature is collected by the Stevens HydraProbe. The Stevens 

HydraProbe is time-frequency domain reflectometry instrument.  

Soil moisture measurement reflects the capture of rainfall, loss of water from 

evapotranspiration and drainage, and the movement of water through the soil profile. 

Several techniques exist for monitoring moisture. Measuring soil water content can be 

direct or indirect, destructive or non-destructive, and have different measurement 

volumes.  

One of these methods is the gravimetric method. The gravimetric method 

measures the mass of water in soil. It involves obtaining the weight of a soil sample 

before and after drying at 105 ˚C. The gravimetric water content is the ratio of the mass 

of water in the sample to that of dry soil. The volume of measurement is limited only by 

ability to excavate, dry, and weigh the samples. More useful data includes the measuring 

the mass within a known volume of soil along with gravimetric moisture measurement 

so that the volumetric water content can be quantified. Volumetric water content is the 

ratio of the volume of water in the sample to that of the sample. The volume of the 

sample used for this measurement varies widely with soil coring devices, soil type, and 
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sampling depth. Sampling depth depends on the needs of the information and ability to 

get an accurate volumetric sample. Samples are obtained by coring into the soil, which is 

destructive, difficult, and time consuming. Getting a representative volume sample 

without compacting or losing part of the sample requires extra care and sampling at an 

ideal soil moisture which varies according to soil type. Usually, the sample volume adds 

the most significant portion of error. In good conditions, the error associated with 

volumetric water content measurements is ± 0.5% (Topp and Ferre, 2002). Clearly the 

destructive nature of measurement makes long-term moisture monitoring by coring 

methods unfeasible as the sample area of interest can be eventually exhausted or highly 

disturbed. These methods are the most accurate to measure soil moisture and are 

generally used to calibrate non-destructive soil moisture measuring devices. 

Another method is the neutron moisture meter (NMM), which is an indirect, 

nondestructive method for measuring soil moisture. It consists of a radioactive source 

that emits non-directional neutrons and a detector which measures thermalization of 

these neutrons by hydrogen in soil. Hydrogen atoms in water and in other soil 

constituents thermalize (slow down) high energy neutrons. The detector in the meter 

counts the slow neutrons. This rate of neutron count is a measure of the water content in 

the soil sample (Evett et al., 2003; Chávez and Evett, 2012). A count ratio is calculated 

by taking the measured neutron count rate in the soil and dividing by a standard neutron 

count rate done on site before soil moisture measurements. The count ratio is used in a 

calibration equation, which is usually a linear equation between count ratio and 

measured volumetric water content (Evett et al., 2003).  
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Depending on the quantity of moisture in the soil, a NMM can detect water in 

samples of radii ranging between 0.15 m (wet soil) and 0.50 m (dryer soil). A 0.05 m 

diameter access tube is generally installed to 1 to 3 m below the soil surface for depth-

based reading. There are advantages and disadvantages to the relatively large volume of 

soil measured by a NMM. An advantage with measurements obtained using a NMM is 

the relatively low absolute error (Gee and Or, 2002). Disadvantages include difficulty in 

detecting discontinuity or sudden changes in gradients of water content that may be 

present. Automatic logging of soil moisture is not possible with NMMs since a person is 

required to be present throughout the process. 

Another method is by installing soil moisture sensors. There are types of soil 

moisture sensors, each of which determine soil moisture with a different method. One of 

this methods is time domain reflectometry. Time domain reflectometry (TDR) is an 

indirect, nondestructive method for measuring and monitoring soil moisture. TDR 

instruments have an oscilloscope and a pulse generator. The pulse generator is connected 

to a waveguide which the pulse travels to the probe. The waveguide is generally a 

coaxial cable connected to the instrument; the probe consists of two to three inflexible 

electrodes. The oscilloscope or similar electronic system captures the reflected pulse at 

very small increments along the waveguide to create a waveform. The data logger 

controls the apparatus and interprets data from the TDR instrument. Calibration may be 

through a linear regression between pulse speed and volumetric water content or by 

using dielectric permittivity (Chávez and Evett, 2012). TDR accuracy is controlled by 

pulse rise time and receiver sampling rate.  
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Without calibration, TDR provides water content from 0 to 0.5 m3m-3 with 

accuracy ranging from 0.01 to 0.02m3m-3 (Huisman et al., 2001). Calibration includes a 

linear equation between pulse speed and volumetric water content or by using dielectric 

permittivity (Chávez and Evett, 2012). Limitations to TDR accuracy is the broad 

frequency and dispersal of the pulse as it travels through the waveguide and high 

sensitivity to change around probe tines (Evett et al., 2003; Furse et al., 2006). TDR 

instruments measure soil volumes ranging from 1x10-5 to 0.001 m3 (Huisman et al., 

2001). Because of the small measurement volume and importance of good contact 

around the probe, long-term data collected when the soil is at very low water content 

might have more error or a bias because soil may pull away from the sensor. TDR 

instruments are used in long term monitoring because data can be collected at regular 

time intervals by a data logger (Evett, 2003; Evett et al., 2009; Coopersmith et al., 2015). 

Another method for a soil moisture sensor to determine soil moisture is 

frequency domain reflectometry. Frequency domain reflectometry (FDR) is an indirect, 

nondestructive method for measuring and monitoring soil moisture. FDR probes consist 

of an inductor-capacitor (LC) oscillation circuit that produces a high-frequency 

oscillating electric field. Once inserted into a dielectric medium, a relative dielectric 

constant is measured from frequency change and related to soil moisture content (Haibo 

et al., 2013). Essentially, FDR probes measure the capacitance of the dielectric medium. 

FDR probes have an advantage over TDR probes by being relatively less expensive and 

requiring lower power. Calibration of FDR probes may be through a linear regression 

between water content and frequency (Furse et al., 2006; Böhme et al., 2013; Haibo et 
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al., 2013). FDR probe measurements can be influenced by soil characteristics such as 

texture and salinity. 

Ground penetrating radar (GPR) systems are an indirect, nondestructive method 

to measure soil moisture. GPR systems work on the same principal as TDRs. However, 

they do not require direct contact with the soil and the probe. In a GPR, a transmitter 

produces pulses of high-frequency electromagnetic (EM) waves. A receiving antenna 

detects the impulses and measures them as a function of time. The depth penetration of 

GPR systems depends on their center frequency and electrical conductivity of the soil. 

GPR systems have high sensitivity to soil texture and electrical conductivity. For soils 

with low conductivity, the depth penetration at low frequencies (50 – 100 MHz) is up to 

tens of meters, and at high frequencies (450 – 900 MHz) less than ten meters. For high 

conductivity soils such as clay, the depths are less (Roth et al., 1992; Leao et al., 2010). 

Accuracy is highly variable ranging from 0.02 to 0.03 m3m-3 depending on the frequency 

used (Huisman et al., 2001). The high sensitivity to texture limits the range of soils 

where the technique is useful. GPR sensors work best at soils with low conductivity and 

sandy texture (Huisman and Hubbard, 2003). GPR sensors do not measure the volume of 

soil moisture directly. Unlike TDR systems, GPR networks have large sensing volume. 

Therefore they can provide rapid and non-disturbing soil moisture measurements over 

extensive areas. The calibration equation relates the dielectric permittivity and texture 

with the volumetric water content (Persson and Berndtsson, 1998). GPRs are not used 

for long term soil moisture monitoring due to low depth penetrations. 
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The focus of this study is on the Stevens HydraProbe’s calibration and accuracy, 

which is used in most long-term soil moisture monitoring stations (Brock et al., 1995; 

McPherson et al., 2007; Bell et al., 2013; Diamond et al., 2013; Soil Survey Staff et al., 

2017). The HydraProbe is a FDR probe that measures soil water content, dielectric 

permittivity, electrical conductivity and soil temperature. The HydraProbe is composed 

of a tine assembly, a base plate and a body housing all electrical components. There are 

four tines measuring 4.5 cm long and 0.03 cm wide with three placed in an equilateral 

triangle formation and the fourth at the center. The HydraProbe uses the tines as a wave 

guide for a 50-MHz signal which is created by the probe body. The tines are inserted 

into a medium, and the probe measures electromagnetic wave behavior. This signal 

response is converted into dielectric permittivity (Stevens Water Monitoring Systems 

Inc., 2007).  

The HydraProbe has a default factory calibration set to “loam” soils. A number 

of studies have found that high water contents and materials that fall outside of 

manufacturer calibration affect the accuracy of this calibration. As such, a soil-specific 

calibration has been suggested to improve the accuracy of measurements (Hornbuckle 

and Logsdon, 2006; Vaz et al., 2013; Burns et al., 2014; Ojo et al., 2015; RoTimi Ojo et 

al., 2015). Soil-specific calibrations have been performed and compared to the standard 

“loam” calibrations. One such calibration on a Vertisol found an improvement of RMSE 

from 0.129 to 0.014 (RoTimi Ojo et al., 2015), and in other fine-textured soils the 

“loam” calibration has been shown to over predict soil moisture, by over 0.05 m3 m-3 
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(Vaz et al., 2013). On the other hand, Kammerer et al. (2014) calibrate the HydraProbe 

for a loam soil and the calibration was found to be very similar to the factory calibration.  

Seyfried et al. (2005) investigated laboratory-based HydraProbe calibrations for 

34 soils that varied in texture. The quality of soil-specific calibrations compared to the 

“loam” calibration varied by 0.2 to 3%, but the quality was not dependent on clay 

content. Seyfried et al (2005) found that the calibration quality was correlated with 

dielectric loss, which is more associated with clay mineralogy than clay content. The 

properties of clay mineralogy that affect dielectric loss are surface area, cation exchange 

capacity.  

Though there are papers in the literature that deal with HydraProbe calibration 

assessment in laboratory calibrations, one area that is poorly explored is how well the 

HydraProbe performs in the field and compares to other field measurements of soil 

moisture.  
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CHAPTER II 

MATERIALS AND METHODS 

 

 

Site Descriptions 

This project has two primary measurement components; one is temporal 

assessment of the behavior of two monitoring sites, and the second is a spatial, state-

wide assessment of nine of fourteen SCAN sites across Texas.  

The temporal assessment component of this project was established at the O.D. 

Butler Jr. Animal Science Complex, which is managed by the Department of Animal 

Science at Texas A&M University. This complex contains soils that represent four of the 

five alluvial terraces of the Brazos River and includes the Brazos river floodplain. At the 

O.D. Butler Complex, two soils, Silawa and Ships, were selected for observation with 

FDR sensors and NMM for monitoring. Each soil was sampled by horizon and soil 

characteristics including particle size analysis by pipette (Gee and Or, 2002), CEC, and 

cations. Analyses were performed by the Texas A&M Agrilife Soil Characterization Lab 

(Texas A&M Agrilife, 2016). 

The Silawa soil series is located on an old alluvial terrace of the Brazos River, N 

30.562365 and W 96.410238. Silawa is a very deep, well drained, moderately permeable 

soil developed from old alluvial deposits ranging from sandy to loamy textures. Silawa 

is classified as a fine-loamy, siliceous, semiactive, thermic Ultic Haplustalfs (Soil 

Survey Staff, 2013). This soil was chosen because of its sandy surface texture and abrupt 
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Table 1. Soil characterization data for the Silawa and Ships soil series.  

Soil Series and Horizon Horizon Depth Texture Class Clay Content Organic Carbon CEC pH 

 ——cm——  ———————%——————— meq100 g-1  
Silawa Ap and E 0-33 Loamy fine sand 4.1 0.33 2.6 4.8 
Silawa Bt 33+ Sandy clay 42.9 0.36 18.8 5.0 
Ships Ap 0-16 Silty clay 58.6 0.94 41.1 7.9 
Ships Bss 16-110 Clay 63.4 0.73 44.2 7.9 
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textural change to a sandy clay in the subsurface, argillic horizon (Table 1). The horizon 

boundary between the sandy E and clayey Bt horizon has a wavy topography and abrupt  

distinctness. The oven-dry bulk density is 1.56 g cm-3. The vegetation is dominated by 

perennial pasture grasses, and the slope is 1 to 3%, located on the summit. The Bt 

horizon has strongly developed prismatic structure with sand coats around the prisms of 

the upper Bt. These sand coats indicate that the soil prisms shrink enough when dry to 

allow the sands from the overlying sandy soil to fill in the shrinkage cracks.  

The second site contains the Ships soil series, located on the flood plain of the 

Brazos River, N 30.547461 and W 096.413080. The Ships soil is a very deep, 

moderately well drained, slowly permeable soil, developed from clayey textured 

alluvium. The classification of this series is very fine, mixed, active, thermic Chromic 

Hapludert (Soil Survey Staff, 2013). The soil survey indicates that Ships can form gilgai 

microtopography; however, none is clearly present at the site. The Ships soil was 

selected for this study because of its high clay content and shrink swell behavior. The 

Coefficient of Linear Extensibility (COLE) of Ships classifies in the high shrink-swell 

class. The Ships clay has mixed minerology that is composed of mica, montmorillonite, 

vermiculite, and to a lesser extent, kaolinite. The slope is 0 to 1%. The horizon transition 

between the surface horizon and subsurface is a smooth abrupt boundary. The oven-dry 

bulk density is 1.35 gcm-3. These soil characteristics were obtained from the Texas 

A&M University Soil Characterization Laboratory. The vegetation of the site is grazed 

pastureland with mixed annual and perennial grasses.  
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Soil-specific Lab Calibration of HydraProbes 

There are several proposed methods to lab calibrate soil moisture sensors 

(Gabriel et al., 2010; Kinzli et al., 2012; De Carteret et al., 2013; Burns et al., 2014; Ojo 

et al., 2015; Matula et al., 2016; Provenzano et al., 2016; Gasch et al., 2017). For this 

study, a modified version of a calibration procedure by Meter was used (Cobos and 

Chambers, 2010). First, we collected 15 cores to 1.2 m deep from each soil using a 

Giddings hydraulic soil sampler. Each soil core was separated into a surface and 

subsurface horizon. The cores were air dried at 60°C, ground, and passed through a 

0.002-m sieve. Once ground, a volume of 328.51 mL was subsampled and mixed to six 

volumetric water contents to represent a range in volumetric water contents from wilting 

point to field capacity. Bulk density values include the following: 1.5 g cm-3 for the 

sandy Silawa surface (A and E), 1.2 g cm-3 for the clayey Silawa subsoil (Bt), and 1.2 g 

cm-3 for all of Ships horizons (Ap and Bss).  

Each sample was prepared by gradually pouring water into the sample then 

covering the container with parafilm, and allowing it to sit for approximately an hour. 

Then the sample was poured onto a tray and lightly mixed by hand to assist an even 

distribution of water throughout the soil. After preparation, the sample was placed in the 

refrigerator to equilibrate throughout and to reduce water loss via evaporation.  

Next, each sample was packed to the pre-calculated bulk density using a drop 

weight into a pvc pipe. Once packed, each HydraProbe was inserted into the sample, and 

dielectric permittivity was recorded from the sensor. Two to three dielectric permittivity 

readings were recorded for each probe and soil moisture to determine sensor stability. 
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This step was repeated for each prepared water content. A volumetric subsample from 

the mixed soil sample was oven dried to verify water content. Linear regression was 

used to relate the square root of dielectric permittivity and volumetric soil water content. 

An ANCOVA analysis was used to test whether individual calibration equations for each 

probe were significantly different. The ANCOVA was run in Matlab (Matlab R2017a, 

The Mathworks, Inc.) using the anova function (Chatterjee and Hadi, 2006). Inter-sensor 

variability was calculated by subtracting the measured soil moisture from each 

calculated soil moisture and then averaging the differences.  

 

Field Calibration of Neutron Moisture Meter 

A neutron moisture meter (NMM) was used at the Ships and Silawa sites as a 

comparison to the HydraProbe and to nondestructively monitor soil moisture over time. 

The NMM was field-calibrated in-situ. For calibration, an aluminum access tube was 

installed to 1.2 m depth by auguring a hole with a hydraulic soil coring machine. The 

aluminum access tube was inserted into the hole with a snug fit. The NMM counts were 

recorded in 0.10 m increments from 0.10 m to 1.10 m depths, twice, by taking counts 

while lowering and raising the source. After collecting NMM counts, four soil cores 

were collected within the immediate vicinity of the installed access tube. Each core had a 

0.09 m diameter and was cut into 0.10 m increments starting at 0.05 m and ending at 

1.15 m; the segments were weighed at field moisture and after oven drying at 105°C for 

several days. Gravimetric water content was converted to volumetric water content using 

the volume of each segment and dry soil mass. A regression was created to test the 
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correlation strength between count ratio and volumetric water content using the average 

of two count ratios for each depth (counts/standard) and volumetric water content 

representing the average of four cores. Regressions were performed in Matlab using the 

polyfit function (Matlab R2017a, The Mathworks, Inc.). Surface and subsurface NMM 

equations were created.  

The NMM calibration was performed in the field and was specifically related to 

texture, one for the sandier textured soil and one for clayer textured soil (Fig. 1). A 

different calibration equation for the surface (<0.30 m) was also created to account for 

the NMM accuracy at shallow depths due to escaping neutrons near the surface (Stone et 

al., 1955; Graecen and Hignett, 1979; Williamson and Turner, 1980; Evett et al., 2003; 

Tokumoto et al., 2011). The RMSE for the neutron calibration equations are between 

0.008-0.039 m3m-3 (Table 2). RMSE increased as clay increased and between subsoil 

and surface. The Ships and Silawa soils have vertic properties, possibly leading to higher 

error due to escaping neutrons through cracks. Each NMM calibration equation was 

tested against one another and at the different depths using ANCOVA. There was no 

significant difference (p-value < 0.001, data not shown) between the two NMMs, depths, 

or soil. Even though there was no significant difference between NMM calibration 

equations, separate calibration equations for each NMM by soil series and depth were 

used (Table 2), to increase soil moisture measurement accuracy (Evett et al., 2003, 2006, 

2009).  
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Figure 1. Soil specific neutron moisture meter (NMM) calibrations performed in-situ for two probes which are 
identified by their serial numbers. Two depths are calibrated, a) 10 cm depth and b) a 20 to 110 cm depth for both 
Silawa and Ships soil series. Regression results are presented in Table 2. 
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Table 2. Root mean squared error (RMSE) and the number (n) of data points for each regression of the two 
neutron moisture meter calibrations (meters are identified by serial number) for each soil series and depth.  

Soil Series with 
Corresponding Depth 

Regression Equations RMSE  

H370708808 50347 H370708808 50347 n 

——— cm ———   ——— m3m-3 ———  
Silawa 10  y = 0.183x + 0.003  

r2 = 0.87 
y = 0.163x – 0.040 
r2 = 0.84 

0.022 0.008 7 

Silawa 20 -110  y = 0.189x – 0.022 
r2 = 0.78 

y = 0.161x – 0.071 
r2 = 0.76 

0.039 0.014 39 

Ships 10 y = 0.181x + 0.083  
r2 = 0.84 

y = 0.169x + 0.024 
r2 = 0.83 

0.027 0.017 7 

Ships 20 -110 y = 0.203x – 0.014 
r2 = 0.78 

y = 0.176x – 0.054 
r2 = 0.76 

0.030 0.021 57 
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Installation of HydraProbes and Monitoring 

HydraProbes were installed in March and April 2016 at the Silawa and Ships 

site, respectively. For installation, a small pit was hand-dug to 1.1 m deep using a shovel 

and posthole digger to minimize disturbance. Two HydraProbes were horizontally 

installed at each of the following depths: 0.10, 0.20, 0.30, 0.50, and 1.00 m. At the Ships 

site, the probes were installed in triplicate at the 0.1 and 0.2 m depths, each about 0.20 m 

apart from each other. After each probe was installed, the hole was backfilled using soil 

from the appropriate depth and tamped to return to approximate bulk density. The area 

was fenced off to avoid disturbance from sheep and cattle. After installing the 

HydraProbes, four aluminum access tubes were installed within 0.5 m of the hand-dug 

hole for soil moisture monitoring by the NMM. 

Over the next 18 months, HydraProbe readings were collected approximately 

every 2 weeks. NMM measurements were taken at the access tubes installed at each site 

and were acquired using 30 second count times. A total of 20 sets of NMM 

measurements were acquired over the 18 month period. Soil moisture measurements 

from the HydraProbe and the NMM were compared using linear regression to develop a 

field in-situ calibration. Additionally, an analysis of dry-down and wet-up periods was 

done to determine if hysteresis a trend existed. 

 

SCAN Site Description 

There are 14 SCAN stations located throughout Texas (Soil Survey Staff et al., 

2017). For this study, 9 out of the 14 were considered. These nine were selected based 
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on long-term data availability and ability to drive to the site within one day (Fig. 2). The 

stations are located in Beaumont, Kingsville, Knox City, Riesel, San Angelo, 

Stephenville, Uvalde, Vernon, and Weslaco, Texas. These sites are primarily in very 

deep farmland soils and have relatively high water holding capacities. Six of the sites are 

identified as Mollisols and four of those have vertic properties. One of the sites is 

classified as a Vertisol; hence five of the sites have high shrink-swell potential. Two 

sites are Alfisols, Palustalfs specifically, meaning they have well developed sandy A and 

E horizons and a well-developed argillic horizon that decreases in clay with depth (Table 

3 and 4). The soils at these SCAN site are well represented by the Ships and Silawa 

monitoring sites. 

 

SCAN Data Collection 

Soil cores were collected at the SCAN sites to provide ground truthing of the 

currently installed HydraProbes that contribute to the SCAN. The HydraProbes were 

installed at 0.05, 0.10, 0.20, 0.50, and 1.00 m depths and use the standard factory 

calibration for “loamy soil” as reported on the SCAN website (Soil Survey Staff et al., 

2017). There is no duplication of sensors by depth. Soil moisture data is automatically 

logged hourly. At each site, five cores were collected for measuring volumetric water 

content and on three different dates to capture a range of soil moistures. Each soil core 

was located approximately 5 to 15 m from the SCAN installation and collected to 1.20 m 

or to the depth of a coring-restrictive horizon. The soil cores had a diameter of 8.89 cm 

and were cut into 10 sections selected to surround the depth of the HydraProbe   
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Figure 2. Location of nine Soil Climate Analysis Network (SCAN) sites across 
Texas, USA. 
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Table 3. Soil series name, taxonomic classification, and profile clay content, for each of the nine Soil 
Climate Analysis Network (SCAN) in this study (National Cooperative Soil Survey).  

   Depth 

Site Soil Series Taxonomy 5 10 20 50 100 
   —————— cm —————— 
   Clay Content 

   —————— % —————— 
Beaumont Labelle Fine, smectitic, hyperthermic oxyaquic Vertic Argiudoll 15.1 15.1 15.1 20.1 31.1 
Kingsville Cranell Fine, smectitic, hperthermic Vertic Haplustoll 24.4 22.8 23.7 27.8 31.6 
Knox City Altus Fine-loamy, mixed, superactive, thermic Pachic Argiustoll 12.1 14.2 14.2 22.8 13.7 
Riesel Houston Black Fine, smectitic, thermic udic Haplustert 56.6 56.6 57.9 61.0 61.6 
San Angelo Angelo Fine, mixed, superactive, thermic Pachic Argiustoll 39.1 39.1 41.0 44.4 39.6 
Stephenville Windthorst Fine, mixed, active, udic Paleustalf 10.9 10.9 10.9 39.9 16.7 
Uvalde Knippa Fine, mixed, superactive, thermic Vertic Calciustoll 45.9 45.9 46.2 48.8 39.8 
Vernon Wichita Fine, mixed, superactive, thermic Typic Paleustalf 24.6 25.0 31.9 36.4 45.2 
Weslaco Hidalgo Fine-loamy, mixed, active, hyperthermic Typic Calciustoll 20.6 20.6 18.8 21.1 23.3 
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Table 4. Soil series name and inorganic carbon content for each of the 
nine Soil Climate Analysis Network (SCAN) in this study (National 
Cooperative Soil Survey). 

Depth 

Site Soil Series 5 10 20 50 100 
—————— cm —————— 

Calcium Carbonate Equivalent 

—————— % —————— 
Beaumont Labelle 0 0 0 0 1 
Kingsville Cranell 0 0 0 0 12 
Knox City Altus 0 0 0 0 3 
Riesel Houston Black 19 19 15 15 15 
San Angelo Angelo 11 11 11 12 48 
Stephenville Windthorst 0 0 0 14 10 
Uvalde Knippa 27 27 28 30 54 
Vernon Wichita 0 0 6 12 13 
Weslaco Hidalgo 2 2 2 9 14 

installations with larger intervals where there is no probe installed; 0.00 to 0.07, 0.07 to 

0.15, 0.15 to 0.25, 0.25 to 0.40, 0.40 to 0.50, 0.50 to 0.60, 0.60 to 0.75, 0.75 to 0.90, 0.90 

to 1.00, and 1.00 to1.10 m. Upon collection, each core was placed in a paper bag and a 

plastic bag during transport to the lab to prevent water loss. In the lab, each core section 

was weighed moist and re-weighed after oven drying at 105°C for several days. 

Gravimetric water contents were converted to volumetric by using the volume and dry 

mass of each core segment. The final volumetric water content by depth increment was 

calculated by taking an average of the five cores. Water contents that were more than 

two standard deviations of from the average were removed from the average, assuming 

the collection of the estimated core volume was in error. All removed data had 

reasonable gravimetric moisture but unreasonable bulk densities. These volumetric water 

contents, by depth were compared to their corresponding HydraProbe measurements for 

the day by using regression analysis. Residuals of these regressions were plotted against 
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HydraProbe measured clay content and soil moisture to assess potential causes in 

HydraProbe error. 
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CHAPTER III 

RESULTS AND DISCUSSION 

 

 

Soil-Specific Lab Calibration of HydraProbe 

Using a soil-specific laboratory calibration with 22 HydraProbes, the inter-sensor 

variability was found to be consistent with the manufacture reported inter-sensor 

variability. The average inter-sensor variability for the HydraProbe in our experiment 

was 0.01 m3m-3. Others have also shown inter-sensor variability to be relatively small 

(Seyfried et al., 2005; Burns et al., 2014; Kammerer et al., 2014; Coopersmith et al., 

2015; Wilson et al., 2016). This conclusion is supported by our soil-specific laboratory 

calibrations, where a single-soil calibration equations produced using different 

HydraProbe sensors were found to be not significantly different (p-value <0.001; data 

not shown). Hence soil-specific lab calibrations reported in the following results are 

based on soil type only, assuming sensors are interchangeable.  

Soil-specific lab calibrations were significantly different from the default factory 

“loam” calibration equation. The comparison between the soil-specific lab calibration 

and that of the default “loam” calibration primarily varied according to clay content (Fig. 

3). The sandy soil, Silawa A and E, had a larger slope, and the clayey soils had a smaller 

slope than the default factory calibration equation. The soil-specific lab calibration for 

the two clayey soils (Silawa Bt and Ships A and Bss) were quite similar, and one 

regression for both soils would provide similarly accuracy; however, statistically the  
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Figure 3. Soil-specific linear regression of square root of real dielectric 
permittivity (√ε ) and soil moisture measured with the HydraProbe compared to 
the default factory calibration. Soil horizons grouped by clay content and soil 
series. Equations provided are significantly different from each other at α = 
0.001. 
 

regression lines for both soils are different (p-value<0.001). The slight difference may be 

because of different mineralogies or other soil property characteristics. Silawa is 

primarily smectitic and Ships has a mixed clay minerology. The sandy soil calibration 

(Silawa A and E) has a steeper slope and starts to differ from the default factory 

calibration at about 0.20 m3m-3. The opposite occurs with the clayer textures; Silawa Bt 

and Ships water contents were overestimated by the default calibration. The Silawa Bt 
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calibration begins to differ from the default factory calibration at about 0.15 m3m-3 

volumetric water content. Gabriel et al. (2010) and Rotimi Ojo et al. (2015) report 

similar trends in slope and soil texture. Therefore to have a more accurate measure of 

soil moisture that is closer to an accuracy goal of 0.04m3m-3, which is discussed by 

SMOS research, a soil-specific calibration should be applied (Entekhabi et al., 2010; 

Kerr et al., 2010).  

Soil moisture estimations using a soil-specific lab calibration in comparison to 

the default factory resulted in a range of errors. The RMSE of the soil-specific 

calibrations were 0.014 m3m-3 for Silawa A and E, 0.024 m3m-3 for Silawa Bt, and 0.029 

m3m-3 for Ships. The RMSE of the default factory equations for all the soils was 0.094 

m3m-3 (Fig. 3). These differences between default and soil-specific calibrations matter 

most when the soils are wetter. The default factory calibration underestimated soil 

moisture by 0.014 m3m-3 for the loamy sand, Silawa A&E, and overestimates soil 

moisture by 0.027 m3m-3 for the clayer soil, Bt and Ships horizons. For the loamy sand, 

Silawa A and E, the default factory and the soil-specific calibration are very close in 

estimating soil moisture, but as the soil moisture increased and clay content increased  
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Figure 4. A comparison of predicted soil water contents of the default and the 
soil-specific lab calibration, the default and the in-situ calibration, and the soil-
specific lab calibration and in-situ calibration of the HydraProbe. 
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the default factory overestimated soil moisture (Fig. 4a). Cosh et al. (2016), RoTimi Ojo 

et al. (2014), and Burns (2014) found applying a site-specific calibration reduced soil 

measurement error and reported similar RMSE to our experiment. RoTimi Ojo et al. 

(2014 and 2015) also reported a similar trend and RMSE improvement to our clayey 

texture soil-specific laboratory calibrations. This means, default factory calibration is 

useful to monitor trends and approximate soil moisture, but not so useful for accurate 

soil moisture measurement. 

 

In-Situ Calibration of the HydraProbe 

Soil-specific lab calibration of the HydraProbe has been intensively researched; 

however, the feasibility and accuracy of an in-situ field calibration of the HydraProbe 

using the NMM has not yet been explored (Kinzli et al., 2012; De Carteret et al., 2013; 

Burns et al., 2014; Kammerer et al., 2014; Matula et al., 2016; Provenzano et al., 2016). 

For in-situ calibration, linear regression equations were developed using the square root 

of real dielectric permittivity, a measurement parameter from the HydraProbe, and the 

in-situ soil moisture, measured with the soil-specific calibrated NMM (Fig. 5). The in-

situ calibration equations of the HydraProbe were developed individually from NMM 

calibration equations from Fig. 1. The equations presented in Fig. 5 were found to be 

significantly different from each other and from the soil-specific lab calibration 

equations (p-value<0.001). For each case, the in-situ calibration has a smaller slope than 

the soil-specific lab calibration. Similarities between the soil-specific lab calibration and  
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Figure 5. In-situ calibration of the HydraProbe by regressing the square root of 
real dielectric permittivity (√ε ) to volumetric soil moisture as measured with the 
neutron moisture meter (NMM) (regression displayed by dashed red line). The 
default factory (bold black line) calibration is displayed for comparison.  
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the in-situ calibration do exist. For example, similar to the soil-specific lab calibration, 

the sandy Silawa A and E in-situ calibration has a steeper slope and tighter data points  

about the regression compared to calibration equations of the clayeyer soils. The RMSE 

values of the in-situ calibration of Silawa (0.042 and 0.035 m3m-3) are higher than the 

soil-specific lab calibration (0.014 and 0.094 m3m-3). The error and scatter increase as 

soil moisture increases in the clayer soils, which results in not capturing the range of soil 

moisture very well. Above 0.25 m3m-3, the relationship between soil water content and 

dielectric permittivity has a lot of scatter for both Silawa and Ships subsurface soils (Fig. 

5). This scatter is more predominant in Ships than Silawa. Ships has 20% more clay than 

Silawa throughout the profile and variable void space from more shrinking and swelling 

both of which may account for the poorer calibration results. Figure 5c shows what is 

likely a result of cracking and variability in void space, compared to Fig. 6d. The RMSE 

for Ships for the field is 0.060 m3m-3 and the soil-specific lab RMSE was 0.029 m3m-3. 

In comparison to the soil-specific lab calibration, the in-situ calibration has greater error; 

however the in-situ calibration is closer to the NMM soil moisture measurements; of 

course the better fit is expected because the NMM measurements are used in the 

calibration. The gain from performing an in-situ calibration is minimal, and the soil-

specific lab calibration achieves a greater range of soil moisture for developing a linear 

relationship. Therefore, we think the lab calibration is the preferred method. However, 

another interesting result of the in-situ calibration is the effect of the measurement 

volume. The HydraProbe has a very small measurement radius (2.1 cm) while the NMM 

has a measurement radius of about 20 cm in very wet soils and rarely greater than 30 cm,  
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Figure 6. HydraProbe soil moisture over time for both soils, a) Silawa b) Ships 

over an 18 month period. Purple dashed lines indicate occasions at which 

neutron moisture meter measurements were taken. 

 

except in extremely dry sandy soils (Grant, 1975). One possible reason HydraProbe 

measurements vary while the NMM measurements do not (see Fig. 7d) is the difference 

in the amount of soil being measured. Small changes in moisture and contact can make a 

larger difference for the HydraProbe. Our results are in agreement with Kinzli et al. 

(2012) who developed a field calibration using gravimetric soil moisture and observed a 
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similar trend; in-situ calibration worked well for sandy soil, but at higher clay content 

and soil moisture, clusters occurred.  

 

Assessment of HydraProbe at Two Monitoring Sites  

To evaluate the performance of the HydraProbe and each of the calibrations over 

time, two monitoring sites were established, one each at the Silawa and Ships sites. The 

monitoring data exhibited normal wet-up and dry-down behavior, which corresponded to 

rainfall and winter/summer seasons (Fig.7). When analyzed separately, the wet-up and 

dry-down periods had no discernable pattern that necessitated a separate calibration over 

either period. Occasions when neutron moisture measurements were taken are also 

illustrated by purple dashed lines in Fig.7. In general, with the soil-specific lab 

calibration, the HydraProbe performed well in all depths of the Silawa soil, and seemed 

rather insensitive to water content fluctuations in the Ships (Fig. 6). For comparison 

HydraProbe results using the default factory calibration and the in-situ calibration are 

also shown (Fig. 6a and 6d). For the Ships soil series, water content is overestimated by 

the HydraProbe default calibration. A soil-specific lab calibration reduces the error by  
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Figure 7. Soil moisture as measured with neutron moisture meters (NMM) in 
comparison to HydraProbe measurements using the default factory calibration, 
soil-specific lab calibration and in-situ calibration for each soil series. 
HydraProbe measurements represent 0 to 100 cm depths and a time span of 18 
months. 
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more than half compared to the default factory calibration. At drier water contents, more 

variation exists in soil moisture measurement with the NMM, than is captured by the  

HydraProbes. This insensitivity may be from the HydraProbe losing contact in soils with 

vertic properties. In the Silawa, the data more closely follow the one-to-one line relative 

to the Ships soil. The soil-specific lab calibration agrees with the NMM soil moisture for 

the sandy Silawa A&E horizon, but for the clayer Silawa Bt, soil moisture is 

overestimated with the soil-specific lab calibration. In general, by using a soil-specific 

lab calibration as opposed to the default factory calibration, error is reduced and the 

HydraProbes capture the range in soil moisture. 

In-situ calibration should perform the best in comparison to the soil specific lab 

calibration, because the NMM measurements were used in the in-situ regression 

calibration. Water content determined with the in-situ soil calibration better captures the 

range in water content. Overall the data scatter with the in-situ calibration is reduced, 

especially in the Ships soil, in comparison to the soil-specific lab calibration (Fig. 6). In 

the Silawa soil series one set of outliers disappear with the use of the in-situ calibration, 

and less bias is apparent with sensor depth. In both the soil-specific and in-situ 

calibration no trend in bias or error occur with depth (Fig. 6b and 6c). In the Ships soil, 

some of the error does appear to be related to soil depth. At the surface, 10 to 20 cm, and 

below 0.30 m3m-3, scatter is apparent in HydraProbe soil moisture measurements. For a 

clay soil, 0.30 m3m-3 is dry corresponds with soil cracking (Neely, 2014) and is nearing 

permanent wilting point (Rawls et al., 1992). We suspect that the measurement volume 

of the HydraProbe probes is problematic for these soils during cracking. After rainfall, 
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the HydraProbe reports a change in water content, but the NMM does not, probably due 

to different measurement support.  

The in-situ calibration yielded the lowest error as it captured natural soil moisture 

cycles, soil variability associated with intactness and cracking, but only with a slight 

improvement over the soil-specific lab calibration. The soil-specific lab calibration 

captures a larger range in soil moisture estimates than the in-situ calibration but not a 

tighter fit to in-situ NMM measurements. 

 

SCAN 

Soil moisture for the Soil Climate Analysis Network (SCAN) is monitored using 

the HydraProbes. Because the results of our two monitoring sites indicated an 

improvement by soil-specific lab calibration, performance was evaluated for the SCAN 

HydraProbes for the state of Texas, with a Texas-wide field calibration in mind. For this 

evaluation and potential calibration, we compared each HydraProbe soil moisture 

measurements at moist and dry field soil condition to an average of 5 soil moistures 

determined by the volumetric core method. The soils varied in clay content and 

geography (Table 1). Results indicate an overestimate of water content by the 

HydraProbes compared to core soil moisture especially as moisture content increased 

(Fig. 8). Results are consistent to the findings from our soil-specific lab calibrations and 

from the two monitoring sites. In general, the probes overestimate soil moisture 

especially over 0.15 m3m-3.  
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Figure 8. Soil Climate Analysis Network (SCAN) average of five soil moistures 
determined by the core method compared to the reported station soil moisture, 
which is measured by the HydraProbe, using default factory calibrations. Bars 
represent standard deviation.  
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intrinsic shrink-swell soil (purple dots, Houston Black Clay) had residuals without any 

bias. Figure 9 also illustrates much variability in the residuals at each site. Because some 

literature suggests that other soil properties, such as salinity, might affect the probe 

calibration, therefor an error analysis as a function of CEC, pH, and exchangeable 

cations was conducted (data not shown), and no trend was found. Residuals were also 

analyzed by depth and bulk density, and no trend was found. Next, we analyzed the 

residuals as a function of soil moisture (Fig. 10), and found a weak, r2 = 0.32, but 

significant correlation of the residuals to soil moisture. This clear relationship between 

HydraProbe error and soil moisture is expected based on our previous calibration results. 

Also based on calibration results of the Ships and Silawa soils and the literature, we 

could have hypothesized the clay content is useable to pre-determine the extent of the 

soil moisture bias in a HydraProbe estimate of soil moisture. However Fig. 9 provides 

evidence that contradicts this hypothesis. Even if the Riesel (Haplustert) points in Fig. 9 

are ignored, the San Angelo (Argiustol) also shows evidence against the hypothesis, 

while the Vernon (Paleutal) shows a clear trend for clay content affecting HydraProbe 

soil moisture predictions just like the Silawa soil. Both of these soils, Silawa and 

Vernon, are Paleustalfs. While this evidence is frustrating, it leads us to the conclusion 

that the best Texas-wide SCAN calibration is just to add a soil moisture correction to the  

HydraProbe predictions, to remove the soil moisture bias. HydraProbe prediction 

of soil moisture across the SCAN sites were reduced by half, from a RMSE of 0.094 

m3m-3 and bias of 0.009 m3m-3 to an RMSE of 0.056 m3m-3 and bias of 0.003 m3m-3 

(Figs. 10 and 11).   
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Figure 9. Soil moisture regression from the nine Soil Climate Analysis Network 
(SCAN) sites, core method compared to HydraProbe soil moisture with the 
default factory calibration, as a function of clay.  
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Figure 10. Soil moisture regression from the nine Soil Climate Analysis Network 
(SCAN) sites, core method compared to HydraProbe soil moisture with the 
default factory calibration, as a function of soil moisture as measured with the 
HydraProbe. 
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Figure 11. Bias removal of soil moisture using the equation in Figure 10 for a) 
Soil Climate Analysis Network and for b) Silawa and Ships site.  
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To test the applicability of the SCAN bias correction based on soil moisture, we 

applied it to the Ships and Silawa measurements. Though not as good as the soil-specific 

lab and in-situ calibrations the SCAN bias correction reduced RMSE values of the Ships 

and Silawa sites from 0.139 m3m-3 to 0.063 m3m-3. Based on the variability on soil 

properties represented by the SCAN soils used for the bias correction, we conclude this 

correction could be applied to improve other SCAN and CRN sites across the US if no 

other information is available.  Soils that we used in the SCAN correction the large 

range in clay content (12 to 62 %; Table 3), 2:1 smectitic clays and mixed minerology in 

clay fraction, and low salinity. Calcium carbonate equivalent ranged from 0 to 54 % 

(Table 4). Therefore, these results could be applied to SCAN sites in the Midwestern 

United States. This correction is likely least applicable is the Southeast and 

Southwestern United States where soil are dominated by kaolinite and soluble salts, 

respectively Additionally this research is more applicable for correction of wetter soil 

moisture contents as for the dry soil moisture contents the HydraProbe performs 

decently.   
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CHAPTER IV 

CONCLUSION 

 

 

A soil-specific lab calibration for surface and subsurface soil, an Alfisol and a 

Vertisol, was developed. After inter-sensor variability was determined to be negligible, 

three soil-specific equations were created. Soil-specific lab calibrations were 

significantly different from the default factory “loam” calibration, and appeared to vary 

primarily according to clay content. Two of the soil-specific data sets, which were the 

sandy clay subsoil of the Alfisol and clay subsoil of the Vertisol, appeared to need one 

equation; however, statistically the equations were different. It was unclear if the 

differences of 20% clay between the samples or smectitic versus mixed minerology 

contributed to the difference. Using a soil-specific calibration, the prediction error was 

reduced by half. The RMSE from using the default factory “loam” calibration was 0.094 

m3m-3 while the soil-specific lab calibration RMSE’s averaged 0.022 m3m-3. Most of the 

error occurred in the wet end of the clayey soils.  

 An in-situ calibration of the HydraProbe was developed for the same two soil 

series, by creating linear regression equations between dielectric permittivity and soil 

moisture measured with the calibrated NMM. Four equations resulted, and each of the 

four equations was found to be significantly different from each other and the soil-

specific laboratory calibrations. There were some similarities between the soil-specific 

lab calibration and the in-situ calibration, such as slope and trends according to soil type. 
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The average RMSE for the in-situ calibrations was 0.034 m3m-3, which is larger 

compared to the soil-specific lab calibration. We hypothesis this is due to different 

instrument measurement volume and fluctuations in void space volume. The gain for 

performing an in-situ calibration is minimal, therefore depending on funding and data 

accuracy goals a soil-specific lab calibration is likely sufficient.  

 To evaluate the HydraProbe and calibration performance over time, two 

monitoring sites at each of the two soil series was established and monitored for 18 

months. In the sandier soil the HydraProbe soil-specific lab calibration performed well; 

however, in the clayey soil the HydraProbe seemed rather insensitive to water content 

fluctuations compared to the NMM. In general, soils moisture was over estimated by the 

HydraProbe default factory “loam” calibration in the clayey soils and underestimated in 

the sandy soil; therefore, some sort of soil-specific calibration is needed.  

 Nine of the Texas SCAN soil moisture sites were also assessed to quantify the 

uncertainty in HydraProbe measurement. In general, the HydraProbe measurements 

overestimated soil moisture by 0.052 m3m-3 compared to the field-determined soil 

moisture via core method. These results were consistent results from our two monitoring 

sites, as the SCAN sites had a range in clay content, 10.9% to 61.6%. To try and 

improve soil moisture predictions with the HydraProbe and understand the source of the 

error, the residuals from the HydraProbe prediction and soil core measurements were 

analyzed as a function of soil characterization data. Surprisingly there was no correlation 

found between the residuals and clay content, pH, CEC, exchangeable cations, or bulk 

density. Soil moisture was positively and linearly correlated, r2 = 0.32 with the residuals. 
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New HydraProbe soil moisture predictions using the default factory calibration and a 

soil moisture trend removal improved the RMSE from 0.094 m3m-3 to 0.056 m3m-3 and 

eliminated all bias.  

Based on our results, soil-specific calibrations for the HydraProbe are 

recommended for clayer soils. Long-term monitoring of soil moisture in clayey soil is 

difficult and the data from this study is not convincing that the HydraProbe accurately 

measures soil moisture, in-situ, in clayey soils. However, this study compared 

HydraProbe measurements to NMM and certainly the NMM is averaging soil moisture 

over larger volumes. Additionally in looking across nine soils in Texas, in-situ 

HydraProbe measurements can be improved by a simple trend removal as a function of 

soil moisture. This study has contributed to our knowledge of HydraProbe performance 

in in-situ conditions across multiple soils and in clayey soils. This study also provides 

some ground-truthing data for users of the Texas SCAN sites. 
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