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ABSTRACT

The study and characterization of plasma flows is of significant interest in many dis-

ciplines of engineering and science. Of particular interest is the study and development

of plasma-based electric propulsion devices. Plasma flows can exhibit complex behavior

depending upon parameter regime and the interaction with applied and induced electromag-

netic fields. Further, due to their typically extreme environments, space plasma flows are

difficult to investigate with terrestrial experiments. The complexity of plasma flow gov-

erning equations typically renders analytical solutions impossible for all but the simplest

problems. Thus, the development of more capable physical models and numerical tools for

computer simulation is an important research focus. Over the last two decades, the Gas-

Kinetic Scheme (GKS) has been demonstrated to be a highly capable solver for a wide range

of gas-dynamics flows, from incompressible to rarefied and hypersonic. Further, it has also

been shown to work well for ideal, resistive, and Hall magnetohydrodynamics.

This dissertation aims to develop the theoretical framework for a gas-kinetic scheme

for a singly-charged ion-electron two-fluid plasma. The approach is to apply a Method-of-

Characteristics (MoC) – based solution to the Boltzmann equation for each species with the

Bhatnagar-Gross-Krook (BGK) collision operator modeling the species self-collisions. In

the Boltzmann-BGK (B-BGK) equation the inter-species collisions are modeled as a resis-

tive force on each species. The derived approximate MoC solution renders the resulting par-

ticle characteristic trajectories linear in physical space. To model the non-equilibrium effects

of collisions, a Chapman-Enskog (CE) type expansion for each species is performed, which

captures Finite-Larmor-Radius (FLR) effects on the stress tensor and the heat flux. To con-

sistently couple the ion and electron fluids to the electromagnetic fields, the Perfectly Hyper-

bolic Maxwell’s (PHM) equations are used, which incorporate the constraints of Gauss’ Law

for the Electric and Magnetic Fields into their temporal evolution. The Two-Fluid Plasma

GKS (TFPGKS) scheme is implemented by using Weighted Essentially-Non-Oscillatory

ii



(WENO) interpolation for cell interface reconstruction of the flow variables, while a Lax-

Friedrichs – type approach is used for the PHM equations. A semi-analytic analysis of the

derived fluxes compared to existing models demonstrates the magnetized asymptotic be-

havior which produces the expected anisotropy in the transport properties. The scheme is

benchmarked against analytic solutions for the linearized governing equations. It is further

validated against published results for several canonical problems, including the Electro-

magnetic Shock and Ion Acoustic Solitons. Finally, a parametric study of collisional electro-

magnetic shocks demonstrates the capabilities of the new TFPGKS scheme over more naive

previous implementations. Overall, the work demonstrates the promise of the GKS approach

to simulating plasma flows over a wide parameter range.
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1. INTRODUCTION

1.1 Motivation

The study of plasma physics and plasma dynamics is motivated largely by its abundance,

making up the vast majority of visible matter in the universe. An increased understanding

of plasma behavior leads to improved comprehension of many natural phenomena, from the

behavior of stellar atmospheres and interstellar matter to the interactions between our own

Sun and geomagnetic fields. Investigating plasma phenomena lends us greater understanding

of a wide variety of plasma applications in engineering and physics, from the development of

fusion power generation via magnetic or inertial confinement to the application of plasmas

to medical settings.

In particular, there has been extensive investigation into the use of plasma as propellant

for electric spacecraft propulsion systems, ranging from ion and Hall thrusters to magne-

toplasmadynamic thrusters to more compliciated plasma thruster systems. Specifically, we

will look at the Variable Specific Impulse Magnetoplasma Rocket (VASIMR R© [7]) as an

example system of interest. In the VASIMR R© system, thrust is produced by a plume of

heated plasma which expands through a rocket nozzle formed from a diverging magnetic

field [8]. An example of the VASIMR R© rocket plume under testing is shown in Figure 1.1,

reprinted from [1]. A schematic depiction of the magnetic field lines (not to scale) is shown

in red over the plasma plume. Of particular interest is the effect of the magnetic field on the

transport of momentum and energy within the plasma plume. To determine the degree of

these effects, we may investigate the parametric regimes within the VASIMR R© plume at the

locations marked “1” and “2” in Figure 1.1, which is discussed in the next section.

1.2 Plasma Regimes

The dynamics of plasma flows is highly complex, involving transport of mass, momen-

tum, and energy of many different particle species coupled with magnetic and electric fields.
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Figure 1.1: VASIMR R© rocket engine plume. Reprinted and modified from Araya [1]

There are many factors which effect the behavior of space plasma flows. These range from

the number of individual species present – and their particle charge and mass – to the degree

of rarefaction and heating they experience. The parametric range wherein plasmas are de-

fined may span many orders of magnitude – as many as 1025 cm−3 in particle number density

and 107 eV in temperature [9]. To characterize plasma flow regimes we first introduce the

Knudsen number Kn which characterizes the degree of rarefaction for the gas, or the degree

to which collisional transport affects the flow. The Knudsen number is defined Kn ≡ λ
L

.

L is the characterized size or length of the system being considered, and λ ≡ vthτ is the

mean free path which characterizes the distance particles travel before being perturbed by

collisions. Thus, the Knudsen number is equivalent to the normalized mean free path λ̂. In

defining the mean free path, we introduce the thermal velocity vth and the collision time τ .

The thermal velocity vth is the characteristic speed of particles in the plasma and is related

to the plasma temperature T and particle mass m by vth ≡
√

kT
m

– k being the Boltzmann

constant. The collision time τ is the characteristic time between particle collisions.
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The Larmor radius rL and cyclotron frequency ωc are parameters which characterize the

length- and time-scales of the effect of electromagnetic (EM) fields on the plasma. The

cyclotron frequency characterizes the frequency at which particles orbit around magnetic

field lines and is defined as ωc ≡ qB
m

. In defining ωc, B is the magnetic field strength, while

q and m are the particle charge and mass, respectively. The Larmor radius is defined rL ≡

vthω
−1
c , and represents the characteristic radius of gyration for particles around magnetic

field lines.

Figure 1.2: Plasma flows parametrized by normalized Larmor radius, Knudsen number, and
Hall parameter
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Figure 1.2 depicts a breakdown of some plasma flow regimes by Kn on the x-axis and

normalized Larmor radius r̂L ≡ rL
L

on the y-axis. However, while the Knudsen number is

useful in determining the degree of collisional transport in a gas or plasma, the normalized

Larmor radius alone is not enough to usefully determine the effects of the electromagnetic

field on plasma transport. Thus, we will introduce the Hall parameter $ which characterizes

the “competition” between the magnetic field and collisions in determining transport behav-

ior for a gas. The Hall parameter may be defined as the ratio between the Knudsen number

and normalized Larmor radius: $ ≡ λ̂
r̂L

. This is equivalent to the product of cyclotron

frequency ωc and collision time τ – i.e. $ = τωc. In the limit $ � 1, the transport is unaf-

fected entirely by the magnetic field, while in the limit $ � 1 the transport is magnetic field

dominated in the directions perpendicular to the field, but not along it. This leads essentially

to anisotropy of properties which would normally by isotropic. In Figure 1.2, the dashed

blue line indicates the line of $ = 1, with $ > 1 below and $ < 1 above.

The most accurate representation of plasma flows involves solving for the position and

velocity of each particle (or “super-particle”) as it is affected by any applied electromagnetic

fields as well as the induced fields resulting from all other particles (which are in turn evolved

via Maxwell’s equations). This is a daunting task, and essentially impossible except in the

region to the far upper right of Figure 1.2, where we have essentially free molecular flow. For

highly magnetized but collisionless flow near the lower right of Figure 1.2, the collisionless

Vlasov or gyrokinetic equations may be used. For the regimes to the right on this figure,

we may also consider the collective behavior of the particles of each species, from which a

particle distribution function may be obtained which describes the probability density of par-

ticles in phase space. The spatio-temporal evolution of the distribution function is governed

by first-principles gas-kinetic equations, such as the Boltzmann, Vlasov, or Fokker-Planck

equations.

We can see that in the unmagnetized and highly collisional regime to the upper left we

have the hydrodynamic fluid equations, from the Euler equations in the limit of Kn → 0,
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to the Burnett equations as we increase the collision time. In the limit of Kn → ∞ and

r̂L →∞, we have essentially free molecular flow, where the motion of individual molecules

or atoms is of interest. In the highly collisional and highly magnetized regime, we have

the various MHD fluid equations. These equations may be obtained from the kinetic – e.g.,

Boltzmann – equations through moments in velocity space to obtain single- or multi-fluid

models, which produce a set of fluid equations for conserving mass, momentum, and energy.

The green and orange boxed regions which intersect the center of the chart are the “tran-

sitional” regimes of collisional and magnetized plasma flow and mark where the transport

properties are significantly modified from the asymptotic limits at either end of the x- and y-

axes. If we map the points “1” and “2” from the VASIMR R© plume in Figure 1.1 on our chart

in Figure 1.2, we see they reside in this area. Thus, we will broadly denote the ellipsoidal

area highlighted in the center of Figure 1.2 as our “focus area” for this work.

Due to the complexity of the governing equations, purely analytical solutions of mathe-

matical models governing plasma behavior are only possible for the simplest systems. While

these fill a very important place in providing a starting point or order-of-magnitude estimate

for many analyses, full understanding of system behavior requires a more in-depth explo-

ration. However, due to their extreme nature, many space plasma systems are extremely

difficult and expensive to study experimentally. As a result, developing numerical schemes

for computing plasma flow behavior is an important engineering challenge. Due to the ex-

tremely wide range of plasma parameters and regimes of interest, there is a correspondingly

wide range of governing models and schemes to solve them. Each approach involves a com-

promise among accuracy, speed/efficiency, fidelity, and complexity.

1.2.1 Advantages of GKS and Rationale for Further Development

In recent years, the gas-kinetic scheme (GKS) or gas-kinetic method (GKM) has shown

promise as a compressible flow solver for fluid equations such as Euler, Navier-Stokes, Bur-

nett, and Super-Burnett. The primary motivation for seeking to apply GKS to the Two-Fluid

Plasma system is that it provides several advantages over other flow solvers. This is partic-
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ularly true for high-Mach-number compressible and shocked flows when compared to tradi-

tional Riemann solvers, upwinding techniques, Godunov schemes, or Flux-Vector Splitting

approaches. Kumar [10] provides a fairly comprehensive overview of the advantages of

GKS. For a given species, all of the flow variables pertaining to that species are derived from

a single distribution function, and are not directly based on the Navier-Stokes (NS) or Euler

equations [10, 11, 12]. The Boltzmann equation has a much wider range of validity than the

NS-type fluid equations. As a consequence GKS, which is based on the Boltzmann equation,

has the potential to be valid for a much wider range of flows than strictly continuum-based

fluid solvers. To date, GKS has demonstrated capability for both highly compressible flows

[13] as well as incompressible flows [14]. Further, it has been extended to multi-fluid appli-

cations [15, 16] including reacting flows [17].

GKM has been used in the past for ideal magnetohydrodynamics (MHD) schemes [18,

19, 20], as well as a non-ideal/Hall MHD scheme [21]. However, these implementations

have been performed either as direct flux-splitting schemes based on the explicit ideal MHD

fluxes – such as in the case of Xu [18] and Tang and Xu [19, 20] – or have omitted the

effect of the electromagnetic acceleration in the solution of the characteristic solution for

calculating the numerical flux – such as in the case of Araya et al. [21]. Further, these

schemes are incapable of recovering any finite-Larmor-radius (FLR) effects on heat flux and

stress due to magnetization of the plasma. If the plasma is considered to be an ionized

gas, our perspective is something like that depicted in Figure 1.3, where the effects of finite

collisionality on the continuum may be significantly affected by the presence and influence

of the electromagnetic fields. In Figure 1.3, the collisional effects are once again represented

by the Knudsen number Kn. At the limit Kn → 0 the problem is purely continuum, while

at the limit Kn → ∞ the problem is collisionless and purely kinetic. For the upper line in

Figure 1.3 significant progress has already been made for both the near-continuum region

(GKS) as well as the near-collisionless/transitional regime (UGKS) [22, 23, 24]. However,

for the lower line where the effects of the electromagnetic fields – particularly the effects
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Figure 1.3: Conceptualization of a plasma flow regimes from an ionized gas perspective

of magnetization on transport – much work remains. For this dissertation, our objective is

to enhance the GKS formulation to incorporate the effects of the electromagnetic fields (on

charged species) and inter-species collisions, forming the Two-Fluid Plasma Gas-Kinetic

Scheme (TFPGKS). In doing this, our aim is to develop a consistent and rigorous framework

for extension of the UGKS platform to obtain a scheme which is fully applicable to the

intersection of the transition regimes of Figure 1.2, which may be termed the “Unified Two-

Fluid Plasma Gas-Kinetic Scheme” (“UTFPGKS”).

1.3 Dissertation Scope

The primary objective of this dissertation is to develop the theoretical framework for

applying the gas-kinetic scheme to a two-fluid plasma of singly-charged positive ions and

electrons. A basic implementation is performed in one spatial dimension and the underlying

theory and basic numerical soundness of the scheme are validated. Broadly, this work is

broken into three primary foci.

In the first part, the theoretical framework of the enhanced gas-kinetic scheme is given in

detail. The approach starts from a Method-of-Characteristics (MoC) based representation for

the solution of the gas distribution from the Boltzmann equation with the Bhatnagar-Gross-
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Krook (BKG) collision operator and incorporates a Chapman-Enskog type expansion for the

non-equilibrium component of the gas distribution in a magnetized plasma. In particular, this

differs from previous GKS developments for MHD in the way in which the external forces

are incorporated within the MoC solution. An analysis of the resulting GKS solution for the

time-dependent gas distribution is performed, and the resulting analytic expressions for the

macroscopic fluxes are given in detail.

In the second part we describe the considerations necessary to implement the GKS flux

calculation framework developed in Part 1 into an efficient numerical scheme. This includes

addressing the reconstruction of the discretized fluid variables for use in the discrete GKS

flux calculation, as well as considerations for the consistent co-evolution of the electromag-

netic fields via a perfectly hyperbolic expression of the Maxwell’s equations. Discretization

of Maxwell’s equations and treatment of the source terms for both the electromagnetic fields

and fluid variables are discussed.

The third and final part encompasses the application of the numerical scheme. We present

numerical studies to verify the proof-of-concept for the two-fluid plasma gas-kinetic scheme

(TFPGKS). These include zero-dimensional analysis of the effective constitutive relationship

compared to models from the literature, as well as comparison to analytic solutions of the

linearized system of equations. In addition, we compare to published computational results

in the literature. A basic parametric study of viscous and resistive electromagnetic shocks is

performed to demonstrate some of the physics-capturing capabilities of the scheme.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows: Chapter 2 presents a discussion of

the governing equations for plasma flow. In Chapter 3, the theory behind the gas-kinetic

scheme is discussed, and the development of the theory behind the enhanced gas-kinetic

scheme is presented. Details of the numerical implementation of the TFPGKS scheme and

the Maxwell’s equations are given in Chapter 4. Chapter 5 presents a benchmark comparison

of the TFPGKS scheme to analytic solutions of the linearized governing equations. Chapter
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6 presents numerical tests to validate the enhanced two-fluid plasma gas-kinetic scheme, as

well as a parametric study for application of the new scheme to collisional electromagnetic

shocks. Finally, a summary of the work, conclusions, and recommendations for future work

are given in Chapter 7.
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2. GOVERNING EQUATIONS

2.1 The Boltzmann Equation

The kinetic Boltzmann equation represents the evolution of a single particle distribution

function for a single gaseous species. It may be taken to be the fundamental governing

equation for the plasma system. The distribution f evolves in phase space and time as

∂f

∂t
+ ξ · ∂f

∂x
+ a · ∂f

∂ξ
=

(
∂f

∂t

)
collsions

. (2.1)

In equation (2.1), t is time, x is the spatial coordinate, and ξ is the microscopic particle

velocity. The quantity a is the particle acceleration due to external forces. Equation (2.1) is

the most generic form for the single-species Boltzmann equation. The left-hand side (LHS)

represents the total derivative of the distribution f in time – df
dt

. This is represented by the

partial gradient of f with respect to time summed with the advection of f in physical space

(due to particle motion) and in velocity space (due to external forces). The term on the right-

hand side (RHS) represents the action of collisions between particles effecting changes in f

(which includes both collisions between like particles, and any other species). For a plasma,

with charged particles in external electric (E) and magnetic (B) fields, with negligible grav-

itational effects, the third term on the LHS becomes

a =
q

m

(
E + ξ ×B

)
, (2.2)

where q is the signed particle charge and m is the particle mass. Note that here E and B

represent the mean electric and magnetic fields. The explicit electric fields between individ-

ual particles and magnetic fields generated by movement of individual particles are assumed
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to be averaged into E andB, which are calculated from e.g., Maxwell’s equations.

∂f

∂t
+ ξ · ∂f

∂x
+

q

m

(
E + ξ ×B

)
· ∂f
∂ξ

=

(
∂f

∂t

)
collisions

(2.3)

A separate version of equation (2.3) must be considered for each species in the plasma.

However, a simplified model which is applicable to a wide variety of problems is to reduce

our system to that of a two-fluid plasma, wherein we only have electrons and a single ion

species (for simplicity the ions considered herein are singly charged).

Equation (2.3) represents a 6-dimensional system for each species (three in physical

space and three in velocity space). To reduce the dimensional complexity, the system may be

simplified by reducing to a set of fluid equations for each species, via appropriate moments

in velocity space (e.g.,
∫
θfdξ) of each species’ governing Boltzmann equation.

∫ ∞
−∞

(m) fdξ = ρ (2.4)∫ ∞
−∞

(mξ) fdξ = ρu (2.5)∫ ∞
−∞

(
m

1

2
ξ2

)
fdξ = ε =

1

2
ρu2 +

p

γ − 1
(2.6)

Equations (2.4)-(2.6) represent moments of θ = m[1, ξ, 1
2
ξ2], which produce the fluid quan-

tities of mass density (ρ), momentum (ρu), and energy (ε, kinetic + internal). The internal

energy is determined by the pressure p and the ratio of specific heat γ.

For the current work, the Boltzmann equation will be used with the Bhatnagar-Gross-

Krook (BGK) collision operator, which was first proposed in 1954 [25].

(
∂fα
∂t

)
C,αα

≡ gα − fα
ταα

(2.7)

Equation (2.7) depicts the BGK collision operator model for self-collisions within a species

α. The BGK collision operator is not derived from the Boltzmann collision operator – see
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equation (2.3) – and is instead essentially an “first-order” phenomenological model for the

collisional relaxation process.

(
∂f

∂t

)
C,αα

=

∫ ∫
[fα(ξ′)fα(ξ′1)− fα(ξ)fα(ξ1)]σ(|ξ − ξ1|,Ω)dΩdξ1 (2.8)

Equation (2.8) describes collisions between particles of velocities ξ and ξ1 which have ve-

locities ξ′ and ξ′1 after the collision process, which is described by the cross-section σ. The

general Boltzmann collision operator and other general collision operators derived from it

– e.g., Fokker Planck or Coulomb collision operators – are highly complex and for many

applications are not tractable.

Thus, we turn to the much simpler BGK collision operator – equation (2.7) – which

essentially describes the relaxation of fα towards the equilibrium distribution gα over some

characteristic “collision time” ταα. Despite its ad-hoc nature, the BGK operator is known

to approach gα at equilibrium, produce the correct moments of equation (2.1), and satisfy

the H-theorem [26]. However, it does have some shortcomings, notably that it assumes a

Prandtl number Pr = 1 – i.e. that the characteristic time for diffusion of momentum and

thermal energy are the same. The Prandtl number is defined Pr ≡ µcp
κ

, where µ is the

viscosity, cp is the specific heat, and κ is the thermal conductivity. Further, it does a poor job

of describing the collisional relaxation of higher moments [27]. However, it should prove

adequate for a flows where the distribution is not too far from a Maxwellian, such as flows

in the near-continuum regime and some low-speed rarefied flows [28, 29, 30].

To model the inter-species collisions, a simple “Stokes’-Drag” type model, wherein the

interspecies collision operator is modeled as a drag force proportional to the bulk velocity

differential between species:

(
∂f

∂t

)
C,αβ

≡ uβ − uα
ταβ

· ∂fα
∂ξ

(2.9)
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This model for the drag will produce a drag term in the momentum equation,

Rαβ ≡
∫
ξ

[
uβ − uα
ταβ

· ∂fα
∂ξ

]
dξ =

ρα
ταβ

(uβ − uα) , (2.10)

and a corresponding term in the energy equation,

uα ·Rαβ ≡
∫

1

2
ξ2

[
uβ − uα
ταβ

· ∂fα
∂ξ

]
dξ =

ρα
ταβ

(
uα · uβ − u2

α

)
. (2.11)

Note that this model does not account for purely thermal energy transfer or heating from

inter-species collisions – i.e. due to Tα 6= Tβ . This can be a reasonable approximation given

that the typical time for thermal relaxation between species is slower than each species’

thermal self-equilibration time [31].

2.2 Two-Fluid Plasma Model

By taking the moments in equations (2.4)-(2.6) of equation (2.3), the governing fluid

equations for each species are obtained,

∂ρα
∂t

+∇ · (ραuα) = 0 (2.12)

∂(ραuα)

∂t
+∇ · [ραuαuα + P α] =

qα
mα

(ραuα ×B + ραE) +Rαβ (2.13)

∂εα
∂t

+∇ · [uεα + qα + uα · P α] =
qα
mα

ραuα ·E + uα ·Rαβ. (2.14)

In equations (2.12)-(2.14) the subscript α ∈ [i, e] stands for each species (ions or electrons).

The quantity P α = 1pα + Φ represents the internal stress tensor of each species, where p is

pressure and Φ is viscous (collisional) stress. The term qα is the species heat flux vector. The

quantities Rαβ and Qαβ represent the momentum transfer (drag) and heat transfer between

species α and β due to interspecies collisions.
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2.2.1 Maxwell’s Equations

For a completely internally self-consistent set of equations, Maxwell’s equations for the

electromagnetic fields must also be considered.

∂E

∂t
= c2∇×B − J

ε0
(2.15)

∂B

∂t
= −∇×E (2.16)

∇ ·B = 0 (2.17)

∇ ·E =
ρQ
ε0

(2.18)

Equations (2.15) and (2.16) describe the temporal evolution ofE andB, with J = Σα
qαραuα
mα

denoting the electric current density. Equations (2.17) and (2.18) are constraints which they

must obey everywhere in space and time, where ρQ = Σα
qαρα
mα

is the electrical space charge

density. These constraints will always be satisfied analytically if they are satisfied on the

system boundaries and initially everywhere.

2.3 The Gas-Kinetic Scheme

The focus of this work is on developing an enhanced representation of the Gas-Kinetic

Scheme (GKS) or Gas-Kinetic Method (GKM) to form an algorithm for solving the fluid

conservation equations for mass, momentum, and energy for the two-fluid plasma equations.

Initially developed by Xu and Prendergast [32, 33] in the early 1990s, GKS has been shown

to be a highly capable algorithm for solving a wide range of computational fluid dynamics

problems.

2.3.1 General GKS Formulation

The foundation of GKS is based on obtaining the time-dependent gas distribution func-

tion f from which the fluid fluxes of mass, momentum, and energy may be calculated. Recall

equation (2.3), from which we may obtain the fluid conservation equations for the mass, mo-
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mentum, and energy of each species.

∂ρα
∂t

+∇ · [F ρ
α ] = 0 (2.19)

∂(ραuα)

∂t
+∇ · [F ρu

α ] =
qα
mα

(ραuα ×B + ραE) +Rαβ (2.20)

∂εα
∂t

+∇ · [F ε
α] =

qα
mα

ραuα ·E + uα ·Rαβ +Qαβ. (2.21)

However, unlike equations (2.12)-(2.14), the fluxes in equations (2.19)-(2.21) are defined

F ρ =

∫ ∞
−∞
ξ (m) fdξ, (2.22)

F ρu =

∫ ∞
−∞
ξ (mξ) fdξ, (2.23)

F ε =

∫ ∞
−∞
ξ

(
m

1

2
ξ2

)
fdξ. (2.24)

The crux of the GKS algorithm is to solve equation (2.3) to obtain the time-dependent distri-

bution f , in order to calculate fluxes (Equations (2.22)-(2.24)), from which equations (2.19)-

(2.21) may be evolved, instead of computing from the purely continuum constitutive rela-

tionships of section 2.2. This provides a more consistent physical description of the temporal

evolution of the flow. While the overall GKS algorithm is second-order accurate in time, it is

different from a second order accurate solution of the equations in section 2.2 – using a two-

step Runge-Kutta approach, for example. The difference is that the second-order temporal

evolution of GKS is more physically consistent. This is due to the fact that GKS determines

the mass, momentum, and energy fluxes from a single distribution. Thus it circumvents

potential inconsistencies which could arise in other solvers using constitutive relationships

[10].
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3. MODEL FORMULATION AND DEVELOPMENT

The central theme of GKS is to calculate the various fluxes in the governing equations

of the conserved quantities – ρ, ρu, and ε – using a kinetic distribution function rather than

constitutive relations. In this Chapter our goal is to develop the theoretical framework for

applying the gas-kinetic approach to a two-fluid plasma. Our approach in this section is as

follows:

1. Discussion of the Boltzmann equation as the underlying fundamental governing equa-

tion for the fluid behavior.

2. Non-dimensionalization of the Boltzmann-BGK equation and subsequent order-of-

magnitude analysis of individual terms.

3. Application of the Chapman-Enskog expansion to the non-dimensionalized B-BGK

equation to determine non-equilibrium behavior of the distribution f .

4. Development of Method-of-Characteristics (MoC) solution to obtain time-dependent

distribution f(t).

5. Calculation of moments of f(t) and derivation of closure equations to obtain final

analytic flux expression.

3.1 The Boltzmann-BGK (B-BGK) Equation

In this study we restrict ourselves to the B-BGK equation – equation (2.7)– along with

the Stokes’-Drag model – equation (2.9) – for interspecies collisions.

∂fα
∂t

+ ξ · ∂fα
∂x

+
qα
mα

(
E + ξ ×B

)
· ∂fα
∂ξ

=
gα − fα
ταα

− Uαβ

ταβ
· ∂fα
∂ξ

. (3.1)

In equation (3.1) fα is the single particle distribution function for species α, while gα is the

equilibrium distribution towards which fα relaxes due to collisions. Uαβ = uβ − uα is
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the mean velocity differential between species α and β. The collision time ταβ is that for

particles from species α with species β – note that this only applies for β 6= α. The peculiar

velocity c is defined as the difference between the particle velocity ξ and the mean species

velocity u: c ≡ ξ − u. The definition of c we may split ξ into ξ = u+ c. In equation (3.1)

we may split ξ ×B = u ×B + c ×B, and denote E′ = E + u ×B as the electric field

in the frame moving with velocity u. The effect of splitting the magnetic field acceleration

term is essentially to divide it into “fluid” and “kinetic” portions [34]. From here on we will

suppress the α subscript in equation (3.1) for clarity.

∂f

∂t
+ ξ · ∂f

∂x
+

q

m

(
E′ + c×B

)
· ∂f
∂ξ

=
g − f
τ
− Uβ

τβ
· ∂f
∂ξ

(3.2)

3.1.1 Non-dimensionalization of B-BGK Equation

To non-dimensionalize equation (3.2) we choose a scaling length l0 and time t0 and define

the characteristic velocity to be the thermal velocity vth where vth =
√

kT
m

, where k is the

Boltzmann constant, and T is fluid temperature. In equation (3.2) we may then replace the

temporal and spatial partial derivatives:

∂

∂t
=

1

t0

∂

∂t̂
, (3.3)

∂

∂x
=

1

l0

∂

∂x̂
. (3.4)

The particle velocity may be normalized such that ξ = vthξ̂, which assumes that the mean

fluid velocity is O(vth). Thus we have

∂

∂ξ
=

1

vth

∂

∂ξ̂
. (3.5)
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The resulting normalization of equation (3.2) is

∂f

∂t̂
+
t0vth
l0
ξ̂ · ∂f

∂x̂
+

t0q

mvth
E ′0Ê

′ · ∂f
∂ξ̂

+
t0qB0

m

(
ĉ× B̂

)
· ∂f
∂ξ̂

=

t0
τ

(g − f)− t0Uβ
τβvth

Ûβ ·
∂f

∂ξ̂
. (3.6)

Where E0 ≡ |E′|, B0 ≡ |B|, and Uβ ≡ |Uβ|. In addition we have multiplied equation (3.6)

by t0 so that the entire equation is in units of f . We also will take t0 = l0/(vth). Finally,

we will choose scaling for the electric and magnetic fields and inter-species collisions. The

quantity qB0

m
= ωc is simply the cyclotron frequency. However, it is slightly less straightfor-

ward for the electric field and the inter-species collisions (drag). We take the scaling

Uβ ≈
vth

(1 + ωct0)
, (3.7)

as we are only considering charged species. Physically, this means that Uβ is of the order

of the characteristic speed as ωct0 � 1, but decreases as ωct0 � 1 because of increased

correlation between the ion and electron motion due to the action of the electromagnetic

fields. We will also take the scaling qE ′0 ≈
mv2th
l0

, meaning the electric field force on a

particle will typically change the kinetic energy of a particle by mv2
th over a distance l0.

∂f

∂t̂
+ ξ̂ · ∂f

∂x̂
+ Ê′ · ∂f

∂ξ̂
+ t0ωc

(
ĉ× B̂

)
· ∂f
∂ξ̂

=
t0
τ

(g − f)− t0
τβ(1 + t0ωc)

Ûβ ·
∂f

∂ξ̂
(3.8)

Equation (3.8) follows a similar non-dimensionalization scheme to that of Araya et al. [1]

and Section 4.11 of Fitzpatrick [36], where all hatted quantities (̂·) are O(1).

∂f

∂t̂
+ ξ̂ · ∂f

∂x̂
+ Ê′ · ∂f

∂ξ̂
+ t0ωc

(
ĉ× B̂

)
· ∂f
∂ξ̂

=
t0
τ

(g − f)− t0
τβ(1 + t0ωc)

Ûβ ·
∂f

∂ξ̂
(3.9)
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3.1.2 Chapman-Enskog Expansion

Starting with equation (3.9) we can start to determine which may be the important com-

ponents. We can replace t0ωc by defining the Larmor radius

rL ≡
vth
ωc
, (3.10)

so that

t0ωc =
l0
rL

= r̂−1
L . (3.11)

Thus equation (3.8) may be re-written:

∂f

∂t̂
+ ξ̂ · ∂f

∂x̂
+ Ê′ · ∂f

∂ξ̂
+

1

r̂L

(
ĉ× B̂

)
· ∂f
∂ξ̂

=
t0
τ

(g − f)− t0r̂L
τβ(1 + r̂L)

Ûβ ·
∂f

∂ξ̂
(3.12)

Equation (3.12) is similar to the scaling presented by Araya et al., with the addition of the

term for inter-species collisions [35]. However, we will take a slightly different perspective.

We are interested in the two-fluid equations, which implicitly requires that τ
t0

= ε � 1

be true. The parameter ε is effectively the Knudsen number, which may also be defined

ε =
λmfp

l0
where λmfp is the mean free path for species α. Specifically, we will assume that a

Chapman-Enskog type approach may be employed, wherein we will approximate f as being

near thermal equilibrium, and expand it near a Maxwellian distribution, g.

f = g + f (1) + f (2) + · · · → f

g
= φ = 1 + φ(1) + φ(2) + . . . (3.13)

Where φ(1) = O (ε), φ(2) = O (ε2), etc., where ε ≡ |τD ln f | ≈ τ
t0
� 1. The operator D

indicates the sum of operators acting on f in equation (3.1). Clearly, D = O(t−1
0 ), where

t0 is some “large-scale” time for variation of the distribution. That is, it t0 is essentially the

“macroscopic time-scale” of temporal variations in the fluid, while l0 is the “macroscopic

length-scale” for spatial variations. If we truncate equation (3.13) to second order – only
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retaining terms of O(ε) – we will capture the equations to Navier-Stokes order in terms of

the Knudsen number.

Next we insert the expansion of equation (3.13) into equation (3.12)

∂(g + f (1))

∂t̂
+ ξ̂ · ∂(g + f (1))

∂x̂
+ Ê′ · ∂(g + f (1))

∂ξ̂

+
1

r̂L

(
ĉ× B̂

)
· ∂(g + f (1))

∂ξ̂
=
t0
τ

(−f (1))− t0r̂L
τβ(1 + r̂L)

Ûβ ·
∂(g + f (1))

∂ξ̂
, (3.14)

and recall the form of the Maxwellian g, for the equilibrium solution of f :

g = ρ
( m

2πkT

) 3
2

exp
(
− m

2kT
(ξ − u)2

)
= ρ

( m

2πkT

) 3
2

exp
(
− m

2kT
c2
)
. (3.15)

Thus, ∂g
∂ξ
∝ c, and therefore (ĉ× B̂) · ∂g

∂ξ̂
is equivalently zero:

∂(g + f (1))

∂t̂
+ ξ̂ · ∂(g + f (1))

∂x̂
+ Ê′ · ∂(g + f (1))

∂ξ̂

+
1

r̂L

(
ĉ× B̂

)
· ∂(f (1))

∂ξ̂
=
t0
τ

(−f (1))− t0r̂L
τβ(1 + r̂L)

Ûβ ·
∂(g + f (1))

∂ξ̂
. (3.16)

We can then normalize equation (3.16) by g and order the terms individually by order of

magnitude, we will obtain equations (3.17) – (3.22).

∂(ln g)

∂t̂
∼ O(1) (3.17)

ξ̂ · ∂(ln g)

∂x̂
∼ O(1) (3.18)

Ê′ · ∂(ln g)

∂ξ̂
∼ O(1) (3.19)(

ĉ× B̂
)

r̂L
· ∂(φ(1))

∂ξ̂
∼ O

( ε
r̂L

)
(3.20)

t0
τ

(−φ(1)) ∼ O(1) (3.21)

t0r̂LÛβ

τβ(1 + r̂L)
· ∂(ln g)

∂ξ̂
∼ O

( t0r̂L
τβ(1 + r̂L)

)
(3.22)
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Terms (3.17) – (3.19) and (3.21) are all clearly O(1) and will most likely be retained.

For term (3.20), we see that this may be rearranged by realizing that r̂−1
L = t0ωc and τ

t0
= ε.

Defining the Hall parameter $ ≡ τωc, we observe that r̂−1
L = τωc

τ/t0
= $

ε
. Thus, this term is

O($) overall. This is smaller for the ions than the electrons, but for most problems we are

interested in we expect O($) > O(ε), so it will be retained.

For term (3.22) we first look at the portion O( t0
τβ

). For the ions, we may typically assume

that this may be ∼ O(1), but for the electrons it will typically be ∼ O(ε−1) (due to the

disparate mass ratio between species). For r̂L
(1+r̂L)

, we see that for r̂L & 1 this scales as

∼ O(1), but for r̂L � 1 it scales as ∼ O(r̂L). For the electrons, we may typically expect

r̂L � 1 for the flows we are interested in. Thus, we expect this term to scale as O( r̂L
ε

) for

the electrons, which is likely ∼ O(1) if r̂L ∼ O(ε). For the ions, we typically expect that

r̂L . O(1), thus this term may scale as∼ O(r̂L) . O(1) which is not necessarily negligible.

Thus, we conclude that while some terms may be slightly larger or smaller than O(1), for

the cases we are interested in they may all be considered to be of approximately the same

order. As a consequence we must include all of the terms (3.17) – (3.22) for our analysis

to be complete. The additional terms in equation (3.16) – e.g., ∂f
(1)

∂t
– contain an additional

factor of ε and may all therefore be neglected.

3.1.3 Solving for the Non-equilibrium Distribution

To obtain a closed expression for f (1), we retain the leading order terms of the previous

analysis.

∂g

∂t
+ ξ · ∂g

∂x
+

q

m
E′ · ∂g

∂ξ
+

q

m
c×B · ∂f

(1)

∂ξ
= −f

(1)

τ
− Uβ

τβ
· ∂g
∂ξ
, (3.23)

Combing the leading order terms, we obtain equation (3.23) which must be solved to obtain

f (1). If we denote φ(1) ≡ f (1)/g, and rearrange equation (3.23), we will get:

φ(1) + τ
q

m
c×B · ∂φ

(1)

∂ξ
= −τ

[∂ ln g

∂t
+ ξ · ∂ ln g

∂x
+

q

m
E′ · ∂ ln g

∂ξ
+
Uβ

τβ
· ∂ ln g

∂ξ

]
(3.24)
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If we replaceB = |B|b̂, and re-introducing the Hall parameter as $ = τωc, equation (3.24)

becomes

φ(1) +$c× b̂ · ∂φ
(1)

∂ξ
= −τ

[∂ ln g

∂t
+ ξ · ∂ ln g

∂x
+

q

m
E′ · ∂ ln g

∂ξ
+
Uβ

τβ
· ∂ ln g

∂ξ

]
(3.25)

Thus, equation (3.25) will asymptotically reduce to the usual expression for f (1) in a Navier-

Stokes fluid in the limit of $ → 0,

φ(1) = −τ
[∂ ln g

∂t
+ ξ · ∂ ln g

∂x
+

q

m
E′ · ∂ ln g

∂ξ
+
Uβ

τβ
· ∂ ln g

∂ξ

]
. (3.26)

The chain rule may be directly applied to g to obtain the derivatives of g with respect to t, x,

and ξ in terms of the primitive variables,

∂g

∂t
=
∂g

∂ρ

∂ρ

∂t
+
∂g

∂u
· ∂u
∂t

+
∂g

∂T

∂T

∂t
, (3.27)

∂g

∂x
=
∂g

∂ρ

∂ρ

∂x
+
∂g

∂u
· ∂u
∂x

+
∂g

∂T

∂T

∂x
, (3.28)

∂g

∂ξ
= − m

kT
(ξ − u) g. (3.29)

If we introduce the ideal (i.e. Euler) equations for the primitive variables ρ, u, and T ,

∂ρ

∂t
= −ρ∇ · u− u · ∇ρ, (3.30)

∂u

∂t
= −u · ∇ [u]− k

m
∇T − kT

ρm
∇ρ+

q

m
(u×B +E) +

1

ρ
Rβ, (3.31)

∂T

∂t
= −u · ∇ [T ]− 2

3
T∇ · [u] , (3.32)

equation (3.26) becomes

φ(1) = −τ
[(

m

2kT
c2 − 5

2

)
c

T
· ∂T
∂x

+
m

kT

(
cc− c

2

3
1

)
:
∂u

∂x

]
. (3.33)
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The notation : is a “double dot product” to indicate for example a ·A · b = ab : bmA, where

a and b are arbitrary vectors and bmA is an arbitrary second-order tensor. Equivalently,

we could write aiAijbj in index notation. Note that the drag term Rβ in equation (3.31)

is defined Rβ ≡ ρ
Uβ
τβ

. Equation (3.33) will produce the familiar Fourier’s Law for heat

conduction (i.e. q = −κ∇T , where κ ≡ 5
2
k
m
τp) and Navier-Stokes stress tensor (see e.g.,

appendix A of [13]). The right-hand side of equations (3.25) and (3.26) are equivalent to the

right-hand side of equation (3.33), thus from equation (3.25) we obtain the equation which

gives the first order correction f (1) for the magnetized case,

φ(1) +$c× b̂ · ∂φ
(1)

∂ξ
= −τ

[(
m

2kT
c2 − 5

2

)
c

T
· ∂T
∂x

+
m

kT

(
cc− c

2

3
1

)
:
∂u

∂x

]
. (3.34)

Equation (3.34) was solved by Woods [34] for f (1) by observing that since ∇T and ∇u are

independent, the terms pertaining to each of them may be obtained separately and afterwards

be joined.

φ
(1)
∇T +$c× b̂ · ∂φ

(1)
∇T

∂ξ
= −τ

[(
m

2kT
c2 − 5

2

)
c

T
· ∂T
∂x

]
(3.35)

φ
(1)
∇u +$c× b̂ · ∂φ

(1)
∇u
∂ξ

= −τ
[
m

kT

(
cc− c

2

3
1

)
:
∂u

∂x

]
(3.36)

To solve equations (3.35) – (3.36), we can will assume a solution and demonstrate that it

satisfies the governing equation. First we make two important observations:

1. In the limit of $ → 0, the second term on the LHS of equations (3.35) and (3.36)

disappears, i.e. φ(1) asymptotically approaches the expression on the RHS.

2. In the limit of $ → ∞, the first order correction φ(1) should be bounded. This may

be understood physically from the kinetic perspective. The magnetic field will not

affect motion parallel to itself and will not directly do work on the charged species to

increase or decrease their energy. Its action will be to redirect existing transport and

impeded motion which is perpendicular to itself. Thus at large values of $, we expect
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to see “anisotropization” of the transport.

Thus, we propose a solution for equation (3.35) of the form

φ
(1)
∇T =

(
m

2kT
c2 − 5

2

)
c ·AT , (3.37)

where AT ≡ AT (|c|2, c · b̂,x, t), but is not a function of c itself. Substituting equation

(3.37) into equation (3.35), we find thatAT must satisfy the following:

(
m

2kT
c2 − 5

2

)[
c ·AT +$(c× b̂) ·AT +

τ

T
c · ∂T

∂x

]
= 0, (3.38)

from which it is straightforward to determine thatAT must be given byAT = − τ
T
κ̂ · ∂T

∂x
. If

we turn to index notation for perspicuity, the tensor κ̂ij is defined by the normalized magnetic

field vector b̂, denoted bi in index notation,

κ̂ij = bibj +
1

1 +$2
(δij − bibj)−

$

1 +$2
εikjbk. (3.39)

For φ(1)
∇u, similar to equation (3.37) we will use the last term on the right-hand side of

equation (4.12) or (4.13) as a starting point and assume a solution of the same form for

equation (3.36):

φ
(1)
∇u =

(
cc− c

2

3
1

)
: Au, (3.40)

where once again Au ≡ Au(|c|2, c · b̂,x, t), but is not a function of c itself. Substituting

equation (3.40) into equation (3.36), we find thatAu must satisfy the following:

[(
cc− c

2

3
1

)
:

(
Au +

τm

kT

∂u

∂x

)
+
(
$(c× b̂)c+ c$(c× b̂)

)
: Au

]
= 0, (3.41)

from which, Au may be determined to be Au = −τ m
kT

(
cc− c2

3
1
)

: M̂ : ∂u
∂x

. To define
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M̂ , again turning to index notation, we find:

M̂ijkl = N(1)
ijkl +

1

1 + 4$2
N(2)
ijkl +

1

1 +$2
N(3)
ijkl +

2$

1 + 4$2
N(4)
ijkl +

$

1 +$2
N(5)
ijkl. (3.42)

where the tensors N(j)
ijkl are defined by equations (3.43) – (3.47).

N(1)
ijkl ≡

1

2

[
δikδjl + 3bibjbkbl − (bibkδjl + bjbkδil) + εimkbmεjnlbn

]
(3.43)

N(2)
ijkl ≡

1

2

[
δikδjl + bibjbkbl − (bibkδjl + bjbkδil)− εimkbmεjnlbn

]
(3.44)

N(3)
ijkl ≡ −2bibjbkbl + (bibkδjl + bjbkδil) (3.45)

N(4)
ijkl ≡

1

2

[
εimlbmbkbj + εjmlbmbkbi − εimkbmδjl − εjmkbmδil

]
(3.46)

N(5)
ijkl ≡ −εimlbmbkbj − εjmlbmbkbi (3.47)

φ(1) = −τ
[(

m

2kT
c2 − 5

2

)
c

T
· κ̂ · ∂T

∂x
+

m

kT

(
cc− c

2

3
1

)
: M̂ :

∂u

∂x

]
(3.48)

By combining the previous results, we can conclude that the solution of equation (3.25) is

given by equation (3.48). A more in-depth presentation of the derivation of the particular

terms inAu may be found in Chapter 12 of [34].

3.1.4 Example: Magnetized Heat Flux

From the constitutive model of equation (3.48), the modified Fourier’s Law of heat con-

duction becomes q = −κ ·∇T , where κ ≡ 5
2
k
m
τpκ̂. Figure 3.1 depicts a schematic ex-

ample of the magnetized Fourier’s Law. In this figure we have chosen a frame where the

anti-gradient of the temperature lies in the X-Y plane, and the magnetic field vector lies

along the Z-axis. We can see that as the Hall parameter is increased, the component of the

Fourier heat flux perpendicular to B is reduced, and a transverse component is introduced.

As the Hall parameter increases to very large values, the heat flux becomes nearly parallel to

the magnetic field vector. A more detailed analysis of the behavior of the TFPGKS fluxes is

done in Section 6.1.
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Figure 3.1: Schematic depiction of the magnetized heat flux versus the regular Fourier heat
flux as the magnetization (characterized by the Hall parameter $ ≡ τωc) becomes increas-
ingly pronounced

3.2 B-BGK Method of Characteristics (MoC) Solution

To obtain the Method of Characteristics solution for the BGK flux, we return again to the

B-BGK equation:

∂f

∂t
+ ξ · ∂f

∂x
+

q

m

(
E + ξ ×B

)
· ∂f
∂ξ

=
g − f
τ
− Uβ

τβ
· ∂f
∂ξ
.

The terms on the LHS may be regarded collectively as df
dt

,

df

dt
=
g − f
τ
− Uβ

τβ
· ∂f
∂ξ
, (3.49)

where the characteristics are given by the solution:

dx

dt
= ξ(t), (3.50)

dξ

dt
=

q

m
(E(x, t) + ξ(t)×B(x, t)). (3.51)

However, this will give us complicated particle trajectories in phase space, as shown in Figure

3.2.
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Figure 3.2: Schematic of a hypothetical particle trajectory in phase space based on equation
(3.49)

However, this can be circumvented by the following approach, wherein df
dt

is considered

to be defined in a different way:

df

dt
=
g − f
τ
− Uβ

τβ
· ∂f
∂ξ
− q

m

(
E + ξ ×B

)
· ∂f
∂ξ
. (3.52)

This is conceptually similar to the “BFF” approach described in Section C.2 of Chapter V

of [37] and proposed by [38] for Lattice-Boltzmann simulations. From equation (3.52) the

characteristics are given by the solution:

dx

dt
= ξ0, (3.53)

dξ

dt
= 0, (3.54)

which produces linear trajectories as shown by the diagram in Figure 3.3.

Figure 3.3: Schematic of a hypothetical particle trajectory in phase space based on equation
(3.52)

To obtain integral solution along characteristics for f(t), we can employ a similar pro-
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cedure to that found in Kogan [39], pages 73–83. From equation (3.52), we multiply both

sides by et/τ :

et/τ
df

dt
= et/τ

[(
g − f
τ
− Uβ

τβ
· ∂f
∂ξ
− q

m

(
E + ξ ×B

)
· ∂f
∂ξ

)]
. (3.55)

From equation (3.52) we obtain the following,

d

dt

(
et/τf

)
= et/τ

et/τ

τ
g − τ e

t/τ

τ

[
Uβ

τβ
· ∂f
∂ξ

+
q

m

(
E + ξ ×B

)
· ∂f
∂ξ

]
, (3.56)

from which we can obtain equation (3.57) in a straightforward manner, assuming that the

trajectory is linear.

f(x, ξ, t) =
1

τ

∫ t

0

g(x′, ξ′, t′)e−(t−t′)/τdt′ − 1

τ

∫ t

0

τ

τβ
Uβ ·∇ξ′f(x′, ξ′, t′)e−(t−t′)/τdt′

− 1

τ

∫ t

0

τ
q

m

(
E + ξ′ ×B

)
·∇ξ′f(x′, ξ′, t′)e−(t−t′)/τdt′ + e−t/τf(x0, ξ0, 0), (3.57)

Here we note that x0 and ξ0 are the particle position and velocity at time t = 0. Further,

we adopt the convention that x = 0 at time t, while at time 0 < t′ < t the particle position

and velocity are x′ and ξ′. Here we recall that the phase space trajectories of x and ξ are

determined by equations (3.53) and (3.54), which yield ξ′ = ξ0 = ξ, and x′ = 0− ξ(t− t′),

x0 = 0 − ξt. For the current development, it is assumed that Uβ , E, and B are constant

during the TFPGKS flux evolution. This is likely not an appropriate assumption for all flows,

but has been utilized here as it greatly simplifies the overall development.

To obtain g(x′, ξ, t′), f(x′, ξ, t′), we utilize the Chapman Enskog expansion and a Taylor

expansion in space and time near t = 0 and x = 0. This assumes that x′ and t′ are much

smaller than the macroscopic timescales of interest. Note that the timescale t′ should be

shorter than the inverse gyration frequency. However, it is not necessary that t′ < τ because

the dissipation in the TFPGKS scheme is determined by collisions (τ ), and the effect of the
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evolutionary time t on the viscous solution is minimal [12, 13, 32].

g(x′, ξ, t′) ≈ g(0, ξ, 0)− (t− t′)ξ · ∂g
∂x

+ t′
∂g

∂t
(3.58)

f(x′, ξ, t′) ≈ g(x′, ξ, t′) + e−t
′/τf (1) (3.59)

In equations (3.58) and (3.59) g and f (1) are taken at x = 0 and t = 0. The first order

correction f (1) – which is obtained from the Chapman Enskog expansion – has a pre-factor

e−t
′/τ to account for exponential decay of the non-equilibrium portion of the initial condition.

That is, f(0, ξ, 0) = g(0, ξ, 0) + f (1), but for large t′ relative to τ we have lim
t′�τ

f(x′, ξ, t′)→

g(x′, ξ, t′).

f(x, ξ, t) =
1

τ

∫ t

0

(
g − (t− t′)ξ · ∂g

∂x
+ t′

∂g

∂t

)
e−(t−t′)/τdt′

− 1

τ

∫ t

0

τ

τβ
Uβ ·∇ξ′

(
g − (t− t′)ξ · ∂g

∂x
+ t′

∂g

∂t
+ e−t

′/τf (1)

)
e−(t−t′)/τdt′

− 1

τ

∫ t

0

τ
q

m

(
E + ξ ×B

)
·∇ξ′

(
g − (t− t′)ξ · ∂g

∂x
+ t′

∂g

∂t
+ e−t

′/τf (1)

)
e−(t−t′)/τdt′

+ e−t/τ
(
g − tξ · ∂g

∂x
+ f (1)

)
, (3.60)

Inserting the expansions of equations (3.58) and (3.59) into equation (3.57) we obtain equa-

tion (3.60). Integrating equation (3.60) over t′, this produces for f(ξ, t):

f(ξ, t) =
(
g
[
1− e−t/τ

]
−
[
τ − e−t/τ (t+ τ)

]
ξ · ∂g

∂x
+
[
t+ τ(e−t/τ − 1)

] ∂g
∂t

)
− τ
[ q
m

(
E′ + c×B

)
+
Uβ

τβ

]
· ∂
∂ξ

(
g
[
1− e−t/τ

]
−
[
τ − e−t/τ (t+ τ)

]
ξ · ∂g

∂x

+
[
t+ τ(e−t/τ − 1)

] ∂g
∂t

+
t

τ
e−t/τf (1)

)
+ e−t/τ

(
g − tξ · ∂g

∂x
+ f (1)

)
. (3.61)

Recall we have taken our coordinate system to be such that x = 0 is the origin. Equation
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(3.61) can be easily be rearranged:

f(ξ, t) =
(
g + t

∂g

∂t
− τ

[
1− e−t/τ

](∂g
∂t

+ ξ · ∂g
∂x

)
+ e−t/τf (1)

)
− τ
[ q
m

(
E′ + c×B

)
+
Uβ

τβ

]
· ∂
∂ξ

(
g
[
1− e−t/τ

]
−
[
τ − e−t/τ (t+ τ)

]
ξ · ∂g

∂x

+
[
t+ τ(e−t/τ − 1)

] ∂g
∂t

+
t

τ
e−t/τf (1)

)
. (3.62)

In practice our interest will be in the accumulated (or integrated) effects of f changing

over time. Thus, we will integrate f(t) over time from t = 0 to t = ∆t,

∫ ∆t

0

f(ξ, t)dt =

∫ ∆t

0

{(
g + t

∂g

∂t
− τ

[
1− e−t/τ

](∂g
∂t

+ ξ · ∂g
∂x

)
+ e−t/τf (1)

)
− τ
[ q
m

(
E′ + c×B

)
+
Uβ

τβ

]
· ∂
∂ξ

(
g
[
1− e−t/τ

]
−
[
τ − e−t/τ (t+ τ)

]
ξ · ∂g

∂x

+
[
t+ τ(e−t/τ − 1)

] ∂g
∂t

+
t

τ
e−t/τf (1)

)}
dt, (3.63)

which gives us

f(ξ) ≡
∫ ∆t

0

f(ξ, t)dt = ∆t

{(
g +

∆t

2

∂g

∂t
− τ

[
1− τ

∆t

(
1− e−∆t/τ

)](∂g
∂t

+ ξ · ∂g
∂x

)
+

τ

∆t

(
1− e−∆t/τ

)
f (1)
)
− τ
[ q
m

(
E′ + c×B

)
+
Uβ

τβ

]
· ∂
∂ξ

(
g
[
1− τ

∆t

(
1− e−∆t/τ

)]
−
[
τ − 2τ 2

∆t
+

(
τ +

2τ 2

∆t

)
e−∆t/τ

]
ξ · ∂g

∂x
+

[
∆t

2
− τ +

τ 2

∆t

(
1− e−∆t/τ

)] ∂g
∂t

+
[ τ

∆t

(
1− e−∆t/τ

)
− e−∆t/τ

]
f (1)
)}

. (3.64)

Equation (3.64) is the final expression for the “time-evolved” distribution f(t) from which

the TFPGKS fluxes are calculated.
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3.3 Moments Closure and Formation of Macroscopic Fluxes

Recall the equation for f(t) – Eq. (3.62) – and its temporally integrated form – Eq.

(3.64). If we represent the moment for flux of a quantity, we take
∫
ψξfdξ. That is, for the

flux of mass, we take the first moment of f (and so on for higher moments),

∫ ∆t

0

F ρ
1 (t)dt ≡ F̄ ρ

1 =

∫ ∆t

0

(∫
ξ1f(ξ, t)dξ

)
dt =

∫
ξ1f̄(ξ)dξ. (3.65)

If for the fluxes of mass, momentum, and energy we define ψ where ψ ∈ [1, ξk, ξ
2/2] then

the integrated moment 1
τ0

∫ τ0
0
Fψ
k (t)dt ≡ F̄ψ

k becomes

F̄ψ
k ≡

∫
ψξkf̄(ξ)dξ =

∆t

∫
ψξk

{(
g +

∆t

2

∂g

∂t
− τ

[
1− τ

∆t

(
1− e−∆t/τ

)](∂g
∂t

+ ξ · ∂g
∂x

)
+

τ

∆t

(
1− e−∆t/τ

)
f (1)
)
− τ
[ q
m

(
E′ + c×B

)
+
Uβ

τβ

]
· ∂
∂ξ

(
g
[
1− τ

∆t

(
1− e−∆t/τ

)]
−
[
τ − 2τ 2

∆t
+

(
τ +

2τ 2

∆t

)
e−∆t/τ

]
ξ · ∂g

∂x
+

[
∆t

2
− τ +

τ 2

∆t

(
1− e−∆t/τ

)] ∂g
∂t

+
[ τ

∆t

(
1− e−∆t/τ

)
− e−∆t/τ

]
f (1)
)}

dξ. (3.66)

For convenience we define θ ≡ ψξk, and define γk using equations (3.67) – (3.71) to replace

terms involving τ and ∆t in equation (3.66):

γ1 ≡
∫ ∆t

0

(e−t/τ )dt = τ
(
1− e−∆t/τ

)
, (3.67)

γ2 ≡
∫ ∆t

0

(1− e−t/τ )dt = ∆t− τ
(
1− e−∆t/τ

)
, (3.68)

γ3 ≡
∫ ∆t

0

(τ − e−t/τ (t+ τ))dt =
[
τ∆t

(
1 + e−∆t/τ

)
− 2τ 2

(
1− e−∆t/τ

)]
, (3.69)

γ4 ≡
∫ ∆t

0

(t+ τ(e−t/τ − 1))dt =

[
∆t2

2
− τ∆t+ τ 2

(
1− e−∆t/τ

)]
, (3.70)

γ5 ≡=

∫ ∆t

0

(te−t/τ )dt = τ
(
1− e−∆t/τ

)
−∆te−∆t/τ . (3.71)
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Substituting the γk into equation (3.66) gives us

F̄ψ
k =

∫
θ

{(
g∆t+

∆t2

2

∂g

∂t
− τγ2

(
∂g

∂t
+ ξ · ∂g

∂x

)
+ γ1f

(1)
)
− τ
[ q
m

(
E′ + c×B

)
+
Uβ

τβ

]
· ∂
∂ξ

(
gγ2

− γ3ξ ·
∂g

∂x
+ γ4

∂g

∂t
+ γ5f

(1)
)}

dξ. (3.72)

If we define 〈θ〉 ≡
∫
θg(ξ)dξ, and recall that φ(1) ≡ f (1)

g
, then equation (3.72) may be

written as the following:

F̄ψ
k =

(
〈θ〉∆t+

∆t2

2
〈θ∂ ln g

∂t
〉 − τγ2

(
〈θ∂ ln g

∂t
〉+ 〈θξ · ∂ ln g

∂x
〉
)

+ γ1〈θφ(1)〉
)

+

∫
τ

[[ q
m

(
E′ + c×B

)
+
Uβ

τβ

]
· ∂θ
∂ξ

](
gγ2 − γ3gξ ·

∂ ln g

∂x
+ γ4g

∂ ln g

∂t
+ γ5gφ

(1)
)
dξ.

(3.73)

From equation (3.73), if we define the total acceleration F as F ≡ q
m
E′ +

Uβ
τβ

+ q
m
c ×B,

then we may further simplify the notation:

F̄ψ
k =

(
〈θ〉∆t+

∆t2

2
〈θ∂ ln g

∂t
〉 − τγ2

(
〈θ∂ ln g

∂t
〉+ 〈θξ · ∂ ln g

∂x
〉
)

+ γ1〈θφ(1)〉
)

+ τ
(
〈F · ∂θ

∂ξ
〉γ2 − γ3〈F ·

∂θ

∂ξ
ξ · ∂ ln g

∂x
〉+ γ4〈F ·

∂θ

∂ξ

∂ ln g

∂t
〉+ γ5〈F ·

∂θ

∂ξ
φ(1)〉

)
. (3.74)

Equation (3.74) is the final general expression of the TFPGKS flux which must be calculated

(2.19) – (2.24).

In sections 6.1 and 6.5, the TFPGKS flux in equation (3.74) is compared to a version

which neglects to account both for the acceleration in the MoC solution and for the addi-

tional effects of magnetization in the solution for f (1). The latter is similar to previously

implemented approaches of GKS for MHD and plasmas [18, 21]. To simplify the nomencla-
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ture, the TFPGKS scheme will be termed the “Coupled” scheme to refer to the coupling of

the electromagnetic acceleration to the GKS flux calculation, while the latter approach will

be referred to as the “Uncoupled” scheme.

While equation (3.74) is accurate given the assumptions we have made so far, it is not

necessarily amenable to direct use in a numerical scheme. This is because care must be taken

in how the moments of the TFPGKS flux are calculated when considered for a discretized set

of fluid variables on a numerical grid. The process of extending the theoretical framework

discussed in this chapter to numerical implementation is discussed in detail in Chapter 4.
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4. NUMERICAL IMPLEMENTATION

In previous Chapters we developed the fundamental formulation for calculating the GKS

fluxes and discussed the complete set of equations that must be self-consistently solved to

evolve the two-fluid plasma system. In this Chapter we discuss the various considerations

and strategies for numerical implementation. This includes:

1. Representing the various gradients of the Maxwellian g that appear in the TFPGKS

flux – ∂g
∂t

, ∂g
∂x

– so as to be more amenable to discretization.

2. Selecting a method of reconstructing the discrete flow field – which resides at cell

centers e.g., i, i+ 1 – to calculate the TFPGKS fluxes at cell interfaces, e.g., i+ 1
2
.

3. Evolving Maxwell’s equations – Eq. (2.15) and (2.16) – in such a way as to self-

consistently adhere to Gauss’s laws for the electric and magnetic fields – Eq. (2.17)

and (2.18).

4. Non-dimensionalization of the governing equations to improve numerical tractability.

4.1 Discrete Formulation of TFPGKS Flux

In this section, we discuss the approach for applying the analytic TFPGKS flux from

Chapter 3 to a discrete system where the continuum flow variables must be reconstructed to

calculate the flux between cells. Recall that in the TFPGKS scheme while we are evolving

the governing equations for continuum variables – ρ, ρu, and ε – of each species, our aim

is to use the gas-kinetic scheme to calculate the fluxes from a kinetic perspective. While

in principle it may be possible to apply a similar strategy to calculate the source terms of

the governing equations, for the current work we will calculate the source terms using their

continuum expressions.
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4.1.1 Temporal Integration of TFPGKS Flux

First, we recall equation (3.61) for the time-dependent distribution f(ξ, t). For the TF-

PGKS flux, we take the moment of f(ξ, t) on ξ.

Fψσ
k (t) =

〈
g
( [

1− e−t/τ
]
−
[
τ − e−t/τ (t+ τ)

]
ξ · ∂ ln g

∂x

+
[
t+ τ(e−t/τ − 1)

] ∂ ln g

∂t

)
(ξkψσ) + g

([
1− e−t/τ

]
−
[
τ − e−t/τ (t+ τ)

]
ξ · ∂ ln g

∂x

+
[
t+ τ(e−t/τ − 1)

] ∂ ln g

∂t
+
t

τ
e−t/τφ(1)

)(τq
m

(E + ξ ×B) +
τU

τβ

)
·∇ξ

(
(ξkψσ)

)
+ e−t/τg

(
1− tξ · ∂ ln g

∂x
+ φ(1)

)
(ξkψσ)

〉
(4.1)

Equation (4.1) represents the k-th component of flux of the conserved quantities, where

the brackets are defined 〈·〉 ≡
∫

(·) dξ to indicate the moment over ξ. To obtain the total

flux over a timestep ∆t, equation (4.1) must be integrated over t, from which we define

F̄ψσ
k ≡

∫ ∆t

0
Fψσ
k (t)dt.

F̄ψσ
k =

〈
g

(
γ2 − γ3ξ ·

∂ ln g

∂x
+ γ4

∂ ln g

∂t

)
(ξkψσ)

+ g

(
γ2 − γ3ξ ·

∂ ln g

∂x
+ γ4

∂ ln g

∂t
+ γ5φ

(1)

)(τq
m

(E + ξ ×B) +
τU

τβ

)
·∇ξ

(
(ξkψσ)

)
+ g

(
γ1 − τγ5ξ ·

∂ ln g

∂x
+ γ1φ

(1)

)
(ξkψσ)

〉
(4.2)
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The temporally integrated flux F̄ψσ
k is shown in equation (4.2), where we have reintroduced

the γk defined in equations (3.67) – (3.71).

F̄ψ
k =

(
〈θ〉+

τ0

2
〈θ∂ ln g

∂t
〉 − τγ2

(
〈θ∂ ln g

∂t
〉+ 〈θξ · ∂ ln g

∂x
〉
)

+γ1〈θφ(1)〉
)

+τ
(
〈F · ∂θ

∂ξ
〉γ2−γ3〈F ·

∂θ

∂ξ
ξ · ∂ ln g

∂x
〉+γ4〈F ·

∂θ

∂ξ

∂ ln g

∂t
〉+γ5〈F ·

∂θ

∂ξ
φ(1)〉

)
(4.3)

4.1.2 Construction of TFPGKS Gradient Coefficients

Note that in equation (4.2) we must determine quantities such as ∂ ln g
∂x

. However, in the

numerical solution of the flow dynamics, we only know about the fluid variables – [ρ, ρu, ε]

– and their gradients in space. Thus, in the TFPGKS procedure we define so-called “gradient

coefficients” a ≡ ∂ ln g
∂x

and A ≡ ∂ ln g
∂t

, which can be uniquely determined from the gradients

of the fluid variables [12], where the coefficients a and A are in fact polynomials in ξ.

Recall the the vector ψ = [1, ξ, 1
2
ξ2] which produces the macroscopic conserved variables

via moments on g: Ψ ≡
∫
ψgdξ = [ρ, ρu, ε]. Designating the components of ψ as ψβ , the

gradient coefficients can be expressed as a = aβψβ and A = Aβψβ , such that ∂g
∂x
≡ gaβψβ

and ∂g
∂t
≡ gAβψβ .

F̄ψσ
k =

〈
g (γ2 − γ3ξ · aβψβ + γ4Aβψβ)ψσ

+ g

(
γ2 − γ3ξ · aβψβ + γ4Aβψβ + γ5φ

(1)

)(τq
m

(E + ξ ×B) +
τU

τβ

)
·∇ξ

(
ψσ

)
+ g

(
γ1 − τγ5ξ · aβψβ + γ1φ

(1)
)
ψσ

〉
(4.4)

The aβ and Aβ are constants with respect to ξ. The aβ can be obtained directly and
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uniquely from the gradients of the conserved variables:

∂Ψα

∂x
=

∂

∂x

∫
ψαgdξ =

∫
ψα

∂g

∂x
dξ =

∫
ψαgaβψβdξ (4.5)

In equation (4.5), we observe that the gradients ∂Ψα
∂x

may be obtained from the spatial distri-

bution of the flow variables. Further, the aβ are constants with respect to the moments on ξ.

If we define Mαβ ≡
∫
gψαψβdξ, then the coefficients aβ are determined by its inverse.

aβ = M−1
αβ

∂Ψα

∂x
(4.6)

In practice the quantity M−1
αβ in equation (4.6) may be determined analytically so that no

numerical matrix inversion needs to be done (see Appendix A).

To compute the coefficients Aβ , we recall the first-order non-equilibrium correction to

the distribution f (1), equation (4.7).

f (1) +$c× b̂ · ∂f
(1)

∂ξ
= −τg

[∂ ln g

∂t
+ ξ · ∂ ln g

∂x
+

q

m
E′ · ∂ ln g

∂ξ
+
Uβ

τβ
· ∂ ln g

∂ξ

]
(4.7)

Replacing the gradients of g with their corresponding gradient coefficients, and recalling for

the Maxllian g we have ∂g
∂ξ

= − m
kT

(ξ − u) g, we get:

f (1) +$c× b̂ · ∂f
(1)

∂ξ
= −τg

[
Aβψβ + ξ · aβψβ −

(
q

m
E′ +

Uβ

τβ

)
· m
kT

(ξ − u)
]
. (4.8)

Note that f (1) does not make a contribution to the conserved variables Ψα. That is, Ψα ≡∫
ψαfdξ ≈

∫
ψαgdξ +

∫
ψαf

(1)dξ =
∫
ψαgdξ –

∫
ψαf

(1)dξ = 0.

∫
ψαf

(1)dξ +

∫
ψα

(
$c× b̂ · ∂f

(1)

∂ξ

)
dξ =

− τ
∫
ψα

[
gAβψβ + gξ · aβψβ − g

(
q

m
E′ +

Uβ

τβ

)
· m
kT

(ξ − u)
]
dξ (4.9)
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From equation (4.9) we can obtain an equation which may be solved for Aβ in terms of

known quantities by observing that ∂
∂ξ

(c× b̂) = 0 and recalling that f → 0 as ξ → ±∞:

∫
ψα

[
gAβψβ + gξ · aβψβ − gψα

(
q

m
E′ +

Uβ

τβ

)
· m
kT

(ξ − u)
]
dξ = 0. (4.10)

From equation (4.10), we find:

Aβ = −M−1
αβ

[
aβ ·

∫
gξψαψβdξ −

m

kT

(
q

m
E′ +

Uβ

τβ

)
·
∫
gψα (ξ − u) dξ

]
. (4.11)

This will give us the coefficients aβ and Aβ in equation (4.4). However, note that we must

still supply φ(1), which to be useful for our TFPGKS flux construction must be given using

the same gradient coefficients.

φ(1) = −τ
[
Aβψβ + ξia

i
βψβ − 2(

m

2kT
)Fi(ξi − ui)

]
(4.12)

Expressing Equation (3.26) – for the unmagnetized φ(1) – in terms of the same gradient

coefficients will produce equation (4.12). Note that we have returned to index notation for

clarity, and defined Fi ≡ q
m
E ′i +

Uβ,i
τβ

. For the magnetized φ(1), we seek to define φ(1) so that

it has a similar form to equation (4.12), like the parallelism between equations (3.33) and

(3.48). Thus, we will define:

φ(1) = −τ
[
Bβψβ + ξib

i
βψβ − 2(

m

2kT
)FB

i (ξi − ui)
]
. (4.13)

The quantities Bβ , biβ , and FB
i are “magnetized” versions of the quantities appearing in

equation (4.12).

If we define β ∈ [0, 4] and i, j ∈ [1, 3], then it can be shown that the quantities biβ , Bβ ,
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and FB
i can be defined to be the following.

FB
i ≡ κ̂ijFj, (4.14)

bi0 ≡ κ̂ija
j
0, (4.15)

bij ≡ M̂ijkl

(
akl + 2ak4ul

)
− 2bi4uj, (4.16)

bi4 ≡ κ̂ija
j
4. (4.17)

Note that if we construct bi0, bij , b
i
4, FB,i we may form B0, Bi, B4 via

∫
ψαf

(1)dξ = 0. That

is, we can obtain Bβ in the same fashion as Aβ , via equation (4.11):

Bβ = −M−1
αβ

[∫
ξib

i
βψβψσ −

∫
2(

m

2kT
)FB

i (ξi − ui)ψσ
]

(4.18)

Here we will add that in the continuous limit, it can be shown that the expression in equation

(4.13) will reduce to that of equation (3.48). However, for use in TFPGKS it is necessary

to use equation (4.13) due to the use of reconstructed variables in the non-continuous case.

Thus, for the TFPGKS flux with gradient coefficients we have in place of equation (4.2):

F̄ψσ
k =

〈
g (γ2 − γ3ξ · aβψβ + γ4Aβψβ)ψσ + g

(
γ2 − γ3ξ · aβψβ + γ4Aβψβ

+γ5

{
−τ
[
Bβψβ +ξib

i
βψβ−2(

m

2kT
)FB

i (ξi−ui)
]})(τq

m
(E + ξ ×B)+

τU

τβ

)
·∇ξ

(
ψσ

)
+ g

(
γ1 − τγ5ξ · aβψβ + γ1

{
− τ
[
Bβψβ + ξib

i
βψβ − 2(

m

2kT
)FB

i (ξi − ui)
]})

ψσ

〉
.

(4.19)

4.1.3 WENO Reconstruction and Left- and Right-Moment Calculation

On a discretized grid of cells, the fluid and electromagnetic variables are also discretized

such that the value of e.g., ρ in a cell i is taken to be the “average” value of ρ within the

cell which exists at the cell center. However, to calculate numerical flux between cells, the
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value of the variables at the cell interfaces must be estimated. In the current work, this is

done via a 5th order Weighted Essentially Non-Oscillatory (WENO) reconstruction scheme

[40, 41], which has been implemented with GKS previously [10, 11, 22]. Kumar et al. [11]

in particular deliver an excellent discussion of the WENO implementation used here. Figure

Figure 4.1: Qualitative schematic of WENO reconstruction

4.1 gives a schematic interpretation of how the WENO scheme takes a 5-cell stencil of cell-

centered values and obtains left- and right- interpolated values to be used in constructing the

TFPGKS flux.

The result of the reconstruction process takes Ψ at the locations i− 2 through i + 2 and

gives us interpolated left- and right-values Ψl and Ψr at the cell interface i + 1
2
. From the

reconstructed values of Ψl,r, e.g., ρl,r, (ρu)l,r, εl,r, we may obtain left- and right- values of

the primitive variables ρl,r,ul,r, T l,r. If we once again recall the definition of the Maxwellian

g,

g = ρ
( m

2πkT

)3/2

e−
m

2kT
(ξ−u)2 ,

we see g is uniquely defined by ρ, u, and T . Thus, ρl,r,ul,r, T l,r define local Maxwellians

gL,R on either side of the interface. From this we define the non-equilibrium gas distribution
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function f – which includes the contributions from φ(1) – in equation (4.20).

f(t) = gl
[
1 + ai,lβ ψβxi + Alψβt+ e−t

′/τφ(1),l
]
H(ξ1)+

gr
[
1 + ai,rβ ψβxi + Arβψβt+ e−t

′/τφ(1),r
]

(1−H(ξ1)) (4.20)

Note that equation (4.20) is defined for reconstruction along the x-direction, with the Heav-

iside function H(x) applied to the particle velocity along x. The quantities φ(1),l and φ(1),r

are defined as

φ(1),r = −τ
[
Br
βψβ + ξib

i,r
β ψβ − 2(

m

2kT r
)FB,r

i (ξi − uri )
]
. (4.21)

The construction of f0 applies for most of the terms in equation (4.19) – the last three terms

in equation (3.57).

The quantities al,rβ and Al,rβ are defined as in equation (4.6) and (4.11). However, we

define the left- and right- slopes for the variables in the x-direction in a slightly different

manner. These slopes are defined in equations (4.22) and (4.23).

∂ΨL

∂x
≈

Ψl
i+ 1

2

−Ψi

∆x/2
(4.22)

∂ΨR

∂x
≈

Ψi+1 −Ψr
i+ 1

2

∆x/2
(4.23)

For the slopes perpendicular to the interface, a straightforward central finite difference ap-

proach can be used with the left- and right- reconstructed values. This approach is similar to

that taken in [12]. The meaning of this approach with regards to the Maxwellian is that we

assume the initial distribution and its slope perpendicular to the interface are discontinuous.

In addition to the non-equilibrium distribution f , the equilibrium distribution g is also de-

fined. The distribution g is continuous at the cell interface and pertains to the terms resulting
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from the first term in equation (3.57):

Ψ0 ≡
∫
ψαg0dξ =

∫
ξ1>0

ψαg
ldξ +

∫
ξ1<0

ψαg
rdξ. (4.24)

The Maxwellian g0 is defined by equation 4.24, where the half moments of gl and gr in

velocity space perpendicular to the interface are combined. For the left-reconstructed distri-

bution gl, the particles with ξ1 > 0 are taken because they are moving towards the interface,

likewise for the right-constructed distribution gr and the left-moving particles ξ1 < 0. The

underlying physical assumption is that these left- and right-moving particles combine in such

a way as to “collapse” into the interface equilibrium state g0 [13]. From this the equilibrium

state g is defined as

g = g0

[
1 + ā1,l

β ψβξ1H(ξ1) + ā1,r
β ψβξ1 (1−H(ξ1)) + ā2

βψβξ2 + ā3
βψβξ3 + Āt

]
. (4.25)

The āβ and Āβ quantities in equation (4.25) are defined similarly to al,rβ and Al,rβ . How-

ever, here only the slopes perpendicular to the interface are discontinuous. The left- and

right- slopes are defined in equations (4.26) and (4.27).

∂Ψ0,L

∂x
≈

Ψ0
i+ 1

2

−Ψi

∆x/2
(4.26)

∂Ψ0,R

∂x
≈

Ψi+1 −Ψ0
i+ 1

2

∆x/2
(4.27)

Thus, the equilibrium distribution is continuous, but its slope perpendicular to the cell inter-

face is discontinuous. The rationale behind this approach is the following:

1. The non-equilibrium distribution is discontinuous because it is based on the initial

discontinuous state at the beginning of the time step.

2. The equilibrium distribution is continuous because it is assumed to have collapsed to

a single state at the interface due to collisions.
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Figure 4.2: Schematic representation of the non-equilibrium distribution f and the equilib-
rium distribution g and their slopes at the interface i+ 1

2

The relationship between f and g in equations (4.20) and (4.25) is shown schematically

in figure 4.2. From the discontinuous interface reconstruction, the final form of the flux

from equation 4.19 may be determined. More detailed expressions of the flux terms to be

implemented are given in Appendix B.

4.2 Prandtl Number Correction

As discussed in Chapter 2, one of the chief shortcomings of the BGK collision operator

is that it assumes a Prandtl number of Pr = 1, which is not correct. To correct for this

a Prandtl number “fix” may be applied [12]. To do this, the portion of the energy flux

which corresponds to the heat flux is scaled by the appropriate Prandtl number which may

be specified as a parameter. Recall that the Prandtl number is proportional to the ratio of

viscosity and thermal conductivity, Pr ∝ µ
κ

.

F ε
fix = F ε +

(
1

Pr
− 1

)
q (4.28)
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The procedure to fix the energy flux for the correct Prandtl number is outlined in equation

(4.28), wherein the energy flux is augmented by adding the “missing” portion of heat flux –

for Pr < 1 – or by subtracting the “extra” heat flux – for Pr > 1.

4.3 Perfectly Hyperbolic Maxwell’s (PHM) Equations

For a completely internally self-consistent system, Maxwell’s equations for the electro-

magnetic fields must also be considered.

∂E

∂t
= c2∇×B − J

ε0
∂B

∂t
= −∇×E

∇ ·B = 0

∇ ·E =
ρQ
ε0

Equations (2.15) and (2.16) provide a means of temporally advancing the electromagnetic

fields, given appropriate initial and boundary conditions. However, equations (2.18) and

(2.17) place constraints on the electric and magnetic fields that must be obeyed. While it

is true that these constraints will analytically be conserved by equations (2.15) and (2.16) if

they are satisfied by the initial and boundary conditions. It is not guaranteed that they will be

preserved in a discretized system. Failure to do so can lead to charge conservation violation

and potentially the generation of spurious forces parallel to the magnetic field [42].

Enforcing the divergence constraints of equations (2.17) and (2.18) can be done by a

variety of strategies. Toth provides a comprehensive overview of strategies for enforcing

zero divergence in the magnetic field for MHD solutions [43]. Dedner et al. provide a scheme

for “divergence cleaning” of the MHD system. It is also possible to design schemes which

enforce zero divergence for the magnetic field at the level of the discretization [45].

The approach we have taken is that of Munz et al. in employing the so-called “Perfectly

Hyperbolic” Maxwell’s (PHM) equations [46, 47, 48]. The PHM equations directly incor-
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porate the divergence constraints of equations (2.17) and (2.18) into the temporal evolution

of the two-fluid system by introducing two additional variables φ and ψ which act as proxies

for the divergence constraints – or “correction potentials” [4] – while being consistent with

the overall hyperbolic structure of the two-fluid – Maxwell system.

∂E

∂t
= c2∇×B − J

ε0
− c2ζφ∇φ (4.29)

∂B

∂t
= −∇×E − ζψ∇ψ (4.30)

∂ψ

∂t
= −c2ζψ∇ ·B (4.31)

∂φ

∂t
= −ζφ

(
∇ ·E − ρQ

ε0

)
(4.32)

Equations (4.29) and (4.30) describe the temporal evolution of E and B. Equations (4.31)

and (4.32) are the evolution equations for the divergence proxies ψ and φ.

The parameters ζφ and ζψ are the propagation speeds at which the divergence proxies

remove errors in the divergence of the electric and magnetic field. In the limit as ζφ and ζψ

become infinitely large, the divergence constraints will be satisfied exactly, though this is not

computationally feasible. For finite ζφ and ζψ, the divergence constraints will be satisfied

approximately. In Section 6.3, some tests of the PHM equations’ divergence preserving

capability are presented.

4.4 Non-dimensionalization of Governing Equations

For numerical convenience equations (2.19) – (2.21) and (4.29) – (4.31) are implemented

in a non-dimensional form, similar to the approach of Abgrall and Kumar and Kumar and

Mishra [3, 6].
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ρ̂i,e ≡
ρi,e
min0

(4.33)

ûi,e ≡
ui,e
V0

(4.34)

T̂i,e ≡
Ti,e
T0

(4.35)

ε̂i,e ≡
εi,e

min0V 2
0

(4.36)

Ê ≡ E

V0B0

(4.37)

B̂ ≡ B

B0

(4.38)

φ̂ ≡ φ

B0

(4.39)

ψ̂ ≡ ψ

V0B0

(4.40)

This normalization strategy uses the ion reference thermal velocity as the reference velocity,

V0 ≡
√

kT0
mi

. The spatial scale is defined by x̂ ≡ x
x0

and the temporal scale by t̂ ≡ t
t0

where

t0 ≡ x0
V0

. The mass ratio is defined as M ≡ mi
me

. Further, the normalized reference Larmor

radius r̂L and Debye length λ̂D are defined as r̂L ≡ V0mi
qB0X0

and λ̂D =
√

ε0kT0
n0q2

1
x0

.

∂ρ̂α

∂t̂
+ ∇̂ ·

[
F̂ ρ̂α
α

]
= 0 (4.41)

∂(ρ̂αûα)

∂t̂
+ ∇̂ ·

[
F̂
ρ̂û

α

]
=
Mα

r̂L

(
ρ̂αûα × B̂ + ρ̂αÊ

)
+ R̂αβ (4.42)

∂ε̂α

∂t̂
+ ∇̂ ·

[
F̂ ε̂
α

]
=
Mα

r̂L
ρ̂αûα · Ê + ûα · R̂αβ + Q̂αβ. (4.43)

∂Ê

∂t̂
= ĉ2∇̂× B̂ − r̂L

λ̂2
D

(ûi − ûe)− ĉ2ζφ∇̂φ̂ (4.44)

∂B̂

∂t̂
= −∇̂×E − ζψ∇ψ (4.45)

∂ψ̂

∂t̂
= −ĉ2ζψ∇̂ · B̂ (4.46)

∂φ̂

∂t̂
= ζφ

(
∇̂ · Ê − r̂L

λ̂2
D

(ρ̂i −Mρ̂e)

)
(4.47)

Applying these definitions to the governing equations, equations (2.19) – (2.21) and (4.29) –

(4.31) become equations (4.41) – (4.46). The fluxes in equations (4.41) – (4.43) are given in

normalized form in equations (4.48) – (4.50).
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F̂ ρ̂
α ≡

F ρα
α

min0V0

, (4.48) F̂
ρ̂û

α ≡
F ρu
α

min0V 2
0

, (4.49) F̂ ε̂
α ≡

F ε
α

min0V 3
0

. (4.50)

For simplicity of notation in the remainder of this dissertation, the “ ·̂ ” designation will be

dropped for the variables in equations (4.41) – (4.47), and non-dimensionalized variables

will be assumed unless stated otherwise.

4.5 PHM Flux Discretization and Source Terms

For the flux calculation in the PHM equations (4.44) – (4.47), a straightforward Lax-

Friedrichs (LF) type flux calculation is used [49].

F̃Q

i+ 1
2

=
1

2

[
FQ,L

i+ 1
2

+ FQ,R

i+ 1
2

− α
(
Qr
i+ 1

2
−Ql

i+ 1
2

)]
(4.51)

Equation (4.51) gives a basic overview of the LF flux calculation. In Equation (4.51), FQ,L

i+ 1
2

and FQ,R

i+ 1
2

are the left- and right- fluxes of the variable Q at the cell interface i+ 1
2

calculated

from the left- and right-side reconstructed flow variables at that interface. The quantities

Ql,r

i+ 1
2

are the left- and right- values of the variable Q at the interface i+ 1
2
.

The quantity α in equation (4.51) is generally taken to be the solution of the characteristic

speed for the variableQ, but may alternatively be approximated as ∆x
∆t

. In applying this to the

PHM equations, we have generally elected to simply set α = ĉ. The LF flux is known to be

only first-order [50], so to achieve second-order integration in time for the fluxes of equations

(4.44) – (4.46), the LF flux is implemented within a two-stage Runge-Kutta scheme.

To calculate the source terms of equations (4.41) – (4.47), the code uses Strang Splitting.

This is a form of operator splitting wherein first the source terms are advanced by ∆t
2

, then

the fluxes are advanced by ∆t followed by a second source term advancement of ∆t
2

.

L∆t ≈ L∆t/2
1 L∆t

2 L∆t/2
1 (4.52)
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If the total operator to solve equations (4.41) – (4.46) is represented by, e.g., L, and the

individual operators for the source term update and flux update are L1 and L2, respectively,

then equation (4.52) represents the approximate total update over a time-step ∆t, which is

accurate to second order [51]. Thus, the integration scheme of equations (4.44) – (4.46)

should be second-order overall.
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5. PRELIMINARY LINEAR ANALYSIS

To benchmark the performance of the implemented two-fluid plasma gas-kinetic scheme

the numerical solution will be compared to an analytical solution of the linearized governing

equations. Seeking solutions in the linear regime allows us to obtain exact analytic solutions

against which to compare. A similar procedure was followed by Loverich et al. to benchmark

their Discontinuous Galerkin method for solving the ideal two-fluid equations [5].

5.1 Linearization of Governing Equations

To obtain an analytic solution to equations 4.41-4.47, a small perturbation to the electron

velocity is assumed, with spatial and temporal dependence ei(kx+ωt). The ions are assumed

to be stationary in this derivation. Further, F̂ ρ̂
α , F̂

ρ̂û

α , F̂ ε̂
α are assumed to take their ideal (i.e.

Euler) form.

∂ρ̂e

∂t̂
+ ∇̂ · [ρ̂eûe] = 0 (5.1)

∂(ρ̂eûe)

∂t̂
+ ∇̂ · [ρ̂eûeûe + 1p̂e] =

M

r̂L

(
ρ̂eûe × B̂ + ρ̂eÊ

)
+ R̂eβ (5.2)

∂ε̂e

∂t̂
+ ∇̂ · [ûeε̂e + ûep̂e] =

M

r̂L
ρ̂eûe · Ê + ûe · R̂eβ + Q̂eβ. (5.3)

∂Ê

∂t̂
= ĉ2∇̂× B̂ − r̂L

λ̂2
D

(ûi − ûe) (5.4)

∂B̂

∂t̂
= −∇̂×E (5.5)

(5.6)

Here we have returned to the regular (non-PHM) form of Maxwell’s equations for equations

(5.4) – (5.5). Assuming variation only along x (i.e. ∂
∂y

= ∂
∂z

= 0), we can reduce equations

49



(5.1) – (5.5) to the following:

∂ρe
∂t

+
∂

∂x
(ρeue) = 0 (5.7)

ρe
∂ue
∂t

+ ρeue
∂ue
∂x

+
∂pe
∂x

= −M
rL

(ρeveBz + ρeEx)−
ρ2
eM

2ue
σλ2

Dc
2

(5.8)

ρe
∂ve
∂t

+ ρeue
∂ve
∂x

= −M
rL

(−ρeueBz + ρeEy)−
ρ2
eM

2ve
σλ2

Dc
2

(5.9)

∂Te
∂t

+ ue
∂Te
∂x

+
2

3
Te
∂ue
∂x

= 0 (5.10)

∂Ex
∂t

= − rL
λ2
D

(−Mρeue) (5.11)

∂Ey
∂t

= −c2∂Bz

∂x
− rL
λ2
D

(−Mρeve) (5.12)

∂Bz

∂t
= −∂Ey

∂x
(5.13)

In equations (5.7)–(5.13) and the following analysis we have removed the hat notation (̂·)

denoting normalized variables for simplicity. First we will assume a perturbed solution for

the electron x-velocity ue = −iU0 exp[i(kx+ ωt)], where U0 � 1. The ions are assumed to

be infinitely massive and stationary (ρi = const = ρ0, ui = 0 = const, Ti = Te,0 = const).

Additionally, we assume that we = 0, Ez = 0, and By = Bx = 0. Further we assume that

ω
k
� c, i.e. that the plasma is non-relativistic.

ρe = ρe,0

[
1 +

ikU0

ω
exp(i(kx+ ωt))

]
(5.14)

Te = Te,0

[
1 +

2

3
i
ku0

ω
exp(i(kx+ ωt))

]
(5.15)

From the electron mass conservation (5.7) and energy conservation (5.10), and the assumed

solution for ue it is straightforward to obtain an expression for the perturbed density ρe –

equation (5.14) – and perturbed temperature Te – equation (5.15). In equation (5.15) the

2
3

= (γe − 1) is for γe = 5
3
.

From equation (5.11) and using the perturbed solutions for ρe and ue we can obtain the
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solution for the x-component of the electric field Ex.

Ex = −U0Mρe,0rL
ωλ2

D

exp[i(kx+ ωt)] (5.16)

If we further assume that Bz = Ey = ve = 0, then from equation (5.8) we can obtain the

dispersion relation for ω, equation (5.17).

ω ≈ ±
[

5

3
MTe,0k

2 +
M2ρe,0
λ2
D

] 1
2

+ i
M2ρe,0
2σλ2

Dc
2

(5.17)

This assumes 5
3
MTe,0k

2, M
2ρe,0
λ2D

�
(
M2ρe,0
2σλ2Dc

2

)2

, i.e. that v2
thk

2, ω2
p � 1

4τ2ei
. Essentially that

the characteristic damping time is appreciably longer than a period of the oscillations. The

imaginary portion of ω being positive – =(ω) > 0 – indicates an exponential decay of the

oscillations, with characteristic time of 2σλ2Dc
2

M2ρe,0
= 2τei.

If we assume σ → ∞ (i.e. τei → ∞), there will be no damping in the solution. If we

further assume that Bz 6= 0 we must also allow Ey 6== 0 and ve 6= 0. From this we will

obtain solutions for ve, Ey, and Bz, and a modified dispersion relation for ω:

ve = −Bz,0MU0

ωrL
exp[i(kx+ ωt)], (5.18)

Ey = −iBz,0M
2ρe,0U0

c2k2λ2
D

exp[i(kx+ ωt)], (5.19)

Bz = Bz,0

(
1 + i

M2ρe,0U0

ωkc2λ2
D

exp[i(kx+ ωt)]

)
. (5.20)

From equation (5.9), (5.12), and (5.13) we can obtain equations (5.18) – (5.20) for ve, Ey,

and Bz. Once again from equation (5.8) we obtain the dispersion relation for ω:

ω ≈ ±
[

5

3
MTe,0k

2 +
M2ρe,0
λ2
D

+
B2
z,0M

2

r2
L

] 1
2

. (5.21)

These assume ω2 � c2k2, ω2
p � c2k2.
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5.2 Results of Linear Analysis

In the following, two cases will be examine. The first is initialized with a single wave

mode – ue = −iU0 exp[i(kx + ωt)] – in order to verify that the solver captures the simplest

version of the solution. In the second, an approximate square wave for the electron velocity

ue is used by initializing a linear combination of wave modes.

Figure 5.1: Initial condition of electron x- and y-velocity, temperature, and density for lin-
earized solution using a single mode. T and ρ are plotted as Te − Te,0 and ρe − ρe,0

For the single wave mode the initialization of the electron fluid variables ρe, Te, ue, and

ve are depicted in Figure 5.1 while the electromagnetic fields Ex, Ey and Bz are shown in

Figure 5.2. A second set of initial conditions uses an approximate square wave – Eq. (5.22)

– which initializes several modes at once to further test the scheme’s performance.

ue =
9∑

n=0

−i U0

2n+ 1
exp[i(knx+ ωnt)] (5.22)
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Figure 5.2: Initial condition of x- and y-components of the electric field and z-component of
the magnetic field for linearized solution using a single mode. Bz is plotted as Bz −Bz,0

This approach is similar to that of Loverich et al. [5]. The approximate wave pulse with 10

modes seen in equation (5.22) is used because it would be impossible to resolve all of the

modes of the square pulse on a finite grid.
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Figure 5.3: Initial condition of electron x- and y-velocity, temperature, and density for lin-
earized solution using an approximate square wave for the electron x-velocity. T , and ρ are
plotted as Te − Te,0 and ρe − ρe,0

Figures 5.3 and 5.4 show the initialization of the approximate square mode in the electron

x-velocity. Note that the wave is not square for the temperature, density, y-velocity, and

the electromagnetic fields. In the following results, unless otherwise specified a grid of

Nx = 400 cells – i.e. ∆x = 0.0025 with ∆t = 5× 10−7 is used.
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Figure 5.4: Initial condition of x- and y-component of the electric field and z-component of
the magnetic field for linearized solution using an approximate square wave for the electron
x-velocity. Bz is plotted as Bz −Bz,0

5.2.1 PHM Solver Benchmark: Constrained Electron Fluid

The Perfectly Hyperbolic Maxwell’s equations are used to evolve the electromagnetic

fields in such a way that the divergence constraints of Gauss’ law for the electric and mag-

netic fields are enforced. As the current implementation is only one-dimensional, this is

strictly speaking not necessary for the magnetic field as it is trivially enforced – if ∇ ·B = 0

is true in the initial conditions it cannot evolve to be otherwise. In addition, while it is

possible that charge conservation violations may occur in a one-dimensional simulation we

expect that it is likely not critical. Here we test the PHM solver in isolation by driving or

constraining the electron fluid properties to follow the analytic linearized solutions exactly.
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Figure 5.5: Electromagnetic fields at t̂ = 4. Analytic solution (solid black) vs. the computed
solution (dashed red) for the driven electron fluid case for a single mode

Figure 5.5 compares the computed solution of the electromagnetic fields to the analytic

solution from equations (5.16), (5.19), and (5.20) in the spatial domain at a non-dimensional

time t̂ = 4 for a single wave.
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Figure 5.6: Electromagnetic fields at x̂ = 0.25 for t̂ = 0− 4. Analytic solution (solid black)
vs. the computed solution (dashed red) for the driven electron fluid case for a single mode

Figure 5.6 compares the analytic and numerical solutions at a single point (x̂ = 0.25)

over the entire simulation time. In both cases it can be seen that the agreement is very good.

This is further demonstrated by Figure 5.7 which depicts the normalized L1 error of each

of the electric and magnetic field components. The L1 norm of a quantity y is defined as

L1 ≡
∑N

i=1 |yi|, where the summation over i ∈ [1, N ] is done for all cells in the domain. The

L1 error here has y equal to the difference between the computed and analytical solutions at

each point. In all three the error is constant and does not appear to grow significantly in time.

Later in Section 6.3 we perform further verification of the PHM solver against published

data for the electromagnetic shock problem [52].
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Figure 5.7: Base-10 logarithm of the normalized L1 error for electromagnetic fields for
t̂ = 0− 4 for the driven electron fluid case for a single mode

In addition to the single wave mode, multi-mode simulations were run for the approxi-

mate ue square pulse initialization with the electron fluid variables prescribed to follow their

exact analytic solutions.

58



Figure 5.8: Electromagnetic fields at t̂ = 4. Analytic solution (solid black) vs. the computed
solution (dashed red) for the driven electron fluid case – approximate square wave

Figure 5.8 compares the computed solution of the electromagnetic fields to the analytic so-

lution from equations (5.16), (5.19), and (5.20) in the spatial domain at a non-dimensional

time t̂ = 4.
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Figure 5.9: Electromagnetic fields at x̂ = 0.25 for t̂ = 0− 4. Analytic solution (solid black)
vs. the computed solution (dashed red) for the driven electron fluid case – approximate
square wave

Figure 5.9 compares the analytic and numerical solutions at a single point (x̂ = 0.25) over

the entire simulation time. In both cases it can be seen that the agreement is very good. This

is further demonstrated by Figure 5.10 which depicts the normalized L1 error of each of the

electric and magnetic field components. In all three the error is constant and does not appear

to grow significantly in time.
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Figure 5.10: Base-10 logarithm of the normalized L1 error for electromagnetic fields for
t̂ = 0− 4 for the driven electron fluid case – approximate square wave

5.2.2 Full System Evolution

Next the full system is tested allowing it to evolve from the given initial state, and com-

pared to the analytical solution. Figures 5.11 and 5.12 compare the spatial solution of the

electron fluid quantities ρe, ue, ve, and Te, and the electromagnetic fields Ex, Ey, and Bz at

non-dimensional time t̂ = 4 for a single wave mode.
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Figure 5.11: Electron fluid variables at t̂ = 4. Analytic solution (solid black) vs. the com-
puted solution (dashed red) for a single mode

Figure 5.12: Electromagnetic fields at t̂ = 4. Analytic solution (solid black) vs. the com-
puted solution (dashed red) for a single mode
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In all cases the computed solutions are very close to the analytical solution, with only a

slight drift in phase. Figures 5.13 and 5.14 compare the numerical and analytic solutions in

Figure 5.13: Electron fluid variables at x̂ = 0.25 for t̂ = 0 − 4. Analytic solution (solid
black) vs. the computed solution (dashed red) for a single mode

time for the electron fluid and electromagnetic fields at x̂ = 0.25. While Figures 5.13 and

5.14 may appear to not have any drift error like that seen in Figures 5.11 and 5.12, we can

see in Figures 5.15 and 5.16 as we zoom to the first and last periods of oscillation for the

electron fluid properties and electromagnetic fields – t̂ = 0− 0.1075 and t̂ = 3.8925− 4.0,

respectively – that there is indeed a similar phase error in the temporal oscillation at x̂ = 0.25,

which grows over time from t̂ = 0 to t̂ = 4.0. The observed phase drift may come from

either the underlying nonlinearity of the governing equations, or due to accumulated errors

in integration. To examine this, two additional coarser grids were used – Nx = 200 and

Nx = 100 – with proportionally larger ∆t. The results can be seen in Figure 5.17, which

clearly shows that the drift error is equal for all grids. A zoomed inset for the electron
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Figure 5.14: Electromagnetic fields at x̂ = 0.25 for t̂ = 0−4. Analytic solution (solid black)
vs. the computed solution (dashed red) for a single mode

Figure 5.15: Electromagnetic fields at x̂ = 0.25 for t̂ = 0 − 0.1075 and t̂ = 3.8925 − 4.0.
Analytic solution (solid black) vs. the computed solution (dashed red) for a single mode
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Figure 5.16: Electron fluid variables at x̂ = 0.25 for t̂ = 0 − 0.1075 and t̂ = 3.8925 − 4.0.
Analytic solution (solid black) vs. the computed solution (dashed red) for a single mode

Figure 5.17: Electron fluid variables at t̂ = 4 comparing grids for Nx = [100, 200, 400] in
space for the single mode

density ρe shows the peak of the wave, where the lowest resolution case (Nx = 100) can

be clearly seen to be more dissipative due to the increased numerical diffusion. We thus
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conclude that the drift error is a consequence of the solution for the full nonlinear governing

equations being compared to the analytic solutions for the linearized system, particularly

given the relatively long simulation time of ∼ 40 periods. The normalized L1 error for the

Figure 5.18: Base-10 logarithm of the normalized L1 error for electron fluid variables for
t̂ = 0− 4 for a single mode

fluid variables in time is depicted in Figure 5.18 and Figure 5.19 shows the L1 error for the

electromagnetic fields. The error in the EM fields appears very steady after an initial jump,

while the fluid quantities exhibit a slow increase in error relative to the analytic solution over

time. It is most likely that this is due to growing nonlinearities. Recall that while the analytic

solution is linear, the governing equations are not.
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Figure 5.19: Base-10 logarithm of the normalized L1 error for electromagnetic fields for
t̂ = 0− 4 for a single mode

Next the full system with multiple wave modes is studied. Figures 5.20 and 5.21 compare

the spatial solution of the electron fluid quantities ρe, ue, ve, and Te, and the electromagnetic

fields Ex, Ey, and Bz at non-dimensional time t̂ = 4.
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Figure 5.20: Electron fluid variables at t̂ = 4. Analytic solution (solid black) vs. the com-
puted solution (dashed red) – approximate square wave

Figure 5.21: Electromagnetic fields at t̂ = 4. Analytic solution (solid black) vs. the com-
puted solution (dashed red) – approximate square wave
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In both cases the computed solutions are very close to the analytical solution, with once again

only a slight drift in phase. Figure 5.22 once again depicts a comparison to the Nx = 200

Figure 5.22: Electron fluid variables at t̂ = 4 comparing grids for Nx = [100, 200, 400] in
space for the approximate square wave

and Nx = 100 grids, where it can be clearly seen that while the phase – or drift – error is

independent of the grid resolution, the coarser grids are noticeably more dissipative. This

is particularly noticeable in this case due to the higher wave modes which are much less

resolved on the coarser grids.
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Figure 5.23: Electron fluid variables at x̂ = 0.25 for t̂ = 0 − 4. Analytic solution (solid
black) vs. the computed solution (dashed red) – approximate square wave

Figure 5.24: Electromagnetic fields at x̂ = 0.25 for t̂ = 0−4. Analytic solution (solid black)
vs. the computed solution (dashed red) – approximate square wave
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Figures 5.23 and 5.24 compare the numerical and analytic solutions in time for the elec-

tron fluid and electromagnetic fields at x̂ = 0.25. The normalized L1 error for the fluid

variables in time is depicted in Figure 5.25 and Figure 5.26 shows the L1 error for the elec-

tromagnetic fields. The error in the EM fields appears very steady after an initial jump, while

the fluid quantities exhibit a slow increase in error relative to the analytic solution over time.

As discussed, this is due mostly to developing nonlinearities in the governing equations.

Figure 5.25: Base-10 logarithm of the normalized L1 error for electron fluid variables for
t̂ = 0− 4 – approximate square wave
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Figure 5.26: Base-10 logarithm of the normalized L1 error for electromagnetic fields for
t̂ = 0− 4 – approximate square wave

5.2.3 Inter-species Collisional Damping

Here we demonstrate the resistive effects in the linearized case. For this case we use

only the single wave mode as the scheme has demonstrated that multiple wave modes work

equally well.
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Figure 5.27: Ux, T , ρ and Ex at x̂ = 0.25 for t̂ = 0 − 4. Analytic solution (solid black) vs.
the computed solution (dashed red) for a single mode and no Bz, Ey, Uy. The blue line is the
exponential decay for exp[−=(ω)t]

Figure 5.28: Base-10 logarithm of normalized L1 error for t̂ = 0− 4
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In Figure 5.27 we see the solution for the electron fluid properties at a single point for

the entire solution time, similar to Figure 5.13. Overlaid on the graph of electron x-velocity

ue is a blue line for u0 exp
(
− t

2τei

)
. It is easy to see that the exponential decay rate pre-

dicted by the linear analysis is obtained exactly. For this problem the ions have been fixed

to be stationary (approximating their much larger mass and slower response time), so the

perturbations all decay towards zero.

5.2.4 Conclusions

In this Chapter we present a linearized analysis of the governing equations for a two-fluid

plasma. The linearization assumes infinitely massive stationary ions, and a non-relativistic

plasma – ω � ck. The two-fluid plasma GKS scheme is benchmarked against linearized

analytic solutions for both a single wave mode – k = 2π – as well as solutions corresponding

to an approximate square wave for the electron x-velocity ue. Simulations compare both the

full system evolution, as well as a comparison of the PHM solver by itself by prescribing the

fluid variables to their analytic solutions. For the single-mode full-system simulations The

inter-species resistive term is tested. We make several observations from these simulations:

1. The solutions of the PHM equations using the prescribed analytic fluid solutions are

very good, with very small relative error which does not appear to grow appreciably

even for long times.

2. Overall the agreement between the full TFPGKS scheme and the analytic solutions is

very good, particularly for the initialization for an approximate square mode. However,

at long times some nonlinear error begins to appear – e.g., 40 periods for the k = 2π

mode or longer.

3. The resistive TFPGKS solutions match the analytic exponential damping rate derived

from the linearized resistive governing equations.
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6. NUMERICAL SIMULATIONS: VERIFICATION, VALIDATION, AND

PARAMETRIC STUDIES

The objective of this Section is to perform numerical simulations using the Two-Fluid

Plasm GKS method to exhibit its applicability in various parametric regimes. Specifically

four types of computations are performed:

1. Implied constitutive relationship: The intent of these zero-dimensional calculations is

to demonstrate that TFPGKS yields the known constitutive relationships for stress and

heat flux when corresponding distributions are used as initial conditions. As mentioned

in earlier sections, TFPGKS is developed to capture transient effects due to evolution

in the distribution function. Yet it is equally important to demonstrate that the correct

effective constitutive relationship is recovered from the initial TFPGKS distribution.

The focus will be on capturing the anisotropy in the TFPGKS flux stress and heat flux

due to the presence of the magnetic field as the Hall parameter $ is varied.

2. Validation against established data: The purpose of these calculations is to demon-

strate that TFPGKS captures the correct governing equations in the linearized limit,

and that it replicates well-known 1-D computational results. The goal is not only to

establish validity of the model, but also to exhibit computational viability.

3. Parametric study to demonstrate improved capability: In these simulations we aim

to explore transient behavior and new physics of the electromagnetic shocks in the

collisional regime. The goal of these simulations is also to demonstrate the improved

physics capturing capability over previous iterations of the TFPGKS scheme.

6.1 Analysis of Stress and Heat Flux Constitutive Relationships

As a benchmark to verify that the analytic expression of the TFPGKS flux behaves as

expected, a zero-dimensional implementation of equation (3.74) was done in Mathematica.
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In this implementation, the analytic expressions of the gradients ∂g
∂x

and ∂g
∂t

with respect to

the gradients ∂ρ
∂x

, ∂T
∂x

, and ∂u
∂x

are directly implemented. For this analysis we assume a smooth

solution of the flow variables, and specify the state of the flow – including gradients – at an

arbitrary point in space in time. Only one species is examined in this analysis, which is taken

to be the electrons for convenience. The analysis is valid for either species, as the primary

parameter of significance is the Hall parameter $.

We calculate the time-dependent heat flux and viscous stress using TFPGKS, while com-

paring to the constitutive model of Woods [34] – which we expect to recapture in this limit

– as well as Braginskii’s model [53]. The TFPGKS flux is calculated using both the “Cou-

pled” flux, as well as the “Uncoupled” flux which ignores the effects of the acceleration on

the MoC solution and the modification to the non-equilibrium portion of the distribution f (1).

For this problem, the coordinate system is taken to be oriented such that the magnetic

field is aligned along the z-axis, i.e. B = Bẑ. The temperature and velocity gradients are

chosen somewhat arbitrarily to be

∇T =


1.0

−1.0

1.0

 , (6.1) ∇u =


1.5 1.3 1.0

0.5 −1.0 −1.0

−2.0 1.0 2.0

 , (6.2)

such that they are partially aligned along the magnetic field. Other values of ∇T and ∇u

were also tested, and exhibited identical behavior as expected.

〈ξf̄〉 = F̄ ρ = ρu (6.3)

To calculate the TFPGKS stress and heat flux, we define the TFPGKS momentum in equation

(6.3). To obtain the TFPGKS fluid velocity, we define the TFPGKS density to be ρ ≡ ρ.

u ≈ F
ρ

ρ
(6.4)
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Thus, equation (6.4) will provide the TFPGKS mean velocity, defined in terms of the TF-

PGKS mass flux. From this, we recall the definition of the stress and heat flux, given by

equations (6.5) and (6.6).

Φ ≡ 〈(ξ − u)(ξ − u)f̄〉 (6.5)

q ≡ 〈1
2

(ξ − u)(ξ − u)2f̄〉 (6.6)

From equations (6.5) and (6.6), we can define the TFPGKS stress and heat flux in terms of

the TFPGKS fluxes and TFPGKS mean velocity.

Φ = F ρu − ρuu (6.7)

q = F ε − 1

2
ρuu2 − 1

2
uTr (F ρu) +

1

2
u2F ρ − u · F ρu + uu · F ρ (6.8)

The results presented are normalized by the absolute value of the b̂-parallel component,

and are scaled so that the heat fluxes all converge in the $ → 0 limit. The heat fluxes for

Woods’ [34] and Braginskii’s [53] models are given in equations (6.9) – (6.10):

qW,i ≡ −κW,ij
∂T

∂xj
, (6.9)

qB,i ≡ −κB,ij
∂T

∂xj
. (6.10)

Where the tensor thermal conductivities κW,ij and κB,ij are defined by

κW,ij ≡ κ‖bibj + κW,⊥ [δij − bibj]− κW,∧εikjbk, (6.11)

κB,ij ≡ κ‖bibj + κB,⊥ [δij − bibj]− κB,∧εikjbk. (6.12)
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The perpendicular (⊥) and transverse (∧) thermal conductivity are defined for each to be

κW,⊥ ≡ κ‖
1

1 +$2
(6.13)

κW,∧ ≡ κ‖
$

1 +$2
(6.14)

κB,⊥ ≡ κ‖
1 + 0.756$2

1 + 3.988$2 + 1.477$4
(6.15)

κB,∧ ≡ κ‖
$ (0.954 + 1.758$2)

1 + 3.988$2 + 1.477$4
(6.16)

Clearly, the expected behavior is that the components parallel to B will be unaffected in all

models, while the component of the “Fourier” heat flux – i.e. the heat flux in the$ → 0 limit

– perpendicular to B will be reduced as $ increases due to the action of the magnetic field

to reduce transport across itself. Further, the “transverse” component which does not exist

in the $ → 0 limit, will initially increase as $ increases, but will also asymptote to zero

at large $. This can be rationalized physically by thinking of it as the perpendicular heat

flux being “redirected” by the magnetic field. The viscous stresses behave in a qualitatively

similar manner, and the details of their models may respectively be found in Section 12.7 of

[34] (pp. 296–299) and Section 4 of [53] (pp. 249–253).

Figure 6.1 shows the three components of the heat flux vector comparing Coupled TF-

PGKS with Woods’ and Braginskii’s models, as well as with the naive Uncoupled TFPGKS

implementation which neglects the effects of the electromagnetic fields. It can be seen that

the Uncoupled TFPGKS flux is not affected by variation in $, while for the Coupled TF-

PGKS, Woods, and Braginskii models the heat flux is only constant for q3 – the component

parallel to b̂. For the x- and y- components of heat flux – q1 and q2 – there is significant

dependence on $ between 10−0.8 . $ . 100.8. Outside this boundary the components of

heat flux asymptote to the unmagnetized value for low $ and to 0 at large $. This indicates

that the stronger magnetic field will eliminate cross-field collisional heat transport.

Figure 6.2 shows the six independent components of the stress tensor (less the isotropic

pressure component p1), comparing Coupled and Uncoupled TFPGKS with Woods’ and
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Figure 6.1: Top: X-component of heat flux; Middle: Y-component of heat flux; Bottom:
Z-component of heat flux, normalized by the parallel heat flux vs. base-10 logarithm of
the Hall parameter. Comparing TFPGKS and Woods (blue) to Braginskii (green), and the
Uncoupled TFPGKS flux (red). B = |B|ẑ

Braginskii’s models. Again, it can be seen that the Uncoupled TFPGKS stress is not affected

by variation in $, while for the Coupled TFPGKS, Woods, and Braginskii models the stress

is only constant for S33 – the component purely parallel to b̂. For the other components

there is again significant dependence on $ between 10−0.8 . $ . 100.8. For large $, the

transverse components of stress – S12, S13, and S23 – all asymptote to zero. Note that the S11

and S22 components do not go to zero, since Tr Φ = 0 must be true. This assumes that the

scalar pressure p is defined p ≡ −1
3

TrP , where P is the total stress tensor.
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Figure 6.2: Comparison of individual components of the viscous stress tensor, normalized
by the purely parallel component vs. base-10 logarithm of the Hall parameter. Comparing
TFPGKS and Woods (blue) to Braginskii (green), and the non-magnetized TFPGKS flux
(red). B = |B|ẑ

6.2 Two-Fluid Electromagnetic Shocks

The two-fluid electromagnetic shock is a generalization of the problem conceived by

Brio and Wu [52] for ideal MHD. It has been used in references [2, 3, 4, 5, 6] as a canonical

problem for benchmarking solvers for the ideal two-fluid plasma equations. In the problem

set up the ratio of the Larmor radius and Debye length is fixed to r̂L/λ̂D = 102. The mass

ratio is set to a realistic value of M = 1836 to mirror the electron-proton mass ratio. The

problem is one-dimensional with x̂ = [0, 1]. The variables are split with a discontinuity at

x̂ = 0.5. Table 6.1 shows the initialization of the left- and right-hand states. The boundary

conditions are straightforward zero-gradient Neumann boundaries for all quantities except φ

and ψ which are set to zero [48]. A typical simulation for these cases comprises a domain of

Nx = 1000 cells – i.e. ∆x = 0.001, with ∆t = 1× 10−6. All the results presented here are
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reasonable well grid-resolved.

Table 6.1: Initialization for EM shock

Left Right
ρe 1.0 1

M
0.125 1

M

pe 0.5 0.05
ρi 1.0 0.125
pi 0.5 0.05
Bx 0.75 0.75
By 1.0 −1.0

Figure 6.3 shows the ion density for r̂L = 103 compared to the total density of the

gasdynamic solution (replicated from [2]). It can be seen that for the parametric regime of

Figure 6.3: Electromagnetic shock, solution of ρi for r̂L = 103, compared to the gasdynamic
solution from Shumlak and Loverich [2]

large r̂L, the shock evolution is essentially identical to the gasdynamic solution. The electron
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Figure 6.4: Electromagnetic shock, solution of ρi for r̂L = 101, compared to Shumlak and
Loverich [2]

density is not depicted here but it is essentially decoupled entirely from the ion solution. The

solution of ρi for r̂L = 101 is shown in Figure 6.4, where comparison is made to [2]. The

results are essentially indistinguishable here, where we can see that the solution has begun

to deviate very noticeably from the pure gasdynamic solution. The electromagnetic coupling

between the electron and ion fluids is still quite weak in this regime. The solution of ρi

for r̂L = 100 is shown in Figure 6.5, where comparison is made to [2, 3, 4]. The results

for TFPGKS agree very closely with [2] and [3], while there is some very slight deviation

from [4] near x̂ = 0.2 and x̂ = 0.5 (see the enlarged insets in Figure 6.5). Here the solution

has deviated significantly from the gasdynamic solution and very distinctly captures the two-

fluid physics which would not be captured in even the Hall-MHD solution. In this regime

the coupling between the electrons and ions is more significant, and Figure 6.6 compares

the electron density – multiplied by the mass ratio M – to the results of [3, 4]. Like the ion

density, the agreement here is very close. Figure 6.7 depicts the TFPGKS EM shock solution

for ρi compared to Loverich et al. [5]. We note that for both the TFPGKS an HLS solutions

here, the solution domain is the center 10% of the computational domain – i.e. the numerical
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Figure 6.5: Electromagnetic shock, solution of ρi for r̂L = 100, compared to Abgrall and
Kumar [3], Hakim et al. [4], and Shumlak and Loverich [2]

Figure 6.6: Electromagnetic shock, solution of ρe for r̂L = 101, compared to Abgrall and
Kumar [3] and Hakim et al. [4]

boundaries are effectively at x̂ = ±4.5. This is done to minimize boundary effects on the

solution in the domain x̂ = [0, 1]. Here the solution has started to exhibit more of the features
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Figure 6.7: Electromagnetic shock, solution of ρi for r̂L = 10−1, compared to Loverich et al.
[5]

of the canonical Brio and Wu MHD solution [52] – particularly the characteristic “spike” at

x̂ = 0.5 – though they are not quite in the same place. This is due to charge separation

effects and incomplete magnetization at finite r̂L; the MHD solution effectively resides in

the r̂L → 0 limit. As quasineutrality becomes more strongly enforced due to decreasing

λ̂D, and both species become more tightly bound to the magnetic field due to decreasing

r̂L, the solution will continue to approach the ideal MHD solution. The agreement between

TFPGKS and [5] is reasonably good, with the most significant differences appearing in the

peak near x̂ = 0.4 and the hump at x̂ = 0.5 (shown in the enlarged inset of Figure 6.7).

The difference is primarily due to the result of Loverich et al. [5] having more numerical

diffusion. This is because of their result being obtained on a slightly coarser grid.

6.3 PHM Validation

In Chapter 5 we looked at an initial benchmark of the PHM solver using the linearized

analytical solution of the governing equations. No significant errors were observed; however,

this may have been a result of the simplistic nature of that test. To further test the PHM solver
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we will look at the electromagnetic shock with r̂L = 100 for several values of ζφ. As ζφ → 0,

the PHM equations will go towards the regular Maxwell’s equations. As ζφ →∞ we expect

that violations of equation (2.18) to be eliminated asymptotically – ∇·E−ρQ
ε0
→ 0. However,

for ζφ > 1 there will be an impact to numerical efficiency as the characteristic speed for

eliminating divergence errors from E is ζφĉ.

Figure 6.8: Log base 10 of L1 difference in ρe and ρi for r̂L = 100 relative to the digitized
data of Abgrall and Kumar [3]

In Figure 6.8 the L1 norm of error in the ion and electron densities relative to the data

digitized from [3] – see figures 6.5 and 6.6 – and normalized by the L1 norm of the data from

Abgrall and Kumar. For the electrons the error appears to be steady, and although it fluctuates

slightly, does not appreciably increase or decrease. For the ions, the error is initially not very

significant but decreases from ζφ = 10−2 to ζφ = 10−1 and is steady after that. The actual

divergence errors in the electric field can be seen in Figure 6.9 which depicts the L1 norm
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Figure 6.9: Log base 10 of L1 difference in ∇ ·E

of ∇ · E − ρQ
ε0

normalized by the L1 norm of the electric field divergence. As expected,

the divergence error decreases asymptotically with increasing ζφ. Further it appears that the

effects of changing ζφ are most significant between 0.1 < ζφ < 1.0. However, as we saw

in Figure 6.8 the effect on actual error in the physical quantities – ρi or ρe – was not as

significant. Figures 6.10 and 6.11 show the charge density and the electric field respectively

for the EM shock with r̂L = 100 while varying ζφ. It can be seen that there is no real

appreciable change in the physical quantities even through three orders of magnitude in ζφ

– although a decrease in divergence error by an order of magnitude is achieved. Clearly for

at least these simple problems, small changes in ζφ do not have a significant effect on the

overall numerical solution of the conserved quantities.

The reason for this is most likely that for a one-dimensional computation such as this the

divergence error is quite low to begin with and the problem is not complex enough to truly

give rise to errors in ∇ · E or ∇ ·B which would cause significant errors in the resulting
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Figure 6.10: Charge density along shock tube for r̂L = 100 for different ζφ

solution. A two-dimensional implementation of this problem such as in [43] where the shock

is skewed across the domain would be much more appropriate for testing the Gauss’ Law

preserving qualities of the PHM equations for this implementation.
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Figure 6.11: Axial electric field along shock tube for r̂L = 100 comparing various values of
ζφ

6.4 Ion Acoustic Solitons

The simulation of ion acoustic solitons has also been studied by a number of authors [6,

54, 55, 56, 57], wherein it is established that an initial state of a density spike or hump in the

two-fluid system will generate the soliton waves. This has also been observed experimentally

in experiments with a density step excitation [58]. While the Kortewig-de-Vries (KdV)

equation [59] is well known for being able to describe soliton wave propagation, the density-

hump excited soliton solutions that are presented here and seen in e.g., [6] and [57] cannot

be captured by the KdV equation because of the very strong nonlinear behavior. For this

problem the mass ratio is set toM = 25. The electron pressure is pe = 5 and the electron/ion

temperature ratio is Te/Ti = 100. The ratio of Larmor radius to Debye length is r̂L/λ̂D = 1,

and they are set to r̂L = λ̂D = 10−2. The problem is 1D with periodic boundaries. The

domain is x̂ = [0, L] where L = 12li. The ion skin depth is li = ωpi/c. The speed of light is
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set to ĉ = 100. The initial profile for the ion density is given by equation (6.17) and shown

in Figure 6.12.

ρi = 1 + exp

(
−300

∣∣∣∣xL − 1

3

∣∣∣∣) (6.17)

This profile is identical for ρe. The temperatures Te and Ti are uniform, and all other variables

are initialized to zero.

Figure 6.12: Ion acoustic soliton initial profile for density and pressure, equation (6.17)

The plasma acoustic speed may be defined ĉs ≡
√

(γiT̂i + γeT̂e)
M
M+1

. The speed of the

ion acoustic wave in the computed solution is roughly ĉs = 2.9, which is approximately 2%

smaller than the theoretical value.

Figure 6.13 depicts the result at t̂ = 5 compared to [6]. The result of Kumar and Mishra

was obtained on a grid of 10, 000 cells while the TFPGKS solution used only 3, 000 cells

and is reasonably well-resolved. For a higher resolution the TFPGKS solution does not

change appreciably. Kumar and Mishra observed that the entropy stable scheme they used in

obtaining the results reproduced in Figure 6.13 was more diffusive than other schemes [6].
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Figure 6.13: Ion acoustic soliton, comparison with Kumar and Mishra [6]

6.5 Parametric Study of Collisional EM Shocks

6.5.1 Setup and Parametrization

To examine the effects of finite collisionality and magnetization on the TFPGKS scheme,

a parametric study was performed of the electromagnetic shocks seen in Section 6.2 in the

regime of finite electron and ion self collision times τee and τii. Here we refer to the “Cou-

pled” TFPGKS scheme as the current TFPGKS scheme, and the “Uncoupled” TFPGKS

scheme as the previously developed TFPGKS scheme which neglects the effects of the elec-

tromagnetic fields (particuarly B) and inter-species collisions on the TFPGKS flux evo-

lution. The electromagnetic shock simulations were performed in the same manner as in

Chapter 6 for r̂L = 100 and r̂L = 10−1 while varying the ion-ion and electron-electron col-

lision times. Figures 6.1 and 6.2 depicted the effects of varying the Hall parameter $ on

the stress and heat flux. To clarify the notation used, here r̂L is used to denote the para-

metric Larmor radius appearing in the non-dimensionalized equations (4.42), (4.43), (4.44),
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and (4.47). This is distinguished from the effective normalized Larmor radius rL,α for each

species α.

rL,e ≡
vth,e
ωc,e

=

√
Ter̂L√
M |B|

(6.18)

rL,i ≡
vth,i
ωc,i

=

√
Tir̂L
|B|

(6.19)

ωc,e ≡
r̂L

M |B|
(6.20)

ωc,i ≡
r̂L
|B|

(6.21)

Equations (6.18) and (6.19) give the definition of the effective Larmor radius rL,α while

equations (6.20) and (6.21) give the definition of the effective cyclotron frequency ωc,α. Note

that the thermal velocities of each species are vth,i ≡
√
Ti and vth,e ≡

√
MTe respectively.

τee ≡
µ̂e

ρeMTeM
1
2

(6.22)

τii ≡
µ̂i
ρiTi

(6.23)

The normalized self-collision times for ions and electrons are defined in equations (6.22)

and (6.23). The normalized viscosity parameters µ̂e and µ̂i are essentially defined as the

inverse Reynolds number for each species, relative to the species thermal velocity. That

is, µ̂e ≡
(
ρevth,ex0

µe

)−1

, where the quantities to the right of the equals sign are not non-

dimensionalized. Thus, for the same non-dimensional viscosity, the ratio of self-collision

times is τee/τii = M−1/2, which is consistent with the analyses in Section 3.12 of [36],

Section 1.1 of [60], and Section 5.3 of [31].

$e ≡ τeeωc,e =
µ̂e
√
M |B|

TeMρer̂L
(6.24)

$i ≡ τiiωc,i =
µ̂i|B|
Tiρir̂L

(6.25)
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From the collision time and the cyclotron frequency, the species Hall parameters are deter-

mined by equations (6.24) and (6.25). Thus, we see if the collision time ordering mentioned

above is maintained by µ̂i ≈ µ̂e, then the Hall parameter for the electrons will be larger by a

factor of ∼
√
M .

λee ≡ τeevth,e =
µ̂e√
Tiρi

(6.26)

λii ≡ τiivth,i =
µ̂i√
TeMρe

(6.27)

Alternatively the species mean free path λαα may be defined from equations (6.26) and (6.27)

using the effection collision time and thermal velocity of each species. From the mean free

paths and the Larmor radii the species Hall parameters may alternatively be determined by

equations (6.28) and (6.29).

$e ≡
λee
rL,e

(6.28)

$i ≡
λii
rL,i

(6.29)

Note that the definitions in equations (6.28) and (6.29) are equivalent to equations (6.24) and

(6.25).

In the parametric study presented here, the collision times are varied such that the para-

metric sweep of $ is the same for both cases of r̂L. Table 6.2 shows the nominal parameters

for each case. The initialization of the shocks is identical to the setup used in Section 6.2.
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Table 6.2: Parametric variation for collisional EM shocks

Case 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4
r̂L 100 10−1

µ̂e × 104 1.25 2.5 5.0 10. 0.125 0.25 0.5 1.0
τ̂ee × 104 4.7 9.3 19. 37. 0.47 0.93 1.9 3.7

λ̂ee × 103 4.5 8.9 18. 36. 4.5 8.9 18. 36.
$̂e × 100 0.19 0.38 0.77 1.5 0.19 0.38 0.77 1.5
µ̂i × 104 1.25 2.5 5.0 10. 0.125 0.25 0.5 1.0
τ̂ii × 102 2.0 4.0 8.0 16. 0.2 0.4 0.8 1.6

λ̂ii × 103 4.5 8.9 18. 36. 4.5 8.9 18. 36.
$̂i × 102 0.45 0.89 1.8 3.6 0.45 0.89 1.8 3.6

Note again that the viscosity (and collision time or mean free path) is lower for the case

with lower Larmor radius so that the variation of $α is the same between cases 1.X and

2.X. For the parameter sets in Table 6.2, we expect that the EM shocks will in general be

significantly more diffusive relative to the ideal/inviscid shocks in Section 6.2, with more

diffusion apparent for the case of r̂L = 100 than r̂L = 10−1.

6.5.2 Parametric Study Results

Figures 6.14 and 6.15 depict the TFPGKS shock solutions in the present study compared

to the ideal (inviscid) shock solution.
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Figure 6.14: Electromagnetic shock, ion density for r̂L = 100, ideal shock solution compared
to collisional shocks

Figure 6.15: Electromagnetic shock, ion density for r̂L = 10−1, ideal shock solution com-
pared to collisional shocks

94



The increased diffusion is apparent by the smoothing of the shocks, especially for the case

with r̂L = 100 where a larger collision time is used to achieve the same Hall parameter. In

particular the shock structure of the r̂L = 100 shock around x̂ = 0.5 and x̂ = 0.6 – shown in

the enlarged inset – has completely collapsed for the largest value of τii and τee. The enlarged

inset for r̂L = 10−1 in Figure 6.15 shows that the shock structure has not degraded nearly as

much as for the r̂L = 100 case. This is because of the significantly smaller dissipation due

to smaller τii and τee. Because of the difference in characteristic speeds between ions and

electrons for this problem – vth,e/vth,i ≈
√
M – we will show results for the ions at the full

computational time t̂fin = 0.1 and for electrons at t̂e ∼ t̂finM
−1/2 the computational time.

A mass ratio of M = 1836 will give te ∼ tfin/40 = 0.0025.

6.5.3 Larmor Radius of 100

First we will present the results for the r̂L = 100 shock. Figures 6.16 and 6.17 show

the variation of the effective Hall parameter (red), mean free path (solid blue) and Larmor

radius (dashed blue) along the direction of shock propagation for the case of largest collision

time (case 1.4: τ̂ii = 0.16, τ̂ee = 0.0037). If we recall the analysis in Section 6.1 of

Figure 6.16: Effective electron Hall parameter, mean free path, and Larmor radius along x̂
at t̂ = 0.1 for r̂L = 100
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Figure 6.17: Effective ion Hall parameter, mean free path, and Larmor radius along x̂ at
t̂ = 0.0025 for r̂L = 100

the magnetized stress and heat flux we saw in figures 6.1 and 6.2 that for $ < 10−1 we

should not expect to see significant deviation from the “Uncoupled” scheme. From Figure

6.16 we can clearly see that the ion Hall parameter is never larger than ∼ 10−1.6, and thus

it is unlikely that we will see significant differences between the Coupled and Uncoupled

TFPGKS schemes for the ions in this set of simulations. In Figure 6.17 we see that the

electrons Hall parameter is appreciably larger than 10−1 for x > 0.5, thus we expect some

differences will be apparent in this region for the electrons.

In addition to the Hall parameter $, the directionality of the magnetic field is also im-

portant. The action of the magnetic field will be to impede transport perpendicular to itself

but not along it. Thus, since the problem is one-dimensional along x – all gradients are lim-

ited to ∂
∂x

– the component of the magnetic field perpendicular to x is of particular interest.

Figure 6.18 depicts the variation of the components of the normalized magnetic field parallel

(bx) and perpendicular (
√
b2
y + b2

z) to the shock-tube. We can clearly see that apart from a

small region near x̂ ≈ 0.69 the perpendicular component of the magnetic field is of the same

order of magnitude – or larger than – the parallel component. Thus, if $ is large enough
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Figure 6.18: Normalized magnetic field along x̂ at t̂ = 0.0025, components parallel and
perpendicular to x-axis

we may expect to see variations in the collisional transport behavior at any point along the

shock-tube.
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Figure 6.19: L1 difference for ions vs. $̂i at t̂ = 0.1, r̂L = 100

Figure 6.20: L1 difference for electrons vs. $̂e at t̂ = 0.0025, r̂L = 100
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Figures 6.19 and 6.20 depict the normalized L1 difference of the Uncoupled TFPGKS

scheme relative to the Coupled scheme, which is calculated by equation (6.30):

L1(Te) =

∑N
j=1 |Te,C − Te,U |∑N

j=1 Te,C
. (6.30)

In equation (6.30) the summation is done over all the cells in the domain. Here we distinguish

between the Coupled and Uncoupled solutions by the subscripts C and U , respectively. For

both, the difference increases with$ because the solution becomes more affected by physical

effects – i.e. magnetization – which are not captured by the Uncoupled scheme. We can see

in Figure 6.19 that the differences are not very significant, with the L1 difference below 1%

even for the largest value of $̂i. For the electrons, however, we can see that the aggregate

difference is approximately 8% for the largest value of $̂e. In the remaining figures we will

specifically look at the physical quantities for the electrons, ρe, ue, and Te.

Figure 6.21: Relative difference in the solutions of velocity magnitude, temperature, and
density for the electrons along the shock-tube: r̂L = 100
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Figure 6.21 depicts the normalized relative difference in the solution along x for ρe, ue,

and Te, which is defined by equation (6.31).

δ|u| ≡ |ue,C − ue,U |√
1
N

∑N
j=1 |ue,C |2

(6.31)

For case 1.4 – the red line, $̂e = 1.5 – it can be clearly seen that there is a difference in

the Coupled and Uncoupled solutions for the electron velocity magnitude, temperature, and

density in the shock region for 0.5 . x . 0.7. The difference increases from the black line

(case 1.1) to the red line (case 1.4). In Figure 6.21 we can clearly see that the most significant

differences between the Uncoupled and Coupled scheme are in the electron velocity and

temperature, while the effect on the density is much less significant. This is generally what

we would expect, as the non-equilibrium collisional effects have direct contributions to the

evolution of the temperature and velocity via the heat flux and viscous transport. The effects

on the density evolution are secondary rather than direct.

In Figure 6.22 we see the electron density, velocity magnitude, and temperature plotted

along the shock-tube for cases 1.1 (black) and 1.4 (red) – these correspond to $̂e = 0.19 and

$̂e = 1.5, respectively. The solid lines are the Coupled TFPGKS solution and the dashed

lines depict the Uncoupled solution. While there is no visible difference for case 1.1 (black)

for any of the variables, between 0.5 < x̂ < 0.7 there are clear differences in |ue| and Te for

case 1.4 (red). Figure 6.23 shows a zoomed version of Figure 6.22 between 0.45 < x̂ < 0.75

for the velocity magnitude and temperature. It appears that the primary cause of difference

is that the Uncoupled scheme overestimates the degree of collisional diffusion and transport

in the regions of large Hall parameter. While the both the Coupled and Uncoupled TFPGKS

solutions are more diffuse in the case with larger collision time, the Coupled scheme predicts

that the diffusiveness due to collisional transport will be less. This is what we would expect

on physical grounds due to the action of the magnetic field.
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Figure 6.22: Comparison of solution for ρe, ue, and Te along x̂ at t̂ = 0.0025. Coupled
(solid) and Uncoupled (dashed) TFPGKS for cases 1.1 (black) and 1.4 (red)

Figure 6.23: Comparison of solution forue and Te zoomed to 0.45 < x̂ < 0.75 at t̂ = 0.0025.
Coupled (solid) and Uncoupled (dashed) TFPGKS for cases 1.1 (black) and 1.4 (red)
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6.5.4 Larmor Radius of 10−1

Next we present the results for the r̂L = 10−1 shock from cases 2.1-2.4.

Figure 6.24: Effective electron Hall parameter, mean free path, and Larmor radius along x̂
at t̂ = 0.1 for r̂L = 10−1

Figure 6.25: Effective ion Hall parameter, mean free path, and Larmor radius along x̂ at
t̂ = 0.0025 for r̂L = 10−1

102



Recall from Table 6.2 that the approximate ion and electron Hall parameters for cases 2.X

are the same as for the cases 1.X for the r̂L = 100 shock, but that the species collision

times are proportionally smaller. Figures 6.24 and 6.25 show the variation of the effective

Hall parameter (red), mean free path (solid blue) and Larmor radius (dashed blue) along the

direction of shock propagation for the case of largest collision time (case 2.4: τ̂ii = 0.016,

τ̂ee = 0.00037). From Figure 6.24 we can again clearly see that at its largest the ion Hall

parameter is approximately $i ≈ 10−1.6, and thus it is unlikely that we will see significant

differences between the Coupled and Uncoupled TFPGKS schemes for the ions in this set

of simulations. In Figure 6.25 we see that the electrons Hall parameter is appreciably larger

than 10−1 for x > 0.5, thus we expect some differences will be apparent in this region for

the electrons.

Figure 6.26: Normalized magnetic field along x̂ at t̂ = 0.0025, components parallel and
perpendicular to x-axis
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We again investigate the directionality of the normalized magnetic field in Figure 6.26

which depicts the variation of the components of the magnetic field parallel (bx) and perpen-

dicular (
√
b2
y + b2

z) to the shock-tube. Again it is clear that the component of the magnetic

field perpendicular to the flow gradients is greater than the parallel component throughout

the majority of the shock-tube. The notable exception is in the vicinity of x̂ = 0.5, where

bx and
√
b2
y + b2

z switch briefly when by passes through zero from +1 at x < 0.5 to −1 at

x ≥ 0.5.

Figure 6.27: L1 difference for ions vs. $̂i at t̂ = 0.1, r̂L = 10−1
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Figures 6.27 and 6.28 depict the normalized L1 difference for cases 2.1-2.4, which is

again calculated by equation (6.30). We can see again in Figure 6.27 that the difference in

the ion solution for this case is not very significant, with the L1 difference below 1% even

for the largest value of $̂i. For the electrons, however, we can again see that the aggregate

difference is significantly larger, approaching ∼ 12% for the largest value of $̂e in this case.

Figure 6.28: L1 difference for electrons vs. $̂e at t̂ = 0.0025, r̂L = 10−1
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Figure 6.29 depicts the relative difference in the solution along x for ρe, ue, and Te, which

is again defined by equation (6.31). For case 2.4 – the red line, $̂e = 1.5 – the difference

is again much more pronounced for the velocity and temperature – with local normalized

relative difference of > 0.5 and > 0.05, respectively – than for the density, and is confined

to 0.5 < x̂ < 0.7.

Figure 6.29: Relative difference in the solutions of velocity magnitude, temperature, and
density for the electrons along the shock-tube: r̂L = 10−1
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Figure 6.30: Comparison of solution for ρe, ue, and Te along x̂ at t̂ = 0.0025. Coupled
(solid) and Uncoupled (dashed) TFPGKS for cases 2.1 (black) and 2.4 (red)

In Figure 6.30 we see the electron density, velocity magnitude, and temperature plotted

along the shock-tube for cases 2.1 (black) and 2.4 (red). The solid lines are the Coupled TF-

PGKS solution and the dashed lines depict the Uncoupled solution. While there is no visible

difference for case 2.1, between 0.5 < x̂ < 0.7 there are again clearly visible differences for

|ue| and Te. Figure 6.31 shows a zoomed version of Figure 6.30 between 0.45 < x̂ < 0.75

for the velocity magnitude and temperature. Relative to figures 6.22 and 6.23 for r̂L = 100,

figures 6.30 and 6.31 for r̂L = 10−1 exhibit much more dispersive, oscillatory behavior. This

is due to the smaller Larmor radius and Debye Length in the r̂L = 10−1 case, which increases

the naturally dispersive behavior of the governing equations of the two-fluid plasma system

[57]. Additionally we can see that the magnitude of the electron velocity for r̂L = 10−1 is

significantly lower than for r̂L = 100, which is primarily due to the electrons being “bound”
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Figure 6.31: Comparison of solution forue and Te zoomed to 0.45 < x̂ < 0.75 at t̂ = 0.0025.
Coupled (solid) and Uncoupled (dashed) TFPGKS for cases 2.1 (black) and 2.4 (red)

more tightly by the electric field (which is parametrically due to the smaller Deybe length in

this case). Again, the source of the differences for the Uncoupled scheme are that it overesti-

mates diffusivity in the regions of large $. Recall that the Coupled scheme both includes the

electromagnetic forces in the TFPGKS flux evolution and the effects of magnetization on the

non-equilibrium distribution, while the Uncoupled scheme does not. Thus, the Uncoupled

scheme does not capture the same physical effects at large Hall parameter $. This is partic-

ularly noticeable around x̂ = 0.63 and x̂ = 0.68 for the electron velocity. Further, the degree

of “pre-shock heating” – visible in Te as the area of increased temperature immediately to

the right of x̂ = 0.5 – is greater for increased collision time and mean free path, but is over-

estimated by the Uncoupled TFPGKS scheme which does not account for the effect of the

magnetization in limiting the cross-field transport, thereby reducing the effective collision

time perpendicular toB.
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6.6 Conclusions

In this Chapter we perform numerical simulations using the Two-Fluid Plasma TFPGKS

(TFPGKS) method which exhibit its applicability in various parametric regimes. The zero-

dimensional analysis of TFPGKS fluxes shows that the constitutive relationship for stress and

heat flux of Woods [34] is recovered and differs only somewhat from the more physically

accurate model of Braginskii [53]. This is primarily due to the difference between the Woods

and Braginskii models. The results of the linearized analytic solution comparison together

with the comparison to published computations of 1-D EM shocks and ion acoustic solitons

demonstrate the validity of the TFPGKS proof-of-concept and numerical implementation.

Finally, the improved capability of the new scheme over the previous naïve implementation

regarding the effect of accelerations on the flux evolution is demonstrated in the parametric

studies of collisional EM shocks.
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7. SUMMARY AND CONCLUSIONS

7.1 Summary of Work

The objective of this dissertation is to develop the theoretical framework for computa-

tional study of plasma flows using the gas-kinetic scheme. An overview of the advantages of

the Gas-Kinetic Scheme (GKS) relative to other continuum and near-continuum approaches

is discussed. The motivation for extending GKS to plasma flows is explained. The theoretical

framework towards a coupled GKS approach for a two-fluid plasma of electrons and singly-

charged positive ions is presented and termed the Two Fluid Plasma Gas-Kinetic Scheme

(TFPGKS). In this development a Method-of-Characteristics type approach is taken to ob-

tain a solution to the Boltzmann equation for each species (singly-charged positive ions and

electrons) using the BGK collision operator. The Perfectly Hyperbolic Maxwell’s (PHM)

equations [46, 47, 48] are used to integrate the electromagnetic fields and mitigate errors in

the divergence constraints of Gauss’s law for the electric and magnetic fields.

A “first-order” verification of the approach is performed by implementing the TFPGKS

flux in isolation using Mathematica. In this approach the effects of magnetization on the heat

flux and stress tensor are analyzed and compared to the transport models of Woods [34] and

Braginksii [53]. The results indicated that the TFPGKS flux agreed exactly with the model

of Woods, as expected for the purely smooth zero-dimensional case, and agreed reasonably

well with Braginskii’s transport model. This is because both the Woods transport model and

the TFPGKS flux are based on the BGK collision operator, while Braginskii’s approach uses

the more rigorous – albeit more complicated – Fokker-Planck-Landau collision operator.

A one-dimensional version of the scheme is implemented to further validate the theory

and demonstrate the proof-of-concept. The TFPGKS is benchmarked against a variety of

zero- and one-dimensional problems to verify the numerical implementation and to ensure

that appropriate asymptotic limits are preserved. To assist the validation process, a linearized
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version of the governing equations is derived and an analytic solution is obtained. The TF-

PGKS scheme performed well in the benchmark against the linearized solutions, exhibit-

ing only a small accumulation of nonlinear “drift” away from the linearized solutions after

nearly 40 periods of the longest waveform. In addition, the TFPGKS scheme is benchmarked

against published computational data for the two-fluid electromagnetic shock – a generaliza-

tion of Brio and Wu’s shock [52] – as well as solutions of ion acoustic solitons [54]. In all

cases, the TFPGKS scheme agreed very well with published data, verifying that the scheme

performs as expected and recovers appropriate two-fluid solutions in the asymptotic limit of

vanishing electron and ion self-collision times τee and τii.

A basic set of parametric studies is also performed to asses the behavior of the scheme

in the collisional regime – ie, with finite ταα. The electromagnetic shocks for r̂L = 100

and r̂L = 10−1 are simulated for a range of collision times, maintaining τii =
√
Mτee

[36, 60, 31]. Comparison is made to a previously developed “Uncoupled” version of the

TFPGKS scheme which neglected the effects of the electromagnetic fields on the TFPGKS

flux calculations [21]. Overall as τii and τee are increased the shock solutions become sig-

nificantly more diffuse, to the point that the shock structures collapse almost entirely for the

largest values of τ . For the cases with largest τ and correspondingly largest Hall parame-

ter $ ≡ τωc – cases 1.4 and 2.4 – the Uncoupled scheme exhibits significant differences

relative to the Coupled scheme for the electrons – as much as 12% – while the differences

for the ions are relatively insignificant – less than 1% at the most. The reason for the large

disparity between the electrons and ions is due to the mass ratio (M = 1836) which causes a

correspondingly large disparity in the species’ Hall parameters $e and $i.

7.2 Recommendations for Future Work

7.2.1 General Improvements

First, the existing scheme will be extended to two- and three-dimensional implementa-

tion, which would allow a much wider array of interesting problems and relevant physics to
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be studied. In addition, we suggest in no particular order a number of improvements which

would improve both its numerical characteristics and applicability to an extended range of

problems.

1. Implementation on axisymmetric or other non-cartesian grids would also allow more

interesting problems to be studied. There are possible cylindrical modifications which

may not require the Gas-Kinetic scheme itself to be significantly modified – see e.g.,

Chapter 4 of Srinivasan [61].

2. To reduce the computational burden due to disparate timescales between the electro-

magnetic fields, electrons, and ions, a sub-cycling scheme which “nests” iterations

of the faster components within those of slower components could be implemented

[62]. This approach has been used for the previously developed MHD-GKM scheme

of Araya et al. [21] for sub-cycling the Hall term in the magnetic field evolution. In

mitigating the stiffness of the Hall physics this approach has shown itself capable of

reducing computational time by up to an order of magnitude [62, 63].

3. Amano [64] developed a “quasi-neutral two-fluid” scheme which retains electrons in-

ertial effects while avoiding issues of timescales related to the plasma frequency. A

similar approach could be applied to TFPGKS, as the primary difference is in the so-

lution of the electromagnetic fields. The benefit of this approach would be to improve

numerical efficiency by removing high frequency Langmuir oscillations which gener-

ally do not contribute significantly to the macroscopic system dynamics [64].

7.2.2 GKS Improvements

For the gas-kinetic scheme itself, there are a variety of improvements which may be

helpful in improving the scheme’s applicability for a wide range of problems.

1. The Unified Gas Kinetic Scheme (UGKS) is an approach to implementing GKS which

employs a discretized velocity space [22, 65]. This allows the scheme to be applied to

flows at a much larger Knudsen number than the current approach.
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2. Extension of the BGK-based scheme to higher fidelity via Burnett or Super-Burnett ex-

pansion has been done for other GKS implementations and could be useful to extended

the validity of the current scheme for higher Knudsen numbers [66, 67]. Another pos-

sibility would be to use a “regularization” of the BGK collision operator wherein the

collision time τ is generalized to depend on both the macroscopic variables and their

gradients in the rarefied regime [68, 69]. These approaches allow the scheme to be ap-

plied to higher Knudsen number flows without requiring discretization of the velocity

space as in the UGKS approach.

3. In the development from equation (3.57), it is assumed that variations in Uβ , E, and

B can be neglected in the characteristic solution for f(t). A more rigorous derivation

and implementation would include Taylor expansions for these quantities as well.

4. Extension of the present approach to allow for anisotropic pressure and temperature

– i.e. higher moments – would be useful for a variety of applications with highly

magnetized plasmas. GKS implementations have been done for multiple temperatures

– translational, vibrational, and rotational [70, 71] – and could be extended to the

anisotropy due to strong magnetization.

5. Implementation of a more sophisticated collisional model than the BGK approach

would also allow for a more accurate capturing of the transport properties. As seen in

Section 6.1, the BGK model does not quite follow the more accurate transport model

derived by Braginskii from the Fokker-Planck-Landau collision operator. UGKS im-

plementations have been done with the full Boltzmann collision model [23].

6. For highly magnetized applications such as Tokamaks, gyro-kinetic and gyro-fluid

type approaches have been employed [72, 73]. It may be possible to extend gyro-

averaging theory to the GKS equations.

7. For multi-species plasmas, it would be straightforward to add as many ion or neu-
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tral species as desired, using GKS to calculate the fluxes for each species. Further,

GKS has been previously applied to chemically reacting flows [17], and thus could be

extended to flows with ionization and recombination of species.
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APPENDIX A

CALCULATING GKS COEFFICIENTS

In calculating many of the terms and coefficients required in the GKS procedure, the

tensor M−1
αβ frequently appears.

Mαβ ≡
∫
gψαψβdξ (A.1)

As stated in section 4.1.2, Mαβ is defined by equation (A.1), and its inverse may be deter-

mined analytically. If we define the Maxwellian g to be g = ρ
(

m
2πkT

)3/2
e−

m
2kT

(ξ−u)2 , Mαβ is

found to be

Mαβ = ρ



1 u v w B1

u kT
m

+ u2 uv uw B2

v vu kT
m

+ v2 vw B3

w wu wv kT
m

+ w2 B4

B1 B2 B3 B4 B5


, (A.2)

where u, v, w are the x-, y-, z-components of u. The Bη in equation (A.2) are defined by

equations (A.3) – (A.7).

B1 =
1

2

(
u2 + v2 + w2

)
+

3

2

kT

m
(A.3)

B2 = u

(
1

2

(
u2 + v2 + w2

)
+

5

2

kT

m

)
(A.4)

B3 = v

(
1

2
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u2 + v2 + w2

)
+

5

2

kT
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)
(A.5)

B4 = w
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1

2
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+
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(A.6)

B5 =
1
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)2
+

5

2

kT

m
(u2 + v2 + w2)2 +

15

4

(
kT

m
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(A.7)
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In defining M−1
αβ it is more perspicuous to define it relative to the solution of e.g., aβ given

some bβ , such as in equation (A.8).

bα = Mαβaβ → aβ = M−1
αβ bα (A.8)

First we define the following:

R5 = 2b5 − (u2 + v2 + w2 +
3

2λ
)b1 (A.9)

R4 = b4 − wb1 (A.10)

R3 = b3 − wb1 (A.11)

R2 = b2 − wb1 (A.12)

From equations (A.9)–(A.12), the aα can be defined by equations (A.17) – (A.13) in terms

of bβ ∈ [b1, b2, b3, b4, b5]:

a5 =
4

3
λ2 (R5 − 2uR2 − 2vR3 − 2wR4) (A.13)

a4 = 2λR4 − wa5 (A.14)

a3 = 2λR3 − va5 (A.15)

a2 = 2λR2 − ua5 (A.16)

a1 = b1 − ua2 − va3 − wa4 −
1

2
a5

(
u2 + v2 + w2 +

3

2λ

)
(A.17)

Where in equations (A.17)–(A.13) we define λ ≡ m
2kT

.
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APPENDIX B

DISCRETE GKS FLUX EXPRESSIONS

Recalling the left- and right- definitions from section 4.1.3, and the moment definition

〈θ〉 ≡
∫
θg(ξ)dξ, we will for convenience redefine the moments to be

ā2
β〈ψβξj〉0 =

∫
g0ā2

βψβξjdξ (B.1)

ā1,l
β 〈ψβξj〉

0,l
>0 =

∫
g0ā1,l

β ψβξjdξ (B.2)

Alβ〈ψβξj〉l>0 =

∫
glAlβψβξjdξ (B.3)

From which equation (4.19) will become (in the x-direction):

F̄ψσ
1 =

(
〈ψσξ1〉0γ1 − γ2

[
ā1,l
β 〈ψβψσξ

2
1〉

0,l
>0 + ā1,r

β 〈ψβψσξ
2
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0,r
<0

+ ā2
β〈ψβψσξ1ξ2〉0 + ā3

β〈ψβψσξ1ξ3〉0
]

+ γ3Āβ〈ψβψσξ1〉0
)

+
〈
g0H(ξ1)
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]
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l
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Bl
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]
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− τγ5

[
Bl
β〈ψβψσξ1〉l>0 + b1,l

β 〈ψβψσξ
2
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− 2
( m

2kT

)
F l
B,i

(
〈ψσξ1ξi〉l>0 − 〈ψσξ1〉l>0ui

) ])
+
(
〈ψσξ1〉r<0γ5 − γ4

[
a1,r
β 〈ψβψσξ

2
1〉r<0 + a2,r

β 〈ψβψσξ1ξ2〉r<0 + a3,r
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]
− τγ5

[
Br
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2
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])
(B.4)

For the fluxes in the y- and z-directions – ie F̄ψσ
2 and F̄ψσ

3 – the same equation may be used

by simply rotating all indices. For example, for the y-flux we will have the following.

[
ā1,l
β 〈ψβψσξ2

1〉
0,l
>0 + ā1,r

β 〈ψβψσξ2
1〉

0,r
<0

+ā2
β〈ψβψσξ1ξ2〉0 + ā3

β〈ψβψσξ1ξ3〉0
] →

[
ā2,l
β 〈ψβψσξ2

2〉
0,l
>0 + ā2,r

β 〈ψβψσξ2
2〉

0,r
<0

+ā3
β〈ψβψσξ2ξ3〉0 + ā1

β〈ψβψσξ2ξ1〉0
] (B.5)

For the z-flux, the repeat the above for one more rotation. Notice that equation (B.4) still

contains a great deal of repeated indices – e.g., aβψβ – and further, that the the terms con-

taining ∇ξ (ψσξ1) must still be applied and expanded.

The coefficients γ in Eq. (B.4) can be defined in terms of the terminology used in the

code:

γ1 = A/ADE = TAU − SE1 (B.6)

γ2 = −SET2 (B.7)

γ3 = B (B.8)

γ4 = SETV − SETA = SET1 (B.9)

γ5 = SE1 (B.10)

τγ5 = TE ∗ SE1 = SETA (B.11)

γ4 + τγ5 = SETV = γ6 (B.12)
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Further, we define the following terms in the code:

A ∗ S1 = 〈ψσξ1〉0γ1 (B.13)

SET2 ∗ TRIU2 = −γ2

[
ā1,l
β 〈ψβψσξ

2
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+ ā3
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]
(B.14)

B ∗ ATRIU = γ3Āβ〈ψβψσξ1〉0 (B.15)
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Bl
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]
(B.18)

Recall, γ4 = SETV − SETA = SET1, γ5 = SE1, τγ5 = TE ∗ SE1 = SETA.
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Such that Eq. (B.4) becomes:

Ψ(σ)(x) = A ∗ S1 + SET2 ∗ TRIU2 +B ∗ ATRIU

+ g0H(ξ1)
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We must still define the two extra sets of terms:

g0H(ξ1)
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β ψβξ1 + a2,l

β ψβξ2 + a3
βψβξ3

]
+ γ3A

l
βψβ

− γ4

[
Bl
βψβ + b1,l

β ψβξ1 + b2,l
β ψβξ2 + b3,l

β ψβξ3 − 2
( m

2kT

)
F l
B,i (ξi − ūi)

])
[(

τq

m
El +

τU l

τβ

)
+
τq

m

(
ξ ×Bl

) ]
·∇ξ

(
ψσξ1

)
(B.20)
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g0 (1−H(ξ1))

(
γ1 − γ2

[
a1,r
β ψβξ1 + a2,r

β ψβξ2 + a3
βψβξ3

]
+ γ3A

r
βψβ

− γ4

[
Br
βψβ + b1,r

β ψβξ1 + b2,r
β ψβξ2 + b3,r

β ψβξ3 − 2
( m

2kT

)
F r
B,i (ξi − ūi)

])
[(

τq

m
Er +

τU r

τβ

)
+
τq

m
(ξ ×Br)

]
·∇ξ

(
ψσξ1

)
(B.21)

The terms inside the first big set of parentheses remind us of the coefficient definitions we

see elsewhere in the development. However, these are modified by the terms in the bracket

involving E andB and ∇ξ (ψσξ1)

[(
τq

m
El

1 +
τU l

1

τβ

)(
ψσ + ξ1

∂ψσ
∂ξ1

)
+

(
τq

m
El

2 +
τU l

2

τβ

)
ξ1
∂ψσ
∂ξ2

+

(
τq

m
El

3 +
τU l

3

τβ

)
ξ1
∂ψσ
∂ξ3

+
τq

m

(
ξ2B

l
3 − ξ3B

l
2

)
ψσ +

τq

m

(
ξ2ξ1B

l
3 − ξ3ξ1B

l
2

) ∂ψσ
∂ξ1

+
τq

m

(
ξ3ξ1B

l
1 − ξ2

1B
l
3

) ∂ψσ
∂ξ2

+
τq

m

(
ξ2

1B
l
2 − ξ2ξ1B

l
1

) ∂ψσ
∂ξ3

]
(B.22)

Here we recallψσ = [1, ξ1, ξ2, ξ3,
1
2
(ξ2+ζ2)], ζ indicating the internal degrees of freedom,

so we have:

∂ψσ
∂ξ1

= [0, 1, 0, 0, ξ1] (B.23)

∂ψσ
∂ξ2

= [0, 0, 1, 0, ξ2] (B.24)

∂ψσ
∂ξ3

= [0, 0, 0, 1, ξ3] (B.25)
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Thus, for mass, momentum, and energy fluxes, Eq. (B.22) becomes:

[(
τq

m
El

1 +
τU l

1

τβ

)
+
τq

m

(
ξ2B

l
3 − ξ3B

l
2

) ]
(B.26)[(

τq

m
El

1 +
τU l

1

τβ

)
(2ξ1) + 2

τq

m

(
ξ2ξ1B

l
3 − ξ3ξ1B

l
2

) ]
(B.27)

[(
τq

m
El

1 +
τU l

1

τβ

)
(ξ2) +

(
τq

m
El

2 +
τU l

2

τβ

)
ξ1 +

τq

m

(
ξ2

2B
l
3 − ξ3ξ2B

l
2

)
+
τq

m

(
ξ3ξ1B

l
1 − ξ2

1B
l
3

) ]
(B.28)

[(
τq

m
El

1 +
τU l

1

τβ

)
(ξ3) +

(
τq

m
El

3 +
τU l

3

τβ

)
ξ1 +

τq

m

(
ξ2ξ3B

l
3 − ξ2

3B
l
2

)
+
τq

m

(
ξ2

1B
l
2 − ξ2ξ1B

l
1

) ]
(B.29)

[(
τq

m
El

1 +
τU l

1

τβ

)(
3

2
ξ2

1 +
1

2
(ξ2

2 + ξ2
3)

)
+

(
τq

m
El

2 +
τU l

2

τβ

)
ξ1ξ2 +

(
τq

m
El

3 +
τU l

3

τβ

)
ξ1ξ3

+
τq

m

(
1

2
ξ3

2B
l
3 −

1

2
ξ3ξ

2
2B

l
2

)
+
τq

m

(
1

2
ξ2

3ξ2B
l
3 −

1

2
ξ3

3B
l
2

)
+
τq

m

(
1

2
ξ2

1ξ2B
l
3

)
− τq
m

(
1

2
ξ2

1ξ3B
l
2

)
+

(
τq

m
El

1 +
τU l

1

τβ

)(
1

2
ζ2

)
+
τq

m

(
1

2
ξ2ζ

2Bl
3 −

1

2
ξ3ζ

2Bl
2

)]
(B.30)

Where Eq. (B.26) is for mass, Eqs. (B.27), (B.28), (B.29) are for momentum, and Eq. (B.30)

is for energy.

If we define τq
m
El
i +

τU li
τβ

= Gl
i, and τq

m
Bl
i = W l

i , the extra sets of terms in Eqs. (B.20) and

(B.21) become the following:
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For mass:

(
γ1 − γ2

[
a1,l
β ψβξ1 + a2,l

β ψβξ2 + a3
βψβξ3

]
+ γ3A

l
βψβ

− γ4

[
Bl
βψβ + b1,l

β ψβξ1 + b2,l
β ψβξ2 + b3,l

β ψβξ3 − 2
( m

2kT

)
F l
B,i (ξi − ūi)

])
[
Gl

1 + ξ2W
l
3 − ξ3W

l
2

]

For X-momentum:

(
γ1 − γ2

[
a1,l
β ψβξ1 + a2,l

β ψβξ2 + a3
βψβξ3

]
+ γ3A

l
βψβ

− γ4

[
Bl
βψβ + b1,l

β ψβξ1 + b2,l
β ψβξ2 + b3,l

β ψβξ3 − 2
( m

2kT

)
F l
B,i (ξi − ūi)

])
[

2Gl
1ξ1 + 2ξ2ξ1W

l
3 − 2ξ3ξ1W

l
2

]

For Y-momentum:

(
γ1 − γ2

[
a1,l
β ψβξ1 + a2,l

β ψβξ2 + a3
βψβξ3

]
+ γ3A

l
βψβ

− γ4

[
Bl
βψβ + b1,l

β ψβξ1 + b2,l
β ψβξ2 + b3,l

β ψβξ3 − 2
( m

2kT

)
F l
B,i (ξi − ūi)

])
[
Gl

1ξ2 +Gl
2ξ1 + ξ2

2W
l
3 − ξ3ξ2W

l
2 + ξ3ξ1W

l
1 − ξ2

1W
l
3

]
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For Z-momentum:

(
γ1 − γ2

[
a1,l
β ψβξ1 + a2,l

β ψβξ2 + a3
βψβξ3

]
+ γ3A

l
βψβ

− γ4

[
Bl
βψβ + b1,l

β ψβξ1 + b2,l
β ψβξ2 + b3,l

β ψβξ3 − 2
( m

2kT

)
F l
B,i (ξi − ūi)

])
[
Gl

1ξ3 +Gl
3ξ1 + ξ2ξ3W

l
3 − ξ2

3W
l
2 + ξ2

1W
l
2 − ξ2ξ1W

l
1

]

For Energy:

(
γ1 − γ2

[
a1,l
β ψβξ1 + a2,l

β ψβξ2 + a3
βψβξ3

]
+ γ3A

l
βψβ

− γ4

[
Bl
βψβ + b1,l

β ψβξ1 + b2,l
β ψβξ2 + b3,l

β ψβξ3 − 2
( m

2kT

)
F l
B,i (ξi − ūi)

])
[
Gl

1

(
1

2
ζ2 +

3

2
ξ2

1 +
1

2
(ξ2

2 + ξ2
3)

)
+Gl

2ξ1ξ2 +Gl
3ξ1ξ3 +

1

2
ξ3

2W
l
3

− 1

2
ξ3ξ

2
2W

l
2 +

1

2
ξ2

3ξ2W
l
3 −

1

2
ξ3

3W
l
2 +

1

2
ξ2

1ξ2W
l
3 −

1

2
ξ2

1ξ3W
l
2 +

1

2
ξ2ζ

2W l
3 −

1

2
ξ3ζ

2W l
2

]
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Thus for in terms of the moments 〈·〉 we get for e.g., mass conservation:

Gl
1

(
γ1〈1〉0,l>0 − γ2

[
a1,l
β 〈ψβξ1〉0,l>0 + a2,l

β 〈ψβξ2〉0,l>0 + a3
β〈ψβξ3〉0,l>0

]
+ γ3A

l
β〈ψβ〉

0,l
>0

− γ4

[
Bl
β〈ψβ〉

0,l
>0 + b1,l

β 〈ψβξ1〉0,l>0 + b2,l
β 〈ψβξ2〉0,l>0 + b3,l

β 〈ψβξ3〉0,l>0

+ 2
( m

2kT

)(
F l
B,iūi〈1〉

0,l
>0 − F l

B,1〈ξ1〉0,l>0 − F l
B,2〈ξ2〉0,l>0 − F l

B,3〈ξ3〉0,l>0

) ])

+W l
3

(
〈γ1ξ2〉0,l>0 − γ2

[
a1,l
β 〈ψβξ1ξ2〉0,l>0 + a2,l

β 〈ψβξ
2
2〉

0,l
>0 + a3

β〈ψβξ3ξ2〉0,l>0

]
+ γ3A

l
β〈ψβξ2〉0,l>0

− γ4

[
Bl
β〈ψβξ2〉0,l>0 + b1,l

β 〈ψβξ1ξ2〉0,l>0 + b2,l
β 〈ψβξ

2
2〉

0,l
>0 + b3,l

β 〈ψβξ3ξ2〉0,l>0

+ 2
( m

2kT

)(
F l
B,iūi〈ξ2〉0,l>0 − F l

B,1〈ξ1ξ2〉0,l>0 − F l
B,2〈ξ2

2〉
0,l
>0 − F l

B,3〈ξ3ξ2〉0,l>0

) ])

−W l
2

(
〈γ1ξ3〉0,l>0 − γ2

[
a1,l
β 〈ψβξ1ξ3〉0,l>0 + a2,l

β 〈ψβξ2ξ3〉0,l>0 + a3
β〈ψβξ2

3〉
0,l
>0

]
+ γ3A

l
β〈ψβξ3〉0,l>0

− γ4

[
Bl
β〈ψβξ3〉0,l>0 + b1,l

β 〈ψβξ1ξ3〉0,l>0 + b2,l
β 〈ψβξ2ξ3〉0,l>0 + b3,l

β 〈ψβξ
2
3〉

0,l
>0

+ 2
( m

2kT

)(
F l
B,iūi〈ξ3〉0,l>0 − F l

B,1〈ξ1ξ3〉0,l>0 − F l
B,2〈ξ2ξ3〉0,l>0 − F l

B,3〈ξ2
3〉

0,l
>0

) ])

In general, these terms for mass, momentum, and energy fluxes are all composed of:

Πl
〈
θ

(
γ1 − γ2

[
a1,l
β ψβξ1 + a2,l

β ψβξ2 + a3
βψβξ3

]
+ γ3A

l
βψβ

− γ4

[
Bl
βψβ + b1,l

β ψβξ1 + b2,l
β ψβξ2 + b3,l

β ψβξ3

+ 2
( m

2kT

) (
F l
B,iūi − F l

B,1ξ1 − F l
B,2ξ2 − F l

B,3ξ3

) ])〉
(B.31)
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Where the Πlθ correspond to e.g., W l
3ξ2 in the following:

[
Gl

1 + ξ2W
l
3 − ξ3W

l
2

]
(B.32)[

2Gl
1ξ1 + 2ξ2ξ1W

l
3 − 2ξ3ξ1W

l
2

]
(B.33)[

Gl
1ξ2 +Gl

2ξ1 + ξ2
2W

l
3 − ξ3ξ2W

l
2 + ξ3ξ1W

l
1 − ξ2

1W
l
3

]
(B.34)[

Gl
1ξ3 +Gl

3ξ1 + ξ2ξ3W
l
3 − ξ2

3W
l
2 + ξ2

1W
l
2 − ξ2ξ1W

l
1

]
(B.35)

[
Gl

1

(
1

2
ζ2 +

3

2
ξ2

1 +
1

2
(ξ2

2 + ξ2
3)

)
+Gl

2ξ1ξ2 +Gl
3ξ1ξ3 +

1

2
ξ3

2W
l
3

− 1

2
ξ3ξ

2
2W

l
2+

1

2
ξ2

3ξ2W
l
3−

1

2
ξ3

3W
l
2+

1

2
ξ2

1ξ2W
l
3−

1

2
ξ2

1ξ3W
l
2+

1

2
ξ2ζ

2W l
3−

1

2
ξ3ζ

2W l
2

]
(B.36)

Which boils down to the moments of Eq. (B.31) on the following polynomials in ξi and

ζ:

1 ξ1 ξ2 ξ3 ξ1ξ2 ξ1ξ3 ξ2
1 ξ2

2 ζ2

ξ2ξ3 ξ2
3 ξ3

2 ξ3
3 ξ2

2ξ3 ξ2
3ξ2 ξ2

1ξ2 ξ2
1ξ3 ξ2ζ

2 ξ3ζ
2

Which gives us:

Πl

(
γ1〈θ〉0,l>0 − γ2

[
a1,l
β 〈ψβξ1θ〉0,l>0 + a2,l

β 〈ψβξ2θ〉0,l>0 + a3
β〈ψβξ3θ〉0,l>0

]
− γ4

[
b1,l
β 〈ψβξ1θ〉0,l>0

+ b2,l
β 〈ψβξ2θ〉0,l>0 + b3,l

β 〈ψβξ3θ〉0,l>0

]
+ γ3A

l
β〈ψβθ〉

0,l
>0 − γ4

[
Bl
β〈ψβθ〉

0,l
>0

+ 2
( m

2kT

)(
F l
B,iūi〈θ〉

0,l
>0 − F l

B,1〈ξ1θ〉0,l>0 − F l
B,2〈ξ2θ〉0,l>0 − F l

B,3〈ξ3θ〉0,l>0

) ])
(B.37)

Though not included here, the expressions of Eq. (B.37) can be implemented in code form

by generating the desired expressions using e.g., Mathematica or a similar strategy.
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