
AUTONOMOUS NAVIGATION USING REINFORCEMENT LEARNING WITH

SPIKING NEURAL NETWORKS

A Thesis

by

AMARNATH MAHADEVUNI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Peng Li
Co-Chair of Committee, Paul Gratz
Committee Members, Alireza Talebpour
Head of Department, Miroslav Begovic

May 2018

Major Subject: Computer Engineering

Copyright 2018 Amarnath Mahadevuni

ABSTRACT

The autonomous navigation of mobile robots is of great interest in mobile robotics. Al-

gorithms such as simultaneous localization and mapping (SLAM) and artificial potential

field methods can be applied to known and mapped environments. However, navigating in

an unknown, and unmapped environments is still a challenge. In this research, we propose

an algorithm for mobile robot navigation in the near-shortest possible time toward a pre-

defined target location in an unknown environment containing obstacles. The algorithm

is based on a reinforcement learning paradigm with biologically realistic spiking neural

networks. We make use of eligibility traces that are inherent to spiking neural networks to

solve the delayed reward problem implicitly present in reinforcement learning. With this

algorithm, we achieve a set of movement decisions for the mobile robot to reach the target

in the near-shortest time.

ii

DEDICATION

To my parents, my friends, and my professors.

iii

ACKNOWLEDGMENTS

I would like to express my gratitude to my thesis advisor Dr. Peng Li for his continuous

guidance through out the research. I would like to thank my thesis co-chair Dr. Paul Gratz

and committee member Dr. Alireza Talebpour for being on my committee and providing

constructive feedback for my work. I am also grateful to my friends Paul Crother, Seungjai

Ahn, and Myung Seok Shim in the research group for their work in the area, and the help

I have received from them. I express my appreciation for the faculty members of Texas

A&M University for providing me excellent knowledge and experience in various areas

related to my research. I would like to also thank my family and friends for encouraging

me in this pursuit.

iv

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a thesis committee consisting of Professor Dr. Peng Li

[advisor] and Dr. Paul Gratz of the Department of Electrical and Computer Engineering

and Professor Dr. Alireza Talebpour of the Department of Civil Engineering.

I have received continuous feedback from Dr. Peng Li which helped me improve my

work throughout the research. Dr. Paul Gratz and Dr. Alireza Talebpour have provided

valuable suggestions to analyze the certain aspects of the research.

All the work conducted for the thesis was completed by the student independently.

Funding Sources

This work was supported by the National Science Foundation under Grant No. CCF-

1639995 and the Semiconductor Research Corporation (SRC) under Task 2692.001.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iii

ACKNOWLEDGMENTS . iv

CONTRIBUTORS AND FUNDING SOURCES . v

TABLE OF CONTENTS . vi

LIST OF FIGURES . ix

LIST OF TABLES. xii

1. INTRODUCTION . 1

1.1 Background and Motivation . 1
1.1.1 Machine Learning for Autonomous Navigation . 3
1.1.2 Motivation and Research Goals . 3

2. DYNAMICS OF DIFFERENTIAL DRIVE MOBILE ROBOT 7

2.1 Differential Drive Abstraction . 7
2.2 Dynamics . 8
2.3 Mobile Robot Abstraction . 11

3. REINFORCEMENT LEARNING FRAMEWORK . 13

3.1 The Markov Property . 15
3.2 Markov Decision Processes. 16

3.2.1 Policy Function . 16
3.2.2 Value Function . 17

3.3 Key Challenges in Reinforcement Learning . 17
3.3.1 Action Selection . 17
3.3.2 Delayed Reward Problem . 18

4. SPIKING NEURONS AND SPIKING NEURAL NETWORKS. 19

vi

4.1 Structure of Action Potential Spike . 19
4.2 Spiking Neuron Model . 21

4.2.1 Izhikevich Model . 22
4.3 Spiking Neuron Abstraction . 23
4.4 Spiking Neural Networks . 23
4.5 Information Encoding in Spiking Neural Networks . 26
4.6 Learning in Spiking Neural Networks . 26

4.6.1 Spike Timing Dependent Plasticity . 26
4.6.2 Nearest Neighbor STDP . 27

5. REINFORCEMENT LEARNING WITH SPIKING NEURAL NETWORKS 30

5.1 Operant Conditioning . 30
5.2 Reinforcement Learning with Dopamine Modulated STDP and Eligibility

Trace . 32
5.3 Designing Spiking Neural Network Architecture for Reinforcement Learning 34

5.3.1 State Layer . 35
5.3.2 Action Layer . 35
5.3.3 Dopamine Reward Signal . 36

6. PREVIOUS WORK . 37

6.1 Go-to-goal Solution . 38
6.1.1 Wall Following Behavior. 38

6.2 State Machine Implementation of Go-to-goal . 40
6.2.1 Conditions to Quit Wall Following Behavior . 42

7. FORMULATING THE REINFORCEMENT LEARNING PROBLEM 45

7.1 Minimizing the Navigation Time . 45
7.2 Framing the Problem as a Reinforcement Learning Task . 47
7.3 Delayed Reward Nature of the Learning Problem. 48

8. THE COMPLETE SOLUTION . 50

8.1 State Representation . 52
8.2 State Encoding . 53

8.2.1 Aliasing in State Representation . 54
8.3 Action Representation . 58
8.4 Encoding the Value of (State, Action) Pair . 58
8.5 The Spiking Neural Network Architecture . 60
8.6 Integrating the Spiking Neural Network into the Navigation Algorithm 61
8.7 Learning to Navigate in Shortest Possible Time . 62

8.7.1 Action Selection . 63

vii

8.7.2 Activating Eligibility Traces . 64
8.7.3 Reward Modulation of Synaptic Weight Changes . 65

8.8 Criteria to Stop Learning . 66
8.9 Understanding the Learning Algorithm with an Example . 66

9. RESULTS AND CONCLUSION . 70

9.1 Experimental Setup . 70
9.2 Simulation . 72
9.3 Results . 73

9.3.1 Comparison with Results without the Learning Algorithm 76
9.3.2 Impact of Aliasing in State Representation on Learning Performance 77

9.3.2.1 With Aliasing . 77
9.3.2.2 Without aliasing . 77
9.3.2.3 Comparison . 78

9.3.3 Discussion . 80
9.4 Conclusion. 81

REFERENCES . 83

viii

LIST OF FIGURES

FIGURE Page

1.1 Example Instance of the Problem . 5

2.1 Differential Drive Abstraction . 7

2.2 Changing the Pose of a Differential Drive Robot. 10

2.3 Differential Drive Robot Model used in this Research . 12

3.1 Agent-Environment Interface in Reinforcement Learning . 14

4.1 Structure of a Biological Neuron . 20

4.2 Transmission of Action Potential Spike. 20

4.3 Structure of a Spike . 21

4.4 Spike Generation with Izhikevich Model . 24

4.5 Spiking Neuron Activity Represented by Discrete Time Spikes 24

4.6 Simple Spiking Neural Network . 25

4.7 Synaptic Connection and STDP Curve . 28

4.8 Nearest Neighbor STDP . 29

5.1 Simple Spiking Neural Network with Stimulus Layer and Response Layer . 31

5.2 Simple Synaptic Connection with Synaptic Weight Wij . 32

5.3 Pre and Post Synaptic Activity with Eligibility Trace and Dopamine Re-
ward Signal . 33

5.4 Simple Spiking Neural Network Architecture to Implement Reinforcement
Learning.. 35

6.1 2-D Environment for the Navigation Problem. 37

6.2 WALL-FOLLOW-LEFT. 38

ix

6.3 WALL-FOLLOW-RIGHT. 39

6.4 Go-to-goal Solution . 40

6.5 Flow Chart Depicting Go-to-goal Approach . 41

6.6 Go-to-goal Trajectory Split into Navigation States . 42

6.7 Parameter Definitions Related to the Conditions to Leave Wall Following
Behavior . 44

7.1 Example Instance of the Problem Depicting the Navigating Goal. 45

7.2 Go-to-goal Solution Applied to the Setup in Figure 7.1. 46

7.3 Reinforcement Learning Task Formulation for the Problem of Minimizing
Navigation Time. 47

7.4 Simplified Reinforcement Learning Formulation. 49

8.1 Go-to-goal Approach Supplemented by the Spiking Neural Network 51

8.2 State Representation . 52

8.3 Stimulus Layer and State Encoding with Spike Activity . 55

8.4 Spike Generation Frequency with σ1 = 60, σ2 = 60 . 56

8.5 Spike Generation Frequency with σ1 = 60, σ2 = 10 . 57

8.6 Action Neurons. 58

8.7 Spike Activity of Action Neurons . 59

8.8 Simplified Architecture of the Spiking Neural Network . 60

8.9 Integration of the Designed SNN with the Go-to-goal Approach 61

8.10 Learning Trial using the Spiking Neural Network with Go-to-goal Approach 62

8.11 Components of the Spiking Neural Network Training . 63

8.12 Trials Selecting WALL-FOLLOW-RIGHT and WALL-FOLLOW-LEFT . . . 67

8.13 Eligibility Traces Incoming to Neuron "RIGHT" . 68

8.14 Eligibility Traces Incoming to Neuron "LEFT" . 69

x

9.1 An Example of 2-D Navigation Environment . 70

9.2 Differential Drive Robot Abstraction . 71

9.3 Interaction between Go-to-goal Approach and SNN Based Reinforcement
Learning Approach. 72

9.4 Navigation States of the Robot Trajectory in Go-to-goal Solution 73

9.5 Simulation Results for Env 1 . 74

9.6 Simulation Results for Env 2 . 75

9.7 Simulation Results for Env 3 . 76

9.8 A Trial Showing State S1 . 78

9.9 A Trial Showing State S2 . 79

9.10 Aliasing . 80

9.11 Elimination of Aliasing . 81

xi

LIST OF TABLES

TABLE Page

9.1 Simulation Parameters and their Values. 74

9.2 Number of Trials Taken for the Learning to Converge . 75

9.3 Number of Time Steps Taken by Robot to Each Goal. 76

9.4 Performance : Number of Trials to Converge . 79

xii

1. INTRODUCTION

1.1 Background and Motivation

Autonomous navigation is a technology which enables vehicles to move on their own

to achieve their navigation goals without human intervention. Technological developments

in autonomous navigation are applicable in the following areas :

1. Self-driving cars : A self-driving car can drive itself by utilizing a set of sensors, ac-

tuators, intelligent algorithms, and great amount of data from its own experiences of

driving or from the driving experience of other cars or individuals [2]. It also utilizes

maps to plan a path from a start location to destination. The potential advantages of

self-driving cars include :

(a) Road safety : Accidents happen due to human errors such as large reaction

time, disregard for traffic rules, insufficient driving skills to mention a few. A

self driving car can eliminate the risk of accidents by being fast and predictable.

The coordination between multiple self driving cars can happen faster than

between human drivers and can lead to collision free navigation.

(b) Saves effort : With self driving cars, one can better utilize the time spent in

driving for some other productive purpose.

(c) Saves money : Self driving technology can eliminate the need for skilled hu-

man drivers, thereby saving money that would otherwise be spent on driver

salaries.

2. Extraterrestrial exploration : An exciting use of autonomous navigation is in ar-

eas where it is difficult for humans to explore. Extraterrestrial exploration is one

such domain where humans cannot easily conduct research directly. This includes

1

space exploration as well as planetary exploration. The research conducted could be

for traces of water, life, any resource useful to humanity. As such intelligent mobile

systems are needed to explore the unknown terrain of planetary bodies. Navigation

is an important part in exploration because it helps collect geospatial information re-

garding resources of interest. The use of intelligent unmanned vehicles can greatly

reduce human effort in such endeavors. As such research to build autonomous nav-

igation systems for extraterrestrial exploration is of great interest [3] [4].

3. Household robotics : Autonomous systems can save time and effort even at house-

hold level. One can imagine building a robot that cooks food, cleans the floor, or

conduct household repairs for example. In particular, the house cleaning robots

require autonomous navigation to perform a thorough job. One such device is

"Roomba" from "iRobot" [5]. This device is a mobile vacuum cleaner that moves

around in a house and vacuum cleans the floor. We can imagine building mobile

humanoid robot assistants performing several logistic tasks.

4. Search and Rescue missions :In situations such as earthquakes, landslides, floods,

or any other such calamity, response time in search and rescue missions is cru-

cial to save victims. Machines are inherently more durable and faster than humans

when it comes to mobility. Therefore building robotic systems for search and res-

cue missions is a promising research area. In certain situations where it is difficult

or impossible for human personnel to conduct a search, we can rely on intelligent

robotic systems designed to quickly explore the area, identify the victims, and relay

the information to the rescue personnel [6] . So autonomous navigation is applicable

to robots in search and rescue mission in making them move faster and conduct an

efficient search.

2

1.1.1 Machine Learning for Autonomous Navigation

Navigation is a complex task. As such, an autonomous vehicle requires intelligent

algorithms to detect objects in an image and sophisticated control mechanisms embedded

into its software and hardware.

In the recent years, with increase in computation power, machine learning has proven

to be a promising technique in handling complex tasks relevant to navigation such as object

recognition in images, and mechanical control. In self driving cars, object recognition can

be mainly used to detect vehicles, pedestrians, traffic signals and road signs. Mechanical

control is essential to drive in a smooth fashion without sudden jerks. Supervised machine

learning techniques are used to learn to detect different types of objects in an image [7].

Control mechanisms are learned using reinforcement learning [8] [9], another form of

machine learning. Reinforcement learning is the backbone for the research described in

this document. Chapter 2 discusses reinforcement learning in greater detail.

1.1.2 Motivation and Research Goals

In general, complex tasks are handled by breaking them down into smaller problems.

Further, one can define simplified versions of each of these smaller problems by keep-

ing the essential aspects of it and abstracting away irrelevant details. The autonomous

navigation problem has many different aspects to it such as object detection, environment

mapping, path planning, navigation time, obstacle sensing to name a few. In this research,

a particular part of navigation, "navigation time" is considered. It is essential for au-

tonomous vehicles to reach their destination in a shortest amount of time possible. The

reasons for this could be different for different application areas:

1. Self driving cars : It is essential for self driving cars to get to a destination in

short time to save fuel as well as passengers time. The vehicle will have to use

its knowledge of the environment from its past experience as well as the current

3

situation to make better navigation choices leading to shorter navigation time than

normal human driving.

2. Extra terrestrial exploration : In this application, a shorter navigation time to a

site could mean faster exploration results.

3. Household robotics : In devices such as the vacuum cleaner robot previously men-

tioned, battery life is important, which determines how much of the house the robot

can clean before it gets back to the charging dock. Therefore shorter navigation

times to desired locations on the floor can save battery time and the robot can do

more cleaning than with longer navigation times.

4. Search and rescue missions : The survival of an individual affected by a calamity

depends on how early they are discovered and rescued. When search and rescue

robots are deployed, it is desired that they arrive at the disaster location as quickly

as possible so they can discover and inform the rescue personnel faster, thereby

saving lives.

Therefore in applications of autonomous navigation, the aspect of navigation time provides

a promising area of research. Thus this thesis addresses the issue of finding the shortest

navigation time path for the navigation task in a simplified form as described below :

1. The navigation environment under consideration is a 2 dimensional world.

2. The navigating device is a differential drive mobile robot equipped with proximity

sensors.

3. Rectangular obstacles placed randomly in the environment.

4. A destination location referred to as the "Target" or the "Goal" location.

4

5. The robot navigates autonomously from a "Start" location to the "Goal" location.

6. The navigation time is then the time taken for the robot to reach the "Goal" location

from a given "Start" location.

The description is illustrated in Figure 1.1

Figure 1.1: Example instance of the problem. Reprinted with permission from [1].
c©[2017] IEEE.

The challenges faced in achieving this goal are :

1. Environment is unknown to the robot.

2. The size and location of obstacles are unknown to the robot.

These challenges call for a trial and error approach to solve the problem. Currently the

best way to solve a problem using trial and error approach is to formulate the problem as a

5

reinforcement learning problem [8],and find ways and means to implement the solution. In

chapter 5, we shall discuss how animals exhibit reinforcement learning naturally. They do

so using biologically realistic neurons called the spiking neurons that make up an animal

brain. Spiking neurons are discussed in detail in chapter 4. This research is taken as

an opportunity to explore biologically realistic mechanisms to implement reinforcement

learning. Therefore we propose a biologically inspired algorithm using spiking neural

networks to implement the reinforcement learning solution.

Thus in order to achieve the goal of finding the shortest possible navigation time path

for a scenario similar to Figure 1.1, the following research goals are proposed.

1. Understanding the physics of differential drive mobile robot navigation (Chapter 2).

2. Researching the reinforcement learning framework (Chapter 3).

3. Explore spiking neurons and networks of spiking neurons (Chapter 4).

4. Understanding how reinforcement learning happens in spiking neural networks (Chap-

ter 5).

5. Discuss existing solutions to the navigation problem. (Chapter 6).

6. Formulate the problem of minimizing the navigation time as a reinforcement learn-

ing problem (Chapter 7).

7. Propose a complete solution combining robot dynamics with reinforcement learning

implemented using spiking neural networks to solve the problem (Chapter 8).

8. Discuss experimental setup and simulation results (Chapter 9).

Chapters 2,3, and 4 are independent of one another. Chapter 5 requires material in

chapters 3 and 4. Chapter 6 requires material in chapter 2. Chapter 7, 8, and 9 must be

read last in that order.

6

2. DYNAMICS OF DIFFERENTIAL DRIVE MOBILE ROBOT

The research experiments are conducted in a simulated environment. The model of the

mobile robot used in the simulations is a differential drive model [10]. It is a simplistic

model in which the robot body has two wheels that can have different angular speeds. The

structure and parameters of differential drive robot are discussed next.

2.1 Differential Drive Abstraction

The abstraction for the differential drive robot is shown in Figure 2.1

Figure 2.1: Differential drive abstraction.

7

It is described by the following parameters :

• A cartesian coordinate system with X-Y axes.

• (x, y) coordinates for the center of the robot.

• Vl : linear speed of left wheel.

• Vr : linear speed of right wheel.

• V : linear speed of the robot’s center.

• θ : angular position.

• ω : angular speed.

• D : separation between the wheels.

In order to display the robot in a graphics based simulation environment, an attribute

pose is defined as follows :

Pose = (x, y, θ) (2.1)

If the pose of the robot is known, its position and orientation can be set in a graphics

environment.

2.2 Dynamics

A physical differential drive robot is controlled using the parameters Vl and Vr. They

are related to its angular speed as follows :

ω =
Vr − Vl
D

(2.2)

8

Therefore the change in angular position with this angular speed after duration δt is

given by

δθ = ωδt (2.3)

Also for linear speed of the robot’s center

V =
Vr + Vl

2
(2.4)

It is important to know how the differential drive robot can change its pose with this model.

Figure 2.2 shows the robot at Pose1 and Pose2.

The differential drive robot uses the three step approach [10] to change its pose from

Pose1 to Pose2 :

1. Rotate the robot inplace to point to its new pose location (x2, y2) using :

Vl = −Vr (2.5)

=⇒ ω =
2Vr
D

(2.6)

=⇒ δθ =
2Vr
D
δt (2.7)

=⇒ Vr =
Dδθ

2δt
(2.8)

Point the robot to its new location using Vr = −Vl with Vr calculated as shown in

equation 2.8

9

Figure 2.2: Changing the pose of a differential drive robot.

2. Linearly translate the robot to its new pose location (x2, y2) using :

Vl = Vr (2.9)

=⇒ V = Vr (2.10)

=⇒ δx = Vrcos(θ + δθ)δt (2.11)

=⇒ δy = −Vrsin(θ + δθ)δt (2.12)

=⇒ Vr =

√
δx2 + δy2

δt
(2.13)

10

Therefore translate the robot to its new location using Vr = Vl with Vr calculated as

shown in equation 2.13

3. Rotate the robot inplace so that the new angular position is θ2 on the lines of equa-

tions 2.5-2.8

2.3 Mobile Robot Abstraction

Figure 2.3 shows the differential drive robot abstraction we use in this research. It has

a heading direction indicating that the robot knows which way it is headed. To detect ob-

stacles, the robot is equipped with proximity sensors. Practical robots may use ultrasound

sensors to detect obstacles, and a digital compass to calculate the heading. Each ultra-

sonic sensor is represented by beams emanating from the robot’s center. They are labeled

according to their relative positioning on the robot. For example US_LEFT45 indicates

ultrasonic sensor at an angle 450 to the left of heading.

The robot navigation algorithm described in chapter 8, uses the navigation dynamics

of differential drive robot described in this chapter.

11

Figure 2.3: Differential drive robot model used in this research. Reprinted with permission
from [1]. c©[2017] IEEE.

12

3. REINFORCEMENT LEARNING FRAMEWORK

In supervised learning [11], the machine learning model is presented with a correct

output for every input given to it. So a supervised learning model can compare its pre-

diction with the correct output for a given input and calculate an error metric over many

such input examples. It then learns the predictive model by using an optimizing algorithm

to minimize the error metric. In unsupervised learning [11], the model is presented only

with the inputs. The correct outputs are not given to the model. The goal of unsupervised

learning is to assign labels to input examples such that they can be formed into clusters

with each cluster having a label of its own. The learning signal is present for every input

in supervised learning, while it is totally absent in unsupervised learning. Between the

two extremes is another form of machine learning, that presents the model with a sparse

learning signal called reward. The learning model must associate this reward signal to its

outputs and adapt its behavior so that it maximizes overall accumulated reward. This form

of learning is called reinforcement learning.

Reinforcement learning is a machine learning framework used to solve problems in-

volving a machine that can take actions in an environment unknown to it, to maximize a

numeric reward provided to the machine by the environment [8]. The machine that takes

actions is called an agent. The agent takes actions and finds itself in different situations

called states in the environment. Upon taking an action, the agent is given a numeric re-

ward signal by the environment that indicates the degree of to which the action is good

for the agent. So the agent learn its sequence of actions using a trial and error method to

eventually learn a set of actions that maximize its reward in the long run. To put simply,

reinforcement learning is an intelligent way of doing trial and error learning.

Figure 3.1 illustrates the key components of reinforcement learning framework.

13

Figure 3.1: Agent-Environment interface in reinforcement learning. Adapted with permis-
sion from [8].

Thus any reinforcement learning problem can be identified by these components [8] :

1. Agent : A machine that interacts with its environment to learn actions to maximize

a reward signal.

2. Environment : Everything that the agent interacts with, is comprised in the envi-

ronment.

3. State : At every time step t of learning, the agent receives a representation of envi-

ronment’s state st ∈ S, where S is a set of all possible states.

4. Action : In a state st, the agent takes an action at ∈ A(st), where A(st) is a set of

all actions the agent can take in state st

5. Reward : Upon taking an action at in state st, the agent is presented with a reward

rt+1 ∈ R, whereR is a set of possible rewards the environment can give to the agent.

As a consequence of its action at in state st, the agent enters a new state st+1

14

Each learning episode is a sequence of time steps in which the agent visits states by taking

actions, and may receive rewards for its actions. For our purpose we assume that an

episode ends in a terminal state sT in the final time step T for that episode. The notion of

overall reward that the agent tries to maximize can be formalized by defining a return Rt

[8]:

Rt = rt+1 + rt+2 + rt+3 + ...+ rT (3.1)

where T is the last time step.

Inorder to make an agent perform a task using reinforcement learning framework, we

must identify the environment, define state representation for the environment, and care-

fully design the reward function. The agent then accomplishes the task by maximizing its

overall reward given by equation 3.1

A reinforcement learning framework requires that the state signal satisfy certain prop-

erty to design learning algorithms. This is called the Markov property [8] discussed next.

3.1 The Markov Property

In a sequence of time steps involving agent environment interaction, we can observe

that the state st+1 entered by the agent at time step t+1 is dependent on the sequence of ac-

tions starting from state s0. As such we can define the dynamics of the agent-environment

interaction using the probability distribution [8] :

Pr{st+1 = s′, rt+1 = r|st, at, rt, st−1, at−1, rt−1, ..., r1, s0, a0} (3.2)

for all s′, r, and for all possible values st, at, rt, st−1, at−1, rt−1, ..., r1, s0, a0. Markov

property dictates that the state of the agent at time step t + 1, and the reward received

rt+1 only depends on the previous state st and action taken at, that is we can represent the

15

dynamics using just [8] :

Pr{st+1 = s′, rt+1 = r|st, at} (3.3)

Using the Markov property, one can design algorithms to predict the reward rt+1 and

state st+1 using just one previous step st and at.

The next section discusses Markov Decision Processes (MDP) to formalize the usage

of Markov property in designing reinforcement learning algorithms.

3.2 Markov Decision Processes

A task that can be solved using reinforcement learning and satisfies Markov property is

called a Markov decision process (MDP). In addition to the components of reinforcement

learning discussed in this section, an MDP is characterized by the one step dynamics for

the next state and expected next step reward [8] :

p(s′|s, a) = Pr{st+1 = s|st = s, at = a} (3.4)

r(s, a) = E[Rt+1|St = s, At = a, St+1 = s′] (3.5)

Equation 3.4 represents the state transition probability and 3.5 represents the expected

value of future reward in the next time step.

3.2.1 Policy Function

Policy function is defined for a Markov state to map actions to states with a probability.

It defines the probability with which an action a is taken at state s [8].

π(s, a) = Pr{At = a|St = s} (3.6)

16

3.2.2 Value Function

Value function is defined for a Markov state to estimate how good the state is for the

agent. It defines value of a state s if a policy π is followed thereafter. Therefore it must

reflect the expected value of rewards the agent can get from that state [8]

V π(s) = Eπ{Rt|st = s} (3.7)

To design a reinforcement learning algorithm, the value and policy functions are de-

fined for the task, and are evaluated using iterative techniques like policy iteration and

value iteration [8]

In chapter 7, a way to implement and use the value and policy functions is presented.

Now, a deeper look into the key challenges in achieving goals using reinforcement

learning is presented.

3.3 Key Challenges in Reinforcement Learning

A reinforcement learning agent must evaluate actions using a trial and error approach.

As such it has two choices in every state : exploration and exploitation.

3.3.1 Action Selection

1. Exploitation : The learning agent utilizes existing knowledge of values of states to

select an action. In exploition phase, an agent takes action that maximizes the value

in that state.

2. Exploration : In the exploration phase the learning agent selects an action at ran-

dom, to explore the value of that action in a given state.

The two phases are carried out by agent using an ε greedy policy. That is it can undergo

exploitation with a probability ε and exploration with a probability 1− ε.

17

3.3.2 Delayed Reward Problem

In a reinforcement learning task, a numeric reward may be given to an agent only after

a few time steps. So there is a delay between taking an action and getting a reward. The

agent must associate its reward with this prior actions. This is called the "delayed reward"

problem or "credit assignment" problem.

In chapter 6, the navigation problem we consider in this research is shown to have the

delayed reward nature. Chapter 5 discusses how spiking neural networks naturally solve

the delayed reward problem. In chapter 7, we integrate the ideas in chapter 6 and 7 to

arrive at the research goal that is to navigate the mobile robot to target in shortest time

path.

18

4. SPIKING NEURONS AND SPIKING NEURAL NETWORKS ∗

In the recent years, artificial neural networks (ANN), also called the second generation

neural networks have revolutionized the way we do machine learning. They have shown

high accuracies in image recognition, speech recognition, natural language processing

tasks. The traditional ANNs use backpropagation algorithm [12] to train the network.

While artificial neural networks take their inspiration from the way biological neurons

work, they do not tend to utilize the same learning mechanisms as the biological brains.

To understand how the biological brains work and to take advantage of the computational

power of biological neurons, a third generation of neurons is considered. They are called

spiking neurons. The networks of spiking neurons are called spiking neural networks.

Spiking neurons model real biological neurons and are so called because they interact

with each other using spikes in their membrane potential. Figure 4.1 illustrates the struc-

ture of a biological neuron. The neuron cell body has a negative potential with respect to

its surroundings. A spike, also called action potential is produced if this membrane poten-

tial exceeds a threshold value. A neuron receives spikes from other neurons via dendrites.

A generated action potential spike travels through the axon and is transmitted through the

synaptic terminals to other neurons’ dendrites.

The action potential spike transmission is visualized in Figure 4.2

4.1 Structure of Action Potential Spike

The graphical representation of a typical action potential spike with respect to time is

shown in Figure 4.3

When a neuron receives external stimulus from dendrites, its membrane potential rises

∗Parts of the material presented in this chapter are reprinted with permission from "Simple model of
spiking neurons" by E.M. Izhikevich. IEEE transactions on Neural Networks, vol. 14, pp. 1569-1572, Nov
2003. c©[2003] by IEEE.

19

Figure 4.1: Structure of a biological neuron by Bruce Blaus. Reprinted from [13].

Figure 4.2: Transmission of action potential spike. Reprinted from [14].

20

Figure 4.3: Structure of a spike. Reprinted from [15].

from its resting value (typically -70 mV). This process is called depolarization. When

the membrane potential rises beyond the threshold value, it increases abruptly and then

decreases causing a spike. Before the membrane potential reaches its resting state again,

it goes into a refractory period to potential values lower than the resting potential. It then

rises until it reaches the resting state.

4.2 Spiking Neuron Model

A typical approach to understand how a system works is to build a model of it and

conduct experiments with the model. This can also be applied to spiking neurons. Many

21

models of biological spiking neurons have been created ranging from the extremely com-

plex Hodgkin-Huxley model [16] to a simple leaky integrate and fire model [17]. The

complex Hodgkin-Huxley model of spiking neuron is computationally intensive to use in

simulations that do not require such detailed biological realism. On the other hand leaky

integrate and fire (LIF) models are computationally efficient and can be used if the simu-

lation requires just the spike patterns rather than the exact spike structure.

In this research we use Izhikevich model [18] that lies somewhere between Hodgkin-

Huxley and LIF model interms of computational complexity and biological realism. The

dynamics of Izhikevich model are discussed next.

4.2.1 Izhikevich Model

Izhikevich spiking neuron model uses a 2-dimensional system of ordinary differential

equations to describe the neuron dynamics [18]. If v is the action potential of the neuron

membrane, I is the injected external current into the membrane, then Izhikevich model is

described by [18] :

dv

dt
= 0.04v2 + 5v + 140− u+ I (4.1)

du

dt
= a(bv − u) (4.2)

The spike resetting is done using these conditions:

if v ≥ 30 mV, then v = c and u = u+ d (4.3)

In these equations, u represents a membrane recovery variable. According to [18], the

parameter descriptions are :

1. Membrane potential v in the model lies between -70 mV and -60 mV depending on

22

b .

2. Threshold potential is between -55 mV and -40 mV.

3. Parameter a affects the speed of recovery. Smaller the value of a, slower is the

recovery. Typically a = 0.02.

4. Parameter b defines the sensitivity of recovery variable u to changes in v. Typically

b = 0.2

5. Parameter c defines the reset value of the membrane potential v after the spike.

Typically c = −65 mV

The membrane potential variation v/s time resulting from equations 4.1 - 4.3 is shown

in Figure 4.4

4.3 Spiking Neuron Abstraction

In order to perform computations with spiking neurons, we consider the spike patterns

produced by a spiking neuron rather than the exact shape of the spike. The relative timing

between the spikes and rate of spikes generated are the desired attributes of a spiking

neuron. Therefore when discussing behavior of a network of neurons, it becomes easier

to consider a spike as a finite amplitude delta function rather than a spread out action

potential curve. This spike timing based view is shown in Figure 4.5

4.4 Spiking Neural Networks

A network of spiking of neurons is simply a group of spiking neurons connected by

synaptic weights. A simple spiking neural network is shown in Figure 4.6. The synaptic

weights are denoted by W11 connecting input neuron 1 to output neuron 1, and W12 con-

necting input neuron 2 to output neuron 1. For a given synapse, presynaptic neurons are

the ones that transmit their spikes via the synapse. Postsynaptic neurons are the ones that

23

Figure 4.4: Spike generation with Izhikevich model. Adapted with permission from [18].
c©[2003] IEEE.

Figure 4.5: Spiking neuron activity represented by discrete time spikes

24

receive the spikes from presynaptic neurons. A synapse converts spikes into currents that

are injected into postsynaptic neurons.

Figure 4.6: Simple spiking neural network

In a network of spiking neurons such as the one in Figure 4.6, a neuron j is injected

with currents Iij from presynaptic neurons i calculated as follows :

Iij =
T∑
t=0

Sij(t)Wij (4.4)

Here, Sij(t) = 1 if neuron i outputs a spike at timestep t.

25

4.5 Information Encoding in Spiking Neural Networks

As shown in section 4.4, spiking neurons communicate with each other using a set of

spikes. This requires us to use an encoding scheme to interpret the spike patterns. Two

such encoding methods are known:

1. Rate encoding : Spikes are interpreted by their frequency. If a neuron outputs ns

number of spikes occur in time T , then the rate based encoding indicates that the

output of this neuron is proportional to ns/T

2. Temporal encoding : Interspike interval time can take any values. Therefore one can

also use interspike intervals to differentiate between spike patterns.

In this research, rate encoding scheme is used.

4.6 Learning in Spiking Neural Networks

As indicated by equation 4.4, the output of a spiking neuron is influenced by its incom-

ing synaptic weights. Learning in spiking neural networks should thus involve synaptic

weight changes. Biological neurons utilize a mechanism called Hebbian spike timing de-

pendent plasticity (STDP) [19] to change synaptic weights.

4.6.1 Spike Timing Dependent Plasticity

Consider a simple spiking neural network with a single synapse connecting a presy-

naptic neuron i to a postsynaptic neuron j as shown in Figure 4.7. Let the synaptic strength

be denoted by Wij . If tpost is any spike time of postsynaptic neuron, tpre is any spike time

of presynaptic neuron, then the synaptic weight change happens according to Hebbian

STDP [19] as shown below :

STDP (∆t) = A+exp(−
∆t

τ+
) for ∆t > 0 (4.5)

26

STDP (∆t) = A−exp(−
∆t

τ−
) for ∆t <= 0 (4.6)

where ∆t = tpost − tpre. A+, A−, τ+, τ− are design parameters. A graphical represen-

tation of the STDP is shown in Fig 4.7 labeled "STDP Curve".

STDP (∆t) represents the weight change caused by presynaptic and postsynaptic

spike pair with timings tpre and tpost. If the spike activity happens for a time interval

T , and if TPRE represents the set of presynaptic spike times, TPOST represents the set of

postsynaptic times, then the total STDP weight change ∆Wij for a synapse Wij is given

by :

∆Wij =
∑
tpre

∑
tpost

STDP (tpost − tpre) (4.7)

where tpre ∈ TPRE and tpost ∈ TPOST . Equation 4.5 leads to increase in synaptic weight

Wij and equation 4.6 leads to decrease in synaptic weight. The phenomenon described by

equation 4.5 is called "long term potentiation" (LTP) and that described by equation 4.6 is

called "long term depression" (LTD). Therefore LTP happens if a post synaptic spike oc-

curs after a presynaptic spike, and LTD happens if a pre synaptic spike occurs after a post

synaptic spike. In other words, LTP represents correlation between presynaptic and post-

synaptic spike activity while LTD represents anti-causal relationship between presynaptic

and postsynaptic activity.

4.6.2 Nearest Neighbor STDP

The definition of STDP in equations 4.5 - 4.6 do not put any restriction on the number

of pre-post synaptic spike pairs to consider to calculate ∆t = tpost − tpre. It is compu-

tationally inefficient to consider all possible pairs of presynaptic and postsynaptic spikes.

Therefore we use a simplistic version of STDP called the "nearest neighbor STDP". It is

illustrated in Figure 4.8

27

Figure 4.7: Synaptic Connection and STDP curve. Adapted with permission from [1].
c©[2017] IEEE.

In Figure 4.8, a presynaptic spike is paired with only one most recent postsynaptic

spike to cause LTD. Similarly a postsynaptic spike is paired with only one most recent

presynaptci spike to cause LTP.

A biologically realistic learning algorithm must use some form of STDP mechanism

for synaptic weight changes. Chapter 5 discusses the implementation of reinforcement

learning using spiking neural networks by utilizing a modulated form of STDP.

28

Figure 4.8: Nearest neighbor STDP

29

5. REINFORCEMENT LEARNING WITH SPIKING NEURAL NETWORKS ∗

Learning from interaction is a fundamental aspect of animal behavior. Take humans

for instance. We understand several things about our environment on our own by interact-

ing with it. When an infant touches a cup of hot beverage, it associates the sensation of

heat to its action of touch the cup and learns to be careful with hot cups in future. The heat

served as a learning signal for the infant. When training a dog, we do not explicitly teach

the dog the human language. Instead we issue commands to the dog, and when the dog

randomly chooses to correctly act on a command, we present it with a reward. The dog

then links the reward with its behavior and tends to repeat it. This ability of animals to

influence their environment by their actions in order to obtain maximum rewards is some-

thing that is developed over the course of evolution. As with any other animal behavior,

this reward seeking behavior is caused by its brain. As such we might suspect that the

underlying building blocks of brains that is the spiking neurons are responsible for this

reinforcement learning behavior. This chapter presents a possible way the spiking neurons

might implement reward seeking behavior. First let us look at a phenomenon describing

reinforcement learning behavior in animals : operant conditioning.

5.1 Operant Conditioning

Operant conditioning is a process in which an animals behavior in response to a stim-

ulus is strengthened using a reward signal and weakened using punishment signal [20].

This is the process dog trainers use to train them.

∗Parts of the material presented in this chapter are reprinted with permission from "Navigating mo-
bile robots to target in near shortest time using reinforcement learning with spiking neural networks" by
Amarnath Mahadevuni and Peng Li, 2017. International Joint Conference on Neural Networks(IJCNN),
pp.2243-2250, May 2017. c©[2017] by IEEE, and "Solving the distal reward problem through linkage of
STDP and dopamine signaling" by E.M. Izhikevich, 2007. Cerebral Cortex, Oxford University Press, Jan
2007. c©[2007] by Oxford University Press.

30

In the context of the brain, let us consider two connected layers of spiking neurons in

which the first layer represents the stimulus, the second layer represents the response. The

synaptic connections between the two layers determine how effectively a stimulus results

in a response. This is illustrated in Figure 5.1 :

Figure 5.1: Simple Spiking Neural Network with Stimulus Layer and Response Layer

In Figure 5.1, let us assume that for a stimulus S, the neural network gives a response

R. The stimulus S is converted into spike activity by the stimulus layer. To this network,

if we apply a reward Rw, then according to operant conditioning, its response for the

same stimulus S should be larger than R. Similarly if we apply a punishment Rw, then

its response for the same stimulus S should be smaller than R. We have seen in chapter

4 that the postsynaptic response of a neural network is affected by the strength of the

31

synapses. Therefore it can be hypothesized that the reward or punishment signal should

affect the synaptic weights in such a way that the response changes in accordance with

operant conditioning. The chemical that can influence the synaptic weight changes in the

biological brain is called a neuromodulator. The neuromodulator associated with reward in

our brains is the dopamine [21] . Punishment can be considered as reduction in dopamine

level.

A fundamental characteristic of operant conditioning is that the reward or punishment

is typically applied several time steps after the brain elicits a response. By this time, the

stimulus that caused the response may not even be there. This is also explained in the

context of mathematical framework of reinforcement learning in chapter 3 as the "delayed

reward problem". To handle this, [21] proposes a variable "eligibility trace" that mem-

orizes the synaptic activity that led to a response. The next section discusses the use of

eligibility trace in solving the delayed reward problem.

5.2 Reinforcement Learning with Dopamine Modulated STDP and Eligibility Trace

Consider a single synapse with a postsynaptic neuron j and presynaptic neuron i with

synaptic strength Wij in Figure 5.2 . Assume there is some stimulus applied to neuron i

Figure 5.2: Simple Synaptic Connection with Synaptic Weight Wij

which generates a presynaptic spike activity, and the synaptic connection causes a postsy-

32

naptic spike activity in neuron j. This is shown in Figure 5.3

Figure 5.3: Pre and post synaptic activity with eligibility trace and dopamine reward signal.
Adapted with permission from [21]. c©[2007] Oxford University Press.

Eligibility trace shown in Figure 5.3 is a variable that remembers the activity that

resulted in an STDP weight change (calculated using 4.7). It is the STDP weight change

decayed over time so that its relevance is reduced as time passes by. When a reward is

applied in the form of dopamine, the numeric reward value is multiplied with the decayed

eligibility trace to form the effective synaptic weight change. The decay of eligibility trace

every timestep is done as follows:

∆Wij(t+ 1) = ∆Wij(t) ∗ β (5.1)

33

where 0 < β < 1 is the factor by which eligibility trace is decayed every time step.

Therefore if STDP weight change is calculated at time t0, then after n time steps, the

eligibility trace is given by:

∆Wij(t0 + n) = ∆Wij(t0) ∗ βn (5.2)

Since β < 1, 5.2 decays the eligibility trace over time. The synaptic weight change is

applied to the synapse only when the reward is applied. If the reward is applied after m

time steps, then the synaptic weights are changed as follows:

Wij = Wij + ∆Wij(t0 +m) ∗ reward ∗ δ(t− treward) (5.3)

= Wij + ∆Wij(t0) ∗ βm ∗ reward ∗ δ(t− treward) (5.4)

where δ is a unit amplitude delta function, and treward is the time when reward is

applied.

5.3 Designing Spiking Neural Network Architecture for Reinforcement Learning

Chapter 3 discusses that in order to design solutions to reinforcement learning prob-

lems, we must first identify agent’s states, actions, and rewards for the problem. Then

encode them using some representation. In spiking neural networks, one can use a layer

to represent states, a layer to represent actions, and dopamine modulation to represent re-

ward. A typical reinforcement learning implementation with spiking neural network is

shown in Figure 5.4

Next three subsections explain the roles of these layers and dopamine signal.

34

Figure 5.4: Simple Spiking Neural Network Architecture to Implement Reinforcement
Learning.

5.3.1 State Layer

The state layer is the stimulus layer that converts a state representation into spike fre-

quencies to generate a spike train. For example a function f(S) can be applied on a state

S to generate a frequency fi for each neuron i in the input layer.

5.3.2 Action Layer

At a given state, the input state layer neuron i undergoes a spike activity depending

on its corresponding spike frequency fi. This results in spike activity in action layer. The

35

spike frequency can be interpreted as value of an action for the state S .

5.3.3 Dopamine Reward Signal

The reward function can be designed for the goal at hand, and a dopamine reward

signal can be used to modulate synaptic weights connecting state layer and action layer to

affect the agent’s response to a state.

Chapter 7 uses this principle to design a spiking neural network architecture for the

navigation problem in this research.

36

6. PREVIOUS WORK∗

Consider the 2-D environment shown in Figure 6.1 also discussed in chapter 1.

Figure 6.1: 2-D environment for the navigation problem. Reprinted with permission from
[1]. c©[2017] IEEE.

In this chapter, an existing solution [22] to problem of mobile robot navigation to a

goal location in the 2-D environment of Figure 6.1 is discussed. It is a state machine

based approach [22]. It does not consider optimizing the navigation time to a goal. In this

document, this solution is referred to as "go-to-goal" approach.
∗Parts of the material presented in this chapter are reprinted with permission from "Navigating mo-

bile robots to target in near shortest time using reinforcement learning with spiking neural networks" by
Amarnath Mahadevuni and Peng Li, 2017. International Joint Conference on Neural Networks(IJCNN),
pp.2243-2250, May 2017. c©[2017] by IEEE.

37

6.1 Go-to-goal Solution

6.1.1 Wall Following Behavior

The go-to-goal approach depends on a robotic behavior called wall following where

the robot moves alongside a wall-like obstacle by maintaining a constant distance with it.

During wall following, the obstacle can be to the left or right side of the robot heading

and thus leads to two behaviors : WALL-FOLLOW-LEFT and WALL-FOLLOW-RIGHT.

Figures 6.2 and 6.3 shows these behaviors.

Figure 6.2: WALL-FOLLOW-LEFT.

1. WALL-FOLLOW-LEFT : The mobile robot maintains a constant distance d from

the obstacle with the obstacle on left side of its heading direction. See Figure 6.2.

2. WALL-FOLLOW-RIGHT : The mobile robot maintains a constant distance d from

the obstacle with the obstacle on right side of its heading direction. See Figure 6.3.

38

Figure 6.3: WALL-FOLLOW-RIGHT.

Go-to-goal uses the wall following behavior. Figure 6.4 shows the trajectory of the

robot using this approach.

The trajectory of the robot can be summarized as follows:

1. Move towards goal when there is no obstacle in vicinity.

2. When faced with an obstacle, turn in place, then move in wall following manner.

3. Quit wall following when there is a clear path to goal.

Flow chart in Figure 6.5 shows an algorithmic view of the trajectory.

39

Figure 6.4: Go-to-goal solution.

6.2 State Machine Implementation of Go-to-goal

Chapter 7 discusses the solution proposed in this research. It is build on top of go-

to-goal approach. As such, it is necessary to look at the implementation details of this

solution. This helps in understanding the complete proposed solution in chapter 8. (Please

keep in mind that the "state" referred to here is the navigation state and not related to the

states in reinforcement learning framework discussed in chapter 3).

Figure 6.6 shows the go-to-goal trajectory split into several states.

The robot’s movement is governed by principles described in 2. Its robot behavior in

each of the states in Figure 6.6 is as follows [1]:

1. PRE-GO-TO-GOAL : Orients itself in place towards the goal. Then transitions to

GO-TO-GOAL state.

40

Figure 6.5: Flow chart depicting go-to-goal approach.

2. GO-TO-GOAL : Moves towards the goal if there is no obstacle close to it. If there

is an obstacle close to it, the robot transitions to PRE-WALL-FOLLOW state.

3. PRE-WALL-FOLLOW : Turns in place to place itself parallel to the obstacle. Then

transitions to WALL-FOLLOW state.

41

Figure 6.6: Go-to-goal trajectory split into navigation states. Reprinted with permission
from [1]. c©[2017] IEEE.

4. WALL-FOLLOW : Proceeds to move in wall following manner. WALL-FOLLOW-

LEFT or WALL-FOLLOW-RIGHT is adopted depending on the direction of turn

in PRE-WALL-FOLLOW state. The robot checks for certain conditions to see if it

can quit WALL-FOLLOW state and transition to PRE-GO-TO-GOAL state. This

checking is described in section 6.2.1.

5. GOAL-REACHED : Arrives at goal location.

6.2.1 Conditions to Quit Wall Following Behavior

The following parameters are important to understand the conditions that the robot

needs to check before quitting wall following behavior.

1. Obstacle avoidance vector A : Indicates the direction the robot needs to move if

42

it must avoid obstacles in its vicinity. In Figure 6.7, the obstacle Avoidance Vector

A is calculated as a resultant of vectors with directions opposite to the ultrasonic

beam direction and magnitude inversely related to the proximity from the obstacle.

Equation 6.1 shows the calculations.

A = VUS_LEFT ∗ d(US_LEFT) + VUS_LEFT45 ∗ d(US_LEFT45)+

+ VUS_FRONT ∗ d(US_FRONT) + VUS_RIGHT45 ∗ d(US_RIGHT45)+

+ VUS_RIGHT ∗ d(US_RIGHT) (6.1)

In equation 6.1, the vectors V<SENS> represent unit vectors in the opposite to the

direction of proximity sensor beams discussed in chapter 2, section 2.3, where

SENS ∈ {US_LEFT, US_LEFT45, US_FRONT, US_FRONT45, US_RIGHT, US_RIGHT45}

and d(< SENS >) are the proximities measured by sensor labeled SENS.

2. Goal vector G : The goal vector is simply a vector with tail at the center of the robot

and head at the center of the goal.

3. Angle α(G,A) : The smaller angle between vectors A and G.

4. Distance to target in PRE-WALL-FOLLOW state dpre−wall−follow : Distance

from the robot’s center to the goal location calculated before the robot transitions

to WALL-FOLLOW state.

Wall following behavior is quit when both of these conditions hold :

1. −900 < α(G,A) < 900 . If this condition is satisfied then we know that the goal and

head of obstacle avoidance direction are on the same side of the robot.

43

2. |G| < dpre−wall−follow. If this condition is satisfied then we know that the robot is

closer to the goal than when it begins following the wall.

If these conditions are met, the robot transitions from WALL-FOLLOW state to PRE-

GO-TO-GOAL state.

Figure 6.7: Parameter definitions related to the conditions to leave wall following behavior.
Adapted with permission from [1]. c©[2017] IEEE.

44

7. FORMULATING THE REINFORCEMENT LEARNING PROBLEM

We shall first revisit the proposed research problem and then see its formulation as a

reinforcement learning problem.

7.1 Minimizing the Navigation Time

Consider Figure 7.1 . Our goal is to minimize the time it takes for the robot to navigate

from "Start" location to "Goal" location.

Figure 7.1: Example instance of the problem depicting the navigation goal. Reprinted with
permission from [1]. c©[2017] IEEE.

If we apply the navigation solution "go-to-goal" to the problem instance in Figure 7.1,

we get a trajectory shown in Figure 7.2.

45

Figure 7.2: Go-to-goal solution applied to the setup in Figure 7.1. Reprinted with permis-
sion from [1]. c©[2017] IEEE.

The circled area of the trajectory is PRE-WALL-FOLLOW state. In this state, the

robot can decide to follow the wall in one of two modes : WALL-FOLLOW-RIGHT

and WALL-FOLLOW-LEFT. In the example in Figure 7.2 the robot decides to adopt a

WALL-FOLLOW-LEFT behavior. It could have also chosen a WALL-FOLLOW-RIGHT

behavior. The time taken by the robot to reach the goal when it selects WALL-FOLLOW-

LEFT is smaller than the time taken when it selects WALL-FOLLOW-RIGHT. Thus the

navigation time of the robot in "go-to-goal" solution depends on the wall following mode

selected in the PRE-WALL-FOLLOW state.

The navigation time of the robot can therefore be minimized within "go-to-goal" so-

lution by choosing the proper wall following mode at every PRE-WALL-FOLLOW state

the robot encounters. The fact that the obstacles’ location is unknown motivates us to use

46

a trial and error approach. Chapter 3 discusses that reinforcement learning is a good way

to perform trial and error tasks. The next section shows the formulation of this problem of

minimizing the navigation time as a reinforcement learning problem.

7.2 Framing the Problem as a Reinforcement Learning Task

In chapter 3, it is discussed that any reinforcement learning task is identified by the

objects : agent, environment, states, actions, and rewards. To convert the problem of mini-

mizing the navigation time into a reinforcement learning task, we identify these objects in

the context of robot navigation as shown in Figure 7.3.

Figure 7.3: Reinforcement Learning Task Formulation for the Problem of Minimizing
Navigation Time.

1. Agent : The mobile robot that we want to learn navigation to goal location in

47

minimum possible time is the agent.

2. States : The locations in the environment where the agent enters PRE-WALL-

FOLLOW mode of navigation can be considered as the states for the reinforcement

learning problem. In Figure 7.3, the states are shown as S0 and S1.

3. Actions : The agent can take select one of two actions in these states : WALL-

FOLLOW-LEFT and WALL-FOLLOW-RIGHT.

4. Rewards : A reward is presented to the agent when it reaches the goal in such a way

that the actions that result in shorter navigation time are strengthened more than the

actions that result in longer navigation time.

Next we shall look at an important aspect of the reinforcement learning view of the

problem.

7.3 Delayed Reward Nature of the Learning Problem

A simplified view of the reinforcement learning formulation of Figure 7.3 is shown in

Figure 7.4.

We can observe that the reward is given to the agent only after reaching a goal which

happens several time steps after the actions A0 and A1 have been taken. The robot must

associate the reward with these actions that have been taken many timesteps in the past.

This is the delayed reward problem introduced in chapter 3.

In order to solve this we use a spiking neural network to implement the solution to

this reinforcement learning problem with delayed reward nature. Chapter 8 discusses the

complete solution using eligibility trace introduced in chapter 5 to solve the delayed reward

problem.

48

Figure 7.4: Simplified Reinforcement Learning Formulation.

49

8. THE COMPLETE SOLUTION ∗

Chapter 7 discusses a formulation of the navigation time minimization problem as a

reinforcement learning task and argues that it is an inherently a delayed reward problem.

This chapter presents a solution to the navigation problem, that is the outcome of this re-

search. It is based on utilizing spiking neural networks discussed in chapter 4 to implement

reinforcement learning as shown in chapter 5.

The proposed solution to the problem of navigating the mobile robot to a goal in short-

est possible time is a spiking neural network architecture and its training algorithm. The

role of this spiking neural network in solving the problem is depicted in Figure 8.1. The

reward mechanism and action selection are explained in this chapter.

The spiking neural network is shown as a block in Figure 8.1. In chapter 7 we have seen

how the wall following mode affects the navigation time. In this research a spiking neural

network architecture is proposed that implements a reinforcement learning algorithm to

select the wall following modes in such a way that the robot learns to navigate to the goal

in shortest possible time.

In order to build the spiking neural network, we need the following

1. State representation.

2. State encoding for spiking neural network.

3. Action representation.

4. Synaptic connections to encode the value of (state, action) pair together with state

and action representation.
∗Parts of the material presented in this chapter are reprinted with permission from "Navigating mo-

bile robots to target in near shortest time using reinforcement learning with spiking neural networks" by
Amarnath Mahadevuni and Peng Li, 2017. International Joint Conference on Neural Networks(IJCNN),
pp.2243-2250, May 2017. c©[2017] by IEEE.

50

Figure 8.1: Proposed spiking neural network supplements the go-to-goal approach to min-
imize the navigation time.

5. Form a spiking neural network architecture using the state encoding, action encod-

ing, and the synaptic connections.

Additionally, these aspects are needed to complete the reinforcement learning formu-

lation.

1. Action selection.

2. Reward mechanism.

3. Handling the delayed reward problem.

51

We discuss each of these aspects next to build a spiking neural network and its learning

algorithm.

8.1 State Representation

Chapter 7 identifies the states for the reinforcement learning formulation as the loca-

tions where the agent enters PRE-WALL-FOLLOW state. Figure 8.2 illustrates the robot

in a PRE-WALL-FOLLOW navigation mode. The state is represented using two param-

eters: d and θ , that are calculated in the PRE-WALL-FOLLOW navigation mode of the

trajectory.

Figure 8.2: State representation. Adapted with permission from [1]. c©[2017] IEEE.

52

1. d : Straight line distance between the robot’s center and the goal location. Its unit is

pixel.

2. θ : Angle between the heading and a fixed vertical line in the 2-D environment. Its

unit is degree.

Therefore in this representation a state is an ordered pair (θ, d). As such the state space

is continuous.

8.2 State Encoding

To be able to use spiking neural networks to encode a state, a method to convert state

representation to spike activity is needed. It is also necessary that the spiking activity of

the population of neurons representing the state should differ from state to state. We use

an approach similar to the state encoding scheme in [23], also used in [1]. The following

definitions are needed to understand the encoding of states into spike activities.

1. Set D = {100, 200, 300,, 600, 700, 800}. This represents a discretized space for

d values. Cardinality of D is 8.

2. Set Θ = {00, 300, 600,, 3000, 3300}. This represents a discretized space for θ

values. Cardinality of Θ is 12.

3. Set C = D X Θ = {(100, 00), (100, 300), ..., (800, 3300)}. This is the Cartesian

product of sets D and Θ representing the discretized state space.

The cardinality of set C above is 96. Consider a layer of 96 spiking neurons each of

which is assigned an ordered pair from set C . Therefore if a neuron is denoted by ni

where i ∈ [0, 95], and an element of C is represented by Ci where i ∈ [0, 95], then each

neuron ni maps to a point Ci. This mapping is shown in a rectangular box in Figure 8.3.

Each circular object is a spiking neuron.

53

The encoding of a state represented by (d, θ) into spike activities is done by calculating

the spike frequencies fi for neuron ni where i ∈ [0, 95] as follows:

fi = f0exp

(
−(d− di)2

2σ2
1

− (θ − θi)2

2σ2
2

)
(8.1)

Equation 8.1 ensures that the spiking activity of population of neurons representing a state

should differ from one state to another.

f0, σ1 and σ2 are design parameters. An example of spike activities is shown beside

the state layer in Figure 8.3.

The state layer thus formed is a layer of spiking neurons that encodes state of the robot

(agent). The computation of spike generation frequency using 8.1 produces an aliasing

effect. This is discussed next.

8.2.1 Aliasing in State Representation

It is intended that the population of state neurons that spike with a considerable fre-

quency (> 20 Hz) at a state S1 is as different as possible from the population of neu-

rons producing spikes at a different state S2. However there can be certain neurons that

fire in both these states making the state representation not completely unique. This

is due to the aliasing effect introduced by the Gaussian like computation of frequen-

cies in 8.1. To analyze this, consider a state S1 = (d1, θ1) = (150 pixel, 700), and

S2 = (d2, θ2) = (300 pixel, 1200). Figure 8.4 shows the spike generation frequency on

Y axis plotted calculated using 8.1 at the two states S1 and S2 for the state layer neurons

represented on X-axis. The parameters of 8.1 used to plot Figure 8.4 are : σ1 = 60, σ2 =

60, f0 = 100Hz. The circled region shows the overlap in the frequencies of populations of

state layer neurons spiking at state S1 and S2. The key to reducing this aliasing effect is to

change the parameters σ1, σ2. Figure shows a similar plot with these changed parameters:

54

Figure 8.3: Stimulus layer and state encoding with spike activity with frequencies fi for
i ∈ [0, 95]

σ1 = 60, σ2 = 10. The overlap of state layer neuron populations spiking at states S1 and

S2 is reduced with the new parameters.

55

Figure 8.4: Spike generation frequency at states S1 and S2 using equation 8.1 with σ1 =
60, σ2 = 60.

56

Figure 8.5: Spike generation frequency at states S1 and S2 using equation 8.1 with σ1 =
60, σ2 = 10, f0 = 100Hz.

Thus the parameters for state layer neuron spike generation frequency in 8.1 are de-

termined empirically. The effects of aliasing on learning performance is discussed further

using an example in chpter 9.

57

8.3 Action Representation

At every state, the learning agent can take two actions : WALL-FOLLOW-LEFT and

WALL-FOLLOW-RIGHT. Therefore two spiking neurons are chosen one of which repre-

sents WALL-FOLLOW-LEFT and other represents WALL-FOLLOW-RIGHT. These neu-

rons are labeled LEFT and RIGHT respectively in Figure 8.6.

Figure 8.6: Action neurons

8.4 Encoding the Value of (State, Action) Pair

It is important to define a value function V (s, a) for state s and action a for us to

calculate importance of actions that can be taken in a given state. The state layer encodes

the states and the action layer encodes actions, so it makes sense to connect them and

define that the spike activity of neurons in action layer encodes the value function. This

connectivity is shown in Figure 8.7.

58

Figure 8.7: Spike activity of action layer neuron can be interpreted as value function for
the state, and action represented by the neuron

Figure 8.7 shows the spike activity of action layer neurons represented by frequency

labels fi for i ∈ [0, 95]. For a state s = (d, θ), the state layer generates a spike activity

shown in Figure 8.7, that results in a spike activity in action layer. The frequency of spikes

for the neuron labeled "LEFT" is fleft and that for neuron labeled "RIGHT" is fright. fleft

can be interpreted as the value of state s and action WALL-FOLLOW-LEFT. Similarly

59

fright can be interpreted as the value of state s and action WALL-FOLLOW-RIGHT.

8.5 The Spiking Neural Network Architecture

Figure 8.7 completes the building of our spiking neural network architecture. The

synaptic weights support spike timing dependent plasticity as the primary way of learning.

A simplified view is presented in Figure 8.8. The neurons are labeled by their respective

spike generation frequencies fi for i ∈ [0, 95]

Figure 8.8: Simplified architecture of the spiking neural network. Adapted with permis-
sion from [1]. c©[2017] IEEE.

60

8.6 Integrating the Spiking Neural Network into the Navigation Algorithm

Figure 8.1 showed the spiking neural network as a computational block without the

architecture. This section replaces this block with SNN (spiking neural network) of Fig-

ure 8.8. Figure shows the building blocks of the proposed spiking neural network based

reinforcement learning algorithm integrated with the go-to-goal solution.

Figure 8.9: Integration of the designed SNN with the go-to-goal approach

The next section describes the process of training the network using action selection

and reward mechanism.

61

8.7 Learning to Navigate in Shortest Possible Time

This section explains the proposed reinforcement learning algorithm in detail. A ma-

chine learning model learns over multiple trials. Hence the best way to understand the

proposed algorithm is to understand a single trial. We fix the start position of the agent

and location goal constant throughout the learning process. In each trial the agent nav-

igates from start to goal locations using the go-to-goal approach described in chapter 6.

Depending on the location of obstacles, the agent may encounter multiple PRE-WALL-

FOLLOW states. In the Figure 8.10, the agent encounters two PRE-WALL-FOLLOW

states labeled S0 and S1.

Figure 8.10: Integration of the designed SNN with the go-to-goal approach

62

Learning in the robot in a trial happens by training the spiking neural network weights.

This involves three components : Action selection, activating eligibility traces for synaptic

weights of SNN, reward modulation of synaptic weight changes of SNN. These are shown

in Figure 8.11 along with the go-to-goal navigation states where they take place.

Figure 8.11: Components of the Spiking Neural Network Training

These three components of learning are described next.

8.7.1 Action Selection

Action selection is done by the robot in PRE-WALL-FOLLOW navigation state. It se-

lects an action from the set of wall following behaviors WALL-FOLLOW-LEFT, WALL-

FOLLOW-RIGHT. The steps involved in action selection are :

1. Get the state representation of the robot : (d, θ), calculated as shown in Figure 8.2.

2. Calculate the frequencies fi using equation 8.1 for i ∈ [0, 95].

63

3. Run the SNN of Figure 8.8 for a duration of T ms by applying the spike generation

frequencies fi to the corresponding neurons ni for i ∈ [0, 95]. This results in spike

activity in the action layer of the SNN. Neuron "LEFT" outputs a spike train with

frequency fleft and neuron "RIGHT" outputs a spike train with frequency fright.

4. Select a wall following behavior from the set of actions WALL-FOLLOW-LEFT,

WALL-FOLLOW-RIGHT using exploration-exploitation process.

(a) Exploration : Select an action WALL-FOLLOW-LEFT or WALL-FOLLOW-

RIGHT with 50% probability.

(b) Exploitation : Select action WALL-FOLLOW-LEFT if fleft ≥ fright. Select

action WALL-FOLLOW-RIGHT otherwise.

5. Exploitation can happen with a probability ε where 0 < ε < 1 and exploration

happens with probability 1− ε.

8.7.2 Activating Eligibility Traces

When the spiking neural network is run in the action selection step, synaptic weight

changes are calculated using STDP equation 4.7. To understand the activation of eligibility

traces, the concept of a winning action layer neuron is essential. If the action selection

step selects WALL-FOLLOW-LEFT, then the winning neuron is "LEFT", otherwise the

winning neuron is "RIGHT". Eligibility trace is then activated as follows:

1. Discard the STDP weight changes of the synapses connecting the state layer to

the non-winning action layer neuron. For example, if the agent selects WALL-

FOLLOW-LEFT action, discard the STDP weight changes accumulated for synapses

incoming to the "RIGHT" action neuron.

2. Decay the STDP weight changes every time step by a decay parameter β until the

robot reaches the GOAL-REACHED state using equation 5.1.

64

8.7.3 Reward Modulation of Synaptic Weight Changes

This component happens in GOAL-REACHED navigation state when the robot has

arrived at the goal. The wall following decisions taken by the robot are rewarded in such

a way that at a PRE-WALL-FOLLOW state on its trajectory, the action that takes the

robot to the goal in shorter time is rewarded higher than the action that takes the robot to

the goal in longer time. This discrimination in presenting the rewards must be encoded

in the learning algorithm. Coincidentally, the eligibility trace measure described in 8.7.2

captures this difference in the goodness of an action.

For a given PRE-WALL-FOLLOW state, the eligibility traces of synapses incoming to

the winning neuron are inversely proportional to the time taken by the robot to reach the

target using that winning action. Hence eligibility trace directly measures the goodness

of an action, along with memorizing the action taken to solve the delayed reward prob-

lem. Therefore eligibility trace in the proposed spiking neural network training has two

purposes :

1. To memorize the actions taken during a trial, so that they can be rewarded even after

a delay of several time steps.

2. Across multiple trials, it serves as a discriminator between longer time taking actions

and shorter time taking actions.

Now, synaptic weight changes are applied to all synapses with activated eligibility

traces as follows :

Wij = Wij + ∆Wij(t0) ∗ βm ∗ reward ∗ δ(t− treward) (8.2)

where Wij is the synaptic weight connecting a state layer neuron i to action layer

65

neuron j. t0 is the time step at which the robot reaches a PRE-WALL-FOLLOW point on

its trajectory. At t0, the STDP weight change ∆Wij is calculated using equation 4.7 by

running the network for duration T ms as discussed in section 8.7.1. δ(t − treward) = 1

when the reward is applied. m is the number of time steps taken by the robot after t0 to

reach the goal.

This is same as equation 5.3. The reward parameter for this specific research is cho-

sen to be a constant, as the eligibility trace sufficiently discriminates good actions from

bad actions. It this were not the case, then the reward function will have to be carefully

designed to bring out the desired behavior.

8.8 Criteria to Stop Learning

Learning is stopped when the following conditions are satisfied:

1. At a given state, if |fleft− fright| > fthreshold, where fthreshold is a design parameter,

the actions are selected using exploitation, and eligibility traces are not activated.

2. If |fleft − fright| > fthreshold for all PRE-WALL-FOLLOW states the robot encoun-

ters, then the learning is said to be complete, and the synaptic weights are fixed.

The learning algorithm can be best understood by looking at a simulated navigation

example.

8.9 Understanding the Learning Algorithm with an Example

Consider an example environment "Env1" in Figure 8.12. This is a simulated example.

The simulation details are presented next. This section presents a qualitative explanation

of the learning algorithm.

To understand the learning algorithm, consider the eligibility traces of actions the robot

takes at PRE-WALL-FOLLOW state labeled 1 in Figure 8.13 and 8.14.

66

Figure 8.12: Trials selecting WALL-FOLLOW-RIGHT and WALL-FOLLOW-LEFT in
Env 1 at state 1. Adapted with permission from [1]. c©[2017] IEEE.

Figure 8.13 shows eligibility trace for synaptic weights incoming to the neuron "RIGHT".

The timestep at which eligibility traces are activated is marked by a vertical line labeled

"1". The timestep when the robot arrives at the goal is indicated by label "Goal". We

can see that by this timestep, the eligibility traces have negligible values. This is because,

the decision WALL-FOLLOW-RIGHT taken at state 1 in the left subfigure of Figure 8.12

takes the robot to goal in a long time. On the other hand, Figure 8.14 trace shows eli-

gibility trace for synaptic weights incoming to the neuron "LEFT" neuron. The timestep

at which eligibility traces are activated at state 1 is marked by a vertical line labeled "1".

The timestep when the robot arrives at the goal is indicated by label "Goal". We can

see that by this timestep, the eligibility traces have significantly larger values than that

for action WALL-FOLLOW-RIGHT. Therefore the synaptic weights incoming to neuron

"LEFT" are strengthened more than the synaptic weights incoming to neuron "RIGHT".

After learning is converged, the agent favors the action WALL-FOLLOW-LEFT more than

67

Figure 8.13: Eligibility traces of synapses incoming to winning neuron "RIGHT" in Env1.
Adapted with permission from [1]. c©[2017] IEEE.

WALL-FOLLOW-RIGHT at state 1.

Next chapter discusses simulation of the learning algorithm, experimental setup, and

results.

68

Figure 8.14: Eligibility traces of synapses incoming to winning neuron "LEFT" in Env1.
Adapted with permission from [1]. c©[2017] IEEE.

69

9. RESULTS AND CONCLUSION ∗

9.1 Experimental Setup

The experimental setup for this research consists of the following components :

1. 2-D navigation environment : A graphics 2-D environment is created using a C++

game library allegro (http://liballeg.org). An example is shown in Figure 9.1. The

obstacle and goal configuration can be changed using C++. The dimensions chosen

for the 2-D environment are 1000 pixels X 800 pixels. The obstacles are wall-like

rectangular shaped objects. The goal location is labeled "Goal".

Figure 9.1: An Example of 2-D navigation environment. Reprinted with permission from
[1]. c©[2017] IEEE.

∗Parts of the material presented in this chapter are reprinted with permission from "Navigating mo-
bile robots to target in near shortest time using reinforcement learning with spiking neural networks" by
Amarnath Mahadevuni and Peng Li, 2017. International Joint Conference on Neural Networks(IJCNN),
pp.2243-2250, May 2017. c©[2017] by IEEE.

70

2. Robot abstraction : A mobile robot abstraction (labeled "Robot" in Figure 9.1)

of Figure 9.2 is realized using a C++ object that can move in the 2-D navigation

environment. The robot navigation dynamics described in chapter 2 is also written

using allegro.

Figure 9.2: Differential drive robot abstraction. Reprinted with permission from [1].
c©[2017] IEEE.

3. Spiking neural network simulator : A C++ based spiking neural network simula-

tor CARLsim [24] is used to simulate the neural network built in chapter 8. CARL-

sim uses Izhikevich spiking neuron model [18] [24]. For the synapses, CARLsim

supports nearest neighbor STDP discussed in chapter 4. Eligibility traces are imple-

mented as decayed STDP weight changes exactly as discussed in chapter 5.

71

9.2 Simulation

Simulation of the proposed robot navigation learning algorithm has two parts that in-

teract with each other as shown in Figure 9.3

Figure 9.3: Interaction between go-to-goal approach and SNN based reinforcement learn-
ing approach.

1. Go-to-goal navigation : Written as a state machine in C++ utilizing the same states

as described in chapter 6. The states are shown again in Figure 9.4. The Movement

of graphic object implementing the robot is simulated using allegro.

72

Figure 9.4: Navigation states of the robot trajectory in go-to-goal solution. Reprinted with
permission from [1]. c©[2017] IEEE.

2. Spiking neural network based learning : In PRE-WALL-FOLLOW state of robot

navigation, the spiking neural network proposed in chapter 8 is run using CARLsim

to generate action layer neurons spiking frequencies. The neural network is shown

again in Figure 9.3 in conjunction with go-to-goal navigation. The process of action

selection, eligibility trace activation, and rewarding mechanism is described in detail

in 8.7.

9.3 Results

The parameter values for various equations used in the simulation are shown in table

9.1.

Simulation of the learning algorithm is performed on three environments : Env1, Env2,

and Env3. They differ in the configuration of obstacles and goal. The navigation trajec-

tories before and after training are shown in Figures 9.5, 9.6, and 9.7 for Env1, Env2,and

Env3 respectively.

73

Table 9.1: Simulation parameters and their values. Adapted with permission from [1].
c©[2017] IEEE.

Parameter Description Value
A+ CARLsim LTP parameter for STDP in eq 4.5 0.0001
A− CARLsim LTD parameter for STDP in eq 4.6 0.0005
τ+ CARLsim LTP parameter for STDP in eq 4.5 1 20ms
τ− CARLsim LTD parameter for STDP in eq 4.6 20ms
β Eligibility trace decay in eq 5.1 0.99
f0 Constant in eq 8.1 100 Hz
σ1 Constant in eq 8.1 25 pixels
σ2 Constant in eq 8.1 10◦

reward Scalar reward on reaching the Goal 10
fthreshold Threshold firing rate in stopping criteria 8.8 50Hz

Figure 9.5: Simulation results for Env 1. Reprinted with permission from [1]. c©[2017]
IEEE.

74

Figure 9.6: Simulation results for Env 2. Reprinted with permission from [1]. c©[2017]
IEEE.

Table 9.2: Number of Trials taken for the learning to converge. Reprinted with permission
from [1]. c©[2017] IEEE.

Environment No. of Trials
Env1 14
Env2 16
Env3 44

In all three environments, the robot learns to select appropriate actions in PRE-WALL-

FOLLOW states to reach the goal in shortest possible time within go-to-goal solution.

The number of trials taken for learning to converge is shown in table 9.2. Env3 takes

more trials to converge as it has more complex configuration of obstacles than Env1 and

Env2.

75

Figure 9.7: Simulation results for Env 3. Reprinted with permission from [1]. c©[2017]
IEEE.

Table 9.3: Number of time steps taken by robot to each goal

Environment Go-to-goal Go-to-goal with SNN based learning
Env1 1021 222
Env2 604 165
Env3 1769 462

9.3.1 Comparison with Results without the Learning Algorithm

From table 9.3, we can see a significant reduction in number of navigation time steps

to reach a goal location when SNN based learning is used with go-to-goal approach when

compared with just the go-to-goal approach.

76

9.3.2 Impact of Aliasing in State Representation on Learning Performance

Section 8.2.1 of chapter 8 discusses the aliasing effect in the spike frequency gener-

ation of state layer of the spiking neural network when spike frequencies are calculated

using equation 8.1. This section discusses the effect this aliasing can have on learning

performance.

For the sake of comparing the algorithm with aliasing and no-aliasing, consider a sim-

plified definition of performance of learning algorithm :

Performance : Number of trials taken by learning algorithm to converge.

The effect of aliasing is explained with a navigation example. Consider two trials of

the learning algorithm shown in Figures 9.8 and 9.9.

The two states of interest are marked as S1 and S2. Their representation is S1 =

(227.93 pixel, 132.070) and S2 = (198.19 pixel, 63.030). Now consider two cases:

9.3.2.1 With Aliasing

Parameters σ1, σ2 of 8.1 are chosen such that the state layer spike generation fre-

quencies at states S1 and S2 exhibit aliasing. This is shown in Figure 9.10 plotted using

σ1 = 60 pixel, σ2 = 600.

The spike generating populations of state layers at states S1 and S2 overlap with each

other significantly.

9.3.2.2 Without aliasing

Parameters σ1, σ2 of 8.1 are chosen such that the state layer spike generation frequen-

cies at states S1 and S2 do not exhibit such extreme aliasing. This is shown in Figure 9.11

plotted using σ1 = 60 pixel, σ2 = 100.

The spike generating populations of state layers at states S1 and S2 do not overlap with

each other significantly. Next a comparison of performance using these two schemes is

77

Figure 9.8: A trial showing state S1.

shown.

9.3.2.3 Comparison

As shown in table 9.4, the number of trials taken by the robot to learn actions for

shortest time path is only 17 with no aliasing scheme while it takes 42 trials to learn the

optimal actions with aliasing.

78

Figure 9.9: A trial showing state S2.

Table 9.4: Performance : Number of trials to converge

With aliasing Without aliasing

42 17

The parameters σ1 and σ2,shown in table 9.1, are selected empirically for simulation

to calculate state layer frequencies such that the effect of aliasing is minimal.

79

Figure 9.10: Aliasing when σ1 = 60 pixel, σ2 = 600.

Next we discuss why aliasing affects performance.

9.3.3 Discussion

With aliasing, the state encoding of two states S1 and S2 is almost identical. At S1, the

action WALL-FOLLOW-RIGHT is favorable while at S2, the action WALL-FOLLOW-

LEFT is favorable. These two actions are almost equally reinforced by the learning algo-

rithm because the encodings of S1 and S2 are close to each other. Therefore, it takes larger

number of trials for the frequencies of winning action neuron and losing action neuron to

differ by fthreshold. (section 8.8). Thus aliasing increases the number of trials to converge,

and decreases the performance of the algorithm.

80

Figure 9.11: Elimination of aliasing when σ1 = 60 pixel, σ2 = 100.

9.4 Conclusion

The research goal of minimizing the navigation time from a start location to goal loca-

tion is realized using a spiking neural network implementation of reinforcement learning

algorithm. The following are some advantages and disadvantages of this approach :

Advantages

1. Easy to understand and implement.

2. Computationally efficient because :

(a) The state space consists only of PRE-WALL-FOLLOW states instead of the

entire 2-D state space.

(b) The action space consists only of two actions to explore at each state.

81

Disadvantages

1. May take many trials to converge if the environment is too complex.

2. Need for empirical calculation of the parameters in 9.1 that work for any environ-

ment. This requires running the algorithm over many different environment config-

urations and tuning these parameters.

In conclusion, the thesis explores the connection between biological reinforcement

learning and its computational counterpart, and uses this link to solve a simple navigation

problem.

82

REFERENCES

[1] A. Mahadevuni and P. Li, “Navigating mobile robots to target in near shortest time

using reinforcement learning with spiking neural networks,” in 2017 International

Joint Conference on Neural Networks (IJCNN), pp. 2243–2250, May 2017.

[2] S. Thrun, “Toward robotic cars,” Commun. ACM, vol. 53, pp. 99–106, Apr. 2010.

[3] S. Sand, S. Zhang, M. MÃijhlegg, G. Falconi, C. Zhu, T. KrÃijger, and S. Nowak,

“Swarm exploration and navigation on mars,” in 2013 International Conference on

Localization and GNSS (ICL-GNSS), pp. 1–6, June 2013.

[4] P. H. T. Kruger, S. Nowak, “Towards autonomous navigation with unmanned ground

vehicles using lidar,” Proceedings of the 2015 International Technical Meeting of

The Institute of Navigation, pp. 778–788, Jan. 2015.

[5] B. Tribelhorn and Z. Dodds, “Evaluating the roomba: A low-cost, ubiquitous plat-

form for robotics research and education,” in Proceedings 2007 IEEE International

Conference on Robotics and Automation, pp. 1393–1399, April 2007.

[6] S. Bahadori, D. Calisi, A. Censi, A. Farinelli, G. Grisetti, L. Iocchi, D. Nardi, and

G. D. Tipaldi, “Autonomous systems for search and rescue,” 10 2017.

[7] S. Goyal and P. Benjamin, “Object recognition using deep neural networks: A sur-

vey,” CoRR, vol. abs/1412.3684, 2014.

[8] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning. Cambridge,

MA, USA: MIT Press, 1st ed., 1998.

[9] G.-S. Yang, E.-K. Chen, and C.-W. An, “Mobile robot navigation using neural q-

learning,” in Proceedings of 2004 International Conference on Machine Learning

and Cybernetics (IEEE Cat. No.04EX826), vol. 1, pp. 48–52 vol.1, Aug 2004.

83

[10] G. Dudek and M. Jenkin, Computational Principles of Mobile Robotics. New York,

NY, USA: Cambridge University Press, 2nd ed., 2010.

[11] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The MIT Press, 2012.

[12] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by

back-propagating errors,” Nature, 1986.

[13] B. Blaus, “Multipolar Neuron.” https://commons.wikimedia.org/wiki/

File%3ABlausen_0657_MultipolarNeuron.png.

[14] Laurentaylorj, “Action Potential.” https://upload.wikimedia.org/

wikipedia/commons/9/95/Action_Potential.gif.

[15] Chris73, “Action Potential.” https://en.wikipedia.org/wiki/File:

Action_potential.svg.

[16] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current

and its application to conduction and excitation in nerve,” The Journal of Physiology,

vol. 117, no. 4, pp. 500–544, 1952.

[17] A. N. Burkitt, “A review of the integrate-and-fire neuron model: I. homogeneous

synaptic input,” Biological Cybernetics, vol. 95, pp. 1–19, Jul 2006.

[18] E. M. Izhikevich, “Simple model of spiking neurons,” IEEE Transactions on Neural

Networks, vol. 14, pp. 1569–1572, Nov 2003.

[19] J. Sjostrom and W. Gerstner, “Spike-timing dependent plasticity,” Scholarpedia,

vol. 5, no. 2, p. 1362, 2010. revision #151671.

[20] E. L. Thorndike, “Animal intelligence: An experimental study of the associative

processes in animals.,” The Psychological Review: Monograph Supplements, 2010.

[21] E. M. Izhikevich, “Solving the distal reward problem through linkage of stdp and

dopamine signaling,” Cerebral Cortex, vol. 17, no. 10, pp. 2443–2452, 2007.

84

https://commons.wikimedia.org/wiki/File%3ABlausen_0657_MultipolarNeuron.png
https://commons.wikimedia.org/wiki/File%3ABlausen_0657_MultipolarNeuron.png
https://upload.wikimedia.org/wikipedia/commons/9/95/Action_Potential.gif
https://upload.wikimedia.org/wikipedia/commons/9/95/Action_Potential.gif
https://en.wikipedia.org/wiki/File:Action_potential.svg
https://en.wikipedia.org/wiki/File:Action_potential.svg

[22] M. Egerstedt, “Controls for the masses [focus on education],” IEEE Control Systems,

vol. 33, pp. 40–44, Aug 2013.

[23] N. Fremaux, H. Sprekeler, and W. Gerstner, “Reinforcement learning using a contin-

uous time actor-critic framework with spiking neurons,” PLoS Comput Biol, vol. 9,

p. e1003024, Apr 2013. PCOMPBIOL-D-12-00983[PII].

[24] M. Beyeler, K. D. Carlson, T.-S. Chou, N. Dutt, and J. L. Krichmar, “Carlsim 3:

A user-friendly and highly optimized library for the creation of neurobiologically

detailed spiking neural networks,” in 2015 International Joint Conference on Neural

Networks (IJCNN), pp. 1–8, July 2015.

85

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Background and Motivation
	Machine Learning for Autonomous Navigation
	Motivation and Research Goals

	Dynamics of Differential Drive Mobile Robot
	Differential Drive Abstraction
	Dynamics
	Mobile Robot Abstraction

	Reinforcement Learning Framework
	The Markov Property
	Markov Decision Processes
	Policy Function
	Value Function

	Key Challenges in Reinforcement Learning
	Action Selection
	Delayed Reward Problem

	Spiking neurons and spiking neural networks
	Structure of Action Potential Spike
	Spiking Neuron Model
	Izhikevich Model

	Spiking Neuron Abstraction
	Spiking Neural Networks
	Information Encoding in Spiking Neural Networks
	Learning in Spiking Neural Networks
	Spike Timing Dependent Plasticity
	Nearest Neighbor STDP

	Reinforcement Learning with Spiking Neural Networks
	Operant Conditioning
	Reinforcement Learning with Dopamine Modulated STDP and Eligibility Trace
	Designing Spiking Neural Network Architecture for Reinforcement Learning
	State Layer
	Action Layer
	Dopamine Reward Signal

	Previous Work
	Go-to-goal Solution
	Wall Following Behavior

	State Machine Implementation of Go-to-goal
	Conditions to Quit Wall Following Behavior

	Formulating The Reinforcement Learning Problem
	Minimizing the Navigation Time
	Framing the Problem as a Reinforcement Learning Task
	Delayed Reward Nature of the Learning Problem

	The Complete Solution
	State Representation
	State Encoding
	Aliasing in State Representation

	Action Representation
	Encoding the Value of (State, Action) Pair
	The Spiking Neural Network Architecture
	Integrating the Spiking Neural Network into the Navigation Algorithm
	Learning to Navigate in Shortest Possible Time
	Action Selection
	Activating Eligibility Traces
	Reward Modulation of Synaptic Weight Changes

	Criteria to Stop Learning
	Understanding the Learning Algorithm with an Example

	Results and Conclusion
	Experimental Setup
	Simulation
	Results
	Comparison with Results without the Learning Algorithm
	Impact of Aliasing in State Representation on Learning Performance
	With Aliasing
	Without aliasing
	Comparison

	Discussion

	Conclusion

	REFERENCES

