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ABSTRACT 

The human brain is responsible for constructing how we perceive, think, and act in the 

world around us. The organization of these functions is intricately distributed throughout 

the brain. Here, I discuss how functional magnetic resonance imaging (fMRI) was 

employed to understand three broad questions: how do we see, feel, and decide? First, 

high-resolution fMRI was used to measure the polar angle representation of saccadic eye 

movements in the superior colliculus. We found that eye movements along the superior-

inferior visual field are mapped across the medial-lateral anatomy of a subcortical 

midbrain structure, the superior colliculus (SC). This result is consistent with the 

topography in monkey SC. Second, we measured the empathic responses of the brain as 

people watched a hand get painfully stabbed with a needle. We found that if the hand 

was labeled as belonging to the same religion as the observer, the empathic neural 

response was heightened, creating a strong ingroup bias that could not be readily 

manipulated. Third, we measured brain activity in individuals as they made free 

decisions (i.e., choosing randomly which of two buttons to press) and found the activity 

within fronto-thalamic networks to be significantly decreased compared to being 

instructed (forced) to press a particular button. I also summarize findings from several 

other projects ranging from addiction therapies to decoding visual imagination to how 

corporations are represented as people. Together, these approaches illustrate how 

functional neuroimaging can be used to understand the organization of the human brain. 
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CHAPTER I  

INTRODUCTION 

 

I had the great pleasure of conducting my PhD at the Baylor College of Medicine under 

the guidance of Dr. David Eagleman and Dr. David Ress. Over the last 5 years, I worked 

on a variety of projects with mentors across many disciplines throughout the Texas 

Medical Center, Houston, and beyond. In many ways, my PhD differed than the 

traditional route many students pursue in which they dive deeply into a single question 

to answer about the brain, in the case of neuroscience. I certainly had that experience, as 

well, but it was not limited to one question, but rather several about the functional 

organization of the human brain. As such, I have organized my thesis into three main 

questions: How we see, How we feel, and How we decide.  

 

In the first chapter, I explore how we see. Together with Dr. David Ress, we studied how 

a deep midbrain structure, the superior colliculus (SC), controls saccadic eye 

movements. As your attention and gaze jumps from one target to the next (e.g., looking 

from the computer monitor to the clock on your wall), the SC is the structure driving 

these commands. The SC receives direct retinal input onto its superficial layers. The 

intermediate layer uses the overlying visual input to drive eye movements. And the deep 

layer integrates activity from multiple modalities (e.g., vision, audition, 

somatosensation). Together, the SC is a layered midbrain structure responsible for 

processing visual attention and conducting saccadic eye movements. The SC was well 
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studied in the 1970s by monkey electrophysiologists. They found that activity within the 

SC increases prior to execution of saccades (Mohler and Wurtz, 1976) and stimulating 

particular portion of the SC elicited eye movements of particular eccentricity and polar 

angle (Robinson, 1972). However, since that 1970s, little work has been done to 

understand the functional organization of human SC. Lesion studies have inferred the 

function of SC (and continue to provide valuable information Sereno et al., 2006; Biotti 

et al., 2016), and whole-brain imaging infers general functions performed by the SC 

(e.g., work from the Himmelbach  lab (Himmelbach et al., 2007; Linzenbold et al., 2011; 

Linzenbold and Himmelbach, 2012; Himmelbach et al., 2013)). However, these 

techniques cannot delineate the intricate functions of the very tiny SC, especially laminar 

profiles as the human SC is only ~4 mm in depth. Dr. David Ress’s lab has developed 

advanced MR imaging approaches that enable high resolution studies of subcortical 

structures in humans. These advances include spiral trajectories, high-resolution 1.2 mm 

voxels, multi-shot dual echoes, and optimizing Te for subcortex (~40 ms). Nonetheless, 

getting high SNR images from functional activity within the SC is challenging. We spent 

> 1 year optimizing stimulus paradigms to elicit enough activity within the SC to be able 

to measure it. This meant, participants had to make on the order of 1000s of eye 

movements to get enough SNR to do functional mapping. We also had to avoid 

antisaccades and visual contamination to isolate activity evoked from eye movements of 

interest. Ultimately, we were able to find that eye movements along the superior-inferior 

visual axis are mapped across the medial-lateral anatomy of the SC. Further, the eye 

movement maps are in register with retinotopic topography and lie 1-2 mm deeper. 
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These studies conferred the organization of human SC is similar to that of monkey SC 

discovered in the 1970s. The approaches further enable studies in the awake, behaving 

human, which could unveil further functions of the SC with experimentation not possible 

or very challenging in the monkey. I enjoyed working with Dr. Ress very much and very 

interested in learning more MR physics as my trajectory in radiology continues. As I 

continue as a medical student, we would like to start a new study using a 3D display to 

conduct dichoptic experiments to see if we can measure ocular dominance columns in 

human SC.  

 

In the second chapter, I describe how we feel. The brain has a particular set of networks 

that increases activity when a person feels pain (e.g., a shock or a stab). Interestingly, 

work over the last two decades has revealed that portions of these same brain regions 

increase activity when observing others in pain, as if the brain runs an emulation of other 

person’s pain.(Botvinick et al., 2005; Hein and Singer, 2008; Jacoby et al., 2015; Singer 

et al., 2004; Valeriani et al., 2008). This empathic response, however, is modulated by 

beliefs about the victim. If the victim is of the same race membership.(Azevedo et al., 

2013; Contreras-Huerta et al., 2013; Xu et al., 2009) or cheers for the same sports 

team(Cikara et al., 2011; Hein et al., 2010), people have heightened empathic responses 

for the victim. We were interested if this ingroup bias holds true for members of the 

same religious affiliation. Religion serves as a powerful divisive force across the globe. 

We scanned a large set of participants (n > 135) to observe this effect robustly. 

Generally, we found the ingroup bias holds true, that the empathy network shows 
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heightened brain activity for ingroup members compared to members of a different 

religion. Importantly, we did pit religions against each other in the analysis, as this 

would open many areas of contention that would not result in productive science about 

how the brain functions. Rather, we observed that regardless of a particular religious 

affiliation, people were more empathic towards members of the same religion. We were 

also interested to see if this bias could be altered or randomly generated. We constructed 

two different paradigms to address these questions. First, we assigned random outgroup 

religions to be “allies” with each participant’s own religions. Together, the allies were 

declared to be at war with another three religions. Under this narrative, we did not find 

significantly heightened activity for allies; that is, allies were still considered as 

outgroup. Second, instead of using religions, we assigned participants randomly to 

belong to one of two groups: Augustinian or Justinian. Participants were given bracelets 

to identify themselves with the selected ingroup. However, we observed absolutely no 

ingroup bias under this circumstance. This result is in contrast to a recent finding that 

had participants assigned to random groups but told participants that group assignment 

was based on what type of problem solver they were (conclusive or sequential problem-

solvers) (Ruckmann et al., 2015). Our studies reveal that the ingroup religious bias is 

more deeply rooted and cannot be so whimsically altered. This has important 

applications in the geopolitical scene that defines so much of how the world is 

constructed. 
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Lastly, in the third chapter, I discuss how we decide. The topic of free will has engaged 

neuroscientists, philosophers, and physicists for a long time. In the early 1980s, an 

experiment by Benjamin Libet showed activity rises in certain brain areas before an 

arbitrary decision (e.g., when to press a button) is made and before the participant is 

consciously aware that the decision has been made (Libet, 1985). John Dylan Haynes’s 

Lab expanded this work to decode the decision-making using fMRI and two alternative 

choices. His group found that brain activity could be decoded well in advance (~10 s) of 

the conscious awareness of the decision (Soon et al., 2008; Kahnt et al., 2011; Bode et 

al., 2011, 2012, 2013, 2014). This study elicited several controversies documented in the 

literature. The experimental and statistical approaches employed leave open several 

questions regarding the interpretation of this brain activity: (a) Is a free will task really 

memory-less with respect to previous decisions?
5–7

 (b) Is the underlying brain activity

truly below conscious awareness?
8,9

 and (c) Are the parametric assumptions of group

MVPA searchlight analyses on linear decoding maps valid?
10

 We attempted to address

these questions in two approaches. First, we examined the neural differences between 

free decision-making and forced-decision making. We scanned participants for 15 

minutes while they freely chose which of two buttons to press at random times of their 

choosing. Then, we had the participants press buttons at precise times. Unbeknownst to 

them, the timing and decision was exactly the same sequence they selected in the first 15 

minutes. We found networks for fronto-thalamic brain activity to be increased when 

participants were making forced decisions compared to free decisions. The heightened 

activity could represent increased attentional resources allocated when awaiting 
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instruction, reflecting a relaxation of activity to allow for free decisions to be selected. 

Second, we are completing analyses to verify if the activity John Dylan Haynes’s group 

discovered was in fact due to free decision-making. We constructed three different 

experimental paradigms: 1) an identical task as in Soon et al. 2008, 2) a forced decision 

making paradigm, and 3) a paradigm without a dual component task. We analyzed our 

data identically as Soon et al. 2008, and we found partial replication of the results, as 

well as decoding up to 10 s before decision awareness in novel areas like the caudate 

nucleus. Further, we ran null distributions to verify the parametric approach and found 

similar results. We attacked one more question on whether the decoding was due to non-

randomness by decoding whether participants switched or stayed from the button 

previously pressed. We found positive predictive accuracies in brain regions aside from 

those involved in decoding the button press. In addition, we did not observe positive 

decoding accuracy in our forced control experiment, as expected. We also observed only 

weak decoding on the data acquired in the single task regime, indicating that some of the 

results may be due to the dual task nature in John Dylan Haynes’s original work. This 

latter study is ongoing work we are still finalizing. Together, we are rigorously testing if 

decisions can truly be decoded from brain activity.  

 

These three chapters form the thrust of my thesis and my oral presentation. However, I 

worked on several other projects during my time as a graduate student. I wanted to 

document them here, as well, for two reasons. First, many of the projects were 

unsuccessful, as a graduate student often faces. This document serves as a guide to my 
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future self (and other interested readers) to know and understand what I tried and what 

did not work. Second, the various side projects reflect the important connections I made 

with people throughout the medical center during my time here. Without these mentors, I 

would not have been equipped with the many tools I hold now. The topics are diverse 

ranging from cognitive functions in subthalamic nucleus in Parkinson’s patient to 

decoding dreams to several studies on substance addiction. The depth of these topics 

also spans a broad range from published papers to ongoing ideas. Capturing them here 

serves as an important reflection for next steps. 

Please enjoy the following chapters in any order. I hope that there is something to be 

gained for everyone reading across many disciplines in neuroscience. 
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CHAPTER II 

HOW WE SEE 

2.1 Introduction 

Saccadic eye movements are controlled by a midbrain structure called the superior 

colliculus (SC). Electrical stimulation (Robinson, 1972) and neuronal recordings 

(Mohler and Wurtz, 1976) in the intermediate layers of monkey SC, have shown a 

retinotopically organized saccadic eye-movement map. Specifically, saccades along the 

superior-inferior visual field are mapped along the medial-lateral axis of the SC in 

monkeys. 

In humans, studies to infer function of the SC have been largely limited to lesion studies 

and whole-brain imaging. Lesions have inferred the function of SC (and continue to 

provide valuable information Sereno et al., 2006; Biotti et al., 2016). However, it is rare 

to find human patients with focal lesions to the SC without comorbid complications. 

Further, the aspects of saccadic eye movements can recover even after direct lesions to 

monkey SC (Hanes et al., 2005). Whole-brain imaging infers general functions 

performed by the SC (e.g., work from the Himmelbach lab (Himmelbach et al., 2007; 

Linzenbold et al., 2011; Linzenbold and Himmelbach, 2012; Himmelbach et al., 2013)). 

However, these techniques cannot delineate the intricate functions of the small, 

especially laminar organization as the human SC is only ~4 mm in depth. 
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Previously, our lab has used high-resolution functional MRI to elucidate how visual 

attention is mapped on the superficial SC (Katyal et al., 2012, 2010; Katyal and Ress, 

2014). Here, we expand those methods to image the intermediate layers of human SC to 

map the polar angle representation of eye movements. 

 

2.2 Materials and Methods 

2.2.1 Participants 

We recruited five participants (4 males) to undergo several ~2 hour long scanning 

sessions. One to two imaging sessions were acquired for each participant as they made 

leftward and rightward eye movements separately, invoking primarily the contralateral 

SC. Each eye movement session consisted of 12-16 278.4-s runs. One to two scanning 

sessions were also acquired from each participant for visual stimulation retinotopic 

mapping. Visual stimulation experiments evoked activity from both SC in one session. 

Retinotopy sessions consisted of 14-16 228-s runs. Participants gave informed consent 

prior to scanning based on our approved protocol from the Baylor College of Medicine 

Institutional Review Board. Participants were also trained on the tasks prior to scanning, 

and an eye tracker was used to ensure eye movements and task performance was 

reliable. 

 

2.2.2 Stimuli 

Stimuli were generated using MATLAB R2015a (Mathworks, Natick, MA) and 

PyschToolbox-3 (Brainard, 1997) on a Windows 7 Dell PC. Stimuli were presented on a 
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32” LCD BOLD Screen (Cambridge Research Systems, Kent, UK) at the back of the 

scanner bore 1.3 m away from the participants’ eyes. The display was gamma corrected 

using an i1 Pro 2 spectrophotometer (X-Rite, Grand Rapids, MI).    

 

Previous human studies of saccadic mapping in cortex have attempted to use phase 

encoding approaches (Connolly et al., 2015; Konen and Kastner, 2008; Schluppeck et 

al., 2005; Sereno et al., 2001); however, these designs had two critical limitations for 

imaging subcortical activity: 1) a very low duty cycle (1 saccade every 5 s) and 2) 

reverse saccades made immediately after forward saccades. The low duty cycle forces 

participants to fixate for the majority of time instead of making saccades, which 

dampens the measurable activity (Figure 2.1A). And performing anti-saccades may 

involve the release of inhibitory control exerted by frontal regions like the dorsal lateral 

prefrontal cortex (DLPFC) onto the colliculus (Condy et al., 2004), which could 

significantly alter topographic maps of the prosaccades (Figure 2.1).   

 

To overcome these limitations, we designed a paradigm in which participants could 

perform many saccades in one direction while minimizing saccades in the opposing 

direction. Participants made saccades either to the left or to the right (activating 

primarily the contralateral SC) while we cyclically varied the vertical component of the 

saccade to correspond to the lower, horizontal, and upper visual field (Figure 2.2). 

Participants performed three 6° saccades guided by a green dot target in a static grid of 

12 red dots. The static red dots were arranged with 4 dots separated by 6° along each of 
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the three principle axes (horizontal, 45° diagonal, and -45° diagonal). The use of a static 

grid reduces differential contrast effects from retinal slip; the use of green-red color 

contrast minimizes the effects of bottom-up contrast in target discrimination. Further, 

human SC has recently been shown to adapt to red-green contrast (Chang et al., 2016), 

so our static red-green grid reduces the evoked visual stimulation during saccadic eye 

movement measurements. 

 

 
 

Figure 2.1 Evolution of Experimental Design 

 

Related to Figure 2.2. Evolution of stimulus paradigms to evoke eye movement polar 

angle topography in human SC. A. Our first attempts to map the polar angle using a 

hemi-ellipse did not evoke significant activity, perhaps due to the amount of fixation 

time and non-blocked design. Attempts to increase the number of saccades by having 

participants jump back and forth from previous to next target 7 times (B) or a centrally 

weighted number of times (C) also did not yield significant activity in SC, likely due to 

the conductance of pro- and anti-saccades occurring right after each other. We next tried 

to use memory-guided saccades to elicit SC activity. In one attempt, we briefly flashed a 

pair of peripheral green dots (D) for 0.2 ms and participants rapidly performed saccades 

between the two remembered dots for 12 s followed by saccades in the orthogonal 

direction. Results were still weak, but slightly improved by using foveal cues: green and 

red lines flashed briefly at the center of the screen to cue the direction of the memory-

guided saccades (E). Lastly, we used a static set of red dots with a pair turned green to 

cue the direction of the saccades. This reduced retinal slip and increase activity 

significantly, and ultimately led to the design used in our main finding. 
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Figure 2.2 Experimental Setup 

 

Participants performed visually-guided saccades to measure the polar angle 

representation of eye movements in the superior colliculus. Brain activity from primarily 

one SC in a session was measured by having participants perform saccades in one 

direction along the horizontal (right shown here). Each session consisted of 15 ~4.5 min 

runs, each of which consists of 9 cycles. In each 28.8 s cycle, the vertical component 

was varied along three principle axes: lower, horizontal, and upper visual fields. The 

stimulus screen showed a static grid of 12 red dots with one target dot turned green to 

indicate the saccade target. Participants made three 6° saccades along a principle axis, 

after which a 1.2 s visually-guided smooth pursuit was made back to the origin along 

that axis. Upon fixation onto target dots and during the smooth pursuit, participants 

performed an object discrimination task (square or circle) to keep attention engaged and 

improve reliability of eye movements. 

 

 

One of the 12 red dots turned green to indicate the target to saccade to. Once the saccade 

was made, participants had to perform an object discrimination task (circle or square). 

This allowed attention to be engaged and saccades to be made more reliably. Participants 

responded via button press, which triggered the green do to move to the next target along 

the principle axis. After three saccades, the participants then performed a smooth pursuit 

(1.2 s) back to the first dot. Saccades and the pursuit were continued along the same axis 

for 9.6 s, and then participants performed another smooth pursuit to the start of the next 

Saccade (6°) Pursuit (1.2 s)

Discrimination task

Square Circle

Saccade (6°)  x 3 Pursuit (1.2 s)

1 Run = 
(9 cycles) 

1 2 3 4 5 6 7 8 9

Lower 
(9.6 s)	

Horizontal 
(9.6 s)	

Upper 
(9.6 s)	

1 Cycle (28.8 s)	

Cycle	 X 15 
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axis. During each smooth pursuit, the discrimination task had to be performed 0-2 times 

(truncated Poisson, λ = 1) at random times during the 1.2 s smooth pursuit, allowing 

attention to remain engaged and forcing eye movements to be restrained to the pursuit 

path. Participants performed 9 cycles in a single run (~4.5 min) and ~15 runs per session. 

Leftward and rightward saccades were run on separate sessions to measure the 

contralateral response of each SC independently. 

Retinotopic maps were also acquired for all 5 participants using our previous visual 

stimulation paradigm (Katyal et al., 2010). Briefly, participants fixated at center while a 

wedge of moving dots rotated around the entire polar angle. As such, the entire polar 

angle retinotopy for both SC was measured in a single session. The rotating wedge 

consisted of 6 virtual sectors, and in one sector, the set of dots were moving either faster 

or slower. Participants performed the speed discrimination task with a staircase to keep 

attention engaged. 

2.2.3 MRI Methods 

Imaging was conducted on a Siemens (Erlangen, Germany) 3T Magnetom Trio scanner 

at the Core for Advanced Magnetic Resonance Imaging (CAMRI) at the Baylor College 

of Medicine. Eight 1.2-mm-thick quasi-axial slices (170-mm field of view) covered the 

entire SC with the prescription oriented roughly perpendicular to the local neuraxis. 

Functional data were acquired using a 3-shot spiral (Glover, 1999; Glover and Lai, 1998) 

dual-echo (both outward) sequence. We used a TR = 0.8 s for each shot, yielding a 2.4 s 
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volume acquisition time for our 3-shots. TE was set to 25 ms for the first echo and 40 ms 

for the second echo. The dual echoes were combined using a signal-weighted average, 

which yielded an increase in SNR of ~30% compared to the single echo. 

A set of T1-weighted structural images was obtained on the same prescription at the end

of the session using a three-dimensional (3D) magnetization-prepared rapid gradient-

echo (MPRAGE) sequence (0.7 mm isotropic voxels). These images were used to align 

the functional data to the segmented structural reference volume. 

2.2.4 Image Data Analysis 

Preprocessing- Image analysis was conducted using the mrVista software package 

(http://web.stanford.edu/group/vista/cgi-bin/wiki/index.php/MrVista) and custom 

modifications built on top of mrVista in our lab. The first 12 s of each retinotopy run 

were discarded to remove transient effects. Similarly, the first 19.2 s of each eye 

movement run were discarded to remove transients and to allow participants to engage in 

a regime of reliable eye movements. The following preprocessing was conducted on 

each of the two echoes for all runs (visual stimulation and eye movement), analogous to 

our previous pipeline (Katyal et al., 2010): slice-timing correction (zeroed at the middle 

slice), within-scan motion compensation (Nestares and Heeger, 2000), intensity-based 

between-scan alignment to the last scan in a session, and then averaging the multiple 

runs together to increase SNR. The two processed echoes were then combined using a 

signal-weighted average. 

http://web.stanford.edu/group/vista/cgi-bin/wiki/index.php/MrVista
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Surface Analysis- We segmented the brainstem (including portions of the thalamus) 

using a combination of automatic (e.g., active contour evolution) and manual approaches 

in ITK-SNAP (Yushkevich et al., 2006). A surface model was then built at the tissue-

cerebrospinal fluid interface using a deformable surface algorithm (Xu et al., 2006). 

Functional data were then spatially aligned and resampled to the high-resolution T1 

volume, averaged across runs, and visualized on the surface. A distance map was also 

computed from SC tissue voxels to the vertices of the surface to give a measure of the 

depth (s) of the tissue voxels.  

 

Phase Mapping- A sinusoid at the stimulus repetition frequency (24 s for visual 

stimulation data, 28.8 s for eye movement data) was fit to the depth-averaged (0-1.6 mm 

for visual stimulation data, 0.8-1.2 mm for eye movement data) (Ress et al., 2007). The 

best fit sinusoid was found Fourier transform analysis to give measures of amplitude, 

coherence, and phase. Phase maps were projected onto the surface to visualize 

topography of visual stimulation and eye movements. P-values were generated by boot-

strapping across the many depth-averaged runs for each participant.   

 

ROI Generation- To define ROIs that depicted the topography of eye movements, we 

generated many elliptical ROIs. The phasic progression from medial to lateral was 

visually observed and then delineated with two vertices on the surface to define the start 

and stop of the putative eye movement maps. Surface projections of the SC were then 

flattened down to 2D, and the two vertices were transformed to the flat view. Then, 
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several (~20,000) elliptical ROIs were generated by varying 5 parameters: 1) size (15 – 

60% of one entire SC hemisphere), 2) aspect ratio (3.5 to 7) 3) center x and 4) y-

coordinates (each ± 2 pixels from the midline of the delineated phase progression), and 

5) the elliptical angle (± 15° relative to the angle of the delineated phase progression).

An exhaustive search was then conducted with following optimization criteria to 

maximize: 1) number of significant (p < 0.2) voxels, 2) geometric average p-value, 3) 

amount of phase coverage (median deviation), 4) degree of match between putative 

phasic angle and the elliptical ROI angle on the flat view, and 5) the variance explained 

and the 6) the closest matching slope of the linear fit between the mesh distance and the 

phasic progression. The five optimization criteria were multiplied together (un-

weighted) to find the 4 best ROIs. ROIs were visually inspected for sanity, and generally 

the top fitting ROI was used for subsequent analyses. 

Laminar Profile Analysis- We then examined the amplitude of the complex response as a 

function of laminar depth within the elliptical SC ROIs, similar to our previous 

approaches (Katyal et al., 2010, 2012; Katyal and Ress, 2014). Complex amplitude data 

was first averaged together across all runs for each participant. To correct for 

hemodynamic delay, phase normalization was performed for each run by dividing the 

complex amplitude of the profile with the mean phase within the respective elliptical 

ROI, restricted to the collicular surface where the data were strongest and most reliable. 

A boxcar-smoothing kernel (1.2 mm width in bin steps of 0.1 mm) was convolved with 

the average complex amplitude data as a function of depth; the magnitude of this 
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convolution was the laminar profile. The laminar profiles for both eye movement and 

visual stimulation experiments were normalized to range [0,1] for ease of comparison 

across participants.  

 

We used bootstrapping to obtain confidence intervals on the laminar amplitude profiles 

in each participant and all participants combined for both visual stimulation and eye 

movement experiments. For each ROI, we calculated the complex amplitudes for each 

run to create an ensemble of complex amplitude datasets. We then formed averages by 

resampling this ensemble with replacement over 5,000 iterations, and calculated the 

laminar profile anew for each resampled average. 

 

Centroids of the laminar profiles were calculated to quantify comparisons of depth 

between the attention and stimulation conditions using: 

 

𝑐 =
1

�̂�
∫ 𝑠𝐴(𝑠)𝑑𝑠

𝑠𝑚𝑎𝑥

𝑠𝑚𝑖𝑛

  

 

where A(s) is the amplitude as a function of depth and Â is the average amplitude. The 

integration limits smin and smax were set to 0 and 4 mm, respectively, as that is roughly the 

thickness of human SC. The centroid calculation was also bootstrapped across the 

ensemble of runs to obtain confidence intervals and p-values for differences between 
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centroid values for visual stimulation and eye-movement maps (fraction of bootstrapped 

centroids with eye movement values > visual stimulation values).  

  

Retinotopy-Eye Movement Correlation- Within each optimal elliptical ROI for all 

participants, we measured how well phase maps for saccadic eye movements were in 

register with the phase maps for visual stimulation. The raw eye movement maps 

spanned the entire cycle (2π), and thus were first converted to visual field coordinates 

(90° around 0° for rightward eye movements, 90° around 180° for rightward eye 

movements). Visual stimulation phase data were corrected by estimating the 

hemodynamic delay, which we corrected by subtracting the mean off of the phase data 

and adding 180° for the left visual field.  

 

We again used bootstrapping to obtain confidence intervals on the correlations for each 

participant and all participants combined. For each attention session, we calculated a 

run-by-run ensemble of depth-averaged complex amplitude datasets. We then performed 

our correlation analysis with the retinotopy data for 5,000 averages of the attention-

condition runs, each average obtained by resampling the ensemble with replacement. 

The p-values corresponded to the fraction of the correlations yielding a fit with slope ≤ 

0. 

 

Eccentricity Measurements- In two participants, we obtained visual eccentricity 

measurements in both SC on separate scanning sessions (Halfen et al., manuscript in 
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prep). Eccentricity was obtained from the population receptive field (pRF) model of the 

stimulus of moving bars. The eccentricity was extracted from voxels within the elliptical 

ROIs generated above for the eye movement maps. The mean and spread of the 

eccentricity data were plotted as histograms. This allowed us to see how well the neural 

data represented the amplitude of the saccades performed (i.e., 6°). 

 

2.2.5 Eye Movements 

Eye movements were obtained with the SR EyeLink 1000 Plus (Scientific Research, 

Ontario, Canada) both outside of the scanner for training and inside the scanner during 

image acquisition. Inside the scanner, the infrared light and camera were placed beneath 

the LCD display and angled at the mirror allowing us to track the participant’s right eye 

at ~130 cm lens-to-eye distance. Raw x,y position coordinates were sampled at 1000 Hz. 

Saccade reports were generated using the EyeLink Data Viewer (Scientific Research, 

Ontario, Canada) and further analyzed in MATLAB (Mathworks, Natick, MA, 2000). 

Saccades were detected using three minimum thresholds: position (> 0.15°), velocity (> 

30°/s), and acceleration (> 9500°/s
2
). Eye blinks were detected when the pupil diameter 

was too small (< 1 mm), obstructed, or not tracked, and any saccades during blinks were 

discarded from analysis. Polar plots were created to represent the saccades with the 

direction of the saccade as the polar angle and the amplitude of the saccade as the 

eccentricity, which was also visualized with histograms. 
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2.3 Results 

2.3.1 Behavioral Performance 

During the eye movement task, participants were able to perform the object 

discrimination task reliably (mean 81% across all sessions and participants, Figure 

2.3A). The speed of the saccades were determined by the participants as the button 

response in the discrimination task triggered the onset of the next cue. Participants 

generally made saccades at a peak interval between 0.6 – 0.8 seconds (Figure 2.3B). 

During visual stimulation task, participants performed the speed discrimination task at a 

mean accuracy of 70.3% (Figure 2.3C), right around the staircase target accuracy, with 

a mean discrimination threshold of 1.6 °/s. The higher mean discrimination threshold 

was driven by two participants who had considerably less training/experience with the 

task than the other three participants (Figure 2.3D). 

 

2.3.2 Eye Movements 

We trained all participants on 2-3 runs before each eye movement mapping session 

(outside of the scanner) and quantified the reliability of eye movements prior to scanning 

(Figure 2.4A). Saccades were detected and visualized on polar plots to show the 

eccentricity and polar angle of each saccade. Also, saccades were color coded to 

represent the cycle timing to see how temporally the saccades along the three principle 

axes (inferior, horizontal, superior) were made. We were also able to obtain reliable eye 

tracking the scanner from two participants on both rightward and leftward eye 
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movement sessions (Figure 2.4B). Saccade amplitude histograms confirmed that 

participants were able to make 5-6° saccades. 

 

 

Figure 2.3 Behavioral Performance 

 

Psychophysical performance measures show participants reliably performed both the 

object discrimination task during saccadic eye movements (top row) and the speed 

discrimination task during visual stimulation (bottom row). A. Participants were able to 

detect the object (circle or square) reliably at around 80%. B. Histograms showing the 

distribution of button press intervals. Histograms are bi-modal, with one mode around 

0.6 – 0.8 s representing the speed of the saccades and a long-tailed mode at 1.2 – 1.5 s 

representing the smooth pursuit. Participants also performed the speed discrimination 

task at the 71% target accuracy (C) with a mean discrimination threshold of 1.6 °/s (D). 
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Figure 2.4 Reliability of Eye Movements 

Eye tracking confirmed the reliability of eye movements participants were able to 

perform. A. Data from three participants show saccades outside of the scanner during a 

training session. Polar plots show the polar angle and eccentricity of each saccade 

detected, as well as the corresponding time during the 28.8 s cycle, represented as a 

color from the HSV color map. B. Data from 2 participants inside the scanner during 

image acquisition also show reliable eye movements during both leftward and rightward 

sessions. Histograms confirm peak eye movements around 5-6° in the cued direction 

(shown in gray). Long tailed distributions in the opposite direction (white) were also 

observed, as the smooth pursuits often contained variable saccades, but most were < 1°, 

which were easily separable from the cued saccades. Small correction saccades also 

contribute to the opposite direction saccades, as we observed participants to often 

saccade past the cued target and then make a small correction saccade back to the target. 
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2.3.3 Polar Angle Maps of Saccadic Eye Movements 

Eye movements along the superior-inferior visual field were mapped along the medial-

lateral axis of the SC in all 5 participants (Figure 2.5). Phasic activity was generally 

clumped into three zones: lateral, central, and medial corresponding to inferior, 

horizontal, and superior eye movements, respectively. In most participants, we also 

observed a rostral tilt in the lateral to medial phase progression. This tilt was in line with 

visual stimulation retinotopy, as well. 

Our eye movement task involved making 6° saccades only in one horizontal direction, 

while smooth pursuing back in the opposite direction. This allowed us to see activation 

of primarily one SC at a time. The activity in the SC contralateral to the direction of 

horizontal eye movements was generally much stronger and showed more reliable 

medial-later phase progressions. However, in several participants, we observed medial-

lateral phase progressions on the ipsilateral SC, sometimes in the reverse direction as the 

contralateral SC. One reason for this activity may be that the targets are still remembered 

during the smooth pursuit, and activity in monkey SC of both remembered and visually-

guided saccade targets has been reported during such smooth pursuits (Dash et al., 

2016). The reverse mapping in some participants may arise from small saccades during 

the smooth pursuits, particularly as the pursuit approaches the target end-point, and the 

participant saccades ahead of the pursuit. The ipsilateral SC activity may also arise from 

observed small correction saccades, as the participant often saccades passed the target 
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and makes an adjustment by saccading in the opposite direction to fixate back on the 

target. 

Figure 2.5 Topography of Saccades of SC 

Eye movements along the superior-inferior visual field were mapped medial-laterally on 

the contralateral SC in five participants. The left column shows activation of the left SC 

as participants performed the eye movement task towards the right visual field, and the 

right column shows activation of right SC (leftward eye movements). Maps generally 

show three phases of activity: low phase medial (inferior eye movements), middle phase 

central (horizontal eye movements), and high phase medial (superior eye movements). 

The center column shows retinotopic topography for each participant elicited by visual 

stimulation. 
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2.3.4 Eye Movement Maps Correlated to Visual Stimulation Topography 

Elliptical ROIs were first generated to delineate the medial-lateral phase progressions 

corresponding to the eye movements along the superior-inferior visual field (Figure 

2.6). 

Within the elliptical ROIs for each participant, we correlated the saccadic eye movement 

maps with the retinotopic visual stimulation maps (Table 2.1, Figure 2.7). Correlations 

were only significant for one SC in one individual (Table 2.1), but data approached 

significance when combined across all participants (left p-value: 0.163, right p-value: 

0.0617). 

Figure 2.6 ROI Generation 

Elliptical ROIs were optimally fit along the medial-lateral axis of the SC to isolate the 

eye movement regions for each participant on both SCs. The highlighted SC (blue box) 

shows the elliptical ROI on the surface mesh (black boundary, left) and in the flat view 

(white boundary, right), where the 2D elliptical ROIs were optimally found. 
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Left SC

Right SC
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Table 2.1 Eye Movement and Visual Stimulation Correlations 

 

Quantifications (R2, boot-strapped p-value, and slope) for eye movement and visual 

stimulation correlations for each and all participants for both SC. 

 

 

 

 

Figure 2.7 Eye Movements and Visual Stimulation Correlations 

 

Saccadic eye movement phase maps correlated (weakly) with visual stimulation 

topography. Polar plots on the left and right columns show three pieces of information 

for eye movement and visual stimulation maps. The polar angle of each dot represents 

the phase from each significant (p < 0.1) voxel in the elliptical ROI. The r-axis the 

coherence of the sinusoidal fit for the voxel. And the color represents the distance on the 

mesh from the medial inter-collicular axis. Together, the polar plots reveal: 1) the 

medial-lateral phase progression of eye movements along the superior-inferior axis 

adjacent to the retinotopic progression, which visually appear in register. To further 

quantify this, we correlated the phase of the eye movements with visual stimulation 

maps across all participants for each SC (center plot). Correlations approached 

significance on both SC (left p-value: 0.163, right p-value: 0.0617). See Figure 2.9 for an 

exemplar participant (RS) that visually shows all maps along with eye movement maps 

from eye tracking. 

 

  Left R2 Left p-value Left Slope Right R2 Right p-value Right Slope 

AF 0.58873 0.207 0.8263 0.54997 *0.0066 1.572 

RS 0.52737 0.1678 1.7262 0.059043 0.3978 0.40487 

EH 0.38232 0.5894 0.99059 0.070883 0.419 0.095239 

JHK 0.069807 0.2844 0.75405 0.61038 0.3382 1.6273 

JR 0.31734 0.3622 1.3559 0.070547 0.2974 0.41204 

All 0.16228 0.163 0.94693 0.17679 0.0617 0.79896 
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2.3.5 Depth Profile 

Laminar depth profiles extended deeper into SC for activity evoked by eye movements 

compared to visual stimulation (Figure 2.8). The left SC profile shows high activity for 

visual stimulation superficially that drops off almost completely 2 mm into the SC. In 

contrast, eye movement evoked activity begins to rise at 1 – 1.5 mm and peaks at ~3 

mm. Similar though smaller differences are observed on the right SC. The centroid is 

also significantly shifted deeper for eye movement maps compared to visual stimulation 

maps for both left (Δc = 1.767, p ~= 0) and right (Δc = 0.9886, p = 0.0222) SC. At the 

individual level, data were only significant in 3/10 SC (Table 2.2). 

We also computed depth profiles on 3 ROIs (medial, central, lateral) rostral-caudal 

midline of the colliculus, which were drawn using 3 mm radius independent of either 

phase map (Figure 2.10). Eye movement maps were significantly deeper for left lateral 

and medial ROIs, as well. 

Table 2.2 Depth Profiles 

Quantifications of laminar profile centroid shifts (Δc) for eye movement maps compared 

to visual stimulation maps for each individual participant. 
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Figure 2.8 Depth Profiles 

 

Saccadic eye movement maps lie deeper in SC than visual stimulation maps. Laminar 

depth profiles for both left and right SC show the activity evoked by eye movements 

(red) lies deeper in SC than activity evoked by visual stimulation (blue). Data are 

combined across all 5 participants for left and right SC. Dotted lines represent 68% 

confidence intervals bootstrapped across all runs and participants. The centroid is 

significantly shifted deeper for eye movements for both left and right SC (shaded 

rectangles show bootstrapped confidence intervals for centroid calculations). 
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Figure 2.9 Exemplar Participant 

 

Related to Figure 2.7. An exemplar participant (RS) showing a full set of mesh distance 

maps (top, left), saccadic eye movement polar plots (second row, left), visual stimulation 

polar plots (third row, left) and corresponding eye movement plots (bottom, left). Phase 

and color progressions are visually in register with all plots. Retinotopic and eye 

movement correlations for the individual are shown on the right. 
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Figure 2.10 Depth Profiles in ROIs 

Related to Figure 2.8. Laminar profile depth analysis reveals activity evoked by 

saccadic eye movements extends significantly deeper into the left SC compared to 

activity evoked by visual stimulation in ROIs drawn independently of either map. 

Lateral, central, and medial ROIs with 3-mm radius were drawn on each SC for all 

participants (top row). Laminar profiles and bootstrapped confidence intervals for eye 

movement maps (red) and visual stimulation maps (blue) are plotted. Vertical bars 

represent the centroids of the laminar profiles, which were significantly deeper for the 

left lateral (p = 0.0026) and left medial (p = 0.0092) SC ROIs. 

AF	 JHK	 JR	RS	 EH	
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2.3.6 Eccentricity Maps 

We quantified the eccentricity of the eye movements in two participants (AF, EH) from 

the neural data within the elliptical ROIs derived from the eye movement maps (Figure 

2.11). The eccentricity in one participant (AF) closely matched the eye movement 

profile from training (Figure 2.3), with the neural data overestimating the eccentricity 

just by ~1-2°. The other participant (EH) also showed the neural data to overestimate the 

eye movements by 3-4°. 

Figure 2.11 Eccentricity of Eye Movements 

The eccentricity of saccadic eye movements derived from the neural data were slightly 

larger than the eccentricity of the actual eye movements (derived from eye-tracking, see 

Figure 2.3). One participant (AF, top row), the eccentricity peaked at ~6-7° on both 

sides. The mean was brought up by just a few voxels with much higher eccentricity. In 

the other participant (EH, bottom row), the eccentricity within the elliptical ROI 

contained more spread and peaked higher (~10°) than the actual 5-6° eye movements 

made. 

Right SC
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2.4 Discussion 

We used high-resolution functional MRI to map the polar angle representation of 

saccadic eye movements onto the human SC. We found eye movements along the 

superior-inferior visual axis were mapped medial to lateral on the anatomy of the SC. 

Eliciting these maps required a novel paradigm in which participants could make 

saccades along principle direction and then making a smooth pursuit back to the origin 

of the axis. Doing so isolated forward saccades from reverse saccades, while still 

allowing participants to make many saccades in an experimental session. This construct 

was not immediately obvious to us, and was only discovered many failed paradigms that 

evolved over time (Figure 2.11). 

 

We found the saccadic eye movement maps in human SC to be in rough alignment with 

the overlying retinotopic topography. When we plotted the phase data from the two 

maps against each other, the slopes were all positive for every participant for each SC. 

However, the variance explained was often not extremely high (R
2
 ranged from 0.05 to 

0.6) and only one SC out of 10 had a bootstrapped p-value < 0.05. This may be in part 

due to the fact that the polar angle visual stimulation maps were acquired on the both 

hemifields simultaneously. We corrected the phase maps by mean centering the data 

appropriately, but perhaps exciting the visual field with the precise cycle and order of the 

saccadic eye movement stimuli would have enhanced the correlations. For example, 

such experiments in monkey were done in which individual neurons had their receptive 
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fields mapped by stimulation as well the elicited saccades by electrical stimulation 

showed a very precise correlation between the two maps (Schiller and Stryker, 1972).  

 

The depth profiles show that the saccadic eye movement maps lie 1-2 mm deeper than 

visual stimulation maps on both SC. Data were significant for only 3/10 participants 

individually. This is often observed as many sessions are needed to obtain the resolution 

to resolve the laminar profiles, as we previously encountered when comparing 

attentional maps to visual stimulation maps (Katyal et al., 2010). 

 

Neural eccentricity measurements were quite close to (but slightly overestimated) the 5-

6° saccades in one participant (AF) but much more severely overestimated in the other 

participant (EH). We are not sure what precisely caused these higher eccentricity 

representations in the neural data. The phase progressions for saccadic eye movement 

maps are large and do traverse rostrally as the maps move medially in several 

participants. The more caudal eye movement maps lie laterally and seem to be at higher 

eccentricities in the neural data. The precise correlation between neural eccentricity and 

saccadic eye movements might be better elucidated by running the stimulus paradigm at 

various eccentricities (i.e., making saccades at 3° 6° 9° 12°) and seeing if the neural 

eccentricity matches each experiment.  

 

In summary, our techniques allowed us to measure the functional topography of eye 

movements on the human SC. This required using high-resolution functional MRI to 
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reliably image the subcortex, as well as a novel experimental paradigm that allowed 

participants to make many saccades and isolate saccades to one principle direction. The 

functional organization of the eye movement maps were in register with retinotopic 

projections but were deeper in SC, similar to the organization observed in monkey SC. 

With this finding, we can now study more aspects of subcortical vision (e.g., ocular 

dominance columns) to understand the function of the human SC and how it may differ 

from non-human primate and rodent SC. 
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CHAPTER III 

HOW WE FEEL 

3.1 Introduction 

When seeing someone in pain, observers tend to show neural activation patterns similar 

to if they had experienced pain themselves. We found that this empathic response was 

increased when participants viewed a painful event occurring to a hand labeled with their 

religious affiliation than a different affiliation. This neural ingroup bias was not seen 

with randomly assigned teams or alliances, suggesting that differential empathy may 

require some semblance of non-arbitrariness. 

3.2 Materials and Methods 

3.2.1 Participants 

We recruited 135 participants (29.2 +/- 8.9 years, 63 males, 108 right-handed) with 

normal or corrected-to-normal vision from the Houston, TX metropolitan area. All 

participants were told they were being recruited for a study on memory; the study (and 

the deceptive research) was consented prior to the study in accordance with Baylor 

College of Medicine approved IRB, and participants were compensated for taking part in 

the experiments. Data from 8 participants were excluded due to errors on MR image 

acquisition or reconstruction, and 22 participants were excluded from analysis due to 

excessive head motion (absolute mean displacement > 3.0 mm), leaving 105 participants 

in total for analysis. 
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3.2.2 Behavioral Questionnaires 

First, we asked participants their religious affiliation, as specifically as possible (they 

could declare ‘agnostic’ or ‘atheist’). Next, participants completed 5 brief surveys that 

quantified empathy and degree of religiosity: (1) Balanced Emotional Empathy Scale 

(BEES) (Mehrabian, 2000), (2) Davis Emotional Empathy Interpersonal Reactivity 

Index,(Davis, 1980) (3) Right Wing Authoritarianism Scale (Altemeyer, 1981), (4) 

Religious Conviction (Dawkins, 2008), and (5) Religious Orientation (Gorsuch and 

Venable, 1983). 

3.2.3 Stimuli 

All stimuli were programmed in MATLAB with PsychToolbox (Brainard, 1997). 

Participants viewed the stimuli on a back-projected screen while lying supine in the 

scanner. 

All experiments were structured identically. First, participants viewed trials in which 6 

hands appeared on the screen, each of which were similar in skin tone and apparent age, 

but was differentiated by an arbitrary bracelet that simply helped to give each hand a 

unique identity (Figure 3.1A). Two to four seconds later, one hand was randomly 

‘selected’ by the computer by the addition of a red border around the image. After 6 

seconds, the selected image moved into the middle of the screen and became a video. 

The video, lasting 2.3 seconds, either showed the hand being stabbed with a syringe 

needle or touched with a cotton swab—events that are visually similar in angle-of-
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approach and timing, but quite different in terms of emotional impact. Because each 

participant saw multiple stabs and touches in the course of an experiment, we filmed 

stabbing and touching events from several different angles to reduce desensitization. In 

most versions of the experiment, except as where noted below, participants began by 

observing 6 stab trials and 6 touch trials; the contrast of these two baseline conditions 

allowed us to localize the pain matrix in fMRI. Observations were separated by a blank 

screen of at least 8-12 seconds inter-trial interval (ITI). 

Next, for the remainder of the experiment, religious group labels were presented on top 

of each hand. The following 60 trials were identical to the first 12 except that each hand 

was labeled with a religion or group. 

To examine whether small changes in the ITI or the number of hands would affect our 

results, we ran three slightly different versions of this experiment: 

1) 6 hands, ITI 8-12 s, 6 religions, 12 baseline trials, 60 religion trials (n = 38

participants, including 10 agnostic) 

2) 6 hands but 3 Christian and 3 atheist (to boost and balance # of ingroup trials),

ITI 8-12 s, 2 religions, 12 baseline trials, 60 religion trials (n = 11 participants, 

including 4 agnostic) 

3) 4 hands, ITI 14-18 s, 4 religions, 8 baseline trials, 56 religion trials (n = 23

participants, including 5 agnostic) 

Our analysis found that these parameter variations did not influence our conclusions, so 

we combined these groups, each of which allows us to define ingroups and outgroups. 
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We constructed two more separate versions of the experiment on separate sets of 

participants to address religious ingroup bias and whether it could be manipulated 

rapidly. 

In experiment 2 (allegiance), we studied the effects of allies. We arbitrarily pitted two 

groups of religions against each other: a participant’s religion was allied with two other 

random religions who were now at war with 3 other random religions. For this we used 6 

hands, ITI 10-14 s, 6 religions, 12 baseline trials, 60 religion trials (n = 19, including 5 

agnostic). 

In experiment 3 (arbitrary assignment), participants were randomly assigned to one of 

two made up groups (Augustinian or Justinian). In this experiment, we randomly 

assigned participants to the Augustinian or Justinian group before the fMRI portion of 

the experiment began. Specifically, participants began by tossing a coin: they were told 

that if they tossed a heads, they would be Augustinian, if tails, a Justinian. Participants 

thus knew that the assignment was arbitrary and up to chance. They were next handed a 

bracelet for their team (either Augustinian or Justinian), which they were instructed to 

put on. This was intended to both remind them of their team and bond them to it. We 

here used 6 hands, ITI 10-14 s, 2 groups, 12 baseline trials, 60 group trials (n = 14). 

In each experiment, participants were told that the purpose of the study was to examine 

the effects of pain on memory. They therefore believed they were watching labeled 

hands being stabbed to see how the witnessed pain helped them to remember which hand 
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had been selected on any given trial. To buttress this impression (as well as to quantify 

alertness), we asked participants on a random 20% of trials to report which religion was 

associated with the selected hand 10-14 seconds after the trial. This deception (approved 

by our IRB) was necessary to keep participants naïve to the purpose of the experiment. 

3.2.4 MR Image Acquisition 

Data were acquired on a Siemens 3T Trio (Erlangen, Germany) scanner. First, high 

resolution T1-weighted scans were acquired using an MPRage sequence (0.4785 x 

0.4785 x 1.0 mm voxels). Functional image acquisition details were as follows: echo-

planar imaging, gradient recalled echo; repetition time (TR) = 2000 ms; echo time (TE) 

= 40 ms; flip angle =90°; 64 x 64 matrix, twenty nine 4 mm axial slices, yielding 

functional 3.4 mm x 3.4 mm x 4.0 mm voxels, one ~30 minute run. 

3.2.5 Preprocessing. 

fMRI data processing was carried out using FEAT (FMRI Expert Analysis Tool) 

Version 6.00, part of FSL 5.0.9 (FMRIB's Software Library, www.fmrib.ox.ac.uk/fsl). 

The first two volumes from every participant’s functional run were discarded. The 

following pre-statistics processing was applied: motion correction using MCFLIRT 

(Jenkinson et al., 2002); slice-timing correction using Fourier-space time-series phase-

shifting; non-brain removal using BET (Smith, 2002); spatial smoothing using a 

Gaussian kernel of FWHM 5mm; grand-mean intensity normalization of the entire 4D 

dataset by a single multiplicative factor; highpass temporal filtering (Gaussian-weighted 

http://www.fmrib.ox.ac.uk/fsl
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least-squares straight line fitting, with sigma=30 s). All first level analyses and model 

fitting were conducted in the functional space. 

For group level analyses, parameter estimates and contrasts of beta weights were 

registered to the MNI152 template brain. Registration to high-resolution structural 

images was carried out using FLIRT (Jenkinson et al., 2002; Jenkinson and Smith, 2001) 

(full-search, boundary based registration, BBR). Registration from high resolution 

structural to standard space was then further refined using FNIRT nonlinear registration 

(Andersson, 2007a, 2007b) (full-search, 12 DOF, warp resolution 10 mm). 

3.2.6 GLM Analysis 

A general linear model (GLM) was fit to each participant’s time-series data using FSL 

FILM (FMRIB’s improved linear model) with local autocorrelation correction (Woolrich 

et al., 2001). Six standard motion regressors and individual motion outlier (RMS 

intensity difference to middle volume, fsl_motion_outliers) regressors were added to the 

model. For each trial condition (baseline, ingroup, outgroup, and/or ally) a set of 

regressors were included for both stab and touch trials separately, corresponding to the 

onset of the video of the hand being stabbed or touched. In addition, a regressor for hand 

selection for each condition was also included, corresponding to the time when the 

particular group of hand was selected. A regressor marking the trial onset across all 

trials, a regressor for the times questions were asked, and regressor for times buttons 
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were selected for the answers were also included. For each regressor, a temporal 

derivative regressor was also fit to allow for slight offsets of peak timings. 

3.2.7 FIR Model 

A finite impulse response (FIR) model was separately built for extracting fMRI time 

series to plot the hemodynamic response functions (HRFs) (Figure 3.1C). For each 

video onset, a set of 12 impulses were modeled from -8 s to + 16 s to capture the nature 

of the response to each trial. Each trial condition (baseline, ingroup, outgroup, and/or 

ally) were modeled separately for both stab and touch in order to extract HRFs for each 

condition. Regressors for questions, answers, and trials onsets were also included and 

were modeled with the standard double gamma HRF. 

3.2.8 Group Analysis 

First, we identified the pain matrix by contrasting the initial 6 stab trials from the initial 

6 touch trials (baseline stab – baseline touch, Figure 3.1B). We used FSL FEAT mixed 

effects modeling (FLAME 1; Figure 3.1B) with outlier de-weighting for the group-level 

contrasts. 

Next, we used whole brain search to identify regions outside of the pain matrix which 

responded more when ingroup hand was stabbed painfully. We used non-parametric 

statistics via permutations testing (FSL randomize (Winkler et al., 2014)) to perform 

whole-brain ingroup – outgroup searches. Contrasts between ingroups and outgroups 
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were conducted on all participants who had definable ingroups and outgroups (n=67; 

agnostics were excluded since they had no ingroup). 

Within these two networks, parameter estimates were extracted and converted to percent 

signal change (FSL featquery). 

3.3 Results 

When watching another person get hurt, neuroimaging reveals activation of brain areas 

involved in the perception of one’s own pain (Botvinick et al., 2005; Hein and Singer, 

2008; Jacoby et al., 2015; Singer et al., 2004; Valeriani et al., 2008). Importantly, this 

empathy-related response is not constant: it is modulated by one’s beliefs about the 

person being hurt.  For example, there is a diminished response in the empathy network 

if the observer believes the pain-recipient has acted unfairly in a simple economic 

exchange (Singer et al., 2006).  A similar diminishment occurs when the observer is told 

that the victim is receiving a large monetary compensation for undergoing the pain (Guo 

et al., 2012). 

Modulation of empathy-associated regions also occurs with group distinctions: people 

are generally more empathic toward members of their ingroup than toward members of 

an outgroup. This neural ingroup bias has been demonstrated for one’s preferred sports 

team (Cikara et al., 2011; Hein et al., 2010) as well as racial group membership 

(Azevedo et al., 2013; Contreras-Huerta et al., 2013; Xu et al., 2009).  Beyond neural 

activity, the ingroup bias translates to actions: members of an ingroup are more likely to 
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help a fellow ingroup member (Hein et al., 2010).  These biases have important practical 

considerations, from jury decision-making to bystander behavior in emergency 

situations. 

 

Using functional magnetic resonance imaging (fMRI), we investigated how the neural 

ingroup bias might extend to religion affiliation.  First, we localized empathy-related 

brain regions. Each participant observed a collection of hands on a screen; one hand was 

randomly selected and then either stabbed with a needle, or touched with a cotton swab 

(Fig. 3.1A). The whole brain contrast of stab > touch trials yielded 8 significant clusters 

(Fig. 3.1B), which we refer to collectively as the empathy network (Fig. 3.1C). This 

network is consistent with previous findings, containing both affective (insula, anterior 

cingulate) and sensorimotor (lateral occipital, fusiform, supramarginal) components. 
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Figure 3.1 Localizing Empathy Network 

Seeing another’s hand in pain localizes a network of areas involved in empathy. A. 

Participants (n = 105) were shown several different hands on the screen. One hand was 

selected randomly, and then a video was shown of that hand either stabbed with a 

syringe needle or touched with a cotton swab. B. The contrast of stabs and touches 

reveals 8 significant clusters of activation weighted by z-statistics (Z>2.3 and FWE-

corrected cluster significance threshold of p<0.05). C. The hemodynamic response to the 

stab (red) and touch (blue) trials averaged across the empathy network. See  

Table 3.1 and Fig. 3.2 for more detail 
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Figure 3.2 Empathy Network Hemodynamics 

 

The average time series for each of the 8 clusters of the empathy network show that 

hemodynamic responses for observing painful stab trials (red) are greater than observing 

non-painful touch trials (blue). Time 0 is the onset of the stab or touch video. The time 

series were derived from a separate GLM model fit with 12 finite impulse responses 

(FIRs) from -8 to +16 seconds around the time of the video onset of the stab or the 

touch. Time series units are in percent signal change from baseline. See  

Table 3.1 for coordinates of activation (n = 105). 
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Table 3.1 Empathy Network Coordinates 

MNI Coordinates from empathy network for pain (from Figure 3.1). Coordinates 

represent the center of gravity of the z-statistic for each cluster. 

Cluster Voxels P X (mm) Y (mm) Z (mm) 

left insular cortex 1347 2.86E-06 -44.5 5.29 8.49 

right insular cortex 1276 5.25E-06 48.4 7.83 10.8 

left supramarginal 1043 4.09E-05 -58.4 -26.1 33.9 

right supramarginal 1022 4.96E-05 61 -21.4 32.2 

ant. cingulate cortex/SMA 907 0.00015 -0.587 9.79 36.1 

left fusiform gyrus 862 1.03E-09 -23.7 -70.7 -12.7 

right lateral occipital cortex 520 0.00827 49.5 -61.7 0.421 

left lateral occipital cortex 306 0.000124 -47.5 -68.5 -0.993 

We next assessed if the neural empathic response could be modulated by replacing the 

text labels of the hands (e.g. Hand #3) with religious affiliations: Christian, Muslim, 

Hindu, Jewish, atheist, and Scientologist (Fig. 3.3A).  For each participant, their self-

reported religion was defined as ingroup, and the other religions were defined as 

outgroup.  The average response magnitude in the empathy network was significantly 

higher for ingroup trials compared to outgroup trials for both stab (p = 0.012, corrected) 

and touch (p = 0.036, corrected) trials (Fig. 3.3B,C, n = 67; Fig. 3.4, 3.5 for statistics 

and re-sampling). There was a positive correlation between participants’ scores on the 

Balanced Empathy Emotional Scale and activity in the left insula (Fig. 3.3E, Fig. 3.6, 

Fig 3.7); however, there was no correlation between activity in the empathy network and 

participants’ strength of religious belief. A whole brain contrast for ingroup greater than 
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outgroup (combining stab and touch trials) yielded three clusters beyond the empathy 

network: the mPFC, posterior cingulate/precuneus, and superior temporal gyrus (Fig. 3. 

3D,F, Fig. 3.8, 3.9). These areas are involved in self-referential thought and mentalizing. 

There were no significant voxels in the contrast outgroup > ingroup. 

Next, we investigated the modulability of the observer bias. The 6 religions were divided 

into 2 teams, and the participant was told the two teams were at war with each other. 

Thus, two outgroup religions were now on the same ‘team’ as the participant’s ingroup 

religion. We found that the neural response to these ‘allies’ was not significantly 

different from the response to the outgroup members, indicating that a fictitious alliance 

scenario was not sufficient to reduce the neural ingroup bias (Fig. 3.10, 3.11). In a final 

experiment, participants were randomly assigned (by coin flip visible to the participant) 

to one of two groups: Augustinian or Justinian.  They were given a bracelet with their 

group name, and told that the Augustinians and Justinians were two warring tribes.  

They then ran the same paradigm as previously except the hands were labeled 

Augustinian or Justinian instead of with religious affiliations. Participants showed no 

neural bias between ingrf2coup tribe and outgroup tribe trials (for either stabs or 

touches) (Fig. 3.12, 3.13). This finding somewhat conflicts with recent evidence that 

ingroup bias emerges when participants were deceived into believing they belonged to 

one of two types of problem solvers (Ruckmann et al., 2015).  One possibility for the 

difference in results is that we did not use deception to assign groups; it was clear to our 

participants that group assignment was random. 
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Figure 3.3 Ingroup vs Outgroup 

Within the empathy network, BOLD activity to either stabs or touches was larger for 

ingroup-labeled hands than for outgroup hands. A. Participants (n = 67) watched painful 

stabs and non-painful touches to hands labeled with their same religion (ingroup) or a 

different religion (outgroup). B. Within the empathy network, participants showed 

greater activation for their ingroup than outgroup, for both stab and touch trials.  C. 

Ingroup – outgroup contrast parameter estimates of the left insula correlated significantly 

with individual scores on the Balanced Empathy Emotional Scale (r = 0.36, 95% 

confidence interval 0.17 to 0.54, raw p = 0.004, corrected for number of ROIs p = 0.03).  

D. A whole brain search for ingroup > outgroup differences (combining stab and touch 

trials) yielded three clusters beyond the empathy network: the mPFC, posterior 

cingulate/precuneus, and superior temporal gyrus. There were no significant voxels in 

the contrast outgroup > ingroup F. After parametrically controlling for repetition 

suppression (Fig. 3.7) and combining across stab and touch trials, the whole-brain 

ingroup > outgroup contrast yielded three significant clusters: the anterior cingulate, 

posterior cingulate/precuneus, and superior temporal gyrus. There were no significant 

voxels in the contrast outgroup > ingroup. See Table 3.2 
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MNI Coordinates from whole brain search for voxels that respond greater to witnessing 

ingroup pain compared to outgroup pain (from Figure 3.3). Coordinates represent the 

center of gravity of the z-statistic for each cluster. 

Cluster Voxels P X (mm) Y (mm) Z (mm) 

964 6.9E-05 2 2.02 54.4 

850 0.00021 1.52 -56.5 34.2 

right sup. temporal gyrus 

precuneus/post. Cingulate 

anterior paracingulate 
628 0.00214 54 -35.9 6.32 

Figure 3.4 Empathy Netowrk Ingroup Bias 

Parameter estimates from the clusters of the empathy network show heightened 

responses when an ingroup hand gets either painfully stabbed (A) or non-painfully 

touched (B) compared to the same action of an outgroup hand. Asterisks represent 

significant ingroup – outgroup effect (p < 0.05, Holm-Bonferroni corrected for the 

number of ROIs in the empathy network) as computed by permutations testing. Stab 

distributions in red; touch in blue. 

Table 3.2 Whole Brain Ingroup Bias Coordinates 
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Figure 3.5 Control Experiment 
 

To account for frequency effects (there were more ingroup trials), we ran a control 

analysis in which ingroup trial labels were swapped with the closest matching outgroup 

trial labels. The results show no significant ingroup effect, indicating that the main 

results were not due to an imbalanced number of trials.  A. The stick diagram represents 

a schematic of the true timing of ingroup and outgroup trials. Condition type (stab or 

touch) labels are not shown here for simplicity. B. Trials constituting the ingroup 

condition were swapped with the temporally closest matching outgroup trials (stimulus 

type – pain or touch – was conserved). C. With the ingroup trials swapped, the group 

effect of the empathy network is no longer observed (stab: p = 0.9215, touch: p = 

0.5894, permutations testing). Further, whole-brain search for ingroup > outgroup effects 

yield no significant voxels for either stabs (D) or touches (E).     
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Figure 3.6 Correlation with Behavior 

 

Individual empathy ratings - as measured by the Balanced Empathy Emotional Scale 

(BEES) scores - were significantly correlated to the neural activity differences between 

ingroup and outgroup conditions in several brain regions, including bilateral insula, left 

inferior frontal gyrus, and left superior temporal gyrus (n = 67). Thresholds for 

correlations were computed using permutation testing (FSL randomise, threshold-free 

cluster enhancement (tfce), p < 0.05, FWE corrected).  

However, Whole-brain searches did not yield any significant voxels for correlations 

between ingroup – outgroup contrast parameter estimates and each of 1) intrinsic 

religiosity, 2) religious conviction, 3) Davis Emotional Empathy Interpersonal Reactivity 

Index – Empathy Concern (EC) and 4) Perspective Taking (PT). Further, we also did not 

observe any correlations with baseline stab – touch contrast parameter estimates and any 

of the 5 behavioral measures. This is in contrast to previous reports showing significant 

empathy correlations in painful – non-painful contrast parameter estimates and BEES 

and Davis EC measures.(Singer et al., 2004) Singer et al. (2004) elicited empathic 

responses in a group of 16 participants by administering pain to a loved one sitting next 

to him/her in the scanner. Perhaps the elicited empathic response was stronger under this 

context and correlated better to behavioral empathy questionnaires, as compared to our 

baseline contrast measures in 12 trials (6 painful, 6 non-painful) in 105 participants. 

Further, we chose not to plot any correlations derived from these whole-brain searches, 

as the topic of the “non-independence error” has been scrutinized heavily.(Lazar, 2009; 

Lieberman et al., 2009; Nichols and Poline, 2009; Vul et al., 2009a, 2009b). 

0.0	 0.5	r	
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Figure 3.7 Repetition Suppression 

 

Repetition suppression effects are observed within the clusters of the Pain Network 

across the 72 trials, so we designed a parametric modulation regressor to refine the GLM 

model. A. A separate GLM model was fit to the data with a regressor for each trial, 

regardless of the trial type (e.g., stab or touch, ingroup or outgroup). The peri-stimulus 

HRF was drawn for the spatial average of each of the 8 clusters within the pain network 

and across the entire pain network. The heatmap colors each trial from 1 (black) to 72 

(yellow). B. A linear regression model was fit to the left lateral occipital cluster, a cluster 

that showed high degree of repetition suppression effect. The linear model predicts a 

40% repetition suppression effect from the 1
st
 trial to the 72

nd
 trial. C. The model from 

the left lateral occipital cluster was used to create a regressor to parametrically model 

and account for the effect of the repetition suppression in subsequent analyses. A 

separate GLM model was built identical to the original but included the participant 

specific regressor in an attempt to account for repetition suppression effects to localize 

ingroup – outgroup effects.  
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Figure 3.8 Whole Brain Ingroup Bias 
 

The average time series of each of the 3 clusters of the ingroup – outgroup whole brain 

search. Time series units are in percent signal change from baseline. The time series 

were derived from the FIR GLM model fit used in Figure 3.3. The top row of traces 

show the time series for the ingroup stab (black) and outgroup stab (orange) trials. The 

bottom row of traces analogously shows the ingroup and outgroup differences for touch 

trials. Within these clusters, the ingroup > outgroup effect appears to be greater for touch 

trials than stab trials. (n = 67).   

Stab 

Touch 

R superior temporal gyrus Precuneus/Posterior cingulate Anterior paracingulate 

Ingroup 

Outgroup 
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Figure 3.9 Whole Brain Correlations 

 

The strength of the ingroup – outgroup activation difference in the 3 clusters found in the 

whole-brain search correlated positively with the empathic BEES score, with a 

significant correlation within the precuneus/posterior cingulate. Shown below each 

cluster is the scatter plot of the BEES score and the ingroup – outgroup contrast 

parameter estimate (averaged across stab and touch). Pearson correlation coefficients (r), 

p-values (p), and Holm-Bonferroni corrected p-values (q) are shown for each plot.   
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Figure 3.10 Empathy Network Allies 
  
Manipulating allegiances does not robustly alter brain responses within the empathy 

network. A. Participants (n = 14) were told that two random religions had formed an 

allegiance (allies) with their own religion fighting against 3 other random religions 

(outgroup). Team membership was indicated at the start of each trial via both labels and 

colors. A random hand was selected and either painfully stabbed or non-painfully 

touched, as in the original experiment. Parameter estimates for each condition for each 

ROI within the empathy network are shown for both stab (B) and touch (C) trials. Ally 

parameter estimates were not significantly different from those of the outgroup (see 

Figure 3.11). 
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Figure 3.11 Whole Brain Allies 
 

Manipulating allegiances does not robustly alter brain responses within brain regions 

that show ingroup – outgroup differences. Parameter estimates for each condition for 

each of the three ROIs are shown for both stab (top row) and touch (bottom) trials. Ally 

parameter estimates were not significantly different from those of the outgroup. 
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Figure 3.12 Arbitrary Group Assignment 

 

Randomly assigning group membership does not invoke group allegiances within the 

empathy network. A. We devised an experiment where participants (n = 14) were 

participants were randomly assigned to one of two groups: Augustinian or Justinian. 

Participants were given bracelets to wear on their wrists during the scan. Two hands 

were labeled, one from each group, and a random hand was selected and either painfully 

stabbed or non-painfully touched, as in the original experiment. Parameter estimates for 

each condition for each ROI within the empathy network are shown for both stab (B) 

and touch (C) trials. Ally parameter estimates were not significantly different from those 

of the outgroup. 
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Figure 3.13 Arbitrary Group Assignment Whole Brain 
 

Randomly assigning group membership does not invoke group allegiances within brain 

regions that show ingroup – outgroup differences in the original experiment. Parameter 

estimates for each condition for each of the three ROIs are shown for both stab (top row) 

and touch (bottom) trials. Ingroup parameter estimates were not significantly different 

from those of the outgroup.  
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Our results expand upon previous findings, demonstrating for the first time that a neural 

empathy bias is present in religious affiliations. The ingroup bias was elicited simply by 

changing the text label written above a hand, without any other group information.  

Further, the strength of the ingroup bias correlated with an individual’s empathic rating, 

not their intrinsic religiosity or their religious conviction. That is, the more a person 

reports the ability to empathize with another, the stronger the ingroup bias. In addition, 

the ingroup bias was found to exist in many areas of the brain beyond the empathy 

network, including the mPFC and putamen, regions that are also active when confronted 

with images of hated people (Zeki and Romaya, 2008). Taken together, our study 

highlights that religious affiliation forms a deep-rooted alliance that cannot be easily 

manipulated or arbitrarily formed. 
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CHAPTER IV  

HOW WE DECIDE 

 

4.1 Introduction 

Neuroimaging has long been used to examine the cascade of neural activity leading to 

human decision making. One approach is to directly contrast free decisions and cued 

(forced) decision. That is, how does brain activity differ when actively making a choice 

versus simply executing an instruction?  Here, we designed an experiment to isolate and 

compare the neural signatures of both conditions.   

 

Although the prefrontal cortex is hypothesized to play a unique role in free decision-

making, the details remain unclear. Functional magnetic resonance imaging (fMRI) has 

previously shown areas in the medial prefrontal cortex, such as the rostral cingulate 

zone, to be more activated in free trials compared to forced trials (Demanet et al., 2013; 

Forstmann et al., 2006).  Others have found the anterior insula and frontal poles to play a 

role in free decision making, with evidence suggesting that greater activity within these 

regions is required to overcome conflicting biases (Orr and Banich, 2014).  In contrast, 

studies using magnetoencephalography (MEG) have failed altogether to find any 

differences in frontal brain regions in free vs. forced decision making (Garcia 

Dominguez et al., 2011; Kostelecki et al., 2012).  Experimental evidence has not 

converged to localize the frontal circuitry involved in free decision making.  
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The use of two conventions in prior approaches may explain why experiments have 

failed to consistently localize brain activity.  First, previous studies (Demanet et al., 

2013; Forstmann et al., 2006; Frith et al., 1991; Garcia Dominguez et al., 2011; Hyder et 

al., 1997; Kostelecki et al., 2012; Orr and Banich, 2014; Thimm et al., 2012) have used a 

paradigm that restricted the timing of free decision-making.  In those studies, the free 

and forced conditions were randomly interleaved, such that a participant could not know 

in advance whether to make a free decision or a forced decision (e.g., a button press in 

either hand).  Specifically, a cue would instruct the participant either to make a free 

choice or follow a forced choice, and then the participant would have to respond 

accordingly. Under that experimental construct, participants were explicitly told 

precisely when to act freely, rather than making the decision on their own—thus calling 

into question what is implied by ‘free’.  In such circumstances, decision-making was 

compressed to a limited time just prior to execution of the decision. Although there are 

clear advantages to interleaving event types and controlling the timing of events (e.g., 

removing attentional effects, balancing trial types), such an experimental design fails to 

allow participants to engage in a more natural version of making a choice.  

 

Second, several previous studies have modeled pre-decision activity, cue onset, decision 

onset, and decision execution—all combined into one single event. One study, for 

example, assumed a canonical double-gamma hemodynamic response function (HRF) to 

model all the events, from cue onset to task execution (Orr and Banich, 2014).  With 

such a model, the blood oxygen level dependent (BOLD) effect for decision-making 
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cannot be adequately distinguished from task execution.  Thus, this design prohibits 

analyses of how brain activity differs when freely selecting an action versus when being 

forced to select. 

 

One recent experimental paradigm for free decision making overcomes those limitations 

(Bode et al., 2011; Soon et al., 2008; Soon et al., 2013).  In this design, participants 

select the time of their decision. Participants are not instructed when to make the free 

decision, but instead are allowed to make and execute the decision at a time of their 

choosing. Second, the analysis uses finite impulse response (FIR) functions to model the 

BOLD effect from times ranging from 10 seconds before through 14 seconds after the 

decision execution.  The FIR approach does not assume the shape of the activity in the 

general linear model (GLM), thus allowing the true shape of the hemodynamics to be 

fitted for each event type before the decision is executed. Using this paradigm, studies 

have found that patterns of brain activity in the frontal cortex up to 10 s prior to a freely-

selected decision can partially predict the binary decision a participant will make. While 

the interpretation of these results is an area of active debate (e.g., whether the activity is 

truly below conscious awareness, (Miller and Schwarz, 2014) whether unbalanced 

transitions between binary decisions gives rise to above-chance prediction accuracies, 

(Allefeld et al., 2013; Lages et al., 2013) and whether the signal is due only to random 

fluctuations (Schurger et al., 2012)), their design allowed adequate engagement in and 

modeling of free decision making. 
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To address the previous limitations, we have developed an fMRI paradigm to hone in on 

the differences between freely selected and forced button presses.  Specifically, 

participants experience two 15-minute experimental blocks. In the first block, they freely 

select both the timing (when) and the side (left or right) of a button press (free 

condition).  To simplify the experiment, we do not ask participants to report the timing 

of their decision (as done previously (Soon et al., 2008)), a request which forces them to 

simultaneously perform two tasks: (1) decide when to press which button, and (2) 

remember the timing of their conscious decision to button press.  That is, by removing 

the additional task of remembering and reporting the timing of the decision, we remove a 

cognitive burden from the participants, such that the measure of interest (i.e., binary 

decision making) is isolated.  In our paradigm, participants are instructed to make 

decisions naturally as they come. Further, we removed the enforced inter-trial interval 

(ITI), such that participants can press whenever they felt the urge.  In our second 15-

minute block, participants are told which button to press (left or right), and when (forced 

condition).  To balance the exact timing and sequence of decisions, we replay the 

identical sequence of presses that participants chose in the free condition.  In this way, 

the two blocks provide and exact (but unremembered and undetected) match across free 

and forced conditions. Then, we perform event-related analyses on these two regimes of 

behavior.   

 

Previous findings during free decision making seem to suggest that we would either 

observe an increase in BOLD activity in frontal regions (Demanet et al., 2013; 
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Forstmann et al., 2006; Orr and Banich, 2014) or no difference at all between free and 

forced conditions (Garcia Dominguez et al., 2011; Kostelecki et al., 2012; Soon et al., 

2008). However, given that our experiment allowed participants to freely select the 

timing of their decisions (without additionally being asked to remember and report that 

timing), and that our FIR model allowed us to directly test for differences in brain 

activity between the conditions (agnostically in every voxel), our design and analysis 

methods can shed new insight on the how the brain reaches decisions. 

 

4.2 Materials and Methods 

4.2.1 Participants 

We recruited 37 healthy participants (28.7 ± 7.0 years, 24 males, all right handed). All 

participants gave informed consent as approved by our IRB at the Baylor College of 

Medicine. 

 

4.2.2 Imaging Acquisition Details 

All participants were scanned on a Siemens 3T Trio Magnetom (Erlangen, Germany) 

scanner at the Baylor College of Medicine’s Center for Advanced Magnetic Resonance 

Imaging (CAMRI). Scanner acquisition parameters for the structural T1 MPRAGE 

sequence were as follows: voxel size: 1x1x1 mm, slices: 192 transversal slices (1 mm 

thick with 0.5mm gap), phase encoding direction: R-L, FOV: 245 (A-P) x 215 (R-L) 

mm, matrix size: 256 (A-P) x 215 (R-L), TR: 1.2 s, TE: 2.66 ms, echo spacing: 6.5 ms, 

flip angle: 12°, duration: 4:30, bandwidth: 210Hz/Px. Scanner acquisition parameters 
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for the functional EPI scan were as follows: voxel size: 3.4x3.4x4.0 mm, slices: 37 

transversal slices (4 mm thick with 0 mm gap), phase encoding direction: A-P, FOV: 

220 (A-P) x 220 (R-L) mm, matrix size: 64 (A-P) x 64 (R-L), TR: 2.0 s, TE: 25 ms, 

echo spacing: 0.45 ms, flip angle: 90°, bandwidth: 2604 Hz/Px, slice acquisition: 

interleaved. 

 

4.2.3 Experimental Task-Free Press 

To investigate the neural underpinnings of freely-chosen binary motor decisions, 

participants were scanned for 15 minutes while freely choosing to press a button with 

either the left or right hand (Figure 4.1, left panel). Participants were specifically 

instructed as follows (modified from Soon et al. 2008):  

  

“For the next 15 minutes your only task is to press either the left or right button 

whenever you feel the urge to press a button. The time and choice of a press is 

completely up to you, but it should be executed without hesitation once you’ve decided 

which button to press. Please do not make button selections based on any kind of pattern 

and avoid any form of preplanning. Try not to be too eager to initiate a button press after 

a previous button press. Do not maintain a constant state of readiness for the movement 

but instead stay as relaxed as possible until you feel the urge to press. When you press a 

button, an arrow pointing in the direction you pressed will appear.” 
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4.2.4 Experimental Task-Forced Press 

To further investigate the neural basis of forced decisions, we then scanned participants 

in the same functional EPI run in the forced condition for 15 minutes (Figure 4.1, right 

panel). In the forced condition, participants were instructed which button to press and 

when. Unbeknownst to the participant, the exact sequence of buttons and times of button 

presses each participant selected in the free condition served as the sequence of cued 

buttons and timings in forced condition. This allowed the frequency and timing of button 

presses to be matched exactly in both blocks. The specific instructions given to each 

participant were as follows: 

 

“Now, an arrow pointing to the left or right will randomly flash on the screen. When it 

appears, press the button on the side where the arrow is pointing. For example, if the 

arrow points left, press the left button immediately.”  

 

All stimuli were presented using MATLAB (Mathworks, Natick, MA) and the 

Psychophysics Toolbox extensions.(Brainard, 1997; Pelli, 1997) 
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Figure 4.1 Experimental Design 

 

In the free condition, participants freely chose to press the left or right button at the time 

of their choice. In the forced condition, participants were instructed which button to 

press when. The cue lasted for 750 ms, and participants were required to press the 

instructed button within 2000 ms of the cue onset. In the forced condition, unbeknownst 

to the participant, the exact sequence of commands matched their previous selections in 

the free condition. Both blocks were performed for 15 minutes each, in the same 

functional EPI run with the free condition always occurring first.   

 

4.2.5 Behavioral Analysis 

To ensure that each participant pressed the left and right buttons with minimal bias, we 

computed a lateralization index (after Soon et al., 2008). Specifically, the lateralization 

index (I) was computed as: 

 

𝐼 =
𝐿 −𝑅

𝐿+𝑅
    (1) 
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A positive index indicates a bias towards left button presses, whereas a negative index 

indicates a right button press bias. Any participant with a lateralization index greater 

than 0.3 in either direction was discarded from further analysis. 

 

4.2.6 fMRI Data Pre-Processing 

All fMRI data were analyzed using the software package FSL 5.0.5 (FMRIB, Oxford, 

UK)(Jenkinson et al., 2012; Smith et al., 2004; Woolrich et al., 2009) and MATLAB 

(Mathworks, Natick, MA). Pre-processing was carried out using FSL FEAT. Pre-

processing parameters included: motion correction (mcflirt (Jenkinson et al., 2002)), 

linear slice timing correction, 6 mm FWHM spatial smoothing, 0.02 Hz high pass 

filtering, brain extraction (bet(Smith, 2002)), and time-series pre-whitening. The first 2 

volumes of the functional run for each participant were discarded to allow the scanner to 

reach steady state. Motion and intensity outliers were computed using 

fsl_motion_outliers and added as regressors of no interest to the GLM model. In 

addition, any participant with instantaneous absolute motion > 3 mm was rejected from 

further analysis. Functional image registration to the high resolution T1 anatomical 

image was carried out using linear boundary based registration (FSL flirt 

(bbr)(Jenkinson et al., 2002; Jenkinson and Smith, 2001)). Structural image registration 

to the MNI152 2 mm isotropic template brain was carried out using non-linear warping 

(FSL fnirt). All first level analyses were carried out in the original function space, and 

then the transformation matrices were combined to transform contrast and variance 

parameter estimates from functional space to the MNI152 2 mm isotropic template brain. 
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4.2.7 fMRI First Level GLM Analysis 

fMRI first-level general linear model (GLM) analysis was also carried out using FSL 

FEAT. The hemodynamic response of interest was the 10 s preceding the button press. 

Because the shape of the hemodynamic response function (HRF) prior to button press 

was unknown, we used 13 finite impulse response (FIR) functions to model activity 

from 10 s prior to button press to 14 s after button press, just as in Soon et al. 2008. This 

set of FIR functions was used to model each button press type (Free L and R, and Forced 

L and R), resulting in 52 regressors of interest. In addition, the same set of FIR functions 

were used to model any incorrect button presses in the forced condition, as well as the 

instruction blocks at the start of the experiment and the time in-between the free and 

forced conditions blocks. These were treated as regressors of no interest. 

 

4.2.8 fMRI Group Analysis 

We compared how the HRF differed between free and forced conditions in the time 

preceding the button press. To this end, we computed the area under the curve (AUC) 

from -10 s to 0 s for every gray matter voxel (masked with MNI gray matter probability 

atlas, thresholded at minimum of 25%) for both free and forced conditions. Because the 

distribution of the AUCs was unknown and possibly not Gaussian, we used non-

parametric permutation methods via FSL’s randomise.(Nichols and Holmes, 2002) We 

used one-sample, one-way tests for both directions (free AUC – forced AUC and the 

inverse). We used FSL randomise threshold free cluster enhancement (TFCE) and 

controlled the family-wise error rate at p < 0.05. All contrasts were performed using 
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10,000 permutations to build a robust null distribution. We then calculated percent signal 

change for each FIR within any regions that showed differences between free and forced 

conditions (FSL featquery, weighted average on t-statistic value of significant ROIs). 

Finally, the change in the BOLD signal from -10 to +14 s was computed from the ROIs. 

 

4.3 Results 

4.3.1 Behavioral Results 

The mean lateralization index for all participants was -0.052 ± 0.117 (see Figure 4.2 for 

raster plots of all button presses for each participant).  Only one participant was 

discarded because of a lateralization index greater than|0.3|. The mean time between 

button presses across all remaining participants was 22.0 ± 20.0 s. One participant 

pressed buttons much more rapidly than all other participants. We did not anticipate this 

given the instructions, and thus did not set any a priori thresholds for 

inclusion/exclusion. We posthoc decided to remove any participants pressing with a 

mean interpress interval less than 4 s, as this led to many accumulated errors in the 

forced condition. As a result, one additional participant was removed, who pressed on 

average every 3.85 s.  Thus, from the 37 participants recruited, 2 were rejected due to 

behavioral performance. 

 

4.3.2 fMRI Results 

Two additional participants had head movement greater than 3 mm and were discarded 

from further analysis. In addition, we were unable to achieve successful alignment of the 
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functional EPI run to the structural T1 volume for one participant, and this participant 

was also discarded from analysis.  

  

The remaining 32 participants’ data were run in the group AUC analysis. The forced > 

free contrast yielded significant ROIs (Figure 4.2A, FWE corrected, p < 0.05). The 

bilateral ventrolateral prefrontal cortex (VLPFC), thalamus, and anterior insula all had 

greater areas under the curve from -10 s to button press (0 s) in the forced condition 

compared to the free condition. The FIR parameter estimates were averaged over all 

participants from within all significant voxels in this contrast, with a spatially weighted 

average on the thresholded t-statistic. The curves reveal significantly higher AUC for 

forced compared to free. The difference in both AUC analyses was greater for the right 

button presses (Figure 4.3B). Further, the general difference in the shapes of the curves 

between free and forced conditions was seen in specific ROIs of the significant voxels 

found (Figure 4.4). There were no differences prior to button press found in the motor 

and premotor areas via the AUC analysis and via visual inspection of the BOLD traces 

(Figure 4.4) 
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Figure 4.2 Sequence and Timing of Button Presses 

 

The raster plot shows the variability in the timing and selection of button presses for 

each of the 37 participants during Free Press. Data are sorted from top to bottom in 

ascending order by total number of button presses.         
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A 

 
B 

 

 

Figure 4.3 Forced > Free 

 

Brain regions showing greater area under the curve (AUC) before the button press in the 

forced condition compared to the free condition. (A) Horizontal slices revealing the 

voxels showing significantly greater AUC in forced than free. Data are collapsed across 

left and right button presses (see Table 4.1 for peak cluster coordinates). AUC 

differences were computed by non-parametric permutations testing and corrected with 

FWE (p < 0.05) with threshold-free cluster enhancement (TFCE). Free > Forced did not 

yield any significant ROIs. (B) The hemodynamic responses are shown pre- and post-

button presses for free (green) and forced (blue) conditions. The traces are drawn from 

the weighted spatial average of all voxels that met significance. 
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Figure 4.4 Forced > Free ROIs 

 

BOLD traces reveal diverging hemodynamic activity in Free Press vs. Forced Press prior 

to button press. The first column shows the brain regions (ROIs) the BOLD traces in the 

next two columns are drawn from. All ROIs were first extracted from the Harvard-

Oxford Cortical (or Subcortical) Structural Probability Atlases. The probability maps of 

the first three regions (Left Motor Cortex, Right Motor Cortex, and Supplemental Motor 

Area) were used to create spatially weighted average BOLD traces from within the 

ROIs. The latter four regions (Inferior Frontal Gyrus, Orbitofrontal Gyrus, Insula, and 

Thalami) were first used to select the regions that overlapped with the significance of 

Free Press > Force Press (Figured 2). Then, the thresholded p-values from within each 

overlapping region was used to generate the weighted spatially weighted averaged 

BOLD traces. The BOLD traces are drawn separately for Free Press (Green) and Forced 

Press (Blue), with the envelopes representing S.E.M. Columns are also separated by left 

button (middle column) and right button (right column) presses. The asterisks in red 

indicates that the right hand button presses showed significant differences in AUC prior 

to button press in Free Press vs. Forced Press.   
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Table 4.1 Forced > Free Coordinates 

 

MNI Coordinates of cluster peaks for forced > free AUC contrasts. Also reported are the 

mean and max z-statistic for the contrast, as well as the number of voxels in each cluster 

 

Cluster 

Index 

x Y Z MEAN Z STAT MAX Z 

STAT 

VOXELS 

8 22 77 38 3.06 6.14 25114 

7 25 37 16 3.29 4.64 1026 

6 9 47 29 2.96 5.27 271 

5 71 59 21 3.25 3.67 127 

4 45 16 39 3.32 3.98 121 

3 
74 

54 
31 

3.29 3.79 112 

2 47 51 58 3.76 4.3 92 

1 57 44 21 4.41 4.61 19 

 

 

4.4 Discussion 

We examined the neural differences between freely made and forced (cued) binary 

decisions. Our study for the first time allowed participants to select both the time and 

choice of their decision, without any confounding cognitive tasks (e.g., Libet Clock, 

Stroop task, inter-trial intervals). Further, the forced condition was intentionally 

balanced so that the exact sequence of button presses participants selected in the free 

condition was replayed as the cues in the force condition. Participants were not told of 

this replay, and no participants reported detecting of the replay on post-scan interviews 

when participants were debriefed.  
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Our results show that the BOLD signal function from -10 s to 0 s of execution of the 

decision differ significantly in the free and forced conditions. In particular, the area 

under the curve is significantly greater in the forced condition in bilateral frontopolar 

cortices, thalami, and anterior insula. When analyzing left and right button presses 

separately, these regions are only significant during right button presses (not shown). 

However, when collapsing across left and right button presses, the difference in the area 

under the curves was more pronounced. There was a general bias towards right button 

presses (mean laterality index across all participants of -0.052), and all of participants 

were right handed. Perhaps the bias in lateralization index and the effect of the dominant 

hand gave rise to stronger separation of the curves with right presses.    

 

Previous evidence showed the AUC in the frontopolar cortices under free condition 

would be greater than forced condition (Orr and Banich, 2014); however, we observed 

exactly the opposite. Orr and Banich (2014) showed that freely made decisions in their 

voluntary task switching paradigm resulted in stronger activation within the frontopolar 

and anterior insular regions as compared to forced decisions. However, their analysis did 

not separate cues from decision making from task execution. By presenting the 

conditions in blocks rather than in interleaved trials, we were able to make inferences on 

the entire BOLD effect of freely making decisions. Thus, our results show that these 

frontal regions are more activated when forced to make decisions during the time up to 

10 s prior to decision execution. 
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Of additional interest is the greater activation of the thalamus and basal ganglia in the 

times prior to button press in the forced condition. To our knowledge, neuroimaging 

studies have not reported the involvement of the thalamus in comparing free and forced 

decision making(Demanet et al., 2013; Forstmann et al., 2006; Garcia Dominguez et al., 

2011; Kostelecki et al., 2012; Orr and Banich, 2014; Thimm et al., 2012). Previous 

studies interleaved trials, removing the arousal component of decision making in their 

studies, which may have also removed thalamic involvement under free conditions as 

participants were required to attend to stimuli to know when to make their decisions. But 

thalamic involvement may be involved with more than just attention or arousal. 

Thalamic activation is greater in moral decision making when directly contrasted with 

neutral decision making (Sommer et al., 2010). Further, during a Stroop task, cognitive 

control is engaged by a network involving the prefrontal cortex, striatum, and thalamus 

(similar to our AUC analysis in forced > free), which must hyper-activate in chronic 

cocaine abusers to gain similar task performance as controls (Mayer et al., 2013). Our 

results may elucidate further the involvement of the cognitive control network and its 

temporal response that leads to decision making.              

 

The BOLD signal revealed an interesting difference between the two block types. In the 

forced condition, starting from -10 s, the percent signal change increased from baseline 

and peaks at -4 s. This may represent increased cognitive inhibition as participants 

suppressed decision making processes. Then, at -4 s, the signal began to drop back down 
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to baseline by 0 s. This could represent relaxing of the cognitive inhibition as the 

participant readies him/herself for an upcoming cue. However, since the time of the cue 

remains unknown in each trial for each participant, this result and potential interpretation 

is a bit surprising. Further, the opposite is observed in Free Press: from -10 s to -4 s, the 

signal decreases and then increases from -4 s to 0 s. That is, cognitive inhibition 

decreases as the participant searches for which button to select; then, as the participant 

begins finalizing the decision choice, the cognitive inhibition is increased until the time 

of execution. This interpretation could provide an increased understanding how people 

make decisions when freely deciding compared to when being explicitly instructed.   

 

We additionally performed an AUC analysis for the time after decision execution [+2 s 

+14 s]. We employed the same non-parametric permutations testing approach as with the 

AUC prior to button press. We did not find any significant regions when looking at right 

and left button presses separately or when collapsing across button press type. Using the 

AUC method for the time after the button press, is confounded by the undershoot of the 

HRF. From the BOLD signals plotted in Figure 4.2, it is clear that the HRF peaks higher 

after forced presses. Because participants were required to press the button within 2000 

ms of onset of the cue, this difference in amplitude could be simply due to the fact that 

participants may have pressed the buttons more vigorously and rapidly during the forced 

condition to stay within the allotted time.    
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While the AUC analysis clearly shows separation of the BOLD signal for our identified 

ROIs, this analysis does not fully address the shape of the BOLD signal curves. To 

compare the conditional differences in the BOLD response modeled with multiple basis 

functions, we computed a 3-way mixed effects ANOVA (AFNI’s(Cox, 1996) 

3dANOVA3 –type 4) with fixed effects as (1) condition (free and forced, 2 levels) and (2) 

FIR basis functions (-10 s to 0 s, 6 total levels for before button press) with (3) the 

participants modeled as a random effect (n = 32). We found very similar significant 

ROIs using this approach as we found with using AUC and FSL’s non-parametric 

permutations testing (data not shown).        

 

One limitation of our study is the inability to perform a mixed design in which events 

and blocks could be modeled simultaneously. We used 15 minute long blocks for free 

and forced conditions in part to allow natural decisions and also so that the exact 

sequence and timing of button presses could be matched without the participants 

realizing the design. However, this did not permit us to model differences at the block 

level because such long blocks are below the frequency of the high pass filter (< 2 Hz). 

Modeling the blocks without the highpass filter would not remove low frequency 

oscillations due to scanner drift.  

 

Another limitation in our study is that participants were not making decisions completely 

independently from trial to trial. Our data, like Soon et al. (2008), deviates significantly 

from a binomial process (e.g., coin flip). Our participants were more likely to switch 
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(i.e., higher transition probabilities) from one button press to the other than to repeat the 

button press. Whether this non-random behavior influences deciphering brain activity 

involved in free decision making is being actively questioned.(Allefeld et al., 2013; 

Lages et al., 2013) The implication could be that our participants may have been 

exerting cognitive efforts during free condition in an attempt to achieve randomness. 

Even though participants did not achieve ‘true randomness’, this confound could play a 

role in the differences between free and forced conditions. However, our study matched 

the exact sequence in per participant basis such that the laterality is matched identically 

in both blocks, which helps to control this confound behaviorally.  

 

Our study examined the cognitive processes giving rise to binary decisions in two 

different blocks: when freely making decisions and when forced to execute an 

instruction. By matching the exact sequence and timing across blocks, we were able to 

separate the temporal nature of the BOLD signal before a decision was made and 

executed in each block. Our results expose a network of bilateral prefrontal areas, basal 

ganglia, and thalamic regions that have increased activity in the forced condition 

compared to free condition. Further, the timing of the BOLD signal before the button 

press may indicate that cognitive control can increase (or decrease) to prevent (or allow) 

decision making prior to execution. Our findings shed new light on the cognitive 

processes giving rise to freely made decisions. 
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CHAPTER V  

THE ADDICTED BRAIN
*
 

 

5.1 Characterizing White Matter Changes in Cigarette Smokers via Diffusion 

Tensor Imaging 

5.1.1 Introduction 

Although the effects of cigarette smoking have been well studied in several organ 

systems, the effects of chronic tobacco use on brain structures have not been well 

characterized. Particularly, DTI has yielded inconsistent findings on white matter 

structural changes caused by nicotine use. Some data indicate chronic cigarette smoking 

increases FA in several white matter regions, including bilateral fronto-parietal regions 

(Liao et al., 2011), portions of the corpus callosum (Hudkins et al., 2012; Paul et al., 

2008), and the right prefrontal lobe (Hudkins et al., 2012). On the other hand, other 

findings suggest that smoking decreases FA within the corpus callosum (Lin et al., 2013; 

Umene-Nakano et al., 2014) and left prefrontal cortex (Zhang et al., 2011). Several 

confounds may give rise to these inconsistent DTI findings including variable sample 

sizes, dissimilar inclusion criteria for smokers and matched controls, differing image 

acquisition and registration protocols, and varying statistical approaches.  

                                                 

* Reprinted with permission from “Characterizing White Matter Changes in Cigarette 

Smokers via Diffusion Tensor Imaging” by Savjani RR, Velasquez KM, Thompson-

Lake DG, Baldwin PR, Eagleman DM, De La Garza R 2nd, Salas R, 2014. Drug and 

Alcohol Dependence. 145, 134-142, Copyright 2014 by Elsevier Inc. 
* Reprinted with permission from “The role of neuroscience in drug policy: Promises and 

prospects” by Ormachea PA, Savjani RR, De La Garza R, Eagleman DM, 2016. The 

Journal of Science Law. 2, 1-15, Copyright 2016 by The Journal of Science Law. 
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Nonetheless, human imaging evidence does suggest the timing and volume of nicotine 

exposure exerts consistent effects on white matter characteristics. Over the long term, 

the total amount of nicotine consumed (or the severity of dependence) correlates 

negatively with FA in several brain regions (Hudkins et al., 2012; Liao et al., 2011; Lin 

et al., 2013; Paul et al., 2008; Umene-Nakano et al., 2014; Zhang et al., 2011). For 

example, Lin et al. 2013 found that the more years participants smoked, the lower the 

FA. Further, some studies have attempted to explain the variance in previous findings by 

a temporal model: nicotine exposure during adolescence increases FA values initially, 

but then chronic smoking throughout adulthood decreases FA (Hudkins et al., 2012; Paul 

et al., 2008). Over the short term, acute nicotine exposure via a nicotine patch can 

increase FA within the corpus callosum, but only in participants with a low level of 

cotinine (Kochunov et al., 2013), a biomarker of nicotine exposure. These studies 

highlight that it is important to study a wide range of participants with varying smoking 

histories as well as controlling for acute nicotine exposures.  

 

In the present study, we examined the effects of nicotine on white matter characteristics 

using four novel approaches. (1) To improve detection of white matter brain regions 

implicated, we acquired images with a greater number of diffusion gradient directions 

(71) than has been previously used in an attempt to more accurately fit the tensors in the 

DTI model. (2) We expanded whole-brain TBSS analyses to include not only FA 

measures as have been used previously (Lin et al., 2013; Umene-Nakano et al., 2014; 

Zhang et al., 2011) but also all standard tensor metrics as well as a crossing fiber model 
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(Jbabdi et al., 2010) to better agnostically characterize the white matter alterations that 

arise from smoking. (3) We used probabilistic tractography to define participant specific 

tracts and compared DTI metrics within these tracts between smokers and healthy 

controls. (4) Finally, in a cohort of participants, we scanned smokers under two separate 

conditions: after smoking as usual and after abstinence (24 hours). Although DTI 

metrics have been perceived to measure anatomically stable chronic characteristics, 

recent studies have shown acute changes after different manipulations (Hofstetter et al., 

2013). DTI metrics have also been shown to change acutely as a result of nicotine 

administration via patch (Kochunov et al., 2013), but no DTI study to date has compared 

the same smokers while abstinent (asked to not smoke) and sated (allowed to smoke 

normally). Collectively, these approaches allowed us to further characterize the white 

matter changes in cigarette smokers. 

 

5.1.2 Materials and Methods 

5.1.2.1 Participants 

This study was approved by the Baylor College of Medicine institutional review board 

and participants were compensated for their time. 32 non-smokers and 30 cigarette 

smokers participated in the study. Participants were recruited from the greater Houston 

metropolitan area via advertisements. During phone screening callers who did not 

identify as treatment seeking, and smoked ≥ 10 cigarettes a day for at least one year were 

eligible for in-person screening. Non-smokers could not have smoked ≥ 5 cigarettes in 

their lifetime. Smokers were participant to an in-person screening interview and 
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exclusion criteria for smokers included: other non-tobacco substance dependence, 

diagnosis of any AXIS I disorder according to the Mini-International Neuropsychiatric 

Interview, and a positive illicit drug urine toxicology at time of screening. Smokers were 

also required to give an exhaled breath carbon monoxide (CO) of ≥ 10 ppm on the day of 

smoking as usual, and ≤ 5ppm on the day of abstinence. CO levels were measured using 

a CO meter (Micro+ Smokerlyzer Monitor, Bedfont Scientific, Kent, England). Thirty 

cigarette smokers took part in the DTI scan when abstinent; of these, 15 participants 

returned to perform another identical DTI scan in which they smoked as usual prior to 

the scan.  

 

To assess the level of nicotine dependence of smokers, we used the Fagerstorm Test for 

Nicotine Dependence (FTND), which consists of 6 questions with a mixture of multiple 

choice questions (scored 0 to 3) and yes/no questions (Scored 0 or 1). The total score 

range is from 0-10, with 0 being lowest dependence and 10 being highest. The FTND 

was administered when smoking as usual. 

 

5.1.2.2 Imaging Acquisition Details 

All participants were scanned on a Siemens 3T Trio Magnetom scanner at the Baylor 

College of Medicine’s Center for Advanced Magnetic Resonance Imaging (CAMRI). 

Scanner acquisition parameters for the DTI sequence were as follows: voxel size: 2x2x2 

mm, slices: 61 transversal slices (2 mm thick with no gap), phase encoding direction: 

A-P, FOV: 256 x 256 mm, TR: 9.4 s, TE: 91 ms, matrix size: 128 x 128, echo spacing: 
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73 ms, diffusion directions: 71 unique directions at b0 = 1000 s/mm
2
 with 8 repetitions 

at b0 = 0 s/mm
2
, duration: 12:32 m. Due to FOV and slice selection, the cerebellum and 

posterior occipital lobes were not fully captured for every participant. 

 

5.1.2.3  Tract-based Spatial Statistics (TBSS) 

To perform an unbiased, voxel-by-voxel analysis to identify WM regions with 

significantly different FA between non-smokers and smokers, we performed tract-based 

spatial statistics (TBSS) via FMRIB Software Library [FSL v5.0.4] (Jenkinson et al., 

2012; Smith et al., 2006). The Neuroimaging in Python Interfaces and Pipelines 

(Nipype) (Gorgolewski et al., 2011) was used to carry out the analyses and facilitate 

preprocessing. Raw diffusion weighted images (DWI) images were preprocessed first by 

correcting for motion artifacts by linearly registering each DWI volume to the first b0 = 0 

volume using FSL FLIRT (Jenkinson et al., 2002; Jenkinson and Smith, 2001) with 6 

degrees of freedom (DOF) and appropriately rotating the b-vectors(Leemans and Jones, 

2009). Second, the images were corrected for eddy current distortions using FSL’s 

FMRIB's Diffusion Toolbox FDT (Behrens et al., 2003) eddy_correct. Next, the 8 b0=0 

volumes were averaged and then brain extracted (FSL bet (Smith, 2002)) to generate a 

brain mask. Diffusion tensors were fitted to the brain extracted DWI using FSL FDT 

(Behrens et al., 2003) dtifit. After preprocessing, all participants’ FA data were aligned 

into a common space using the nonlinear registration tool FNIRT (Andersson, 2007a, b), 

which uses a b-spline representation of the registration warp field (Rueckert et al., 1999). 

Next, the mean FA image was created and thinned to create a mean FA skeleton which 
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represents the centers of all tracts common to the group. Each participant’s aligned FA 

data was then projected onto this skeleton and the resulting data fed into voxel-wise 

cross-participant statistics. In addition to FA, TBSS was performed independently on 

axial diffusivity (Da = λ1), radial diffusivity (Dr = [λ2 + λ3]/2), and mean diffusivity (MD 

= [λ1 + λ2 + λ3]/3).  

 

Between group comparisons were performed using permutations testing methods via 

FSL’s randomize (Bullmore et al., 1999). All contrasts were run with 10,000 

permutations and FSL’s threshold-free cluster enhancement (TFCE) for clustering. 

Multiple-comparisons were corrected by controlling family-wise error (FWE), with 

significance thresholded at p < 0.05. Ethnicity, education, gender, and age were 

demeaned and entered as covariates in the GLM to isolate the effects of tobacco use. 

Furthermore, to explore how DTI measures correlated with these covariates directly, we 

also ran regressions with the individual covariates. Any regressions yielding significant 

voxels were then explored further to determine the effects of the covariates on their 

interaction with smoking status.  

 

In addition to performing TBSS on traditional tensor measures (FA, Da, Dr, and MD), 

we also performed TBSS on crossing fiber measures. Tensor measures such as FA 

ignore information about fiber bundles and their orientations at each voxel. Recently, 

TBSS models have been extended to incorporate crossing fibers to measure relative 

structural integrity of multiple fibers along their principal direction at each voxel (Jbabdi 
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et al., 2010). We used Bayesian sampling techniques (FSL bedpostx, default parameters) 

to build up the distribution of diffusion parameters on the basis of Markov Chain Monte 

Carlo (MCMC) sampling (Behrens et al., 2007). To compare fibers consistently across 

participants, we used FSL tbss_x to align two fiber bundles at each voxel. We then 

proceeded to perform spatial statistics on each of the two fiber bundles, adjusting for 

covariates identical to the approach with tensor measures discussed above.  

We also examined the impact of smoking dependence severity (as measured by FTND) 

on the TBSS. First, we used the FTND score as a regressor in the TBSS model described 

above for smokers to find voxels that correlate with FTND. Second, we ran a separate 

TBSS analysis on smokers with FTND > 3 to exclude participants with lesser nicotine 

dependence. All descriptive statistics were completed using MATLAB™. For all 

statistics with FTND and DTI, ethnicity, education, gender, and age were adjusted as 

regressors of no interest, as in all TBSS analyses. 

 

5.1.2.4 Probabilistic Tractography 

While TBSS performs agnostic voxel-wise comparisons on major WM tracts common to 

all participants, we also looked at particular tracts hypothesized to be implicated in 

nicotine dependent individuals. Specifically, we examined participant-specific tracts that 

connected to the frontal cortex from nucleus accumbens, habenula, and motor cortex.  

To generate the seed masks, we first used the Harvard-Oxford Cortical and Sub-cortical 

Structural probability atlases to generate seed masks for the nucleus accumbens 

(thresholded at > 25%) and precentral gyrus (thresholded at > 75%). These thresholds 
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were selected to best isolate the two structures, as well as to use similar number of 

voxels in each seed (~1000 voxels). For the habenula, we isolated the center voxel in 

each participant’s T1 anatomical image, drew a sphere with a radius of 3 mm around the 

voxel, and used boundary based linear registration (FSL epi_reg) to map the habenula 

ROIs into DWI space. For the target ROI, we generated a frontal cortex mask by 

including any coronal slices anterior to the temporal poles in MNI space. Each seed and 

target ROI was created for both hemispheres.  

 

We then used probabilistic tractography (FSL probtrackx2) to find the WM tracts 

connecting each of the 6 seeds to the ipsilateral frontal cortex target ROI. We used 

default parameters for probtrackx2 (5000 sample pathways, 0.2 curvature threshold, 

2000 termination steps, 0.5 mm step length) and also incorporated 2 crossing fibers 

(bedpostx). Tractography was performed in participant’s native diffusion space by back-

projecting via inverting the non-linear transformations from diffusion to MNI space 

created by TBSS (FSL tbss_deproject). For each participant, each of the 6 generated 

tracts were first confined to white matter using the individual participant’s white matter 

mask (generated by segmentation by FSL fast) and then thresholded to probabilities 

greater than 0.5% of the probabilistic index of connectivity (i.e., 0.005 * fdt_paths / 

waytotal). For each participant and tract, we then computed the spatially averaged FA 

within the thresholded tract and ran group statistics using a GLM model analogous to the 

model we used in TBSS. Thus, we could compare differences in FA within our 

hypothesized tracts between controls, abstinent smokers, and sated smokers. 
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5.1.3 Results 

5.1.3.1 Participants 

Demographics for age, gender, race and smoking characteristics are shown in Table 5.1. 

Although we invited all 30 smokers to return for the second scan in which they smoked 

as usual prior to the scan, only 15 returned for the second scan. Further, the FTND of the 

15 participants who did return, had significantly greater FTND than the 15 participants 

who did not return (two-sample, two-way t-test: p = 0.0020, t-stat = 3.4099). The other 

smoking metrics (years of smoking, cigs/day, and exhaled CO) did not significantly 

differ between the two groups. 

 

 

Table 5.1 Demographics 

 

Demographic Information and Smoking Severity Measures 

 

 Controls 

Mean ± SD 

Smokers 

Mean ± SD 

Education 

(years)  

15.44 ± 2.6  13.47 ± 1.73 *** 

Gender 14 M: 18 F 17 M; 13 F 

Race  15 Caucasian 

10 African Am 

1 Asian Am 

6 Hispanic 

8 Caucasian 

14 African American 

0 Asian American 

8 Hispanic 

Age (years) 35.97 ± 13.75  39.03 ± 9.90  

Yrs of smoking N/A 21.15 ± 9.52 (obtained from 20 participants) 

FTND N/A 5.37 ± 2.57 

Cigarettes/Day N/A 15.23 ± 7.68  

Exhaled CO 

(ppm) N/A 
15.17 ± 7.52 

(smoking as usual) 

3.21 ± 1.72 (abstinent 

24 h) 
 

Time since last 

cigarette (hrs) N/A 
2.33 ± 3.51 

(smoking as usual) 

26.92 ± 7.12 

(abstinent 24 h) 
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5.1.3.2 TBSS 

5.1.3.2.1 Covariate Interactions 

Significant correlations were found between FA and two demographic covariates: 

gender and age. When gender was used as a covariate, females had several regions with 

significantly greater FA than males, and age negatively correlated with FA for several 

voxels throughout the brain (p < 0.05). Importantly, to test if gender and/or age had 

different impacts on smoking status, we regressed the age and gender covariates 

separately for smokers and non-smokers. No significant interactions were found between 

the two groups for either age or gender, indicating that the impact of gender and age are 

not significantly different for smokers and non-smokers. 

 

5.1.3.2.2 FTND 

When FTND was regressed against FA in smokers, no voxels were found that had 

significant positive or negative correlation with FTND (p > 0.25, t-test, FWE corrected).  

 

5.1.3.2.3 Controls vs Smokers (abstinent 24 h)  

Smokers (abstinent 24 h) had significantly decreased FA  (p < 0.05, t-test, FWE 

corrected) compared to controls in several brain regions (Figure 5.1). This reduction in 

FA in abstinent smokers was seen in the left and right splenium of the corpus callosum, 

with a larger region on the left side that extended more inferiorly. Reductions in FA 

were also found in smokers with bilateral anterior limb of the internal capsule. To better 

quantify the effect size of the reduction, we computed the mean of four DTI metrics (FA, 
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MD, Dr, Da) within all significantly different voxels found by TBSS on FA (Figure 

5.2A). Within these regions, FA and Da decreased, while Dr and MD increased in 

smokers compared to controls. The mean FA within these regions in smokers correlated 

negatively with the number of years of regular smoking (r
2
 = 0.27, p < 0.05). We also 

observed a positive trend in correlation of Dr and the number of years of regular 

smoking (Figure 5.2B) that approached significance (r
2
 = 0.18, p = 0.054). These 

correlations were run on data from 20 out of the 30 smokers from whom information on 

years of regular smoking was obtained. The correlations were weak, suggesting that 

many other factors may influence white matter disruptions; however, the correlation 

strengths and directions are consistent with previous findings (Lin et al., 2013).  

 

5.1.3.2.4 Other DTI Metrics: Controls vs Smokers (abstinent 24 h) 

TBSS analysis also revealed changes in non-FA DTI metrics in abstinent smokers 

compared to controls. Smokers had higher Dr within the corpus callosum and internal 

capsule bilaterally (Figure 5.3). Further, modeling the DTI data with 2 crossing fibers 

shows significant differences between smokers and controls in both fiber directions. 

Smokers showed decreases in anisotropy of the major fiber (F1) within notably large 

portions of the left corpus callosum (Figure 5.4). Smokers also showed decreases in 

anisotropy of the second fiber (F2) within several anterior brain regions (Figure 5.5). 

TBSS for Da and MD did not yield any significantly different voxels. 
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Figure 5.1 Fractional Anisotropy Deficits in Smokers 

 

TBSS results reveal that smokers have decreased FA in the L and R splenium of corpus 

callosum and the L and R anterior limb of internal capsule. Ethnicity, education, gender, 

and age were adjusted for as additional covariates in the GLM. Anatomical labels were 

derived from the JHU ICBM-DTI-81 White Matter Labels. The light blue indicates the 

skeletonized WM in which the voxel-wise TBSS was performed. The red-yellow shows 

significant voxels (p < 0.05, FWE controlled) with the voxels filled along the WM tracts 

for easier visibility. Brain images are in radiologic convention (right hemisphere appears 

on left). 
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Figure 5.2 Impact of Smoking 

 

WM regions with significantly lower FA in smokers also show changes in other DTI 

measures. A. FA was decreased, Da was decreased, Dr was increased, and MD was 

increased in smokers compared to non-smokers. Significance testing was not computed 

here to avoid circularity. The box and whisker plots show group statistics of the 

averaged DTI metrics from each tract: median within the box, the 25th and 75th 

percentiles at the bounds of the box, the extremes of the data not outliers as whiskers, 

and the outliers in red crosses. B. Correlations of DTI metrics with severity of smoking 

revealed a negative correlation of FA and duration of smoking and a positive correlation 

with Dr and duration of smoking. Data is from 20 of the 30 smokers from which years of 

regular smoking was obtained. These characteristic correlations are highly consistent 

with Lin et al (2013), even though our brain regions differ. 
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Figure 5.3 Radial Diffusivity Changes in Smokers 

 

TBSS results reveal smokers have increased Dr diffusely in corpus callosum and 

bilateral internal capsule. Ethnicity, education, gender, and age were adjusted for as 

additional covariates in the GLM. Anatomical labels were derived from the JHU ICBM-

DTI-81 White Matter Labels. 

 

 

 

 

Figure 5.4 Major Fiber Changes in Smokers 

 

TBSS results reveal smokers have significantly decreased anisotropy along the major 

fiber (F1) in the L body of the corpus callosum (top row), the bilateral anterior limb of 

the internal capsule (middle row), and the L forceps minor (bottom row). Ethnicity, 

education, gender, and age were adjusted for as additional covariates in the GLM. 

Anatomical labels were derived from the JHU ICBM-DTI-81 White Matter Labels or the 

JHU White-Matter Tractography atlas.  
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Figure 5.5 Secondary Fiber Changes in Smokers 

 

TBSS results reveal smokers have significantly decreased diffusivity along the second 

anisotropy (F2) in bilateral anterior internal capsule (top row), the L inferior fronto-

occipital fasciculus (middle row), and the R genu of the corpus callosum (bottom row). 

Ethnicity, education, gender, and age were adjusted for as additional covariates in the 

GLM. Anatomical labels were derived from the JHU ICBM-DTI-81 White Matter 

Labels or the JHU White-Matter Tractography atlas. 

 

5.1.3.2.5 Sated vs Abstinent Smokers 

No differences in FA, MD, Dr, or Da were found via TBSS between smokers who 

smoked as usual (sated) and smokers who abstained for 24 hours (abstinent). 

 

5.1.3.3 Probabilistic Tractography 

5.1.3.3.1 Controls vs Smokers 

Several differences between abstinent smokers (24 h) and controls were observed within 

the frontal-projecting white matter tracts (Figure 5.6). When abstinent, smokers had 

lower FA in the right fronto-motor tract compared to controls (p < 0.05, GLM t-contrast 
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control - smoker). When smoking as usual, smokers had lower FA compared to controls 

in left fronto-accumbal, right fronto-motor, and right fronto-habenula tracts (p < 0.05, 

GLM t-contrast control - smoker). When smoking as usual, smokers also had lower FA 

compared to abstinent smokers in right fronto-accumbal and right fronto-habenula tracts 

(p < 0.05, paired t-test). 

 

5.1.3.3.2 Hemispheric Asymmetry in Smokers (abstinent 24 h) 

Previous studies (Lin et al., 2013) have shown asymmetrical disruptions in white matter 

as a result of smoking, with more disruptions in FA appearing on the left hemisphere. 

Our probabilistic tractography results also show that smokers (abstinent 24 h) have 

lower FA in the left fronto-habenula and left fronto-accumbal tracts compared to the 

right sided tracts (p < 0.05, paired t-test). However, control participants did not show any 

such asymmetry (Figure 5.7). 
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Figure 5.6 Tractography 

 

Chronic tobacco use causes decreases in FA within frontal projecting tracts, which show 

further decreases in FA when smokers have recently smoked. Probabilistic tractography 

was used to find specific tracts projecting to the frontal cortex originating from 3 ROIs: 

habenula, nucleus accumbens (NACC), and pre-central gyrus (motor). Tracts from a 

representative participant are shown on the bottom row of images corresponding to the 

ROI seeds. Above each image is the distribution of FA across participants within that 

tract. The box and whisker plots show group statistics of the averaged FA from each 

tract: median within the box, the 25th and 75th percentiles at the bounds of the box, the 

extremes of the data not outliers as whiskers, and the outliers in red crosses. 
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Figure 5.7 Asymmetrical Hemispheric Differences 

 

Nicotine users show asymmetrical hemispheric differences in FA along fronto-habenula 

and fronto-accumbal tracts. Nicotine users showed significantly lower FA (*: p < 0.05, 

paired t-test) along the L habenulo-frontal and accumbo-frontal tracts compared to the 

corresponding right hemispheric tract. Controls showed no hemispheric asymmetries 

along any of our measured tracts. The box and whisker plots show the group statistics of 

the averaged FA from each tract: median within the box, the 25th and 75th percentiles at 

the bounds of the box, the extremes of the data not outliers as whiskers, and the outliers 

in red crosses. 
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5.1.4 Discussion 

Our approaches yield three new pieces of evidence characterizing white matter 

disruptions from nicotine use: (1) Using TBSS, we found abstinent smokers compared to 

controls have decreased FA, increased radial diffusivity (Dr), and decreased anisotropy 

within aligned fiber bundles in several brain regions, including the corpus callosum and 

anterior internal capsule. (2) We found structural connections between the frontal cortex 

and two reward-related brain areas (the nucleus accumbens (Balfour, 2002, 2004; Di 

Chiara et al., 2004) and the habenula (Salas et al., 2009; Velasquez et al., 2014)) to be 

implicated in chronic nicotine smoking, and these disruptions were further exaggerated 

by acute smoking. (3) We found specific hemispheric asymmetries within frontal 

projecting tracts observed in chronic smokers but not in healthy controls, suggesting the 

white matter disruptions in the left hemisphere to be more susceptible to the effects of 

nicotine than the right hemisphere. Collectively, our study uses recent DTI approaches to 

better characterize the adverse effects of nicotine on white matter characteristics in the 

brain.  

 

First, using TBSS we found decreased FA within regions of the corpus callosum, in line 

with some previous studies (Lin et al., 2013; Umene-Nakano et al., 2014) and refuting 

others (Hudkins et al., 2012; Paul et al., 2008). Also using TBSS, we found Dr was 

increased in the corpus callosum in smokers (abstinent 24 h) compared to controls, a 

result that was previously not found (Umene-Nakano et al., 2014) or not explicitly 

searched for using TBSS (Lin et al., 2013). We also built a model that incorporated 
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crossing fibers (Jbabdi et al., 2010) and found large decreases in anisotropy along the 

first fiber direction in the entirety of the left corpus callosum and decreased anisotropy in 

several frontal WM regions in bilateral frontal regions. Such a model had not been tested 

for nicotine dependence, and our analysis with this model supports previous studies 

reporting left sided corpus callosum disruptions in smokers (Lin et al., 2013). Further, by 

aligning fiber orientations and running TBSS on each fiber bundle individually, we were 

also able to elucidate decreases in anisotropy in anterior internal capsule and frontal 

regions, a result not previously reported in TBSS analyses on FA only. Our data also 

recapitulated correlations of FA and years of nicotine use previously seen across several 

studies (Hudkins et al., 2012; Liao et al., 2011; Lin et al., 2013; Paul et al., 2008; 

Umene-Nakano et al., 2014; Zhang et al., 2011). Although the directionality of the 

correlations are consistent with the literature, all studies including our own have used 

relatively small sample sizes. The strength of these mild correlations might be increased 

by: (1) using an order of magnitude greater number of smokers, (2) adjusting for further 

demographic and biological data (e.g. socioeconomic conditions, genetic 

predispositions), and (3) acquiring better estimates of total lifetime volume of nicotine 

exposure. In sum, our TBSS data further elucidate the changes seen within the corpus 

callosum and the anterior limb of the internal capsule seen in cigarette smokers but not 

in controls.  

 

Second, the probabilistic tractography within our 3 hypothesized tracts (fronto-

accumbal, fronto-habenular, and fronto-motor) revealed a general trend of decreasing 
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FA in smokers who abstained from smoking for 24 hours, compared to controls. These 

changes were further exacerbated when smokers smoked as usual (sated). Even though 

our TBSS analysis did not reveal any differences between smoking as usual and 

abstinent smokers, we found the right fronto-habenula and fronto-accumbal tracts to be 

decreased further when smokers recently smoked. We also found 3 of the 6 tracts to 

show significantly lowered FA in sated smokers compared to controls. Using 

participant-specific tracts to perform statistics rather than common group approaches 

like TBSS can reveal more subtle differences that can wash away in spatial 

normalization. Further, we also found evidence for hemispheric asymmetry in which the 

left hemisphere contained more disruptions in smokers but not controls, a result 

supporting previously observed findings (Lin et al., 2013). Although previous studies 

found significant correlations between FTND and DTI metrics (Hudkins et al., 2012; 

Paul et al., 2008; Zhang et al., 2011), our data did not show such correlations using two 

different approaches.  

 

Third, our probabilistic tractography results support our hypothesis that acute effects of 

nicotine enhance the observable chronic disruptions in DTI in smokers in some regions. 

The opposite hypothesis, for smokers to show increases in FA after recent use, is also 

plausible and has been previously observed in the genu of the corpus callosum after 

recent nicotine administration (Kochunov et al., 2013) and in smokers who recently 

began smoking (Hudkins et al., 2012; Liao et al., 2011; Lin et al., 2013). Support for this 

hypothesis stems from the presence of functional nicotinic acetylcholine receptors 
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(nAChRs) within the white matter of the brain (Ding et al., 2004; Kochunov et al., 2013; 

Pimlott et al., 2004; Vizi and Lendvai, 1999) and/or glial swelling (Hudkins et al., 2012; 

Opanashuk et al., 2001), which could account for acute exposure to nicotine increasing 

FA values. Our results show that smokers who were sated had decreases in FA compared 

to the same smokers when they abstained for 24 hours within particular frontal 

projecting tracts. Since our TBSS results showed no difference between sated and 

abstinent smokers, it is possible that acute nicotine exposure affects only specific WM 

tracts. Further, smokers exhibited greater disruptions in the left compared to right tracts. 

Although we did not hypothesize such a laterality difference selectively in smokers, the 

greater DTI changes in the left hemisphere may parallel lateralization of dopaminergic 

systems. Dopaminergic dysfunction is characteristic in Parkinson’s disease, in which 

greater nigrostriatal damage is seen on the left hemisphere (Scherfler et al., 2012) and in 

which stronger left lateralized functional connectivity is associated with a decreased risk 

for Parkinson’s disease (Ellmore et al., 2013). This interpretation is further supported 

that smoking propensity can be altered in humans via dopaminergic agonists and inverse 

agonists (Caskey et al., 2002). Interestingly, we also did not hypothesize the fronto-

motor tracts to differ significantly from controls or between abstinent and sated smokers. 

However, disruptions in motor coordination have been observed in rats with prenatal 

exposure to tobacco extracts (Khalki et al., 2012), suggesting the motor circuit may also 

be implicated in nicotine use. Further, nicotine exposure may induce changes to 

networks throughout the frontal cortex, giving rise to our observed changes in all three 

frontal projecting tracts. 
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An alternative interpretation of the data is that the white matter changes in the abstinent 

smokers is related to acute withdrawal of nicotine rather than chronic nicotine exposure. 

This seems plausible, as 24 hours without a cigarette certainly induces withdrawal 

symptoms. However, we did not find significant differences in the paired TBSS analysis 

of smokers in sated vs. abstinent conditions. Further, our probabilistic tractography data 

show that when sated, the FA measures decline further rather than reversing, as would 

be expected if the effect was due to withdrawal. That is, we did not observe FA 

measures to restore towards the level of controls when smokers recently smoked. 

Nonetheless, a further investigation parametrically modulating the duration of abstinence 

and observing the effects on DTI metrics might further substantiate our findings.  

 

The characteristics of the altered DTI metrics in smokers may elucidate the biological 

underpinnings of the impact of nicotine on white matter. Smokers were found to have an 

increase in radial diffusivity compared to controls without significant decreases in axial 

diffusivity, suggesting the disruptions observed in smokers are more likely related to 

dysmyelinated axons rather than axonal injury (Song et al., 2003; Song et al., 2002; 

Song et al., 2005). This finding is consistent with rodent studies that revealed gestational 

nicotine exposure decreased myelin gene expression in both adolescent and adult rats in 

regions including the prefrontal cortex, basal ganglia, and the nucleus accumbens (Cao 

et al., 2013a; Cao et al., 2013b).  
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Our study has four important limitations. First, our DTI sequence prevented imaging of 

the cerebellum and the posterior occipital lobe, limiting inferences from these regions. 

Further, incomplete imaging of the cerebellum could prevent optimal image registration. 

Second, we did not scan control participants twice to measure the test-retest reliability of 

the imaging as well as the analysis approaches. This is a growing concern in DTI 

imaging, and TBSS approaches are participant to imperfect test-retest reliability 

(Madhyastha et al., 2014). Third, we did not randomize the days that smokers were 

abstinent. Due to participation in a separate study (a virtual reality session prior to 

scanning), all participants had been abstinent for over 24 hours on the first day they were 

scanned. Further, the 15 participants who did return for the second scan while smoking 

as usual had significantly greater FTND. This may limit the implications of the effects of 

acute nicotine exposure on DTI metrics to smokers who have a greater dependence on 

nicotine. Fourth, there are a multitude of factors that could additionally or partially 

explain differences in DTI metrics between controls and smokers. Our covariates 

accounted for linear trends in the data; however, non-linear effects of age and education 

in particular were not removed. Further, we did not assess other indices of health 

including but not limited to: diabetes, blood pressure, hypertension, and cardiac 

disorders. Thus, our study cannot state that tobacco plays any causal role on these 

observed changes, only that a correlation was observed. 
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5.1.5 Conclusions 

Our study investigated the effects of nicotine use on white matter characteristics using a 

variety of approaches. By using multiple directions in our DTI image acquisition and 

incorporating crossing fibers into our TBSS analysis, we provide a more complete 

picture of white matter disruptions in chronic smokers, including regions of decreased 

FA in the corpus callosum. Further, our probabilistic tractography data reveals decreases 

in FA in smokers in white matter tracts projecting to the frontal cortex from the nucleus 

accumbens, habenula, and the motor cortex. Disruptions were greater on the left side in 

smokers vs. non-smokers, and decreases were generally exaggerated by acute exposure 

to cigarette smoking. DTI may help elucidate the addictive potential of nicotine and how 

it interacts with cortical and subcortical white matter. Fortunately, there is some 

evidence that quitting smoking for > 20 years restores disruptions in white matter 

characteristics (Gons et al., 2011), suggesting these disruptions may not be permanent. 

Mapping what the disruptions are and how they can recover could be instrumental in 

therapeutic development. 
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5.2 Characterizing the Full Sympathetic Response to Drug Cues 

 

5.2.1 Introduction 

One the biggest challenges in drug addiction therapy is finding an objective marker to 

quantify the level of success for drug therapies. Currently, the two best indicators of 

treatment performance are: 1) the number of days a participant is able to abstain from 

drug use and 2) participant questionnaires asking for craving status. The abstinence 

criteria is heavily debated topic but the federal agencies have mandated a minimum of 2 

weeks abstinence is required before a treatment can garner FDA approval. Even if 

therapies can reduce usage or alter dependence, if the abstinence criteria is not met, the 

drug will unfortunately not be approved. Reduction without elimination of drug usage 

could still hold very beneficial, much the way weight loss programs don’t require 

complete abstinence from unhealthy foods. The binary measure of abstinence does not 

forecast if physiology has been altered and dependence has been reduced, beyond the 

abstinence observed during the treatment regimen. Further, most therapy programs have 

a contingency management baked into them, which has shown to be one of the most 

effective behavioral therapy regimens (Knapp et al., 2007). But, contingency 

management can artificially inflate abstinence during treatment regimens, which may not 

be reflective of abstinence rates as soon as the therapy ends. Participant questionnaires 

are not objective markers and vary drastically between days, participants, and 

experimenters.  
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To this end, we are investigating the complete sympathetic nervous system response to 

drug cues in order to quantify craving states in crack cocaine users. The sympathetic 

nervous system response includes increased heart rate, increased blood pressure, 

increased galvanic skin response (GSR) via increased conductance (decreased 

resistance), pupillary dilation, and decreased skin temperature. Several labs have 

investigated some of these measures independently (e.g., (Ehrman et al., 1992)) in the 

early 1990s and found cocaine users exhibited heightened sympathetic responses when 

shown drug-related stimuli. The claim is that the cue or conditioned response may 

trigger a withdrawal state.  

 

However, reports slightly later discussed that these cue responses did not correlate with 

motivational states (Robbins et al., 1997). Here, we are investigating examining closer 

the full sympathetic response by measuring the temporal response of 4 measures on 

effector organs simultaneously with well-controlled baseline conditions. We hypothesize 

that the timing of each response is variable across the different measures, and capturing 

the temporal profile will be essential. Further, most previous studies used a block design, 

measuring responses to long chunks of videos or stimuli. Here, we are employing an 

event-related design that can allow us to study the temporal profile of each measure in 

response to single, briefly flashed images. Together, these measurements may allow us 

to predict better the mental states from physiological measurements. Work is currently 

ongoing and unpublished as of yet. 
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5.2.2 Materials and Methods 

5.2.2.1 Stimuli 

The most critical component of measuring the sympathetic response is to find a well-

matched control to get a baseline response to a briefly flashed image. For pupillometry, 

this proves challenging to match the visual properties of the images in control images. 

Many previous approaches used phase-scrambled images, images which take an FFT of 

the original image, randomly scramble the phase, and bring the image back to the spatial 

domain. However, these images often appear very unnatural and do not preserve local 

contrast features (Figure 5.8). 

 

Instead, we used diffeomorphic transformations to allow us to use color, scrambled 

images that are much better matched to the original image (Stojanoski and Cusack, 

2014). These images much better preserve local features and allow control on much to 

scramble the original image (Figure 5.9). 

 

In our experimental design, we first flashed the warped image for 250 ms followed by an 

inter-trial interval of 6 – 10 s. Then, we flashed the true image next. Images were 

randomly selected from a set of cocaine or cocaine paraphernalia images or natural 

images. We showed 20 images of each type, making for 40 images and 40 warped 

images. Experiment time was ~15 minutes. Participants were not asked to perform any 

task to minimize motion during data collection. Afterwards, participants rated the degree 

to which each cocaine image elicited craving using a visual analog scale (VAS) for 0 (no 
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response) to 100 (maximum craving response). Participants were required to give a 

negative urine sample (no cocaine in system for last 72 hours) to ensure a minimum 

satiety across participants. 

 

 

Figure 5.8 Phase Scrambled Images 

 

Phase scrambled images do not preserve image statistics. 

 

 

 

Figure 5.9 Diffeomorphic Transformations 

 

Diffeomorphic transformations all just the high-level content of images to be distorted 

without destroying critical image statistics to measure pupillometry. 
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5.2.2.2 Physiological Measurements 

We are measuring 4 sympathetic responses in crack cocaine users in response to cocaine 

images: 

1) Heart rate variability  

2) Skin conductance (GSR) 

3) Skin Temperature  

4) Pupillary dilation   

 

Heart Rate Variability- Heart rate was measured using a pulse oximeter BIOPAC 

(Goleta, CA) Pulse Oximeter Trans, Finger Transducer – TSD123A and amplifier 

(BIOPAC Pulse Oximeter Amplifier – OXY100C) sampled at 200 Hz. Heart rate 

variability was computed as follows: 

𝐻𝑅𝑉 = 𝑠𝑡𝑑(𝑃𝑒𝑎𝑘 − 𝑡𝑜 − 𝑃𝑒𝑎𝑘 𝑡𝑖𝑚𝑒) 

The peak-to-peak times were computed by finding the local maxima (Figure 5.10). 

 

Skin Conductance- Skin conductance (or GSR) was measured using the BIOPAC 

Galvanic Skin Response Amplifier – GSR 100C and BIOPAC Skin Conductance Trans, 

AgCl GSR Electrodes – TSD203. Electrolytic gel (BIOPAC Gel 101) was applied to 

sensor leads. GSR was continuously sampled at 200 Hz. 

 

Skin Temperature- Skin temperature was measured using the BIOPAC Skin 

Temperature Amplifier SKT 100C and the BIOPAC Fast Response Thermistor, TP – 
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TSD202A. The thermistor was taped to the participants’ right forearm, and data were 

sampled continuously at 200 Hz.  

 

Biopac Data Acquisition- The above three measures were all acquired with the BIOPAC 

MP150 Data Interface using AcqKnowledge 3.9.1 software on a Windows XP laptop.  

 

Pupillometry- Eye movements and pupillometry were obtained with the SR EyeLink 

1000 Plus (Scientific Research, Ontario, Canada). Raw position and pupil diameter were 

sampled at 1000 Hz. Saccade reports were generated using the EyeLink Data Viewer 

(Scientific Research, Ontario, Canada) and further analyzed in MATLAB (Mathworks, 

Natick, MA, 2000). Eye blinks were detected when the pupil diameter was too small (< 

1 mm), obstructed, or not tracked, and any saccades during blinks were discarded from 

analysis. 
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Figure 5.10 Heart Rate Variability 

 

Finding local maxima peaks of the heart rate pulses to compute HRV. 

 

 

5.2.3 Results 

Preliminary data from 5 participants show minor changes in the physiological response 

of drug cues compared to natural images (Figure 5.11-14). 

 

5.2.4 Discussion 

The data from 5 participants are preliminary and do not yet show a consistent heightened 

sympathetic response to cocaine cues. Work is ongoing to collect data from more 

participants and to refine approaches. 
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Figure 5.11Heart Rate Variability Differences 

 

Minor changes in heart rate variability were detected in participants shown cocaine vs. 

natural images. 

 

 

 

Figure 5.12 Galvanic Skin Response 

 

Minor changes in galvanic skin response were detected in participants shown cocaine vs. 

natural images. 
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Figure 5.13 Skin Temperature 

 

Minor changes in skin temperature measure in participants shown in cocaine vs. natural 

images. 

 

 

 
 

Figure 5.14 Pupillometry 

 

Minor changes in pupillometry measurements in participants shown in cocaine vs. 

natural images. 
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5.3 Real Time fMRI Feedback 

5.3.1 Introduction 

Crime intersects with mental health at a precarious crossing: drugs. Controlled substance 

abuse impacts the criminal justice system profoundly.  

Starting locally, I indexed and categorized all publicly available criminal record data 

from 1977 to 2010 in Harris County in Houston, TX. What I found was incredibly clear: 

charges for controlled substances account for more crimes than any other type of 

violation since 1990 (Figure 5.15A) with 19.4% of all crime involving controlled 

substances (Figure 5.15B). 

 

Is charging, arresting, and incarcerating people for possession of controlled substances 

effective in preventing future crimes? To answer that, I used the unique person identifier 

to compute recidivisms for each crime type and found a striking result: people charged 

for controlled substances were more likely to repeat the same offense than any other 

crime type: controlled substance charges account for 28.1% of all recidivism in Harris 

County, TX (Figure 5.15C). The criminal justice system is funding an expensive 

endeavor to incarcerate controlled substance abusers (Office of National Drug Control 

Policy, 2012) but is not deterring future re-offenses (Cid, 2009; Vieraitis et al., 2007).  
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Figure 5.15 Drugs and Crime 

 

Criminal charges involving controlled substances have been increasing annually (A) and 

account for the majority of all offenses (B) and recidivisms (C) in Harris County, TX 

from 1977 – 2010.  Recidivism here is defined as the number of multiple offenses for the 

same crime type committed by the same individual on different dates. (Publicly available 

criminal record data were categorized and aggregated in house by the Institute of 

Neuroscience and Law). 
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Figure 5.16 Drug Seizures 

 

Annual global seizure of illicit drugs has remained stagnant or increased from 2000 - 

2010, suggesting a steady market demand and little to no deterrent effect on illicit drug 

production (Data from UNODC World Drug Report 2012). 

 

 

 

Figure 5.17 Drug Arrests 

 

When individuals are arrested for a criminal offense, controlled substances are present in 

a vast majority of arrestees at the time of arrest. (Data from the Arrestee Drug Abuse 

Mentoring, ADAM II (Office of National Drug Control Policy, 2014)). 
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The “war on drugs” has also failed on the supply side. The global seizure rate of various 

narcotics has remained stagnant or increased annually over the decade from 2000 – 2010 

(Figure 5.16) (UNODC, 2012). Seizing one source of supply often leads to an outburst of 

another source (Eagleman and Correro, 2010; Jarvik, 1990). 

 

Further, substance use itself may be criminogenic. The Arrestee Drug Abuse Mentoring 

(ADAM) program performed a urinalysis on all arrestees in 5 different cities across the 

country (Office of National Drug Control Policy, 2014). They found on average about 

75% of arrestees tested positive for at least one controlled substance at the time of arrest. 

This trend remained constant across all cities from 2000 – 2013 (Figure 5.17). 

 

Drugs are integrally involved in the criminal justice system. Drug-related arrests account 

for the most crimes and recidivisms, drug supplies remain omnipresent, and drugs are 

detected in the system in the majority of arrestees. However, there are a lack of effective 

interventions for those addicted to illicit drugs. No Federal Drug Administration (FDA) 

approved therapies exist for people addicted to cocaine, a drug linked with increased 

risk-taking behaviors (Canavan et al., 2014; Hulka et al., 2014; Inciardi and Surratt, 

2001; Wechsberg et al., 2012). 

 

The social, behavioral, and psychiatric fields have tried many different behavioral 

interventions aimed to help addicts abstain from cocaine use. A systematic, retrospective 

review of 27 different psychosocial therapies involving over 3,500 participants 
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attempted to identify an effective strategy for reducing cocaine use (Knapp et al., 2007). 

Of the various behavioral regimens analyzed in the review (e.g., Cognitive Behavioral 

Therapy, Community Reinforcement Approach, Supportive-Expressive Psychodynamic 

Therapy), not one therapy adequately addressed cocaine addiction. Pharmacotherapy and 

behavioral interventions have all failed to offer a way out of cocaine addiction and 

abuse. With few options, the criminal justice system is forced to deal with the abundance 

of controlled substance related activities and crimes and is often left no choice but to 

incarcerate drug users.  

 

A central mission for the NIJ in FY2015 is to seek “alternatives to incarceration, their 

consequences and cost effectiveness.” Over decades of research, neuroscience and 

neuroimaging have shed light on the brain of a cocaine addict, elucidating areas of the 

brain circuitry that have gone awry in cocaine addicts. Modern advances in imaging 

allow us to capture the activity of the entire brain via functional magnetic resonance 

imaging (fMRI) in real-time. Thus, I propose to build and test a neuroscientific 

rehabilitative regimen using innovative methods of biofeedback to help cocaine addicts 

decrease use and prevent crime, relieving the largest burden the criminal justice system 

faces. 
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5.3.2 Materials and Methods 

Social and behavioral science experiments attempt to measure and manipulate behavior 

by either subjective (e.g., self-report) or psychophysical (e.g., 2 alternative forced 

choice) experimental feedback from the participants. But what is lacking is a direct 

objective measure reflecting an individual’s cognitive state. If physiological activity 

of high-level cognition could be accurately and rapidly measured, we could more closely 

understand and guide therapeutic interventions to alter behavior.  

 

5.3.2.1 Real-time fMRI Feedback 

Traditional fMRI allows us to measure the brain activity in humans as they are 

participating in a particular task. For example, we can see what areas of the brain are 

activated when viewing images of cocaine. Modern computational advances enable this 

information in real-time as the participant performs the task inside the scanner. 

Information about real-time brain activity is not limited to the experimenter, but can also 

be displayed to the participant in the scanner. Just as a music student uses the sound of 

his instrument to learn how to play the guitar, a cocaine participant could use his own 

brain activity as feedback to learn how to overcome cocaine craving (Figure 5.18).  

The principle behind rt-fMRI technology dates back nearly two decades (Cox et al., 

1995), but the technique has only been realized recently with advances in modern 

computing power (Sulzer et al., 2013). Neuro-feedback via rt-fMRI has been previously 

applied successfully to help modulate chronic pain (deCharms et al., 2005), depression 

(Linden et al., 2012), and anxiety (Brühl et al., 2014) (rt-fMRI applications reviewed 
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comprehensively elsewhere (Bagarinao et al., 2006; Caria et al., 2012; deCharms, 2008, 

2007; Weiskopf et al., 2007, 2004, 2003)). But research is only beginning to probe the 

utility of this tool as a therapeutic approach to drug addiction. A handful of preliminary 

studies have shown cigarette smokers were able to decrease participantive craving for 

cigarettes (Canterberry et al., 2013; Hanlon et al., 2013; Hartwell et al., 2013; Li et al., 

2012); however, no studies to date have been able to assist addicts with dependence to 

cocaine, a much more severe and consequential disorder to the criminal justice system. 

 

Understanding the neuropsychiatric bases for cocaine addiction is essential for 

developing targeted therapies. Presentation of cocaine-associated stimuli elicits 

increased activation of the anterior cingulate cortex (ACC) (Childress et al., 1999; 

Garavan et al., 2000; Goldstein et al., 2007; Kilts et al., 2001; Maas et al., 1998; Wexler 

et al., 2001), amygdala (Bonson et al., 2002; Childress et al., 1999; Grant et al., 1996; 

Kilts et al., 2001), insula (Bonson et al., 2002; Kilts et al., 2001; Naqvi and Bechara, 

2009), nucleus accumbens (Kilts et al., 2001), caudate (Garavan et al., 2000), and ventral 

tegmental area (VTA) (Goldstein et al., 2009) – what I will summarize as a craving 

network (Figure 5.18A, red). Recent neuroimaging studies indicate that addicts who are 

instructed to cognitively inhibit their cravings for cocaine can transiently lower activity 

within regions of this network (Volkow et al., 2010). Such findings open the way for a 

therapy that can quantify and directly assist addicts in decreasing activity in this craving 

network (Parvaz et al., 2011).  
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Figure 5.18 Real-time fMRI Neurofeedback 

 

Real-time fMRI neurofeedback as a technique to control craving for cocaine abusers. A. 

The therapy guides addicts to decrease activity in brain regions involved in craving 

(red), while also increasing brain activity brain regions involved in suppressing cocaine 

craving (blue). B. Crack cocaine abusers are shown images of the drug and associated 

paraphernalia while in an MRI scanner. Participants are instructed to suppress their 

craving, and feedback representing the ratio of activities in the craving and suppression 

networks is shown in the form of a meter on the screen. The end goal of this therapy is to 

strengthen cognitive control, fortifying participants with the capacity to overcome their 

craving when faced with enticing environmental drug cues. 

 

 

Increasing activity in a “suppression” network may also prove therapeutic (Figure 

5.18A, blue). The prefrontal cortex (PFC) is involved in suppressing urges in cocaine 

addicts (Volkow and Fowler, 2000). Cocaine addicts show abnormal evaluations of 

futures (Coffey et al., 2003; Konova et al., 2012) and cognitive inhibition (Barros-

Loscertales et al., 2011a; Fernandez-Serrano et al., 2012; Lane et al., 2007), and these 

are underpinned by deficits in inhibitory prefrontal circuitry, as measured by functional 
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(Barros-Loscertales et al., 2011a; Garavan et al., 2008; Hester and Garavan, 2004; 

Kaufman et al., 2003) and structural (Barros-Loscertales et al., 2011b; Ersche et al., 

2013, 2011; Franklin et al., 2002; Moeller et al., 2005; Schlaepfer et al., 2006) 

neuroimaging. Directly stimulating PFC via optogenetics in rats (Chen et al., 2013) and 

via repetitive transcranial magnetic stimulation (rTMS) in humans (Camprodon et al., 

2007) results in decreased cocaine cravings. Remarkably, addicts who are able to 

successfully abstain from cocaine abuse show an intact inhibitory control network 

indistinguishable from non-users (Bell et al., 2013), indicating these inhibitory networks 

may be recoverable. This suggests that strengthening the prefrontal networks may aid in 

successful cocaine abstinence. 

 

The brain networks involved in craving and suppressing must be isolated for each 

participant individually. I can leverage tasks known as functional localizers to isolate the 

specific brain regions. In the crave localizer, participants are presented blocks of images 

of cocaine and other blocks of images of natural scenes (Figure 5.19A).  A contrast can 

be performed to determine which brain areas activate more when the participant is 

viewing and actively craving cocaine images compared to when just viewing natural 

scenes. This isolates the craving network. To localize the suppression network, 

participants perform a task that requires cognitive suppression and engagement of the 

frontal cortex (Figure 5.19B). This localizer is known as the continuous perform GO-

NOGO task, in which participants must press a button every time a new image is 

presented (GO); however, when any image is a repeat of the immediately previous 
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image, the participant must withhold from pressing (NOGO) (Bell et al., 2014). By 

contrasting successful NOGO trials from GO trials, I can isolate the regions of the brain 

involved in cognitive suppression specific for each individual. 

 

Once the corresponding brain regions have been localized for both craving and 

suppressing, I can now perform the feedback runs. The participant in the scanner will be 

shown images of cocaine and asked to suppress their cravings. Average brain activity 

within the crave and suppress networks can be computed for each individual at each 

image acquisition (every 2 seconds). I can summarize how much a participant is craving 

or suppressing at any given instant with the relative ratio of craving activity to 

suppressing activity (Figure 5.20). 

 

This ratio at every image acquisition can be displayed to the participant in the form of a 

speedometer, thus providing feedback to the participant of how well they are 

suppressing. I do not instruct the participant to use any particular strategy to successfully 

suppress. Rather, participants iterate over their mental space until they can converge on a 

strategy that allows their brain activity in their suppression network to override the 

craving network. Such an implicit method allows a diversity of possible strategies 

tailored for each individual; some participants may think the impact cocaine as had on 

their family, others may reflect on the financial consequences, and still others may 

remember the horrors of incarceration. Each individual explores which strategy works 

best and hones that approach to fight cocaine cravings.  
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Figure 5.19 Experimental Localizers 

 

Functional localizers are used to isolate the brain regions involved in craving and 

suppressing for each individual participant, enabling targeted therapy. A. To localize the 

brain regions involved in craving, participants will view blocks of cocaine images and 

blocks of natural scene images. By contrasting the two blocks, we can determine which 

regions of the brain are involved in craving. B. To localize the brain regions involved in 

suppressing, participants perform a GO-NOGO task (Bell et al., 2014). Neutral images 

(from International Affective Picture System [IAPS](Lang et al., 2008)) are presented 

every 1 s, and the participant must press immediately following every image 

presentation (GO). But he participant must inhibit pressing when the image is repeat of 

the previous image (NOGO). Contrasting successful NOGO and GO trials localizes the 

suppression network. 
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Figure 5.20 Neurofeedback 

 

The relative ratio of the brain activity in the crave and suppress networks is used to 

control the position of the arrow on the speedometer that the participant sees in the 

scanner. 

 

 

I plan to recruit 15 chronic cocaine dependent users to enroll in a longitudinal 3-week 

study. Participants will come to the Baylor College of Medicine every Monday, 

Wednesday, and Friday for three weeks to undergo scanning at the Center for Advanced 

Magnetic Resonance Imaging (CAMRI). Each day, participants will first run the 

localizer tasks and then perform 5 consecutive 5-minute runs of the feedback. I can then 

measure how each participant progresses in their ability to suppress cocaine cravings. In 

addition, I will perform urinalysis before scanning every day to check whether patients 

are able to stop using cocaine.  

 

5.3.2.2 Potential Concerns 

Cocaine-dependent participants are often difficult to recruit longitudinally. Further, the 

risk of relapse may hinder longitudinal recruitment. To address these issues, I will 

implement the following measures of contingency management, which have shown 

promise in aiding with successful reduction in cocaine use (Knapp et al., 2007). (1) 

𝐶𝑅𝐴𝑉𝐸 − 𝑆𝑈𝑃𝑃𝑅𝐸𝑆𝑆

𝐶𝑅𝐴𝑉𝐸 + 𝑆𝑈𝑃𝑃𝑅𝐸𝑆𝑆
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Contingency management for abstinence: Patients will be required to give a urine 

sample at the start of each day. If the urine is clean of all illicit drugs, the patient will be 

awarded a $5.00 bonus each day the urine analysis is negative. (2) Contingency 

management for suppression during task: Contingency management will be built into the 

experimental design. The longer the patient is able to suppress cravings, the more points 

she will earn. These points will accumulate and be redeemed for extra cash payment 

each day for a maximum of $5.00 extra/day. These two contingency management 

approaches will encourage patients to abstain from cocaine use and to find ways to 

maintain suppression of their cravings during the task. 

 

I have completed the entire 3-week study in one participant, establishing feasibility of 

this approach. First, the participant was able to abstain entirely from cocaine for the 

duration of the study. The participant expressed great financial need and was committed 

to remain clean to earn the additional contingency management incentives. Second, the 

participant’s ability to suppress improved over time (Figure 5.21). She did, however, 

encounter some potential relapses in craving on the last day when she was unable to 

successfully suppress cravings. Nonetheless, she was able to develop and employ a 

cognitive strategy to help her overcome cocaine cravings. 
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Figure 5.21 Longitudinal Assessment 

 

Preliminary data: A cocaine-dependent individual showed an ability to suppress her 

cocaine cravings via rt-fMRI over a longitudinal 3-week study. Her time spent 

suppressing increased dramatically just before run # 15. However, towards the end of the 

study, the participant seemed to relapse and was unable to move the meter consistently 

to the suppression side. Despite these cognitive relapses, the participant was still able to 

abstain from cocaine entirely for the duration of the study, as measured by urinalysis. 

 

 

5.3.3 Potential Impact 

Controlled substances enter the criminal justice system from every angle (Figures 5.15-

17). To reduce crime, we must offer people with substance use disorders something that 

science and medicine have failed to provide: a way to reduce illicit drug dependence. I 

am proposing to build a behavioral therapy that leverages physiological signs to guide 

cocaine-dependent individuals to learn how to suppress their cravings. In turn, this 

regimen can help people reduce cocaine use, alter fundamental decision-making, and 

ultimately reduce crime and the burden on the criminal justice system (Figure 5.22). 
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In my previous work, I have shown alterations in the structure of the brain due to 

cigarette smoking (Savjani et al., 2014). I utilized diffusion tensor imaging (DTI) to 

measure disruptions in connections between brain circuits. My preliminary data now 

show a weakened connection in inhibitory circuitry in 16 cocaine-dependent participants 

(Figure 5.23). Further, I can employ DTI to objectively determine if feedback therapy 

will help restore structural changes, facilitate reductions in cocaine use and thus reduce 

crime. 

 

 

Figure 5.22 Experimental Training 

 

Reducing crime requires fundamentally guiding people suffering from substance use 

disorders to learn how to suppress their cravings. 
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Figure 5.23 Structural Restoration After Training 

 

Cigarette smoking and cocaine use are linked with measurable brain alterations, which 

might serve as a metric  Chronic cigarette smokers have significantly decreased FA 

within accumbo-frontal (af) WM tracts  (* p < 0.05), and cocaine dependent patients 

show further decreases in FA compared to controls (** p < 0.01). Via the rt-fMRI 

therapy, cocaine-dependent individuals may be able to restore the deficits within the af 

tract, allowing better top-down control of cocaine craving. Picture inset: af tract 

identified by fiber dissection in a human specimen (Rigoard et al., 2011) 
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CHAPTER VI  

THE DAMAGED BRAIN 

 

6.1 Introduction 

One of the greatest challenges in military veterans is to find quantitative, objective 

markers of traumatic brain injury (TBI) using non-invasive techniques. Neuroimaging 

provides such an opportunity but has thus far failed to robustly diagnose many patients 

with mild TBI experiencing symptoms including memory and concentration problems. 

Even when hundreds of neuroimaging exams are acquired in the civilian population, 

machine learning approaches on those exams yield prediction accuracies below 70% 

(Mitra et al., 2016). The approaches lack the statistical power to be of diagnostic value. 

Further, the military population is more complex with several comorbidities, even in 

patients without TBI (e.g., post-traumatic stress disorder (PTSD), depression, substance 

abuse). 

 

Brain imaging studies, however, can still enhance understanding of the 

pathophysiological changes associated with TBI. Gray matter cortical thickness has been 

one measure used to characterize several neuropsychiatric conditions such as 

Alzheimer’s Disease and Williams Syndrome (Thompson et al., 2005). Cortical 

thickness measures are beginning to provide some insight on brain morphological 

changes following a TBI. In animal models, rats who were subjected to repeat weight-

drop showed reduction in cortical thickness directly beneath the zone of impact by 46% 
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two weeks after injury(Goddeyne et al., 2015). In humans, young adult civilians with 

recurrent sports TBI showed thinning in insula, right middle temporal gyrus, and right 

entorhinal area (List et al., 2015). Further, changes after TBIs suffered from motor 

vehicle collisions resulted in frontal cortex thinning 3 months after injury (Wang et al., 

2015). How long these changes in direct cortical thickness measures persist is not 

exactly known, and at least one study was not able to detect changes after 1 year (Dean 

et al., 2015). 

 

To date, only three studies to our knowledge have explored cortical thickness in  military 

TBI populations, and all studies had significant comorbidities (Wilde et al., 2015). In 

one study, patients had significant hearing loss and associated thinning in Heschl gyrus 

(Tate et al., 2014), and in another study, significant PTSD and lifetime stress were 

confounding factors (Corbo et al., 2014). PTSD was also found to play additive role in 

cortical thinning in patients with comorbid TBI (Lindemer et al., 2013). These 

comorbidities make it difficult to make inferences about the effects of TBI alone on 

cortical thickness, highlighting the need for well-controlled studies. Further, given the 

large heterogeneity across individuals, it may be difficult to find consistent group 

differences in averaged univariate cortical thickness measures alone.   

 

An alternative approach is to see if patterns of structural brain metrics can predict 

demographics, such as age. Recent work has revealed potential accelerated brain aging 

after TBI in the civilian population. Using a gray matter model built from T1-weighted 
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MRI images alone from a large cohort of healthy controls, participants with TBI were 

predicted to be 4.66 years older than their actual age (Cole et al., 2015). This over-

prediction of age was unique to participants with TBI and was not seen in a test set of 

healthy controls scanned on the same scanner.  

 

Here, we sought to see if accelerated brain aging occurs after military mTBI. We 

measured cortical thickness using Advanced Normalization Tools (ANTs) (Avants et al., 

2011), which has previously been shown to be one of the most accurate tools in 

predicting brain age from T1-weighted images in healthy controls, even outperforming 

the commonly used FreeSurfer (Fischl and Dale, 2000) across many measures of error 

(Tustison et al., 2014), a potential advantage over previous studies in military TBI 

(Corbo et al., 2014; Tate et al., 2014). We built 4 models to predict brain age from 

cortical thickness measures in military patients with TBI and military patients without 

TBI, an important control to attempt to isolate the effects of TBI on brain aging in the 

veteran population. 

 

6.2 Materials and Methods 

6.2.1 MRI Acquisition 

The T1-weighted images for the veteran test sets (both participants with TBI  and 

controls) were acquired on a Siemens 3T TIM Trio using a 3D MPRAGE sequence with 

the following parameters: TE=2.8 ms, TR=2530 ms, TI=900 ms, flip angle = 10°, 
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FOV=256x256x220 mm, Matrix=256x256x220, NEX=1, Bandwidth=180Hz/pixel, 

iPAT=2, resolution=1.0x1.0x1.0 mm.  

 

Diffusion weighted imaging (DWI) data were acquired to facilitate multi-modal template 

construction. DWI Data were imaged using a single shot twice-refocused spin-echo 

echo-planar sequence in the axial plane with the following parameters: TE=82 ms, 

TR=8700 ms, FOV=256x256 mm, matrix = 128x128, slice thickness/gap = 2.0/0.0 mm, 

NEX = 1, b-value=1000 s/mm2, Bandwidth=1396 Hz/pixel. Diffusion gradients were 

applied along 64 directions. 

 

6.2.2 Healthy Control Training Set 

We trained age prediction models from cortical thickness measurements derived from 

previous sets of healthy control populations. Building models with a large number of 

participants from a variety of scanners and differing protocols allows construction of 

robust age-prediction models. Particularly, we used cortical thickness measurements 

derived from four publicly available data sets: Information eXtraction from Images 

(IXI), Nathan Klein Institute (NKI), Multi-Modal MRI Reproducibility Resource 

(MMRR), and Open Access Series of Imaging Studies (OASIS). The cortical thickness 

pipeline had already been previously run on each of these data sets (Tustison et al., 

2014), and the processed data was retrieved online 

(https://github.com/ntustison/KapowskiChronicles). To build our model, we restricted 

the age in all datasets to be within 18 to 60 years, as our military population was 

https://github.com/ntustison/KapowskiChronicles
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confined to within this age range, and the aging process may vary greatly at the 

extremes. Ultimately, we were able to use 762 healthy control participant data (36.32 ± 

12.54 years-old; 373 Males) to train our models with to predict age from cortical 

thickness measures. 

 

6.2.3 Participants 

The TBI test set consisted of 92 participants (29.67 ± 7.02 years [range:  22-57]; 88 

males) with TBI (89 mild, 3 severe) experienced in the Iraq and Afghanistan wars 

(Operation Iraqi Freedom/Operation enduring Freedom; OIF/OEF). The military control 

test set consisted of 34 OIF/OEF veterans without TBI (31.15 ± 9.17 years [range: 22-

55]; 30 males). All participants were scanned at the Iowa City VA Medical Center with 

an identical scanning protocol. 

 

6.2.4 Constructing a Multivariate Population-Specific Template 

The TBI test set consisted of 92 participants (29.67 ± 7.02 years [range:  22-57]; 88 

males) with TBI (89 mild, 3 severe) experienced in the Iraq and Afghanistan wars 

(Operation Iraqi Freedom/Operation enduring Freedom; OIF/OEF). The military control 

test set consisted of 34 OIF/OEF veterans without TBI (31.15 ± 9.17 years [range: 22-

55]; 30 males). All participants were scanned at the Iowa City VA Medical Center with 

an identical scanning protocol. 
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6.2.5 Constructing a Multivariate Population-Specific Template 

A multivariate population-specific template was built using 10 random participants 

without TBI (Figure 6.1). Both the T1-weighted images and the diffusion-weighted 

images (DWI) were used in construction of the template. Using the DWI images for 

multivariate template construction allows dense features within the white matter to be 

used for the registration. The DWI images were processed using FMRIB Software 

Library [FSL v5.0.9] (Jenkinson et al., 2012; Smith et al., 2004) and batched and 

parallelized using the Neuroimaging in Python Interfaces and Pipelines (Nipype) 

(Gorgolewski et al., 2011) with customized scripts we previously built (Savjani et al., 

2014). First, raw DWI images were motion corrected by linearly registering each DWI 

volume to the first b0 = 0 volume using FSL flirt (Jenkinson et al., 2002; Jenkinson and 

Smith, 2001) with 6 degrees of freedom (DOF) and appropriately rotating the b-vectors 

(Leemans and Jones, 2009). Second, the images were corrected for eddy current 

distortions using FSL’s FMRIB's Diffusion Toolbox FDT (Behrens et al., 2003) 

eddy_correct. Third, the b0=0 volume was brain extracted (FSL bet (Smith, 2002)) to 

generate a brain mask. Diffusion tensors were fitted to the brain extracted DWI using 

FSL FDT (Behrens et al., 2003) dtifit. The fractional anisotropy (FA) volume was then 

registered to the participant’s T1 anatomical scan (Figure 6.2) using ANTs 

(antsIntermodalityIntraparticipant.sh). The registered FA volume (relative weight 1.0) 

and the T1 anatomical scan (relative weight 1.25) were then used to build the 

multivariate template via ANTs (antsMultivariateTemplateConstruction2.sh (Avants et 

al., 2010)). 
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Figure 6.1 Brain Template 

 

We used a population-specific template for military participants. 

 

 

Figure 6.2 Multivariate Template 

 

We constructed a multivariate template from FA and T1 volumes in 10 participants 

without TBI. 

 

T1	weighted	images	

Aligned	FA	images	

Templates:						FA			 						T1	
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6.2.6 Building Template Priors 

Brain tissue priors were built for our population-specific template brain (Figure 6.3) 

using the same approach used for the healthy control templates (Tustison et al., 2014) 

(we used the general guidelines found in this example: 

https://github.com/ntustison/antsCookTemplatePriorsExample). First, template-based 

brain extraction (antsBrainExtraction.sh) was performed on our template brain using the 

OASIS template, which was well-matched to our anonymized, defaced T1 dataset in our 

veteran patients. Then, 20 of the OASIS participants who had manually-drawn cortical 

labels (Klein and Tourville, 2012) (http://www.mindboggle.info/data.html) were 

registered to the template, and the labels were fused (antsJointLabelFusion.sh (Wang et 

al., 2013)). The fused labels allowed for construction of 5 main template priors: gray 

matter, cerebrospinal fluid (CSF), deep gray matter, brain stem, and cerebellum. The 

white matter was not adequately labeled in the original datasets, so the template brain 

was segmented (antsAtroposN4.sh). The white matter posterior was used to generate the 

remaining prior needed for deriving the cortical thickness pipeline. 

 

6.2.7 Cortical Thickness Measurements with ANTS 

We derived cortical thickness measures with ANTs from our military participants with a 

near-identical procedure that was previously used for the healthy control participants 

(Tustison et al., 2014). Briefly, the cortical thickness pipeline (antsCorticalThickness.sh) 

was run for each participant using our population-specific template priors. Then, multi-

atlas label fusion (MALF, antsJointLabelFusion.sh) was run on each participant to get 

https://github.com/ntustison/antsCookTemplatePriorsExample
http://www.mindboggle.info/data.html


  

139 

 

cortical labels (31 for each hemisphere, 62 total) for each participant using the same 

subset of hand-labeled OASIS participants describe above. Then, the thickness was 

averaged for each of the 62 cortical labels, giving 62 scalars for each participant 

representing the average cortical thickness in each brain region. Finally, the total 

intracranial volume for each participant was also computed using each participant’s 

brain extracted mask (ANTs: LabelGeometryMeasures). 

 

 

Figure 6.3 Brain Tissue Priors 

 

Brain tissue priors for the population-specific template for military patients were created. 

These template priors were needed to run cortical thickness analysis in ANTs. 

 

 

6.2.8 Models for Predicting Brain Age 

Using the healthy control data (n = 762), we built four regression models in MATLAB 

(version 8.6 R2015b, The Mathworks Inc., Natick, MA) to predict age from cortical 
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thickness: linear regression (LR), support vector regression (SVR), Gaussian process 

regression (GPR), and random forest regression (RFR). In each model, the features 

consisted of the 62 average cortical thickness measurements (in mm) for each labeled 

brain region, as well as the gender and the total intracranial volume, yielding a total of 

64 features for each participant.  

 

The LR model (MATLAB fitlm) was identical to the model used in the study comparing 

ANTs to FreeSurfer.(Tustison et al., 2014) The model is: 

                     (1) 

where T(DKTi) is the average thickness value in a given cortical brain region. The SVR 

model (fitrsvm) was trained with a linear kernel, and the features were standardized (z-

scored) prior to model fitting. The GPR model (fitrgp) was inspired by the civilian TBI 

study (Cole et al., 2015), and the model was trained with standardized features, a linear 

basis function, and with the fully independent conditional approximation prediction 

method. And lastly, the RFR model (TreeBagger) was trained using 200 trees and 

default options, similar to the implementation in R used previously (Tustison et al., 

2014). 

 

6.2.9 Model Comparison via Cross-Validation 

In order to get reliability measures for each of the four models we trained, we performed 

model comparison using cross-validation (Tustison et al., 2014). We randomly split the 

AGE ~VOLUME +GENDER+ T (DKTi )
i=1

62

å
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healthy control training data into halves, one set used for training the models and the 

other for testing. We computed the root-mean-square error (RMSE) on the predicted 

ages for each model. We repeated this procedure on 10,000 permutations and plotted 

RMSE densities for each model to facilitate visual comparison. 

 

6.2.10 Predicting Age in the Military Patients 

All four regression models were trained on the full healthy control training data. The 

models were then used to predict age in the veteran population, for participants with TBI 

and for participants without TBI. We then computed the predicted age difference (PAD) 

(Cole et al., 2015) by subtracted the predicted age from the patient’s actual age. We 

finally compared the PAD for patients with TBI and compared them to the PAD of 

patients without TBI. 

 

6.3 Results 

6.3.1 Cortical Thickness Measures and Labels 

For each participant in our military participant population (n = 126), we computed 

cortical thickness (Figure 6.4) and performed MALF to get cortical labels (Figure 6.5). 

We then averaged the cortical thickness across each label (62 cortical brain areas) for 

each patient, yielding 62 scalar values for each patient. We then added two additional 

features: total intracranial volume and patient gender, which yielding a feature matrix of 

126 patients by 64 features. 

 



  

142 

 

 

Figure 6.4 Cortical Thickness 

 

Cortical thickness for a representative military participant is shown here. Thickness is 

represented as a Red-Yellow colormap from 0.01 to 7.00 mm 

 

 

 

 
 

Figure 6.5 Cortical Labels 

 

Cortical labels for a representative military participant. Cool colors are on the left 

hemisphere, and hot colors are on the right hemisphere. Each hemisphere has 31 cortical 

labels. 

 

 

We then plotted the mean and standard deviations of the cortical thicknesses for all 

labels for left and right hemisphere and comparing participants with TBI to participants 

without TBI (Figure 6.6A). By visual inspection, it appeared that the means thicknesses 

in several brain regions were slightly lower in participants with TBI compared to those 
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without. To see if this was the case, we computed the multivariate Hotelling’s T
2
 test 

(using R: “Hotelling” package (Curran, 2013)) comparing the cortical thicknesses 

between the two groups for each hemisphere separately. We computed the null 

distributions by randomly permutating participants across labels (TBI or no TBI) with 

10,000 permutations and then computed scaled T
2
 stat and p-values. We did not find 

significant differences (p >> 0.05) at the group level in cortical thicknesses between 

patients with TBI and those without (Figure 6.6B). 

 

6.3.2 Training and Evaluating Models on Healthy Control Data 

We then trained the 4 regression models using the previously processed data (Tustison et 

al., 2014) on healthy controls from publicly available datasets. This allowed us to 

construct models that could take in cortical thickness measures from our patient 

population and predict age. We first plotted the actual age vs. the predicted age for each 

model (Figure 6.7). All models show general linear positive correlation. 
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Figure 6.6 TBI vs. Control: Cortical Thickness 

  

Mean cortical thicknesses do not differ between participants with TBI and participants 

without TBI. A. Mean ± std for each of the 31 cortical brain regions for left (top) and 

right (bottom) hemispheres plotted for participants with TBI (red) and without (white). 

B. Multivariate Hotelling’s test reveals no significant difference in either hemisphere in 

cortical thickness between patients with TBI and without TBI. Blue bars show the 

histogram of scaled T2 statistic of 10,000 null permutations, and solid black lines show 

observed scaled T2 statistic. 
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Figure 6.7 Model Training 

 

Cortical labels for a representative military participant. Cool colors are on the left 

hemisphere, and hot colors are on the right hemisphere. Each hemisphere has 31 cortical 

labels. 

 

 

Then, in order to examine which features the models were utilizing to make age 

predictions, we computed the absolute value of the beta weights (LR, SVR, and GPR) or 

the mean increase error (RF) and plotted the ranked values (Figure 6.8). The mean 

increase error for the RF model measures the increase in prediction error if the values of 

that feature are permuted across the out-of-bag observations, averaged across all 200 

trees (OOBPermutedPredictorDeltaError). 

 

To help visualize the important brain labels driving the LR age model, we overlaid the 

significant (p < 0.05, two-way one-sample t-tests) signed beta weights onto the 

population-derived template brain (Figure 6.9). Decreases in cortical thicknesses in 

several frontal areas predicted an older age. 
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We then performed model comparison by cross-validating each model on 10,000 

random half-splits and computing the RMSE on each permutation (Figure 6.10). The 

RMSE was the lowest for the RF model, intermediate for the GPR model, and higher for 

the LR and SVR models. 

 

6.3.3 Predicting Age in the Military Population 

The fully trained models were then used to predict age in the military population. The 

predicted age difference (PAD) was significantly (p < 0.05, two-sample, one-way t-tests) 

greater for participants with TBI compared to those without for all 4 models (Figure 

6.11). The t-tests were run with permutations testing (n = 10,000 permutations). The LR, 

SVR, and GPR models had median PAD at close to zero for participants without TBI, 

and median PAD scores greater than zero for participants with TBI. The RF model, 

however, predicted greater ages for both participant groups, but still a greater PAD for 

participants with TBI. All four models suggest a process of potential accelerated aging in 

military participants with TBI. 

 

To check for systematic biases at different ages, we created Bland-Altman plots for each 

model for both participants with TBI and without TBI separately (Figure 6.12). These 

plots show that the age tends to be over-predicted in participants with TBI in the mid-30s 

to mid-40s. 
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Figure 6.8 Model Evaluation 

 

Feature importance for all 4 models. Absolute value of beta weights are shown for the 

linear, support vector, and Gaussian process regression models, and the average error 

increase is shown for the random forests model. 

 

 

 

 
 

Figure 6.9 Beta Weights 

 

Significant (p < 0.05) beta weights for the linear regression (LR) model. This included 7 

regions where the thickness negatively correlated with age (cool colors: left caudal 

middle frontal, left isthmus cingulate, left precentral, left rostral anterior cingulate, left 

transverse temporal, right parsorbitalis, right precuneus) and 3 regions where the cortical 

thickness positively correlated with age (hot colors: left medial orbitofrontal, right 

inferiortemporal, right superiorparietal). 
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Figure 6.10 Model Performance 

 

Model comparison on training data using 10,000 permutations of random half-split cross 

validation. 

 

 

 

 
 

Figure 6.11 Model Testing 

 

All 4 models predict higher age difference for participants with TBI compared to 

participants without TBI. *: p < 0.05 and **: p < 0.01 in two-sample one-way t-test 

using permutations testing with 10,000 permutations (LR: p = 0.0050; SVR: p = 0.0027; 

GPR: p = 0.0040; RF: p = 0.0313). 
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Figure 6.12 Bland-Altman Plots 

 

Bland-Altman plots for each model. The ages of military participants with TBI (red) 

appear to have predicted age differences at mean ages in the mid-30s to mid-40s. 

 

 

6.4 Discussion 

Finding objective in vivo markers of combat-related TBI has proven challenging. The 

heterogeneity of the trauma to the head combined with the individual differences in 

patient morphology, genetics, and functional recovery obscure the ability to reliably 

detect parenchymal alteration and predict outcomes. Here, we used population (rather 

than individual) effects to probe the pathophysiology of military TBI. Specifically, we 

examined if participants with combat-related TBI had an altered trajectory on brain age, 

as compared to a comparison group of veterans who did not experience TBI. Our data 

and analysis indicate that military TBI may be associated with accelerated brain aging in 
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that decreases in cortical thickness were greater in the participants with TBI. More 

severe TBI itself has been implicated in cortical thinning, likely as a result of neuronal 

loss using histopathological analysis, particularly in patients with diffuse axonal injury 

(Maxwell et al., 2010). Additionally, aging is associated with decreased cortical 

thickness, particularly in the frontal lobes (Fjell et al., 2009; Fotenos et al., 2005). 

 

Our approach builds upon two seminal studies. First, Cole et al. (2015) showed that a 

Gaussian process regression model trained on healthy controls over- predicted the age of 

civilian participants with TBI but not on healthy controls scanned on the same scanner 

(Cole et al., 2015). Our data extends this finding to the military population, showing that 

the GPR model, as well as three other models, all over-predict age in veterans with TBI. 

Importantly, we also scanned and predicted age in military controls in whom all models 

predicted ages that were significantly less than that of participants with TBI. This is an 

important finding, as the military arena introduces many stressors with psychiatric 

sequela (e.g., PTSD, depression, substance abuse) that could potentially lead to altered 

brain morphology (Li et al., 2016; Wolf et al., 2015). Our data show that TBI in 

previously deployed veterans is associated with increased brain aging, more than in 

deployed veterans who did not experience a TBI. It is important to note, however, that 

we cannot conclude causality; that is, it is unknown whether the TBI (either alone or in 

combination with other factors and comorbidities (Liu et al., 2012)) actually induced 

accelerated brain aging. Nevertheless, these findings are provocative because of 

concerns related to the long-term effects of combat exposure; such concerns have also 
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been documented in former athletes with repeated exposure to multiple concussive 

blows manifesting cortical thinning disproportionate to age (McKee et al., 2009; Omalu 

et al., 2011; Tremblay et al., 2013). 

 

Second, our approach used cortical thickness derived from ANTs to predict age. We 

found this approach compelling, particularly after Tustison et al. (2014) showed that 

ANTs outperforms FreeSurfer when predicting in age in healthy controls (Tustison et al., 

2014). By averaging cortical thickness across labeled brain regions, we explicitly 

reduced the number of dimensions and did not rely on kernel operations (Cole et al., 

2015) or create black-box decoders. This allowed us to compute the relative 

contributions of each cortical region for each model (Figure 6.8) to understand and 

verify which brain regions were driving age prediction, which is an extension of 

previous work. Thinning in many frontal brain regions predicted greater brain age 

(Figure 6.9) in the healthy control training set, a well-known finding (Jernigan et al., 

1991; Raz et al., 1997; Salat et al., 2004; Sowell et al., 2003) replicated here. Brain age 

was over-predicted using these strongly weighted frontal brain regions, suggesting that 

finer examination of frontal areas including volume and connectivity may help to build 

better models and better understand the pathophysiology of TBI. 

 

We trained 4 different models that each showed an over prediction of age in the military 

TBI participants. There were, however, differences in the model behaviors. The cross-

validations indicated that the RF model had distinctly the lowest RMSE, yet the RF 
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model over predicted the age of the military participants without TBI, not just the 

participants with TBI, a performance unique to this model. Perhaps this actually 

represents aging closer to ground truth, and the RF model is able to capture the other 

comorbidities associated with military service. Nonetheless, the RF model still had a 

greater PAD for participants with TBI compared to those who did not. 

 

6.5 Conclusions 

We used cortical thickness measures derived using ANTs to assess group differences in 

military participants with and without TBI. Four different regression and machine 

learning models each predicted the age to be greater in participants with TBI compared 

to their actual age. Further, the predicted age difference was significantly greater in 

military participants with TBI compared to military participants without TBI, and the use 

of veteran controls is a strength of the current study Our results extend previous work by 

showing that military TBI is associated with accelerated brain aging. 
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CHAPTER VII  

SOCIAL NEUROSCIENCE
*
 

 

7.1 Are Corporations People Too? The Neural Correlates of Moral Judgments 

About Companies and Individuals 

7.1.1 Introduction 

As individuals organize into groups, the collective unit gains its own representation. For 

example, corporations like Microsoft and AT&T come to embody a distinct entity, 

separate from the people who comprise them. Little is known about how our brains 

process information about collective units such as corporations. As an organization 

comes to form an identity, a question arises: are corporations and their actions regarded 

as social beings or as inanimate objects? Though this question has been largely ignored 

in the cognitive neuroscience literature, it has become an important topic in legal 

systems and public opinion. For example, the American legal system has extended the 

rights of individuals to corporations (“corporate personhood”) and held corporations, as 

a collective unit, liable (“corporate liability”). In a controversial decision in Citizens 

United v. Federal Election Commission (2010), the United Sates Supreme Court granted 

corporations the right to free speech. This decision stemmed from the court’s opinion 

that the rights of individual citizens, ensured under the First and Fourteenth 

                                                 

* Reprinted with permission from “Are corporations people too? The neural correlates of 

moral judgments about companies and individuals.” by Plitt M, Savjani RR, Eagleman 

DM, 2015. Social Neuroscience. 10, 113-125, Copyright 2015 Routledge Taylor & 

Francis Group. 
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Amendments, extend to corporations as well (Kang, 2010).  More recently, the United 

States Supreme Court further extended corporate rights, allowing for-profit 

organizations to be exempt from a law that violates the owners’ religious beliefs 

(Burwell v. Hobby Lobby, 2014).   

 

The recent legal and popular attention to this topic motivates a further question: does 

corporate personhood parallel an underlying similarity in the way human brains 

represent corporations and individuals? Indirect evidence suggests that the mechanisms 

that determine our reactions to the behavior of large groups and to the behavior of 

individuals could overlap or even be identical. For example, people are equally likely to 

reciprocate favorably if given positive reinforcement from either a corporation (e.g., 

corporate sponsorship)(Harvey et al., 2010) or an individual (e.g., cooperation in game 

theory) (Rilling et al., 2002). Further, overlapping networks of brain activity are engaged 

whether the reciprocity is towards corporations (Harvey et al., 2010) or people (Rilling 

et al., 2002).  

 

On the other hand, social reasoning areas of the brain are observed to decrease in activity 

if an entity is objectified. For example, the superior medial prefrontal cortex (SMPFC), a 

key component in social cognition(Amodio and Frith, 2006), is less active in impersonal 

moral or non-moral reasoning than personal moral reasoning (Greene et al., 2001) and, 

interestingly, while viewing dehumanizing images of homeless people and drug addicts 

(Harris and Fiske, 2006) or highly sexualized images of women (Cikara et al., 2011).   
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Collectively, these studies raise an open question of whether people objectify 

corporations or view them as a social being. No studies to date have directly compared 

how the brain responds when judging positive, negative, or neutral actions of 

corporations and the actions of individuals. To this end, we performed a vignette-based 

functional magnetic resonance imaging (fMRI) experiment. While in the scanner, 

participants rated their emotional response to short vignettes about the actions of people 

or corporations. In these vignettes, people or corporations performed pro-social actions 

(e.g. donating to charity), anti-social actions (e.g. lying or breaking the law), or neutral 

actions (e.g. buying a printer). To establish a control condition, a third category of 

vignettes described objects.  

 

The brain invokes reciprocal inhibition, allowing people to think either socially or 

objectively (Jack et al., 2012). Moral emotional decision making tasks have been shown 

to strongly activate circuits involved with theory of mind (ToM) (Greene and Haidt, 

2002; Hein and Singer, 2008; Jack et al., 2012; Knabb et al., 2009; Krauss, 2010; Mar, 

2011; Moll et al., 2002; Moll et al., 2008), representing the thoughts and actions of other 

people. During non-social tasks, however, regions of the ToM network deactivate, and 

regions associated with working memory and objective reasoning such as the 

dorsolateral prefrontal cortex (DLPFC) and large portions of the parietal lobe including 

the intraparietal sulcus become more active (Greene et al., 2001; Jack et al., 2012). 

Given this apparent mutually exclusive framework, we hypothesized the actions of 

corporations to evoke inherent social reasoning processes. Specifically, we hypothesized 
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that participants would not only rate the actions of corporations and people similarly but 

also that the neural responses to reading vignettes of these two types would be very 

similar. Further, we hypothesized that vignettes about both people and corporations 

would elicit greater activity in the ToM network than vignettes about objects. 

 

7.1.2 Materials and Methods 

7.1.2.1 Participants 

Forty two adults (19 males) aged 26.86±7.42 years (mean±SD) with 17.1±1.92 years of 

education normal or corrected-to-normal vision and no history of current or past mental 

or neurological illness were recruited from the Houston, TX metropolitan area to take 

part in the experiment after giving written consent in accordance with the Institutional 

Review Board at Baylor College of Medicine. Two participants were excluded from all 

analyses for failure to follow instructions during the in-scanner task  An additional 10 

participants did not meet head movement standards described below and were removed 

from all fMRI analyses, leaving 30 participants (15 males, age 28.6±8.18 years, 

17.23±2.14 years of education) that were included in the GLM and MVPA analyses. In 

order to maximize statistical power, all 40 participants (18 males, age 27.33±7.45 years, 

17.18±1.91 years of education) that successfully completed the experiment were 

included in the behavioral analyses. 
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7.1.2.2 Paradigm 

Passive and active viewing of short, emotionally laden vignettes has successfully been 

used to investigate moral emotional reactions to situations of moral violations, moral 

dilemmas, empathic responses, and decisions of culpability (Buckholtz et al., 2008; 

Casebeer and Churchland, 2003; Greene et al., 2001; Moll et al., 2002; Schaich Borg et 

al., 2008; Young et al., 2007). Although other paradigms, such as the viewing of 

emotionally laden images and faces, have been used to investigate moral emotions, the 

vignette paradigm is the only one that lends itself to judgments about an abstract entity 

such as a company or organization (Decety and Lamm, 2006; Greene and Haidt, 2002; 

Moll et al., 2008; Thielscher and Pessoa, 2007). 

 

7.1.2.3 Stimuli 

We constructed 75 vignettes. 30 of these described the actions of people (“person” 

vignette; mean 45.63 words), of which 10 were about pro-social or positive actions (such 

as donating to charity), 10 were about anti-social or negative actions (such as lying or 

breaking the law), and 10 were of a neutral valence (such as painting a room or buying a 

printer). Each of these 30 Person vignettes was matched with a vignette about a company 

(“company” vignette; mean 44.73 words) with only minor details of the vignette 

changed for plausibility. The names of persons in the vignettes were randomly chosen on 

each trial from a list of 15 popular male names, and company names were randomly 

chosen on each trial from a list of 15 names generated from an online company name 

generator (www.company-name-generator.com). The additional 15 vignettes (“object” 
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vignette; mean 47.6 words) were adapted descriptions from wikipedia.org of nouns 

generated from a random noun generator (www.desiquintans.com/noungenerator.php). 

See Figure 7.1A for example vignettes. Participants were asked to think of each of the 

vignettes as independent events. We refer to the company, person, and object vignettes 

as the agency axis, and the positive, negative, or neutral vignettes as the valence axis. 

The length of the vignettes did not significantly differ across the agency (p=.92) or 

valence axis (p=0.74). See Experimental Procedures for a list of all 75 vignettes.   

 

 

Figure 7.1 Experimental Paradigm 

 

Experimental paradigm. A. A representative pair of matched “person” (top) and 

“company” (middle) vignettes are shown with the agency manipulation highlighted in 

red and the valence manipulation highlighted in yellow. Participants did not see any such 

highlighting, and each participant only saw one vignette from a matched pair. An 

“object” vignette (below) is also shown. B. An example emotion rating screen that 

participants saw between each trial. C. Schematic of a single trial. 
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7.1.2.4 Extended Procedures 

While in the MRI scanner, participants read a total of 45 vignettes, 15 each of the 

company, person, and object conditions, during a single EPI run. The company and 

person vignettes were matched such that half of the participants were randomly 

presented with the company version of the vignette and the other half was presented with 

the person version. This was done to ensure that vignettes were matched without having 

any individual participant read the same story twice with different agency. The company 

and person vignettes included 5 positive valence, 5 negative valence, and 5 neutral 

valence vignettes per agency.  

 

During each trial the participants first saw a randomly drawn vignette from the available 

pool of 45. Once the participant finished reading the vignette, he/she pressed a button to 

move forward. This vignette screen was followed by a fixation cross for 6-8 seconds. 

After fixation, participants were prompted to choose the word that best described their 

emotional response to the previous vignette from a list of 8 words ('happiness', 'disgust', 

'anger', 'admiration', 'sadness', 'indignation', 'gratitude', 'neutral') placed at random, 

evenly spaced positions along a circle (Figure 7.1B). These emotions were selected 

from lists of basic and moral emotions in a previous study investigating disgust (Moll et 

al., 2005). The list of emotions in our current study does not reflect the full extent of 

moral or basic emotions in Moll et al (2005) but reflects the range of emotions expected 

from the stimuli in the current study. Participants used two buttons to scroll through 

choices before confirming that choice with a third button press. Following this emotional 
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rating, the participants rated the intensity of their emotional reaction on a scale of 1-4, 

with 4 being the most intense. On 25% of trials, participants additionally had to answer a 

true/false question about the content of the previous vignette to ensure sustained 

attending and understanding. Each trial was followed by a fixation period of 8-10 

seconds. See Figure 7.1C for a schematic of an experimental trial. 

 

 

7.1.2.5 fMRI Data Acquisition and Pre-Processing 

High-resolution T1-weighted scans were acquired on a Siemens 3.0 Tesla Trio scanner 

using an MPRage sequence. Functional run details were as follows: hyperscan echo-

planar imaging, gradient recalled echo; repetition time (TR) = 2000 ms; echo time (TE) 

= 40 ms; flip angle = 90°; 64 x 64 matrix, 34 4 mm axial slices, yielding functional 3.4 

mm x 3.4 mm x 4.0 mm voxels. 

 

7.1.2.6 fMRI GLM Data Analysis 

General Linear Model analysis was performed using SPM8 

(www.fil.ion.ucl.ac.uk/spm/software/spm8) with motion artifact removal using the Art 

toolbox (www.nitrc.org/projects/artifact_detect). Images were created using Mango 

(http://ric.uthscsa.edu/mango). 

 

Motion Correction was carried out by co-registering data to a mean functional volume. 

Images in which head motion exceeded a cutoff (>1 mm of translation or rotation 

between consecutive TRs) were regressed out of the model. Images that were outliers 
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(>3 standard deviations from mean) in global brain activation were also regressed out. 

Additionally, any participant whose head movement exceeded 3 mm at any point in the 

scan was removed from analysis. Ten participants were completely removed from the 

GLM analysis for head movement exceeding 3 mm, leaving 30 total participants 

analyzed. Note, we did not exclude the 10 participants with excessive head motion from 

the behavioral analysis, as head motion only impacted image quality.  

 

The average of the motion-corrected images was co-registered to each individual’s 

structural MRI using a 12 parameter affine transformation. EPI images were spatially 

normalized to the MNI template (2 mm x 2 mm x 2 mm voxels) by applying a 12 

parameter affine transformation, followed by a nonlinear warping using basis functions 

(Kao et al., 2005). Images were then smoothed using a 6 mm isotropic Gaussian kernel 

and highpass filtered in the temporal domain (filter width of 128 s). 

 

To identify regions of interest of increased activation, we performed a general linear 

model (GLM) regression. Regressors were defined from the onset times and durations of 

all vignettes, emotional rating screens, and questions (separated by valence and agency 

condition). Additionally, the timing of participants’ button presses and head movement 

parameters were included in the GLM as effects of no interest to account for motor 

responses and head movements. The events were convolved with SPM’s canonical HRF 

(characterized by 2 gamma functions) to create the regressors used for analysis. After 

performing the regressions, we formed 12 contrasts of β values; family wise error 
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correction to a p-value of 0.05 was performed for all contrasts by non-parametric 

methods (10,000 permutations) using SnPM8 (http://warwick.ac.uk/tenichols/snpm). 

 

7.1.2.7 Multi-Voxel Pattern Analysis 

In addition to the standard GLM univariate analysis, we employed multi-voxel pattern 

analysis (MVPA) using a linear support vector machine (SVM) to search for patterns of 

activity that could successfully decode agency and valency separately. The MVPA 

analysis could also provide insight on how brains might differentially process emotional 

content when considering the actions of persons as compared to companies. 

 

7.1.2.8 MVPA Preprocessing 

The MVPA analysis was performed independently of the GLM. As such, we started with 

the raw data and built a separate preprocessing pipeline for MVPA analysis. The raw 

functional data for each of the 30 participants was preprocessed using AFNI 

(http://afni.nimh.nih.gov/afni) (Cox, 1996). The preprocessing pipeline consisted of 

linear slice timing correction, EPI to anatomical alignment, anatomical to Talairach 

alignment via non-linear registration (3dQwarp), re-sampling to 3 x 3 x 3 mm, and 

volume registration to the first volume. We then performed additional preprocessing 

steps using the PyMVPA python package (http://www.pymvpa.org) (Hanke et al., 

2009a; Hanke et al., 2009b). We carried out fifth-order polynomial de-trending and z-

scoring (normalizing) on each voxel independently over time. Lastly, we used a 

http://afni.nimh.nih.gov/afni
http://www.pymvpa.org/
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Talairach probability atlas to select only grey matter voxels with probability greater than 

20% for each aligned functional dataset. 

 

7.1.2.9 MVPA Trial and Time Selection 

Because participants’ functional data were structurally aligned to Talairach space, we 

combined all participants and all trials into one large data set. This greatly increased the 

ability to train a classifier, as each participant individually only saw 5 trials of each 

valence (positive, negative, neutral) for each agency of interest (person and company). 

By combining all participants, our pattern analysis could be performed on an average of 

139 trials for each agency-specific valence (see Table 7.1). Not all trials for each 

participant were kept. We used artifact detection to identify individual trials that entailed 

too much motion (>4 STD in fMRI signal intensity or >1 STD in motion) and rejected 

those specific trials from the MVPA analysis. We also ensured that each participant had 

at least 3 trials in each category after removal of artifact trials. As a result of this 

criterion, we rejected 1 participant who did not have the adequate number of trials, 

leaving a total of 29 participants on which we performed the MVPA analysis. Further, 

because participants had variable reading times, we aligned to the time the participant 

finished reading the vignette (indicated by button press) with 4 volumes (8 s) on either 

side. 

 

 

 



  

164 

 

Table 7.1 Number of Trials 

 

Number of trials per condition for all participants combined for 3-class valency SVM. 

 

 

 

 

7.1.2.10 MVPA Pattern Classification 

We constructed several linear support vector machines (SVM) using PyMVPA 

(LinearCSVMC, implemented via LIBSVM) to classify valency (i.e., positive, negative, 

vs. neutral vignettes) and agency (person vs. company vignettes) separately. For all 

classifiers, we used a one-way ANOVA to select for 5,000 task-related features to pass 

to the SVM. We used leave-one-participant-out cross-validation to train and test the 

SVM for all analyses. The strength of the margin for each fold was estimated from the 

normal of the selected features. For the first classifier, we used all 9 volumes 
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surrounding the button press to create a 2-class SVM to decode on a trial-by-trial basis 

the agency (i.e., person or company). Separately, we used a 3-class SVM to decode 

valency (i.e., positive, negative, or neutral) within each agency. To dissect the 3-class 

SVM further, we computed the confusion matrices of the valency classification. Finally, 

we conducted a temporal analysis and created a set of 3-class SVMs to decode valency 

for each of the 9 time points surrounding the button press separately. This allowed us to 

determine when the decoding accuracy was strongest. We also plotted the sensitivities 

(SVM weight vectors) for each voxel and projected the sensitivities overlaid on the 

Talairach template. In addition to overall prediction accuracy, the sensitivity maps 

allowed us to infer which areas in the brain are implicated in classifying valency. 

 

7.1.3 Results 

7.1.3.1 Behavior 

All 40 participants who successfully completed the experiment were kept in the 

behavioral analysis. In the scanner, participants correctly answered questions about the 

vignettes with an accuracy of 87%, indicating appropriate attentiveness and 

comprehension of the vignettes. Vignette reading times for the three conditions of 

agency were as follows: person µ=12.7 ± 4.6 s, company µ=14.0 ± 4.9 s, and object 

µ=13.2 ± 5.3 s. Although the difference between reading times was significant (F=9.06, 

p<.001), this difference is less than a single TR (2 s), suggesting the difference should 

not significantly affect our results. Participants answered in line with expectations about 

the intended valences of the vignettes (Figure 7.2). 
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We then evaluated the differences in reported emotional ratings and intensity as a 

function of agency. Emotional ratings of vignettes significantly differed across the 

agency categories, showing that participants describe their emotional responses to 

vignettes differently for each of the three agency categories (χ2 =589.15, p<10e-116; 

Figure 7.3A). All pairwise comparisons (e.g. person vs. company) showed significant 

differences in emotional ratings as well. These post-hoc comparisons were made using a 

Bonferroni correction for the repeated tests (p<.0025).  Since object vignettes were not 

designed to have valence manipulation, we only compared intensity ratings for company 

and person trials. There was no main effect of agency category on emotional intensity 

(F=.02, p=.88; Figure 7.3B). There was, however, a significant main effect of valence 

on emotional intensity ratings (F=62.7, p<.001) and a significant interaction between the 

valence and agency for emotional intensity (F=3.36, p<.05; Figure 7.3B). In this 

crossover interaction, we find that pro-social actions performed by people evoke a more 

intense positive emotional response than pro-social actions by companies, and anti-social 

actions by companies elicit more intense negative emotional responses than the same 

actions performed by people. This finding gives evidence for a negativity bias towards 

companies on which we elaborate in a later portion of the results. 
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Figure 7.2 Emotional Responses 

 

Emotional responses for company (black) and person (green) vignettes. The word 

chosen is on the horizontal axis and the height of the bar indicates a count of responses 

across participants. 
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Figure 7.3 Participant Ratings 

 

Participants reported different emotional ratings to person and company vignettes. A 

Histograms of emotional responses for all three agency manipulations. Emotional 

responses significantly differed across agent categories (χ2 =589.15, p<10e-116). All 

pairwise comparisons were also significant (Bonferroni corrected p<.01) B Ratings of 

emotional intensity are plotted against intended valence category for person and 

company trials separately. Intensity ratings show a main effect of vignette valence 

(F=62.7, p<.001) and an interaction of vignette valence and agency (F=3.36, p<.05). 

There was no main effect of agency on emotional intensity. 

 

 

 

 

 



  

169 

 

7.1.3.2 fMRI 

To determine regions responsible for the processing of agency, we contrasted GLM beta 

estimates for person vs. object and company vs. object (Figure 7.4, and Table 7.2). 

Areas that showed greater activation to companies or persons more than to objects 

included the bilateral superior temporal pole (TP), bilateral angular gyrus (AG), 

posterior cingulate cortex (PCC), SMPFC, and bilateral cerebellum. An additional region 

in the midbrain responded with greater activity to person than to object vignettes. 

Several regions in the left hemisphere showed greater activity to objects than to either 

person or company vignettes: the left inferior frontal gyrus (L IFG), the left inferior 

parietal lobule (L IP), and the left inferior temporal gyrus (L ITG). In addition, left pars 

opercularis (L PO) showed greater activity to objects than to person vignettes. BOLD 

traces drawn from these regions reveal that the significance of the TP, AG, and possibly 

SMPFC are due to an increase in BOLD activity for persons and companies, while the 

significance of L PO and L ITG are due to an increase in BOLD activity for object 

vignettes. In the PCC, however, a depression of activity in the object condition drives 

significance, and in the L IFG and L IP there is a depression of the BOLD response for 

the person and company conditions. 

 

No regions survive our non-parametric permutations testing method for family-wise 

error (FWE) correction in the direct comparison of persons and companies.  
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Figure 7.4 Social Networks 

 

Vignettes about persons and companies elicit similar activity within social networks 

when compared to stories about objects. The left column of brain images depicts the 

contrasts of person>object (red colors) and object>person (blue colors). The right 

column of brain images depicts the contrasts of company>object (red colors) and 

object>company (blue colors). All contrasts are shown with family-wise error (FWE) 

correction at p<0.05. BOLD traces drawn from example regions of interest (ROIs) are 

shown to the right. The person and company BOLD activity show similar patterns in all 

ROIs. Time=0 s corresponds to the vignette onset. 
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Table 7.2 Coordinates of Activation 

 

List of coordinates and statistics for significant region in GLM contrasts 
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To ferret out any more subtle differences between persons and companies, we performed 

a multi-voxel pattern analysis (MVPA). We attempted to decode corporation and person 

trials using a 2-class SVM combining all valences and feeding the 9 timepoints around 

the button press to the SVM. However, our overall prediction accuracy was only 

54.93%, (chance = 50%, p=0.0082, χ2), indicating agency was difficult to decode. Thus, 

we ran a separate 3-class SVM in an attempt to decode emotional valence separately in 

person and company conditions. The overall prediction accuracy for both person and 

company trials was computed by using all 9 timepoints around the button press in an 

SVM, and the valence was decoded. This yielded a prediction accuracy for person trials 

of 50.60% (chance = 33.33%, p < 7.6e-11, χ2) and a prediction accuracy for the company 

trials of 44.07% (chance = 33.33%, p < 2.8e-13, χ2). We then computed a time series 

analysis decoding using each time point separately. This showed that the peak prediction 

accuracy occurred 4 s before the vignette ended (Figure 7.5A). Although the time series 

analysis shows similar decoding accuracy for person and company trials, the confusion 

matrices for these SVMs provides further evidence for differential emotional processing 

of these two trial types as seen in the analysis of the emotional responses (Figure 7.5B). 

The prediction accuracies for negative, neutral, and positive vignettes within the person 

condition were of similar magnitudes. However, for company vignettes, the SVM was 

much more successful in classifying positive vignettes than negative or neutral company 

vignettes. SVM sensitivity maps for the 3-class SVMs for company and person trials at -

4 s are shown in Figure 7.6.  
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Figure 7.5 Decoding Analysis 

 

Neural decoding of negative and neutral emotions is weak in Company trials but not in 

Person trials. A Time series analysis of decoding accuracy is similar in person and 

company trials. Peak prediction accuracy occurs 4 seconds before participants finished 

reading vignettes. Shaded regions indicate ± 1 SEM. Horizontal red line indicates chance 

level performance (33.33%). B Confusion matrices for person and company trials 

suggest a difference in emotional processing. Columns indicate the true valence 

condition of the trial, and the rows represent the SVM-predicted valence of the trial. 

Colors indicate the percent of trials that were classified with that label. The diagonals of 

the graph indicate the proportion correct in each trial type. 
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Figure 7.6 Sensitivity Maps for Classifiers 

 

Sensitivity maps for SVM classifiers for company at the peak decoding time (4 s prior to 

vignette end) reveal how voxels were weighted in the SVM. Feature selection using a 

one-way ANOVA was first used to pre-select 5,000 voxels. The weights of these voxels 

were scaled using an L1-norm and are shown overlaid on the Talairach brain template. 

 

 

To determine the regions that may underlie this difference in decoding accuracy for 

person and company emotions, especially the neutral vignettes, we returned to the GLM 

analysis and collapsed person and company vignettes into one group and then separated 

the valence. Collectively the positive vs. neutral and negative vs. neutral contrasts 

yielded the same regions as the positive vs. negative contrasts, so we will consider only 

the latter comparison (Figure 7.7). The right dorsolateral prefrontal cortex (R-DLPFC), 

right anterior cingulum (R AC), PCC, precuneus, mid-cingulum, right posterior parietal 

lobe, and bilateral cerebellar tonsil showed greater activation to positively valenced 
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vignettes. Only a small cluster of the superior temporal gyrus showed greater activity to 

negative vignettes. BOLD traces in these regions show no significant differences 

between the company and person trials within either the positive or negative trial 

subtypes. Within the neutral vignettes, however, person vignettes showed consistently 

higher BOLD activity than company vignettes. The BOLD activity from neutral person 

vignettes resembled the BOLD activity for positive vignettes, and the BOLD activity for 

neutral company vignettes resembled BOLD activity from negative vignettes, providing 

additional evidence for a negativity bias towards companies on a neural level. 

 

7.1.4 Discussion 

We found that the networks that underlie our ability to understand the actions of 

companies and people substantially overlap. That is, corporations are neurally 

represented as social beings rather than inanimate objects. Vignettes about corporations 

and people gave rise to largely similar neural responses, but there appears to be 

important differences in the emotional processing of these stories. Varying emotional 

responses between these vignette subtypes taken together with neural decoding using 

SVM classification and region of interest analysis suggests a negativity bias towards 

corporations. Not only did we see a bias against companies when rating positive and 

negative vignettes, but the neural response during neutral vignettes suggested a 

predisposition to judge companies more negatively. The neural response to a neutral 

vignette about a company was more similar to a negative vignette than to a positive 

vignette. This bias was not found in the neutral person vignettes.  
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Figure 7.7 Brain Hemodynamics 

 

No differences are seen between company and person agency when participants read 

positive and negative vignettes. However, neutral person trials consistently elicit 

significantly greater activity than neutral company trials. A contrast of all positive > 

negative trials revealed large medial regions such as the anterior cingulate cortex (ACC), 

posterior cingulate cortex (PCC), and the precuneus (FWE <0.05). Traces are drawn 

from the labeled ROIs. The plots on the left depict for each ROI negative and positive 

BOLD activity averaged for person and companies. The plots on the right depict for each 

ROI neutral vignette BOLD activity for person and companies. Time=0 s corresponds to 

vignette onset. Positive and negative as well as neutral company and person BOLD 

traces shown are significantly different by repeated measures ANOVA. 

 

 

When contrasted with objects, people and company both elicited activity in a widely 

cited “mentalizing network” of brain regions responsible for representing the actions and 

thoughts of others. A meta-analysis of 63 ToM studies finds a strikingly similar network 

to our agent > object contrasts (Figure 7.2), including the SMPFC, PCC/precuneus, 
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bilateral TPJ, bilateral STS, and bilateral temporal poles (Mar, 2011). A similar network 

of regions appears crucial for social cognition and moral decision making (Greene and 

Haidt, 2002; Hein and Singer, 2008; Moll et al., 2008).  

 

Activation of this mentalizing network of activity suggests that people apply similar 

mechanisms of moral reasoning and perspective taking when evaluating the actions of 

corporations and people alike. The brain can operate under two distinct states with 

antagonistic networks: a “social reasoning” network (e.g., interacting with other people) 

and “mechanical reasoning” (e.g., doing physics problems) (Jack et al., 2012). Our 

results show that both person vignettes and corporation vignettes activate this social 

reasoning network, while vignettes about objects activate the mechanical reasoning 

network. In other words, people do not treat corporations as physical entities but rather 

as social beings. Further, this social reasoning network allows people to form 

representations of the others, giving rise to decisions about morality and justice 

(Robertson et al., 2007).  

 

Other neuroimaging evidence has further characterized this mentalizing brain network 

beyond the simple social vs. non-social distinction. Activation of the thalamus and 

ventromedial/orbitofrontal activation has been implicated in particularly negative moral 

emotions (e.g., disgust) (Moll et al., 2005).  Additionally the cerebellar regions seen in 

our agent > object contrasts (Figure 7.4) have been shown to be functionally connected 

to the other regions of the mentalizing network (Buckner et al., 2011). The sum of the 
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functions within these regions gives rise to the ability to understand the personal and 

social behavior in both individuals and corporations alike. Our strongest evidence of 

corporate personhood stems from activation of the SMPFC in both corporations and 

individuals when each was contrasted to objects (Figure 7.4). The medial prefrontal 

cortex is critical to many social functions such as discriminating emotion, processing 

reward and punishment, representing and updating the value of future outcomes, and 

predicting the mental states of other organisms and cartoons (Amodio and Frith, 2006; 

Mitchell et al., 2005). Crucially, corporation vignettes did not down-regulate the 

SMPFC, as dehumanization studies have found (Cikara et al., 2011; Harris and Fiske, 

2006).  Our results show that vignettes involving corporations activate this frontal region 

just as person vignettes do.  

 

Our MVPA investigated whether emotional judgments about corporations and 

individuals could be decoded in patterns of activity distributed spatially across the brain. 

We found prediction accuracies were highest in company vignettes for positive trials, 

whereas in people all three emotions were decoded with similar accuracies (Figure 7.5). 

This suggests that the brain might respond uniquely to pro-social behavior of a company. 

Alternatively, the neutral and negative vignettes might elicit indistinguishable neural 

responses in company trials. Further evidence for the latter interpretation was seen in the 

GLM analysis (Figure 7.7). In regions captured by the positive vs. negative contrasts, 

neither positive nor negative vignette BOLD traces differ between people and 

corporations; however, the neutral traces drawn from these regions are significantly 
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different. The person neutral traces resemble the positive traces while the company 

neutral traces resemble the negative traces. Collectively, these results give neural 

evidence for a negativity bias towards corporations that we see in our analysis of 

participants’ emotional ratings. Such biases towards corporations have been previously 

noted in the literature outside of neuroscience. For example, participants in psychology 

studies view unethical behavior by corporations as more predictive of a corporation’s 

future behavior than refraining from unethical behavior or displaying pro-social behavior 

(Folkes and Kamins, 1999). The bias we find here provides a basis for further 

investigation of emotional processing in decision making about corporations. 

 

It is possible that in an alternative experiment, the ToM network could be activated for 

inert objects. Several studies have been able to ascribe human behavior to inanimate 

objects (e.g., walking with point-light patterns) (Beauchamp et al., 2003; Grossman et 

al., 2000; Grossman and Blake, 2001), and the ToM network activates when these 

inanimate objects engage in social interactions (Martin and Weisberg, 2003). This 

evidence suggests that the brain is capable of abstracting constructs and developing 

high-level frameworks of social interaction. Our evidence supports this model, 

suggesting that corporations can also be abstracted and mentalized as social beings.  

 

Regions that displayed greater activation to objects (L IFG, L IP, L ITG, and L PO) than 

to either people or companies have been seen a variety of studies. For example, similar 

regions are activated in non-social reasoning including mechanical reasoning (Jack et al., 
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2012), non-moral reasoning (Greene et al., 2001), motion discrimination and 

multisensory integration during tactile stimulation (Pasalar et al., 2010; Van Boven et 

al., 2005), visual and non-visual working memory (Pessoa et al., 2002) (for review see 

(D'Esposito et al., 2000)), and semantic and syntactic reasoning (Costafreda et al., 2006; 

Friederici et al., 2003; Hirshorn and Thompson-Schill, 2006; Moss et al., 2005; Poldrack 

et al., 1999). The left IP and in particular the left intraparietal sulcus have additionally 

been implicated in tasks involving object manipulation. Imagined, observed, and 

pantomimed tool use as well as point-light displays of tools preferentially activate the 

left intraparietal sulcus (Beauchamp et al., 2003; Moll et al., 2000). Vignettes from the 

object condition that contain information about tools and other objects (e.g. scissors, 

staplers, tractors) may be responsible for the observed activation of this region. 

 

Our study gives rise to two additional questions to further probe the neural and 

emotional responses to the actions of corporations versus individuals. First, our study 

took a broad approach to observe the effects of three different agents (person, company, 

and object) under three different valences (positive, negative, and neutral) in a single 

fMRI run. Future work will examine negative corporation and person trials to further 

elucidate our observed negativity bias towards corporations. To this end, we will use 

multiple short runs to generate robust classifiers for MVPA (Coutanche and Thompson-

Schill, 2012) to perform cross-validation on independent runs of data within participant. 

Second, we assessed here only the emotional responses to different vignettes. Future 

work will also examine how participants would choose to punish negative behavior and 
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reward positive behavior differently in individuals and corporations. This study will 

allow us to differentiate the actions participants take from their emotional response.  

It should be noted that company vignettes occasionally mentioned individual people 

(e.g., as the recipient of the action of a company, see Jane in Figure 7.1A). The strong 

activation of the ToM network observed in this experiment could be due to the 

mentioning of individuals in these vignettes. Future work should fully isolate 

corporations or the collective unit being studied from the individuals with whom they 

often interact.  

 

As mentioned above, ToM activity has been elicited by other non-human entities such as 

“socially interacting” basic shapes (Martin & Weisberg, 2003). Therefore, we cannot 

conclude that corporations or companies represent a special case of ToM network 

activation. We did not test participants’ judgments or brain activity with any other type 

of collective, such as charities, educational institutions, or government organizations. It 

is likely that the same networks will be strongly activated when contemplating the 

actions of other such collective groups.  

 

Lastly, this study does not provide a scientific justification or grounding for court 

decisions such as Citizen’s United vs. Federal Elections Committee (2010). There are 

numerous political, legal, and economic reasons why corporations ought or ought not to 

be granted the rights of individuals; these are beyond the scope of this study.  Rather, 



  

182 

 

this study concludes that judgments about both individuals and corporations are 

underpinned by remarkably similar neural mechanisms. 

 

7.1.5 Conclusions 

We investigated how participants judge the actions of corporations compared to the 

actions of individuals. Our results showed that participants elicited the same networks of 

brain activity in response to the actions of corporations and individuals alike. Analysis of 

the emotional responses to these vignettes, on both a behavioral and neural level, 

revealed a slight negativity bias towards corporations in which participants’ appear 

predisposed to judge the actions of companies more harshly. Collectively, our results 

support our hypothesis that corporations are viewed as social beings. 
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7.2. PSAP 

Social forces drastically influence our decision-making behaviors. For example, 

adolescents will be more likely to make riskier decisions (e.g., run a run red light) when 

they are simply being watched by their peers (Chein et al., 2011). Social influences can 

also cause people to make better decisions, a successful approach utilized by the 

organization CeaseFire in urban Chicago. Gang violence has plagued Chicago recently, 

and CeaseFire deploys “community elders” to scenes to prevent outbreaks when tensions 

escalate and violence is imminent.  

 

My first fMRI experiment involved studying these social interactions on behavior and 

quantifying neural correlates of these differences. Particularly, I studied how aggression 

could be modulated under different social influences. I used a well-studied aggression 

task called the Point Subtraction Aggression Paradigm (PSAP) (Cherek, 1981). I 

modified the task to be used during an fMRI scan and to be modulated by social 

influences. In this test, the participant was told that he would be paired anonymously 

with an opponent who is another participant; however, this opponent was actually just a 

computer. The participant had two response buttons—pressing one resulted in the 

accumulation of money (Button A) and pressing the other reduced the money of the 

other party (Button B). Pressing Button B was classified as an aggressive response. 

During the game, at random times, the computer reduced the participant’s money, as 

though the opponent pressed his Button B. At this point, the participant may or may not 

retaliate by pressing his Button B any number of times, allowing us to document the 
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participant’s aggressive response. This pattern was varied over the length of the game, 

and aggressive responses were measured.  

 

To measure the effect of social influences, we ran the study under two different 

paradigms. Participants were recruited in pairs (e.g., spouses, close friends, well-liked 

classmates). Participants were ostensibly told that they would be playing a game with 

each other while both were being scanned (“hyperscanning”). In reality, one participant 

was placed in the scanner, while his/her peer waited. The experiment consisted of 3 

parts. In the first part, the participant in the scanner trained on the PSAP task. Then, 

either his/her peer would be shown via a live webcam feed while he/she played 10 

minutes of the PSAP task or a video of a (mock) police officer (Figure 7.8-9). After 10 

minutes, the other stimulus (peer or officer) would be shown while the participant played 

the PSAP game. Order was counter-balanced across participant pairs. When the peer was 

observing, he/she was simply watching a YouTube video to Animal Planet and was told 

nothing more about the study. Meanwhile, the live video feed was shown to the 

participant in the scanner, who believed that his/her peer was watching the PSAP game. 

 

Unfortunately, we did not find significant behavioral differences or neural signatures in 

10 participants (5 pairs). Participants were not more likely to respond aggressively in 

either condition (Figure 7.10). 

 



  

185 

 

We also performed event contrasts on student > officer and officer > student on 

provocations and aggressive responses, but did not find significant brain regions to 

differ.  

 

These negative results may (at least in part) be due to the fact that the deception may not 

have been convincing enough to undergraduate/graduate students generally familiar to 

the idea of deceptive research. We had engaged conversations with Dr. Gary Slutkin at 

CeaseFire and initiated projects, but they did not reach fruition. 

 

 

Figure 7.8 Police Observer 

 

PSAP task is played while being “watched” by a police officer. 
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Figure 7.9 Student Observer 

 

PSAP task played while being “watched” by a peer. 
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Figure 7.10 Behavioral Responses 

 

Behavioral counts on the number of provoked or unprovoked aggressive responses. In 

this version of the paradigm, participants could also inject painful noise to the 

headphones of their peers, and were also susceptible to being delivered noise by the 

other player (aka computer). 
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CHAPTER VIII  

BRAIN PHYSIOLOGY 

 

8.1 Introduction 

The basal ganglia play a key role in modulation of motor output. However, their role in 

sensory integration and higher cognitive function is not well elucidated. For example, 

patients who suffer a stroke to the subthalamic nucleus will experience contralateral 

hemibalismus, but it is unknown if the patient will suffer from any subtler cognitive 

integration deficits. Intraoperative deep brain stimulation (DBS) provides the only 

window to measure the human electrophysiology of these subcortical nuclei. In the 

operating room, prior to the insertion of the stimulating electrode, recording 

microelectrodes are inserted into the target nuclei to provide electrophysiological 

confirmation that the right nucleus has been reached. It is during this time while the 

recording electrodes are still in place that stimuli can be presented to the patients and the 

responses of human deep brain nuclei can be measured. The targets of the deep brain 

stimulation include the subthalamic nucleus (STN) and the globus pallidus internus 

(GPi) in Parkinson’s disease and dystonia, and the ventral intermediate nucleus (Vim) in 

Essential Tremor.  

 

There are at least two pressing hypotheses regarding potential cognitive roles of basal 

ganglia nuclei: 1. the perception of time (Allman and Meck, 2012; Teki et al., 2011), and 

2. the processing of emotional stimuli (Bruck et al., 2011). Evidence to support the 
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involvement of basal ganglia in time perception has come from both pathology and 

neuroimaging. Behavioral testing in Parkinson’s disease patients has revealed 

deficiencies in interval timing (Merchant et al., 2008). In addition, functional magnetic 

resonance imaging (fMRI) of healthy participants has been used to show the 

involvement of the putamen and other basal ganglia nuclei in rhythm and beat perception 

(Grahn and Brett, 2007). There is at least one body of evidence suggesting the role of 

emotional prosody processing is involved in the STN (Bruck et al., 2011).  

 

We propose to find the fundamental electrophysiological evidence for cognitive roles of 

basal ganglia nuclei. We will use the hypothesis in the literature to drive our own 

hypothesis. However, there exists a challenge with electrophysiology of single units: the 

behavioral or neuro-imaging studies utilize the aggregation of thousands or even 

millions of neurons to collect data from. In electrophysiology, we are recording from 

single units consisting of often less than 5 detected neurons. As a result, there exists no 

particular guarantee that the set of individual cells we observe will indeed be involved in 

the putative cognitive tasks. 

 

To tackle this challenge, we have created two key innovations. First, we have developed 

an online analysis system, capable of spike detection, sorting, and hypothesis testing all 

within the OR to determine if cells we are recording from indeed respond to particular 

stimuli. If they do, we can perform more trials to increase our sample size. If the cells do 

not respond, then we can drive the recording electrodes to another depth in the hopes of 



  

190 

 

finding more responsive cells. This methodology will maximize our chances of finding 

cognitively involved neurons within basal ganglia structures. Second, we have 

developed a psychophysical battery of tests consisting of several cognitive modalities. 

Each test can be run in whole or in batches, depending on the responses of the cells we 

measure. In this way, we can avoid measuring from un-informative cells for a long 

duration. With these two innovations, we hope to elucidate electrophysiological basis of 

time perception and emotional processing in the basal ganglia (Figure 8.1, Figure 8.2, 

Figure 8.3, Figure 8.4, and Figure 8.5). 

 

8.2 Materials and Methods 

The following stimuli were used to present various emotional stages to the patients: 

 

1) Faces with staged emotions (happy, sad, neutral) (Belhumeur, 1997) 

2) Digitized sounds with quantified valence and arousal levels (Lang, 1999) 

3) Custom neutral words spoken with particular emotions (happy, neutral, angry) 

4) Presented words of varying emotional content (happy, sad, neutral) 
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Figure 8.1 Operating Room Online Analysis Diagram 

 

Prior to insertion of the stimulating electrode, 4recording microelectrodes are inserted at 

target nucleus. One of these electrodes also has a low-pass filter and pre-amplifier 

allowing simultaneous acquisition of the local field potential (LFP). This LFP electrode 

is represented as another electrode (in purple), although it is indeed acquired from one of 

the 4 microelectrodes. These electrodes, along with microphone data from speech, are 

passed to the FHC Guideline 4000 system. Stimuli are presented from another stimulus 

PC, and the timestamps are written to the FHC system via a parallel port connection (red 

connection). Using TCP/IP and a one of two cores, data from the FHC PC and stimuli 

categories from the stimulus computer are sent to a dual core analysis PC (blue 

connection). Once the end of a task completed, the analysis PC will analyze the MER 

data on another core in parallel. The analysis computer will generate PSTH plots and 

Raster Plots as well as compute hypothesis testing for each condition over all trials. The 

plots, the p-values, and the effect sizes are then sent back to the stimulus computer 

(yellow connection) for the researcher to make real-time decisions about which tests to 

run, all inside the operating room. 
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Figure 8.2 Adaptive Psychophysical Battery 

 

Representations of the various domains of our psychophysical battery. The battery is 

adaptive, allowing us to run any or all of these domains directly dependent on the 

responsiveness to the particular stimuli. The emotional stimuli are displayed as faces, 

sounds, semantic words, and emotional expressions of words. 

 

 

 

 

Figure 8.3 Spike Sorting 

 

A sample output of the WaveClus (Quiroga et al., 2004) algorithm’s spike sorting. The 

top panel shows the raw z-scored voltage output from a single microelectode recording. 

After spike detection, the algorithm clusters spikes into different representative neurons. 

In middle panel, all clusters are overlaid on top of each other. The three clusters are then 

shown to the right. In the bottom panel, parameters of cluster size and temperature can 

be selected on the left, if using supervised learning. The plots on the right show 

histograms of the counts of the inter-spike intervals (ISI) for each cluster. The total 

number of spikes is also displayed on top each histogram. 
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8.3 Results 

 

Figure 8.4 Peristimulus Time Histograms and Raster Plots 

 

On the top panel, a raster plot is shown for a particular stimulus category for each trial. 

On the bottom panel, the peristimulus time histogram (PSTH) is shown for the 

corresponding raster plot. The window for the PSTH was 50 msec. In both plots, red 

color is used to indicate the time while the stimulus was on (1 – 6 seconds in this 

example). Between each plot, the task, the electrode number, and the cluster number are 

displayed (Motion-1-cluster-1 indicates Motion was the task, electrode 1 was the 

channel, and cluster 1 was the cluster for this channel). Also, the p-value for the 

Wilcoxon Sign Rank test and the effect size are displayed. These values are computed by 

comparing the spike rate during stimulus onset to one second after stimulus offset to the 

spike rate during one second before stimulus onset to stimulus onset. The effect size is 

computed simply by calculating the percent of trials in which the spike rate in the 

stimulus/post-stimulus period was greater than the pre-stimulus (baseline) period. 
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Figure 8.5 Local Field Potential Power Spectral Density 

 

A sample output of LFP analysis. The stimulus was a high arousal, high valence sound 

(highAhighV) presented for 6 seconds. Time is shown on the x-axis, with stimulus onset 

at zero seconds. The times are binned into 100 ms windows with 25% overlap. 

Frequency is shown on the y-axis ranging from 0-80 Hz in steps of 0.1 Hz. For each time 

frequency coordinate, the power is shown in color, with the color bar shown on the right. 
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CHAPTER IX 

DECODING AND ENCODING THE BRAIN 

 

9.1 Introduction 

Jack Gallant and his group at UC Berkeley made an instrumental step in decoding fMRI 

signal evoked by natural movies (Nishimoto et al., 2011). For the first time, the noisy, 

low temporal resolution blood-oxygen-level-dependent (BOLD) contrast was able to 

predict quite accurately which one of millions of movies the participant watched at a 

given time. In addition to identification, Gallant and his group were able to reconstruct 

the video participants watched by harnessing 18 million different YouTube videos and 

two powerful filtering approaches. Although seemingly impressive, Gallant’s groups 

used a rather simple ranking framework to match the BOLD response of a watched 

video to the top predicted BOLD responses of  randomly selected videos. In our first 

aim, we propose to employ much more rigorous image processing algorithms than global 

matching. We will employ local reconstruction frameworks that will enable us to piece-

wise rebuild a video, voxel-by-voxel. This framework will not only improve the quality 

of video reconstruction, but the robustness of our framework will also be much more 

fruitful for extending the model to our next two aims: imagination and dreaming.  

 

Imagination poses an interesting challenge for constructing an encoding model because, 

unlike with presented stimuli, we do not know precisely what participants were actually 

imagining, the ground truth. Formisano’s group tried to tackle the challenge by training 
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participants to imagine particular scenes when presented with a particular auditory cues 

(de Borst et al., 2012). Using EEG and fMRI separately, Formisano’s group elucidated a 

temporal flow of information that starts with the anterior frontal regions and 

synchronizes with right and central frontal regions, perhaps conducting both retrieval 

and integration of an imagined scene. Formisano, however, only utilized natural scenes, 

neglecting the spectrum of possibilities in imagination. James Haxby’s group revealed 

the cortical networks involved in categorizing biological classes (Connolly et al., 2012). 

This emerging body of neuroimaging urges us to create a robust encoding model for 

imagination that takes the temporal dynamics, the classes, and the functional ROIs into 

account. With such an approach for imagination, we will construct a neural search 

engine, a technology that enables us to YouTube search with simply our minds.  

 

Lastly, one of the most interesting frontiers in neuroscience is to understand sleep, both 

its physiology and its underlying evolutionary motive. Traditionally, 

electroencephalography (EEG) has been the gold standard for staging sleep, due largely 

to its temporal precision and ability capture oscillations that characterize sleep stages. 

However, even combined EEG-fMRI studies pose serious constraints on sleep studies, 

with the EEG scalp surface electrodes causing severe discomfort for participants, 

reducing both the quality and quantity of sleep attainable in the scanner. In light of this, 

very recent work by Laufs begun to enable automatic sleep staging using just the BOLD 

signal (Tagliazucchi et al., 2012). They were able to build a classifier that is independent 

of the participant, and they have shown classification accuracy for each sleep stage of 
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80% on two independent participants. To increase accuracy and reliability further, we 

will also utilize two additional technologies: pulse oximetry and a novel video-based 

staging of sleep. We will then be able to characterize the neural correlates of each stage 

of sleep, and in particular, decode dreams in REM sleep. Furthermore, we can begin to 

identify the influences of sleep by studying how decoded dreams correlate with visual 

activities prior to sleep. We aim to provide evidence for the fundamental question of 

why we sleep and dream. 

 

9.2 Preliminary Studies and Rationale 

We have begun to acquire fMRI data of two participants watching videos while in the 

fMRI scanner. Each participant watched 2 hours of randomly pulled 10 second YouTube 

videos. We hypothesize much more semantically driven influences to play a role in 

visual processing than has been previously proposed. Thus, we have designed two 

distinct MRI protocols: 1.) 18 coronal slices fast sequence (1 s repetition time, TR) 

originating at the occipital pole to capture occipital poles and 2.)  37 horizontal slices (2 

s TR) to capture the whole brain. This will drive our discovery of the correct features to 

utilize in developing the optimal encoding models.  Our preliminary studies on 

imagination have shown promise for a unique encoding model. (Figure 9.1) Two 

participants watched a series of short videos and were asked to imagine the exact videos 

they watched after a brief pause. The whole brain scans showed strong correlation 

between the watched and imagined video within voxels in visual area as well as frontal 

and parietal regions. This whole brain correlation provides key insight for developing 
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optimal encoding. We also observed a strong correlation between the imagined video 

and the corresponding watched video. In both participants, we were also able to identify 

the imagined video to its corresponding watched video with an accuracy 10 times higher 

than chance. 

 

 

 

Figure 9.1 Video Decoding 

 

A) Paradigm. Participants watch a clip, wait ten seconds with eyes closed, and then a 

sound cue instructs the participants to begin imagining the same video they just watched. 

A second distinct tone is played to cue the participant to stop imagining. 5 second inter-

stimulus interval. B) Correlation Maps. The Pearson correlation coefficient between the 

watched video and the corresponding imagined video for every voxel in each 

participant’s brain scan. C) Imagination and Watching.  Pearson Correlation Coefficient 

for every imagined video across all watched video. D.) Identification Accuracy. 

Probability of selecting the correct watched video for all imagined videos. 
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We have also utilized a primitive physiological measure, heart rate, and HD video 

camera to capture the moments of REM sleep. Previous studies have shown that 

sympathetic innervation to the heart increases as humans transition from non-REM 

(NREM) to REM sleep (Bonnet and Arand, 1997). As such, the heart rate increases and 

becomes more variable as the participants enter REM sleep. We utilized our MR-

compatible pulse oximeter to monitor a participant’s heart rate as he slept for a period of 

time in the scanner. To provide another non-obtrusive way to estimate REM, we used a 

high-definition camcorder to record the eyes as the participant slept. We then correlated 

the time-frequency spectrum of the luminance change within the eyeball region in the 

video to the participant’s heart rate (Figure 9.2). 

 

9.3 Research Design and Methods 

The most direct innovation will arise from applying novel image analysis techniques to 

the fMRI data (Figure 9.3 and Figure 9.4). 
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Figure 9.2 Sleep Staging 

 

Top panel shows how different frequency components of  the eye movement evolves 

with time, by analyzing the time-frequency spectrum of the luminance change within eye 

ball region. Participant woke up around 3400 sec, inducing the higher activity in high 

frequency. The activity in high frequency before 1000 sec likely involves REM sleep, as 

demonstrated by the covariation with heart rate (lower panel) and was confirmed by 

visual-checking of the eye-movement video. 
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Figure 9.3 Semantic Analysis 

 

Proposed image/video reconstruction algorithm that fuses semantic information from 

higher areas of the visual cortex with local information found in early visual cortex. The 

key steps of the algorithm involve selecting similar images from a corpus using semantic 

information and uses local patches from these images to construct the unknown stimulus. 

 

 

 

 

 

 

 



  

202 

 

 
 

 
 

Figure 9.4 Project Milestones 

 

Project’s quarterly proposed timeline. 
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9.4 Specific Aims 

9.4.1 Specific Aim 1: Improve Neural Visual Reconstruction With Novel Image 

Processing Techniques and Machine Learning 

We will critically improve a remarkable ability to recreate movies from an fMRI pattern 

by applying a novel framework encompassing unique digital signal processing 

algorithms. Previous work applied Gabor filter models to lower visual areas to identify 

videos participant watched and simple pattern matching approaches to reconstruct a 

representation of the video. These models, however, have inherent limitations in the 

accuracy of identification and quality of reconstruction. We propose to improve 

decoding and reconstruction in three ways. First, we will expand the encoding models to 

beyond lower visual areas, extending to higher cortical regions that contain important 

semantic information. Encoding information in these higher areas will require the use of 

adaptive features that are capable of describing local as well as global image primitives. 

Second, we plan to reconstruct visual stimuli using local properties of lower visual areas. 

Rather than utilize a simple global template matching framework, we will piece-meal 

reconstruct visual input, from voxel to pixel. Third, we aim to ascertain the fundamental 

limits on the spatial and temporal resolution of the visual cortex in order to better 

understand the performance limits of encoding and decoding models. Specifically, we 

are interested in analyzing the effective spatial and temporal resolution, which also 

includes the acquisition (or measurement) process of the BOLD activity. With these 

three critical improvements, we will create a far more robust reconstruction framework, 

capable of deciphering the human visual system much more systematically. 
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9.4.2 Specific Aim 2: Characterize and Decode Human Visual Imagination 

We will extend visual decoding into the imagination domain, where we will create the 

first true visual representation of an imagined scene using fMRI. We anticipate this 

challenge to be rather unique from the decoding visual input from the eyes in three 

distinct ways. First, neurons may encode an imagined thought in an entirely different 

method from visual input. Second, the areas of the brain utilized for imagination may be 

rather unique from the neural real-estate for watching videos. We will define functional 

regions-of-interest (ROIs) that characterize where key components of imagination occur 

and incorporate those regions into our encoding models. Third, as we build a robust 

encoding framework, imagination will also allow us to build a powerful new application: 

a neural search engine. Trained participants will be able to imagine any scene inside the 

scanner, and we will be able to decode and reconstruct that thought. 

 

9.4.3 Specific Aim 3: Reconstruct the Visual Nature of Dreams 

We aim to decode and reconstruct another distinct state of mind: dreaming. Just as 

imagination did, dreaming also likely possesses its own encoding models, neural real-

estate, and applications. As such, we will iterate over a robust set of algorithms to find 

the optimal encoding model and the functional ROIs for dreaming. We will design novel 

methods for sleep-staging, including a purely video based technique, that will help 

identify REM sleep and greatly improve the accuracy of our decoding and reconstruction 

models. Our visual reconstruction approach aims to play back our dreams. 
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CHAPTER X  

CONCLUSIONS 

 

I had a great experience working on a broad array of projects with many great mentors. I 

tried to capture here the many ideas I attacked over the last 5 years in graduate school. 

The thrust of my thesis attacked three main topics: How we see, How we feel, and How 

we decide. Here, I will discuss the meaning of these results and what they mean for us 

next. 

 

Mapping the polar angle representation of saccades in human SC was one of the most 

exciting projects I worked on in graduate school. It taught me how important every step 

of the process is to collect data. Participants need to be well-trained and happy in the 

scanner, data acquisition needs to be optimal and MR physics need to be well 

understood, and post-processing requires many approaches. Often this means you need 

to take the perspective of each aspect of a project, including being the participant! I was 

scanned 18 times in total on ~2 hour session of making 1000s of eye movements. At the 

end of some long sessions, my extraocular eye muscles would actually hurt! The 

topography of eye movements was similar to monkey SC, which made the approach 

more tangible. We could use the monkey maps as guidance to see if we were on the right 

track. However, this was not always the case. We also had tried to measure orientation 

columns in human SC. Orientation columns were recently discovered in mouse SC 

(Ahmadlou and Heimel, 2015; Feinberg and Meister, 2015) in Nature. The challenges in 
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mouse SC arise because it was hard to study SC without ablating portions of the visual 

cortex, which destroy top-down input to SC and alter physiological measurements. With 

advances in surgical approaches and optogenetic techniques, orientation columns were 

delineated in the mouse. We tried 5 scanning sessions on me to image orientation 

columns but were unsuccessful. This was another important lesson, that not every animal 

study indicates the functional organization of the human brain. In human SC, orientation 

columns may have completely migrated to the visual cortex. But now that the 

topography of saccadic eye movements has been vetted, we can study a whole host of 

vision science in humans that are much easier to perform than in monkey. For example, 

the most exciting project I am working on next is to measure ocular dominance columns 

in human SC. This will be a fun task of watching NBA videos in the scanner, while the 

video is being presented to one eye for 15 s and then to the other eye for 15 s via a 3D 

display. We just received a new 3D lens holder to place the filters in and can begin 

scanning soon! 

 

I also enjoyed working on studying the ingroup biases associated with religions, 

especially working with the brilliant and very talented Don Vaughn. Donny performed a 

heroic task of scanning 135 participants (at a time were scanning was not billed hourly). 

This enabled us to resolve the empathy network and the ingroup biases, despite using a 

limited number of trials. A very interesting aspect I found in this study was the effect of 

repetition suppression. I quantified and observed a 40% decline in BOLD signal change 

from the first to last trial. I don’t expect this result to be unique to our study. 
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Parametrically modulating this effect helped to isolate well-defined brain regions 

responsible for the ingroup biases. This was an interesting approach, and I would be 

curious to see if would help several disciplines. As for the empathy, it was is one of the 

most remarkable human characteristics we hold. I was deeply moved by the following 

quote from Bill Bullard:  

 

“Opinion is really the lowest form of human knowledge. It requires no accountability, no 

understanding. The highest form of knowledge is empathy, for it requires us to suspend 

our egos and live in another’s world. It requires profound purpose larger than the self 

kind of understanding.” 

 

I think this is an important lesson to take with me as a physician scientist, one that I hope 

to hold close to my chest.  

 

The last main chapter, how we decide, was one of the most challenging projects I 

worked on. I found the work of Soon et al. 2008 to be very interesting, a novel finding 

and a mechanism of how the brain might function. However, as scientists, we are 

challenged to question every finding and every result we encounter. This meant spending 

many months trying to replicate the original result of John Dylan Haynes’ group. 

Replicability in science is very challenging, often with less than half of the results in 

psychology repeating by independent scientists (Collaboration, 2015). Functional MRI 

likely also faces similar challenges, as so many decision points from data collection to 
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data analysis can be made. In fact, even using the same structural processing software on 

different operating systems has resulted in differing results (Gronenschild et al., 2012). 

That’s not to say that software developed for mass usage in the community is a bad 

approach; communities develop software and tools that no single individual could 

develop in an academic lifetime. Rather, it suggests we need to be vigilant and open 

about our practices. This is beginning to become standard practice, but most labs still do 

not make the raw datasets publicly available. Hopefully, it will become standard practice 

to place all data collected in online databases publicly available for all to use. If such a 

system was in place, I would have personally saved many months and many research 

dollars trying to replicate a result. Nonetheless, I was only partially able to replicate the 

Soon et al. 2008 result. What does this mean? Well, scanning acquisition was different 

(3mm voxels vs 2 mm in my data), participants themselves were different (button 

presses were faster in my data), and exact analysis pipeline had to be inferred from the 

paper and built with my own software. I did see positive predictive decoding in 

PCC/Precuneous but not in the exact frontopolar locations. I also decoding elsewhere. 

An open question is how do we report these differences? Journals would likely not be 

interested in publishing a pure replication experiment, but it should be known to the next 

student how else the data might look when the experiment was run again independently. 

Many interpretations have been cast on the Libet et al. 1985 and the Soon et al. 2008 

studies (Bode et al., 2014). The most extreme, often portrayed by the media, suggest that 

free will does not exist if the brain is making decisions before conscious awareness. 

However, it is important to discuss this claim for two reasons. First, conscious awareness 
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is likely not a white line. You could be more (or less) aware of an upcoming decision, 

but we are often asked to make the decision of when precisely conscious awareness 

arose (Miller and Schwarz, 2014). This means that the decoding is occurring just prior to 

the declared conscious awareness. Second, the interesting part for me is the cascade of 

activity that leads to decision-making. This conversation seems very useful to 

understand better how the brain makes decisions. Lastly, I thoroughly enjoyed the many 

talks and debates with advisor Dr. David Eagleman who guided me through many of 

these ideas.  

  

Despite the many topics spanned in the other chapters, there were still many more that 

were not included. I spent ~1 year working on trying to build machine learning models 

to predict mTBI patients from controls in the veteran population. This was a tricky 

challenge as it was all based on self-report and the type and severity of the injuries were 

so heterogeneous. It is unclear to me that any spatially aligned normalization approaches 

would ever yield predictive diagnostic value. Individual measures are essential. Further, 

most models in this field are significant on the aggregate but vary for individuals 

dramatically. This implies that measures like brain age or TBI status could not be 

inferred from an individual scan with current predictive power of any model. This is an 

interesting challenge that will likely require strong collaborations with computer 

scientists, MR physicists, and neuropsychologists alike. Secondly, I spent many months 

analyzing EEG data from musicians and controls. Data were acquired via a portable 

Emotive 14-channel EEG head set. Several (> 40) previous studies have been published 
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using this hardware. However, our dataset faced two challenges that revealed important 

lessons to me. First, we were trying to see if time perception and the underlying neural 

correlates were different in musicians compared to controls. This meant running 

participants on a number of timing tasks (e.g., beat matching, sound oddball). During 

these tasks, musicians would often bob their heads in rhythm to the beat of the music. 

Unfortunately, this introduced motion artifacts into the data that could have corrupted 

the signal. Second, the number of trials run on this experiment was very small (on the 

order of 10 – 25 trials). Typical EEG studies run 100s to 1000s of trials to elicit enough 

SNR to resolve questions, especially with lower-grade portable hardware. We did not 

observe significant effects between musicians and controls. However, the challenge is 

that we do not know if this was limited to quantity and quality of the data. This was an 

important, recurring theme during my thesis. Working with existing datasets has many 

advantages and can be fruitful and productive for all members involved. However, often 

no matter how much effort is put in post-hoc, limitations like the number of trials 

sampled or experimental manipulations cannot be altered after data collection is 

complete. There is a great feeling when something doesn’t work to alter and run the 

experiment again. Had I solely worked with existing data on saccadic eye movements, 

we would have never resolved the polar angle representation of saccades in SC because 

there were critical manipulations of the experiment design that needed to be made. This 

was a very valuable lesson for me, to be aware of the quality of the data are prior to 

initiating analyses and understand the limitations of the data. As a physician, the data 

acquisition will be even less likely to be altered manually, and I will very likely receive 
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data on my desk that is not of the highest quality. These experiences will be a lesson 

well served! 

 

Graduate school is a highly non-linear path. When I received my first project, I thought, 

“Great, I’ll finish this in one week. What should I do next week?” Five years later, I am 

still tackling some of those problems. The idea though is not to be discouraged, to 

persevere and continue to discover. Just don’t be surprised that on your path from A to B 

that you may discover C and never reach B and then forget what A was all about! 
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APPENDIX  

IMAGE PROCESSING
*
 

 

1. Genetic Suppression of Transgenic APP Rescues Hypersynchronous 

Network Activity in a Mouse Model of Alzheimer’s Disease 

1.1  Methods 

Sagittal sections located ∼1–1.5 mm from midline were selected for analysis based on 

landmarks in hippocampus, lateral ventricle, and striatum. A total of 4–5 sections were 

imaged per animal. Fluorescent images were collected from nonoverlapping fields 

within cortex (L2/3 above CA1 and L5 above lateral ventricle). A single optical plane of 

0.977 μm in depth was collected in red (vGAT) and green (vGLUT) channels using an 

ApoTome structured illumination device (Carl Zeiss) at 40× magnification (222.2 × 

166.4 μm per field). We used a custom script written in MATLAB (R2012b) to batch 

process two-channel fluorescence images in an unbiased and automated way. Grayscale 

images were binarized using Otsu's method to divide the dataset into signal and 

background so that the variance in each of the resulting subsets is mimimized.  

                                                 

* Reprinted with permission from “Genetic suppression of transgenic APP rescues 

Hypersynchronous network activity in a mouse model of Alzeimer's disease.” by Born 

HA, Kim JY, Savjani RR, Das P, Dabaghian YA, Guo Q, Yoo JW, Schuler DR, Cirrito 

JR, Zheng H, Golde TE, Noebels JL, Jankowsky JL, 2014. Journal of Neuroscience. 12, 

3826-3840, Copyright 2014 by Society of Neuroscience. 
* Reprinted with permission from “Genetic modulation of soluble Aβ rescues cognitive 

and synaptic impairment in a mouse model of Alzheimer's disease.” by Fowler 

SW, Chiang AC, Savjani RR, Larson ME, Sherman MA, Schuler DR, Cirrito JR, Lesné 

SE, Jankowsky JL, 2014. Journal of Neuroscience. 34, 7871-7885, Copyright 2014 by 

Society of Neuroscience. 
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In this case, the method uses variance minimization to define the cutoff between 

immunopositive pixels and background. The script then calculates the area occupied by 

vGLUT- or vGAT-positive pixels in each image normalized to the total area of the field. 

We have posted a modified version of the script on MATLAB's file exchange site 

(http://www.mathworks.com/matlabcentral/fileexchange/39591). 

 

1.2  Results 

The sensitivity of APP/TTA mice to both spontaneous SWDs and acute GABAergic 

inhibition prompted us to test whether there may be underlying changes in the excitatory 

to inhibitory balance. We examined the relative levels of glutamatergic to GABAergic 

innervation by measuring the density of synaptic immunostaining for their respective 

vesicular neurotransmitter transporters, vGLUT and vGAT. Because our EEG recordings 

were taken above parietal cortex, we focused our histological analyses on this region and 

specifically on the main neuronal cell body layers 2/3 and 5. Within layer 5, the area 

occupied by vGLUT staining was significantly lower in APP/TTA mice than in controls 

(p < 0.05; n = 4–5 mice/group; Figure A.1). vGLUT density was restored to control 

levels by 4–5 weeks of transgene suppression, but was not rescued by GSI treatment, 

which is consistent with our EEG findings. In contrast, vGLUT staining within layer 2/3 

was not significantly altered by transgene expression or treatment. 

 

http://www.mathworks.com/matlabcentral/fileexchange/39591
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Figure A.1 Restored Glutamatergic and GABAergic Cortical Markers  

 

Transgene suppression restores cortical markers of glutamatergic and GABAergic 

innervation to control levels. A, Tissue from TTA and APP/TTA mice used for EEG 

recording was coimmunostained for vGLUT1 and vGAT. Images show cortex layer 5 

from untreated TTA (control) mice along with untreated, DOX-treated, and GSI-treated 

APP/TTA mice. Scale bar, 50 μm. B, Percent area occupied by vGLUT1 and vGAT 

staining within layers 2/3 and 5 was measured using a custom MATLAB script. 

Untreated APP/TTA mice had a lower density of vGLUT1 and higher density of vGAT 

in layer 5 than control animals, with a similar trend in layer 2/3. Transgene suppression 

restored these excitatory/inhibitory markers to control levels, whereas GSI had no effect. 

*p < 0.05, **p < 0.01. 

 

 

 

Changes in vGAT staining were opposite to those in vGLUT. In layer 5, the area of 

vGAT staining increased with APP overexpression (p < 0.01 vs control) but decreased to 

control levels after transgene suppression. vGAT staining in layer 2/3 showed a similar 

pattern: although the increase in vGAT with transgene expression was not significant, 

the drop after suppression was (p < 0.01 vs untreated). vGAT levels after GSI treatment 

fell in between those of untreated and DOX-treated animals, but were not significantly 

changed from untreated APP/TTA mice.  
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Together, these analyses revealed that continued overexpression of APP caused a 

significant reduction in the ratio of vGLUT:vGAT within layer 5 (p < 0.01 vs control) 

and a parallel trend in layer 2/3. Transgene suppression restored the excitatory/inhibitory 

ratio to control levels, whereas GSI treatment did not. 
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2. Genetic Modulation of Soluble Aβ Rescues Cognitive and Synaptic 

Impairment in a Mouse Model of Alzheimer’s Disease  

 

2.1  Methods 

The area of synaptophysin immunostaining surrounding thioflavine-S-positive fibrillar 

plaques was measured using a custom script written in MATLAB (R2012b) to batch 

process two-channel fluorescence images in an unbiased and automated way. Two tissue 

sections spanning the frontal cortex were selected for analysis from each animal. Two 

nonoverlapping fields of view each centered on an isolated plaque of 43.56 μm average 

diameter were photographed for each section. A single optical plane of 0.98 μm in depth 

was collected from each field in the red (synaptophysin) and green (thioflavine) channels 

using an ApoTome structured illumination device (Carl Zeiss). At 40× magnification 

each field spanned an area of 222.2 × 166.4 μm. 

 

The first step in the automated script removed the area occupied by the thioflavine-

positive plaque from the region of interest that would be used be used to measure 

synaptophysin. To accomplish this in an unbiased fashion, we binarized the grayscale 

thioflavine images using Otsu's method. The Otsu method works by calculating the 

threshold at which to divide the dataset into signal and background so that the variance 

in each of the resulting subsets is minimized. In this case, the method uses variance 

minimization to define the cutoff between thioflavine-positive pixels and thioflavine-

negative pixels. Pixels above background defined the area of the plaque and were used 
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as a mask to remove this region from the corresponding synaptophysin image. The 

masked synaptophysin images were then also binarized, again applying Otsu's method 

for determining the optimal threshold between signal and background. The script then 

calculated the area occupied by synaptophysin-positive pixels in each image, 

normalizing to the total area remaining after the region of thioflavine staining was 

removed. We have posted the script on MATLAB's File Exchange 

(http://www.mathworks.com/matlabcentral/fileexchange/39591). 

 

2.2  Results 

Synaptic recovery despite sustained amyloid. 

Past work has shown that exposure to oligomeric Aβ is rapidly synaptotoxic in vitro, 

which led us to test whether synaptic markers were also reduced in untreated APP/TTA 

mice as they are in several other amyloid-bearing AD models. Moreover, we wanted to 

determine whether synaptic recovery accompanied the decrease in oligomeric Aβ with 

transgene suppression, which might support their behavioral improvement. We 

quantified the levels of both postsynaptic PSD95 and presynaptic synapsin Ia/b in 

cortical extracts from behaviorally tested mice (Figure A.2A-C). Western blotting 

confirmed that untreated APP/TTA mice have less PSD95 than TTA controls (F(1,28) = 

25.80, p < 0.01; Figure A.2B) as well as lower levels of synapsin (F(1,27) = 6.20, p = 

0.05; Figure A.2C). Dox treatment to suppress transgenic APP increased the amount of 

both proteins in APP/TTA mice, but did not affect their levels in TTA controls (F(1,28) = 

11.80, p = 0.002 for PSD95 and F(1,27) = 3.70, p = 0.04 for synapsin). 

http://www.mathworks.com/matlabcentral/fileexchange/39591
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While these changes in synapsin and PSD95 are consistent with synapse loss throughout 

the cortex of untreated APP/TTA mice, past work has shown that the greatest decrease in 

synapse density occurs in the immediate vicinity of amyloid plaques. Knowing that dox-

treated mice showed behavioral improvements despite the persistence of amyloid 

plaques, we tested whether plaque-associated synapse loss was rescued by lowering Aβ 

production. We manually selected thioflavine-positive plaques from the rostral forebrain 

ranging in size from 2500–11,000 μm2 so that the distribution of plaque sizes was no 

different between dox-treated and untreated mice (unpaired Student's t test, p > 0.05). 

We then measured the area of synaptophysin immunostaining in a 0.036 mm2 region 

surrounding each plaque (one field of view at 40× magnification) to compare the density 

of synapses in untreated and dox-treated APP/TTA mice (Figure A.2D). The area of 

synaptophysin staining in the vicinity of fibrillar deposits was markedly higher in the 

dox-treated animals than in their untreated siblings (t = 3.34, p < 0.01; Figure A.2E). 

This suggests that synaptic loss is reversible, as were cognitive deficits, once APP and 

Aβ are reduced. 
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Figure A.2 Restored Synaptic Protein Levels 

 

Synaptic protein levels and synaptic area are restored by suppression of transgenic 

APP/Aβ. A, Immunoblotting was used to measure the levels of presynaptic and 

postsynaptic proteins synapsin and PSD95 in cortical homogenates from behaviorally 

tested animals. B, C, The signal intensity revealed significant deficits in both synapsin 

and PSD95 between untreated APP/TTA mice (n = 8) and TTA controls (n = 8; *p < 

0.05). Levels of both proteins were increased by dox treatment in APP/TTA mice (n = 8; 

*p < 0.05) to levels that were indistinguishable from TTA controls (n = 8). D, 

Synaptophysin immunostaining (red) was used to estimate the area occupied by synaptic 

terminals in the vicinity of thioflavine-positive fibrillar plaques (green) at the conclusion 

of behavioral testing. E, Consistent with the recovery of synaptic proteins, the area of 

synaptophysin immunostaining was significantly greater in dox-treated APP/TTA mice 

than in untreated controls (**p < 0.01; n = 8 untreated; n = 10 dox). 

 




