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ABSTRACT

Principal Component Analysis (PCA) is a linear data analysis tool that aims to reduce

the dimensionality of a dataset, while retaining most of the variation found in it. It trans-

forms the variables of a dataset into a new set of variables, called principal components,

using linear combinations of the original variables. PCA is a powerful statistical tech-

nique used in research for fault detection, classification and feature extraction. Interval

Principal Component Analysis (IPCA) is an extension to PCA designed to apply PCA

to large datasets using interval data generated from single-valued samples. In this the-

sis, three IPCA methods are introduced: Centers IPCA (CIPCA), Midpoint-Radii IPCA

(MRIPCA), and Symbolic Covariance IPCA (SCIPCA). In addition, the methods and pa-

rameters used for fault detection and classification applications are described for classical

and interval data.

The performance of the methods used for interval generation in IPCA are analyzed

under different conditions. Moreover, three synthetic datasets were used to test the fault

detection performances of all methods, and three real datasets were used to test their clas-

sification performances. The results show that IPCA methods have a higher detection rate

than classical PCA on average, for the same false alarm rate. Moreover, unlike PCA,

IPCA methods are capable of accurately differentiating the type of fault. Interval centers

were capable of detecting changes in mean, while interval radii were capable of detect-

ing changes in variance. On the other hand, for data classification, the results show that

MRIPCA has the highest precision on average than other methods.
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NOMENCLATURE

CIPCA Centers Interval Principal Component Analysis

DR Detection Rate

EDF Empirical Distribution Function

FAR False Alarm Rate

FDU Fault Detection Unit

IPCA Interval Principal Component Analysis

MRIPCA Midpoint-Radii Interval Principal Component Analysis

m The Number of Samples Aggregated per Interval

PCA Principal Component Analysis

SCIPCA Symbolic Covariance Interval Principal Component Analysis

SNR Signal-to-Noise Ratio

SPC Statistical Process Control

β Interval Width

ε Noise Matrix

σ Standard Deviation

µ Mean
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1. INTRODUCTION AND LITERATURE REVIEW

1.1 Statistical Process Control

Statistical process control, or process monitoring, is needed for a consistent high level

of quality control and safety. In a process with multiple inter-correlated variables, it is vital

to be able to detect any abnormalities, or deviations from optimal operating conditions, in

order to avoid damaging the equipment (for example, due to runaway reactions), or to

reduce costs by minimizing wasted resources. The idea is to make process adjustments so

as to avoid these deviations from occurring again. Process monitoring is carried out using

control charts, which detect and display any variability in the system [1].

In its most basic form, a control chart is a time-based plot of the current state of the sys-

tem and a limit line of the optimal or tolerable operating conditions. Process monitoring is

developed in two phases. First, finding the limit of a fault-free operation, thereby defining

the threshold value beyond which the system is considered out-of-control. Second, finding

the state of an unknown operation in real-time, and comparing it to the threshold value for

the detection of any sub-optimal conditions. Examples of systems that may use real-time

process monitoring are waste water treatment plants, distillation columns in oil and gas

applications or a food-processing unit [2]. There are several methods available to monitor

the state of the system and build control charts. One of the most powerful linear methods

is the Principal Component Analysis.

1.2 Principal Component Analysis

Principal Component Analysis (PCA) is a powerful linear data analysis tool used to

reduce the dimensionality (i.e. number of variables) of a dataset of cross-correlated vari-

ables, while simultaneously retaining most of their variability. It was first introduced by

Pearson [3], and later developed for statistical monitoring by Hotelling [4]. PCA linearly
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combines the original variables into a new set of variables, called principal components

(PCs). PCs have orthogonal loadings, and are thus decorrelated, for real data [5], which is

crucial for fault detection and classification applications. Moreover, in order to compare

variables with different magnitudes and keep the data dimensionless, variables are normal-

ized to zero mean and unit variance before applying PCA. The original variability in the

dataset is redistributed so as to be located in the first few PCs. The ones retained can be

referred to as core PCs, while the remaining are residual PCs. The latter are assumed to

hold the variability in the dataset caused by noise, and removing them is akin to filtering

out noise from the dataset.

1.2.1 Algorithm

In process monitoring, PCA requires two datasets: training and testing. Training

datasets, labeled with X , define the system under normal operating conditions (i.e. with-

out any faults) and are used to create the PCA model. Testing datasets, labeled with S,

define the system under faulty or sub-optimal operating conditions, where the objective of

PCA is to detect this deviation using its created model. Given an n × p classical training

dataset X defined as,

X =

Var. 1 Var. 2 · · · Var. p


Sample 1 x1,1 x1,2 · · · x1,p

Sample 2 x2,1 x2,2 · · · x2,p
...

...
... . . . ...

Sample n xn,1 xn,2 · · · xn,p

, (1.1)

where n is the number of samples and p is the number of variables, the PCA model can be

constructed as follows:

2



1. Find the correlation matrix R of X . This is equivalent to the covariance matrix of

the normalized X .

2. Find the eigenvectors matrix P and the diagonal eigenvalues matrix Λ of R. The

eigenvectors define the linear combination coefficients of the PCs, and the eigenval-

ues represent the amount of variance that each PC covers in the dataset.

Reorder the eigenvectors in decreasing order of their respective eigenvalues’ magni-

tudes. The eigenvalues for each variable are found as follows:

det (R− λiI) = 0 for 1 ≤ i ≤ p, (1.2)

where det() is the determinant function. For each eigenvalue, its eigenvector vi is

calculated as follows:

(R− λiI) vi = 0. (1.3)

3. Retain the eigenvectors corresponding to the largest l eigenvalues, where l ≤ p.

Define the matrix P̂ , containing only the retained eigenvectors.

There are different ways to decide how many principal components to retain in PCA:

3.1. Using the Cumulative Percent Variance (CPV) criterion, find the l core princi-

pal components such that

l = arg min
l

∣∣∣∣∣
∑l

i=1 λi∑p
j=1 λj

− ρ

∣∣∣∣∣ , (1.4)

where ρ is the desired CPV, which is a percentage value defining the minimum

amount of variance to be retained in the dataset.

3.2. Using the scree plot, which plots the eigenvalues versus their respective in-

dices, as seen in Figure 1.1. Since the eigenvalues are reordered in decreasing
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order, the plot will typically be a decreasing elbow curve. A horizontal line

is added to the bottom of the curve, such that it intersects with the scree plot

at a point beyond which its slope is approximately zero. The number of core

principal components is the index value of that intersection.

Figure 1.1: Example of a scree plot. The blue line shows how the eigenvalues change for
a system of 50 inter-correlated variables. The red line intersects with the blue line at the
point after which all eigenvalues remain relatively constant and negligible in value.

3.3. Using the Guttman-Kaiser criterion, where only the PCs corresponding to

eigenvalues greater than or equal to 1 are retained. However, this method seems

to retain more principal components on average [6].

4



3.4. Using the Mean Squared Error (MSE), find the number of eigenvectors that

minimizes its value. The MSE is the distance between the training dataset

denoised by PCA (X̂) and the noise-free training dataset (X0). The noise-free

dataset is typically only available in synthetic models, where the mathematical

model is known.

In the case where the noise-free dataset is not available, this method can still

be applied using the noisy dataset (X). The optimal number of PCs to retain

is found using the same method applied for the scree plot. We find the point at

which the slope of the MSE curve approaches zero.

4. Find the predictive transformation matrix Ĉ = P̂ P̂T, and the predicted dataset X̂ =

XĈ. The predicted dataset is equivalent to X denoised by the PCA model.

5. Find the residual transformation matrix C̃ = I − Ĉ, and the matrix of residuals

X̃ = XC̃. The matrix of residuals is equivalent to the filtered out noise from X .

The transformation matrices Ĉ and C̃ define the PCA model. Given a testing dataset

S, the matrix of residuals S̃ = SC̃ defines the degree of deviation of S from the PCA

model for each sample, and, if large enough, a fault can be declared. These residuals are

used in fault detection and classification, as will be seen later. For more comprehensive

details of PCA, please refer to [5, 7].

1.2.2 Applications

PCA has been explored in literature for many engineering applications, where it was

important to extract underlying dominant features without a priori knowledge of the data.

For example, PCA has been applied to Multi-Sensor Data Fusion in [8], where measure-

ments of a machine’s perceived smell and taste of input food samples were gathered from

multiple sensors in parallel, used to quantify the quality of the food samples.
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Another example is in the study of the trajectories of a system’s constituent atoms

as defined by Molecular Dynamics (MD) [9], where generated data matrices are typically

high-dimensional and rich in samples since it commonly operates in minuscule time-steps,

sometimes in the order of 1 femtosecond. The authors concluded that the PCA’s ability

to extract the "essential subspace" is useful in understanding the dynamics of the system.

However, there were reservations regarding the accuracy and robustness of PCA, where

sampling issues may arise for massive datasets, and stated that it must be clearly investi-

gated in order to avoid any misleading results.

Other engineering applications include gas chromatographic analysis, video and image

processing, climatic variability and automatic target recognition [6]. PCA has also been

applied in other multidisciplinary applications, such as biology, ecology, health and fi-

nance [10]. For example, Belasco et al. [11] used PCA in order to explore the relationship

between different socioeconomic variables and the rate of cancer mortality and delayed

detection.

1.3 Interval Data

The use of interval data is motivated by applications involving large datasets, in order

to reduce them to a more manageable size [12]. In addition, it is motivated by applications

involving datasets with missing values, which, for example, may be due to varying sam-

pling frequencies for different variables in the dataset or malfunctioning sensors, which

may result in corrupted/lost data samples.

Interval samples cannot be naturally measured but are artificially generated using clas-

sical samples. An interval is defined using a lower and upper bound: [a, b], where a ≤ b

and {a, b} ∈ R. Basic interval arithmetic is defined as follows: given two elementary
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intervals [a, b] and [c, d],

[a, b] + [c, d] = [a+ c, b+ d] ,

[a, b]− [c, d] = [a− d, b− c] ,

[a, b] ∗ [c, d] =
[
min (ac, ad, bc, bd) ,max (ac, ad, bc, bd)

]
,

[a, b]

[c, d]
=

[
min

(
a

c
,
a

d
,
b

c
,
b

d

)
,max

(
a

c
,
a

d
,
b

c
,
b

d

)]

⇐⇒ sgn (c) = sgn (d) 6= 0,

(1.5)

where sgn(·) is the signum function, whose output is necessarily 1, −1 or 0.

Interval datasets, identified using square brackets ([·]), are defined as

[X] =

Var. 1 Var. 2 · · · Var. p



Sample 1
[
x1,1, x1,1

] [
x1,2, x1,2

]
· · ·

[
x1,p, x1,p

]
Sample 2

[
x2,1, x2,1

] [
x2,2, x2,2

]
· · ·

[
x2,p, x2,p

]
...

...
... . . . ...

Sample n
[
xn,1, xn,1

] [
xn,2, xn,2

]
· · ·

[
xn,p, xn,p

]
. (1.6)

where the lower and upper bound matrices are respectively defined as,

X l =



x1,1 x1,2 · · · x1,p

x2,1 x2,2 · · · x2,p
...

... . . . ...

xn,1 xn,2 · · · xn,p


, Xu =



x1,1 x1,2 · · · x1,p

x2,1 x2,2 · · · x2,p
...

... . . . ...

xn,1 xn,2 · · · xn,p


. (1.7)
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Moreover, the center and radii matrices are respectively defined as,

Xc =
1

2



x1,1 + x1,1 x1,2 + x1,2 · · · x1,p + x1,p

x2,1 + x2,1 x2,2 + x2,2 · · · x2,p + x2,p
...

... . . . ...

xn,1 + xn,1 xn,2 + xn,2 · · · xn,p + xn,p


,

Xr =
1

2



x1,1 − x1,1 x1,2 − x1,2 · · · x1,p − x1,p

x2,1 − x2,1 x2,2 − x2,2 · · · x2,p − x2,p
...

... . . . ...

xn,1 − xn,1 xn,2 − xn,2 · · · xn,p − xn,p


.

(1.8)

Unlike the lower and upper bound matrices, the centers and radii matrices are of par-

ticular importance in this thesis because they can be used to represent different unique

properties of the datasets when generated via aggregation. Given a classical dataset X , we

generate its respective interval dataset [X] as follows. First, we split the samples of X into

blocks of m classical samples each, such that the j-th variable’s column is defined as

Xagg
(j) =



{x1,j , . . . , xm,j}

{x(m+1),j , . . . , x2m,j}
...

{x(n−m+1),j , . . . , xn,j}


, (1.9)

for 1 ≤ j ≤ p.

Second, the samples in each block are separately aggregated into their own distinct

intervals. Typically, aggregation is done by simply selecting the minimum and maximum

values in each block as the lower and upper bound of each interval respectively. However,

8



in this paper, aggregation is done such that the mean of the samples is taken as the interval

center c, while the standard deviation of the samples is taken as its radius r, such that

each interval is defined as [c− r, c+ r]. Similarly, interval datasets are defined using their

classical centers and radii matrices, such that [X] = {Xc, Xr}.

Aggregation of classical samples is expected to be more useful in applications with

high sampling frequencies, or multiple independent parallel data inputs, due to its require-

ment to first gather a certain numbers of classical samples before processing. Intuitively,

aggregation is not practical in applications where the classification of every classical sam-

ple is necessary, due to the unpredictability of that system’s output. However, it is useful

for applications where the states of the system are sustainable for at least as long as re-

quired to gather the needed classical samples.

1.4 Interval Principal Component Analysis

Interval Principal Component Analysis (IPCA) has been explored in literature for fault

detection and isolation applications [13,14]. However, there are common oversights when

evaluating the IPCA model’s performance. First, the analysis is applied to a single iteration

of a synthetic linear model. No Monte Carlo simulations are carried out to evaluate the

effect that random noise has on the modeling or monitoring performance. Second, interval

datasets are generated by setting the noise-free matrix as the centers, and the noise matrix

as the radii for a limited number of samples. Since it is unusual for applications to have

the noise-free matrix available, this method of interval generation is not easily transferable

to real data. Third, the limited number of samples makes little use of the inherent benefit

of interval data, which is the compilation of massive amounts of classical samples into a

more manageable quantity for faster and more accurate computations.

In this paper, three IPCA methods are taken into consideration: the Centers IPCA

(CIPCA), Midpoint-Radii IPCA (MRIPCA), and the Symbolic Covariance IPCA (SCIPCA).
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Algorithms for three IPCA methods used are briefly described in the following sections,

and they are extensions of the algorithm shown in Section 1.2.1.

1.4.1 Centers IPCA

The Centers IPCA (CIPCA) was introduced by Cazes et al. [15], where the idea is to

focus on the variation between the intervals of a dataset, rather than the variations within

them [12, 16]. Given an interval training dataset {Xc, Xr}, PCA is first applied to Xc,

taken as the classical training dataset. The resulting predictive and residual transformation

matrices, Ĉc and C̃c respectively, are then used to model the matrix of radii, Xr. Then,

given an interval testing dataset {Sc, Sr}, the interval matrix of residuals is defined as{
S̃c, S̃r

}
=
{
ScC̃c, SrC̃c

}
.

1.4.2 Midpoint-Radii IPCA

Midpoint-Radii IPCA (MRIPCA) was developed by Lauro et al. [17–20], where PCA

is applied separately to the centers and radii matrices of an interval dataset. This method is

best suited for modeling and monitoring because it takes into consideration the variations

between and within the intervals of a dataset [14]. Le-Rademacher [16] discussed the

use of a rotation matrix in order to allow MRIPCA to cover the variability caused by the

inter-connection between the centers and radii. However, based on preliminary results,

this step was not beneficial for the purposes of modeling and/or monitoring and was not

implemented.

Given an interval training dataset {Xc, Xr}, PCA is applied in parallel to Xc and

Xr, and thus four transformation matrices: Ĉc, C̃c, Ĉr, and C̃r are estimated. Then,

given an interval testing dataset {Sc, Sr}, the interval matrix of residuals is then defined

as
{
S̃c, S̃r

}
=
{
ScC̃c, SrC̃r

}
.
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1.4.3 Symbolic Covariance IPCA

Le-Rademacher et al. [16, 21] introduced the symbolic covariance matrix as a way

to better represent the range and variability found in interval data. The authors also ex-

panded their work to include histograms, where each interval is represented as a group of

sub-intervals, each with its probability calculated from the data’s distribution. Theoreti-

cally, this could prove beneficial in applications involving narrow or skewed distributions

of data. However, it is not practically utilized due to the minimal improvement to fault

detection performance it provides at the expense of a massive increase in computational

time, especially for high-dimensional large matrices.

Given a training dataset {Xc, Xr}, the symbolic covariance matrix Csym is calculated

as follows

Csym(i, j) =
1

3n

n∑
k=1

G (k, i)G (k, j)
√
Q(k, i)Q(k, j), (1.10)

where,

W (k, i) =
1

2
(X l(k, i) +Xu(k, i))

µ(i) =
1

n

n∑
k=1

W (k, i)

G(k, i) =

 −1, if W (k, i) ≤ µ(i)

1, if W (k, i) > µ(i)

Q(k, i) =(X l(k, i)− µ(i))
2

+ (X l(k, i)− µ(i))(Xu(k, i)− µ(i))+

(Xu(k, i)− µ(i))2,

(1.11)

for 1 ≤ i, j ≤ p. The symbolic correlation matrix Rsym is then defined as

Rsym(i, j) =
Csym(i, j)√

Csym(i, i)Csym(j, j)
. (1.12)
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Knowing Rsym, the PCA algorithm can then be applied starting at Step 2 in Section

1.2.1. The resulting predictive and residual transformation matrices, Ĉsym and C̃sym re-

spectively, are then used to model both matrices of centers and radii. Then, given an

interval testing dataset {Sc, Sr}, the interval matrix of residuals can be computed as{
S̃c, S̃r

}
=
{
ScC̃sym, SrC̃sym

}
.
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2. OBJECTIVES AND METHODS

This section is dedicated to describing the methods used to generate control charts.

and the parameters used to interpret the operating conditions of a given process. First, the

methods of generation of classical training and testing datasets are defined. Second, the

parameters for modeling and fault detection are defined respectively, used to benchmark

the monitoring performance of each method. Third, the method used to apply fault de-

tection for the purposes of multi-class classification is defined. Finally, the parameters of

aggregation, for the method of interval generation defined in Section 1.3 are defined.

In summary, the objective of this work is to:

1. Develop IPCA methods for process monitoring.

2. Develop a method for accurate multi-class classification using the same principles

used for fault detection.

3. Compare the fault detection and data classification performances of IPCA and clas-

sical PCA methods for different types of models, including synthetic and real data.

2.1 Data Generation

2.1.1 Training Data

The training data matrix is used to calibrate the PCA model. It is generated either

by a mathematical model or taken directly from a process. Training data represents the

behavior of the process under normal, or fault-free, operating conditions. If training data

is generated using a mathematical model, then there exists two types of usable datasets:

the noise-free (X0) and the noisy (X). The former represents the ideal behavior of the

process without any noise. The latter represents the process under more realistic normal

operating conditions, and it is generated by adding Gaussian noise to X0.
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The noise matrix is found by first defining the Signal-to-Noise Ratio (SNR), which is

the ratio of the standard deviations of the noise-free variables inX0 to the noise added. The

noise matrix is defined as ε, and the standard deviations of the variables in ε are defined as

σεi =
σX

0

i√
SNR

, (2.1)

for 1 ≤ i ≤ p, where σX0

i is the standard deviation of noise-free variable i, and p is the

total number of variables in the dataset. The noise added to each variable i is then defined

as,

εi ∼ N (0, σεi ). (2.2)

where N (a, b) defines a normal (or Gaussian) distribution of mean a and standard devia-

tion b. Finally, the noisy training data matrix is defined as X = X0 + ε.

2.1.2 Testing Data

The testing data matrix is used to benchmark the PCA’s monitoring performance, de-

fined as S. It is generated initially in the same way as the training dataset, but a fault

of known magnitude is then added to a specific region in the dataset, known as the fault

region. There are two types of faults simulated in this paper: change in mean and change

in variance. A change in mean is simulated by adding a constant value to the samples

in the fault region. A change in variance is simulated by adding Gaussian noise with a

significantly lower SNR (e.g. SNR= 1) to the samples in the fault region. Gaussian noise

has zero mean, so negligible changes are expected in the mean value of the samples.

For example, for a change in mean, given a 100× 5 matrix S, if we want to simulate a

fault on variable 1 for the sample fault region [50, 51, . . . , 75], then

S(1)[50, 51, . . . , 75] = S(1)[50, 51, . . . , 75] + σS1 , (2.3)
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where σS1 is the standard deviation of variable 1 in S before a fault is added. Typically, a

fault of 1σ is considered to be small and can sometimes go undetected, while a fault of 3σ

is considered to be severe, and must be detected by the fault detector. It is not practical to

add a large mean shift to avoid biasing the results, so a change in mean fault of 1σ is used

in the paper. In addition, the fault is simulated for a randomly selected variable at each

iteration of the Monte Carlo simulation, and for a randomly selected, but fixed in size,

fault region.

2.1.3 Interval Data

The method of interval generation used in this thesis is defined in Section 1.3, where

blocks of classical samples are aggregated into single intervals each, such that the mean

of each block of samples is taken as the centers and their standard deviation as the radii.

The main idea behind this method of aggregation is to try and minimize the interference

of noise in the monitoring process. The noise tested in this work is Gaussian and zero

mean. As a result, when taking the mean of each sample block as its respective interval’s

center, the noise is removed. Intuitively, we can now assume that noise will have a larger

influence on the radii rather than the centers, since the former takes the standard deviation

of the sample blocks. This property allows for IPCA methods to differentiate the types

of faults. Changes in mean will very likely be noticeable in the interval centers, while

changes in the variance, caused by a higher magnitude of noise, will more likely to be

noticeable in the interval radii.

Moreover, there are two more parameters to consider when evaluating the fault detec-

tion performances: the number of samples aggregated per interval m (i.e. the number of

samples in each block), and the interval width β. In the following sections, the modeling

and fault detection performances are explored for different values of m and β in order to

optimize the method of interval generation.
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2.2 Modeling and Fault Detection

Fault detection can be performed in two steps: modeling and evaluation of residuals.

Modeling using PCA seeks to find the optimal model that maximizes the amount of noise

being filtered, while minimizing the amount of valuable data being discarded. One way

to do that would be by measuring the proximity of the predicted training dataset X̂ to the

noise-free training dataset X0, defined as the Mean Squared Error (MSE):

MSE =
1

n

n∑
i=1

(
1

p

p∑
j=1

(X̂j[i]−Xj[i])
2), (2.4)

where n and p are respectively the number of samples and variables in the dataset. MSE

is calculated and plotted for different numbers of retained principal components. The

optimal number of retained PCs is at the plot’s global minimum. However, as mentioned

in Section 1.2.1, if the noise-free training dataset is not available, the noisy training dataset

X is used instead. In that case, the optimal number of PCs to retain is point beyond which

the slope of the MSE plot is approximately zero, or horizontal.

After selecting the optimal number of PCs to retain and finding the matrix of residuals

for a testing dataset S, the model residuals are then evaluated by two detection statistics:

false alarm rate/probability (FAR) and detection rate/probability (DR). The false alarm

rate is the average percentage of samples outside the fault region that were wrongfully

declared as faults. The detection rate is the average percentage of samples inside the fault

region that were rightfully declared as faults. It is desirable to maximize the detection rate,

for the same false alarm rate, to achieve better fault detection. In this work, the Q statistic

will be used to evaluate that.

The Q-statistics, also known as the Squared Prediction Error (SPE), for an n× p resid-
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ual matrix X̃ is defined as,

Q[i] =

p∑
j=1

(
X̃j[i]

)2
, (2.5)

for 1 ≤ i ≤ n. For the IPCA methods, the Q-statistics of the classical centers and radii

datasets are calculated and evaluated separately.

The next step is to find the threshold value, beyond which a fault will be declared.

First, we find an empirical distribution function (EDF) of the training data’s Q-statistics.

The EDF is an estimate of the cumulative distribution function for a set of discrete values.

The threshold, defined as γ, is found using the desired false alarm rate α. The lower the

value of α, the more confidence the PCA model will have in the training dataset, since

it is desirable that smaller number of false alarms are declared. A higher value of α is

usually chosen for training datasets with more noise, or for more conservative standards

of operating conditions. For more detailed information, please refer to [22].

Afterwards, we find the Q-statistics of the testing data’s residuals S̃ and compare them

to γ to find the false alarm and detection rates. An example of a Q-statistics chart for

testing data is shown in Figure 2.1. The left half of the samples in the testing data contains

no faults, so detections (i.e. points at which the Q-statistics cross the threshold) are treated

as false alarms. The right half of the samples in the chart have a fault simulated, called

the "fault region", so the Q-statistics which fail to cross the threshold are considered to be

missed detections. It is desirable to maximize the detection rate (i.e. minimize the number

of missed detections) and minimize the false alarm rate for a better fault detector.

A simplified block diagram of a fault detection unit (FDU) using PCA and Q-statistics

is shown in Figure 2.2.

For IPCA, two Q-charts for the centers and radii are separately generated, and the

results for each are recorded. The results are typically displayed in the form of a ROC

(Receiver Operating Characteristic) curve, which plots the detection rate versus the false
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Figure 2.1: Example of a Q-chart for testing data. The red horizontal line is the Q-
threshold, γ. The blue line is the Q-statistics of the testing data.

Figure 2.2: Block diagram of a fault detection unit (FDU) using PCA and Q-statistics.
Training data is used to find the Q-threshold, which is then compared to the testing data’s
Q-statistics.

alarm rate. The larger the area under the ROC curve, the more robust the method is as a

fault detector.
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2.3 Data Classification

Data classification is widely used in data mining applications to tag data so that it

can be found quickly and efficiently. In machine learning applications, high-dimensional

datasets may also have a massive number of samples, which negatively impacts the exe-

cution time for classical PCA. Moreover, even though the fault detection performance of

classical PCA typically improves as the number of samples increases, it has a limit beyond

which more samples cause no change in its performance. An example of a dataset using

binary classification (i.e. only two classes of data) is defined as follows,

X =

Var. 1 Var. 2 Var. 3 Var. 4 Var. 5 Var. 6



Sample 1 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 Class A

Sample 2 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 Class A

Sample 3 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 Class B

Sample 4 x4,1 x4,2 x4,3 x4,4 x4,5 x4,6 Class B

Sample 5 x5,1 x5,2 x5,3 x5,4 x5,5 x5,6 Class A

Sample 6 x6,1 x6,2 x6,3 x6,4 x6,5 x6,6 Class A

Sample 7 x7,1 x7,2 x7,3 x7,4 x7,5 x7,6 Class B

Sample 8 x8,1 x8,2 x8,3 x8,4 x8,5 x8,6 Class B

Sample 9 x9,1 x9,2 x9,3 x9,4 x9,5 x9,6 Class A
...

...
...

... . . . ...
...

...

Sample n xn,1 xn,2 xn,3 xn,4 xn,5 xn,6 Class B

. (2.6)

Given the FDU shown in Figure 2.2, a block diagram of the application of fault de-

tection for the purposes of binary data classification is shown in Figure 2.3. Two FDU’s

are generated for each class using their respective training datasets. It is desired to find
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the class of the samples in the testing dataset. If a "normal" flag is raised by the FDU, the

testing sample is assumed to belong to the FDU’s respective class.

Figure 2.3: Block diagram of binary classification using FDUs.

The number of normal flags on each FDU are then recorded in the square confusion

matrix, which details the performance of the classifier used and is in the order of the num-

ber of classes in the dataset. In this simple example of binary classification, the confusion

matrix has an order of two. As expected, it is desirable to maximize the number of predic-

tions that match the actual class of the testing data (i.e. the diagonal entries), and minimize

the predictions that differ from the actual class of the testing dataset (i.e. the off-diagonal

entries). The average values of each entry in the confusion matrix can be calculated from

the fault detection metrics, FAR and DR, as seen in Table 2.1.

For a small FAR, the higher the DR, the smaller the off-diagonal entries. This means

that the fault detector is better at classifying the testing samples. The parameter used to

benchmark the classifiers’ performances is precision, which is the ratio of true positive

predictions to the total number of predictions [23]. In other words, precision is the ratio

of the number of times a class was correctly predicted to the total number of predictions
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made for said class. It is desirable for precision to be closer to 1 for all classes for a more

robust classifier.

Predicted (i.e. PCA Model Output)

Class A Class B

Actual
(i.e. Testing
Data Class)

Class A (1− FARA) · nA (1−DRB) · nA

Class B (1−DRA) · nB (1− FARB) · nB

Precision:
(

1 + (1−DRA)·nB

(1−FARA)·nA

)−1 (
1 + (1−DRB)·nA

(1−FARB)·nB

)−1

Table 2.1: Example of a confusion matrix in binary classification. nA and nB are the
number of samples in the testing dataset belonging to classes A and B respectively.

Note that it is necessary for nA and nB to be comparable in magnitude in order for the

precision statistic not to be misleading. For example, if 95% of the testing samples are

taken from class A, then even a precision of 90% is not good, even if it seems otherwise.

That is because if you set a dummy classifier to always predict the samples as belonging to

class A, then the precision will be 95%. The dummy classifier is obviously not usable in

practice, yet it has a higher precision than the non-dummy one. Therefore, if the samples

are split evenly, then the precision can be a useful and accurate depiction of the classifiers’

performances.
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3. RESULTS

In this section, the results for six case studies are presented. The first three case stud-

ies will evaluate the fault detection performance of all methods. The first case study is a

synthetic linear example where the generated interval centers have a limited range of val-

ues due to the variables’ Gaussian distribution, while the second case study is a synthetic

linear example where the interval centers have a wider range of values due to the square

or sinusoidal variables. The third case study is a synthetic non-linear example. Despite

there being many data analysis tools available for non-linear models, like kernel PCA,

it is still useful to evaluate the robustness of linear methods since they are significantly

less expensive computationally, especially as the number of samples or the dimensionality

increases.

Monte Carlo simulations of 500 iterations carried out for the first three case studies, and

the average results are plotted for all methods. This is crucial in order to properly stress-test

a model under different conditions and to ensure that the results are not misleading. The

results for IPCA methods are split into two parts: centers and radii. CIPCA is represented

in red, MRIPCA is represented in green, and SCIPCA is represented in black. Classical

PCA is represented as blue, and it is taken as the control method for both parts of the

graphs. The modeling and fault detection performances are evaluated at different numbers

of samples aggregated per interval (m), and at different interval width coefficients (β) in

order to find the optimal value for each. The interval width is defined as βσ, where σ is the

standard deviation of the classical samples being aggregated for the interval. Moreover,

the optimal number of retained principal components is selected using the MSE plot. The

ROC curves for all aforementioned methods is shown for each case study, in order to

observe the best fault detector for different types of faults.
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Afterwards, the last three case studies are based on real data examples, and are used

to evaluate the data classification performance of all methods. The fourth case study dis-

cusses the problem of sensor drift, and its effect on the performance of classifiers used in

the recognition of different gases in real-time operations [24, 25]. Sensor drift is the grad-

ual and unpredictable change in a sensor’s response to the same chemical conditions over

time, as a result of prolonged chemical interactions with the sensor, or due to changes in

external operating conditions, such as temperature and humidity, or due to measurement

noise caused by condensation in the tubes.

The fifth case study discusses the lack of a standard dataset for physical activity mon-

itoring [26, 27]. The authors used three inertial measurement units (IMUs) and a heart

rate monitor to collect data on different physical activities from nine subjects. The IMUs

consist of a 3D accelerometer to measure acceleration, a 3D gyroscope to measure angu-

lar velocity, and a 3D magnetometer to measure earth’s magnetism at a sampling rate of

100 Hz each. The IMUs are positioned on the wrist, chest and the dominant side’s ankle.

Moreover, a heart rate monitor is used, which has a sampling rate of ≈9 Hz.

Finally, the sixth case study compared properties of the brain’s electrical activity in

different regions and at different states, including seizure activity, using an EEG [28, 29].

It is crucial to be able to differentiate between the different states accurately and quickly

in order to be allow for a swift medical response in the case of a seizure. For all three real

examples, a precision curve is shown for both the centers and radii, with classical PCA

taken as control. The curve shows the classification precision of each method for each

category, where it is desirable to maximize them for a better classifier.
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3.1 Case Study 1: Linear Synthetic Example

In the first case study, data is generated using the following linear model:

X0
(1) ∼ N (5, 1)

X0
(2) ∼ N (−2, 0.2)

X0
(3) ∼ N (120, 2)

X0
(4) ∼ N (0, 1)

X0
(5) =

1

2
· (X0

(1) +X0
(2))

X0
(6) =

1

2
· (X0

(1) −X0
(2))

X0
(7) =

1

4
·X0

(1) +
1

10
·X0

(2) +
1

3
·X0

(4)

(3.1)

Variables {1, 2, 3, 4} are independent, and variables {5, 6, 7} are dependent. The mod-

eling performances, represented using the MSE for the noise-free training dataset (X0),

are plotted for different values of m and β in Figure 3.1 and Figure 3.2 respectively. Fur-

thermore, the fault detection performances, represented using the detection probability for

a fixed false alarm probability of 5%, are plotted for different values of m and β for a

change in mean fault in Figure 3.3 and Figure 3.5, and for a change in variance fault in

Figure 3.4 and Figure 3.6 respectively.

Figures 3.1 and 3.2 show that m and β have a negligible effect on the MSE of all

IPCA methods, unlike the fault detection results. For a change in mean fault, Figure 3.3

shows that the detection probability of the interval centers slightly improves for higher

values of m, while the plots for the interval radii remain near horizontal. Conversely, for

a change in variance fault, Figure 3.4 shows that the detection probability of the interval

radii significantly improves for higher values of m, while the plots for the interval centers

remain relatively unchanged. For both cases, the plots plateau at m = 100, with minimal
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change for higher values of m. On the other hand, the detection probability for both types

of faults did not change for different values of β, as seen in Figures 3.5 and 3.6.
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Figure 3.1: MSE for X0 vs m for the interval centers (left) and radii (right) - case study 1.
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Figure 3.2: MSE for X0 vs β for the interval centers (left) and radii (right) - case study 1.
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Change in Mean Fault
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Figure 3.3: Detection probability vs m for 5% false alarm probability - change in mean
fault - case study 1.
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Figure 3.4: Detection probability vs m for 5% false alarm probability - change in variance
fault - case study 1.
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Change in Mean Fault
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Figure 3.5: Detection probability vs β for 5% false alarm probability - change in mean
fault - case study 1.
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Figure 3.6: Detection probability vs β for 5% false alarm probability - change in variance
fault - case study 1.
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As a result,m is set to 100, while β is set to 1 for all IPCA methods. The data modeling

results are shown in Figure 3.7. The optimal number of principal components to retain is

4 for all methods, since it is the point at which the curves begin to plateau.
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Figure 3.7: MSE for IPCA methods versus the number of retained principal components
for the interval centers (top left) and interval radii (top right), and for classical PCA (bot-
tom) - case study 1.

Knowing the optimal number of PCs to retain, the fault detection performances of all

IPCA methods are evaluated, in comparison to that of classical PCA. Figure 3.8 shows

the results for a change in mean fault, and Figure 3.9 shows the results for a change in

variance fault.

In both cases, all IPCA methods were better fault detectors than classical PCA, with

SCIPCA having the best performance. In addition, the results show that the interval centers

were more capable than the interval radii of detecting changes in mean, where a linear plot

for the interval radii indicates almost no detection. Conversely, the interval radii were more

capable of detecting changes in variance, where the interval centers of all IPCA methods
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had a nearly identical performance to that of classical PCA. Examples of single iterations

of the Monte Carlo simulation, for a change in mean and a change in variance, are shown

in Figure 3.10 and Figure 3.11 respectively.
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Figure 3.8: ROC curve for the interval centers (left) and radii (right) of all methods, with
PCA taken as control - change in mean fault - case study 1.
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Change in Variance Fault
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Figure 3.9: ROC curve for the interval centers (left) and radii (right) of all methods, with
PCA taken as control - change in variance fault - case study 1.
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Figure 3.10: Q-Statistics for the interval centers (left) and radii (right) of all IPCA methods
and PCA (bottom) - change in mean fault - case study 1.
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Figure 3.11: Q-Statistics for the interval centers (left) and radii (right) of all IPCA methods
and PCA (bottom) - change in variance fault - case study 1.

3.2 Case Study 2: Linear Synthetic Example

In the second case study, data is generated using the following linear model:

X0
(1) = 5 + A1 sin(t/T1), where A1 ∼ U(0.8, 1.2)

X0
(2) = −2 + A2 cos(t/T2), where A2 ∼ U(0.16, 0.24)

X0
(3) = 120 + A3SQUARE(t,D),

X0
(4) =

1

2
· (X0

(1) +X0
(2))

X0
(5) =

1

2
· (X0

(1) −X0
(2))

X0
(6) =

1

4
·X0

(1) +
1

10
·X0

(2) +
1

3
·X0

(3)

(3.2)

where T1 and T2 are the time period of the first and second variables respectively, and D

is the duty cycle of the square waveform, and are randomly generated using the uniform
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distributions U(0.6, 0.9), U(0.3, 0.5), and U(10, 80) respectively. A1, A2 and A3 define

the amplitudes of the first three variables respectively.

Variables {1, 2, 3} are independent, and variables {4, 5, 6} are dependent. The MSE

for X0 is plotted for different values of m and β in Figure 3.12 and Figure 3.13 respec-

tively, and the detection probability, for a fixed false alarm probability of 5%, is plotted

for different values of m and β for a change in mean fault in Figure 3.14 and Figure 3.16,

and for a change in variance fault in Figure 3.15 and Figure 3.17.

Figure 3.12 shows that the MSE slightly decreases for larger values of m, plateauing

at m = 50 for both the centers and radii, while Figure 3.13 shows that β has a negligible

effect on the MSE of all IPCA methods. On the other hand, the fault detection results

in Figure 3.14 show that, for a change in mean fault, there was a minimal change in the

detection probability for both the centers and radii. However, for a change in variance

fault, Figure 3.15 shows that the detection probability of the interval radii improves for

higher values of m, plateauing at m = 100, while the plots for the interval centers remain

relatively unchanged for CIPCA and MRIPCA, and decrease for SCIPCA.

The detection probability for a change in mean did not change for different values of

β, as seen in Figures 3.16. On the other hand, for a change in variance fault, the detection

probability decreases at higher values of beta for the interval centers of SCIPCA only,

while remaining fixed in other cases.
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Figure 3.12: MSE for X0 vs m for the interval centers (left) and radii (right) - case study
2.
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Figure 3.13: MSE for X0 vs β for the interval centers (left) and radii (right) - case study
2.
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Change in Mean Fault
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Figure 3.14: Detection probability vs m for 5% false alarm probability - change in mean
fault - case study 2.
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Figure 3.15: Detection probability vsm for 5% false alarm probability - change in variance
fault - case study 2.
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Figure 3.16: Detection probability vs β for 5% false alarm probability - change in mean
fault - case study 2.
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Figure 3.17: Detection probability vs β for 5% false alarm probability - change in variance
fault - case study 2.
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Figure 3.18: MSE for IPCA methods versus the number of retained principal components
for the interval centers (top left) and interval radii (top right), and for classical PCA (bot-
tom) - case study 2.

m is set to 100, while β is set to 1 for all IPCA methods. The data modeling results

are shown in Figure 3.18. The optimal number of retained principal components is 3.

Figure 3.19 shows the results for a change in mean fault, and Figure 3.20 shows the results

for a change in variance fault.

In both cases, all IPCA methods were better fault detectors than classical PCA. Both

the MRIPCA and CIPCA had the best performance in the case of a change in mean fault,

and MRIPCA had the best performance for a change in variance fault. In addition, similar

to the first case study, the results show that the interval centers were able to detect changes

in mean, and interval radii were able to detect changes in variance.
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Figure 3.19: ROC curve for the interval centers (left) and radii (right) of all methods, with
PCA taken as control - change in mean fault - case study 2.
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Figure 3.20: ROC curve for the interval centers (left) and radii (right) of all methods, with
PCA taken as control - change in variance fault - case study 2.
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3.3 Case Study 3: Non-Linear Synthetic Example

In the third case study, data is generated using the following non-linear model:

X0
(1) ∼ χ2(4)

X0
(2) ∼ N (0, 0.6)

X0
(3) = A1 sin(t/T1)

X0
(4) = (X0

(2))
2 + 5X0

(2)

X0
(5) = 2 exp(−X0

(1))

X0
(6) = (−X0

(3))
2 +

(A1 cos(t/T1))
2√

−X0
(1)

(3.3)

where A1 and T1 are the amplitude and time period of the third variable, generated using

the uniform distributions U(10, 11) and U(0.75, 1) respectively.

Variables {1, 2, 3} are independent, and variables {4, 5, 6} are dependent. The MSE

for X0 is plotted for different values of m and β in Figure 3.21 and Figure 3.22 respec-

tively, and the detection probability, for a fixed false alarm probability of 5%, is plotted

for different values of m and β for a change in mean fault in Figure 3.23 and Figure 3.25,

and for a change in variance fault in Figure 3.24 and Figure 3.26. The results show that

both m and β had a limited effect on the modeling and fault detection performance in all

cases except for a change in variance. Figure 3.24 shows that the detection probability

significantly improves for higher values of m.
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Figure 3.21: MSE for X0 vs m for the interval centers (left) and radii (right) - case study
3.
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Figure 3.22: MSE for X0 vs β for the interval centers (left) and radii (right) - case study
3.
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Figure 3.23: Detection probability vs m for 5% false alarm probability - change in mean
fault - case study 3.
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Figure 3.24: Detection probability vsm for 5% false alarm probability - change in variance
fault - case study 3.
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Figure 3.25: Detection probability vs β for 5% false alarm probability - change in mean
fault - case study 3.
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Figure 3.26: Detection probability vs β for 5% false alarm probability - change in variance
fault - case study 3.
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Consequently, m is set to 100, while β is set to 1 for all IPCA methods. The data

modeling results are shown in Figure 3.27. Even though the graphs show that the optimal

number of PCs to retain is five, only 3 PCs were retained for all methods, matching the

number of independent variables in the model. The reason here is that since there are only

six variables in the dataset, retaining more PCs also guarantees that less noise is filtered

out, which in turn adversely affects the fault detector’s performance.
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Figure 3.27: MSE for IPCA methods versus the number of retained principal components
for the interval centers (top left) and interval radii (top right), and for classical PCA (bot-
tom) - case study 3.

Figure 3.28 shows the results for a change in mean fault, and Figure 3.29 shows the

results for a change in variance fault. All IPCA methods had near identical performances

in the case of a change in mean fault, and were better fault detectors than classical PCA.

On the other hand, MRIPCA had the best performance for a change in variance fault. As

expected, the results show that the interval centers were better suited to detecting changes
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in mean, and interval radii were better suited to detecting changes in variance respectively.
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Figure 3.28: ROC curve for the interval centers (left) and radii (right) of all methods, with
PCA taken as control - change in mean fault - case study 3.
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Figure 3.29: ROC curve for the interval centers (left) and radii (right) of all methods, with
PCA taken as control - change in variance fault - case study 3.

3.4 Case Study 4: Gas Sensor Drift Real Data Example

In the fourth case study, the real data example is taken from the UCI data reposi-

tory [25]. It contains 13910 classical measurements recorded by 16 metal-oxide (MOX)

gas sensors of 6 gases at different concentrations. Each sensor reading is 8-dimensional,

resulting in 128 variables per sample. For IPCA methods, 50 classical samples were aggre-

gated per interval (i.e. m = 50), and the interval width coefficient was set to 1 (i.e. β = 1).

The gases are labeled as follows: 1-Ethanol, 2-Ethylene, 3-Ammonia, 4-Acetaldehyde, 5-

Acetone, and 6-Toluene. The precision of classifying each gas is plotted for all methods

in Figure 3.30.
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Figure 3.30: Precision curve for the interval centers (left) and radii (right) of all methods,
with PCA taken as control - case study 4.

The results show that for interval centers, MRIPCA and CIPCA had a precision value

of 1 for all gas types. For the interval radii, MRIPCA had the best performance, with a near

perfect precision for all gas classes. As a result, MRIPCA was the most robust classifier

method.

3.5 Case Study 5: Physical Activity Mapping Real Data Example

In the fifth case study, the real data example is taken from the UCI data repository

[26]. The dataset contains over 3 million samples and, after removing redundant and/or

invalid variables, 31 variables per sample. Due to the varying sampling rates, the heart

rate variable had missing samples. For classical PCA, the missing information was padded

with the previous/nearest known classical value. For IPCA methods,m = 1000 and β = 1.

The dataset was split into six separate matrices, one for each of the following classes: 1-

Cycling, 2-Going down the stairs, 3-Ironing, 4-Lying down, 5-Nordic walking, 6-Rope

Jumping, 7-Running, 8-Sitting, 9-Standing, 10-Going up the stairs, 11- Vacuum cleaning,
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and 12-Walking. The precision plots of each physical activity is shown in Figure 3.31.
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Figure 3.31: Precision curve for the interval centers (left) and radii (right) of all methods,
with PCA taken as control - case study 5.

The results show once more that MRIPCA and CIPCA had the highest precision for

interval centers, while, for the interval radii, MRIPCA had the highest precision by a wide

margin in all categories except Category 4, where classical PCA was best.

3.6 Case Study 6: Epileptic Seizure Recognition Real Data Example

In the sixth case study, the dataset is taken from the UCI data repository [29]. There are

13800 samples in the dataset, with 178 variables per sample. It is split into five categories:

1-Recorded seizure activity, 2-Recorded the EEG from the area where a tumor was located,

3-Recorded the EEG from the healthy brain area, 4-Recorded the EEG signal when the

patient had their eyes closed, 5-Recorded the EEG signal when the patient had their eyes

open. For IPCA, 100 classical samples were aggregated per interval, and the interval width
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coefficient was set to 1. The plot of precision versus each category is shown in Figure 3.32

for all methods.
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Figure 3.32: Precision curve for the interval centers (left) and radii (right) of all methods,
with PCA taken as control - case study 6.

Similar to the fourth and fifth case studies, MRIPCA and CIPCA had the best classi-

fication precision across all classes for the interval centers, while MRIPCA was the best

classifier for the interval radii.
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4. SUMMARY AND CONCLUSIONS

Statistical process control, or process monitoring, is a crucial part of today’s world

for the sake quality control and safety purposes. Maintaining a high standard of quality

control is not only beneficial from a business perspective, since it reduces cost, minimizes

waste and streamlines the manufacturing process, it is also important for the detection of

hazardous scenarios before they take place, such as runaway reactions in chemical plants.

One of the most powerful methods for process monitoring is classical Principal Com-

ponent Analysis (PCA). PCA is a linear data analysis tool used to reduce the dimension-

ality of a multivariate dataset, while retaining most of the variability found in its cross-

correlated variables. It transforms the original variables in a dataset to a new set of vari-

ables, known as the principal components (PC), which have unique mathematical proper-

ties. PCs of real datasets are necessarily decorrelated, which is crucial for the purposes of

fault detection and data classification. Furthermore, Interval Principal Component Anal-

ysis (IPCA) is an extension of classical PCA, and is used to apply PCA to large datasets

through the use of interval data. Three IPCA methods were explored in this thesis: the

Centers IPCA (CIPCA), the Midpoint-Radii IPCA (MRIPCA), and the Symbolic Covari-

ance IPCA (SCIPCA).

All IPCA methods were developed for statistical monitoring and their performance was

compared to that of classical PCA. In addition, the methods used for fault detection are

re-applied for the purposes of data classification, in order to take advantage of the IPCA

methods’ unique fault detection performance. The first three case studies are of synthetic

models of different types.

The first case study is of a linear model, where the centers fall in a tight range of values

due to the Gaussian distribution of its variables. The second case study is also of a linear
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model, but the intervals are generated such that their interval centers fall in a wider range

of values. Finally, the third case study is of a non-linear model. Intuitively, it is expected to

use non-linear methods to monitor non-linear models, such as Kernel PCA. However, for

high dimensional systems with a high number of samples, using non-linear methods can

be computationally expensive and time-consuming. Therefore, the use of a robust linear

method can be more appealing if it provides a good degree of accuracy.

The results for the first three case studies show that all IPCA methods were much

better suited to fault detection, where it had a consistently higher detection probability for

the same false alarm probabilities, as shown in their respective ROC curves. Moreover,

the results show that the interval centers were uniquely capable of detecting changes in the

mean, while the interval radii were capable of detecting changes in the variance. This is

interesting because it adds a new layer to the process monitoring applications using IPCA

methods, which are now capable of detecting and differentiating the type of fault.

On the other hand, for data classification, the results show that MRIPCA was the most

robust classifier. MRIPCA had a near perfect classification precision for the fourth and

sixth case study for both the interval centers and radii. For the fifth case study, MRIPCA

had the highest precision for the interval centers and radii by a wide margin, except for a

single category.

In conclusion, the results show that IPCA methods provide more robust models for

fault detection and data classification than classical PCA, with MRIPCA providing the

most promising results. Moreover, the linear nature of IPCA, which make it computation-

ally inexpensive, easily warrants further research into their application.
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