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ABSTRACT 

 

As transition zones between river and ocean, estuaries face increasing pressure on 

their ecosystem health due to changes of freshwater quantity and quality – especially under 

the impacts of population growth, land use/land cover change, and climate change. 

Located southeast of Houston, Galveston Bay is of particular social and economic 

importance for the State of Texas. Its freshwater inflow primarily arises from the San 

Jacinto River and the Trinity River. While it is well recognized that Chlorophyll a (chla) 

concentration – an indicator of ecosystem health – is closely linked to river inflows and 

other environmental factors, no quantitative relationships have been established. The 

objectives of this study are to identify the spatial-temporal variations of chla, and to 

investigate the impacts of freshwater inflow and climatic factors on chla variability – so 

that prediction models can be developed for chla forecasting in Galveston Bay.  

A 10-year validated remote sensing chla dataset is used in this study. Spatially, 

there are two spots with low chla concentration compared with other places, locations 

close to the river mouths and the area of the bay where Houston Ship Channel located. 

Temporally, chla tends to be higher in wet years than in dry years. Similarly, the seasonal 

fluctuations of chla are more significant during the wet months (from February to May) 

than the dry months (especially from August to December). Chla concentrations in 

different segments of Galveston Bay are determined by different factors during different 

seasons. Discharge from the Trinity River is the main driver of chla in JFM (January, 

February, March), AMJ (April, May, June) and JAS (July, August, September) in all 
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segments, expect West Bay (where the chla concentration is mainly determined by 

climatological variations). Also, water temperature plays a significant role in regulating 

chla, especially in JFM. Based on these analyses, a chla prediction model is developed 

and tested. Despite its limitations, this empirical model offers seasonal forecasts of chla 

which could support decision making in Galveston Bay. 
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1.   INTRODUCTION 

 

1.1 Chlorophyll a and Environment Factors 

 

Linking rivers with ocean environments, estuaries play an important role in aquatic 

ecosystem functions and service. However, many U.S. estuaries are threatened by various 

environmental problems, such as water quality degradation, eutrophication, and fish 

resources decline. A study by Bricker et al. (2008) showed that around 84 out of 139 U.S. 

coastal areas have experienced eutrophication. With regards to water quality monitoring, 

an abnormally high chlorophyll a (chla) concentration is usually considered as a reliable 

indicator of eutrophication. The spatial and temporal distributions of chla can be greatly 

influenced by freshwater inflow, circulation, salinity, sediment loading, nutrients loading, 

and water temperature (Harding 1994). In addition, the seasonal-to-interannual 

variabilities of coastal chla are also indirectly affected by anthropogenic influences (such 

as urbanization, agriculture, and population development) and climatic influences 

(Harding et al. 2016). 

By transporting nutrients and sediments—as well as by altering estuary 

circulations – freshwater inflow plays a key role in algae growth, which significantly 

affects chla concentration levels. Especially with the ongoing population growth, 

extensive urbanization, and increased wastewater discharge that many areas are 

experiencing – combined with climate change – both the timing and the magnitude of 

freshwater inflows have become more sensitive and capricious (Cloern et al. 2001; 
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Roberts and Prince 2010; Camacho et al. 2015). By disturbing aquatic systems, 

phytoplankton community compositions and diversity, biomass and chla concentration 

levels will be influenced by inflow events (Buyukates and Roelke 2004). In particular, 

freshwater inflow can impact phytoplankton biomass and chla concentration indirectly, by 

affecting light availability, nutrient loading, flushing rate, stratification, and turbidity. A 

number of studies have investigated the impacts of freshwater inflow on chla 

concentrations in coastal areas. For instance, studies using observational data over sixty 

years (1950 – 2010) in the Chesapeake Bay found that wet years resulted in large inflows 

and high chla concentrations, while dry years led to small inflows and low chla levels in 

the bay (Harding 2016). The research result from aircraft remote sensing of ocean color 

also confirmed the view reported nearly 30 years ago that magnitude of freshwater flows 

explained the inter-annual variability of phytoplankton biomass (Malone et al. 1988; 

Miller and Harding 2007). In the San Francisco Bay, an analysis of in-situ data by Cloern 

(1991) indicated a strong connection between the magnitude of annual spring algal blooms 

(during March – May) and the magnitude of the wet season (January through April) 

freshwater inflows from the Susquehanna River. In the Tampa Bay, Florida, the positive 

correlation between annual mean discharge and chla was revealed as well based on the 

long-term observation from satellites (Le et al. 2013). In the Perdido Bay, Florida, it was 

found that large inflows could promote algae growth by reducing the anoxia and hypoxia 

conditions in the bay (Xia and Jiang 2015). In other international estuaries, similar positive 

correlations were identified – including in the Guadalquivir Estuary in Spain (Drake et al. 

2002), the Loire River Estuary in France (Meybeck et al. 1988), and the Kasouga Estuary 
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in South Africa (Froneman 2002). Although most research results show that chla often co-

varies (usually positive correlations) with freshwater inflow, still for different systems, 

their relationships are usually diverse due to the different characteristics, such as 

circulation, residence time and tides (Miller and Harding 2007). 

The seasonal and inter-annual variability of chla concentrations in estuary regions 

are also strongly influenced by climatic variability (Miller and Harding 2007; Stenseth et 

al. 2002), which also affects freshwater inflow. Climate conditions can be represented by 

climatic indicators, such as water temperature and the El Niño-Southern Oscillation 

(ENSO) (Chavez et al. 1999; Cloern et al. 2011). They can influence estuaries’ ecosystems 

strongly by affecting biological processes. For example, water temperature can affect 

biomass accumulation by changing the nutrient stratification and the algae gazing process. 

Similarly, because ENSO can alter the surface water temperature, the nutrient upwelling 

process, and the carbon dioxide storage in the water, the chla concentration will be affected 

as well.  In Tampa Bay, Florida, Le et al. (2013) found that a significant positive 

correlation existed between monthly mean chla anomalies and the monthly Multivariate 

El Niño/Southern Oscillation Index (MEI), which indicated El Niño phenomenon 

associated with higher chla. However, in the Equatorial Pacific Ocean, the El Niño 

phenomenon was found to be related to low chla concentration levels (Chavez et al. 1999). 

These two different research results suggest that correlations between ENSO and 

phytoplankton biomass vary according to location and the different characteristics of the 

waterbodies. In the Chesapeake Bay, Miller and Harding (2007) found that when the 

winter is warmer and wetter than usual, the bloom in the following spring tends to be 
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greater in magnitude.  Long-term (30+ years) research in this region also showed the lower 

chla concentration in climatic-induced dry years compared with oppositely wet years 

(Harding et al. 2016). Research performed in the Buzzards Bay, Massachusetts, suggested 

that the increased temperature might worsen the degradation of the coastal system 

(Rheuban et al. 2016). In shallow waterbodies, such as in the Saginaw Bay and the Green 

Bay, Michigan, algal blooms could be exacerbated by warmer water temperature (Korosov 

et al. 2015). Thus, it is necessary to explore the combined influence of freshwater inflows 

and climatic conditions on plankton biomass levels in estuary regions.  

 

1.2 Chla Monitoring and Remote Sensing  

 

Traditionally, chla is monitored by field sampling. The measuring methods 

recommended by U.S. Environmental Protection Agency (EPA) include 

spectrophotometric method, the fluorometric method, and the high-performance liquid 

chromatography (HPLC) method (Dos et al. 2003). However, due to the cost and 

complexity involved in the data collection and processing (when using field sampling), 

the number of in-situ chla measurements is often limited in time and space. Without long-

term, continuous chla observations, our capability of understanding and quantifying the 

impacts of inflow and climatic conditions on chla variations is greatly hampered. 

Satellite remote sensing has a number of advantages for monitoring chla 

consistently with good spatial and temporal coverage at a high resolution (Sathyendranath 

et al. 2004). The main challenge in remote sensing of coastal chla concentrations is the 
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reflectance noise associated with the atmosphere, other water quality components (such 

as the colored dissolved organic matters – CDOM, inorganic particles, and suspended 

sediment) and the reflection from shallow bottoms (Harding et al. 2005; Le et al. 2013). 

The chla remote sensing algorithms are typically empirical (using various band 

combinations) and are validated against in-situ data (Liu et al. 2015; Le et al. 2016). The 

remotely sensed chla datasets have been used to explore the environmental impacts on the 

estuary ecosystems in the Tampa Bay, the Chesapeake Bay, the Pensacola Bay, and other 

coastal areas over a long-term period (Le et al. 2013; Miller and Harding 2007; Han et al. 

2005). As the technology continues to improve, remote sensing will provide even more 

opportunities for monitoring estuary eco-systems in the future.  

 

1.3 Chla Prediction 

 

A chla prediction model can be used to predict water quality deterioration in 

advance to mitigate point or non-point pollution sources, and to manage ecological health 

in estuaries. Generally, there are two types of methods used for chla prediction: 

Mechanism-Driven models (MDMs), and Data-Driven approaches (DDAs) (Jiang et al. 

2011). 

MDMs are based on mechanisms of physical, chemical, and biological dynamics 

and interactions. They require a large amount of monitoring data (time series of 

hydrological, climatic and water quality indicators, etc.) and many environmental 

parameters, such as water quality parameters, hydrodynamic parameters, salinity and 
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temperature, etc. Thus, this method is less applicable for estuary management, especially 

for regions with limited sampling infrastructure (and also are often lacking in personnel 

with the necessary scientific background).  

However, DDAs – such as multi-variable regression, neutral network, and 

Artificial Neural Network – are based on statistics and are much easier to apply (due to 

less field sampling data requirements, as compared with MDMs). Therefore, the DDAs 

method is used in this study. 

  

1.4 Chla Conditions in Galveston Bay 

 

As one of the seven major estuaries in Texas, Galveston Bay has significant 

ecological, economic and recreational values. Several studies have documented the chla 

variability and hydroclimatic influence on Galveston Bay. The alteration of upstream 

inflows (e.g., magnitude, timing and frequency) might exert a profound effect on 

ecological processes and corresponding ecosystem services in this region (Roelke et al. 

2013; Dorado et al. 2015). By analyzing in-situ observations collected in two years (2005-

2006), Roelke et al. (2013) found that the effects of freshwater inflows on chla varied in 

different sub-regions of Galveston Bay. 

Although there has been lots of qualitative analysis (and explanations) presented 

about the relationships between the aforementioned environmental variables and chla 

concentrations in coastal regions, quantitative relationships have yet to be established. 

This especially hampers chla predictions, which are essential for supporting decision-
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making. The limitations are primarily attributed to two causes: the lack of a reliable long-

term chla records in most estuary regions, and the lack of comprehensive analysis on those 

records that do exist. For instance, the joint impact of climatic conditions and freshwater 

inflows on chla in Galveston Bay has never been thoroughly investigated. Thus, it is 

necessary to conduct a systemic study to establish a comprehensive understanding of the 

influence of different hydrological and climatic conditions on phytoplankton biomass 

dynamics over Galveston Bay area. To achieve this, long-term chla observations from 

remote sensing will be leveraged. 

 

1.5 Research Objectives 

 

The objectives of this study are to identify the spatial-temporal variations of chla, 

and to investigate the impacts of freshwater inflow and climatic factors on chla variability 

– so that prediction models can be developed for chla forecasting in Galveston Bay. To 

achieve these objectives, the spatial and temporal variabilities of chla over a long-term 

(from May 2002 to December 2011) are first examined based on a remotely sensed dataset. 

Then, the effects of freshwater inflows and climate conditions on chla concentration (both 

separately and jointly) are evaluated. Last, a chla prediction model is established for 

supporting future ecological management in Galveston Bay. Specifically, the following 

questions are answered: 

(1) How does chla concentration vary temporally and spatially in Galveston Bay? 
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(2) What are the roles of freshwater inflow and climatological factors in driving 

chla variations in Galveston Bay? 

(3) Can we develop a robust empirical model for chla forecasting in Galveston 

Bay? 
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2.   STUDY AREA 

 

Galveston Bay (Figure 2-1), also referred to as the Trinity-San Jacinto Estuary, is 

located along the upper coast of Texas and is connected to the Gulf of Mexico. It is the 

seventh largest estuary in the U.S., bordering the fourth largest city and fifth largest 

metropolitan area by population in the nation. Due to these factors and others, it is home 

to a substantial industrial and maritime center. There are two major watersheds providing 

inflow into this estuary: the Trinity Basin and the San Jacinto Basin. These basins are 

home to two of the largest cities in the U.S. – Houston and Dallas – and include 60% of 

the major facilities in Texas (Ornolfsdottir et al. 2004). Half of the population in Texas 

currently lives within those two watersheds (Galveston Bay Report Card 2015). 

Figure 2-1. The map of Galveston Bay in Texas. 

Trinity River 
Buffalo Bayou 

San Jacinto River 
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Galveston Bay covers an area of 1360 km2 and has an average depth of 2 – 3 m. 

There is a man-made channel – the Houston Shipping Channel (HSC) – with a depth of 

15 m that extends from the San Jacinto River in the northern part of the bay to the main 

Gulf entrance. Many areas surrounding Galveston Bay are highly urbanized and 

industrialized, which bring a significant amount of anthropogenic waste water input into 

the bay. Armstrong and Ward (1993) reported that about 30% – 60% of waste water in 

Texas is received by Galveston Bay. Freshwater inflows are primarily from two major 

rivers: the Trinity River and the San Jacinto River. Other smaller discharging rivers 

include Buffalo Bayou, Whiteoak Bayou, Brays Bayou, Huntington Bayou, Sims Bayou, 

and Greens Bayou. Historically, the San Jacinto River and the Trinity River contribute 

about 28% and 54% of total freshwater inflow, respectively (Roelke et al. 2013). 

According to the U.S. Geological Survey (USGS) data from 2002 to 2012, the average 

discharge from the Trinity River and the San Jacinto River are 211.2 m3/s and 67.7 m3/s, 

respectively. In such a shallow bay, freshwater inflows are an important mechanism for 

water mixing. The nutrients loading input into Galveston Bay is very large, estimated to 

be 8.4 million kg/year of nitrogen and 4.0 million kg/year of phosphorus (Armstrong and 

Ward 1993). However, the system has low to moderate chla concentrations (2 – 20 µg/L) 

(Örnólfsdóttir et al. 2004; Buskey and Schmidt 1992), with an average concentration of 

12.8 µg/L (based on the field monitoring data from 2008 to 2015 provided by Dr. 

Antonietta Quigg).  

In addition, Galveston Bay is located in a humid subtropical area of Texas, which 

is near the border of a semi-arid climate zone, making it much more vulnerable to extreme 
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hydrological events and climate conditions (e.g. drought and flood). The temperature 

range is roughly 4°C (winter) to 32 °C (summer), and the annual rainfall is usually over 

1000 mm.  Heat from the deserts of Mexico and moisture from the Gulf of Mexico are 

brought into this area by prevailing winds from the south and southeast. At the same time, 

it is regularly impacted by tropical storms and hurricanes (especially during fall seasons) 

(Guannel et al. 2014). On September 12, 2008, Hurricane Ike arrived on the south of 

Galveston, causing the whole coastal area of Galveston Bay to be inundated by saltwater.  
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3.   DATA & METHODS 

 

3.1 Data Sources 

 

Datasets used in this thesis include the remotely sensed chla concentrations in 

Galveston Bay, the observed discharge data from both the Trinity River and the San 

Jacinto River, the water temperature, and the MEI. The period of data coverage is from 

May 22, 2002 to December 31, 2011 (roughly 10 years in total).  

The remotely sensed Chla concentrations were estimated by the MEdium 

Resolution Imaging Spectrometer (MERIS) (Zhang et al. 2017), which was one of the 

main instruments on board of the European Space Agency (ESA)'s Envisat platform. The 

spatial resolution of MERIS is 260m × 300m and temporal resolution is 3-day. The Level 

1b (L1b) band 7 (664 nm), band 8 (681 nm), and band 9 (708 nm) reflectance data are 

used to calculate Fluorescence Line Height (FLH) in Galveston Bay. The Second 

Simulation of the Satellite Signal in the Solar Spectrum model (6S V2.1) is adopted to 

correct atmospheric effects. Chla in situ data is monitored from surface (0 – 0.3m) water 

samples collected from 6 – 41 stations around the Bay. The remotely sensed FLH from 

MERIS is calibrated and validated against in-situ data over the corresponding sampling 

locations, and a regression equation applicable to the entire Galveston Bay is generated, 

which is shown in Figure 3-1 (Zhang et al. 2017). Then the chla product is developed by 

applying the empirical equations to each MERIS image from 2002 to 2011. The 3-day 
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products are further averaged to monthly to reduce noise associated with MERIS 

reflectance.  

Freshwater inflow (Figure 3-2) from the Trinity River is obtained from the US 

Geological Survey gauge station at Romayor (station #08066500). Inflow from the San 

Jacinto River is inferred as the total discharge of the Buffalo Bayou in Houston (station 

#08074500), the Buffalo Bayou at Houston (station #08074000) and the Lake Houston 

discharge (station #08072050). Among the three, the discharge from Lake Houston is 

calculated based on the curvilinear relationship between gauge height and discharge 

(personal communication, Dr. Kyeong Park’s group, TAMUG).  

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 3-1. MERIS data calibrated and validated against in-situ data. (a) The locations of 
chla sampling sites; (b) chla calibration results; (c) chla validation results. FLH is 
Fluorescence Line Height; r is coefficients of correlation; NRMSE is Normalized Root-
Mean Square Error. Reprinted from (Zhang et al. 2016). 

(b) Calibration 

(a) 

(c) Validation 
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Figure 3-2. Monthly discharge from the Trinity River and the San Jacinto River. 

 

Hourly water temperature data is acquired from Texas Water Development Board 

(TWDB). Because there is no significant difference among water temperature values over 

different locations (Appendix A), the data collected at Boli monitoring station (29.34° N, 

94.78° W) are chosen to represent the water temperature in the bay. For data continuity, 

missing observation data is filled using water temperature from other stations such as 

Midg (29.51° N, 94.88° W) and Trin (29.66° N, 94.75° W).  

Hourly air temperature data are also downloaded from NOAA (Station# WBAN 

12923, GALVESTON SCHOLES FIELD TX US). The hourly data are then averaged to 

monthly for deriving the relationship between air temperature and water temperature, such 

that water temperature (which is difficult to predict) can be inferred from air temperature 

through seasonal forecasts. 

The MEI is used to represent the intensity of an ENSO event in this thesis. As one 

of the most comprehensive indexes for monitoring ENSO, MEI combines multiple 

meteorological and oceanographic components, including sea-level pressure, surface 
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wind, sea surface temperature, air temperature, and total cloudiness fraction of the sky 

(NOAA, https://www.esrl.noaa.gov/psd/enso/mei/). 

 

3.2 Methods 

3.2.1 Segments division  

 

In this study, it is assumed that inland-adjacent segments (northern segments) of 

Galveston Bay are more affected by river discharge than the southern parts. To better 

represent the influence of freshwater inflow, the research area is divided into five sub 

regions based on chla spatial distributions and hydrodynamic conditions over Galveston 

Bay, as simulated by the Environmental Fluid Dynamics Code (EFDC) during the period 

of January 1st, 2005 to December 31th, 2006 (Shen et al. 2016). The simulation results 

from EFDC demonstrate the flow direction in the bay, which is from the Trinity River and 

the San Jacinto River to the Houston Ship Channel.  These sub-regions are Trinity Bay, 

San Jacinto Bay, East Bay, Lower Bay, and West Bay (Figure 3-3). This study explores 

the key factors driving chla and constructs a prediction model using these factors in each 

of the five segments. 
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3.2.2 Chla spatiotemporal analysis  

 

In this part, chla data from May 21th, 2002 to December 31th, 2011 are analyzed to 

identify the spatial/temporal distributions of the chla concentrations in Galveston Bay. The 

inter-annual and monthly distribution patterns of chla are examined. Annual and monthly 

time series of chla in all of these segments are compared as well. 

For better understanding the chla spatial-temporal variations, monthly and annual 

Standard Deviation (SD) patterns will be calculated after equation (3-1). 

     𝑆𝐷 = (𝑥 − 𝑥)(/𝑁                                                     (3-1)  

Figure 3-3. The segments are divided based on hydrodynamic simulation results from the 
Environmental Fluid Dynamics Code (EFDC) (white arrows represent the flow direction 
and color means magnitude of flow velocities). 
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Where x is the monthly or annual chla value in each grid; 𝑥 is the monthly or 

annual mean value; N is the number of months or years. Furthermore, time series analysis 

is conducted for each segment.  

 

3.2.3 Chla driving factors analysis  

 

In this section, correlation and linear regression analyses are applied to identify the 

key environmental factors driving chla variations in different seasons over different 

segments. 

In this study, seasonal groups are divided up based on the correlation performance 

between discharge and chla. The result shows that four seasonal groups perform the best 

among the different division methods: (1) JFM – January, February and March; (2) AMJ 

– April, May and June; (3) JAS – July, August and September; (4) OND – October, 

November and December. For all four seasonal groups, chla anomalies, freshwater inflow 

anomalies, and water temperature anomalies are calculated by subtracting their monthly 

climatological values. The correlation coefficients are then compared and ranked for each 

season such that the most influential factors can be identified. 

The relative importance of multiple variables is evaluated by conducting a relative 

weight analysis (Johnson 2000). By using a variable transformation approach, a new set 

of predictors that are orthogonal to one another is created to eliminate the effects of multi-

colinearity among variables. Then the criterion of these new orthogonal predictors can be 

established and the resulting standardized regression coefficients can be calculated. Last, 
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these standardized regression weights are transformed back to the metric of the original 

predictors (see Figure 3-4 and equation (3-2)) (Tonidandel and LeBreton 2011). In this 

study, relative weight analysis is done based on hier.part package in R (Grömping 2006). 

    𝜀, = 𝛽.(𝜆,.( + 𝛽((𝜆,(( + 𝛽1(𝜆,1(                                               (3-2) 

 

 

 

 

 

 

 

Where Xi are the ith original predictor; Zi are new orthogonal predictors; 𝛽, is the 

ith set of standardized regression coefficients; λik is obtained by regressing Xi on the set of 

ZXk; 𝜀, is relative weight after summing squared standardized regression coefficients𝛽2( 

and 𝜆,2( .  

  

3.2.4 Constructing a chla prediction model  

 

By establishing and validating the quantitative relationships between the chla 

concentrations and key environmental drivers, future chla concentrations can be simulated 

Figure 3-4. Calculation of relative weights for a regression model with three predictors. 
Modified from (Johnson 2000). 
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using the predictions of these environmental variables. The prediction model is further 

validated against observations, making it practical for provide effective scientific supports 

for future decision making for coastal protection. Also, all methods developed in this study 

are transferrable, which could be applied in other coastal regions. 

Monthly chla concentrations can be treated as the sum of two terms: monthly 

climatology and monthly anomaly. It is assumed that the chla anomalies are affected by 

inflow anomaly, water temperature anomaly, and MEI. Monthly freshwater inflow and 

water temperature anomalies can be calculated by subtracting their monthly averages and 

used to derive the prediction equations of chla anomaly. Therefore, chla concentration can 

be estimated using the following equations. 

  Cchla = Cclim + Canom                                                    (3-3) 

Canom = f1 (Qanom, Twanom, MEI)                                               (3-4) 

Twater = f2 (Tair)                                                         (3-5) 

Where Cchla is the chla concentration; Cclim is the climatological average value of 

chla, Canom is the chla anomaly; Qanom is the river discharge anomaly; Twanom is the water 

temperature anomaly; MEI is the Multiple ENSO Index value from NOAA; and Twater and 

Tair are the water temperature and air temperature, respectively. 

A multiple variable regression analysis is used to develop the prediction model. In 

addition to the traditional multiple regression analysis, stepwise regression of backward 

elimination is used to reduce the influence of collinearity among environmental factors 

(Derksen and Keselman 1992).   
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The datasets are divided into two parts: the first seven years of data (from January 

2002 to December 2008) are used for training while the last three years of data (from 

January 2009 to December 2011) are used for testing. 
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4.   RESULTS 

 

4.1 Spatial and Temporal Variability of Chla 

4.1.1 Spatial distribution of chla 

 

According to the historical remotely sensed data from MERIS (2002 – 2011), the 

annual and monthly chla spatial distributions share some common features (Figure 4-1(a) 

& 4-2(a)). In general, high chla concentration levels are usually found near the shoreline, 

which may be caused by several factors, such as large biomass accumulations, reflections 

from the land and the imperfect chla-deriving model without considering the shallow 

bottom reflection (Barnes et al. 1995; Dzwonkowski et al. 2005) or imperfect atmospheric 

corrections. Yet in the center part of the bay, the chla is relatively low, especially around 

where the Houston Ship Channel (HSC) is located. The HSC is about three times deeper 

than the other parts of the bay (Figure 2-1). In this region, algae growth is limited because 

the water column is well-mixed, resulting in a low nutrient concentration (as compared to 

the other, shallower parts). Additionally, the chla concentrations at the mouths of the 

Trinity River and San Jacinto River are generally lower than that in the other parts of the 

bay, which may be because the environment is not optimal for algae growth, mainly due 

to the water disturbance from freshwater inflows (which leads to a high turbidity and a 

small amount of light penetration). This is especially true for the Trinity River, whose 

large inflow increasingly stimulates circulation and the transport of nutrients further into 

the bay – which restrains the algae growth, and reduces the accumulation of plankton 
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biomass around the river outlet. In contrast, for the areas in Trinity and San Jacinto Bays 

which are between river outlets and the HSC, higher chla concentrations are usually found 

due to lower water velocity, lower salinity content, more nutrient accumulation, and higher 

light penetration levels as compared to the outlet and the parts near HSC. 

The chla concentrations in the northern segments (14.64 µg/L averagely in Trinity 

Bay and 15.44 µg/L in San Jacinto Bay) are higher than that of the southern parts (13.49 

µg/L in East Bay, 13.15 µg/L in Lower Bay and 11.75	
  µg/L in West Bay). This suggests 

that areas adjacent to the Gulf of Mexico are less affected by river inflows (Figure 4-3). 

San Jacinto Bay – which is adjacent to Houston area – usually has higher chla 

concentrations than other four segments. It is perhaps because this region receives more 

wastewater directly with higher nutrients concentrations than Trinity Bay did (Armstrong 

et al. 1993). The lowest chla is observed in West Bay, both annually and monthly. This is 

mainly caused by the narrow shape around that area, where freshwater exchange is limited 

and relatively high salinity concentration is maintained (23 ppm on average, which is 

higher than the salinity in northern parts with around 10 ppm).   
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Figure 4-1. Annual chla spatial distributions. (a) Mean chla concentrations by year; (b) 
Standard deviation of chla concentrations by year. Units: µg/L (2002 is excluded 
because of data limitation). 
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Figure 4-2. Monthly chla spatial distributions. (a) Mean chla concentrations by month; 
(b) Standard deviation of chla concentrations by month. Unit: µg/L 
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4.1.2 Inter-annual variability of chla 

 

Temporal variations of chla are key for exploring the impacts of environmental 

factors on plankton biomass. Annual mean chla patterns are shown in Figure 4-1 & Figure 

4-3(a). The result suggests a strong inter-annual variability of chla in Galveston Bay. In 

general, the chla concentration tends to increase for all five segments during the study 

period (except for 2009 and 2011). Overall, the highest chla concentration appears in 2010 

(a wet year), then followed by a sharp decrease in 2011 (a drought year). 

The inter-annual chla variability is further analyzed and quantified through time 

series analysis (Figure 4-3(a)). Comparing San Jacinto Bay with Trinity Bay, it is obvious 

that the average of annual mean chla in San Jacinto Bay is consistently higher than Trinity 

Bay (except in 2009 and 2010), with the range from 13.67 µg/L in 2009 to 16.60 µg/L in 

2010. For Trinity Bay, it ranges from 12.03 µg/L in 2003 to 18.17 µg/L in 2010. The 

largest difference between those two segments occurs in 2005 when chla in San Jacinto 

Bay is about 2.50 µg/L higher than that in Trinity Bay. East Bay, adjacent to Trinity Bay, 

has relatively high chla (from 11.79 µg/L in 2011 to 16.02 µg/L in 2010) as compared to 

Lower Bay, which is next to San Jacinto Bay. However, there is no major difference 

between East Bay and Lower Bay. Consistent with the spatial patterns shown in Figure 4-

1, West Bay has low and steady chla concentrations (range from 11.01 µg/L in 2011 to 

11.93 µg/L in 2009) during the entire periods, largely attributed to the effects of seawater 

flushing.  
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4.1.3 Monthly variability of chla 

 

Similar to the results from inter-annual variability, Figure 4-2 and Figure 4-3(c) 

show the distribution patterns of monthly climatology. Both the distribution patterns and 

the time series of chla reveal clear seasonal variation patterns. Chla concentration 

observably fluctuates with the highest values occurring from February to May. For most 

of the time during the year, the high values tend to cluster around the northern segments 

(except for February when the largest chla concentration occurs in the center of the bay) 

(Figure 4-2(a)). Higher monthly mean chla concentrations are also accompanied by higher 

seasonal standard deviations (Figure 4-2(b)). For instance, the chla concentrations in 

February are relatively high values across the whole bay and the standard deviations of 

chla in February are also found to be the highest among all of the months. In addition, 

from August to the following January, the spatial distribution of chla is more 

homogeneous as compared to the other months (especially from February to May).  

Among the different segments, San Jacinto Bay usually has higher chla 

concentrations the year round, following by Trinity Bay, East Bay, Lower Bay, and West 

Bay. This phenomenon is similar with the inter-annual variation situation (Figure 4-1(b) 

and 3(b)). In April, chla concentration reaches its annual maximum value in both Trinity 

Bay (19.82 µg/L) and San Jacinto Bay (19.26 µg/L). However, in other segments, the 

highest values occur in February (18.07 µg/L in East Bay, 19.57 µg/L in Lower Bay and 

13.92 µg/L in West Bay). This spatial pattern indicates that algal blooming season lasts 

two month longer in the northern segments than the southern segments. The seasonal 
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variability also demonstrates that the spring algal blooming in Galveston Bay occurs from 

February to April. Afterwards, the chla concentrations begin to decrease until the end of 

the year. Many factors may contribute to this phenomenon. For example, relatively higher 

temperature and more solar radiation in this subtropical region may shift the algal 

blooming season to an earlier date (beginning in February); freshwater inflow may bring 

more nutrients, stimulating the continuous growth of chla in northern area of the bay after 

the spring blooming. When the dissolved oxygen in the spring is consumed by biomass 

accumulation or reduced from the rising water temperature, further algal growth will be 

limited and a decline of chla concentrations usually start from May.  

 According to the above analysis, the chla spatial and temporal variations are 

affected by multiple environmental factors, such as freshwater inflow, nutrients input, 

temperature, topography condition, and algal growth cycling, etc. Each of those factors 

has interactions with any of others. The combined effects from those factors make it 

difficult to identify the key drivers of chla spatial and temporal variability. To provide a 

practical approach for predicting chla in supporting ecological management practice in 

Galveston Bay, further analysis is needed to quantify the correlations and interactions 

between chla and its environmental driving factors. 
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Figure 4-3. Time series of chla and discharge over May 2002 to December 2011. (a) 
Annual mean discharge; (b) Annual mean chla; (c) Monthly climatology of discharge; 
(d) Monthly climatology of chla. 
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4.2 Chla Driving Factors: Freshwater Inflow and Climate Conditions 

 

Figure 4-4 shows that chla in all five segments are correlated with each other. In 

addition, the highest correlation is found between East Bay and Lower Bay, followed by 

that between Trinity Bay and San Jacinto Bay. Considering the northern segments are 

more affected by freshwater compared with the southern parts, Trinity Bay and San Jacinto 

Bay are chosen as the focused area in this thesis.  
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Significant codes: p < 0.001 ***; 0.001< p < 0.01 **; 0.01 <p < 0.05 *; 0.01<p<0.1. 

Figure 4-4. The chla correlations among segments. 
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4.2.1 Freshwater inflow 

 

Roelke et al. (2013) suggested that upstream inflows (e.g., magnitude, timing and 

frequency) might have a profound influence on biomass accumulation in Galveston Bay. 

To further quantify the relationship, correlation analysis is conducted between the 

remotely sensed chla and the observed freshwater inflow in Trinity and San Jacinto 

segments.  

Over both Trinity Bay and San Jacinto Bay, the chla concentrations show positive 

correlations with the inflow from the Trinity River. Specifically, as shown in Figure 4-3, 

the correlation coefficient (R) between the monthly chla climatology in Trinity Bay and 

the inflow from the Trinity River is 0.75 (p < 0.01), and the R between the monthly chla 

climatology in San Jacinto Bay and the Trinity River discharge is 0.73 (p < 0.01). This 

positive correlation indicates that chla concentration is relatively high during the wet 

season (from February to May) and relative low during the period when the region is dry 

(from August to December).  

From the time series over these two segments (Figure 4-5), the annual cycles of 

both chla and discharge can be observed. The highest chla concentrations for these two 

segments both occur around March in 2010. While a strong positive correlation is found 

between the freshwater inflow from the Trinity River and the monthly chla in Trinity Bay 

(R = 0.57, p < 0.01), the discharge from the San Jacinto River has little impacts on chla 

concentration in San Jacinto Bay (R < 0.1).  When the San Jacinto River discharge rate is 

less than 100 m3/s, the chla concentrations over San Jacinto Bay increase slightly as the 
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discharge increases. However, when freshwater inflow exceeds 100 m3/s, chla 

concentrations are barely affected by the discharge. These results suggest that the 

correlation between freshwater inflow and chla varies significantly by locations. In 

addition to the discharge volume received by the bay segment, the light levels, water 

stability, turbidity, and nutrient input are all affected by flushing. 

The above analysis suggests that the discharge from the Trinity River affects both 

Trinity Bay and San Jacinto Bay. The discharge from the Trinity River is about three times 

larger, on average, than that from the San Jacinto River (Figure 4-5). Given the circulations 

in the bay, the Trinity River can significantly influence the chla dynamics across the entire 

bay. In addition to the volume of discharge, other factors may also play important roles in 

driving chla concentration variabilities, such as location, topographic condition, flow 

circulation, and tidal action.  

Figure 4-5. Time series of monthly discharge and chla concentration in (a) Trinity Bay 
and (b) San Jacinto Bay. 
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4.2.2 Climate conditions 

 

As mentioned in Section 1.1, climate conditions can significantly influence the 

chla variability by driving other parameters, such as water temperature and river discharge. 

Here we focus on examining the impacts associated with water temperature and MEI – an 

index for to diagnosing ENSO – on chla in Galveston Bay. Figure 4-6 shows the time 

series of monthly MEI, water temperature anomalies, and chla concentration anomalies. 

The result shows that there is no significant correlation between MEI and chla anomaly 

(R < 0.1 for both segments). However, as an important indicator of climatic variability, 

the water temperature anomaly shows the significant negative impact on chla 

concentration anomaly in Trinity Bay (R = -0.35) and San Jacinto Bay (R = -0.33). This 

is in contrast to research results which show positive impacts from water temperature on 

chla in other bay areas (Rheuban et al. 2016; Korosov et al. 2015). 

The correlations in both locations are significant (with p<0.001), indicating the 

overall negative influence of water temperature on algal growth. Usually the highest 

temperature within one year in Galveston Bay occurs in August (~31 °C), when the chla 

concentrations are typically low. The chla concentrations usually peak around 22°C (in 

April), which corresponds to the optimum growth temperature range of most algae species. 

Then chla tends to decrease when the water temperature is above 25 °C after May (the 

Optimum growth temperature of Cyanobacteria). This phenomenon agrees with the 

temporal chla variabilities observed from Figure 4-6. It is also similar with findings from 

other studies carried out in Galveston Bay (Örnólfsdóttir et al. 2004).  
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In summary, chla variabilities are mainly driven by discharge anomalies of the 

Trinity River and water temperature anomalies, while MEI does not have noticeable 

impact on the chla.   

 

4.2.3 Seasonal correlation between chla and environmental factors 

 

As explained in Chapter 3.2.3, four seasonal groups (JFM, AMJ, JAS and OND) 

are chosen to further develop multiple correlation and regression analysis. The correlation 

(a) 

(b) 

(c) 

(d) 

Figure 4-6. Time series of (a) MEI (blue represents La Niña and red is for El Niño); (b) 
water temperature anomalies; (c) chla anomalies from Trinity Bay; (d) chla anomalies 
from San Jacinto Bay. 
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coefficients between the Chlorophyll-a anomalies and the anomalies of the 

aforementioned environmental factors were then compared and ranked for each season, 

such that the most influential factors for each segment could be identified.  The results for 

different seasonal groups are shown in Figure 4-7 (Trinity Bay and San Jacinto Bay), 

Figure 4-9 (East Bay and Lower Bay), and Figure 4-10 (West Bay). 

(1) Trinity Bay and San Jacinto Bay 

Compared with the discharge from the San Jacinto River, the discharge from the 

Trinity River has the larger impact on the chla concentrations in both segments in most 

seasons (except for OND). This result confirms the dominant role of discharge from the 

Trinity River on chla across the bay, even though San Jacinto Bay receives discharge from 

the San Jacinto River directly. This may be attributed to the large freshwater inflow 

amount from the Trinity River and the mixing of the Trinity inflow in the whole bay – not 

just around the adjacent area. Thus, for establishing the predication model, discharge from 

the Trinity River will be used as the main freshwater driver in both two northern segments.  

In addition, significant negative correlations are shown between water temperature 

and chla both in Trinity Bay and San Jacinto Bay, especially in JFM and OND (p < 0.01). 

However, for AMJ and JAS, chla variability is less affected by water temperature (Figure 

4-7(b) & (c)). Thus, for different seasonal groups, the main driving factors are different. 

In JFM, both discharge and water temperature have significant influence on chla 

concentrations. In AMJ and JAS, chla is most affected by discharge from the Trinity River. 

In OND, the volume of discharge is low in general. Water temperature may act as the 

limiting factor for algal growth, and the primary driver for chla concentration. Thus, water 
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temperature would be more significant than discharge to drive chla concentration. The 

high positive water temperature anomaly during a dry year (with less discharge) is 

associated with less dissolved CO2 and O2 in the waterbody, which might lead to a 

decrease in the chla concentration (Chavez et al. 1999). Therefore, it is necessary to 

develop the prediction equations of chla concentrations using different factors based on 

different seasonal groups. 

In addition, the multiple correlation analysis (Figure 4-7) shows that the 

correlations also exist among the selected environmental factors. For instance, positive 

correlations are found between MEI and river discharge anomaly in JFM and OND 

(p<0.05). Similar phenomenon is also observed between water temperature and MEI, and 

between the inflows from the two rivers.    
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(a) 

Figure 4-7. The monthly average correlation among CT (chla anomaly in Trinity Bay, 
µg/L), CS (chla anomaly in San Jacinto Bay, µg/L), T (water temperature anomaly, °C), 
MEI (Multiple ENSO Index from NOAA), QT (discharge anomaly from the Trinity River, 
m3/s) and QS (discharge anomaly from the San Jacinto River, m3/s) in (a) JFM; (b) AMJ; 
(c) JAS and (d) OND. 

Significant codes: p < 0.001 ***; 0.001 < p < 0.01 **; 0.01 < p < 0.05 *; 0.01 < p < 0.1. 

(b) 
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Figure 4-7. Continued. 
Significant codes: p < 0.001 ***; 0.001 < p < 0.01 **; 0.01 < p < 0.05 *; 0.01 < p < 0.1. 
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The relative importance of discharge from the Trinity River, water temperature 

and MEI on chla anomalies in the four seasonal groups are shown in Figure 4-8. In AMJ 

and JAS, discharge acts as the dominant factor in determining the chla concentration. In 

OND, chla is mainly determined by water temperature in both Trinity Bay and San Jacinto 

Bay. In JFM, chla concentrations are affected by the combining effects of all factors, 

especially from discharge and water temperature. This analysis about the relative 

importance of predictor variables can help improve the understanding of the chla 

variability and explore its causes. This is an important step towards developing the chla 

prediction model. 

 

 

 

 

(2) East Bay and Lower Bay 

 

 

 

(2) East Bay and Lower Bay 

In both East Bay and Lower Bay, chla is mainly correlated with the discharge from 

the Trinity River (0.5 ≤ R ≤ 0.8), with the exception in OND in Lower Bay. In addition, 

significant negative correlations are found between water temperature and chla, especially 

in JFM (R = -0.47 in both segments, p < 0.01). In JFM, positive correlation can be 

Figure 4-8. Relative Importance of Predictor Variables (discharge from the Trinity River, 
water temperature and MEI) in (a) Trinity Bay; (b) San Jacinto Bay. 

(a) (b) 
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observed between MEI and chla (with R = 0.64) in the Bay and (R = 0.49) in Lower Bay. 

However, for AMJ and JAS, chla is mainly determined by discharge from the Trinity River 

(Figure 4-11(b) & (c)).  

Similar to the two northern segments, correlations are also found among the 

environmental factors. For instance, positive correlations are found between MEI and river 

discharge anomaly in JFM and OND (0.47 ≤ R ≤ 0.67, p < 0.01). 

The relative importance analysis in Figure 4-11 shows that discharge from Trinity 

Bay is the primarily dominant factor in driving chla concentation in East Bay. Its relative 

weight are above 50% in all of four seasonal groups (from 51.21% in JFM to 86.74% in 

JAS). Howerver, for Lower Bay, discharge is the main driver in all seasons except for 

OND. In OND, temperature is the key dominant impacting factor of chla. 

 

 

 

 

 

 

 

(3) West Bay 

Figure 4-12 shows the results for West Bay. In JFM, both discharge of the Trinity 

River and MEI show the significant correlation with chla (R = 0.62 for discharge and 0.63 

for MEI, p < 0.001). In addition, these two factors are well correlated (R = 0.67, p < 0.001). 

Figure 4-9. Relative Importance of Predictor Variables (discharge from the Trinity River, 
water temperature and MEI) in (a) East Bay and (b) Lower Bay.  

(a) (b) 
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In AMJ, only MEI has some small effect on chla. In OND, the discharge from the Trinity 

River influences chla positively (R = 0.39, p < 0.05). However, in JAS, no obvious 

correlation is found between any of the factors and chla.     

Figure 4-10 shows the similar result that MEI has the impact on chla in JFM and 

AMJ (47.51% and 65.39%, respectively). Even though there is no clear correlation 

between any of the factors with chla in JAS, MEI is found to be relatively important.  

 

 

 

  

 
 
 
 
 
 
 

Table 4 summarizes all of the key factors identified through this process. It 

suggests that discharge is a key factor in Trinity, San Jacinto, East, and Lower Bays during 

most seasons. Trinity and San Jacinto Bays (which are close to the river outlets) are more 

affected by water temperature in OND and JFM, while East and Lower bays are also 

affected by MEI during JFM. West Bay is least affected by these factors, largely due to its 

various exchanges with the greater ocean. 

 

 

Figure 4-10. Relative Importance of Predictor Variables (discharge from the Trinity 
River, water temperature and MEI) in West Bay.  
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Table 4-1. Significant driving factors of chla in each seasonal group (p < 0.01). 

Segments 
Significantly driving factors of chla (p < 0.01) 

JFM AMJ JAS OND 

Trinity Bay Q & T Q Q T 

San Jacinto 
Bay Q & T Q Q T 

East Bay Q & MEI Q Q Q 

Lower Bay Q & MEI Q Q T * 

West Bay Q & MEI MEI * NA NA 

            * p < 0.05 
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Significant codes: p < 0.001 ***; 0.001 < p < 0.01 **; 0.01 < p < 0.05 *; 0.01 < p < 0.1. 
Figure 4-11. The monthly average correlation among CE (chla anomaly in the East Bay, 
µg/L), CL (chla anomaly in the Lower Bay, µg/L), T (water temperature anomaly, °C), 
MEI (Multiple ENSO Index from NOAA), QT (discharge anomaly from the Trinity River, 
m3/s) and QS (discharge anomaly from the San Jacinto River, m3/s) in (a) JFM; (b) AMJ; 
(c) JAS and (d) OND. 
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Figure 4-11. Continued. 
Significant codes: p < 0.001 ***; 0.001 < p < 0.01 **; 0.01 < p < 0.05 *; 0.01 < p < 0.1. 
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Significant codes: p < 0.001 ***; 0.001 < p < 0.01 **; 0.01 < p < 0.05 *; 0.01 < p < 0.1. 

Figure 4-12. The monthly average correlation among CW (chla anomaly in the West Bay, 
µg/L), T (water temperature anomaly, °C), MEI (Multiple ENSO Index from NOAA), QT 
(discharge anomaly from the Trinity River, m3/s) and QS (discharge anomaly from the San 
Jacinto River, m3/s) in (a) JFM; (b) AMJ; (c) JAS and (d) OND. 
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Significant codes: p < 0.001 ***; 0.001 < p < 0.01 **; 0.01 < p < 0.05 *; 0.01 < p < 0.1. 

Figure 4-12. Continued. 
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4.3 Chla Prediction Model 

 

The environmental factors, including discharge, water temperature and MEI, are 

used to develop the chla prediction model. Considering the climatological impacts and 

seasonal variability, by removing the 10-year monthly average, the anomaly of chla, 

discharge and water temperature are used for model derivation in different seasonal 

groups. The coefficients in the prediction models are determined using the training dataset 

from May 2002 to December 2008. The predicted chla concentrations are evaluated 

against the observations during the testing period from January 2009 to December 2011. 

These statistic parameters used for testing the results are determination of coefficient R2, 

mean absolute error (MAE) and root mean squared error (RMSE) (Equations (4-1) to (4-

3)).  

𝑅( = 1 − 56-­‐‑86 9:
6;<

56-­‐‑5 9:
6;<

                                                     (4-1) 

𝑀𝐴𝐸 = |86A56|:
6;<

B
                                                       (4-2) 

𝑅𝑀𝑆𝐸 = 86A56 9:
6;<

B
                                                     (4-3) 

where 𝑥, is ith the observation record; 𝑥 is the average of the observation data, 𝑦, 

is the ith predicted value from model, and n is number of the observation data. 
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4.3.1 Trinity Bay and San Jacinto Bay 

 

 (1)  Prediction model setup 

Table 4-2 shows the linear regression models developed for Trinity Bay and San 

Jacinto Bay. The models are constructed using two variables: water temperature anomalies 

and the discharge anomalies of the Trinity River. A prediction model of the averaged chla 

of the northern segment (Trinity Bay and San Jacinto Bay combined) is also developed, 

in which discharge from the San Jacinto River is included as well. This result is later 

compared with the results from two segments separately.  

 Both in Trinity Bay and San Jacinto Bay, the prediction models perform 

reasonably well in AMJ and JAS (p < 0.001 and p < 0.05, respectively), indicating that 

chla anomalies can be forecasted using the discharge anomalies from the Trinity River 

alone. However, in JFM, when spring algal blooming starts, the linear regression 

performance is not very significant (R2 = 0.22 in Trinity Bay and 0.24 in San Jacinto Bay). 

This suggests that just considering the influences from river discharge and water 

temperature – but excluding the other environmental factors such as nutrient 

concentration, solar radiation, salinity, or intense pollution events, etc. – would affect the 

accumulation of biomass during the spring and, in turn, cause uncertainties in chla 

prediction. Furthermore, interactions between those factors and chla could be more 

complicated than just the simple linear relationships. In OND, although the correlation is 

insignificant (R2 = 0.11) in Trinity Bay, the resulted MAE and RMSE are very small, 

indicating small biases from the prediction model. This means the prediction model in this 
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seasonal group can still produce acceptable results over Trinity Bay. In San Jacinto Bay, 

water temperature can be used for chla prediction with high significance (p < 0.05), which 

is consistent with the correlation results in Figure 4-7 and Figure 4-8. 

Table 4-2(c) shows the performance of the regression model over the entire 

northern segment containing inflow from the San Jacinto River. As compared to the results 

in Table 4-2(a) and (b), the prediction model performs well in JFM. This suggests that the 

within the chla prediction model, ignoring the San Jacinto inflow would add to the chla 

forecast error, especially in JFM.   

 

Table 4-2. Prediction models developed in (a) Trinity Bay; (b) San Jacinto Bay; (c) Trinity 
Bay and San Jacinto Bay combined. 

(a) 

Seasonal group equation R2 MAE 
(µg/L) 

RMSE 
(µg/L) p-value 

JFM CT = -0.439 + 0.005QT – 0.285T 0.22 2.69 3.24 0.46 

AMJ CT = -0.389 + 0.014QT  0.77 1.83 2.25 <0.001*** 

JAS CT = -0.273 + 0.006QT  0.75 0.7 1.02 <0.001*** 

OND CT = -0.404 – 0.537T 0.23 1.12 1.52 0.38 

(b) 

Seasonal group equation R2 MAE 
(µg/L) 

RMSE 
(µg/L) p-value 

JFM CS = -0.084 + 0.007 QT – 0.438T 0.24 2.57 3.46 0.26 

AMJ CS = 0.616 + 0.011QT 0.56 2.36 3.25 <0.01** 
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Table 4-2. Continued. 

(b) 

Seasonal group equation R2 MAE 
(µg/L) 

RMSE 
(µg/L) p-value 

JAS CS = 0.185 + 0.003QT 0.38 0.91 1.29 <0.05* 

OND CS = -0.229 – 0.677T 0.41 1.01 1.24 <0.05* 

(c) 

Seasonal group equation R2 MAE RMSE p-value 

JFM Cavg = 0.107 + 0.014 QT – 0.040QS 0.64 1.75 2.03 <0.01** 

AMJ Cavg = -0.084 + 0.013QT 0.73 1.97 2.33 <0.001*** 

JAS Cavg = -0.134 + 0.005QT 0.75 0.71 0.95 <0.001*** 

OND Cavg = -0.351– 0.580T 0.29 1.09 1.40 0.10. 

Significant codes: p < 0.001 ***; 0.001 < p < 0.01 **; 0.01 < p < 0.05 *; 0.01 < p < 0.1. 

Where CT is chla anomaly in Trinity Bay; CS is chla anomaly in San Jacinto Bay; 

Cavg is chla anomaly of the entire northern segment; QT is discharge anomaly for the Trinity 

River; QS is the discharge anomaly for the San Jacinto River; and T is water temperature 

anomaly.  

 

(2)  Model validation 

The prediction equations are validated using the testing dataset during the period 

of January 2009 – December 2011. The statistic results are shown in Table 4-3. For all 

four seasonal groups, the model validation results show the good predictable performance 

in Trinity Bay and San Jacinto Bay. For Trinity Bay, although the R2 value is very low in 
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JAS, the model still shows acceptable skills with low MAE (0.92 µg/L) and RMSE (1.32 

µg/L). For the whole northern segment, all of the statistic values indicate the prediction 

model performs better than the models generated over an individual segment (Trinity or 

San Jacinto). 

Table 4-3. Prediction model tested over Trinity Bay and San Jacinto Bay. 

 Trinity Bay San Jacinto Bay Whole northern segment 

Seasonal group R2 MAE 
(µg/L) 

RMSE 
(µg/L) R2 MAE 

(µg/L) 
RMSE 
(µg/L) R2 MAE 

(µg/L) 
RMSE 
(µg/L) 

JFM 0.74 3.95 5.33 0.80 2.47 3.35 0.74 3.16 3.58 

AMJ 0.45 3.07 3.89 0.43 2.53 2.99 0.46 2.52 3.14 

JAS 0 0.92 1.32 0 1.38 1.50 0 0.77 1.15 

OND 0.18 1.62 1.90 0.54 0.84 1.04 0.27 1.33 1.57 

All 0.59 2.39 3.50 0.59 1.80 2.42 0.66 1.94 2.57 

 

Figure 4-13 suggests that the prediction models performance well in both Trinity 

Bay (R2 = 0.60) and San Jacinto Bay (R2 = 0.61). The models, however, do have a 

tendency of underestimating the peak values, especially in the wet years (e.g., 2003, 2007, 

2008, 2009 and 2010). Those peaks of chla concentrations usually occur between March 

and May, such as in May 2009 and March 2010. In constructing the models, discharge 

from the Trinity River is employed as the primary inflow driving the chla variations, both 

in Trinity Bay and San Jacinto Bay. However, even though the influence of discharge from 

the San Jacinto River is found relatively insignificant on regulating chla concentrations in 
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each of the two northern segments, the analysis of the whole northern segment (Table 4.2) 

indicates that ignoring the discharge from San Jacinto River in the prediction model leads 

to less robust results.  

 

 

(a) 

(b) 

R2=0.61 
MAE=1.82 µg/L 
RMSE=2.65 µg/L 

R2=0.60 
MAE=1.72 µg/L 
RMSE=2.48 µg/L 

Prediction 
Observation The grey part is the period used for model validation. 

R2=0.73 
MAE=1.55 µg/L 
RMSE=2.05 µg/L 

(c) 

Figure 4-13. Model prediction results (red) and observation (blue) in (a) Trinity Bay; (b)  
San Jacinto Bay; (c) the whole northern segment (the shading indicates the testing 
period). 
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4.3.2 East Bay and Lower Bay 

 

(1) Prediction model setup 

The approach as described in 4.3 is applied to East Bay and Lower Bay for 

developing the prediction models. As shown in Figure 4-4, high correlations of the chla 

concentrations are found between these two segments, between East Bay and Trinity Bay, 

as well as between Lower Bay and San Jacinto Bay. Thus, even these two segments are 

neither directly connected to the Trinity River nor the San Jacinto River, their chla 

concentrations are still much affected by the freshwater loading from these two major 

rivers. 

The results in Table 4-4 show that chla anomalies can be predicted well both in 

East Bay and Lower Bay using discharge anomalies from the Trinity River alone in all 

seasons except for OND.    

Table 4-4. Prediction models developed in (a) East Bay; (b) Lower Bay. 

(a) 

Seasonal group equation R2 MAE 
(µg/L) 

RMSE 
(µg/L) p-value 

JFM CE = -0.728 + 0.010QT 0.39 1.91 2.31 <0.01** 

AMJ CE = -0.037 + 0.006QT 0.78 1.01 1.22 <0.001*** 

JAS CE = -0.105 + 0.004QT 0.50 0.80 0.98 <0.001*** 

OND CE = -0.662 – 0.001 QT 0.22 0.81 1.01 0.46 
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Table 4-4. Continued. 

(b) 

Seasonal group equation R2 MAE 
(µg/L) 

RMSE 
(µg/L) p-value 

JFM CL = -0.869 + 0.013QT 0.34 2.44 3.00 <0.01** 

AMJ CL = -0.318 + 0.007QT 0.68 1.34 1.55 <0.001*** 

JAS CL = -0.029 + 0.002QT 0.46 0.56 0.74 <0.01** 

OND CL = -0.080 – 0.356T 0.24 2.13 2.68 0.25 

Significant codes: p < 0.001 ***; 0.001 < p < 0.01 **; 0.01 < p < 0.05 *; 0.01 < p < 0.1. 

Where CE is the chla anomaly of East Bay; CL is the chla anomaly of Lower Bay. 

 

(2) Model validation 

The model validation results in East Bay and Lower Bay are provided in Table 4-

5. Considering the four seasonal groups, all R2, MAE and RMSE values indicate the robust 

performance of the prediction model. Similarly, in Figure 4-14, the predicted chla time 

series agree well with the observations. Still, the prediction model has some weakness in 

accurately representing the peak chla values (especially in 2005, 2007, 2008 and 2010). 
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Table 4-5. Prediction model tested over East Bay and Lower Bay. 

 East Bay Lower Bay 

Seasonal group R2 MAE (µg/L) RMSE (µg/L) R2 MAE (µg/L) RMSE (µg/L) 

JFM 0.90 2.82 4.44 0.88 3.40 6.26 

AMJ 0.51 1.74 2.11 0.60 1.28 1.55 

JAS 0.13 0.44 0.66 0.12 0.61 0.76 

OND 0.42 1.50 1.72 0.27 1.00 1.13 

All 0.80 1.59 2.63 0.82 1.57 3.30 

 
 
 
 

 

 

 

 

 

 

 

 

 

  

R2=0.67 
MAE=1.27 µg/L 
RMSE=1.91 µg/L 

R2=0.66 
MAE=1.39 µg/L 
RMSE=2.38 µg/L 

(a) 

(b) 

Prediction 
Observation The grey part is the period used for model validation. 

Figure 4-14. Model prediction results (red) and observations (blue) in (a) East Bay; (b) 
Lower Bay (the shading indicates the testing period). 
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4.3.3 West Bay 

 

(1) Prediction model setup 

Compared with other segments, West Bay has the lowest chla concentrations with 

little variations over the 10-year period. Using the same approach, the prediction model is 

developed in West Bay. Table 4-6 shows that the only the prediction equation for JFM can 

pass the significance test. Chla in this segment can be predicted by MEI alone, which 

indicates the strong influence of climatological variability and El Niño Southern 

Oscillation (ENSO) on chla in West Bay. In JAS and OND, chla anomalies are constant 

values. It shows that in those two seasonal groups, the chla anomalies are insensitive to 

any of the environmental drivers selected in this study. Thus, chla concentrations in JAS 

and OND are dominated by the seasonal climatology.   

 

Table 4-6. Prediction models developed in West Bay. 

Seasonal group equation R2 MAE 
(µg/L) 

RMSE 
(µg/L) p-value 

JFM CW = -0.132 + 1.156MEI 0.57 0.94 1.18 <0.01** 

AMJ CW = -0.166 + 0.259MEI 0.13 0.70 0.92 0.59 

JAS CW = 0.0004 0.04 0.47 0.68  

OND CW = 0.0008 0.65 0.79 1.13  

Significant codes: p < 0.001 ***; 0.001 < p < 0.01 **; 0.01 < p < 0.05 *; 0.01 < p < 0.1. 

Where CW is the chla anomaly of West Bay. 
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(2) Model validation 

The model validation results in West Bay are shown in Table 4-7 and Figure 4-15. 

Even with the relatively low R2, considering the lower MAE (0.99 µg/L) and RMSE (1.40 

µg/L), the prediction model performs reasonably as well. However, similar deficiency of 

model prediction ability is observed in representing annual peak values of chla. Thus, 

during the wet year, more environmental factors need to be considered to develop 

prediction models for predicting severe events, such as harmful algal blooms (HABs). 

 

Table 4-7. Prediction equation tested over West Bay. 

Seasonal group R2 MAE (µg/L) RMSE (µg/L) 

JFM 0.56 1.15 1.49 

AMJ 0.33 1.34 1.91 

JAS 0.02 0.47 0.57 

OND 0.35 1.01 1.30 

All 0.47 0.99 1.40 
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4.3.4 Relationship between air temperature and water temperature 

 

Because water temperature is difficult to model, we used an empirical regression 

method to estimate the water temperature from the climate model forecasted air 

temperature.  The linear relationship between the air and water temperature was developed 

using observation data (Figure 4-16). Hourly water temperature data was acquired from 

the Texas Water Development Board (TWDB) and hourly air temperature data was also 

collected by NOAA. In both cases, observations were averaged to monthly value to 

develop the relationship shown in Figure 4-16. This regression equation provides the 

feasibility for chla prediction by using air temperature, even when water temperature data 

is lacking. 

 

 

 

Figure 4-15. Model prediction results (red) and observation (blue) in the West Bay (the 
shading indicates the testing period). 

R2=0.58 
MAE=0.81 µg/L 
RMSE=1.14 µg/L 
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Figure 4-16. Linear regression relationship between air temperature and water 
temperature. 
 
  

Y = -0.76 + 1.1 X 
(R2 = 0.988, p < 0.01) 
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5. DISCUSSION 

 

The spatial distributions of chla concentrations in Galveston Bay show relatively 

higher values in the northern segments compared with the southern segments in different 

locations. This finding is similar with research conducted in other bays, such as the 

Chesapeake Bay (Harding et al. 2016) and Pensacola Bay (Le et al. 2016). In addition, the 

positive response of chla to discharge is consistent with research results shown in other 

bay areas, which indicates the significant influence of discharge from inland on algal 

growth. Low chla concentration in West Bay indicates that in the parts of the bay linked 

to sea, high salt content will restrain the growth of algae.  

The study by Roelke et al. (2013) using in situ data showed that correlation 

performances between chla concentration and discharge from rivers were different in 

Trinity Bay and San Jacinto Bay. The discharge from the Trinity River had negative 

influence on chla in Trinity Bay. Positive influence was observed between discharge of 

the San Jacinto River and chla in San Jacinto Bay. However, in this study by using chla 

derived from remote sensing data, it suggests that chla in both San Jacinto Bay and Trinity 

Bay have positive correlations with discharge from the Trinity River. Different datasets 

with different spatial and temporal resolutions were analyzed in these two studies. A single 

point and one monitoring data per month for each of these segments is used in Roelke et 

al. (2013), but in this study, the dataset with 3-day records for around 260m × 300m spatial 

resolution of the whole bay are used and the value of all cells within these segments are 

averaged and analyzed.  At the same time, research time periods with over 10 years are 
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different with the research from Roelke et al. (2013) (two years of 2005 and 2006 are 

explored), which will contribute to the different results. 

Small errors can be introduced to the chla prediction model when the water 

temperature time series are a result of data from multiple locations. At different monitoring 

stations, water temperature are slightly different (Figure A-2 in Appendix A). When 

temperature data borrowed from other stations, the predictions of chla can be biased, 

especially in JFM and OND. The error introduced by 1 ̊C difference ranges from -0.677 

µg/L (4.4%) in San Jacinto Bay to -0.148 µg/L (1.1%) in OND, which is larger than the 

error in JFM (maximum is -0.438 µg/L in San Jacinto Bay). 

 Moreover, unlike the results shown in Tampa Bay in Florida (Le et al. 2013) 

where positive correlation exists between chla and MEI, no significant correlation is 

observed between the two in Galveston Bay (except for JFM in West Bay). Directly 

connected with Gulf of Mexico, West Bay is more affected by climatological variation 

(e.g., ENSO). Thus, based on MEI, chla can be predicted in this segment.  

This research focuses solely on freshwater inflow volume and climatic factors 

(mainly water temperature and MEI). However, other elements can contribute to chla 

concentration variations as well, such as water quality parameters (like phosphorus and 

nitrogen), the hydrodynamic condition, solar radiation and sediment transportation. In 

addition, biological processes – including the overall food chain (e.g. grazing by 

zooplankton, filtration by shellfish, etc.), and the growth cycle of algae – may also affect 

the chla concentration level. Without considering those complicated causes of chla 

variability and mechanical physical-chemical-biological processes, uncertainties for chla 
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prediction will be introduced in this research. Therefore, challenges still exist for 

developing a more comprehensive understanding about the interactions between chla and 

environmental factors. Thus, by combining with mechanism model with data-driven 

approaches to consider the physical-chemical-biological processes, the models for chla 

prediction would be more profound and meaningful for eco-environmental management 

in Galveston Bay and other estuary region. 
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6. CONCLUSIONS 

 
 

As the seventh largest estuaries in the U.S., Galveston Bay has significant 

ecological, economic and recreational values for the State of Texas. The objectives of this 

study are to identify the spatial-temporal variations of chla, and to investigate the impacts 

of freshwater inflow and climatic factors on chla variability – so that prediction models 

can be developed for chla forecasting in Galveston Bay.  

A 10-year validated remote sensing dataset are used to study the spatial-temporal 

variations of chla concentrations in Galveston Bay. Three environmental factors – 

discharges from the Trinity River and the San Jacinto River, water temperature, and MEI 

– are chosen to explore their interactions with chla concentrations over different segments 

and during different seasons. Using the key drivers identified, the prediction models are 

developed in the five segments. The results show that: 

(1) The spatial distributions of chla concentrations have shown clear patterns in 

Galveston Bay. Spatially, the chla concentrations are low near the river outlet and round 

the Houston ship Channel (HSC). Otherwise, the chla concentrations near the shoreline 

are typically higher than that in the center of the bay. In addition, chla in the northern 

segments has the higher value than the southern parts. The highest value usually occurs in 

San Jacinto Bay, followed by Trinity Bay, East Bay, Lower Bay and West Bay.  

(2) Temporally, the inter-annual variabilities of chla are related to hydrological 

year by locations. Over the 10-year study period (from 2002 to 2011), the highest chla 

concentration is found in the wettest year (2010), followed by a sharp decrease in extreme 
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drought year (2011). The seasonal fluctuations of chla are higher during the wet months 

(from February to May) compared with the other months (especially from August to 

December). Both annual and inter-annual variations in the northern segments are greater 

than the southern segments.  

(3) After eliminating the seasonal variations from the chla concentrations and the 

environmental factors, correlation analysis results suggest that discharge anomalies have 

positive effects on chla anomalies, while water temperature anomalies exhibit negative 

effects. The key driving factors of chla vary in different seasonal groups. For the whole 

bay area (except for West Bay), chla is primarily determined by discharge from the Trinity 

River in AMJ and JAS. However, in OND, the main driving factor is water temperature. 

In JFM, all of the factors (except for the discharge from the San Jacinto River) show 

significant correlations with chla concentrations. Additionally, correlation relations also 

exist among those factors themselves.  

(4) Chla prediction models are developed based on correlation analysis, multiple 

linear regression and stepwise regression. Overall, the prediction models have performed 

well in different segments and seasonal groups (0.58 < R2 < 0.73, 0.81µg/L < MAE < 1.82 

µg/L, 1.14 µg/L < RMSE < 2.65 µg/L). However, those models are still limited in 

predicting the annual peak value of chla (also see Appendix B). Thus, other factors – such 

as nutrients, solar radiation, salinity, intense pollution events – may have played 

considerable roles in stimulating extreme events (e.g. HABs). 

In general, this research provides a comprehensive understanding on interactions 

between chla concentrations and a set of key environment factors. Quantitative prediction 
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models of chla are developed and tested for Galveston Bay. The advantages of using a 

remotely sensed long-term chla dataset are fully demonstrated. The results can provide 

scientific guide for coastal environmental management, maintaining the eco-

environmental health and reducing eutrophication risk in the future in Galveston Bay. 
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APPENDIX A 
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Figure A-1 Water temperature monitoring station in Galveston Bay from Texas Water 
Development Board (TWDB) 

Figure A-2 (a) Monthly water temperature time series from May 2002 to December 
2012 (b) The water temperature differences among three monitoring station from 2009 to 
2011.  
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To identify the uncertainties/errors associated with the use of water temperature 

from multiple stations, the water temperature differences among those three stations are 

compared with each other in A-2(b). It shows that usually, from June to August, water 

temperature in northern part is higher than the lower part (Trin > Midg > Boli). In contrast, 

from October to February of the next year, water temperature shows the lower parts have 

higher values than the northern parts (Boli > Midg > Trin). The largest difference occurs 

between Boli station and Trin station. However, even there is the water temperature 

difference existing, its range is among –1 ̊C~2 ̊C. Because it is difficult to obtain the 

completed water temperature data all from one monitoring station. Data from other 

stations nearby are used to fill in the missing data to complete analysis. In this study, 

temperature in Boli is used for analysis and data from Midg is borrowed to fill in the 

missing values.  
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APPENDIX B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Trinity Bay (b) San Jacinto Bay 

(c) Northern Segments average 

Figure B-1 Comparison between prediction and observation chla in (a) Trinity Bay, (b) 
San Jacinto Bay and (c) Northern Segments average.  
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(a) East Bay (b) Lower Bay 

(c) West Bay 

Figure B-2 Comparison between prediction and observation chla in (a) East Bay, (b) 
Lower Bay and (c) West Bay.  


