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ABSTRACT 

Rod and cone photoreceptors are light-receptive cells in the visual system that 

convert photons into an electrochemical signal to be processed through the retina and 

transmitted into the brain. From the first visual synapse, from photoreceptor to 

interneurons, rod spherules and cone pedicles diverge in morphology and connectivity 

patterns. It is known that the transcription factor Nrl is sufficient to drive the cone-to-rod 

cell fate conversion and morphological change.  To dissect the source of the spherule 

versus pedicle differences, we performed a directed RNAi screen using in vivo 

electroporation to knock down a select portion of the Nrl regulome to identify genes 

associated with morphological features. 

We systematically characterized four distinct features of rod spherules and S-cone 

pedicles: spherule width, terminal position in the outer plexiform layer, ribbon number, 

and presence or absence of telodendrites. Using previously published next-generation 

sequencing data of the transcriptome of developing rod and cone-like photoreceptors as 

well as key transcription factor binding profiles, we defined a set of genes potentially 

associated with restricting spherule morphology from that of the default pedicle state. By 

knocking down genes individually, we were able to dissect the effects each gene has to 

restrict spherules. Our screen identified twenty-seven genes that control one or two 

independent features of rod photoreceptor spherule morphology, terminal width or outer 

plexiform layer position. Many of these were confirmed either through rescue experiments 

or examination of loss of function mouse strains. 
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Lastly, we generated a protein interaction network to connect the seemingly 

random sets of genes that controlled spherule morphology. Clustering of genes in this 

network did not show enrichment of our positive screen targets into communities. When 

we created shortest network pathways between all pairs of positive targets, we discovered 

that there was an enrichment of pathways that utilized Ncoa2, and this gene has a direct 

path to Nrl. We hypothesize that we have discovered a more directly involved gene 

regulatory network associated with the restriction of rod photoreceptor spherules. This 

knowledge should help in blinding disease treatment strategies to improve proper 

integration into the native retinal circuitry after loss of photoreceptors. 



 iv 

DEDICATION 

To the animals sacrificed now to alleviate human suffering in the future… 



 v 

ACKNOWLEDGEMENTS 

Too many thanks are in order to name all of the people that have provided 

guidance, support, or a much-needed drink along the way, but I must specifically name a 

few that were essential. 

I would like to first thank my mentor, Dr. Anand Swaroop, for providing me with 

a new lab home in the middle of my graduate degree and allowing me to perform my thesis 

work in his laboratory. The independence, financial support, and macro management 

guidance provided has allowed me to become a more self-sufficient problem solver and 

scientist and ready for any future challenges in my career. 

I would like to thank my full thesis committee, Drs. Smotherman, Ko, Riley, and 

Welsh, for their assistance and support in all steps of completing the doctorate, especially 

with the additional hurdles caused by performing my thesis at another institute they helped 

me overcome. 

Finally, my family and friends have provided so much support along the way. 

There were many days when the light at the end of the tunnel seemed too distant that they 

reminded me of my goals and kept me on track. I have also had the pleasure of working 

alongside many friends who, through discussions of projects over coffee or beer, have 

provided advice and suggestions that have vastly improved the quality of my work. 



 vi 

CONTRIBUTORS AND FUNDING SOURCES 

This work was performed in the laboratory of Professor Anand Swaroop at the 

National Eye Institute, National Institutes of Health, Bethesda, Maryland. This work was 

supervised by a dissertation committee consisting of Professor Michael Smotherman, 

committee chair, and Professor Bruce Riley of the Department of Biology and Professors 

Gladys Ko and C. Jane Welsh of the Department of Veterinary Integrative Biosciences. 

Transmission electron microscopy image of rod spherules and cone pedicle imaged 

by Dr. Jessica Gumerson at the National Eye Institute and graciously gifted for this work. 

The RNA-sequencing data analyzed for Chapter II, Figures 7 and 8 was provided by Mr. 

Matthew Brooks at the National Eye Institute as a re-analysis of previously published 

work (Kim et al., 2016b); filtering and selection of genes was performed independently 

by the student. Adeno-associated virus (AAV) packaged guide RNAs for CRISPR/Cas9-

mediated loss of function was designed by Dr. Wenhan (John) Yu and packaged by Ms. 

Suja Hiriyanna. The network analysis performed in Chapter II, Figures 15 and 16, was 

conducted by Dr. Anupam Mondal of the National Eye Institute. Interpretation of the data 

was a collaborative effort between Dr. Mondal and myself. 

All other work conducted for the dissertation was completed by the student 

independently. 

First-year and summer graduate study were supported by a fellowship from the 

Texas A&M Institute for Neuroscience. Dissertation research was supported through the 

Intramural Research Training Award at the National Eye Institute intramural program, 

NIH. 



 vii 

NOMENCLATURE 

AAV Adeno-associated virus 

AMD Age-related macular degeneration 

DR Diabetic retinopathy 

GCL Ganglion cell layer 

GRN Gene regulatory network 

INL Inner nuclear layer 

IPL Inner plexiform layer 

iPSC Induced pluripotent stem cell 

IS Inner segment 

ONL Outer nuclear layer 

OPL Outer plexiform layer 

OS Outer segment 

RDD Retinal degenerative disease 

RP Retinitis pigmentosa 

RPE Retinal pigment epithelium 
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 CHAPTER I  

INTRODUCTION: PHOTORECEPTOR SYNAPTIC TERMINAL  

DEVELOPMENT AND FUNCTION 

 

 

Introduction 

The vertebrate retina is an ordered neural circuit in the eye responsible for the 

recognition, processing, and transmission of light signal from the external environment to 

the brain. Five major classes of neurons (photoreceptor, bipolar, horizontal, amacrine, and 

ganglion) and one glial cell (Müller) are arranged into three distinct lamina of cell bodies 

with connective, cell-free layers between the nuclear layers (Figure 1) (Masland, 2001a, 

b). Light photons enter the anterior eye and are detected by rod and cone photoreceptors 

and are converted to an electrochemical signal. The signal undergoes multiple levels of 

processing and refinement through the outer and inner plexiform layer (OPL and IPL, 

respectively) as it passes from photoreceptors to interneurons to ganglion cells, which 

direct transmit these signals to the brain. 

Photoreceptors detect light through photosensitive opsins in the outer segments of 

the cells; this signal is amplified through the phototransduction cascade to cause the 

closure of calcium channels and hyperpolarization of the membrane. Due to the dynamic 

temporal properties and requirement of sustained signaling for sensing light, vertebrate 

photoreceptors have evolved, among other things, to use a special synaptic active zone 

feature, termed the synaptic ribbon, to provide constant neurotransmitter release that can 

be adjusted in graded increments for most of the dynamic range of light signals (Schmitz 
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et al., 2000; Lamb et al., 2007). Photoreceptors connect directly with two classes of 

interneurons (horizontal and bipolar) in the OPL to form the first visual synapse. The 

presynaptic terminals of rods and cones, spherules and pedicles, respectively (Figure 2), 

have some distinct properties making each type of terminal unique. This chapter focuses 

on four key morphological features that are important for photoreceptor function: the 

connectivity patterns in the OPL, ribbon structure and transmission, gap junctions for 

alternative cell-cell communication, and size and structure of synaptic terminals. 

 

 

 
 

 

 

Figure 1. The eye and retina. (left) A schematic representation of the human eye1. The 

retina (name bolded) is a thin tissue that lines the posterior portion of the eye. One major 

difference between human and mouse retinas is that humans contain a fovea (rod-free 

portion of the retina) whereas mice do not contain this feature. (right) Histological section 

of the mouse retina. Lamination of distinct layers is easily seen. Layer abbreviations 

indicated on left and cell types within each nuclear layer on the right. OS/IS: outer/inner 

segments; ONL: outer nuclear layer; OPL: outer plexiform layer; INL: inner nuclear layer; 

IPL: inner plexiform layer; GCL: ganglion cell layer 

 

 

 
1 Modified (enlarged labels) from: Soerfm (Own work) [CC BY-SA 3.0 

(https://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons 
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Figure 2. Spherules and pedicle. Transmission electron microscopy image of the retinal 

outer plexiform layer (OPL). Three of the four features that we discuss in this chapter can 

be seen in this image: (1) Rod spherules (“R”) are smaller than cone pedicles (“C”). (2) 

Each spherule only has a single ribbon; three can be seen in this pedicle. And (3) pedicles 

penetrate deeper into the OPL (photoreceptor cell bodies out of frame on the top). Arrows 

indicate synaptic ribbon. 

 

 

 

The central nervous system (CNS) is a complex network comprised of billions of 

neurons and trillions of connections (Pakkenberg et al., 2003; Azevedo et al., 2009). In 

many cases, two interacting neurons within the CNS can be separated by quite a distance, 

making investigations of circuit assembly and function difficult. The easily accessible 

retina provides an accessible model in which to study circuitry due to its highly stereotypic 

design, increasingly well-defined developmental programs, and has a distinct starting 

point (photon signal reaching photoreceptors). Similar mechanisms occur in the 

invertebrate visual system (Sanes and Zipursky, 2010). While the majority of circuity 

analysis in the retina has been performed in the IPL, we believe that the OPL actually 

provides a more simple and restricted set of connections that could be used to model some 

features of almost any other neural network. The rod photoreceptor circuitry alone, for 
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example, can illustrate many network features such as axon guidance and synaptogenesis 

(Sanes and Yamagata, 2009), signaling and feedback (Demb and Singer, 2015), 

convergence/divergence (Wassle, 2004), and study and treatment of neurodegenerative 

diseases (Stone, 2009). 

Loss of photoreceptors results in the majority of retinal degenerative diseases 

causing irreversible blindness (Veleri et al., 2015). The genes associated with 

photoreceptor loss cover a wide spectrum of cellular localizations and functions (see 

RetNet for comprehensive database of retinal diseases and associated genes: 

https://sph.uth.edu/retnet), and those found at the synaptic terminals are no exception. A 

few known causes of synaptic terminal-influenced retinal dysfunctions or degenerations 

are reviewed here, and the last section discusses how many likely treatments for blinding 

diseases can utilize the knowledge found of the photoreceptor synaptic morphology and 

circuit development. 

The first visual synapse in the OPL 

We begin our discussion of rod and cone terminals by placing them into their 

natural environment within the OPL. This small, cell-free layer houses the synaptic 

terminals of photoreceptors, rod spherules and cone pedicles, with dendrites of bipolar 

cells and both axons and dendrites of horizontal cells. Photoreceptor-to-interneuron 

connections within the OPL are highly stereotyped, making the OPL an ideal region for 

investigation into the mechanisms regulating neurite projections, guidance cues, and 

remodeling. The OPL can be divided roughly into two halves based on which cells 
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connect: (1) the region closest to the photoreceptor cell bodies contains rod spherules 

connecting to a single rod bipolar and horizontal cell axons; (2) the region closer to 

interneuron bodies connects pedicles to many cone bipolar cell types and the dendrites of 

horizontal cells (Kolb, 1970, 1977; Euler et al., 2014). Rods and cones also make 

additional connections that do not follow the standard pathways. For example, rods 

employ two alternative pathways to transmit signal through the retina: (1) a gap junction 

between rod and cone terminals sends signals through depolarizing (ON-center) cone 

bipolar cells; (2) rods connect directly to hyperpolarizing (OFF-center) cone bipolar cells 

through an electrical gap junction (Deans et al., 2002; Volgyi et al., 2004). Signal transfer 

from photoreceptors to bipolar cells does not proceed through a 1:1 connectivity ratio 

(except in the midget pathways in the fovea, discussed briefly below); both convergent 

and divergent signaling mechanisms are employed in the OPL, though at different scales 

between rods and cones (Wassle, 2004). Convergence of multiple pre-synaptic terminals 

onto a single post-synaptic dendrite improves sensitivity of signal transfer, though at a 

cost of visual acuity loss. Rods show a convergence of 45 – 55 rods synapsing on a single 

rod bipolar (Anastassov et al., 2017), much higher than previously thought (Tsukamoto 

and Omi, 2013); in cone photoreceptors, approximately 4 – 6 pedicles will synapse onto 

each cone bipolar (Cohen and Sterling, 1990). In the primate/human fovea, visual acuity 

needs to be greatest, so cones have evolved the minimum convergence rates, 1 cone:1 

bipolar, to maximize acuity. Divergence increases signal transmitted through the system 

by transmission to multiple downstream post-synaptic cells. Spherules connect to two rod 

bipolar cells; divergence in rods could also be described of the alternative pathways 
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(above). In cones, each pedicle will connect only once to each class of bipolar cell but 

makes synapses onto each of their different downstream bipolar classes (Cohen and 

Sterling, 1990). Again, divergence is kept low in the fovea with each cone connecting to 

only 2 bipolar cells (one ON and one OFF). 

The developmental timeline of photoreceptor axon and interneuron dendrite 

formation has been charted. Photoreceptor synaptic connections are all made during early 

postnatal development (Olney, 1968; Blanks et al., 1974; Rich et al., 1997). The majority 

of rod spherule connection to both interneurons happens within the first postnatal week 

and are defined before eye opening. Cones synapse with horizontal cells almost 

immediately after birth but take almost two weeks to connect with bipolar cells (Rich et 

al., 1997). Bipolar cell connections are formed later than horizontal connections due to the 

finding that bipolar cell neurites (dendritic and axonic projections) originally span the 

entire retina, and only during postnatal development do dendrites retract to laminate at the 

OPL with rods and cones (Morgan et al., 2006). But each cone-bipolar cell synapse 

stabilizes at different time points in development, depending on the type of bipolar cell; 

this indicates some intrinsic bipolar cell mechanisms to stabilize synapses (Dunn and 

Wong, 2012). Formation and stabilization of photoreceptor circuits could rely on 

molecular and/or signaling mechanisms. In fact, both mechanisms in combination form 

photoreceptor synapses. Some molecules required for synaptogenesis and/or stabilization 

of photoreceptors to bipolar cells have been identified (Sato et al., 2008; Omori et al., 

2012), as well as others that are required for specific cell-to-cell recognition, including: 

Ngl-2 for rod to horizontal cell axons (Soto et al., 2013) and Elfn1 for rod to rod bipolar 
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connections (Cao et al., 2015). Loss of any of these molecules shows complete lack of 

synaptic transmission between neurons. In addition, neurotransmission regulation of 

neurite formation and synaptogenesis is generally true in the CNS (Wong and Ghosh, 

2002). Cones seem more impaired by lack of sensory experiences than rods (Dunn et al., 

2013), with altered synapses with some cone bipolar cell types; rods may use alternative 

methods for forming the appropriate connections as their synapses are already stabilized 

before eye opening. 

 

 Ribbon synapses allow tonic, graded neurotransmission 

Some sensory systems (including vision, hearing, and balance) require their 

neurons to convert incoming environmental to electrochemical synaptic signals over a 

wide range of intensities and time scales. These cells have evolved a specialized organelle 

to allow for sustained release of neurotransmitter at the synaptic active zone, the ribbon. 

The ribbon was originally found in photoreceptors (De Robertis and Franchi, 1956), but 

is also located in other sensory neurons in the CNS. This structure is essential to 

maintaining proper vesicular transport and exocytosis (Snellman et al., 2011; Mehta et al., 

2013). A similar structure found in Drosophila is the T-bar (Prokop and Meinertzhagen, 

2006), but the evolutionary origins are probably distinct. Ribbons are easily identifiable 

in electron microscopy images of photoreceptors by their long, electrodense (dark) 

structures that extend from the inner membrane into the presynaptic cell with many 

vesicles coating both sides of the ribbon. The three-dimensional structure of the rod 

photoreceptor ribbon is actually a curved, sheet-like structure that curves around the 



8 

horizontal and bipolar cell invaginations (Rao-Mirotznik et al., 1995). Not all ribbons are 

equal, and rod and cone photoreceptors have different ribbon structural dimensions 

(reviewed in (Baden et al., 2013)), with rods having a single, larger ribbon and cones 

containing multiple smaller, shorter ribbons. Larger rod ribbons contain an associated 

larger number of vesicles than the smaller cone ribbons (rod: 600-700 with 100-130 

docked; cones: 100-300 with 20-60 docked). This large number of vesicles docked to 

ribbons is necessary for the continuous exocytosis of neurotransmitter found in 

photoreceptors (below). 

Many of the protein components found in the cytomatrix of the active zone in 

conventional synapses (Sudhof, 2012) also help make up ribbon synapses, potentially with 

the sensory synapse evolving later and repurposing many features. One component of the 

ribbon – Ribeye – is excusive to this structure and essential for its formation (Schmitz et 

al., 2000; Magupalli et al., 2008; Lv et al., 2016; Maxeiner et al., 2016). The other active 

zone proteins are divided into two domains at ribbon synapses: associated directly with 

the ribbon and located at its base by the membrane (tom Dieck et al., 2005). The former 

group consists of Rim1, Kif3a, CtBP1, Piccolo – now thought to be a Piccolo-truncated 

variant Piccolino, and Unc119 (Wang et al., 1997; Muresan et al., 1999; tom Dieck et al., 

2005; Alpadi et al., 2008; Regus-Leidig et al., 2013). The latter group, involved in 

anchoring of the ribbon as well as assisting in exocytosis, is composed of Bassoon, Rim2, 

Munc13-2, Cast1, CABP4, and L-type calcium channels (CaV1.4) (Dick et al., 2003; 

Haeseleer et al., 2004; tom Dieck et al., 2005; Cooper et al., 2012). 
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Ribbons are not constructed directly from the synapse active zone. Instead, 

spherical, electrodense ribbon precursors are detected as early as P2-4 in the soma and 

axon of photoreceptors; these “precursor spheres” contain Ribeye, Bassoon, Piccolo (now 

likely Piccolino, see above), and vesicles that traffic down into the synaptic terminal 

(Regus-Leidig et al., 2009). During this period, remodeling of the ribbon occurs to first 

transition from spherical to planar ribbons, through a yet unknown mechanism, and second 

to anchor ribbons into the active zone at the terminals (Regus-Leidig et al., 2009). Loss of 

Bassoon demonstrated its importance to the initial formation of precursor spheres, 

transition from spherical to planar ribbons, and anchoring of ribbons (Dick et al., 2003; 

Regus-Leidig et al., 2010); precursor spheres are not present until later development (P10), 

and there is a complete lack of attached ribbons. Bassoon, along with Ribeye, also helps 

in the assembly of a large number of vesicle release sites by organizing calcium channels 

(Frank et al., 2010). Once part of the mature ribbon complex, ribeye turnover is relatively 

low (Graydon et al., 2017); Piccolino and CAST are both important for the stabilization 

of the mature ribbon structure, as reduction of either leads to ribbon “breaking” or being 

shortened, but they are not responsible to mount ribbons to the active zone like Bassoon 

(tom Dieck et al., 2012; Regus-Leidig et al., 2014). 

 As mentioned above, ribbons are found in sensory neurons requiring a graded and 

continuous transmission of signal. Photoreceptors undergo two types of exocytosis: 

transient and sustained; these allow the synapse be able to immediately respond to stimuli 

as well as continue responding over long time scales. Photoreceptors are continuously 

depolarized in their dark, resting state with calcium channels open and neurotransmitter 



10 

being released. Light, through phototransduction, hyperpolarize cells, shut calcium 

channels, and inhibit vesicle release. At the onset of dark conditions, rods and cones begin 

releasing vesicles and can transmit up to 100 vesicles per ribbon per second, but rates of 

release are often <1 vesicle release site per second allowing for sustained release (van 

Rossum and Smith, 1998; Heidelberger et al., 2005). This rate is no faster than found at 

amacrine or hippocampal synapses, only prolonged. Cones have faster initiation and 

termination of signal than rods with a more extended decay rate (Rabl et al., 2005). 

Complexins3/4 have been found to also decrease noise within the system by reducing 

spontaneous release of vesicles (Vaithianathan et al., 2015; Babai et al., 2016). 

Vesicle populations at ribbon synapses correlate with those of conventional 

synapses (readily releasable/docked, recycling pool, and a reserve), though photoreceptors 

have a bias towards more vesicles in the readily releasable and recycling pools (von 

Gersdorff et al., 1996; Rizzoli and Betz, 2005; Datta et al., 2017). In photoreceptors, the 

recycling pool are those vesicles found on the ribbon itself. There are three main 

hypotheses (not necessarily mutually exclusive) for vesicle transfer and synaptic fusion 

on the ribbon: (1) an active conveyor belt to shuttle vesicles down the ribbon, (2) passive 

diffusion of vesicles along ribbon, and (3) compound fusion in which vesicles may merge 

along the ribbon to release vesicular components together. These are discussed in more 

detail elsewhere (Matthews and Fuchs, 2010), but based on recent evidence, we believe 

that the model of passive vesicle diffusion along the ribbon is the main contributor of 

vesicle dynamics on the ribbon (Heidelberger et al., 2002; Holt et al., 2004; Chen et al., 

2013; Graydon et al., 2014). These synaptic terminals are fascinating because of their 
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evolutionary specialization of the ribbon organelle and its contributions to maintaining 

both fast and long neurotransmitter release rates. 

Photoreceptor coupling by telodendrites 

Telodendrites are long and thin neurite projections extending from cone pedicles 

to contact neighboring cone or rod photoreceptors through an electrical gap junction 

(Raviola and Gilula, 1973, 1975). These projections were found in all vertebrate species 

(Cohen, 1965; Dowling and Boycott, 1966; Raviola and Gilula, 1973, 1975; Kolb, 1977; 

Ohtsuka and Kawamata, 1990; Fadool, 2003; Noel and Allison, 2017). In mammals these 

have only been found in cones whereas in some aquatic species they are also found in rods 

as well (Ohtsuka and Kawamata, 1990; Fadool, 2003; Noel and Allison, 2017), but rods 

do still connect to one another through gap junctions in mammals (Raviola and Gilula, 

1973). A systematic analysis of telodendrites in the primate retina found that each cone 

possessed between 4 – 10 neurites with lengths that varied based on the packing density 

of cones with shorter telodendrites in the central retina (0.8 ± 0.3µm) to longer in the 

periphery (mid: 2.3 ± 0.9µm; far: 3.9 ± 1.8µm) with some extremely long examples of up 

to 10µm (O'Brien et al., 2012). In addition to anatomical location of cones within the 

retina, the subclass of cone also affects telodendrite connectivity. The short-wavelength, 

“blue,” cone is much more generally isolated from other cones but connects heavily to 

neighboring rod spherules (approximately 90%). Medium- and long-wavelength, “green” 

or “red,” cone telodendrites connect more to other cones (70%) with the majority being 

homologous connections (i.e. red-to-red) due to the non-random mosaic patterning in 
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higher mammals (Hsu et al., 2000), but some heterologous connections occur that cause a 

slight reduction in color discrimination (Hornstein et al., 2004). 

The major gap junction protein of the retina was found to be Connexin35 (Cx35) 

in the skate, and the homologous protein in mammals as Cx36 (O'Brien et al., 1996; Sohl 

et al., 1998). A Cx36 reporter line found expression of the gene to be in many retinal 

neurons, including all photoreceptors (Deans et al., 2002), but protein localization was 

only detectable at the telodendrite tips in cones (Lee et al., 2003; Feigenspan et al., 2004; 

Zhang and Wu, 2004). The Connexin, or other gap junction protein, located in the spherule 

is still debated (Deans et al., 2002; Lee et al., 2003; Feigenspan et al., 2004; Bolte et al., 

2016; Kim et al., 2016b). These gap junctions are dynamically regulated by circadian 

rhythms with more opening during the night than the day (Ribelayga et al., 2008; Li et al., 

2009a; Zhang et al., 2015) with similar effects based on lighting conditions (Li et al., 

2013). Coupling during the day is controlled through phosphorylation of two internal 

amino acids (Serines 110 and 276) (Kothmann et al., 2007) by opposing dopamine and 

adenylate cyclase pathways effects on Protein Kinase A (Ouyang et al., 2005; Li et al., 

2013). 

The development of gap junctions between photoreceptors leads to three major 

improvements in the visual system that will be discussed more below: increased signal-

to-noise ratios, increased dynamic range within mesopic light, and rod-cone coupling 

creating one alternative rod visual pathway (above) (Bloomfield and Volgyi, 2009). In the 

turtle retina, a stimulus from one cone could be detected in neighboring cones up to 40µm 

away (Baylor et al., 1971), but calculations actually predicted that, at least in the human 
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fovea, would have a detrimental effect on visual acuity and causing a blurring effect 

(DeVries et al., 2002). So, what is the purpose of such an apparatus? While these 

connections do cause a slight blurring (by 0.5 cone diameters in the fovea), this is under 

the optical blur of the eye. The real improvement of the system comes from the 

improvement of the signal-to-noise ratio in cones (approximately 77%) by minimizing the 

intrinsic noise coming from a single cone as its neighbors have their own noise patterns; 

it also increases the signal intensity comes from true visual activity (DeVries et al., 2002). 

Rod-to-rod coupling increases the dynamic range of scotopic light detected (Publio et al., 

2009); it also helps pool rod photoreceptor signals to send through an OFF cone bipolar 

cell as only approximately 20% of rods contact these bipolar cells. (Tsukamoto et al., 

2001). Rod-to-cone signaling through telodendrite gap junctions provides yet another 

alternative pathway for rod visual signaling during mesopic conditions, when rod-to-rod 

bipolar signaling is near saturation but cone signals are near but not over threshold, 

extending the working range of rod photoreceptors (Hornstein et al., 2005; Abd-El-Barr 

et al., 2009; O'Brien et al., 2012; Asteriti et al., 2014). 

General dimensions of spherules and pedicles 

Comparing photoreceptor terminals shows gross morphological size differences 

found between and within the two classes. Ramon y Cajal detected by using the Golgi 

stain that the two classes of photoreceptors possessed terminals with different volumes 

and area. Later electron microscopy in cat photoreceptors gave the first estimates of 

terminal size with a diameter of 3µm for spherules and 5-8 µm for pedicles; the axons of 
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photoreceptors also vary in diameter with an extremely thin rod axon (0.25µm) and a much 

larger cone axon (1.5µm) (Kolb, 1977), though these both are on the smaller end of the 

axon diameter spectrum (Perge et al., 2012). Later studies confirmed that the terminal size 

differentials between photoreceptors are common in other mammals (Cohen, 1965; 

Dowling and Boycott, 1966; Olney, 1968) and some other aquatic species (Goede and 

Kolb, 1994; Tarboush et al., 2012). Size distinctions are not only found between rods and 

cones. Cone sub-classes also often have differently size pedicles; in mammals, the default 

blue cone pedicles are smaller than their red/green counterparts ((Breuninger et al., 2011; 

O'Brien et al., 2012), D.T.W. and A.S., unpublished observations); in the only study 

referencing pedicle size in an aquatic species; the turtle’s six photoreceptor classes (1 rod 

and 5 cones) have four main size distributions (Goede and Kolb, 1994). The genetic and 

molecular causes creating differently size terminals is still mostly unknown. In mammals, 

the transcription factor NRL is sufficient to drive a S-cone to rod cell fate switch (Mears 

et al., 2001; Oh et al., 2007), with corresponding pedicle to spherule morphology change 

(Strettoi et al., 2004), so it could be predicted that some yet unknown transcriptional 

target(s) of NRL is driving terminal size changes. Unfortunately, the functional 

implications of smaller versus larger terminals has not been actively tested and will remain 

an open question. 

 

Synaptic dysfunction results in blinding diseases 

Vision loss is considered one of the worst health conditions (Scott et al., 2016). 

The leading blinding diseases (and approximate incidence) are: cataracts – clouding of the 
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lens in the eye, glaucoma – increased eye pressure damaging the optic nerve (~13% over 

the age of 40) (Malihi et al., 2014), age-related macular degeneration (AMD, ~2% of the 

U.S. population) (Friedman et al., 2004), diabetic retinopathy (DR, ~100 million 

worldwide) (Lee et al., 2015), and others, including retinal degenerative diseases (RDDs) 

(Congdon et al., 2004). Of these, AMD, DR, and RDDs affect photoreceptor physiological 

function and survival. Mendelian forms of retinal dystrophy have rates of 1 in 2,000 – 

3,000 (Hartong et al., 2006) with dysfunction or degeneration of photoreceptors 

accounting for the majority of RDDs (Hoon et al., 2014; Veleri et al., 2015). 

The Online Mendelian Inheritance in Man® genetic database (OMIM®: 

https://www.ncbi.nlm.nih.gov/omim) contains approximately 1,500 entries of inherited 

diseases (either syndromic or non-syndromic) with an associated retinal dysfunction 

(Berger et al., 2010). Over 250 causative genes have currently been identified (RetNet: 

https://sph.uth.edu/retnet) with no plateau seen yet in the identification of loci associated 

with Mendelian retinal diseases, but the advent of next-generation sequencing 

technologies combined with improved diagnosis procedures improves the rates of 

candidate gene detection in patients (Ratnapriya and Swaroop, 2013). Causative genes in 

photoreceptor dysfunction are known to span across all sub-compartments of rods and 

cones, from the outer segments to the synaptic terminal. Mutations in three proteins 

associated with calcium binding or calcium channels (CaBP4 (Zeitz et al., 2006), Cacna1f 

(Bech-Hansen et al., 1998), and Cacna2d4 (Wycisk et al., 2006)) have been linked to 

multiple distinct cases of congenital stationary night blindness or cone-rod dystrophy, and 

mouse models, either knockout or spontaneous mutants, have shown similar effects as 
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patients. Other ribbon-associated (Rims1 or Tulp1) proteins are also implicated in the 

RDDs or loss of an electroretinogram (ERG) b-wave – indicative of photoreceptor to ON-

bipolar neurotransmission (Hagstrom et al., 1998; Kelsell et al., 1998; Johnson et al., 

2003). Even mutations or loss of Grm6, Lrit3 Trpm1, three proteins localized to the post-

synaptic, bipolar side of the membrane and important for synapse formation, can also 

cause circuit dysfunction or photoreceptor loss (Barnes et al., 2002; Li et al., 2009b; van 

Genderen et al., 2009; Zeitz et al., 2013). 

Future treatments of RDDs 

Multiple approached have been put forth for treatment of blinding diseases, not 

only those above but all photoreceptor-related RDDs. The three main strategies include 

gene therapy, cell therapy, and reprogramming of glial cells into photoreceptors in vivo. 

Regardless of the approach taken, photoreceptor integration with interneurons and proper 

synaptic function are essential elements for visual function, and without these two 

features, no amount of visual detection by the cells will be communicated to the brain. 

Gene therapy, to correct a causative mutation or supplement gene expression, will be most 

effective prior to or at the earliest detection of photoreceptor degeneration. Ou and 

colleagues (Ou et al., 2015) demonstrated that delivery of Rs1 by adeno-associated virus 

(AAV) in a mouse model of the synaptic disease X-linked retinoschisis restored proper 

localization of key molecular components as well as visual function; a clinical trial 

involving this study is already recruiting (NCT02317887). Cell therapy involves the 

transplantation of photoreceptor precursors into a degenerated retina to replace lost 
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photoreceptors with donor precursors derived from a stem cell population to reintegrate 

into the circuit and restore visual function (Zarbin, 2016). Early reports showed promising 

integration and visual recovery by transplantation of precursors (MacLaren et al., 2006), 

but a setback for the field occurred when it was discovered that donor cells are not actually 

integrating but instead transferring RNA and/or protein to remaining host photoreceptors 

(Pearson et al., 2016). This data does not, however, negate the fact that late-stage 

degeneration without any remaining photoreceptors do show integration and visual 

improvement (Barber et al., 2013; Singh et al., 2013), making reversing blindness 

possible. The integration precision and efficiency of these cells will require further testing 

(Zarbin, 2016). In vivo regeneration of degenerated photoreceptors (and other cell types 

in the retina) through Müller cell reprogramming is a natural occurrence in some species, 

including zebrafish (Wan and Goldman, 2016), and neural reprogramming has recently 

been induced in adult mammals, though not yet for photoreceptors (Jorstad et al., 2017). 

This provides great promise for treatment of blinding diseases (in combination with gene 

therapy if the cause is genetic). Greater knowledge of the developmental programs 

underlying proper cell-to-cell synaptogenesis and morphogenesis will be required, though, 

because reprogrammed neurons, even in a naturally occurring model, do not fully 

recapitulate their original structures (D'Orazi et al., 2016) and timing of reprogramming 

influences proper connectivity (Yoshimatsu et al., 2016). 
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Conclusions 

We have discussed the development and function of both rod and cone synaptic 

terminals and highlighted four features that are essential for proper connectivity and 

physiological functional. These data do not fully do justice to the full complexity of unique 

features within or between photoreceptor terminals but provide the reader with a 

foundation upon which other differences can be built. Study of spherules and pedicles 

during development and in their fully mature states is essential for future treatment of 

blinding diseases, and it can even provide a simplified model for other neurodegenerative 

diseases involving synaptic dysfunction or treatments requiring reconnection between pre- 

and post-synaptic neurons. Many questions remain however, but the future of 

photoreceptor synaptic biology is bright. 
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CHAPTER II 

MOLECULAR DETERMINANTS OF PHOTORECEPTOR

 PRESYNAPTIC TERMINAL MORPHOLOGY  

Overview 

Light photons captured by the rod and cone photoreceptors produce distinct visual 

information that is transmitted through ribbon synapses with interneurons. Unique 

presynaptic structure of rod and cone photoreceptors, called spherule and pedicle, 

respectively, dictates the formation of specific neuronal circuits. We took advantage of 

transcriptome profiles of the developing mouse rod photoreceptors and Nrl-mediated 

regulatory network to identify 720 candidate genes that potentially control presynaptic 

terminal formation. Knockdown of 78 selected genes in vivo identified seven genes that 

increased size of rod spherules and 25 showing significantly altered position of the 

terminal in the synaptic layer. Reintroduction of seven cDNAs with their cognate shRNA 

recovered the original spherule morphology. Loss of function of four genes in the mouse 

retina demonstrated altered terminal width. Protein interaction network analysis revealed 

multiple genes and Nrl-downstream pathways that might potentially modify rod 

presynapse morphogenesis. Our studies provide the foundation for elucidating the 

architecture of first visual synaptic circuit in the mammalian retina and assist in designing 

photoreceptor replacement therapies for retinal degenerative diseases.  
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Introduction 

The human central nervous system (CNS) contains almost 86 billion neurons that 

form over 150 trillion synapses (Pakkenberg et al., 2003; Azevedo et al., 2009). Within 

this complex system, each neuronal subtype possesses a highly stereotyped morphological 

standard, precise synaptic connections, and distinct physiological function. Even slight 

deviations from the norm can be detrimental and cause neuronal dysfunction or even death 

(van Spronsen and Hoogenraad, 2010; Siskova et al., 2014; Wijetunge et al., 2014). 

During CNS development, an intrinsic gene regulatory network (GRN) program controls 

a series of cell fate decisions, that in combination with the cell’s microenvironment and 

extrinsic stimuli, lead to individual neuronal classes (Grocott et al., 2012; Gregory-Evans 

et al., 2013; Syed et al., 2017); alterations in the activity of even a single gene can shift 

the natural balance resulting in varying phenotypic manifestations (Lee and Pfaff, 2001; 

Kamachi and Kondoh, 2013). The developmental trajectory of a neuron constricts its 

structural features towards that of its class norms to ensure appropriate morphology and 

communication between neurons, but the genetic determinants needed to define a neuron’s 

structure and circuit connections are often unclear. 

 The retina offers an easily tractable neural pathway to investigate intrinsic and 

extrinsic elements for determining cell fate and maturation of a neuron within a circuit due 

to its laminated structure with defined regions of synaptic connectivity, high stereotypy, 

and ease of access for experimental manipulation. In addition to one type of Müller glia, 

five major classes of neurons contribute to retinal circuitry: photoreceptors, bipolar cells, 

horizontal cells, amacrine cells, and ganglion cells (Figure 1A), and each class consists of 
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between 2 and 70 subtypes (Masland, 2012). Within the outer plexiform layer (OPL) 

between photoreceptor and interneuron nuclei, rod and cone photoreceptors synapse onto 

bipolar and horizontal cells using a specialized ribbon organelle for sustained, graded 

neurotransmission (De Robertis and Franchi, 1956; Dowling and Boycott, 1966; Kolb, 

1970). Rod circuitry provides a model circuit because it connects to only a single class of 

bipolar and single horizontal cell connected to the rods; the inner retina circuitry dedicated 

to transmission of rod photoreceptor signal also is well defined (Strettoi et al., 1990; 

Strettoi et al., 1992). This allows for an easy assay of how genetic alterations during rod 

development affects the mature retinal circuitry (Kolb, 1970; Peichl and Gonzalez-

Soriano, 1994). 

The majority, if not all, rod photoreceptors originate as a short-wavelength (S-, 

“blue”) cone (Kim et al., 2016a). The induction of the transcription factor Neural Retina 

Leucine zipper protein (NRL) is both necessary and sufficient to actively transition from 

this cone to the rod cell fate (Mears et al., 2001; Oh et al., 2007; Oh et al., 2008), and NRL 

induces the expression of many rod photoreceptor-specific genes (Rehemtulla et al., 1996; 

Mitton et al., 2000; Yadav et al., 2014) with other key transcription factors (reviewed by 

Swaroop et al. (2010); Brzezinski and Reh (2015)). Loss of Nrl in rods alters the 

functionality and appearance of the rods to partially resemble the default S-cone state, 

including a spherule, rod terminal) towards pedicle (cone) morphological transition 

(Mears et al., 2001; Strettoi et al., 2004). Interestingly, the rod transcriptome drastically 

modifies a portion of its transcriptome around the period of peak rod synaptogenesis, 

without a similar trend in cone-like cells (Blanks et al., 1974; Kim et al., 2016b). As 
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spherule morphology in maturing during this same period, it could be predicted that a shift 

in gene expression represents an active divergence away from the cone pedicle 

morphology through activation of rod-enriched and/or repression of cone-enriched gene 

expression. Similar predictions were validated when reduction of NRL transcriptional 

targets produced a cone-like cell body positioning in the outer nuclear layer (ONL) (Hao 

et al., 2012).  

We hypothesize that a portion of the NRL gene regulatory network (GRN) restricts 

pedicle formation in favor of spherules, and reduction/loss of these factors will relax this 

constraint and show pedicle-like features. In our current study, we systematically 

characterized murine photoreceptor synaptic terminals, identified genes that are essential 

for rod spherules formation through an RNAi screen, and created a curated protein 

interaction network to identify pathways involved in morphogenesis. Understanding the 

molecular determinants defining photoreceptor synaptic morphogenesis and circuit 

connectivity will be necessary for future treatments for blinding diseases involving gene 

or cell therapy, and this study identifies genes necessary for proper rod photoreceptor 

circuit assembly. 

  

Assay parameters to examine presynaptic structure 

Similarities and differences in gross morphology between spherules and pedicles 

have been noted since the original characterization of the retina. Our current analysis looks 

to systematically address the differences between rod and S-cone (and cone-like) 

photoreceptors for our present and future molecular determinant screens. We found that 
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rod and cone photoreceptors diverge in four gross morphological features at their synaptic 

terminals (Figure 3A-3C): overall diameter of terminals, sub-lamination pattern in OPL, 

number of synaptic ribbons active zones, and presence of telodendrites. Spherule diameter 

is much smaller than either cone or cone-like pedicles (rods: 2.091±0.011µm; S-cones: 

4.917±0.092µm; cone-like: 3.036±0.063µm) and do not contain the presence of 

telodendrite projections from the terminal body as in cones (Figure 3D). In our wild type 

rod and cone terminals, we see distinct lamination within the OPL with spherules 

synapsing close to photoreceptor cell bodies and pedicles closer to interneurons (Figure 

3E; rod: 0.796±0.005 relative distance; S-cone: 0.449±0.015). Cone-like lamination is 

more widely distributed throughout the OPL (Figure 3E; cone-like: 0.628±0.127). The 

typical rod shows only a single synaptic ribbon, part of the photoreceptor active zone 

complex; S-cones have many more ribbons to utilize increased numbers of synaptic 

connections (Figure 3F; rod median: 1; S-cones: 8; cone-like: 2). For terminal width, OPL 

position, and ribbon number, we defined spherule parameters along two anatomical axes 

(dorsal/ventral and nasal/temporal) to ensure that all rod photoreceptors are the same. We 

found no significant deviations regardless of retinal position (Figure 4). Since there are 

eight layers of photoreceptors in the ONL, we checked terminal width and OPL position 

against cell body position within the ONL. When measuring a set of sparsely labeled cells 

where cell body, axon, and terminal could all be identified and quantitated together (see 

schematic in Figure 5), we could check how photoreceptor position in the ONL affected 

either variable. Again, there was no relationship between the ONL position and either 

phenotype or between the two phenotypes. (Figure 6). All of these data (Table1) provide  
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Figure 3. Photoreceptor terminal morphological features. (A) Schematic of retinal 

circuitry with both wild type photoreceptors shown (top). Some of the rod visual pathway 

is also represented. (B) Magnified view of the outer plexiform layer. Four features 

distinguish rod spherules from S-cone pedicles. (C) Silhouettes of wild type rod and S-

cone and the Nrl-KO cone-like cells. (D) Diameter of photoreceptor terminals. Dotted 

lines indicate perimeter of terminal. Telodendrites are easily identifiable in S-cone 

pedicles (arrows). (E) Relative OPL position of photoreceptor terminals. Blue: DAPI; 

green/pink: ribeye antibody; arrows: cone ribbons. (F) Same terminals as seen in (D). 

Ribbon numbers counted within terminal (outline). All cone-like pedicles come from the 

Nrl-/- mouse line. 
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us with a solid baseline of the four rod and cone structural components so that we can 

detect deviations from the norm following genetic manipulation. 

 

 

 
 

 

 

Figure 4. Spherule morphology along two retinal axes. Eight equidistant positions along 

two retinal axes were chosen for analysis of spherule position. No significant differences 

are detected between spherules in any position. (n=30 spherules/position. n=1 

retina/structure/orientation (e.g. dorsal/ventral in terminal size). 

 

 

 

Table 1. Spherule and pedicle structures. Listed are the compiled phenotypes described in 

the “Assay parameters to examine presynaptic structure” section (mean ± SEM; 

n=retina/terminals). 

 

Phenotype Rod spherules S-cone pedicles Cone-like pedicles 

Terminal diameter 2.091 ± 0.011µm 

n = 2 / 480 

4.917 ± 0.092µm 

n = 3 / 33 

3.036 ± 0.063µm 

n = 3 / 77 

Telodendrites No Yes: long Yes: very short 

(not shown) 

OPL position 0.796 ± 0.005 

n = 2 / 480 

0.449 ± 0.015 

n = 2 / 55 

0.628 ± 0.127 

n = 2 / 50 

Ribbon number 

median 

1 

n = 2 / 480 

8 

n = 2 / 22 

2 

n = 3 / 50 
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Figure 5. Schematic representation of quantitative measurements. Shown are how all 

screen images were quantified. “Cell” and “ONL” measurements were only collected for 

Figure 6. 
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Figure 6. Spherule morphology from different layer rods. Pearson’s correlation of values 

indicated at the top right of each graph. (top, left) Two of the four spherule phenotypes 

(those studied below) do not influence one another. (top, right and bottom, left) The rod 

photoreceptor cell body position within the ONL does not affect either spherule 

morphological feature. 

 

 

Identification of candidate genes  

To determine contributions of a subset of the NRL regulome to spherule 

morphology, we identified potential candidate genes that might be likely to be associated 

with the four above phenotypes. Rod photoreceptor structural maturation occurs between 

P6 – P10, with polarization and extension of neurites to make synaptic connections (Figure 
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7A); a sizable portion of the transcriptome also illustrates a sizeable shift in expression 

during this stage (Figure 7B; see also (Kim et al., 2016b)). Five filtering criteria were used 

to reduce our targeting gene pool using previously published RNA-sequencing 

transcriptome and ChIP-sequencing transcription factor binding data  

 

 

 
 

 

 

Figure 7. Gene candidate identification. (A) Schematic representation of rod 

photoreceptor structural maturation during postnatal development. Key period is between 

P6 – P10 when cell polarization and neurite extension occurs (arrow). (B) Postnatal 

developmental RNA-sequencing of rods and Nrl-KO cone-like cells. Heat map represents 

z-scores. Notice large shift in expression between P6 and P10 in rods but not in cone-like 

cells. (C) Gene filtering criteria to limit potential candidates from all rod transcriptome to 

a limited set of 78.  
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conservative 25 counts per million (CPM). (2) To capture the above shift in rod 

transcriptome, we only included genes increasing at least two-fold between early (P2 – 6) 

and late (P10 – 28) development. (3) We wanted to identify genes enriched in mature rods 

so only included genes enriched in late development rods compared to cone-like cells by 

two-fold. (4) As NRL and CRX are essential for rod photoreceptor spherule development, 

we used only genes containing experimentally-validated (ChIP-sequencing) transcription 

factor binding sites. These four filters gave us a narrower list of 720 genes. Our final filter 

(5) was to use a combination of gene ontology analysis to find enriched categories and 

manual curation to limit our targets to approximately 10% of the 720 (78 genes) (see 

absolute expression profiles in Figure 8). Now that genes were selected, we wanted to 

know their role in formation of spherule morphology. In our current study, we focused on 

how spherule morphological features were affected by reduction of gene expression 

through RNAi screening. 
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Figure 8. Candidate gene expression profiles. Individual expression profiles of all selected 

target genes. Note that most genes have a similar pattern with no/low expression between 

P2 – P6, have a drastic increase at P10, and expression tends to plateau at P10. Rod: green 

dots; cone-like cells: white dots; dashed line marks 25 CPM. Note that the y-axis scale, 

RNA-sequencing expression in CPM, differs in each graph. Each data point represents 

averaged gene expression of 2 – 4 replicates. 
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Figure 9. Spherule comparison between strains and methods.  We investigated if spherule 

features resembled one another between our original C57BL/6J wild type and the CD-1® 

mouse strains used in our study. We also determined if method of investigation 

(transgenic, un-injected versus electroporated) biased quantitative measurements. 

Statistically different groups are represented by different letters under graph; if the letter 

is the same, the groups showed no average difference. Numbers indicate individual 

spherules. Each group contains spherules from ≥2 retinas. 

 

 

 

RNAi screen for presynaptic terminal size  

We initially focused on the distinct size between rod and cone terminals. We were 

curious if we could alleviate some restricting force from the spherules to allow enlarged 

pedicle-like terminal size. We performed in vivo electroporation of short hairpin RNAs 

(shRNAs) and fluorescent reporters at P0 – 1, prior to increases in gene expression, and 

assayed the width at P21 – 22, when spherules are matured. In this screen (Figure 10A), 

knockdown of 7 genes (Dpf3, Epb4.1l2, Grtp1, Kcnj14, Llgl2, Rab28, and Rom1) 

significantly increased the spherule morphology of rods (Table 3) (see examples in Figure 
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10B; Kruskal-Wallis one-way ANOVA with Dunn’s test for multiple comparisons). The 

positive controls (two shRNAs against Nrl) showed increased sized spherules. While none 

of our knockdowns presented a true S-cone pedicle size, we did find two constructs 

(Kcnj14 and Llgl2) that gene reduction displayed terminals similar to cone-like pedicles 

(p>0.1). These data provide strong evidence for the hypothesis that NRL targets restrict 

spherule size, and lessening this restriction will enlarge spherule size towards that of 

pedicles (as in the case of our 7 positive hits).  

 

RNAi screen for spherule OPL positioning  

 Our initial width screen also pointed to gene knockdown affecting where spherules 

lie in the OPL, so we also quantitatively addressed this feature. As in Figure 1E, we use a 

relative measurement to assay terminal localization with the OPL; unlike the previous 

data, here we use the bottom of the fluorescently-filled spherule. These two measurements 

are not significantly different (p>0.5; Figure 9), so we proceeded with this measurement 

in our screen. In the same terminals as above, we found that reduction of 23 genes (29%) 

affected OPL localization (Figure 11; Table 2). Unlike the spherule width phenotype 

above, this screen did identify 14 genes that led to patterns similar to native S-cones. Nine 

others deviated from rod spherule controls but lie intermediate between wild type rod and 

S-cone layers. Unexpectedly, within the 14 knockdown terminals with medians similar to 

S-cones, we found three (Arl2bp, Rom1, and St8sia1) that often completely bypassed the 

OPL, and terminals were often found extending into 
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Figure 10. RNAi screen for terminal width phenotype. (A) Quantitative box plot of 

relative spherule Grey shaded area represents 25th-75th percentile of fluorescent reporter-

only (“Blank”) control. After negative controls, screen genes are ordered with largest 

median (most cone-like) on left. Colored gene names are statistically different than 

controls. Red gene names: significantly different than “Blank” control. (B) Example 

images of negative control, Nrl, and three positive screen hits are shown. Dotted lines 

indicate outer plexiform layer boundaries. Red  

 

 

 

the inner nuclear layer (Figure 12). These data expand upon our list of genes associated 

with restriction of spherule morphology; we also found that four genes (Epb4.1l2, Kcnj14, 

Llgl2, and Rom1) have an effect on both features. Interestingly, other phenotypes emerged 

during our RNAi screen that are independent of spherule structure, including how the cell 

bodies are positioned in the ONL and DNA architecture is organized within the nucleus 

(Figure 12). 
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Figure 11. RNAi screen for OPL position phenotype. (A) Quantitative box plot of relative 

terminal OPL positioning (0: upper boundary of inner nuclear layer; 1: lower boundary of 

outer nuclear layer). Grey shaded area represents 25th-75th percentile of fluorescent 

reporter-only (“Blank”) control. After negative controls, screen genes are ordered with 

lowest median OPL position on left. Colored gene names, minus Blank, are statistically 

different than controls. Red gene names: examples images in (B) and significantly 

different than the “Blank” control. Blue gene names: significantly different than the 

“Blank” control. (B) Example images of negative control, Nrl, and three positive screen 

hits are shown. Dotted lines indicate outer plexiform layer boundaries.  
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Figure 12. Additional phenotypes from RNAi screen. Here we see that additional 

phenotypes can be detected in our RNAi screen. (Left) St8sia1, and two others, often show 

a complete bypass of the OPL where axons extend into the INL (arrows). (Center) Rod 

cell bodies cover the entire ONL, and electroporated retinas tend to show distribution 

across this layer. Some knockdowns (i.e. Eef1g) had a tendency to have a more cone-like, 

upper ONL phenotype (arrows). (Right) Rods have an inverted nucleus (one large 

heterochromatin pocket in the middle) while cones have the conventional structure. One 

gene, Dlg1, was confirmed to affect this morphology. 

 

 

 

Table 2. RNAi knockdown phenotypes. Listed are spherule features within each gene 

knockdown. Bolded numbers highlight statistical significance from Blank control. Any 

additional phenotypes (unconfirmed) are mentioned in the last column. 

  

Gene 

name 

shRNA TRCN# Retina 

no. 

Width 

mean ± 

SEM 

Term. no. 

/ p-value 

OPL 

mean ± 

SEM 

Term. no. 

/ p-value 

Other notes 

Adam9 TRCN0000031817 n=2 2.130 ± 

0.096 

n=10 / 

p>0.9999 

0.550 ± 

0.058 

n=10 / 

p=0.0236 

 

Add1 TRCN0000108809 n=1 1.683 ± 

0.061 

n=45 / 

p=0.2196 

0.633 ± 

0.029 

n=41 / 

p=0.0002 

 

 

 

 

St8sia1:

INL penetration

Eef1g: cone cell

body position in ONL

Dlg1: inverted-to-

conventional nuclei
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Table 2 Continued. 

 

Gene 

name 

shRNA TRCN# Retina 

no. 

Width 

mean ± 

SEM 

Term. no. 

/ p-value 

OPL 

mean ± 

SEM 

Term. no. 

/ p-value 

Other notes 

Alpl1 TRCN0000081503 n=1 1.336 ± 

0.092 

n=34 / 

p<0.0001 

0.539 ± 

0.049 

n=34 / 

p<0.0001 

 

Anp32e TRCN0000311767 n=1 1.893 ± 

0.083 

n=28 / 

p>0.9999 

0.830 ± 

0.028 

n=28 / 

p>0.9999 

 

Arl2bp TRCN0000250373 n=1 1.830 ± 

0.063 

n=82 / 

p>0.9999 

0.381 ± 

0.043 

n=80 / 

p<0.0001 

 

Asrgl1 TRCN0000032311 n=2 1.403 ± 

0.087 

n=55 / 

p<0.0001 

0.915 ± 

0.044 

n=55 / 

p>0.9999 

 

Atp2b1  TRCN0000101642 n=1 2.265 ± 

0.093 

n=32 / 

p=0.3963 

0.861 ± 

0.040 

n=32 / 

p>0.9999 

 

Bbs9 TRCN0000336347 n=2 1.407 ± 

0.105 

n=45 / 

p<0.0001 

0.514 ± 

0.072 

n=45 / 

p<0.0001 

 

Blank  n=3 1.973 ± 

0.042 

n=155 

0.786 ± 

0.012 

n=152 

Negative 

control – 

comparison 

group  

Cadm1 TRCN0000124315 n=1 1.735 ± 

0.055 

n=29 / 

p>0.9999 

0.779 ± 

0.017 

n=29 / 

p>0.9999 

 

Ccdc64 TRCN0000265210 n=2 1.772 ± 

0.097 

n=47 / 

p>0.9999 

0.708 ± 

0.045 

n=47 / 

p=0.2968 
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Table 2 Continued. 

 

Gene 

name 

shRNA TRCN# Retina 

no. 

Width 

mean ± 

SEM 

Term. no. 

/ p-value 

OPL 

mean ± 

SEM 

Term. no. 

/ p-value 

Other notes 

Cdk19 TRCN0000023283 n=1 1.693 ± 

0.068 

n=27 / 

p>0.9999 

0.797 ± 

0.016 

n=27 / 

p>0.9999 

 

Cdr2 TRCN0000240531 n=1 1.777 ± 

0.077 

n=50 / 

p>0.9999 

0.936 ± 

0.127 

n=50 / 

p>0.9999 

 

Cnksr1 TRCN0000362955 n=1 2.196 ± 

0.104 

n=37 / 

p>0.9999 

0.594 ± 

0.031 

n=37 / 

p<0.0001 

 

Col5a3 TRCN0000089854 n=1 1.770 ± 

0.085 

n=22 / 

p>0.9999 

0.773 ± 

0.038 

n=22 / 

p>0.9999 

 

Comtd1 TRCN0000097393 n=1 1.647 ± 

0.153 

n=10 / 

p>0.9999 

0.950 ± 

0.072 

n=10 / 

p>0.9999 

 

Cst3 TRCN0000055249 n=2 2.038 ± 

0.070 

n=55 / 

p>0.9999 

0.819 ± 

0.033 

n=55 / 

p>0.9999 

 

Dhdh TRCN0000192341 n=1 1.805 ± 

0.105 

n=28 / 

p>0.9999 

0.765 ± 

0.024 

n=28 / 

p>0.9999 

 

Dlg1 TRCN0000321863 n=1 1.897 ± 

0.064 

n=29 / 

p>0.9999 

0.724 ± 

0.031 

n=29 / 

p>0.9999 

Possible 

genome 

rearrangement 

Dlg4 TRCN0000025482 n=1 1.861 ± 

0.104 

n=21 / 

p>0.9999 

0.738 ± 

0.061 

n=21 / 

p>0.9999 
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Table 2 Continued. 

 

Gene 

name 

shRNA TRCN# Retina 

no. 

Width 

mean ± 

SEM 

Term. no. 

/ p-value 

OPL 

mean ± 

SEM 

Term. no. 

/ p-value 

Other notes 

Dnm1 TRCN0000349422 n=2 2.302 ± 

0.098 

n=54 / 

p=0.2792 

0.752 ± 

0.016 

n=54 / 

p>0.9999 

 

Dpf3 TRCN0000086343 n=2 2.575 ± 

0.096 

n=66 / 

p<0.0001 

0.654 ± 

0.024 

n=64 / 

p=0.0007 

 

Eef1g TRCN0000245388 n=1 2.273 ± 

0.112 

n=29 / 

p>0.9999 

0.807 ± 

0.040 

n=29 / 

p>0.9999 

Possible cell 

body ONL 

positioning 

Eif3f TRCN0000265698 n=1 1.276 ± 

0.070 

n=21 / 

p<0.0001 

0.850 ± 

0.051 

n=21 / 

p>0.9999 

 

Empty SHC201 n=2 2.314 ± 

0.096 

n=31 / 

p=0.2108 

0.8176 ± 

0.060 

n=31 / 

p>0.9999 

Negative 

control 

Epas1 TRCN0000416474 n=2 1.861 ± 

0.075 

n=46 / 

p>0.9999 

0.733 ± 

0.023 

n=45 / 

p>0.9999 

 

Epb4.1l2 TRCN0000327110 n=1 2.345 ± 

0.080 

n=41 / 

p=0.0086 

0.575 ± 

0.026 

n=41 / 

p<0.0001 

 

Ext1 TRCN0000313800 n=1 2.104 ± 

0.123 

n=31 / 

p>0.9999 

0.533 ± 

0.048 

n=31 / 

p<0.0001 

 

Fam3c TRCN0000292668 n=1 1.760 ± 

0.084 

n=57 / 

p>0.9999 

0.716 ± 

0.042 

n=57 / 

p>0.9999 
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Table 2 Continued. 

 

Gene 

name 

shRNA TRCN# Retina 

no. 

Width 

mean ± 

SEM 

Term. no. 

/ p-value 

OPL 

mean ± 

SEM 

Term. no. 

/ p-value 

Other notes 

Fam160a1 TRCN0000182560 n=1 1.844 ± 

0.146 

n=26 / 

p>0.9999 

0.787 ± 

0.076 

n=26 / 

p>0.9999 

 

Fam107b TRCN0000192096 n=1 1.592 ± 

0.044 

n=49 / 

p=0.0021 

0.775 ± 

0.032 

n=49 / 

p>0.9999 

 

Frmpd1 TRCN0000255539 n=1 1.988 ± 

0.089 

n=30 / 

p>0.9999 

0.878 ± 

0.038 

n=30 / 

p>0.9999 

 

Fscn2 TRCN0000436775 n=1 2.182 ± 

0.079 

n=29 / 

p>0.9999 

0.828 ± 

0.028 

n=26 / 

p>0.9999 

 

Glt28d2 TRCN0000432398 n=1 2.203 ± 

0.115 

n=40 / 

p>0.9999 

0.742 ± 

0.036 

n=40 / 

p>0.9999 

 

Gorasp2 TRCN0000077520 n=1 1.603 ± 

0.057 

n=29 / 

p=0.0704 

0.714 ± 

0.024 

n=29 / 

p>0.9999 

 

Grtp1 TRCN0000106225 n=1 2.545 ± 

0.148 

n=34 / 

p=0.0383 

0.716 ± 

0.033 

n=34 / 

p>0.9999 

 

Heatr5a TRCN0000249612 n=1 2.102 ± 

0.079 

n=31 / 

p>0.9999 

0.827 ± 

0.067 

n=31 / 

p>0.9999 

 

Hif1a TRCN0000232222 n=1 1.822 ± 

0.084 

n=28 / 

p>0.9999 

0.752 ± 

0.046 

n=27 / 

p>0.9999 
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Table 2 Continued. 

 

Gene 

name 

shRNA TRCN# Retina 

no. 

Width 

mean ± 

SEM 

Term. no. 

/ p-value 

OPL 

mean ± 

SEM 

Term. no. 

/ p-value 

Other notes 

Hk1 TRCN0000012531 n=1 1.792 ± 

0.065 

n=46 / 

p>0.9999 

0.726 ± 

0.051 

n=46 / 

p=0.2018 

 

Kcnj14 TRCN0000427941 n=1 2.701 ± 

0.155 

n=31 / 

p=0.0012 

0.571 ± 

0.029 

n=31 / 

p<0.0001 

 

Llgl2 TRCN0000087880 n=1 3.023 ± 

0.211 

n=24 / 

p<0.0001 

0.459 ± 

0.061 

n=24 / 

p<0.0001 

 

Mmd TRCN0000326935 n=1 2.389 ± 

0.179 

n=26 / 

p>0.9999 

0.838 ± 

0.071 

n=26 / 

p>0.9999 

 

Mpp4 TRCN0000362170 n=1 1.656 ± 

0.054 

n=29 / 

p=0.2824 

0.842 ± 

0.028 

n=29 / 

p>0.9999 

 

Ncoa2 TRCN0000238244 n=1 2.281 ± 

0.127 

n=51 / 

p>0.9999 

0.576 ± 

0.086 

n=51 / 

p=0.0019 

 

Ndrg3 TRCN0000200080 n=1 1.719 ± 

0.063 

n=26 / 

p>0.9999 

1.266 ± 

0.144 

n=21 / 

p=0.0246 

 

Nfasc TRCN0000094170 n=1 1.939 ± 

0.085 

n=66 / 

p>0.9999 

0.505 ± 

0.041 

n=58 / 

p<0.0001 

Elaborate 

axonal 

projections 

Nrl (139) TRCN0000085139 n=1 2.385 ± 

0.099 

n=45 / 

p=0.0342 

0.804 ± 

0.044 

n=45 / 

p>0.9999 

Positive 

control 
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Table 2 Continued. 

 

Gene 

name 

shRNA TRCN# Retina 

no. 

Width 

mean ± 

SEM 

Term. no. 

/ p-value 

OPL 

mean ± 

SEM 

Term. no. 

/ p-value 

Other notes 

Nrl (280) TRCN0000432280 n=1 2.641 ± 

0.088 

n=51 / 

p<0.0001 

0.890 ± 

0.041 

n=51 / 

p>0.9999 

Positive 

control 

Nsf TRCN0000323688 n=1 1.944 ± 

0.084 

n=38 / 

p>0.9999 

0.776 ± 

0.024 

n=38 / 

p>0.9999 

 

Optn TRCN0000177380 n=1 1.775 ± 

0.206 

n=12 / 

p>0.9999 

0.658 ± 

0.136 

n=13 / 

p=0.0151 

 

Osbp2 TRCN0000438055 n=1 1.957 ± 

0.078 

n=38 / 

p>0.9999 

0.634 ± 

0.038 

n=38 / 

p=0.0065 

 

Pacsin2 TRCN0000305724 n=2 1.618 ± 

0.127 

n=25 / 

p>0.9999 

0.996 ± 

0.064 

n=25 / 

p=0.7137 

 

Pcp4l1 TRCN0000254700 n=1 1.890 ± 

0.055 

n=66 / 

p>0.9999 

0.755 ± 

0.050 

n=63 / 

p=0.3329 

 

Plcd3 TRCN0000097070 n=1 1.486 ± 

0.069 

n=37 / 

p<0.0001 

0.720 ± 

0.031 

n=37 / 

p>0.9999 

 

Plch2 TRCN0000452720 n=1 1.369 ± 

0.061 

n=43 / 

p<0.0001 

0.706 ± 

0.044 

n=43 / 

p=0.0211 

 

Plekha2 TRCN0000174698 n=1 1.992 ± 

0.079 

n=20 / 

p>0.9999 

0.710 ± 

0.029 

n=20 / 

p>0.9999 
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Table 2 Continued. 

 

Gene 

name 

shRNA TRCN# Retina 

no. 

Width 

mean ± 

SEM 

Term. no. 

/ p-value 

OPL 

mean ± 

SEM 

Term. no. 

/ p-value 

Other notes 

Plekhb1 TRCN0000111591 n=1 1.860 ± 

0.085 

n=26 / 

p>0.9999 

0.701 ± 

0.023 

n=25 / 

p=0.4683 

 

Plekhf2 TRCN0000241277 n=1 1.858 ± 

0.058 

n=54 / 

p>0.9999 

0.786 ± 

0.017 

n=54 / 

p>0.9999 

 

Ppap2c TRCN0000081457 n=2 1.493 ± 

0.191 

n=7 / 

p>0.9999 

0.859 ± 

0.203 

n=7 / 

p>0.9999 

 

Ppargc1b TRCN0000366320 n=1 2.481 ± 

0.211 

n=19 / 

p>0.9999 

0.984 ± 

0.147 

n=19 / 

p>0.9999 

 

Ppp2r5c TRCN0000080548 n=1 1.952 ± 

0.061 

n=61 / 

p>0.9999 

0.748 ± 

0.029 

n=61 / 

p>0.9999 

 

Rab28 TRCN0000100699 n=2 2.576 ± 

0.112 

n=55 / 

p<0.0001 

0.741 ± 

0.022 

n=54 / 

p>0.9999 

Possible 

genome 

rearrangement 

Ric8b TRCN0000445620 n=2 2.137 ± 

0.078 

n=55 / 

p>0.9999 

0.669 ± 

0.048 

n=55 / 

p>0.9999 

 

Rom1 TRCN0000314121 n=1 2.356 ± 

0.071 

n=93 / 

p=0.0009 

0.324 ± 

0.048 

n=90 / 

p<0.0001 

 

Scand1 TRCN0000257136 n=1 1.872 ± 

0.089 

n=25 / 

p>0.9999 

0.817 ± 

0.031 

n=25 / 

p>0.9999 
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Table 2 Continued. 

 

Gene 

name 

shRNA TRCN# Retina 

no. 

Width 

mean ± 

SEM 

Term. no. 

/ p-value 

OPL 

mean ± 

SEM 

Term. no. 

/ p-value 

Other notes 

Scrambled SHC202 n=3 1.819 ± 

0.051 

n=75 / 

p>0.9999 

0.7298 ± 

0.031 

n=74 / 

p>0.9999 

Negative 

control 

Sipa1l3 TRCN0000106037 n=1 1.664 ± 

0.087 

n=30 / 

p=0.0868 

0.720 ± 

0.040 

n=29 / 

p>0.9999 

 

Snca TRCN0000377011 n=1 1.793 ± 

0.074 

n=40 / 

p>0.9999 

0.583 ± 

0.020 

n=41 / 

p<0.0001 

 

Snta1 TRCN0000108644 n=2 2.102 ± 

0.097 

n=64 / 

p>0.9999 

0.573 ± 

0.039 

n=63 / 

p<0.0001 

 

Sntb2 TRCN0000112917 n=1 2.140 ± 

0.069 

n=31 / 

p>0.9999 

0.689 ± 

0.021 

n=31 / 

p=0.1289 

 

Spg7 TRCN0000031204 n=1 2.083 ± 

0.069 

n=44 / 

p>0.9999 

0.767 ± 

0.022 

n=41 / 

p>0.9999 

 

Ssu72 TRCN0000111980 n=1 2.164 ± 

0.100 

n=31 / 

p>0.9999 

0.614 ± 

0.051 

n=31 / 

p=0.0012 

 

St8sia1 TRCN0000110307 n=2 1.472 ± 

0.046 

n=125 / 

p<0.0001 

0.214 ± 

0.064 

n=125 / 

p<0.0001 

Bypasses OPL 

in many 

examples  

Stard7 TRCN0000105121 n=1 2.206 ± 

0.122 

n=21 / 

p>0.9999 

0.813 ± 

0.060 

n=21 / 

p>0.9999 
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Table 2 Continued. 

 

Gene 

name 

shRNA TRCN# Retina 

no. 

Width 

mean ± 

SEM 

Term. no. 

/ p-value 

OPL 

mean ± 

SEM 

Term. no. 

/ p-value 

Other notes 

Stard10 TRCN0000105062 n=3 1.865 ± 

0.038 

n=159 / 

p>0.9999 

0.691 ± 

0.014 

n=157 / 

p=0.0001 

 

Strbp TRCN0000086391 n=1 2.316 ± 

0.267 

n=14 / 

p>0.9999 

0.792 ± 

0.069 

n=14 / 

p>0.9999 

 

Suds3 TRCN0000247409 n=1 1.932 ± 

0.102 

n=34 / 

p>0.9999 

0.826 ± 

0.068 

n=34 / 

p>0.9999 

 

Thoc5 TRCN0000123772 n=1 1.886 ± 

0.071 

n=63 / 

p>0.9999 

0.955 ± 

0.168 

n=63 / 

p>0.9999 

 

Tnfaip3 TRCN0000378470 n=1 2.128 ± 

0.128 

n=15 / 

p>0.9999 

0.740 ± 

0.025 

n=14 / 

p>0.9999 

 

Unc119 TRCN0000177275 n=1 1.783 ± 

0.084 

n=23 / 

p>0.9999 

0.435 ± 

0.041 

n=23 / 

p<0.0001 

 

Usp6nl TRCN0000086812 n=1 1.728 ± 

0.063 

n=61 / 

p=0.5140 

0.631 ± 

0.041 

n=60 / 

p=0.0012 

 

Usp33 TRCN0000030822 n=2 1.890 ± 

0.045 

n=781 / 

p>0.9999 

0.679 ± 

0.018 

n=78 / 

p=0.0021 
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Rescuing spherule morphology 

 We sought to validate our screen and reject type I errors from the above results. 

The “gold standard” of RNAi validation requires rescue of the original phenotype by re-

introduction of the targeted gene’s cDNA. We obtained cDNAs for nine of our positive 

genes (split between both phenotypes), altered the shRNA-binding sites by creating 

synonymous alterations (Figure 13), and injected these alongside the shRNA. If the control 

spherule phenotype is rescued, the targeted gene is responsible for the seen phenotype. 

For terminal width, re-introduction of the cDNA restricted three spherules back to wild 

type levels (Dpf3, Kcnj14, and Rab28) and enlarged one that by knockdown was smaller 

(St8sia1) (Figure 14A). Rescue experiments for OPL positioning recovered normal 

lamination patterns in five cases (Arl2bp, Ext1, Kcnj14, Snta1, and St8sia1) (Figure 14B). 

Two knockdowns (Dpf3 and Unc119) are possibly due to an off-target gene because of 

lack of full recovery; one of these two (Unc119) does show partial recovery, so gene 

expression levels might need to be increased for full recovery. Overall, we show that by 

adding the original gene alongside our shRNAs we are able to recover 9 of 11 spherule 

morphology alterations. These data provide us with high confidence that the data found in 

our two RNAi screens are reliable, with some limited exceptions. 
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Figure 13. Codon-altered cDNAs for rescue. Sequence flanking shRNA-binding site is 

shown for each gene. Highlighted in grey is the shRNA-binding site. For altered cDNAs, 

wobble nucleotide altered to change nucleotide sequence without a resulting amino acid 

change. In each cDNA, 5 – 7 nucleotides were altered to lessen shRNA’s ability to 

knockdown gene expression. 
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Figure 14. Rescue of knockdown morphology. Codon-altered cDNAs were injected 

alongside shRNA and quantified. Blank negative control on left. Grey bar represents 

25th-75th percentile of control. Knockdowns and rescues are ordered alphabetically.  

(A) Re-introduction of gene rescued 4 out of 4 spherule size alterations. (B) OPL position 

rescued in 5 out of 7 knockdowns. Dpf3 looks to have a non-specific effect; Unc119 gave 

partial, non-significant rescue. 
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Table 3. Codon-altered knockdown rescue. Listed are spherule features within each gene 

knockdown. Bolded numbers highlight statistically significant. 

 

Gene 

name 

shRNA TRCN# Retina 

no. 

Width 

mean ± 

SEM 

Term. no. 

/ p-value 

OPL mean 

± SEM 

Term. no. 

/ p-value 

Other notes 

Blank  n=3 1.973 ± 

0.042 

n=155 

0.786 ± 

0.012 

n=152 

Negative 

control – 

comparison 

group  

Arl2bp TRCN0000250373 n=1 1.830 ± 

0.063 

n=82 / 

p>0.9999 

0.381 ± 

0.043 

n=80 / 

p<0.0001 

 

Arl2bp - 

Rescue 

 

 n=1 1.767 ± 

0.131 

n=23 / 

p>0.9999 

0.623 ± 

0.050 

n=23 / 

p=0.097 

 

Dpf3 TRCN0000086343 n=2 2.575 ± 

0.096 

n=66 / 

p<0.0001 

0.654 ± 

0.024 

n=64 / 

p=0.0007 

 

Dpf3 – 

Rescue 

 n=1 1.987 ± 

0.096 

n=34 / 

p>0.9999 

0.593 ± 

0.024 

n=29 / 

p=0.0001 

 

 

Ext1 TRCN0000313800 n=1 2.104 ± 

0.123 

n=31 / 

p>0.9999 

0.533 ± 

0.048 

n=31 / 

p<0.0001 

 

Ext1 – 

Rescue  

 n=1 2.141 ± 

0.078 

n=37 / 

p>0.9999 

1.116 ± 

0.247 

n=37 / 

p>0.9999 

 

Grtp1 TRCN0000106225 n=1 2.545 ± 

0.148 

n=34 / 

p=0.0383 

0.716 ± 

0.033 

n=34 / 

p>0.9999 
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Table 3 Continued. 

 

Gene 

name 

shRNA TRCN# Retina 

no. 

Width 

mean ± 

SEM 

Term. no. 

/ p-value 

OPL mean 

± SEM 

Term. no. 

/ p-value 

Other notes 

Grtp1 – 

Rescue  

 n=1 2.322 ± 

0.103 

n=29 / 

p=0.7960 

0.677 ± 

0.056 

n=29 / 

p=0.3878 

 

Kcnj14 TRCN0000427941 n=1 2.701 ± 

0.155 

n=31 / 

p=0.0012 

0.571 ± 

0.029 

n=31 / 

p<0.0001 

 

Kcnj14 – 

Rescue  

 n=1 1.908 ± 

0.078 

n=27 / 

p>0.9999 

0.784 ± 

0.027 

n=27 / 

p>0.9999 

 

Rab28 TRCN0000100699 n=2 2.576 ± 

0.112 

n=55 / 

p<0.0001 

0.741 ± 

0.022 

n=54 / 

p>0.9999 

Possible 

genome 

rearrangement 

Rab28 – 

Rescue 

 n=1 2.080 ± 

0.146 

n=29 / 

p>0.9999 

0.893 ± 

0.022 

n=29 / 

p>0.9999 

 

Snta1 TRCN0000108644 n=2 2.102 ± 

0.097 

n=64 / 

p>0.9999 

0.573 ± 

0.039 

n=63 / 

p<0.0001 

 

Snta1 – 

Rescue  

 n=1 2.193 ± 

0.088 

n=28 / 

p>0.9999 

0.839 ± 

0.036 

n=28 / 

p>0.9999 

 

St8sia1 TRCN0000110307 n=2 1.472 ± 

0.046 

n=125 / 

p<0.0001 

0.214 ± 

0.064 

n=125 / 

p<0.0001 

Bypasses OPL 

in many 

examples 

St8sia1 – 

Rescue  

 n=1 1.860 ± 

0.082 

n=29 / 

p>0.9999 

0.760 ± 

0.053 

n=29 / 

p>0.9999 
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Table 3 Continued. 

 

Gene 

name 

shRNA TRCN# Retina 

no. 

Width 

mean ± 

SEM 

Term. no. 

/ p-value 

OPL mean 

± SEM 

Term. no. 

/ p-value 

Other notes 

Unc119 TRCN0000177275 n=1 1.783 ± 

0.084 

n=23 / 

p>0.9999 

0.435 ± 

0.041 

n=23 / 

p<0.0001 

 

Unc119 

– Rescue  

 n=1 2.043 ± 

0.068 

n=53 / 

p>0.9999 

0.619 ± 

0.032 

n=53 / 

p<0.0001 

Partial 

recovery 

 
 
 
Protein network predicts novel pathways for spherule morphology  

 We verified that our RNAi screen data is reliable, so we wanted to identify if our 

experimentally-validated genes could help predict new, high-confidence targets for future 

analysis. We created a first order neighbor network of our initial set of 720 genes, from 

high confidence protein interaction (score > 700) information described in STRING 

(Szklarczyk et al., 2017). The result was a massive network with 7,501 proteins sharing 

28,419 interactions. This network was clustered into 176 communities with a minimum 

membership of 2 genes and maximum of 1485 (average 43) (Figure 15), but we found no 

significantly enrichment of our positive target genes into any cluster. Highlighting the 

validity of this clustering approach, though, cluster 24 contained 2 genes found to be 

positive regulators of synapse morphology (Nrl and Rom1) with 9 additional genes from 

our original list of 720 (Figure 7) and 41 additional members. These genes were enriched 

for the phototransduction pathway. 
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We used this large network to identify all the shortest paths connecting the positive 

targets (see Figure 16A for network flow chart), hoping to investigate the series of 

interactions necessary to attain the desired phenotype. The positive candidates appeared 

to be very well connected, resulting in more than 10,000 unique shortest paths between 

them. For the present study, we prioritized the shortest paths to enclose at least one other 

positive candidate, while not containing any experimentally verified negative targets. Only 

104 paths (Figure 16B) qualified our stringent filter, encompassing a total of 83 proteins 

of which ~29% were experimentally verified positive candidates. Two interesting 

observations were immediately evident from this sets of connections: (1) Nrl, the center 

of our original GRN, is only represented in a single path, and (2) Ncoa2 and Dpf3 were 

both involved in >25% of all pathways. The pathway network centered around Ncoa2 

(Figure 16C).   Our protein interaction network analysis suggests several new candidates 

that have interesting functions in photoreceptors, which can be investigated in the future 

for their involvement in spherule morphogenesis (Figure 16C). From these data, we 

generated a novel hypothesis where there are tiers of regulation controlling spherule 

morphology, which begins with Nrl, is mediated by Ncoa2, and more direct affectors 

control spherule morphology (Figure 16D). 
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Figure 15. Protein interaction network: communities. Clustering the protein-protein 

interaction network separates all 7,501 proteins into 176 communities. The colors indicate 

membership in 1 of the 12 largest communities. There was no significant enrichment of 

our positive screen candidates in any community. 
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Figure 16. Shortest molecular paths between positive hits. (A) Analysis work flow.  

(B) Final 104 shortest positive-positive-positive pathways between screen targets overlaid 

on full protein-protein interaction. (C) Ncoa2 is located centrally in network pathways 

between Nrl and other positively screened genes. (D) New tiered hypothesis for Nrl-

regulated spherule morphogenesis. Nrl lies at the top tier (I) of the network working 

through many determinants to affect spherule morphology (V) 
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Loss of function recapitulates spherule width phenotypes 

 Most RNAi knockdowns complement data found in knockout models, though this 

is not always the case (Baek et al., 2014), so we wanted to determine in our system if the 

two would match or show similar trends. We obtained two readily-available mouse strains, 

Epb4.1l2 and Snta1 (Adams et al., 2000; Sanuki et al., 2015), and generated AAV8-

packaged CRISPR/Cas9 guides against two more, Dpf3 and Llgl2. We assayed these 

spherules as above at P21 with wild type/control CRISPR littermates as controls. Rod 

photoreceptors in all four null lines had significantly/trending larger terminals (Figure 17). 

Snta1 reduction in our RNAi screen did not show increased spherule size (Figure 10A) 

but complete loss was significantly enlarged (Figure 17). We increased our sample size of 

Snta1 shRNA and controls and did find that loss of Snta1 did shift terminal size towards 

that of pedicles (data not shown). The OPL lamination of all knockout models retained the 

control levels (data not shown). One of the two phenotypes (terminal width) from our 

RNAi screens is recapitulated by constitutive null models, and use of these models could 

be useful in determining how terminal size affects rod photoreceptor transmission. 
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Figure 17. Loss of function spherule morphology. Terminal width of four loss of function 

mouse models. Two germline transgenic models (Epb4.1l2 and Snta1) and two 

CRISPR/Cas9-mediated knockout (Dpf3 and Llgl2) through AAV delivery. 

 

 

 

Table 4. Spherule widths in loss of function retina. 

 

Gene name Width mean ± SEM 

Term. no. / p-value 

Other notes 

Blank 1.973 ± 0.042 

n=155 /  

Negative control – 

comparison group  

Dpf3 – CRISPR 2.458 ± 0.074 

n=26 / p=0.0006 

 

Epb4.1l2 – KO 2.303 ± 0.089 

n=27 / p=0.0807 

 

Llgl2 – CRISPR 2.297 ± 0.058 

n=56 / p=0.0067 

 

Snta1 – KO 2.354 ± 0.092 

n=28 / p=0.0161 

 

 

 



 

  56 

Enhanced neurotransmission with enlarged spherules 

 The relationship between neuronal structure and function is still an open question 

in neurobiology, with limited data supporting the hypothesis that larger axons and axon 

boutons can transmit greater signals. The loss of function animals we tested above provide 

a good system to directly compare how spherule (bouton) size affects neurotransmission. 

We hypothesized that loss of function animals with larger spherules would have a larger 

scotopic b-wave (indicative of rod-to-rod ON bipolar neurotransmission) without similar 

increases in scotopic a-waves (rod phototransduction) or photopic b-waves (cone-to-ON 

cone bipolar neurotransmission). We assayed one strain from above, the Snta1 knockout 

animal. As predicted, loss of function rod photoreceptors had greater neurotransmission 

to their bipolar cells (Figure 18, center) without a corresponding increase in incoming or 

detected signal (Figure 18, left). Cone to ON-bipolar transmission was unaffected in the 

knockout mice (Figure 18, right). These data show that enlarged synaptic terminals 

provide greater neurotransmission to postsynaptic cells in at least one model. 

 

Discussion 

Each neuronal class have both intrinsic genetic program and extrinsic signaling for 

maturation. Rod photoreceptor cell fate is controlled by the transcription factor Nrl to 

deviate away from the default S-cone program. This induction of Nrl initiates a cascade 

of events that lead to the large structural and functional differences between the two 

classes of photoreceptors. The restriction of spherule size and regulation of axon position 

in the OPL are controlled through unknown mechanisms. Axon size is important for 

strength of signal transmitted, and proper localization of terminals correctly places 
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spherules to contact appropriate interneurons. In the current study, we tested the 

hypothesis that a portion of the Nrl gene regulatory network actively modifies spherule 

morphology by precisely dissecting many genes’ roles in controlling spherule structure in 

rod photoreceptors. 

 

 

 

Figure 18. Enhanced neurotransmission with Snta1 loss of function. (left) The rod 

photoreceptor intrinsic response (phototransduction; a-wave) is not altered between 

heterozygous (grey) and knockout (blue) animals at any light intensity. Transmission 

between rods and ON-bipolar cells (b-wave) is enhanced at most light intensities (center); 

similar neurotransmission from cones is unaffected (right).  

 

 

 

 Through our RNAi screen, we discovered that knockdown of 27 genes controlled 

one or two of the independent features differentiating rod spherules versus cone pedicles. 

Seven genes in our screen controlled spherule width. Not one, though, showed a similar 

size to that found in S-cones, but did show similar to cone-like photoreceptors. We would 

predict that there are three factors that could cause smaller spherules that S-cone pedicles 

in our study: (1) there is not sufficient space in an already crowded network to expand 
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beyond the sizes we have seen, (2) gene knockdown is not sufficient to cause the effect 

predicted, or (3) spherule restriction in multifactorial and we only alter a single gene. The 

first seems unlikely. The Nrl-KO retina switches all rods to have a cone-like pedicle which 

takes up more space than our sparse collection of altered spherules. The second and third 

options are both possible, but we believe that knockdown of multiple independent genes 

would have a larger effect than a slightly larger reduction in gene expression. 

 Unlike the spherule width phenotype, we found many genes that reproduced the 

pedicle OPL localization pattern, and interestingly, these data provide a richer dataset than 

might be appreciated at first glance because three phenotypes are actually found here: (1) 

terminals laminating similar to wild type S-cones (the hypothesized effect), (2) spherules 

found only barely beyond control limits, and (3) axons that bypass the OPL entirely and 

penetrate into the INL. Are the three phenotypes actually a continuum of a single 

phenotype? This might be possible. Perhaps higher-level function genes have less of an 

effect because they are farther removed from the direct affector. Nrl knockdown in our 

screen for OPL position showed no significantly different effect, and Ncoa2 and Dpf3, 

two genes we hypothesize are higher-tiered in the new network (Figure 7) also show less 

of an affect. 

 One fundamental neurobiology question we have begun to address is how a 

neuron’s morphology and structure affects its function. Above we found multiple loss of 

function models that show enlarged spherules (Figure 18). We were able to directly assay 

how increasing the size of the axonal terminal/bouton affected the neurotransmission to 

the postsynaptic cell. In our tested model, Snta1 knockout, we see both enlarged spherule 
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size and enhanced neurotransmission in rods without having increased input sensitivity 

(Figure 18). This is exciting because it provides one of the first models to test the 

relationship between structure and function directly. Future studies will determine the 

molecular mechanisms underlying how loss of Snta1 leads to a larger spherule and 

enhanced scotopic neurotransmission to interneurons. In addition, further testing in other 

loss of function models with larger spherules, or smaller pedicles, will be required to draw 

a strong link between the morphological and physiological characteristics of the neuron’s 

terminal. We are excited in how these data open up many avenues of future investigation 

for both the Snta1 model in photoreceptor synaptic function and for the neurobiology field. 

Our dataset provides a solid foundation to begin describing the multigenic program 

underlying spherule morphogenesis, but its special value lies in the creation of a 

hypothesis-forming protein network. Within our original, larger network, we defined 

many connected pathways centering around and traversing through Ncoa2, so we propose 

a new hypothesis in which a tiered regulatory system (initiating at Nrl, coordinated 

through Ncoa2, and terminating with multiple affector genes) defines and restricts 

spherule morphology in developing rod photoreceptors. Ncoa2’s method of control over 

this network still needs to be determined. The steroid receptor protein family, including 

Ncoa2, are a group of coactivators that in concert with chromatin remodeling proteins 

(here likely Dpf3 and Smarcd3) permit transcriptional activity (Johnson and O'Malley, 

2012). We propose that gene expression controlled through Ncao2-directed transcription 

will lead to further developments in understanding control of spherule size restriction and 

terminal position in the OPL. 
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The larger implication of our work is to utilize these data, especially the protein 

network, to improve retinal degeneration treatment studies. Retinal reprogramming to re-

form neural circuitry following ablation does not completely recapitulate developmental 

patterns (D'Orazi et al., 2016), so either variations in the intrinsic genetic program and/or 

the extrinsic cellular environment are responsible for this mismatch of connectivity. Loss 

of signaling molecules found during development might prevent full integration of new 

photoreceptors in the adult retina. Perhaps gene expression in transplanted photoreceptors 

will need to be artificially manipulated to polarize the cells correctly and form native 

circuitry. Future studies merging iPSC-derived photoreceptor precursors with a gene –

therapy-like manipulation of gene expression prior to transplantation would show if our 

synaptic terminal networks truly mediate proper morphology and connectivity in the 

retina. 

 

Methods 

 

Animals 

The Animal Care and Use Committee of the National Eye Institute (NEI) approved 

all procedures that involved mice. The following strains were used in the above studies: 

C57BL/6J, also known as wild type (Jackson Labs 000644), Nrlp-EGFP (Jackson Labs 

021232), Nrl-KO (Jackson Labs 021152), Nrl-GFP/Nrl-KO, CD-1IGS (Charles River 

022), Epb4.1l2-KO ((Sanuki et al., 2015), RIKEN RBRC09370), and Snta1-KO ((Adams 

et al., 2000), Jackson Labs 012940). 
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Tissue preparation and immunohistochemistry 

After euthanasia, eyes were removed at placed into 4% paraformaldehyde for 10 

minutes then retinas were removed and placed back into fixative. For cryosections, retinas 

were fixed for 1-hour total; for vibratome, retinas were fixed for more than 3 hours.  

For cryosections, retinas were frozen into a gel matrix (O.C.T. compound) and 

were sectioned at a thickness of 14µm onto SuperFrost+ charged slides and allowed to dry 

overnight to completely adhere to the glass; these were stored at -80°C until use. For 

immunohistochemistry, slides were blocked in 10% normal donkey serum in 1x PBST 

(0.3% Triton-X 100) for ≥1 hour. Primary antibodies (below) were incubated in the same 

solution at 4°C overnight. The following day, slides were washed 3x in 1x PBST for ≥5 

minutes then incubated with secondary antibodies in serum solution for 1 hour at room 

temperature. Slides were washed again 3x in 1x PBST then covered. 

For vibratome sections, retinas were mounted into 7% low-melting temperature 

agar before being sectioned at a thickness of 100µm. Floating sections were stained with 

DAPI in 1x PBST overnight before being placed onto glass slides and covered. 

 Antibodies used in this chapter are: DAPI (4’,6-Diamidino-2-Phenylindole, 

Dihydrochloride) to stain DNA, Ribeye for ribbon organelles, Cone arrestin to show full 

cone structure in all cones, and S-opsin (to label S-cone outer segments).  

 

Gene expression analysis 

 Gene filtering analysis for rod and cone-like photoreceptors was performed at the 

gene level using data from a previously published study (Kim et al., 2016b). Absolute fold 
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changes were used when comparing rod versus cone-like photoreceptors or between 

developmental stages. For the heat map in Figure 7B, z-scores were used to show dynamic 

patterns of gene expression independent of absolute expression levels.  

 

In vivo electroporation and AAV injections 

We performed electroporations as described previously (Matsuda and Cepko, 

2004). Newborn mouse pups (P0-1) were anesthetized via hypothermia (on wet ice) until 

unresponsive. Eyelids were cleaned with 70% ethanol then dried. A new, sharp 25 gauge 

needed was used to open the fused junction of the eyelid and expose the underlying eye. 

A 30.5-gauge needle was used to create a small puncture in the sclera. A 30.5 gauge blunt-

ended Hamilton syringe was inserted into the eye to inject 0.2 – 0.3 microliters of DNA 

plasmid solution into the subretinal space. Immediately following injection, five electrical 

pulses of 50ms at 80V change with an interval of 950ms between pulses was applied across 

the entire head using a thumb forceps electrode. The positive electrode is applied on the 

injected side of the head so that the injected DNA, being negatively charged, is forced into 

the retina. Only the right eyes were used in this protocol because the electrical charge 

cannot be applied in opposite directions across the pup’s head. Animals were given 

ketoprofen (2-5mg/kg body weight) subcutaneously before placed on a heated pad to raise 

body temperature back to physiological levels.  
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Alteration of cDNA sequences 

Full-length cDNAs in the pCMV-Sport6 vector were purchased commercially. 

Using the New England Biolab’s NEBaseChanger, primers to create 5-7 alterations in the 

shRNA binding sequence were determined. The cDNA was altered using the NEB Q5® 

Site-Directed Mutagenesis Kit exactly following the instructions provided. Some primer 

pairs did not produce the appropriate product initially; for these, inclusion of the 5x Q5® 

Enhancer Buffer was sufficient to obtain the correctly altered products. 

 

Confocal microscopy 

Images were collected using the Zeiss 700 and 880 confocal microscopes. A 63x 

oil-immersion objective, without any digital zoom, was used to image all slides. Images 

were collected and exported using the Zeiss Zen Black program. For Figures 3 and 4, 

terminal width and ribbon number images were collected from whole mount retinas using 

z-axis stacks spaced 0.5m and flattened into a single image to ensure the largest portion 

and total ribbon number of the spherules/pedicles was captured. For the OPL position, a 

single plane image was taken from a retinal section. For the RNAi screen, rescue, and loss-

of-function experiments, images were taken from retinal sections. Each spherule (or 

neighboring clusters) was imaged using enough 0.5 m z-axis stacks to capture the full 

width and depth of the spherule. 
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Quantitative analysis of spherules 

All quantitative measurements were performed using the freeware software 

ImageJ. For Figures 3D and 4 (left), the boarders of each spherule or pedicle was drawn 

freeform, the area within the boarders were measured, and, assuming circularity, the 

diameter (width) was calculated. For relative OPL position, the total height of the layer 

was measured by taking the space between the bottom of the photoreceptor nuclei to the 

top of the interneuron cell nuclei (Figure 5, “OPL”); synapse position was measured from 

the top of interneuron nuclei up to the bottom of the ribbon protein staining. A relative 

location was calculated by taking the synapse position over OPL height. A value of 0 

indicates the interneuron nuclei boundary; 1 indicates the photoreceptor nuclei boundary. 

For the RNAi screen, rescue, and loss-of-function experiments, measurements were 

collected similarly to above, with a few additions/changes (see Figure 5): terminal width 

was determined on the retinal sections by taking horizontal measurements of the widest 

point in the electroporated spherule (“Width”); spherule position was measured from the 

top of interneuron nuclei to the bottom of the electroporated spherule (“Syn”); and for 

select terminals, the cell body position (“Cell”) and ONL (“ONL”) height were measured 

to determine the relative position of the photoreceptor cell bodies in the ONL. 

 

Electroretinograms 

Animals were dark adapted for ≥12 hours. Under red light, animals were given general 

anesthesia (ketamine, 100mg/kg; xylazine, 10mg/kg) by intraperitoneal injection of 

0.1mL/10gram body weight; they were also given a topical anesthetic (0.5% proparacaine 
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hydrochloride) on each eye. Pupils are dilated using 2.5% phenylephrine and 1% 

tropicamide. A gold wire is placed non-invasively on the cornea using 2.5% hypomellose 

ophthalmic demulcent solution and a reference electrode was placed on the tongue. Using 

the Espion E2 Visual Electrophysiological System, a series of brief photoflashes of light 

flashes is used to elicit photoreceptor and bipolar retinal cell responses. Scotopic light 

flashes were recorded first. Six light intensities (log values from 0.0001 to 10 cd.s.m-2) 

were used as stimuli. Immediately following scotopic recordings, six photopic recordings 

(0.3, 1, 3, 10, 30, and 100 cd.s.m-2)  

were performed under rod-saturating light. Values were exported to Excel before being 

graphed in R Studio and statistical analysis performed in Prism (below). 

 

Graphing, statistical analysis, and programs 

R Studio and custom ggplot codes were used to generate all graphs. Prism v7 used for all 

statistical analysis. For figures 4, 9, 10, 11, 14, and 16 we used the Kruskal-Wallis one-

way analysis of variance test with Dunn’s multiple comparison test. In figure 4, n=30 

spherules per location. For figures 10, 1, 14, and 16: we tested n≥1 animal with ≥25 total 

terminals for each construct (see corresponding tables for exact numbers). For figure 16, 

we are working to increase our sample size to improve power and reproducibility of our 

results. In all cases, the following legends are appropriate: n.s. non-significant difference, 

*p<0.0332, **p<0.0021, ***p<0.0002, ****p<0.0001 
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Protein interaction networks 

Protein-protein interaction data for Mus musculus was downloaded from STRING 

[PMID: 27924014]. Custom scripts were used to filter for high confidence adjacent 

interactions of our initial set of 720 genes. Clusters and shortest paths in the PPIN were 

identified using the igraph package (v1.1.2) [Csardi G, Nepusz T: The igraph software 

package for complex network research, InterJournal, Complex Systems 1695. 2006. 

http://igraph.org] on R, specifically the random walktrap algorithm was employed to 

identify communities in the network. All networks were visualized on Cytoscape (v3.6) 

[PMID: 17947979]. 
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CHAPTER III 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

Visual detection of our external environment allows us to navigate the world around us as 

well as perform many of the tasks that so many of us take for granted. A large proportion 

of the population sees the loss of vision as the worst possible affliction, equal or worse 

than that of the other senses or memory or even loss of a limb (Scott et al., 2016). Retinitis 

pigmentosa (RP), which is defined by the loss of photoreceptors in the retina, is the most 

common type of RDD, with frequency rates estimated at 1:3,000-7,000 (Ferrari et al., 

2011). As mentioned in previous chapters, there are multiple possible treatment strategies 

that could possibly be employed, including but not limited to: gene therapy, cell therapy, 

and cellular reprogramming. The use and efficacy of one or more strategy in each patient 

might be determined based on the timing of disease. If the disease is caught early and a 

simple genetic variation can be definitively determined to be the causative mutation, gene 

therapy to correct that singular mutation in existing photoreceptors to prevent disruption 

of the native system. If the disease has already progressed too far, as would be the case for 

currently blind RP patients, cell therapy or reprogramming are the only options, though 

likely both would also require gene therapy if the patient’s own cells were to be used. The 

rapid advancement of the stem cell field in generating retinal cell types, including both 

rod and cone photoreceptor precursors, is providing a lot of promise that future clinicians 

might derive iPSCs from a skin biopsy, generate gene therapy-corrected photoreceptor 

precursors in vitro, and reintroduce these cells back into the retina to correct vision. It 
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seems likely that these steps will likely be possible very soon, and in fact are already in 

trials to transplant newly derived retinal pigment epithelium (RPE) cells behind the retina 

for another common RDD (Mandai et al., 2017). Our current hurdle now becomes not 

derivation or transplantation of photoreceptors but polarization of the cells and integration 

into the retina circuitry. Early reports were very promising (MacLaren et al., 2006) but 

were later re-evaluated because material transfer between cells instead of integration was 

occurring if any photoreceptors remained alive (Singh et al., 2013), though end-stage 

degeneration integration still seems promising. Current methods to determine integration, 

protein expression and relative localization, should be more in their analysis. As seen in 

the first chapter, photoreceptors have highly specific morphologies and connections to 

interneurons but the molecular factors that determined each of these features in 

photoreceptors has been lacking. Our current work set out to address this need within the 

field. We used a semi-directed screening approach to begin identifying the genetic 

determinants of photoreceptor morphology and positioning for synaptogenesis. While the 

genes we discovered to play a role in rod spherule morphology likely only scratch the 

surface of those involved, we also provide a Nrl-centered protein network that could be 

engaged to create the specific features needed to correctly structure and position axon 

terminals. Validation and expansion of this network is beyond the scope of our current 

work, but these at least give us a small view into how we can start adjusting gene 

expression to manipulate morphology and circuitry within photoreceptors. Below we 

identify some remaining questions that remain in our field. 
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Future avenues of investigation 

• Structure/function relationship: Does spherule size affect neurotransmission output? 

• Control of ribbon number: Like terminal width and OPL position, ribbons are likely 

genetically controlled. What genes are associated with determining ribbon number? 

• Multi-factorial control: Can manipulation of multiple genes (or pathways) have a 

greater effect on spherule morphology? 

• Neural circuitry development: Is neurotransmission from photoreceptors required for 

synaptogenesis with bipolar and horizontal cells? 

• Patient iPSCs: For the genes identified in our screen, are there patients with visual 

defects in these genes? If yes, how do spherules mature in these human models? 
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