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ABSTRACT 

 

Pool boiling phenomena on different types of heater configurations have been 

explored in the heat transfer literature. Pool boiling experiments on heaters with 

nanostructured surfaces have gained popularity in contemporary literature for microchip 

cooling application. The thermal management challenges for cooling of electronic chips 

have become more acute with decrease in the size for these microchips with concomitant 

increase in device density and heat flux. Pool boiling is expected to provide appropriate 

technology solutions to meet these challenges for high heat flux cooling at low 

temperature differentials. 

    In this study, results obtained from pool boiling experiments were analyzed. The 

experiments were performed using heaters with plain surfaces (copper and silicon) and 

nanostructured surfaces (Anodic Aluminum Oxide/AAO). In these experiments, high 

speed digital image acquisition apparatus was used to record bubble dynamics (nucleation, 

growth and departure) for both nucleate and film boiling regimes. The videos were used 

to obtain the bubble diameter at departure, bubble growth rates (bubble height as a function 

of time) and bubble departure frequency. The objective of these experiments was to 

explore the change in bubble dynamics for different heater configurations in order to 

ascertain their role in the observed changes in the values of pool boiling heat flux as a 

function of wall superheat (i.e., from the boiling curves obtained in these experiments). 

These experiments were performed for saturated boiling conditions as well as for liquid 

subcooling of 5 °C and 10 °C. The test fluid was PF-5060 (Manufacturer: 3M Corp.). The 
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experimental apparatus utilized in this study consisted of a visualization chamber, 

cartridge heaters, power supply, high speed digital data acquisition system and chiller unit. 

Temperature nanosensors (Thin Film Thermocouples/ TFT) as well as wire bead 

thermocouples were used for measurement of wall superheat. Micro/ nano-fabrication 

techniques were utilized in this study for realizing the test surfaces integrated with 

temperature nanosensors. 

The data gleaned from these experiments were compiled to obtain a correlation for 

the optimal heat transfer for different heater surface configurations. Literature review was 

also performed in this study to compare the experimental results with correlations for 

bubble dynamics available in the literature. The experimental results for bubble dynamics 

show that while silicon and copper surfaces have similar values for bubble departure 

diameter, the variability in the bubble departure frequency values for copper heater 

experiments were larger than that of silicon heaters. This trend is potentially due to large 

variation in surface roughness on copper heaters compared to that of silicon wafers (which 

are single crystal silicon substrates and therefore are atomically smooth at the 

commencement of the experiments). Heaters with nanostructured surfaces (e.g., for AAO 

heaters) were observed to yield smaller bubble departure diameters and higher bubble 

departure frequencies. 



 

iv 

 

DEDICATION 

 

This work is dedicated to my mother, father, sister and boyfriend, who guided me 

and gave me the strength needed to finish this program. 



 

v 

 

ACKNOWLEDGEMENTS 

 

I would like to thank my committee chair, Dr. Debjyoti Banerjee, and my 

committee members, Dr. Karen Kirkland and Dr. Jonathan Felts, for their guidance and 

support throughout the course of this research. 

Acknowledgements are also extended to Dr. Hongjoo Yang, Mr. Binjian Ma, and 

Mr. Yi Wang who helped perform the experiments and assemble the experimental 

apparatus as well the micro/nano-fabrication and materials characterization. I would also 

like to acknowledge Ms. Shambhobi Bhattacharya from IIT Kharagpur, Ms. Cynthia 

Gamboa from University of Texas in El Paso, and Mr. Alfonso Vallejo from University 

of Texas Brownsville for their contributions into the data collection and analysis. Mr. 

Navin Kumar also receives my thanks for providing some of the figures for this paper. 

Thanks also go to my friends, colleagues in the research group of Dr. Banerjee, 

departmental faculty and staff for making my time at Texas A&M University a great 

experience. Finally, thanks to my mother, father, and sister for their encouragement and 

to my boyfriend for his patience and love.  



 

vi 

 

NOMENCLATURE 

 

AAO Anodic Aluminum Oxide 

A  surface area (m2) 

Bo Bond number 

cp specific heat (J/kg-K) 

CF calibration factor (pixels/mm) 

Cg geometric factor 

CHF Critical Heat Flux 

dD departure diameter of bubble (mm) 

Dc critical cavity diameter (m) 

Dcl contact line length (m) 

f departure frequency of bubble (1/s) 

Fb buoyancy force (N) 

Fs surface tension force (N) 

Fg force of gravity (N) 

g gravitational acceleration (m/s2) 

hfg latent heat of vaporization (J/kg) 

Ja Jacob number 

Ja* modified Jacob number  

k thermal conductivity (W/m-K) 

N nucleation site density (1/m2) 
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Pr  Prandtl number 

q”  heat flux (W/cm2) 

r  radius of cavity (m) 

t  elapsed video time (ms) 

Tsat saturation temperature (°C) 

Tw wall temperature (°C) 

𝑉̇ volumetric flow rate of vapor (m3/s) 

y y-coordinate measurement (pixels) 

 

Greek symbols 

α thermal diffusivity (m2/s) 

θ contact angle (degrees) 

μ dynamic viscosity (Pa-s) 

ρ density (kg/m3) 

σ surface tension (N/m) 

ω uncertainty  

 

Subscripts 

l liquid 

v vapor 
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1 INTRODUCTION  

1.1 Background 

Improved methods are needed to prevent overheating of microchips in electronic 

devices. Non-uniform temperature distribution (“hot-spots”) and overheating of 

microchips are serious issues as they cause severe decline in performance of these devices 

with increase in operating temperatures. As the size for these microchips decrease with 

concomitant increase in operating frequencies (as well as operating power ratings), the 

heat flux increases (and therefore, the cooling loads for the dissipated heat - by the thermal 

management platforms increases). Fin-fan cooling was the standard protocol for heat 

dissipation in early generation of microchips and packages. Traditionally, fin-fan cooling 

leveraged the use of fins in heat sinks and fans to improve the cooling efficacy of packages 

used for electronic components with the goal of preventing these systems from 

overheating.  However at high heat fluxes, large form-factors for fans and heat sinks would 

be required, rendering this approach uneconomical and impractical for use. Hence, pool 

boiling is regarded as an alternative option for microchip cooling as it affords large heat 

flux values to be achieved for small enough temperature differences between a hot surface 

and working fluid. 

One of the benefits accrued from employing boiling is the high heat flux values 

obtained at small temperature difference between a hot surface and the working fluid (this 

is typically the same range of temperatures used for single phase convection heat transfer 

in fin-fan cooling applications). A multitude of transport mechanisms are non-linearly 

coupled during pool boiling, such as: mass transfer, latent heat transfer (phase change), 
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forced or natural convection heat transfer, periodic transient conduction through solid-

liquid contact effects, and microlayer effects (nano-scale transport phenomena at liquid-

vapor and solid-liquid interfaces). The fluid movement at the heater surface is induced by 

the periodic inception, growth and departure of vapor bubbles (due to buoyancy forces) 

that in turn leads to a combination of forced and free convection of the liquid phase. Pool 

boiling can be classified into specific regimes: nucleate, transition and film boiling. 

Depending on the bulk temperature of the liquid phase - boiling can also be classified as 

subcooled and saturated.  Subcooled boiling occurs when the bulk temperature of the 

liquid phase is below the saturation temperature (boiling point). In saturated boiling the 

bulk temperature of the liquid phase is at the saturation temperature (boiling point). The 

difference between the heater temperature (Tw) and the saturation temperature of the 

boiling liquid (Tsat) is called the “Excess Temperature” or “Wall Superheat” (Te). The 

plot of wall heat flux as a function of wall superheat is called the boiling curve. Nukiyama 

proposed the use of boiling curve to describe the various regimes in boiling [1]. Figure 1-

1 shows a typical boiling curve on a “large” horizontal metallic heater surface with various 

regimes of saturated pool boiling for typical working fluids (e.g., water).  
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Figure 1-1 Typical pool boiling regimes for water at 1 atmosphere 

 

1.2 Boiling Curve 

When the heater surface is at the boiling point (Te = 0 °C) free convection governs 

the fluid motion in this region and the bubbles are not visible at this time. Onset of 

Nucleate Boiling (ONB) is typically observed at non-zero wall superheat (for water, 

typically, Te > 3~5 °C). ONB is characterized by the inception of isolated bubbles on the 

heater surface. Bubbles typically nucleate in surface imperfections on the heater – such as 

cavities, grooves and scratches that are typically several microns in size. At this condition 

a good proportion of the nucleated bubbles are in dynamic equilibrium resulting in very 

small growth rates and often the bubbles do not depart from the boiling surface. The total 

heat flux on the heater surface is equitably distributed between free convection heat 

transfer and phase change heat transfer.  
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As the wall superheat is increased beyond the ONB condition, the nucleation site 

density of the bubbles on the heater surface increases along with enhancement in the 

growth rates and departure frequency of bubbles from the heater surface. This induces 

additional convection in the bulk of the liquid phase away from the surface of the heater 

by the departing bubbles that have risen in the liquid pool due to buoyancy induced 

convection. This is termed as Partial Nucleate Boiling (PNB) where only a few of the 

larger-sized cavities on the heater surface have nucleating bubbles. Increasing the wall 

superheat results in further increase in nucleation site density since progressively smaller 

cavities on the heater surface nucleate. Fully Developed Nucleate Boiling (FDNB) regime 

is established when the wall superheat reaches a critical value resulting in all of the cavities 

available on the boiling surface to activate and start nucleating bubbles. Any further 

increase in wall superheat leads to vertical coalescence of the vapor bubbles – since the 

rate of vapor bubble production from the heater surface marginally exceeds the rate at 

which bubbles depart from the heater surface (bubble departure frequency) due to 

hydrodynamic forces (e.g., buoyancy and inertia forces). Coalescence of the vapor bubbles 

in the vertical direction leads to the formation of “vapor jets” and “mushroom shaped 

vapor columns”.  

As the number density of vapor jets (per unit area) on the heater surface increases 

with increase in wall superheat – it reaches the limit of vapor production from the heater 

surface – leading to an unstable regime, which is termed as the “Critical Heat Flux (CHF)” 

point. This is also called the “Maximum Heat Flux” condition - since this is typically the 

maximum possible heat flux that can be obtained from the heater surface under pool 
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boiling conditions. At CHF the heater surface is typically modeled to be covered with 

vapor jets that are spaced in an array with the pitch of the jets being proportional to the 

Taylor instability wavelengths. For typical fluids (e.g., water and refrigerants) CHF 

conditions is reached for wall superheat values less than 20 °C. In FDNB and CHF the 

free convection heat transfer is a minute fraction (less than 2 ~ 3%) of the total heat flux.  

Any further increase in wall superheat beyond CHF conditions causes a decrease in heat 

flux due to complex hydrodynamic interactions between the liquid and vapor phases, and 

this unstable pool boiling regime is called “Transition Boiling (TB)”. The heat flux values 

obtained in TB are difficult to replicate since the fluctuations in the rate of change of heater 

surface temperature leads to different values of heat flux and steady state conditions are 

not easily achieved in this mode of boiling. In TB – the vapor removal process due to 

hydrodynamic/ buoyancy forces in the axial direction are inadequate to remove excess 

mass in the vapor jets causing a few of the vapor jets to merge laterally in the transverse 

direction. This lateral merger leads to the formation of vapor films that act as an insulating 

blanket on the heater surface. Hence the heat flux from a part of the heater is reduced 

leading to formation of local “hot spots” on the heater surface which leads to further 

growth of the film boiling region on the heater surface. Under these conditions – reducing 

the wall superheat leads to higher heat fluxes while increasing the wall superheat causes 

reduction in the total heat flux from the heater surface.  

Eventually, at high wall superheat values (e.g., 100 ~ 200 °C for water at a system 

pressure of 1 atmosphere) the entire heater surface is covered with a uniform vapor film 

and this regime is termed as “Film Boiling (FB)”. Vapor bubbles are formed periodically 
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due to fluid instability (e.g., Taylor instability). Bubbles that form from this vapor film 

grow and depart at much reduced frequency but have larger departure diameters with a 

lower number density on the heater surface. This occurrence results in substantially 

smaller heat flux values compared to CHF. Free convection heat transfer from the vapor 

film surface into the liquid pool is a significant fraction of the total heat transfer. In 

addition, radiation heat transfer at these high temperatures can significantly enhance the 

net heat flux values.  Decrease in wall superheat in film boiling causes proportional 

decrease in heat flux values (in contrast, during transition boiling - decrease in wall 

superheat can lead to increase in wall heat flux). However, at a critical value of the wall 

superheat the stable vapor film collapses causing a part of the heater surface to operate in 

partial nucleate boiling regime while remaining part of the heater surface is covered with 

a blanket of vapor film. As a result, the systems reverts to Transition Boiling (“TB”) 

regime once again. This critical value of wall superheat is known as the “Leidenfrost 

Point” (“LP”) and the associated value of heat flux is called the “Minimum Heat Flux 

(MHF)” in pool boiling.  Any further decrease in wall superheat causes progressive 

increase in proportion of the heater surface to be in the nucleate boiling regime until the 

entire heater surface operates in the nucleate boiling regime. The progression of the boiling 

curve from FDNB to CHF to TB to FB to LP and further to PNB is termed as the “boiling 

hysteresis” since different values of heat fluxes are reached when the wall superheat is 

increased beyond CHF or decreased below stable FB.    

Often in engineering applications the high heater temperatures that result in 

transition boiling (or film boiling) when CHF condition is exceeded causes heaters to melt 
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leading to catastrophic failures (such as the accident and melt-down of the nuclear power 

plant in Chernobyl) and is therefore termed as “burnout”. Hence, CHF is an important 

parameter that determines the safe operating conditions for the heater material. The 

imposed values of heat flux or wall superheat beyond that of the CHF condition could run 

the risk of melting the heater surface. Hence, in design of thermal systems, CHF is an 

important parameter that needs to be determined and accounted for during operation (or 

monitored so that CHF conditions are not exceeded). Similarly, the study of film boiling 

is important for developing safety protocols in the design of thermal systems, such as for 

scenarios involving melt-down of nuclear reactors, i.e., Loss of Coolant Accident 

(LOCA). Hence, the determination of the Leidenfrost Point (LP) is important in this 

regard. Transition Boiling has not received much attention in the literature since this is an 

unstable regime and therefore has not been exploited in design of thermal systems or other 

engineering applications.  

The boiling regimes are governed by different transport mechanisms (i.e., non-

linear coupling of various modes of mass transfer and heat transfer). To model and predict 

the thermo-fluidic interactions in each boiling regime it is essential to have a coherent 

cognition of the various types of interactions between each of these different transport 

mechanisms. Insights about the coupled non-linear interactions between the 

hydrodynamic and thermal transport mechanisms can enable the identification of the 

dominant transport mechanisms as well as the most sensitive parameters that control wall 

heat flux in various modes of pool boiling. Considering that latent heat transfer is the more 

dominant mode or the primary contributor to the total heat flux (in comparison to free 
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convection heat transfer) for major part of the boiling curve, the volumetric flow rate was 

estimated by Jensen and Memmel [2] as: 

𝑞" =  
𝜌𝑣𝑉̇ℎ𝑓𝑔

𝐴
 

(1) 

In this equation, hfg is the latent heat of vaporization, A is the area of the heater 

surface, and ρv is the density of the vapor bubble and 𝑉̇ is the net volumetric flow rate of 

vapor from the heater surface. The numerator equals the total heat transfer (q) accruing 

from phase change. The heat flux (q”), is evaluated by dividing the total value of heat 

transfer (q) by the total “projected” heater surface area (A). 

Volumetric flow rate of vapor emanating from the heater surface needs to be 

analyzed in order to predict the value of wall heat flux. The volumetric flow rate of vapor 

(𝑉̇) can be estimated by assuming that each bubble has a perfect spherical shape, as stated 

by Kutateladze and Gogonin’s research on growth rate and diameter of a bubble in free 

convection boiling [3]: 

𝑉̇ = (
𝜋

6
𝑑𝐷
3) 𝑓(𝐴𝑁) 

(2) 

where, N is defined as the active number of nucleation sites per unit area, dD is the bubble 

departure diameter, and f is the bubble departure frequency.  Hence the volumetric flow 

rate (as well as pool boiling heat flux) is most sensitive to the bubble departure diameter 

and moderately sensitive to the nucleation site density and the bubble departure frequency. 

It may be noted that bubble departure frequency depends on the bubble departure diameter. 

For example, larger bubbles typically require more time (during the inception-to-growth-
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to-departure cycle) and therefore have smaller values of bubble departure frequency. This 

implies that there is an optimum value of nucleation cavity size on the heater surface for 

which the vapor volumetric flow rate is maximized by amplifying the net product of the 

bubble departure volume and the bubble departure frequency.  

If convective heat transfer were to be the dominant factor instead, bubble departure 

diameter and bubble frequency would still be important parameters for quantifying the 

rate of fluid convection. Nucleation site density depends on the manufacturing process 

used for fabricating the heater and is beyond the scope of this study. Therefore, the scope 

of this study is focused on the measurement of bubble departure diameter and bubble 

departure frequency.  

The significant factors that affect the bubble dynamics on the heater surface are 

expected to be: the surface properties (e.g., roughness and contact angle or surface energy), 

wall superheat, and the thermo-physical properties of the fluid (such as surface tension, 

density, thermal diffusivity, viscosity, specific heat capacity and thermal conductivity). 

For high temperatures (such as in film boiling) the radiative properties of the fluid and 

heater surfaces also play a significant role. Insight into the mechanisms affecting pool 

boiling phenomena requires the analyses of forces acting on an individual vapor bubble 

located on a heater surface. Comparing the magnitude of the different forces (e.g., surface 

forces and body forces) – the force due to surface tension () and the buoyancy force - are 

the most significant forces that affect the growth and departure of a bubble. In contrast, 

the inertial forces (due to acceleration or deceleration) as well as drag forces are estimated 

to be much smaller in magnitude (approximately 10 ~ 100 times smaller in magnitude). 
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Hence, these latter forces are often neglected. Equating the surface tension and buoyancy 

forces on a departing bubble enables the estimation of the length-scale (lo) in boiling and 

is expressed as [4]: 

𝑙𝑜 = √
𝜎

[(𝜌𝑙 − 𝜌𝑣)𝑔]
 

(3) 

where ρl is the liquid density, and g is the acceleration due to gravity in the direction of 

bubble departure.  It can be expected that the bubble departure diameter (dD) is a linear 

function of lo and can be expressed as:  

𝑑𝐷 = 𝐶 · 𝑙𝑜  
(4) 

where C is a constant that depends on the thermo-physical properties of the fluid and the 

experimental conditions (e.g., wall superheat, liquid sub-cooling, etc.). Similarly, the 

bubble departure frequency (f) can be estimated from linear stability analysis (e.g., using 

Taylor instability analysis), by defining an equivalent growth rate (). This can be 

expressed as [4]:  

𝜔 = 2𝜋𝑓 = √
 𝜌𝑙 − 𝜌𝑔 𝑔

 𝜌𝑙 + 𝜌𝑔 𝑙𝑜
=

 𝜌𝑙 − 𝜌𝑔 
1
4𝑔

3
4

 𝜌𝑙 + 𝜌𝑔 
1
2𝜎

1
4

 

(5) 

These equations show that larger bubble departure diameters are expected in 

reduced gravity (such as in space based thermal systems) and therefore the bubble 

departure frequency will be lower in this scenario. Also, fluids with smaller density 

differences between liquid and vapor phases (such as for refrigerants) are expected to yield 
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proportionally larger bubble departure diameters but lower values of bubble departure 

frequency. Similarly as the surface tension decreases for the working fluids – the bubble 

departure diameter is expected to decrease with a concomitant increase in the bubble 

departure frequency. It is expected that inception of nano-bubbles on nanostructured 

heater surfaces are possible due to the lower values of surface tension that can occur under 

such special conditions [5]. Surface tension values can be reduced significantly when 

liquid-vapor interfaces are subjected to high electric field gradients or high concentration 

gradients (both of which are expected to occur during inception of nano-bubbles on heaters 

with nano-structured surfaces). Extreme values of concentration gradients can occur even 

for small fluctuations in ionic concentration (or even for small fluctuations in 

concentration of impurities dissolved in the liquid) that occur over very small distances on 

the liquid-vapor interface of the nano-bubble (which, during the inception process, is of 

the same order of magnitude as the inter-molecular spacing). Hence, simple model 

formulations, such as those mentioned above, can provide significant insights and enable 

the prediction of bubble departure phenomena. 

Typically, bubble nucleation is favored in dents, cavities, pits and grooves (surface 

imperfections or surface roughness) on a heater. This is possibly due to the trapped gasses 

(or from the dissolved gasses that are ejected from the working fluid into these surface 

imperfections when heated). The dents, cavities, and grooves on a surface thus serve as 

nucleation sites. The bigger grooves provide the optimum nucleation sites for bubble 

formation when the fluid is heated initially. As a bubble starts growing, the adhesive forces 

caused by surface tension tends to keep it attached to the surface. Hence, the contact angle 
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significantly influences the growth of vapor bubbles. As the bubble continues to grow, 

buoyancy steadily pushes it upward against the surface tension force, while the bubble 

continues to form its dome-like shape. A bubble departure cycle is comprised of two parts: 

waiting time (tw) and growth time (tg). The waiting time is defined as the time required to 

form a thermal boundary layer of a required thickness to enable bubble inception from a 

surface cavity. The growth time is the time taken by the bubble after inception to grow 

and reach the bubble departure diameter. Bubble departure diameter can be correlated to 

its growth time if the growth rate history of the bubble can be estimated (e.g., from linear 

stability analysis and thermal-hydrodynamic analysis). Smaller cavities produce smaller 

bubbles, which in turn have smaller wait times and larger growth times (and vice-versa 

for larger cavities). Inception of smaller bubbles accrue from smaller nucleation cavities, 

hence, the wait times are smaller since the transient conduction process governing the 

formation of the thermal boundary layer of the same height (i.e., equal to the cavity 

diameter) requires less time. Hence smaller bubbles require more growth time in order for 

the smaller bubbles to reach the departure diameter. As mentioned before, this implies that 

there exists a range of cavity sizes for which the optimum condition is reached to maximize 

the bubble departure frequency (i.e., to minimize the sum of waiting time and growth 

time). This also enables the vapor volumetric flow rate on the heater surface to be 

maximized.  

The analysis of bubble frequency and departure diameter helps in establishing the 

numerical structure of the correlations that are derived from boiling experiments. These 

numerical approaches also enable the comparisons for different experimental conditions 
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and can be used for evaluating the efficacy of the various transport mechanisms during 

boiling. It is essential to understand the correlation between different experimental 

parameters because this can help quantify the various heat transfer mechanisms occurring 

on the heater surface. Experimental validation and calibration of these correlations also 

enable reliable estimates to be derived for different segments of the boiling curve – such 

as CHF, MHF and for film boiling heat flux values as a function of wall superheat as well 

as for nucleate boiling heat flux values as a function of nucleate site density (it is assumed 

implicitly that the wall superheat and liquid sub-cooling conditions are specified in these 

analyses). Thus, the bubble departure diameter and bubble departure frequency 

correlations are needed as a means to estimate the heat transfer from various heater 

surfaces and configurations.  

The analyses of the trends of bubble departure diameter and the correlations 

provide the means to exploit heater surface configurations to enhance CHF, which can 

enable better thermal management schemes to be implemented (such as for electronic chip 

cooling). The correlations available in contemporary literature however suffer from the 

drawback of having a wide margin of variability. The data used to produce many of these 

correlations are also widely scattered, with large uncertainty values and often no 

discernible trends can be identified. Lack of repeatability of experiments often add to the 

enigma and reduce the reliability of these correlations. This necessitates careful 

implementation of experimental protocols for the purpose of generating reproducible data. 

Literature review suggests non-uniformity and scattered correlation trends. There are 

many correlations that provide specific trends for bubble dynamics for different heater 
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surfaces during pool boiling of various fluids in each boiling regime (e.g., PNB, FDNB, 

CHF, FB, LP, etc.).  

The investigation of bubble dynamics has been explored extensively in the 

literature for conventional heater surfaces. However, only few reports exist in the literature 

for investigation of bubble dynamics on nano-structured heater surfaces (e.g., for bubble 

departure diameter or frequency correlations).  The analyses of experimental data obtained 

from flow visualization experiments of bubble dynamics during pool boiling for various 

boiling regimes can provide additional insights about the coupling of thermal and 

hydrodynamic processes. This, in turn, can enhance our understanding of the coupled 

transport processes during pool boiling on conventional heater surfaces and heaters with 

nano-structured surfaces.  

 

1.3 Literature Review 

Boiling and condensation are ubiquitous in various thermal management 

applications. To name a few, applications include: climate control systems (e.g., HVAC), 

desalination, and electrical power generation ( [6] [7] [8] [9]). Surface texturing has been 

demonstrated to enhance boiling and condensation heat transfer by modulating the surface 

energy and surface roughness [7]. Different fabrication techniques for texturing of heat 

exchanging surfaces have been explored in the literature, such as, the top-down method 

(lithography with surface etching) or the bottom-up method (chemical oxidation) [8].  

Generally, lower values of CHF is undesirable as it can lead to instability during pool 

boiling. Therefore, various schemes to enhance CHF has been explored extensively in the 
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literature. Contemporary techniques employed for enhancing CHF include: oxidation to 

improve wettability, vibration of heaters for augmenting bubble departure, surface 

coatings for increasing effective heater surface area, heater rotation to promote bubble 

departure, fluid vibration for improved liquid circulation supply, and imposing electric 

fields for modulating wettability as well as increasing liquid renewal [10]. The scope of 

this literature review is focused on surface coatings.  

Conventional machining involves the traditional method of polishing, grinding or 

sand blasting. Most of these methods generally function to increase surface roughness of 

the material so that additional nucleation sites are created [11]. Surface coating techniques 

involve more invasive processes, and include vapor deposition, atomic layer deposition, 

sputtering, exposure to nanofluids, and spin coating. Chemical fabrication processes 

include wet etching and oxidation. These methods typically yield surface coatings 

containing nanowires which are patterned through photochemical etching. Micro/nano-

fabrication processes (e.g., typically used in MEMS/NEMS) can be adapted for fabricating 

nanostructured surfaces, which uses a combination of photolithography for etching and 

material deposition (e.g., by Physical Vapor Deposition/ PVD or Chemical Vapor 

Deposition/ CVD). This is adapted from techniques used in microfluidics, electronics 

fabrication/ semiconductor manufacturing (CMOS processes), microsensor fabrication, 

and nano/bio-fabrication [11]. 

A major proportion of the literature reports have focused on the behavioral studies 

that explored the variation in CHF for various types of surface textures. A small proportion 

of the reports in the literature have utilized these behavioral approaches to delve deeper, 
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i.e., by attempting to correlate these experimental results with the molecular interactions. 

This approach has enabled the identification of the underlying causes for the anomalous 

trends observed in the experimental measurements. For instance, Hu and Sun [12] 

discussed the effect of Kapitza resistance on heat flux values observed in boiling 

experiments performed using water on gold nanoparticle coated heater surfaces. In this 

study the values of Kapitza resistance was predicted to decrease with increased in the 

height of the nanoscale patterns on the heater surface. However, boiling in general was 

not observed to modulate the Kapitza resistance of the water-gold interface [12].  Heater 

size and height of the nanoscale patterns were described to be critical parameters in 

determining the level of boiling heat flux enhancement. Kwark et. al. [13] deduced that 

heater size, pressure and orientation were important for determining pool boiling 

performance. The authors also discussed that heat flux values were very sensitive to the 

variation in wettability (i.e., increased wettability would decrease resistance for bulk fluid 

movement).  

Microfabrication techniques were used for enhancing the effective surface area as 

well as for integrating heater surfaces with temperature sensors. A few studies in the 

literature have utilized microsensors that were integrated with artificially sculpted micro-

cavities on a heater surface to correlate their effect on the resulting bubble dynamics in 

pool boiling. Hutter et. al [14] reported that at atmospheric pressure the values of bubble 

nucleation density, departure diameter and frequency were not affected by the introduction 

of micro-cavities during nucleate pool boiling on a silicon surface (that was integrated 

with a micro-heater and temperature microsensors). However, increasing the pressure by 
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0.5 bar decreased the wall superheat significantly, with a concomitant increase in the 

bubble departure diameter. Hutter et. al. [15] in a separate study using these microsensors 

found good agreement with previous literature reports on bubble nucleation at lower 

values of wall superheat. However, bubble nucleation was found to be weakly sensitive to 

the cavity depth or system pressure. Hence, microfabrication techniques can be leveraged 

to enhance boiling heat flux as well as for experimental probing of the heater surface 

temperature.  

Reports in the literature have explored various schemes for surface modifications 

with  the aim of enhancing boiling heat flux for the same wall superheat (or achieve higher 

values of CHF, either higher or lower values of excess temperature). Some of the literature 

reports focused on enhancing the nucleate boiling heat transfer coefficient compared to 

plain surfaces ( [9] [16] [17] [18]), while other reports focused on utilizing nanoparticle 

deposition on heater surfaces using nanofluids to realize enhancement of CHF [19], as 

well as achievement of boiling incipience at lower values of wall superheat ( [16] [18] 

[20]). Increased wettability of nanostructured heater surfaces was reported to yield higher 

water adsorption and increased capillary wicking ( [13] [21] [22] [23]). Hence, the 

underlying theme in these studies demonstrate that micro/nano-fabrication techniques can 

be utilized to  realize nanostructured surfaces that can dramatically enhance pool boiling 

heat flux values. Increase in the surface roughness of the heater surface causes 

augmentation of the active nucleation sites during pool boiling ( [18] [24] [25] [26]). It 

was also reported that the there is a concomitant increase in bubble departure frequency 

while the bubble departure diameter was decreased ( [20] [24] [26] [27]). Higher values 
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of contact angle was associated with lower values of wall superheat at which boiling 

incipience was observed [22]. Similar observations were also recorded in condensation 

experiments where reduction in the wettability of the heat exchanging surfaces resulted in 

higher values of heat flux ( [8] [21]). 

The CHF enhancement on nanostructured surfaces have been explored in a few 

reports in the literature. Zou and Maroo [28] performed experiments using micro/nano-

scale ridges fabricated on heater surfaces composed of Silicon and Silicon Dioxide, with 

enhancement of CHF reported to be as much as 125% (while the surface area was 

estimated to increase by only 40%, for these surface structures). This demonstrates that 

the enhancement is mediated by other factors than just the augmentation of the effective 

surface area of nanostructures surfaces. The critical height for maximizing heat flux was 

reported to be ~450 nm for Si and ~900 nm for SiO2. Lu et. al. [9] reported a dramatic 

increase in CHF on surfaces with silicon nanowires compared to plain Si surfaces. In the 

absence of accurate metrology techniques for surface temperature measurements the study 

failed to compare the level of enhancement of CHF values on a percentage basis. The CHF 

values reported were 124.85 ± 16.21 W/cm2 for a 1.5 × 1.5 cm2 heater surface with etched 

surface nanostructures (Si nano-wires) while the values for plain Si wafer heaters were 

reported to be 46.82 ± 6.46 W/cm2. In a follow-on study by the same research groups the 

heater size was varied from 0.5 × 0.5 cm2 to 2 × 2 cm2. The CHF values were found to 

increase dramatically as the heater size was reduced. Hence, this illustrates that in the 

“small heater” regime the boiling heat flux enhancements observed in the experiments can 
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be confounded by the effect of the heater size. This phenomena will be discussed in more 

detail in following sections [9].  

From pool boiling experiments performed using aqueous nanofluids Kim et. al. 

[19] reported that CHF was enhanced by 170% and 180% for nanofluids containing TiO2 

and Al2O3 nanoparticles, respectively. Increasing the concentration of the nanoparticles 

was observed to marginally enhance the CHF values for TiO2 nanofluids but was observed 

to saturate for that of Al2O3 nanofluids.  Nanoparticle deposition on the heater wire surface 

was observed to occur in these experiments. When these heaters with nanoparticle 

precipitates were used for repeating the pool boiling experiments with pure water it was 

observed that the values of CHF were similar to that of the nanofluids experiments. This 

proves that the surface effects dominate over the bulk property values of the working fluid 

in enhancing CHF [19].  

Sathyamurthi et. al. [25] performed pioneering pool boiling experiments using 

heater surfaces coated with multi-walled carbon nanotubes (MWCNT) on a flat silicon 

wafer using Chemical Vapor Deposition (CVD) techniques. Two different values of 

MWCNT thickness were employed in these studies. The thickness of the MWCNT 

coatings were chosen to be 9 micrometers (Type A MWCNT) and 25 micrometers (Type 

B MWCNT). Pool boiling experiments were performed for both nucleate and film boiling 

regimes for both saturated liquid and subcooled conditions. Type B MWCNT coatings 

enhanced the CHF in saturated boiling by 58% and Type A MWCNT coatings enhanced 

the CHF in nucleate boiling by 62%. This is the only report in the literature involving 

carbon nanotubes for both film and nucleate boiling regimes [25]. This study also 
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contradicted observations by Launay et. al. that CNT coatings improved boiling heat 

transfer values only at very low values of wall superheat. The experiments by Launay et. 

al. [29] involved carbon nanotubes (CNT) coatings on silicon surfaces that were etched to 

realize pin-fin arrays. Hence this technique enabled the fabrication of hierarchical (or 

hybrid) surfaces containing micro-sized pin-fins with nanocoatings on them. 

In a separate study, Sathyamurthi et. al. [30] reported that Type B MWCNT 

yielded distinctly higher values of heat fluxes in nucleate and film boiling for saturated 

and subcooling conditions. Extending the height of the MWCNT only marginally 

increased the wall superheat required for attaining CHF. CNT coating on a bare silicon 

wafer was also reported to enhance CHF values by 63% at a liquid subcooling of 10°C 

[20].   

El-Genk and Ali [17] performed saturated pool boiling experiments for PF-5060 

on Copper heaters with micro-porous surface layers with varying thickness. The authors 

reported that the CHF values and the nucleate boiling heat transfer coefficient to be 40% 

~ 75% higher than those reported on plane surfaces. The thickness of the porous layers 

were estimated to be 171 microns.  

Ujereh et. al. [18] performed pool boiling experiments on heaters with patterned 

CNT arrays. The experiments were performed in the “small heater” regime for a heater 

size of 1.27 x 1.27 mm2 involving both silicon and copper heater surfaces. While the 

authors reported enhancement in CHF and heat transfer coefficient values these results 

seem to be derived from confounded experiments – since the experiments were performed 

in the “small heater” regime. Silicon surfaces with CNT arrays showed higher levels of 
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enhancement compared to that of copper surfaces with CNT arrays. Since silicon surfaces 

were typically smoother and had less nucleation sites to begin with – CNT coatings were 

observed to cause higher level of enhancement in CHF. Coverage of CNT on the surface 

was also manipulated to understand the extent of the enhancement, but these experiments 

were inconclusive. Hence, the authors concluded that full coverage of CNTs on the heater 

surface is necessary for significant levels of enhancement in the boiling heat flux values.  

Rahman et. al. [31] performed pool boiling experiments using bio-templated 

nanostructured surfaces. Tobacco Mosaic Virus (TMV) was precipitated from aqueous 

solution and then coated with thin films of Nickel and Teflon in order to realize surfaces 

with different contact angles: super-hydrophilic (~9°), super-hydrophobic (~163°) and 

mixed hydrophilic-hydrophobic (~70°). Hybrid surfaces (Teflon and Nickel coatings on 

TMV) yielded lower levels of CHF enhancement ( ~70%) compared to that of a pure 

nickel coated surface (~140% enhancement) when compared to that of a pure Teflon 

coated surface. 

Bubble dynamics on conventional heaters has been explored extensively in the 

pool boiling literature. However, relatively fewer reports exist in the literature for 

investigation of bubble dynamics on nanostructured heater surfaces (e.g., for bubble 

departure diameter or frequency correlations).  Contemporary literature reports involving 

pool boiling studies on nanostructured heaters have mainly focused on the overall heat 

transfer enhancement (i.e., comparing pool boiling curves for nanostructured heaters with 

that of plain conventional heaters). Therefore, in this study, flow visualization experiments 

were performed to complement the boiling curves obtained for both plain conventional 
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heaters and heaters with nanostructures surfaces. The aim of this study is to enumerate the 

variations in bubble dynamics during pool boiling on different types of heater surfaces.  

The analyses of experimental data obtained from flow visualization experiments of bubble 

dynamics during pool boiling for various boiling regimes can provide additional insights 

into the non-linear coupling of the thermal and hydrodynamic transport processes. This 

can help resolve the discrepancies between the predictions obtained from traditional 

mechanistic models and the experimental observations involving nanostructured heater 

surfaces. It is expected that results gleaned from this study can enable the re-calibration of 

the traditional mechanistic models to enable predictions that better match the experimental 

measurements (involving pool boiling on nanostructured heaters). 

Previous reports in the literature indicate that typically nanostructured heater 

surfaces dramatically enhance the values of CHF during pool boiling (compared to that of 

conventional plain heater surfaces). The dynamics of the bubbles on the nanostructured 

heaters are also altered significantly - resulting in smaller bubbles with higher values of 

bubble departure frequency and bubble nucleation density. 

Experimental studies involving the boiling of electrolyte solutions such as NaCl ( 

[32], [33]) provide insights about bubble departure diameter and frequency. Hamzekhani 

et. al, [32] used non-dimensional analyses (Buckingham’s Pi Theorem) to derive a 

correlation for the frequency of the departing bubbles. Schulman, Cole, Rohsenow, and 

Ruckenstein developed correlations for various combinations of heater surfaces and 

boiling fluids ( [34] [35] [36] [37]). Dong, et. al [26] considered the effects of micro-

structured and nano- structured surfaces on critical heat flux.  Force balance models were 
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used to predict the bubble departure diameter under microgravity conditions. Jensen and 

Memmel [2] briefly summarized the correlations that were culled from the pool boiling 

literature.  

Literature review suggests that various parameters can affect the values of bubble 

departure diameter. Zhang et. al. [27] stated the influence of the buoyancy force, surface 

tension, viscous drag, inertia force, pressure difference, and the Marangoni force on the 

bubble departure diameter. In contrast, results reported by Kutateladaze and Gogonin [3] 

provided a different set of parameters that were expected to affect bubble dynamics in 

pool boiling.  Zuber proposed a model based on hydrodynamic interactions and thermal 

boundary layer that blankets the growing bubble to predict the temperature distribution in 

the liquid surrounding the vapor bubble [38]. This approach enables the prediction of 

growth rate of vapor bubble – thus enabling an estimate for the growth time of the vapor 

bubble prior to departure. Peyghambarzadeh [33] identified several parameters that affect 

bubble departure diameter – which includes: the effect of physicochemical properties such 

as liquid viscosity, liquid density, and polarity of the liquid.  

As mentioned before, nanostructured heater surfaces enable higher bubble 

departure frequency due to reduction in the bubble departure diameter that accrue from 

several factors [27].  Glenn [20] performed experimental validation involving bubble 

dynamics during pool boiling of refrigerant PF-5060 on a heater coated with multi-walled 

carbon nanotubes (MWCNT). The results showed significant reduction in the bubble 

departure diameter (by approximately 300%) on MWCNT coated heater surfaces. Glenn 
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also compared the experimental data with predictions from the literature derived from pool 

boiling experiments for measuring bubble dynamics on conventional heater surfaces. 

The spatio-temporal variation in distribution of heat flux under each bubble leads 

to the corresponding spatio-temporal fluctuation of temperature distribution on the heater 

surface ([49], [52]). For example, local heat flux values are predicted to reach peak values 

ranging from 1 ~ 10 kW/cm2 in the vicinity of the liquid-vapor contact line of the vapor 

bubble on the heater surface. Correspondingly, inversion of the temperature at this contact 

line occurs – which are termed as “cold spots”. It is estimated that 60~90% of the total 

heat flux occurs in the cold spot region during film boiling and ~ 50% of the total heat 

flux occurs in the cold spot region during nucleate boiling.  Hence the thermal diffusivity 

of the heater material plays a crucial role in transferring heat to the boiling fluid. For the 

same average value of wall superheat – copper heater yields higher values of pool boiling 

heat flux than steal heater since copper has higher values of thermal diffusivity. This 

implies that heaters with surface nanostructures having higher values of thermal 

diffusivities can yield higher values of pool boiling heat flux. 

Pool boiling literature involving nanostructured heater surfaces are replete with 

reports suffering from the deficiency of employing “small heaters” [17] [39] [40]. This 

severely limits the veracity of the results since a small heater size can cause anomalous 

enhancement in the values of CHF (sometimes authors reported CHF values that exceeded 

the thermodynamic limit). The authenticity of these measurements then become 

questionable and lead to controversies among results reported by different research 

groups.  
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In summary, for studies reported in the literature involving nanostructured heater 

surfaces, while many studies delved into the nucleate boiling regime, there is a lack of 

attention to film boiling regimes in these experiments. The next section summarizes the 

other deficiencies in the literature reports on this topic.  

 

1.3.1 Identification of Issues in Literature Reports 

A significant number of experiments in the contemporary literature disregarded 

the effect of heater size as an important parameter for the design of experiments. 

Appropriate choice of heater size and shape is crucial for preventing the confounding of 

experiments. Heater size needs to exceed a specific threshold value in order to be 

categorized as the “large heater” configuration (also termed as “infinite size heater”) 

where the heat flux values are insensitive to the variation in the heater size. For heater size 

below this threshold value – the heat flux values are sensitive to the variations in the non-

dimensionalized value of the heater size. The heater size is scaled with the “most 

dangerous” value of Taylor instability wavelength (i.e., the instability wavelength 

corresponding to the highest growth rate) to obtain the non-dimensionalized value of the 

heater size. For example, Van P. Carey et. al. [9] reported significant enhancement in the 

values of CHF and heat transfer coefficient for heater sizes of 0.5 × 0.5 cm2 when 

compared to that of 2 × 2 cm2. These heater sizes are in the small heater regime and 

therefore the CHF measurements are highly sensitive to the variation in heater size. 

Similarly, Ujereh et. al. also reported dramatic enhancements in CHF values for a heater 

with the size of 1.27 x 1.27 mm2 [18].  
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Because of these inadequacies in the design of experiments, there is a huge 

variance in the literature data for the range of enhancement for CHF and heat transfer 

coefficients involving nanostructured heater surfaces. To determine the appropriate heater 

size for the experiments, the values of capillary length scale (lo) and the “most dangerous” 

Taylor instability wavelength (λd) need to be determined, as follows. These parameters are 

then used to determine the non-dimensional heater size L’, as defined below in Equations 

(6 – 8):  

𝑙𝑜 = √𝜎/𝑔(𝜌𝑙 − 𝜌𝑣) 
(6) 

 

𝜆𝑑 = 2𝜋√3𝑙𝑜 ≈ 11 𝑙𝑜 
(7) 

𝐿′ = 𝐿/𝜆𝑑   
(8) 

The threshold value for “infinite heater” configuration is derived to be L’ > 5 ( [41] 

[42]). Once this configuration has been achieved (i.e., in the “large heater configuration” 

or the “infinite size heater configuration”), the heat flux values are expected to be 

independent of the variation in heater size. For liquids such as water or refrigerants (e.g., 

FC-72) the values of lo are estimated to be 2.5 mm and 0.7 mm, respectively. Hence the 

value of “most dangerous” Taylor instability wavelength is expected to be ~ 1 cm for FC-

72. To attain the large heater boiling regime during pool boiling of FC-72 the heater size 

needs to exceed 5 cm. The level of heat flux enhancements reported in the literature for 

small heater regimes therefore arises from two primary parameters – the non-

dimensionalized values of heater size and the surface conditions of the heater. The 
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proportional contribution of each parameter on the total heat flux values (as well as level 

of enhancement) for each wall superheat value is therefore not known apriori. In addition, 

the λd for porous substrates is known to decrease by as much as ~20% [43] which can 

cause the values of L’ to change significantly between the plain heater and heater with 

nanostructured surfaces (thus confounding the experimental results even further). 

Therefore, comparisons between pool boiling data of a plain heater and pool boiling data 

of a nanostructured engineered surfaces are incompatible unless both sets of the heater 

configurations are deemed large enough for negligible effect of the heater size (i.e., heater 

size scaled with the Taylor instability wavelength, which is expected to decrease by ~ 20% 

on nanostructured surface).  

A significant number of studies in pool boiling literature only delve into heat 

transfer data in nucleate boiling, compared to film boiling. Out of all the reports culled for 

review, only two studies investigated film boiling heat transfer data ( [25] [30]). 

Additionally, very few studies also reported differences between subcooled and saturated 

conditions for bubble dynamics ( [20] [25] [30]).   

The studies that were conducted on small heaters suffer from other deficiencies as 

well, including not achieving steady state conditions before performing experimental 

measurements (this creates a conundrum, as the veracity of the results become doubtful). 

The authors in these experiments inaccurately presumed that the steady state condition can 

be reached in a couple of minutes. It is absolutely essential that the existence of steady 

state conditions be verified for ensuring that the measurements are accurate and 

repeatable. Holistically, the pool boiling system typically has time constants of 1~2 hours. 
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Hence, the experiments need to be performed for a minimum of 2 hours to ensure that 

steady state conditions have been achieved. The erroneous design of experiments 

involving “small” heater size, coupled with experimental results being acquired when the 

apparatus has not reached steady state conditions can lead to unreliable observations and 

conclusions (also jeopardizing the repeatability of experiments). Caution must be 

exercised, because the temporal profile of heat flux or temperature variations for sub-

components (such as the heater surface) can deceptively demonstrate steady state 

behavior, even though the test fluid and the cooling system may not have achieved steady 

state conditions. Small heaters can exacerbate this error further. Therefore, small heaters 

do not accurately display when steady state has been achieved for the data collection to be 

reliable or faithful to the actual conditions that are desired in the experiments. These 

improper practices compromise the reliability of the literature reports since the 

repeatability of the experiments are questionable and flawed data are produced that arise 

from the incorrect design of experiments.  

Another factor of utmost importance along with heat flux measurements is the 

accurate recording of surface temperature values (i.e., by minimizing the values of 

measurement uncertainty for surface temperatures and wall superheat). These 

measurements for the wall temperature values are used for the generation of boiling 

curves. A problem with reports in the contemporary literature are the flawed approaches 

employed for measuring the wall/surface temperature. Often times, the wall heat flux 

values are used to calculate the wall temperature, and the wall temperature values are not 

measured directly. Some studies involved mounting of wire bead thermocouples for 
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surface temperature measurements. Such approaches for wall temperature values can often 

lead to disastrous inaccuracy due to nucleation of vapor bubbles induced on the wire bead 

themselves, since these thermocouples have large form factors. Therefore, the surface 

temperature values were not measured very meticulously in these literature reports. 

Thermocouples glued with an adhesive to the surface (sometimes very ill suited with poor 

thermal characteristics) generally create repeatability issues due to the uncontrolled 

contact resistance between the wire-bead and the heater surface. The thermal contact 

resistance values may also vary between experiments, adding on to the repeatability issues. 

An improved method for obtaining reliable measurements for surface temperature is 

therefore necessary.  

Park and Taya [44] developed Thin Film Thermocouple (TFT) arrays, which 

measured heater surface temperatures at a high spatial resolution. These T-type 

thermocouples were 150 nm thick and arranged in a 10 × 10 array. TFT arrays were also 

used by other authors on different surface materials such as silicon wafers. The efficacy 

of these values were reported in prior work ( [45] [46]).  

This aim of this study is to continue the implementation of more reliable methods 

for recording surface temperature using TFT arrays. Previous studies have demonstrated 

the efficacy of these TFT arrays for pool boiling on rectangular flat horizontal heaters [30]. 

Along with this verification, fractal/ chaotic features in pool boiling have been 

investigated [47]. 

Since heaters with nanostructured surfaces are considered to be an attractive option 

for enhancing thermal management using pool boiling (e.g., for electronic chip cooling 
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applications) – it is essential that experimental validation be performed for various 

correlations in the literature on bubble dynamics during pool boiling on various types of 

nanostructured surfaces. The applicability of these correlations for reliably predicting the 

bubble dynamics on nanostructured surfaces need to be established, especially since these 

correlations in the literature were essentially derived from experiments performed for 

various conventional heater surfaces (and it is not clear if these correlations can be 

extended to performing predictions for bubble dynamics on nanostructured heaters).  Such 

studies for experimental studies involving flow visualization measurements of bubble 

dynamics are currently lacking in the pool boiling literature despite the numerous pool 

boiling heat flux measurements that were reported for various types of heaters with 

nanostructured heaters. Hence, the scope of this study is focused on measurement of 

bubble departure diameter and bubble departure frequency values for various regimes of 

pool boiling (i.e., at different values of wall superheat and liquid subcooling). The flow 

visualization experiments for film boiling also enabled the measurement of bubble growth 

as a function of time for conventional heater surfaces (plain silicon wafers and copper 

heaters) as well as nanostructured heater surfaces (involving Anodized Aluminum Oxide 

or “AAO” surfaces). Hence, the results from this study can enable the identification of 

appropriate correlations to estimate the bubble dynamics for various regimes of pool 

boiling on conventional heaters and heaters with nanostructured surfaces. 
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1.3.2 Use of Thin Film Thermocouple Arrays (TFTs) 

A repeatable procedure developed by Sinha [48] for fabrication of thin film 

thermocouples was used for surface temperature measurement during the various boiling 

regimes. Thin film thermocouples are known to have reasonable measurements at quick 

response rates, justifying their implementation in this study. Fabrication was performed 

using multilayer photolithography and metal deposition followed by the “lift-off” process. 

Sathyamurthi [49] reported the high frequency response in TFTs due to low thermal inertia 

can be of the order of MHz. These thermocouples can be located where normally beaded 

thermocouples would interfere with the measurements. Additionally, the small feature size 

(form factors) and low thermal inertia helps to minimize disruption and distortions of the 

velocity and temperature fields measured in these studies. Ahn et. al. [50] verified the 

existence of “cold spots” on a heater surface exposed to a boiling liquid by measuring the 

temperature fluctuations using these “nano”-thermocouples, which were termed as “Thin 

Film Thermocouples (TFT)”. The later sections provide descriptions of the fabrication and 

packaging as well as calibration and testing of these TFT arrays. 

 

1.3.3 Nanofin Effect 

In the past decade several experiments were reported on the measurement of 

anomalous enhancement in heat flux during pool boiling on horizontal heaters with 

nanostructured surfaces. Results from several studies demonstrated that heater surfaces 

involving nanostructures composed of materials with lower thermal conductivities 

resulted in higher values of heat flux. Singh and Banerjee [51] pioneered the thermo-
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physical model called “nano-Fin Effect (nFE)” for resolving the conundrums associated 

with the anomalous enhancement in nano-scale heat transfer during pool boiling on 

nanostructured heaters. nFE models can also be used for resolving and predicting the 

anomalous enhancement in the thermo-physical properties of nanofluids (as well as 

resolving the controversies associated with both enhancement and degradation in 

convection heat transfer involving nanofluids under similar conditions). The authors 

demonstrated that nano-fins (or heaters with nanostructured surfaces) with lower thermal 

conductivity materials can sometimes enable higher values of CHF – since the dominant 

parameter affecting CHF in pool boiling is the interfacial thermal resistance at the solid-

liquid interface (this is also known as the “Kapitza Resistance” and denoted as Rk). A 

major proportion of the total thermal resistance involving nanofins is Rk and this is the 

most dominant parameter that controls the heat flux at the nano-scale.  A consequence of 

nFE is the enhancement of specific heat capacity of nanofluids (i.e. colloidal suspension 

of nanoparticles). Interestingly, predictions from nFE implies thermal diodes exist at the 

nanoscale where – for the same temperature difference between the solid and fluid phases  

– the heat flux is higher for cold fluids compared to hot fluids when exposed to 

nanoparticles or nanofins (i.e., nanostructured surfaces).  

In order to determine the overall effect of the Kapitza resistance, numerical 

simulations have been performed for studying the thermal boundary resistance between 

the interfaces. Non-equilibrium methods in molecular dynamics simulations are utilized 

to calculate interfacial thermal resistance. The lumped capacitance model provides a 

convenient strategy for estimating the temperature distribution between a nanofin and the 
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surrounding fluid. Various researchers have also studied solid-liquid interactions to 

determine how intermolecular forces between the liquid and solid atoms play a key role 

in determining the interfacial thermal resistance. The chemical composition and chemical 

structure of the fluid molecules also play a dominant role in modulating the resulting 

interfacial thermal resistance values. The resistance values are strongly dependent on the 

vibration frequencies of the atoms in the fluid molecules and test fluid. Molecular 

structures of the boiling surface can also modulate the interfacial thermal resistance (e.g., 

due to the variation in the length of polymer chains, presence of isomers, or proportion of 

the different chemical structures of the molecules in the mixtures). Energy can be 

transferred through Van der Waals interactions. This interaction is considered to be one 

of the primary mechanisms of the total thermal energy transferred from nanofins or 

nanoparticles to the fluid molecules. Also, chemical concentration gradients induced by 

the nanostructures can also lead to a concentration gradient mediated heat transfer process 

(i.e. thermophoresis).  

Due to surface adsorption of the fluid molecules on a solid (e.g. on nanoparticles 

and nanofins) a semi-solid phase of fluid molecules with higher density (also called as 

“compressed phase”) is expected to form on the surface of the nanostructures. The density 

of this newly formed phase was often found to match the solid phase density of the solvent 

material (i.e., the bulk fluid phase). The adsorption of the solvent molecules on the 

nanoparticle surface therefore also induces  concentration gradient for the molecules in 

the fluid phases [51]. 
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Three different mechanisms arise from the complex interactions during energy 

transfer. The first is the interfacial thermal resistance, as previously discussed, the second 

is thermal capacitance from the fluid molecules forming a compressed layer, and the third 

is the bias in heat transfer values (or diode effect) based on direction of the temperature 

drop. This bias is driven from the concentration gradient of the fluid molecules to the bulk 

fluid from the solid nanofin surface. The diagram below depicts how thermophysical 

interactions between the nanofin interface and fluid molecules may occur.  

 

 

Figure 1-2 Schematic representing the thermal/electric network of the interactions 

between the solid and liquid molecules. Rk represents interfacial thermal resistance, 

Rf represents thermal conduction resistance of solid, Cf represents thermal 

capacitance of nanofin, Ci represents thermal capacitance of compressed layer, and 

D represents the thermal bias of the compressed layer.  

 

 Inter-molecular interactions between the nanofin structure and fluid molecules 

(also referred to as solvent molecules) can cause density oscillations for the number of 
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molecules per unit volume. Molecular dynamics simulations (MD) have shown that fluid 

molecules are attracted to the nanofin surface (solid wall) which can create a layer of 

semi-solid phase on the nanofin surface, which is also called the “compressed layer” 

[51]. This layer has a density that is different than the bulk of the fluid phase. The 

nanofin thus induces the formation of a third phase with a higher chemical potential or 

concentration than the bulk phase of the fluid. Additionally, this layer can also have a 

different specific heat capacity and thermal conductivity, causing another mechanism for 

thermal energy storage. This mechanism lets the additional chemical potential induced 

by the nanofins to act effectively as a thermal capacitor. The MD simulations have 

shown that the compressed layer of the fluid molecules has a higher thermal capacitance, 

primarily because of the higher density than the bulk fluid [52]. 

 Compressed layer formation can occur due to the adhesive inter-molecular forces 

between the liquid and solid phases. Wetting on the solid surface from the fluid can 

occur if the adhesive forces are higher than the cohesive forces, or the inter-molecular 

forces between molecules of the same species. MD simulations gave results for 

compressed layer thicknesses with different fluid-solid combinations. These simulations 

were also used to determine density oscillations for the compressed phase with different 

materials. Different density profiles were analyzed by Yang [52] for nanofins with SiO2, 

Si, and Ni. While the material properties for the fluid were unchanged for each 

simulation, the density oscillations were observed to vary significantly (for the 

compressed phase). This shows that the material property of the nanofin can modulate 

the properties of the semi-solid phase formed by the fluid molecules. The variation in the 
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density oscillations were dependent on the inter-molecular interactions (which varied 

with the composition of both the liquid phase and the solid phase). Figure 1-3 below 

demonstrates the variation of the density profiles for different nanofins [52].  
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Figure 1-3 Comparison of density oscillations between (a) NiO2, (b) Si and (c) Ni 

and the fluid solvent phase. The regions marked in red are the compressed phase of 

the surface. Plots courtesy of Dr. H. Yang [52].  
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The following transport mechanisms modulate the magnitude of heat transfer in a fluid 

medium: 

1.) Conduction or temperature gradient (modeled by Fourier’s Law) 

2.) Mass transfer or diffusion through the chemical concentration gradient (modeled 

by Fick’s Law, or “Sorret effect”), or 

3.) A combination of the two (also called the “Duffour effect”). 

Different situations can arise with these transport mechanisms, involving both a 

temperature gradient and a concentration gradient oriented in the same direction, or the 

temperature gradient and concentration gradient oriented in opposite directions. When 

each of these gradients are oriented in opposite directions, the net heat transfer is 

impeded Two specific cases are outlined in which the situations mentioned above can 

occur:  

 Case 1: Heat transfer from the hot solid nanoparticle or nanofin to the cold liquid. 

Temperature and concentration values decrease away from the solid surface. Heat 

transfer and mass transfer due to the temperature gradient and concentration gradient 

respectively are oriented in the same direction.  

 Case 2: Heat transfer occurs from hot liquid to cold solid nanoparticle or nanofin. 

In this case, the temperature gradient for conduction heat transfer is oreinted in the 

opposite direction from the concentration gradient for mass diffusion. The temperature 

gradient induces conduction heat transfer from the liquid to the solid, while the 

concentration gradient decreases from the solid to the compressed layer of the fluid (with 

higher chemical potential).  
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Figure 1-4 below demonstrates how the two cases can impact energy transfer. 

 

Figure 1-4 Diagram depicting heat transfer mediated by a temperature gradient 

and a concentration gradient. Both solid and liquid phases are represented, and the 

dark circles represent the molecules in the compressed layer. 
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 Therefore, the net heat transfer cannot be the same for both of these cases. The 

heat transfer from the hot solid to liquid in Case 1 is hypothetically higher than the heat 

transfer from the hot liquid to the solid in Case 2. Hence, this acts as a thermal diode where 

the magnitude of heat transfer is different in two directions (for the same temperature drop) 

[52]. 

 

1.4 Motivation and Goal  

This study is motivated by the urgent need in various engineering applications 

(such as thermal management applications) for enhancing pool boiling heat flux. Several 

studies have demonstrated anomalous enhancement in the pool boiling heat flux on 

nanostructured heater surfaces. The hydrodynamic interactions involving bubble 

dynamics have not been explored extensively in the literature. This is a large gap in 

understanding the transport phenomena associated with pool boiling heat transfer. Insights 

into the bubble dynamics during pool boiling on heater surfaces with nanostructured 

surfaces can enable the development of optimized engineered surfaces for maximizing 

heat flux in pool boiling which can enable the development of energy efficient devices 

and thermal systems.  

Hence, the goal of this study is to analyze pool boiling experimental data involving 

both heat flux measurements as well as flow visualization experiments performed using 

high speed and high resolution digital image acquisition apparatus for the purpose of 

gathering insights into the dynamics of bubbles in various pool boiling regimes. This will 

also help to correlate the behavioral information regarding bubble dynamics in various 
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pool boiling regimes with the resulting heat flux values. This study is focused on 

performing experimental validation of the various correlations in the literature (that were 

obtained from experimental data involving conventional heater configurations). This 

study will enable the identification of the appropriate correlations that can reliably predict 

bubble dynamics during pool boiling on conventional heaters as well as heaters with 

nanostructured surfaces.  This study will also help to calibrate the correlations that are 

most appropriate for these configurations. 

A function structure depicting various transport mechanisms and experimental 

parameters involved in pool boiling is shown in Figure 1-5. The first bottleneck in the 

transfer of heat from the nanostructured surface to the surrounding fluid is governed by 

the nano-Fin Effect (nFE). As mentioned before, nFE comprises of several interfacial 

thermal impedances – which includes: (1) interfacial thermal resistance (or “Kapitza 

Resistance”, Rk); (2) interfacial thermal capacitance (due to surface adsorption of fluid 

molecules at the solid-fluid interface); and (3) interfacial thermal diode (due to 

concentration gradient induced in the fluid phase caused by surface adsorption of fluid 

molecules on the nanofins). The interfacial resistance as well as interfacial capacitance are 

in parallel (since they occur across the same temperature drop) and are in turn, in series 

with the interfacial thermal diode. It can be expected that during pool boiling heat transfer 

from the surface nanostructures to the fluid molecules is primarily modulated by the 

interfacial impedances, that is modeled by the “nano-Fin Effect (nFE)” – following which 

- secondary thermal impedances govern the thermal and hydrodynamic interactions (such 

as fluid wicking). The heat transferred to the fluid phase results in the generation of an 
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ensemble of molecules with high kinetic energies, which in turn leads to the formation of 

liquid-vapor interfaces. In this process, a critical ensemble of fluid molecules (exceeding 

the threshold kinetic energy necessary for the inception of vapor bubble) congregate in 

clusters of different sizes. Clusters of these molecules that exceed a critical size lead to the 

nucleation of individual vapor bubbles through the formation of a vapor-liquid interface 

(or meniscus). At this stage several parameters affect the further transport of mass and 

thermal energy – which includes: transient heat transfer (formation of thermal boundary 

layer), latent heat of evaporation (evaporation resistance), capillary wicking (i.e., 

“wickability” of the nanostructures), as well as bulk fluid convection induced by periodic 

formation, growth and departure of vapor bubbles in the liquid pool. 

 

Figure 1-5 Function diagram showing the relation between different transport 

mechanisms for pool boiling on nanostructured heater surfaces. 
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1.5 Objective 

Equation 1 shows that for boiling regimes dominated by latent heat transfer – the 

most sensitive parameter is the rate of vapor generation on the heater surface (since, vapor 

density and latent heat capacity are properties of the fluid). This implies that three 

variables enumerated in Equation 2 determine the rate of vapor generation: N, dD and f. 

The nucleation site density (N) depends on the manufacturing process employed for 

fabricating the heater surface and is therefore not a focus of this study. Therefore, the 

objective of this study is to perform experimental measurements for pool boiling heat flux 

in various boiling regimes as well as perform flow visualization experiments of bubble 

dynamics on the heater surface in order to determine the effect of heater configuration 

(e.g., plain silicon wafer, bare copper surface and AAO nanostructures) on the bubble 

departure diameter (dD) and bubble departure frequency (f). In a few of the flow 

visualization experiments for film boiling regime the experimental data for bubble height 

as a function of time were also obtained. This enabled the estimation of the history of 

growth rate of the vapor bubbles after inception and before departure from the heater 

surface. 

 

1.6 Scope  

Pool boiling experiments were performed using refrigerant (PF-5060, 

Manufacturer: 3M Corp., Minneapolis, MN) for liquid subcooling of 5°C and 10°C at 

atmospheric pressure conditions involving three different configurations of horizontal 

heaters: bare copper, plain silicon wafers, and Anodized Aluminum Oxide (AAO). Boiling 
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curves were plotted based on the measured values of heat flux that were obtained at 

different values of wall superheat.  The boiling curves generated in this study were 

compared with literature data to benchmark the performance of the plain heaters and 

heaters with nanostructured surfaces. To assess the repeatability of the experimental data 

– two sets of experiments were performed for each boiling curve.  Experimental data were 

recorded for both nucleate boiling and film boiling regimes.  

A digital flow visualization apparatus was used to record bubble dynamics on the 

heater surface using a high speed digital camera (500 ~ 1000 frames/ second) and at high 

resolution (0.5 ~ 1 Mbyte/ frame). The digital images were then analyzed using image 

processing tools to measure the bubble height as a function of time (in film boiling regime) 

as well as the bubble departure diameter (for both nucleate and film boiling regimes). The 

temporal sequence of the digital image data was also used to estimate the growth time of 

bubbles as well as the bubble departure frequency at a particular location. The results from 

the AAO heater was compared to that of the bare heaters (copper and silicon wafer) to 

determine the effect of the nanostructures on bubble departure diameter and bubble 

departure frequency (especially in nucleate boiling regime). These measurements are 

analyzed in the discussion section of this publication to explore potential causality for the 

observed changes in the bubble dynamics on the plain and nanostructured heaters. The 

experimental results were also compared with predictions obtained from correlations in 

the literature with the objective of identifying the correlations that are most consistent for 

predicting the bubble dynamics on each of these three heater configurations. 
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1.7 Overview 

The fabrication techniques for the Thin Film Thermocouple (TFT) arrays for surface 

temperature measurements are described in Chapter II. A brief description of the 

experimental apparatus is provided in Chapter III followed by the description of the 

experimental procedure that was utilized to obtain the experimental data analyzed in this 

study.  In Chapter IV experimental data was analyzed and the nuances of these results 

were discussed, which include: 

(1) Heat flux was plotted as a function of wall superheat and liquid subcooling (boiling 

curves); 

(2) Measurements for bubble height as a function of time (for film boiling regime), as 

well as bubble departure diameter and bubble departure frequency (for both 

nucleate and film boiling regimes); 

(3) The estimates for the measurement uncertainty of these experimental data. 

The results are summarized and conclusions derived from this study are provided in 

Chapter V. The detailed results from this study are listed in tables and in appendices at the 

end of this publication.  
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2 MICRO/NANO-FABRICATION PROCEDURE 

2.1 Thin Film Thermocouple Fabrication 

 Thin Film Thermocouple (TFT) arrays were fabricated using conventional 

photolithography techniques. Thermocouples are used extensively for temperature 

measurement in various engineering applications. The thermoelectric effect (or Seebeck 

effect) is the governing principle for the operation of thermocouples. The Seebeck effect 

is used to calculate the magnitude of the electric potential between two junctions of 

different conducting materials in mutual contact (thermocouples) where the generated 

electromotive force (emf) is proportional to the temperature differential between the two 

junctions (and the constant of proportionality is termed as the Seebeck coefficient). This 

effect is leveraged for temperature measurements to be performed by measuring the 

voltage that is generated between two pairs of thermocouples maintained at different 

temperatures. Calibration of thermocouples affords better accuracy of the temperature 

measurements. Therefore, each pair of electrical junctions (composed of two different 

electrical conductors) that are used to measure voltage as a function of temperature 

difference is formally known as a thermocouple.  

 Various materials are selected as thermocouples (such as pure metals or alloys) 

depending on the temperature range desired for the specific operation. For this study, K-

type thermocouples were used. K-type thermocouples involve the junction of Chromel 

(90% Nickel + 10% Chromium) and Alumel (95% Nickel + 2% Manganese, 2% 

Aluminum and 1% Silicon). K type thermocouples are typically used for temperatures 

ranging from 0°C to 1100°C. Therefore, in this study the K-type thermocouples were 
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selected as the components for nanofabrication of the Thin Film Thermocouple (TFT) 

arrays. Since thermocouples were needed to measure surface temperature during boiling, 

conventional wire bead thermocouples would not be appropriate, due to their large form 

factor (size) which can cause disruptions of the transport mechanisms and affect the 

surface temperature transients of the heater surface. Erroneous measurements would then 

occur with inaccurate temperature fluctuations, especially for the wall temperature (Tw) 

measurements. Therefore, Thin Film Thermocouple (TFT) arrays were fabricated since 

they enable temperature measurements with high spatial and temporal resolution. Such 

measurements can then be utilized to estimate the temperature gradients and transient 

rates. The TFT thickness was limited to 200 nm to minimize any perturbations of the 

transport mechanisms during pool boiling. If the thickness of TFT were chosen to be 

below 200 nm, the junction would cease to behave like a thermocouple because of 

scattering effects involving phonons. Figure 2-1 shows the processing steps that were used 

for TFT fabrication. TFT array fabrication was performed at the Materials 

Characterization Facility (MCF) at Texas A&M University. The author acknowledges the 

help of Dr. Hongjoo Yang, Mr. Binjian Ma, and Mr. Yi Wang for the micro/nano-

fabrication of the TFT arrays on silicon wafers that were used in this study. 

 



 

48 

 

 

Figure 2-1 Schematic showing the processing steps for nanofabrication of Thin 

Film Thermocouples (TFT) arrays. 

 

2.1.1 Photolithography 

 Two different layouts were designed for the photomasks for the nanofabrication of 

the arrays of chromel and alumel junctions. Commercial printing services (Southwest 

Printing, Bryan, Texas) was used for obtaining the desired photo-film masks. The 
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photolithography for the Chromel and Alumel layers were completed at the Materials 

Characterization Facility (MCF), at Texas A&M University. The steps for a typical 

photolithography process involve designing the layout of the patterns, printing out the 

mask through printing services, cleaning the wafer, photoresist spin coating, photo 

exposure (UV), curing and development of the exposed photoresist with the desired 

layout. These steps are very important for making the TFT arrays. Potential 

malfunctioning of the TFT junctions may occur if the photoresist pattern is not developed 

properly on the wafer substrate, causing the Chromel and Alumel metal patterns to be 

defective. Table 2-1 lists the details of the processing conditions [52].  

 

Table 1 Photolithography recipes for TFT Fabrication [52] 

 

Dry Cleaning 

Reactive Ion Etcher 

Bake 

Hot Plate 

Power 350 W Temperature 115°C 

Time 5 min Time 1 min 

O2 20 sccm     

    

UV exposure 

Mask Aligner 

Spin Coating 

Spin Coater Power Density 14 mW/m2 

Speed 3000 rpm Time 1 min 

Time 1 min     

Acceleration 500 rpm/s Development Time 1 min 

 

2.1.1.1 Mask Design 

Two different layouts (patterns) were used for printing the photomasks for 

fabricating the Chromel and Alumel junctions. The patterns typically used are shown in 

Figure 2-2 below for the masks used to pattern the chromel and alumel layers [52].   
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Figure 2-2 Photomask layouts for the silicon wafers depicting the: (a) Alumel layer, 

(b) combined layout, and (c) Chromel layer . Figures courtesy of Dr. Binjian Ma and 

Dr. Yang [52].  

 

 The 3 inch wafers were used for performing control experiments (without any 

nanostructures on the surface). The two metal layers were aligned for realizing the 

thermocouple junction using alignment patterns designed in the two mask layouts. 

Computer Aided Design (CAD) tools were used for designing the layouts of the 

photomasks (e.g. Solidworks v2010, Dassult Systems). The desired critical dimension was 

200 nm for the chromel and alumel junctions. Bond pad arrays were designed in the layout 
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for connecting the thermocouple junctions to the data acquisition systems. These bond 

pads were designed to be about a 1 mm square. The thermocouple wires were connected 

to the bond pads (e.g., using conducting adhesives) for digital data acquisition of sensor 

measurements and automated recording of the temperature values. 

 

2.1.1.2 Wafer Cleaning Step 

 The wafers (which were produced by commercial vendors) can potentially be 

contaminated from undesired chemical exposure or dust from the atmosphere, so wafer 

cleaning is a very important step. Acetone, DI water and oxygen plasma Reactive Ion Etch 

(RIE) are used for the initial cleaning steps for the wafer. The wafer was immersed in an 

acetone and DI water solution, washed in DI water, and blow dried with compressed 

nitrogen gas. Then, the wafer was placed on a hotplate at 115°C for ten minutes to remove 

any remaining residual water. The Reactive Ion Etcher (CS-1701, March Plasma Systems) 

was used to remove organic residue.  

 

2.1.1.3 Photoresist Spin Coating 

 For spin coating, a photoresist (Positive type, SC 1827, Rohm and Haas Electronic 

Materials) was used. A spin coater (WS-650S, Laurell) was used to obtain a desired 

photoresist thickness of 3 µm. The wafer was spin coated at 3000 rpm for one minute, 

based on the recipe supplied by the photoresist vendor. The wafer was then placed on a 

hot plate for one minute at 115°C for a pre-exposure bake. Table 2-1 in section 2.1.1. lists 

additional details about the processing conditions. 
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2.1.1.4 UV Exposure 

 After the wafer was coated with photoresist it was exposed to UV on a mask aligner 

(Q4000, Quintel). The UV exposure was performed for 1 minute to align the designed 

mask pattern with the wafer using an optical microscope. The chromel pattern did not 

require alignment (for the first mask), but the alumel pattern required very careful 

alignment (for the second mask) since the chromel pattern was already realized on the 

wafer (along with the mask alignment patterns already printed on the wafer surface from 

the photolithography step and liftoff that was already performed with chromel). The 

intensity of the UV light source was set at a value of 14 mW/cm2. Table 2-1 lists additional 

details about the processing conditions.  

 

2.1.1.5 Development 

 After UV exposure, the wafer was immersed in a developer solution (MF-319, 

Rohm and Hass Electronic Materials) for one minute to finalize the desired photoresist 

pattern. Since the photoresist was positive, the developer solution removed the exposed 

photoresist. Then, the wafer was rinsed thoroughly in DI water for one minute, and finally 

blow-dried with compressed nitrogen gas.  

 After the photolithography step was completed, the final pattern was scrutinized 

with an optical microscope to confirm that no defects were caused during the previous 

steps for the desired pattern on the wafer. If a defect was found, the photoresist was 

removed using a photoresist stripper solution, and the process steps were repeated from 
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the start. Additional details for the equipment used can be found on Texas A&M 

University’s AggieFab Nanofabrication Facility website.  

 

2.1.2 Physical Vapor Deposition (PVD) 

 For deposition using a thermal evaporator, metals with a high melting point cannot 

be considered. The metal alloys used in this study (chromel and alumel) have a high 

melting point, so an electron beam evaporator (CHA electron beam evaporator, CHA 

industries) was used for deposition, which was located at the MRC/NNIN node in the 

University of Texas at Austin. The photoresist pattern in the wafer was used for the 

deposition of the target metals and alloys [52].  

 An adhesion layer between the wafer substrate and the deposited metal thin films 

is often required to improve the yield of the batch fabrication process. Titanium is usually 

suitable for this function, and can be deposited at a 20 nm thickness prior to the target 

material deposition. Since the minimum thickness of the vapor film layer in film boiling 

is projected to exceed 10 μm [53], no significant perturbations from the TFT arrays (with 

200 nm thickness) are expected to occur for the transport mechanisms in pool boiling in 

the film boiling regime. The ratio of the vapor film thickness to the thickness of the 

individual metal layers (i.e., the TFT array) is more than 50. Therefore, the thickness of 

the TFT array will have minimal impact on the vapor layers and are unlikely to cause 

disruptions or distortionsof the surface temperature measurements. The deposition rate of 

the metal layers was regulated at a value of 0.5 ~ 1.0 Å/s from established protocols for 

fabrication at MRC [52]. The quality and performance of the TFT arrays are highly 
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dependent on the quality of the deposited metals. The deposited metal layer is susceptible 

to the risk of peeling off during the lift-off process due to poor adhesion from 

unnecessarily high deposition rates. Most recipes involve deposition at 0.5 Å/s for metal 

thin films up to a 30 nm thickness. The deposition rate can then be increased to 1.0 Å/s 

for the rest of the metal deposition process.  

 

2.1.3 Lift-off 

 The lift-off process was necessary for finalizing the pattern for the chromel or 

alumel layers. The substrate was immersed in a photo resist remover solution (PG 

remover, Supplier: Microchem Corp.) after physical vapor deposition to dissolve the 

remaining photoresist. While the deposited metal on the photoresist surface was removed, 

the metal deposited on the exposed wafer surface was not removed. The wafer is then 

immersed in an ultrasonic bath for 20 minutes until the excess metal was removed, or 

lifted off. Lastly, the substrate was cleaned off with DI water and blow dried with 

compressed nitrogen gas.  

 

2.1.4 Characterization of Samples 

 Figure 2-3 below shows images of the wafer surfaces with patterned Thin Film 

Thermocouple (TFT) arrays. Surface micromaching techniques were used for ensuring the 

successful fabrication of the TFT arrays. The optical microscopy image in the figure shows 

the junction of the chromel and alumel layers obtained from this process. The procedure 
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for wire bonding onto the bond pads (packaging step) will be described in the following 

sections.  

 

 

Figure 2-3 (a) Image of Thin Film Thermocouple (TFT) array on substrate, and (b) 

SEM image of chromel and alumel junction. Figure courtesy of Dr. Hongjoo Yang 

[52]. 

  

The image below in Figure 2-4 shows the TFT array on the Silicon substrate.  
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Figure 2-4 Image of TFT array fabricated on a plain Silicon surface. Figure 

courtesy of Dr. Hongjoo Yang [52]. 
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3 EXPERIMENTAL STUDY 

 

Dr. Hee Seok Ahn in 2005, a PhD student from the Multi-phase Flow and Heat 

Transfer Lab in the Mechanical Engineering Department at Texas A&M University, 

constructed the apparatus that was used for the boiling experiments in this study. The 

experimental apparatus includes a viewing chamber, a chiller unit, a data acquisition 

system, and a power supply. The test chamber that was used in these experiments consisted 

of a cube structure with about 15-20 cm on each side. The author acknowledges the help 

of Dr. Hongjoo Yang, Dr. Binjian Ma, and Mr. Yi Wang for the micro/nano-fabrication 

and packaging of the TFT arrays on silicon wafers that were used in this study as well as 

for assembling the experimental apparatus. 

 

3.1 Packaging and Calibration of Thin Film Thermocouples (TFT) 

3.1.1 Packaging of TFT 

Various methods were available for the packaging of Thin Film Thermocouple 

(TFT) arrays to connect them individually to the data acquisition system (DAQ). The 

thermocouple wires were soldered on the bond-pads for the packaging step.  

Nanofabrication of the TFT arrays was described in the previous chapter. K-type 

thermocouples were used for the assembly. These thermocouple wires (Chromel and 

Alumel, Supplier: Omega) were soldered with lead solder for connecting to the bond-pads. 

After the thermocouples were soldered, the silicon wafer substrate with the TFT arrays 

was heated to ~170°C on a hot plate, which corresponds to the melting point of the 
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soldered materials. An electrical connection was made by bonding wires to the 

thermocouples at the individual bond-pads and then the substrate was cooled to room 

temperature. In this step, the chromel bond-pad and the chromel wire were connected, and 

the alumel bond-pad and the alumel wire were connected, respectively.  

Caution needed to be exercised while maintaining the wire assembly, as the 

electrical connections between the thermocouple and bond-pads were delicate. In addition, 

the soldered junctions were very fragile as well. Figure 3-1 shows a broken wafer with a 

TFT array.  

 

 

Figure 3-1 Image of a broken wafer substrate (with TFT arrays and soldered bond 

pads) due to mishandling. Courtesy of Dr. H. Yang [52]. 

 

 

3.1.2 Calibration of TFT 

To begin the calibration, a commercial IR camera (FLIR i50, FLIR Systems) was 

used to obtain image of the thermocouples and for calibration. First, the emissivity of 
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silicon was culled from literature data [54] and this value was specified  in the camera 

software. The silicon wafer substrate was then placed on a hotplate. Both the TFT and the 

images obtained from the IR camera were used to record the spatial variation of the surface 

temperature profiles. When the temperature readings were deemed consistent, a 

calibration curve was obtained. The calibration curves were observed to be linear and 

consistent for the range of temperatures measured in this study. Generally, room 

temperature (~290 K or 20°C) would be the lower limit and a temperature not exceeding 

573 K (~200°C) would be the upper limit. The slope of the calibration curve was close to 

unity, and the R2 was greater than 0.99. Figure 3-2 shows a representative calibration curve 

for the temperature readings and a sample picture of the surface obtained by the IR camera.  

 

 

Figure 3-2 (a) Calibration curve for Thin Film Thermocouple (TFT) from IR 

camera images (b) Images recorded by the IR camera for surface temperature 

measurements. Figure courtesy of Mr. Navin Kumar. 

 

 

 

Ronita
Sticky Note
This is the figure I was asking about that is not published, however my labmate made this figure. Shall I still show proof of permission to use this figure?



 

60 

 

3.2 Description of Experimental Setup 

The main components of the experimental apparatus include: (1) a viewing 

chamber which contains the test surface and test fluid (and is covered with transparent 

Pyrex glass windows); (2) a chiller apparatus connected to an immersion cooling coil (for 

liquid subcooling); (3) power supply units which are connected to a calorimeter apparatus 

containing cartridge heaters inserted inside a copper block (and also includes wire-bead 

thermocouples for determination of the surface temperature and heat flux values); and (4) 

a data acquisition system (DAQ) for recording the temperatures from the thermocouples. 

Figure 3-3 shows the schematic for the apparatus. A high-speed digital camera (Fastec 

Imaging Corporation, Troubleshooter TSHRMS) was used for recording the videos for 

flow visualization. Images obtained from this apparatus were used to generate the data for 

the bubble growth rate, bubble departure diameter and bubble departure frequency.  
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Figure 3-3 Schematic of the pool boiling apparatus. 

 

3.2.1 Test Chamber 

As shown in Figure 3-4, the cylindrical copper block has a diameter of 8.9 cm and 

a height of 5.1 cm. A concentric hollow stainless steel jacket with an insulated air gap 

surrounds the copper block. The copper block also contains 5 cartridge heaters, with three 

of them rated for 500 W and two of them rated for 300 W. Several bead thermocouples 

(K-type) were inserted into the copper block through holes machined into this calorimeter 

apparatus for the purpose of measuring the heat flux in the vertical direction (for 

estimating the boiling heat flux). Figure 3-4 shows the location of the thermocouples in 

the copper block. The copper block is fastened to the test chamber using six screws and 

leak proof gaskets (for better thermal insulation and isolation for the copper block) which 

are secured to the bottom steel plate of the test chamber. A stainless steel clamp is mounted 
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on top of the copper block/calorimeter apparatus and is also secured by screws on the steel 

jacket to hold test substrates (samples with or without the surface nanostructures).  

 Concentric to the cylindrical copper block within the boiling chamber, a coil heater 

is placed outside the steel jacket. This heater boils the test fluid (i.e., used before the start 

of experiments during the degassing step), which will be described in subsequent sections. 

In addition, if the cartridge heater does not provide sufficient power in order to reach the 

chosen bulk fluid temperature, the power output for the coil heaters can be adjusted to heat 

the working fluid.  

 The boiling test chamber is also covered with three Pyrex glass windows to allow 

for viewing of the test surface and the boiling fluid. The windows are sandwiched by 

silicone rubber gaskets to allow for insulation of the chamber, to prevent leakage of the 

working fluid from the test chamber. These silicone rubber gaskets are clamped using 

screws and steel plates.  

 As Figure 3-3 shows, ice water is placed on the outside top surface of the chamber. 

This ice water enables cooling of the top plate of the test chamber for condensation and 

recovery of the working fluid. The ice water is replenished periodically. A refrigerant (PF-

5060) is used as the test fluid for these experiments. PF-5060 is expensive and highly 

volatile, necessitating recovery of the evaporated liquid during the boiling experiments. A 

collection bottle connected to the outlet port in the test chamber is used for recovery of the 

condensed PF-5060. The collection bottle is placed in container with ice water since the 

test chamber is surrounded by air at ambient temperature and maintained at atmospheric 

pressure. High-speed and low-speed digital cameras were placed facing towards the 



 

63 

 

boiling chamber for image acquisition (in flow visualization experiments). The videos 

were analyzed for locating the bubble nucleation sites, detecting bubble inception and 

calculating bubble growth rates, bubble departure diameter and bubble departure 

frequency.  

 

Figure 3-4 Diagram of the cylindrical copper block heater apparatus (Image not to 

scale, unit: cm). 

 

3.2.2 Subcooling Apparatus  

In this study, experiments were performed for either saturated or subcooled liquids. 

Liquid subcooling is defined as the temperature difference between the bulk or liquid pool 

temperature and the saturation temperature. For subcooling experiments, a cooling coil is 

immersed in the test fluid to reduce the bulk fluid temperature to the desired subcooling 

value. The chilled liquid (which is generally ethylene glycol or in this case – tap water) 



 

64 

 

flows inside the coiled copper tube and serves as a heat exchanger for achieving the desired 

subcooling. The cooling coil is connected to a chiller bath with adjustable temperature 

control (Mode: 9612, Manufacturer: Polyscience). Therefore, if the experiments were 

performed with 5°C subcooling, the bulk fluid temperature is maintained at 51°C, and if 

the experiments were performed at 10°C subcooling, the bulk fluid temperature is 

maintained at 46°C. Temperature for the bulk liquid was measured using wire-bead 

thermocouples placed close to the heater surface inside the test chamber. The bulk fluid 

temperature was maintained at a desired value by periodically adjusting the temperature 

of the chiller bath.  

 

3.2.3 Power Supply Unit 

Depending on the experimental conditions desired, the test surface is secured with 

steel clamps on the copper block heater/calorimeter apparatus. The power for the copper 

block is supplied by five cartridge heaters (3 each of 500W rating and 2 each of 300W 

rating) which are placed in the bottom portion of the copper block. The power supply is 

connected to these cartridge heaters (Manufacturer: Amrel, Model No.: SPS120-10-0020, 

Power rating: 1 kW). An ammeter is clamped on to the heaters to measure the current. The 

heater coil concentric to the steel jacket is connected to a rheostat to adjust energy input 

into the coil heater for heating the test liquid.  

 The heat flux was measured by a set of commercial K-type thermocouples that 

were inserted in to the copper block. The thermocouples were calibrated using a NIST 
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calibrated mercury thermometer by placing them in a water bath maintained at a constant 

temperature.  

 

3.2.4 Data Acquisition Unit 

A high-speed data acquisition (DAQ) system was used to record the temperature 

data obtained from the thermocouples. The components of the system are a NI SCXI-

1102C terminal block and PCI-6251 DAQ board (Manufacturer: National Instruments, 

Austin, TX). A graphical user interface (GUI) was constructed using LabVIEW 71 

(Manufacturer: National Instruments, Austin, TX) for automated control of the digital data 

acquisition. The temperature data from the thermocouples was acquired at 200 Hz. In 

conjunction, temperature data of the test surface was also recorded using TFT arrays. The 

GUI also helped in maintaining bulk liquid temperature so burnout conditions would not 

be reached. Figure 3-5 shows the boiling apparatus and its various components: the boiling 

chamber, the chiller unit, power supply unit and data acquisition unit.  
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Figure 3-5 Images of the pool boiling apparatus: (a) viewing chamber, (b) power 

supply unit, (c) subcooling chiler unit, and (d) data acquisition unit (DAQ).  

 

3.2.5 Test Samples 

Since a test surface was not mounted for bare Copper experiments, the values for 

wall superheat and wall heat flux were analyzed from the thermocouple recordings in the 

Copper calorimeter apparatus. Plain silicon wafers and silicon wafers with TFT arrays (3 

inch diameter) were also utilized for a separate set of experiments that were performed in 

this study. Both of these experimental sets were designed as a control to compare with the 

nanostructured surface (e.g., for studying the bubble dynamics).  

Anodic Aluminum Oxide (AAO) surfaces were ordered from Synkera 

Technologies, Inc. The wafers were mounted on the copper cylinder using a steel clamp.  
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AAO surfaces provide high density, self-organized nanostructures which consists 

of cylindrical nanopores distributed uniformly on the surface. These pores are aligned 

perpendicularly on the surface of the AAO substrate. The aluminum pores form when the 

material is electrochemically oxidized, or anodized in specific electrolytes. Generally, the 

pore diameter is tunable from five to several hundred nm, with a pore areal number density 

that ranges from 1012 to 109 cm-2. AAO confers several advantages: it is optically 

transparent, electrically insulating, chemically inert, and thermally and mechanically 

robust [55]. Figure 3-6 shows the pore structures in the aluminum substrate, and the 

cellular matrix that forms after the anodization process.  

 

 

Figure 3-6 (a) Schematic for the structure of pores achieved through anodization of 

aluminum substrates, and (b) cellular matrix that forms after anodization. Picture 

provided by Synkera, Inc. [55] Cell size used for this study was 100 nm, pore size 

was 16 nm, and size of substrate was 5 cm x 2 cm.  
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3.3 Experimental Procedure 

3.3.1 Test Surface Assembly 

To assemble the test surface to the cylindrical copper block, a steel clamp was 

mounted on the silicon wafer and the AAO surface. The working fluid (PF-5060 

Manufacturer: 3M Corp.) was poured in to the test chamber, thus covering the heater 

surface with sufficient depth from the free surface to the heater surface (~ 5 cm). Leakage 

of the working fluid from the test chamber was prevented by mounting the steel clamp, 

the steel jacket and the cylindrical copper block on Teflon gaskets.  

 In order to improve thermal contact between the test surface and the copper block, 

high thermal conductivity grease was applied (Model: 340 Heat Sink Compound, 

Manufacturer: Dow Corning). A torque wrench was used to ensure uniformity of pressure 

around the circumference of the clamp and test substrates. Figure 3-7 shows the assembly 

of the test surface in the test chamber.  

 Depending on the test surface, different clamp configurations are used for the 

study. While both are circular in shape, one steel clamp has a rectangular window of 31.8 

mm × 58.7 mm in dimension, and the other steel clamp has a concentric circular window 

of 63.5 mm diameter. These different shaped clamps are used depending on which test 

surface is mounted in the boiling test chamber. The size of the opening in the clamp 

determines the size of the heater surface exposed to the working fluid during the boiling 

experiments. 
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Figure 3-7 Schematic showing the assembly of the test surface during the pool 

boiling experiments. 

 

3.3.2 Leakage Test and Degassing Step 

Before commencement of any experiments leakage test was performed. DI water 

was poured into the test chamber. The bottom of the test chamber was monitored for leaks. 

If leaks were detected, a torque wrench was used to tighten a few of the six screws that 

are located on each side of the optical window and the steel jackets. Once the leakage test 

was completed, the water was drained and the water was allowed to dry from the test 

chamber by exposing it to the ambient air.  Finally to complete the assembly the top steel 
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cover of the test section was mounted and the nuts were tightened to afford a good seal. 

Silicone glue was used to help seal the top steel cover to minimize vapor loss.  

 Air (and specifically oxygen) dissolves readily in the working fluid (PF-5060, 3M 

Corp.). This can be a nuisance for the boiling experiments as unexpected nucleation may 

occur and may slightly skew the results. Dissolved gases can reduce the wall superheat 

needed to initiate nucleation and erroneously modulate the heat flux at boiling incipience.  

In order to circumvent this, the test liquid was degassed before any experiment. This was 

completed by heating the test liquid to its boiling point (for PF-5060 the boiling point is 

56°C under ambient conditions). During the degassing step the test liquid was heated using 

both the coil heater and the cartridge heaters. The total power applied from both of these 

heaters typically varied in the range of 300 W to 500 W. Thus, pool boiling would occur 

in the test chamber prior to the commencement of the actual experiments. This condition 

was maintained for at least three hours so trapped gasses would be removed from the 

cavities of the heater surface. The degassing step is necessary to ensuring repeatability of 

the boiling curves generated from the experiments, improve measurement uncertainty and 

thus the reliability of the experimental data generated from these experiments.   

 

3.3.3 Heat Flux Calculation 

By employing Fourier’s Law of heat conduction the heat flux in the calorimeter 

apparatus can be estimated using the following equation [1]:  
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𝑞𝑐" = 𝑘
𝑇1 − 𝑇2

𝐿𝑐
 =  

𝑘Δ𝑇

𝐿𝑐
 

(9) 

This equation is used to find the heat flux values in the axial direction of the 

cylindrical copper block, where qc” is the heat flux in the vertical direction, k is the thermal 

conductivity of copper, while T1 and T2 are the temperatures of the thermocouples aligned 

in the vertical direction within the copper block. ΔT represents the difference between in 

temperature between the two thermocouples that are aligned in the same vertical plane, 

and Lc represents a characteristic length or distance between the two thermocouples 

located and aligned in the same vertical plane. Once steady state conditions are achieved 

during the boiling experiments, the heat flux values are obtained using Equation (9), based 

on the temperature data recorded from the copper block. The air trapped between the 

cylindrical copper block and the steel jacket serves effectively as a thermal insulator (since 

air has a thermal conductivity of 0.024 W/(m·K) compared to ~400 W/(m·K) for copper). 

This validates the assumption that heat loss in the radial direction is negligible compared 

to heat loss in the axial direction. Neglecting heat losses in the vertical direction, the heat 

flux in the vertical (axial) direction in the cylindrical copper block is assumed to be lost 

through the test surface in contact with the boiling liquid, and is formulated as:  

𝑞"𝑐  ∙ Ac=q"w ∙ 𝐴𝑤 ; 𝑞"𝑤 =
𝑞"𝑐𝐴𝑐

𝐴𝑤
 

(10) 

In the above equation, qw” represents the wall heat flux through the test surface, 

Ac is the projected area of the cylindrical copper block, and Aw is the project area of the 
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surface in contact with the fluid. The Klein and McClintock method was used to calculate 

the measurement uncertainty for heat flux, as follows: 

𝜔𝑞

𝑞
= √(

𝜔Δ𝑇

Δ𝑇
) + (

𝜔Δ𝑦

Δy
) + (

𝜔𝐾

𝐾
) 

(11) 

In this equation, ω represents the statistical uncertainty for the specific variable, 

while ΔT and Δy represent the temperature difference and spatial distance between the two 

thermocouples that are used for the temperature measurements and are aligned in the same 

vertical plane in the copper block. To measure the uncertainty value for the heat flux, 

uncertainty values for the temperature, spatial distance and thermal conductivity values 

need to be estimated. The thermal conductivity of copper was estimated to have an 

uncertainty value of ± 1.0% (from tables of material properties available in the literature), 

while the spatial distance between thermocouples was estimated to have an uncertainty of 

± 3.0% (accuracy of machining). The measurement uncertainties for heat flux and wall 

superheat values were obtained by plotting the boiling curve with a confidence interval of 

1σ, (where σ is the standard deviation value obtained from the statistical analysis of the 

measured temperature and heat flux data). 

 

3.3.4 Experimental Procedure  

The experimental procedure implemented in this study was based on previous 

studies ( [25] [30] [52]). PF-5060 was selected as the test fluid due to its lower boiling 

point at 56°C (compared to water at 100 °C). Since stable film boiling conditions are 

usually achieved at high wall superheats (estimated to be ~50 °C for PF-5060 and hence 
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wall temperatures exceeding 100°C) the choice of PF-5060 was compatible with the 

experimental apparatus and was envisioned not to cause any damage to the experimental 

apparatus when dryout conditions were reached. This fluid (PF-5060) is a dielectric, which 

means it acts as an electric insulator and can rapidly quench electric discharges. This trait 

makes it ideal for electronic chip cooling operations.  

 After steady state conditions were achieved in the pool boiling experiment, 

temperature data was recorded using the digital data acquisition apparatus for each value 

of wall superheat. The power source is switched on to activate the coil heater and cartridge 

heaters after the leakage test and degassing step is completed. The chiller unit is used to 

maintain uniform subcooling of the test liquid (e.g., by maintaining the working liquid at 

46°C for achieving 10°C subcooling and at 51°C for achieving 5°C subcooling). The bulk 

liquid temperature equilibrates to 56°C for saturated pool boiling conditions and the chiller 

unit is not required for these experiments. The condensed vapor lost from the boiling test 

liquid (PF-5060) is collected in a container placed in a bucket containing ice. The working 

liquid is also frequently replenished in the test chamber. The temperature data is recorded 

for each test surface and the experiments are performed to generate boiling curves ranging 

from the Critical Heat Flux (CHF) and Minimum Heat Flux (MHF) conditions. The first 

four data points were typically measured after reaching steady state conditions and before 

reaching CHF condition. Subsequently another four data points were measured after 

achieving steady state conditions and before reaching MHF conditions (i.e., the 

Leidenfrost point).  
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 When steady state conditions were met for each data point in the experiment, the 

digital data acquisition apparatus (DAQ) was used to record the temperature data from the 

thermocouples and TFT array. The temperature data obtained from the wire bead 

thermocouples inserted into the cylindrical copper block (calorimeter apparatus) was used 

for calculation of the wall heat flux values. Temperature measured by the TFT arrays was 

used to calculate the wall superheat values. Boiling curves were plotted based on the heat 

flux values and wall superheat values (as well as from the appropriate estimates for 

measurement uncertainty) obtained from each set of experiments for each liquid 

subcooling. Typically, steady state conditions were achieved in ~2 hours for each data 

point in the boiling curve during nucleate boiling and in ~3 hours for each data point in 

the boiling curve during film boiling. Steady state condition was defined as the situation 

where the variation in the temperature data recorded by the wore-bead thermocouples (as 

displayed in the LabVIEW GUI) did not change by more than 1°C during a 5-10 minute 

period. After achieving steady state conditions, the temperature measurements were 

recorded by the DAQ for each component: such as, the TFT array located on the heater 

test surface, the wire bead thermocouples inserted in the copper block and in the bulk fluid. 

In tandem, videos of the bubble dynamics was recorded using two sets of camera (a high 

speed and a low speed camera). The frames of images obtained from the recorded videos 

were used subsequently for flow visualization analysis.  

 After recording the videos and temperature data for a given steady state condition, 

the input power to the cartridge heaters was increased by raising the voltage in small 

increments (e.g., about 5 V increments). After incrementing the input power there was a 
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waiting time of approximately 2 ~ 3 hours before steady state conditions were achieved 

once again. The required subcooling conditions were also maintained and monitored by 

adjusting the liquid temperature flowing from the chiller into the cooling coil.  

 After achieving CHF conditions, caution must be exercised for the system to 

traverse the transition boiling regime before achieving steady film boiling conditions (in 

order to ensure that the system does not become unstable or undesirable conditions leading 

to burnout does not occur). The power input for the cartridge heater is increased 

incrementally to achieve film boiling conditions, and then the power input is progressively 

decreased to avoid the test surface from reaching the maximum rated temperature of the 

cartridge heaters (which is rated at 200°C). This experimental protocol is termed 

conventionally as a “power controlled” experiment. This implies that the pool boiling 

experiments are performed by controlling the heat flux values and letting the system 

response stabilize to different values of wall superheat. In this approach the temperature 

of the test surface can increase dramatically after CHF condition and before steady state 

film boiling conditions are achieved. Hence, these types of experiments require careful 

monitoring of the temperature recorded in real time to prevent system instabilities or 

catastrophic failures. Additionally, the continuous and stable vapor blanket that forms on 

the test surface in the film boiling regime - essentially acts as an effective insulating vapor 

film. When this condition is reached, the power has to be reduced incrementally to avoid 

burnout, ensuring the pool boiling apparatus does not undergo any damage. As always, 

the chiller unit flow rate and temperature are also modulated so that the bulk fluid would 

be maintained at the required temperature for ensuring subcooled or saturated conditions. 
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Once steady film boiling conditions are achieved the Leidenfrost point is reached by 

incrementally decreasing the power input to the pool boiling system for each steady state 

condition. The system is cooled down once the Leidenfrost point has been reached, and 

the temperature data has been documented. The recorded values of temperature is 

compiled and post processed in order to plot the boiling curve for each set of experiments. 

The boiling curves generated from different sets of experiments are then compared to 

enumerate the corresponding dominance of various transport mechanisms. If needed, 

repeatability of the experiments can be verified by repeating the whole procedure 

immediately after completing each set of experiments. 

 



 

77 

 

4 EXPERIMENTAL RESULTS AND DISCUSSION 

 

The author acknowledges the help of Dr. Hongjoo Yang, Mr. Binjian Ma, and Mr. Yi 

Wang for performing the pool boiling experiments and obtaining the raw data which 

were then analyzed and reported in this study. 

 

4.1 Data Reduction and Uncertainty 

4.1.1 Boiling Curves 

The boiling curves were obtained by plotting the wall heat flux as a function of 

wall superheat. The wall superheat was obtained from the temperature values recorded by 

the TFT arrays (for silicon wafer) or by extrapolating the temperature gradients obtained 

from the thermocouple data (for copper and AAO). As described in Chapter 3, the heat 

flux values were obtained by using 1-D Fourier’s Law of heat conduction.  

 The Kline-McClintock method was used for estimating the measurement 

uncertainty values in the heat flux for the boiling curves. The equation specifically used 

in this case has slight variation from the equation mentioned in Chapter 3. The relative 

uncertainty was calculated for the heat flux calculations using the following: 

𝜔𝑞

𝑞
= √(

𝜔𝑘

𝑘
)
2

+ (
𝜔𝑇1

𝑇2 − 𝑇1
)
2

+ (
𝜔𝑇2

𝑇2 − 𝑇1
)
2

+ (
𝜔Δ𝑦

Δy
)
2

 

(13) 

Similar to Chapter 3, the uncertainty for each value is denoted with a subscript. Thermal 

conductivity for copper was found in literature to be 401 W/m-K, with a measurement 

uncertainty assumed to be ± 1%, while Δy represents the distance between the two 
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thermocouples, and its representative uncertainty is estimated to be around ± 3%. The 

uncertainty of the temperature measurements is found by solving the root sum square 

(RSS) of the precision and bias uncertainties. Based on the DAQ resolution, the bias 

uncertainty is estimated to be ± 0.05°C. A 95% confidence interval was assumed for the 

precision uncertainty of the measurements.  

 The average of the six heat flux values from the thermocouples is the reported 

value for each data point. The uncertainty of this average heat flux value was calculated 

by finding the root mean square (RMS) of the six pairs of the thermocouples. The 

uncertainty of the average heat flux was estimated to range from 0.68 – 0.80 W/cm2. 

Additional information regarding the measurement uncertainty estimates are provided in 

Appendix A.  

 

4.1.2 Departure Diameter  

To calculate bubble departure diameter, a calibration factor was used to translate 

the measurement of bubble size in pixels (in the digitized images) to the physical length 

scales. The calibration factor was calculated by dividing the width of the heater in 

millimeters (i.e., the size of the opening in the steel clamp) by the width of the heater 

measured in pixels (as obtained from the digitized images). The units for the calibration 

factor were obtained as mm/pixels. The calibration factor ranged from 0.032 – 0.047 

mm/pixels, depending on the frame size. Once this value was calculated from the 

measurements, the departure diameter was calculated by using the following equation: 
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𝑑𝐷 =
𝑦1 − 𝑦2

𝐶𝐹
 (14) 

In this case, y1 and y2 are the measured distance (horizontal coordinates) from side to side 

of each bubble in pixels and CF is the calibration factor as mentioned before. Since the 

bubbles are spherical, the diameter measurements involve the estimation of the spans 

(from side to side and top to bottom of the bubble). Then these measured values are 

averaged to produce the mean value for the diameter of the bubble. These measurement 

are then compiled and used for comparison (e.g., for differnet experimental conditions).  

 The measurement uncertainty for the measured values of departure diameter was 

calculated using the Kline-McClintock method. The blurry edges of the bubbles in the 

captured frames were the dominant contributors to the net measurement uncertainty.  The 

uncertainty value ωy of the measurements y1 and y2 were estimated as ± 5 pixels. The 

measurement uncertainty for the departure diameter was estimated using the following 

equation: 

 𝜔𝑑𝐷
=

√2𝜔𝑦

𝐶𝐹
 

(15) 

The measurement uncertainties for departure diameter are tabulated in Appendix A.  

 To obtain effective comparison between different experimental conditions it was 

necessary to estimate the measurement uncertainties for each experiment. The RSS of the 

bias and precision uncertainties were used for obtaining the average values of departure 

diameter. The bias error was assumed to be the same as the measurement uncertainty of 

the samples in the group. The precision error was based on the 95% confidence interval 
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for each group of data. This can be calculated by averaging the standard deviation of the 

group and the number of samples in the group. Table 2 lists these values.  

For image processing, the measurement uncertainty was calculated by using two 

separate measurements of the diameter and height of the bubbles. The measurement 

uncertainty for any specific bubble was the difference of these two separate measurements 

(and then converted to a percentage value). The percentage value could be obtained from 

measured values of bubble height and diameter (either in pixels or in millimeters).  

 

4.1.3 Departure Frequency 

Bubble departure frequency was calculated in Hz, using the following equation: 

𝑓 =
𝐹𝑅

𝑡1 − 𝑡2
 

(16) 

where, FR represents the frame rate of the image acquisitions (either 1000 or 500 frames 

per second), while t1 and t2 represents the time elapsed in between successive frames for 

each bubble departure. This was documented through reporting the frame number and the 

number of frames that passed in between each nucleation event. The numerator was 

entirely dependent on the frames per second for the video footage. For 1000 fps, each 

frame is 1 ms apart while for 500 fps each frame is 2 ms apart.  

 An overall uncertainty value was obtained for groups of measurements after 

calculating the ”Root Mean Square (RMS)” errors, which is the square root of the standard 

deviation for each uncertainty measurement divided by the average of the uncertainties. 

The equations below shows the procedure for estimating the measurement uncertainty for 

bubble departure frequency: 
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𝜔𝑓1 =
𝜔𝑡

(𝑡2 − 𝑡1)
 

(17) 

𝜔𝑓2 =
𝜎𝜔𝑓

𝑥𝜔𝑓
̅̅ ̅̅ ̅

  
(18) 

𝜔𝑓̅̅̅̅ = √(𝜔𝑓1
2 + 𝜔𝑓2

2 ) 
(19) 

Measurement uncertainties ranged from ± 20 Hz (at 50 Hz) to ± 0.1 Hz (at 6.9 Hz). The 

frequency measurements were made using the high speed videos (that were acquired at 

either 500 fps or 1000 fps). The choice of each video for the calculations was mediated by 

the clarity of view for individually selected bubble nucleation sites. It was observed that 

often the videos acquired at higher frame rates (i.e., 1000 fps) provided more crisp images 

and therefore suffered from lower values of measurement uncertainties.  

 Measurement uncertainties for all of the frequency measurements are tabulated in 

the Appendix.   

 

4.2 Boiling Curves 

Comparisons of boiling curves between various test surfaces was performed in this 

study. A boiling curve shows the dependence of heat flux (q”) on wall superheat (Tw – 

Tsat). These comparisons also help to ensure that the experiments are repeatable. Figure 4-

1 summarizes the boiling curves for all of the experiments performed in this study. 

Experimental data for both nucleate and film boiling regimes are shown in this figure. As 
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expected, the wall heat flux values increase with increase in subcooling for the same values 

of wall superheat. As expected lowest levels of CHF are achieved for bare silicon wafers 

and AAO substrates demonstrate higher levels of pool boiling heat flux values than silicon. 

Also, as expected, copper heaters have significantly higher levels of CHF. However, AAO 

substrates demonstrate highest levels of heat flux values for lower wall superheats. 

Comparisons with prior reports in the literature show that for boiling curves 

obtained for Copper heaters CHF occurs at lower wall superheats (than that of the 

measurements obtained in this study, where CHF was observed to occur at wall superheat 

values of ~40°C). This discrepancy has been investigated and potential sources of error 

have been identified. The possible sources of error are discussed subsequently in this 

section.  

 Figures 4-2 and 4-3 show the experimental data only for the nucleate boiling 

regime (without and with error bars, respectively). The plots for the boiling curves show 

that higher values of heat fluxes are achieved with AAO substrates for lower values of 

wall superheat. However, at higher values of wall superheat significantly higher values of 

heat fluxes are achieved with a copper heater.  
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Figure 4-1 Plots for boiling curves for both nucleate and film boiling regimes.  

 

 
Figure 4-2 Plots for boiling curves for nucleate boiling regime.  
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Figure 4-3 Plots for the boiling curves for the nucleate boiling regime with error 

bars.  

 

For the AAO surfaces, pool boiling experiments were performed only for the 
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Figure 4-4 Boiling curve for Silicon at subcooling of 5°C. 

 

 

Figure 4-5 Boiling curve for Silicon at subcooling of 10 °C. 
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has more variation compared to Silicon. This variation may allude to the fact that the 

results for Copper had less repeatability. The various CHF values for each run at 5°C 

subcooling, 10°C subcooling and saturation conditions is tabulated in the Appendix. The 

boiling curves for Copper in different subcooling and saturation conditions are plotted in 

Figures 4-6, 4-7 and 4-8. As mentioned before, true CHF conditions could not be achieved 

for experiments performed using the AAO substrates. The boiling curves for the AAO 

substrates in the nucleate and pool boiling regimes are plotted in Figure 4-9 and Figure 4-

10. 

 

Figure 4-6 Boiling curve for Copper at subcooling of 5°C. 
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Figure 4-7 Boiling curve for Copper at subcooling of 10°C. 

 

 

Figure 4-8 Boiling curves for Copper for saturated pool boiling conditions. 
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13.23 W/cm2 ± 3%. The CHF for copper for the saturated pool boiling experiments was 

recorded to range from 6.6 to 14.7 W/cm2 ± 5%. The CHF value at subcooling 5 °C is 

expected to be marginally higher than that of the saturated case. However, these 

experimental results show that the CHF value at subcooling of 5 °C is marginally lower 

than that of the saturated case. Therefore, these data points are within the limits of 

measurement uncertainty and a definitive conclusion cannot be drawn about which of the 

CHF values are larger. 

 Moreover, small discrepancies are observed for the results for the Copper boiling 

curve. Sources of error that have been identified as potential causes for the observed 

discrepancy include calibration errors for the thermocouples or human error involving the 

assembly of the experimental setup (such as the Copper surface not being polished entirely 

before the start of the experiments).   

 

 

Figure 4-9 Boiling curve for AAO at subcooling of 5 °C. 
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Figure 4-10 Boiling curve for AAO at subcooling of 10 °C. 
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in these experiments (compared to that of bare silicon wafers). Further investigations are 

needed to determine whether AAO can truly affect the CHF compared to plain surfaces.  

 

4.3 Analysis of Images 

With the completion of each experiment, high speed videos were recorded for the 

test surfaces for subsequent analysis of the bubble dynamics. These high speed videos 

were split into frames with a MATLAB script, with appropriate file names for each frame 

to indicate elapsed time of the video. Bubble dimensions were determined through various 

image processing programs, such as a custom made in-house code developed by a former 

student (VisualBasic® application developed by Stephen Gauntt, former M.S. student at 

the Multi-Phase Flow and Heat Transfer Laboratory at Texas A&M University) and using 

Microsoft Paint. Height and diameter (in pixels) of nucleating bubbles were measured 

from the heater surface using these programs. The measurements for each selected bubble 

(in pixels) were also converted to millimeters, by multiplying the measurements with a 

calibration factor (as mentioned in the prior sections). This calibration factor was found 

by measuring the width of the heater in pixels from these images and then dividing it by 

the width of heater (measured using a measuring scale in millimeters). The bubble 

dimensions were then input into various spreadsheets for each test. The bubble departure 

frequency was measured by finding the number of frames that elapsed between two 

consecutive bubble departure events at a chosen location. The difference of the time 

elapsed between these frames was the elapsed time – which is the time period for bubble 
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departure. The inverse of this time period value is considered to be the bubble departure 

frequency at that wall superheat.  

 Figure 4-11 shows a sample image of a bubble departing from the heater surface 

(AAO Substrate). Uncertainty was generally higher for images analyzed for the AAO 

surface due to graininess of the video and the smaller size of the bubbles. One way to 

ensure the bubble measurement was more accurate was to look for a reflection of the 

bubble formation on the surface. The bubble departure diameters, heights and departure 

frequencies were all within a specific range in a given video.  

 

Figure 4-11 Image acquired from the flow visualization experiments at subcooling 

of 5 °C on AAO surface at wall superheat of 2.14 °C. The bubble reflection can be 

seen on the surface. This bubble is approximately 0.11 mm in diameter. 

 

4.3.1 Departure Diameter  

Bubble departure diameter measurements were recorded for each test surface in 

every experiment. To account for the bubble’s sphericity, the bubble’s height and diameter 

were measured and a mean value was calculated from the average of the measurements to 
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account for the actual diameter. The neck of the bubble during departure from the surface 

was included in the measurements. It was observed that the region of the bubble neck 

accounted for approximately 30% of the total height of the bubble.  

 Figure 4-12 shows a distribution of the bubble departure diameters for the different 

test surfaces in both film boiling and nucleate boiling at different values of subcooling. 

Figure 4-13 shows a distribution of the bubble departure diameters for the different test 

surfaces in nucleate boiling at different values of subcooling. The results show that the 

bubbles generated on the nanostructured surface (AAO substrates) are consistently smaller 

than that of the plain surface (approximately 50% smaller).  

 

Figure 4-12 Departure diameters recorded at various values of wall superheat for 

the heater substrates compiled for all the experimental measurements in this study.  

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 20 40 60 80 100 120 140 160

B
u
b

b
le

 D
ep

ar
tu

re
 D

ia
m

et
er

 (
m

m
)

Tw - Tsat (°C)

AAO 5C 1st Run

AAO 5C 2nd Run

AAO 10C 1st Run

AAO 10C 2nd Run

Copper 5C 1st Run

Copper 5C 2nd Run

Copper 10C 1st Run

Copper 10C 2nd Run

Copper Sat 1st Run

Copper Sat 2nd Run

Silicon 5C 1st Run

Silicon 5C 2nd Run

Silicon 10C 1st Run

Silicon 10C 2nd Run



 

93 

 

 

Figure 4-13 Departure diameters recorded at various values of wall superheat in 

the nucleate boiling regime for the heater substrates compiled for all the 

experimental measurements in this study.  
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Table 2 displays the average departure diameters for each surface and their absolute 

measurement uncertainty.  

 

Table 2 Average departure diameters and absolute uncertainty for each surface 

(dimensions in mm) 

 

Average dD for Bare Silicon 

Regime 5 °C Subcooling 10 °C Subcooling 

  

All   Run 1 Run 2 Both Run 1 Run 2 Both 

Nucleate 0.9 1.043 0.971 0.733 0.758 0.746 0.859 

ωnuc 0.167 0.147 0.157 0.133 0.103 0.118 0.138 

Film 3.415 3.4 3.408 3.15 3.015 3.082 3.245 

ωfilm 0.29 0.275 0.283 0.275 0.21 0.243 0.263 

  Average dD for AAO 

Regime 

5 °C Subcooling 10 °C Subcooling 

All Run 1 Run 2 Both Run 1 Run 2 Both 

Nucleate 0.567 0.433 0.5 0.333 0.567 0.45 0.475 

ωnuc 0.1 0.0467 0.073 0.05 0.06 0.055 0.064 

 

  Average dD for Bare Copper 

Regime 5 °C subcooling 10 °C subcooling Saturated 

All    Run 1 Run 2 Both Run 1 Run 2 Both Run 1 Run 2 Both 

Nucleate 0.533 0.723 0.628 0.5 0.703 0.602 0.5 0.47 0.485 0.543 

ωnuc 0.1 0.083 0.092 0.1 0.077 0.0883 0.098 0.095 0.096 0.092 

Film 3.875 3.539 3.707 3.375 3.5 3.435 3.260 3.628 3.444 3.439 

ωfilm 0.225 0.313 0.269 0.2 0.263 0.231 0.15 0.23 0.19 0.210 

 

 Bubble dynamics on AAO substrates is expected to result in smaeer values of 

bubble diameter at departure (than that of Copper and Silicon heater surfaces). These 

results are consistent with prior literature reports (where nanostructured surfaces typically 
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reduced the bubble departure diameter and increased bubble departure frequency, due to 

lower effective contact angles for nanostructures surfaces -arising from longer contact line 

lengths).  

 A large number of correlations exist in the literature for predicting bubble 

departure diameter and bubble departure frequency values during pool boiling. A selected 

list of these correlations were culled from the literature and were included in this study for 

comparison with the experimental data obtained in this study. These correlations are 

typically expressed as a function of Bond number, defined as: 

𝐵𝑜 =
𝑔𝑑𝐷

2 (𝜌𝑙 − 𝜌𝑣)

𝜎
 

(20) 

These correlations are listed below: 

1. Ruckenstein [37]: 

𝐵𝑜
1
2 = [3 ∗ 𝜋2 ∗

𝜌𝑙𝛼𝑙
2𝑔

1
2(𝜌𝑙 − 𝜌𝑣)

1
2

𝜎
3
2

]

1
3

𝐽𝑎
4
3 

(21) 

where 

𝐽𝑎 =
𝜌𝑙𝑐𝑝𝑙[𝑇𝑤 − 𝑇𝑠𝑎𝑡]

𝜌𝑣ℎ𝑓𝑔
 

(22) 

2. Jensen & Memmel [2] 

𝐵𝑜
1
2 = 0.19(1.8 + 105𝐾1)

2
3 

(23) 

where  

𝐾1 = (
𝐽𝑎

Pr𝑙
)
2

{[
𝑔𝜌𝑙(𝜌𝑙 − 𝜌𝑣)

𝜇2
] [

𝜎

𝑔(𝜌𝑙 − 𝜌𝑣)
]

3
2
}

−1

 

(24) 
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3. Cole [34] 

𝐵𝑜
1
2 = 0.04𝐽𝑎 

where Ja is defined from Eq. (14).  

(25) 

4. Kutateladze & Gogonin [3] 

𝐵𝑜
1
2 = 0.25(1 + 105𝐾1)

1
2 

for K1 < 0.06 (26) 

where K1 is the same one defined from Eq. (23).  

5. Zuber [38] 

𝐵𝑜
1
2 = [

𝜎

𝑔(𝜌𝑙 − 𝜌𝑣)
]
−
1
6
[
6𝑘𝑙(𝑇𝑤 − 𝑇𝑠𝑎𝑡)

𝑞"
]

1
3

 

(27) 

6. Cole & Schulman [35] 

𝐵𝑜
1
2 =

1000

𝑃
 

and the units for pressure (P) is in mm Hg.  

(28) 

7. Cole & Rohsenow [36] 

𝐵𝑜
1
2 = 𝐶(𝐽𝑎∗)

5
4 

for Psystem/Pcritical < 0.2 (29) 

     where  

𝐽𝑎∗ =
𝑇𝑠𝑎𝑡𝑐𝑝𝜌𝑙

𝜌𝑣ℎ𝑓𝑔
 

and C = 4.65 × 10-4. This value is for fluids other than water. The unit 

for Tsat is in Kelvin for Eq. (30).  

 

(30) 

8. Fritz [56] 
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𝐵𝑜
1
2 = 0.0208θ 

(31) 

where,  is the static contact angle expressed in degrees. 

9. Borishanky & Fokin [57] 

𝑑𝐷

𝑑𝐹
= −

𝐶

𝑑𝐹
+√

𝐶2

𝑑𝐹
2 + 1 

(32) 

where 

𝐶 = (
6

𝑔
) (

𝜌𝑙

𝜌𝑙 − 𝜌𝑣
) (

𝜌𝑣

𝜌𝑙
)
0.5

(
𝑞"

ℎ𝑓𝑔𝜌𝑣
) 

and dF is the diameter from Fritz’s correlation Eq. (31).  

(33) 

 Figures 4-14, 4-15, and 4-16 shows a comparison of the experimental data for 

bubble departure diameters obtained for Copper heaters compared to the predictions from 

the correlations listed above. Figures 4-17 and 4-18 shows a comparison of the 

experimental data for bubble departure diameters obtained for Silicon wafers compared to 

the predictions from the correlations listed above. Each figure shows results for both Run 

1 and Run 2 for their respective surfaces. For copper and silicon, a general trend of 

increasing departure diameter was observed with increasing wall superheat. However, for 

AAO, there was anomalous variation and less consistency in departure diameter for 

increasing wall superheat.  

 The variation of departure diameter for the 3 surfaces did not show any definitive 

trends when considered holistically. The experimental data for copper at 5°C subcooling 

showed significant variability, and a general trend showing decrease of departure diameter 

with increasing superheat. This matches the trends predicted by the correlations of Cole 
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and Schulman as well as that of Cole and Rohsenhow. For bare Copper at 10°C 

subcooling, one data point is in agreement with the correlation of Kutateladze and 

Gogonin’s, but the remainder of the data points deviates to a lower slope, with 

significantly lower values of departure diameter. Experimental measurements for bubble 

departure diameter for the Copper heater in saturated pool boiling experiments had the 

most variability.  In general, the measured values of bubble departure diameter for copper 

matched the trends predicted by Zuber’s correlation. The data at lower wall superheat 

follows almost a parabolic trend.  

After plotting the experimental data, it is observed that for two of the points for Silicon at 

5°C subcooling were aligned within the range of predictions obtained from the correlation 

of Kutateladze and Gogonin., Hence the predictions from the correlation were consistent 

with approximately half of the experimental data. The bubble departure diameter 

measurements for Silicon at 10°C subcooling showed much wider variability, with some 

of the data sets showing conformity with predictions from Zuber’s correlation and some 

of the data sets showing conformity to that of Cole and Rohsenhow.  
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Figure 4-14 Comparison of the measured departure diameter for Copper heater at 

5 °C subcooling and the predictions from the selected correlations as a function of 

the wall superheat.  
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Figure 4-15 Comparison of the measured departure diameter for Copper heater at 

10 °C subcooling and the predictions from the selected correlations as a function of 

the wall superheat.  
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Figure 4-16 Comparison of the measured departure diameter for Copper heater at 

0 °C subcooling and the predictions from the selected correlations as a function of 

the wall superheat.  
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Figure 4-17 Comparison of the measured departure diameter for Silicon wafer at   

5 °C subcooling and the predictions from the selected correlations as a function of 

the wall superheat. 

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0 5 10 15 20 25 30 35

B
u
b

b
le

 D
ia

m
et

er
 (

m
)

Wall Superheat (ΔTe)

Ruckenstein Jensen & Memmel
Cole Cole & Schulman
Cole & Rohsenhow Kutateladze & Gogonin
Zuber Fritz
Borishanky & Forin Silicon 5C



 

103 

 

 
Figure 4-18 Comparison of the measured departure diameter for Silicon wafer at 

10 °C subcooling and the predictions from the selected correlations as a function of 

the wall superheat. 
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the predictions obtained from the correlation proposed by Jensen and Memmel (especially 
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Figure 4-19 Comparison of the measured departure diameter for AAO substrates 

at 5 °C subcooling and the predictions from the selected correlations as a function 

of the wall superheat. 
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Figure 4-20 Comparison of the measured departure diameter for Copper heater at 

10 °C subcooling and the predictions from the selected correlations as a function of 

the wall superheat. 
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In addition, these correlations were developed for plain surfaces (before heaters 

with nanostructured were in vogue). Since the boiling curves for each of the samples were 

within similar ranges, using boundary layer analyses (such as in Zuber’s correlation) 

would not account for any significant differences attributable to different types of heater 

surfaces or material. The only parameter that changes significantly for different heater 

substrates, therefore, is the contact angle. The contact angles were measured to be (for PF-

5060): 5 °C, 9.65 °C, and 65 °C for Copper heater, Silicon wafer, and AAO substrates, 

respectively. The departure diameters predicted by Fritz’s correlation accounts for the 

variation in contact angle. However, none of the departure diameter data matched with 

Fritz’s correlation spectacularly, which means that for a more appropriate correlation that 

is consistent for the AAO surface, additional factors would need to be taken into account 

to accurately predict the departure diameter.  

The smaller departure diameters can be explained by exploring the equilibrium 

force diagram for a bubble at the point of departure. When a bubble departs, the buoyancy 

force (Fb) marginally exceeds the sum of the gravitational (Fg) and surface tension (Fs) 

forces acting on the bubble. Inertial and drag forces are excluded for simplification of the 

problem. Therefore, the forces are balanced at the point of bubble departure. Figure 4-21 

demonstrates the forces acting on a vapor bubble.  
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Figure 4-21 Equilibrium force diagram of the bubble, showing buoyancy force Fb, 

surface tension force Fs, and force of gravity Fg, acting on the bubble at the point of 

departure from a heater surface. 

 

The expression for these forces are shown below:  

𝐹𝑏 =
𝜋

6
𝑔𝜌𝑙𝑑𝐷

3  
(34) 

𝐹𝑔 =
𝜋

6
𝑔𝜌𝑣𝑑𝐷

3  
(35) 

The equation for surface tension force Fs is 

𝐹𝑠 = 𝐶𝑔𝜎𝐷𝑐𝑙 (36) 

where σ represents the surface tension, Dcl is the three-phase contact line length where the 

liquid and vapor interface occurs, and Cg is a geometric factor to limit only the vertical 

component of the force. Summing the forces at the point of equilibrium:  
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𝐹𝑏 − 𝐹𝑔 = 𝐹𝑠 (37) 

𝜋

6
𝑔(𝜌𝑙 − 𝜌𝑣)𝑑𝐷

3 = 𝐶𝑔𝜎𝐷𝑐𝑙  
(38) 

Departure diameter dD is then mainly influenced by Cg and Dcl, since the remaining 

parameters are governed by the material properties of the working fluid. The physical 

properties of the test surfaces are included through the geometric factor Cg and the three 

phase contact line length (this accounts for the differences in bubble departure diameters 

for each test surface).  

 AAO surfaces have a slightly more complicated contact line configuration 

compared to plain surfaces. This configuration is due to the porous structure of the coating, 

since the liquid layer below the bubble would have multiple contact zones (inside and 

outside the nanopores). Vapor generation within the nanopores can potentially disrupt the 

contact line, causing the vapor liquid interface to traverse the gaps in between the pores 

(and thus have flows in non-continuum regimes). This would also cause the formation of 

“nanobubbles” in the nanopores (as discussed in Chapter 1). In addition, the contact line 

length on nanostructured surfaces are expected to be enhanced compared to that on plain 

surfaces. This increase in the total length of the contact line combined with the surface 

tension forces acting in various directions would drastically affect the Cg. This potentially 

causes the contact angle for AAO to be larger than for plain surfaces resulting in smaller 

values of departure diameter. Further research is needed to explore the effect of 

nanostructures on the contact line Dcl and the geometric factor Cg.  
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4.3.2 Departure Frequency 

As previously stated, departure frequency (fD) was measured by monitoring the 

number of frames between consecutive events of bubble departure at the same location on 

a heater surface. Locating individual bubbles that consistently departed from the same 

location was very challenging. Therefore, comparisons for frequency with different 

surfaces will be made for AAO in nucleate boiling with that of Copper heater and Silicon 

wafer. Similar comparisons were also obtained for the film boiling regime for Copper 

heater and Silicon wafer. Figures 4-22, 4-23, and 4-24 show the frequency measurements 

among the different surfaces and the measurements with uncertainty bars, respectively. 

The averages of the departure frequency measurements are also provided in Table 3.   
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Table 3 Average frequencies and absolute uncertainty for each surface 

 

Frequency (Hz) for AAO 

Regime 

5C subcooling 10C subcooling 

All Run 1 Run 2 Both Run 1 Run 2 Both 

Nucleate 25 45.3 35.1 18 25.6 21.8 28.5 

ωNuc 46.4 33.6 40 48.7 29 38.9 39.4 

Frequency (Hz) for Bare Copper  

Regime 

5C subcooling 10C subcooling  

Run 1 Run 2 Both Run 1 Run 2 Both  

Film 11 7.9 9.4 11.8 11.4 11.6  

ωFilm 18.3 53.4 35.8 33.6 36.8 35.2  

Nucleate 15 24.3 19.6 28.6 16 22.3  

ωNucleate 86.7 70.5 78.6 106.7 67.2 86.95  

 Saturated 

All  

   

 Run 1 Run 2 Both    

Film 22.7 18.5 20.6 13.9    

ωFilm 29.9 46.1 38 36.3    

Nucleate 20.3 35.5 27.9 23.3    

ωNucleate 81.5 63.5 72.5 79.3    

        

Frequency (Hz) for Bare Silicon 

Regime 

5C Subcooling 10C Subcooling 

All Run 1 Run 2 Both Run 1 Run 2 Both 

Film 8.3 9.5 8.9 7.6 8.3 7.9 8.4 

ωFilm 37.8 22.7 30.2 14.8 43.4 29.1 29.7 

Nucleate 14.3 15.9 15.1 14 19 16.5 15.8 

ωNucleate 53.1 73.8 63.4 66.8 68.1 67.4 65.4 
 

 The average measurement uncertainty was calculated as a percentage value and 

listed in the table. The measurement uncertainty is shown to be higher for bubble departure 

frequency than to bubble departure diameter because fewer data points are available for 

these measurements (~60 measurements for frequency versus ~200 for departure 

diameter). Frequency measurements are increasingly more difficult to perform due to 
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limited availability of bubbles that consistently depart from a particular location. Scatter 

was also relatively larger for the departure frequency data set, as shown by the wide 

variability for standard deviation for frequency, which ranged from 5.5 Hz to 71 Hz. Data 

still shows that the average frequency for the AAO surface is significantly higher 

compared to that of the Copper heater and Silicon wafer surfaces (28.5 Hz vs 15.8 Hz and 

23.3 Hz, respectively for AAO, Silicon and Copper). Since the quality of the videos need 

improvement, further verification will be needed for the frequency data with a larger set 

of measurements. The AAO surface demonstrates enhanced bubble departure frequency 

because of the smaller bubble departure diameter values. Less time is required for the 

bubble to reach the specified departure size, resulting in smaller time periods and larger 

values of bubble departure frequency.  
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Figure 4-22 Plot of bubble departure frequency as a function of wall superheat.  
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Figure 4-23 Plot of bubble departure frequency as a function of wall superheat in 

the nucleate boiling regime.  
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Figure 4-24 Plot of bubble departure frequency as a function of wall superheat 

showing estimates for measurement uncertainty in the nucleate boiling regime.  
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departure diameter. For this study, it is estimated that there were 1.35 sites per mm2 for 

Silicon, 3.3 sites per mm2 for Copper, and 4.43 sites per mm2 for AAO. Hence, there is 

significant increase in nucleation site density for AAO is (24%-228%) compared to plain 

surfaces. Further investigation is necessary to explore the effect of nanostructured surfaces 

on the nucleation site density (and how it relates to the bubble departure diameter and 

frequency).  

 

4.3.3 Bubble Growth Rate 

The figures displayed below are two examples of the growth rate of a bubble in the 

film boiling regime. Typically, the bubble would experience accelerated growth at 

inception and then plateau to a specific size before nucleation. In other cases, a bubble 

may also grow linearly with respect to time. Figures 4-25 and 4-26 show the typical path 

of the bubble growth rate until nucleation.  

 

Figure 4-25 Height vs. time for a bubble at the silicon surface in 10°C subcooling and 

87.8°C wall superheat 
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Figure 4-26 Height vs. time for a bubble at the copper surface at saturation 

temperature and 112.8°C wall superheat 
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Figure 4-27 Bubble formation around the AAO nanostructure: a.) vapor (marked 

in blue) starts to form in between cavities (marked by the white boxes) b.) vapor 

builds, binding to the cavity and cohesive forces present in the liquid c.) the vapor 

forms a thin film as it nucleates to a bubble d.) bubble is formed and held together 

by surface tension.  
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5 SUMMARY AND CONCLUSION 

5.1 Summary of Results 

Pool boiling studies were performed for three different heater configurations: 

Copper heater, Silicon wafers, and Anodic Aluminum Oxide (AAO) substrates. The pool 

boiling experiments were performed for subcooled and saturated conditions. The 

experimental measurements involved automated recording of temperatures (from 

temperature nano-sensors or Thin Film Thermocouples/TFT and wire-bead 

thermocouples) using a digital data acquisition (DAQ) system. High speed digital   image 

acquisition apparatus was used for flow visualization of the bubble nucleation and 

departure process on these heater surfaces. The experiments were performed using PF-

5060 as the test fluid at atmospheric pressure. Each surface was tested in nucleate boiling 

at subcooling of 5 °C and 10 °C (in addition, saturated boiling experiments were 

performed for Copper heaters). Pool boiling experiments for the film boiling regime were 

performed for the plain heaters (Silicon wafer and Copper heater). After steady state 

conditions were achieved in each experiment, high speed videos of bubbles departing from 

the heater surface were acquired using the flow visualization apparatus at 500-1000 frames 

per second (fps). The acquired images were used to analyze the bubble departure diameter 

and bubble departure frequency values. 

Boiling curves were obtained for each of the surfaces to enable comparison for the 

performance of these test surfaces for pool boiling. While critical heat flux (CHF) was 

around the same range for both silicon wafer and AAO substrates, Copper heater 
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demonstrated significantly higher values of CHF. However, AAO surfaces demonstrated 

significantly higher values of heat flux at boiling incipience.  

Results obtained from the flow visualization experiments show that the bubble 

departure diameters were reduced by ~50% for AAO substrates compared to that of 

Silicon wafer and Copper heaters. The bubble departure frequency was enhanced by 20 -

80% for AAO substrates compared to that of the plain heaters. This implies that the bubble 

nucleation site density was enhanced by 25 ~ 230 % for AAO compared to that of the 

plain surfaces.  

In addition, the departure diameter values were smaller at 10°C subcooling 

compared to that of 5°C subcooling (for all of the surfaces). Upon comparison of the 

experimental data with a selected set of correlations in the literature it was observed that 

the experimental data for Copper heater and Silicon wafers partially conformed to 

predictions obtained from some of these selected correlations. However, the data for AAO 

surfaces were found to marginally match these correlations – no consistent conformance 

was obtained between the experimental data and the predictions obtained from these 

selected correlations. It is likely that the similarities between the predictions from the 

correlations with the experimental data for bubble departure diameter for AAO substrates 

was mostly coincidental, since the correlations from literature did not consistently predict 

behavior for nanostructured surfaces (these surfaces were not in vogue at the time of 

development of these correlations). The correlations that were consistent with the 

experimental data for these heater configurations include: the Kutateladze and Gogonin 

correlation; and the Cole and Rohsenhow correlation. Additional investigations are 
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recommended for various combinations of nanopore morphologies for AAO substrates 

(diameter, pitch, depth, etc.).  

 

5.2 Future Directions  

 A recurring problem for heater surfaces before and after boiling is fouling of heater 

surfaces (residue formation can affect the surface properties which in turn can affect the 

dynamics of bubble nucleation and departure as well as heat flux and wall superheat 

values). Hence fouling can affect pool boiling heat transfer significantly. Dispersed 

fouling can lead to formation of nanofins and cause enhancement of pool boiling heat flux. 

In contrast, excessive fouling can degrade the pool boiling heat flux values. This is a 

consequence of the “nanoFin Effect (nFE)”.   

Proper design of experiments are needed to analyze the effect of fouling on pool 

boiling. Fouling in heater surfaces can be studied by parametric variation of patterned 

deposition of resides on top of nanostructures surfaces. This is recommended as a future 

topic of investigation involving pool boiling studies for nanostructured surfaces.  

 Studies can also be designed to determine where nucleation occurs for the AAO 

surface. Since AAO substrates have nanoporous features it is difficult to ascertain the 

nature of bubble nucleation on these surfaces. The non-continuum flow regimes in these 

nanoscale cavities can violate the assumptions typically used in deriving conventional 

theories for heterogeneous nucleation of bubbles. Formation of nanobubbles from these 

nanoporous cavities beg novel theories for heterogeneous nucleation of bubbles. 

Development of novel theories for bubble nucleation on nanostructured surfaces can help 
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optimize the morphologies (cavity geometry, materials, etc.) of these nanoporous 

substrates. 

 In combination with additional bubble departure frequency measurements (as well 

as additional data for bubble nucleation site density and bubble departure diameter) 

combined with the measurements obtained from the current study, estimates for pool 

boiling heat flux data can be obtained with lower values of measurement uncertainty.  

 Additional studies are also needed to account for the effects of the static and 

dynamic contact line configurations on nanostructured surfaces (such as from AAO 

substrates). Such studies can help to predict the contact angle on nanostructures surfaces, 

which in turn, can help to predict the level of reduction in the bubble departure diameter 

for these types of heater configurations (with and without fouling).  
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APPENDIX 

Table A1 Variation of heat flux, departure diameter, and departure frequency with 

superheat for Silicon at 5°C Subcooling (Run 1) 

 

Superheat  

(°C) 

Heat Flux 

(W/m2) 

Absolute 

Uncertainty 

(W/cm2)  

Departure 

Diameter 

(mm) 

Diameter 

Uncertainty 

(mm) 

Frequency 

 (Hz) 

  

Frequency 

Uncertainty 

 (Hz) 

5.9 1.85E+04 2.70E+03 0.47 0.09     

      0.41 0.09     

      0.42 0.09     

      0.44 0.09     

      0.59 0.14     

      0.47 0.12     

      0.48 0.12     

      0.45 0.12     

      0.71 0.12     

      0.44 0.12     

15.2 4.34E+04 2.81E+03     38.5 0.31 

          18.5 0.15 

          13.9 0.11 

          17.2 0.14 

27.2 7.97E+04 2.76E+03 0.79 0.13 11.1 0.09 

      0.91 0.16 10.4 0.08 

      1.16 0.19 10.5 0.04 

      0.79 0.13 7.7 0.06 

      0.84 0.16     

      1.73 0.32     

      1.41 0.24     

      1.31 0.24     

      1.04 0.18     

      1.26 0.26     

34.7 1.21E+05 2.74E+03 1.4 0.23     

      1.33 0.21     

      1.3 0.19     

      1.04 0.14     

      1.02 0.2     

      0.99 0.25     

      1.11 0.16     

      1.07 0.12     
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      1.02 0.14     

      1.09 0.12     

93.5 8.17E+04 2.89E+03 7.03 0.29 8.2 0.07 

      4.82 0.2 9.6 0.08 

      7.99 0.31 12.8 0.1 

      8.03 0.27 9.1 0.07 

      8.06 0.24     

      8.14 0.34     

      8.81 0.34     

      9.45 0.29     

      8.11 0.29     

      5.2 0.24     

95.5 8.47E+04 2.83E+03 4 0.21 8.2 0.07 

      3.49 0.33 8.1 0.03 

      3.48 0.34 9.6 0.08 

      3.67 0.29 8.5 0.02 

      3.56 0.29     

      3.85 0.29     

      4.22 0.26     

      3.45 0.32     

      3.24 0.29     

      3.45 0.28     

97.7 8.66E+04 2.79E+03 3.81 0.2 7.5 0.03 

      4.16 0.23 8.6 0.03 

      3.9 0.23 7.6 0.03 

      3.65 0.31 7.5 0.03 

      3.23 0.31     

      3.6 0.2     

      3.04 0.26     

      3.53 0.25     

      4.25 0.25     

      3.3 0.29     

99.0 8.92E+04 2.83E+03 3.4 0.32 7.8 0.02 

      2.63 0.29 13.2 0.03 

      2.5 0.2 5.0 0.01 

      2.58 0.23 6.9 0.01 

      2.88 0.25     

      3.57 0.28     
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      2.87 0.23     

      2.86 0.27     

      2.99 0.21     

      3.32 0.23     
 

 

Table A2 Variation of heat flux, departure diameter, and departure frequency with 

superheat for Silicon at 5°C Subcooling (Run 2) 

 

Superheat  

(°C) 

Heat Flux 

(W/m2) 

Absolute 

Uncertainty 

(W/cm2)  

Departure 

Diameter 

(mm) 

Diameter 

Uncertainty 

(mm) 

Frequency 

 (Hz) 

  

Frequency 

Uncertainty 

 (Hz) 

5.4 1.83E+04 2.69E+03         

15.1 4.48E+04 2.78E+03 0.56 0.08 18.5 0.07 

      0.8 0.11 23.3 0.09 

      0.6 0.11 28.6 0.11 

      0.64 0.12 47.6 0.19 

      0.58 0.11     

      0.49 0.09     

      0.66 0.14     

      0.64 0.11     

      0.68 0.11     

      0.6 0.11     

29.5 8.43E+04 2.71E+03 0.81 0.12 12.2 0.1 

      0.85 0.15 5.4 0.04 

      0.97 0.14 4.0 0.03 

      1.03 0.14     

      0.81 0.11     

      1.33 0.17     

      0.91 0.16     

      0.87 0.12     

      1.35 0.18     

      1.23 0.19     

33.8 1.21E+05 2.73E+03 1.89 0.26     

      1.65 0.2     

      1.59 0.17     

      1.41 0.15     

      1.63 0.19     

      1.73 0.21     
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      1.19 0.13     

      1.33 0.16     

      1.17 0.17     

      1.41 0.19     

88.3 7.68E+04 2.79E+03 2.88 0.28 10.6 0.09 

      3.25 0.29 12.8 0.1 

      2.96 0.25 12.2 0.1 

      4.05 0.33 11.4 0.05 

      2.97 0.28     

      2.68 0.34     

      3.24 0.3     

      3.35 0.3     

      2.78 0.19     

      2.76 0.29     

91.3 8.01E+04 2.77E+03 2.65 0.27 8.9 0.07 

      3.62 0.27 9.4 0.04 

      3.68 0.26 10.6 0.09 

      3.08 0.27 8.9 0.07 

      2.83 0.23     

      3.83 0.26     

      3.73 0.28     

      3.25 0.27     

      2.95 0.26     

      3.07 0.28     

94.2 8.34E+04 2.83E+03 3.49 0.26 7.8 0.03 

      3.84 0.28 8.1 0.03 

      3.17 0.27 9.2 0.04 

      3.85 0.25 7.7 0.03 

      3.17 0.27     

      3.38 0.24     

      3.52 0.24     

      3.98 0.29     

      3.66 0.28     

      3.89 0.23     

95.3 8.63E+04 2.80E+03 3.17 0.3 7.9 0.06 

      4.3 0.38 7.0 0.06 

      3.95 0.25 8.9 0.07 

      3.34 0.3 7.4 0.06 
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      3.45 0.2     

      3.26 0.26     

      3.26 0.31     

      3.67 0.31     

      3.81 0.26     

      3.81 0.23     
 

 

 

Table A3 Variation of heat flux, departure diameter, and departure frequency with 

superheat for Silicon at 10°C Subcooling (Run 1) 

 

 

Superheat  

(°C) 

Heat Flux 

(W/m2) 

Absolute 

Uncertainty 

(W/cm2)  

Departure 

Diameter 

(mm) 

Diameter 

Uncertainty 

(mm) 

Frequency 

 (Hz) 

  

Frequency 

Uncertainty 

 (Hz) 

2.7 1.87E+04 2.74E+03         

12.3 4.42E+04 2.73E+03 0.7 0.1 55.6 0.22 

      0.63 0.08 25.6 0.1 

      0.53 0.05 18.2 0.07 

      0.63 0.1 15.2 0.06 

      0.63 0.08 12.5 0.05 

      0.56 0.05     

      0.53 0.1     

      0.63 0.1     

      0.73 0.1     

      0.58 0.1     

20.5 7.82E+04 2.78E+03 0.65 0.13 8.1 0.06 

      0.75 0.16 13.5 0.11 

      0.8 0.16 8.8 0.07 

      0.77 0.18 11.6 0.09 

      1.05 0.21 7.7 0.06 

      1.02 0.14     

      0.7 0.13     

      1.07 0.14     

      0.82 0.13     

      1 0.14     

26.0 1.34E+05 2.74E+03 0.77 0.11     

      0.71 0.09     
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      0.64 0.09     

      0.79 0.13     

      0.58 0.09     

      0.62 0.07     

      0.62 0.07     

      0.64 0.13     

      0.83 0.11     

      0.73 0.11     

92.5 8.14E+04 3.01E+03 2.48 0.4 7.1 0.06 

      2.73 0.27 7.9 0.06 

      3.07 0.3 9.4 0.08 

      2.93 0.22 10.2 0.08 

      2.62 0.34 10.4 0.08 

      2.53 0.38     

      3.26 0.36     

      3.1 0.25     

      3.39 0.31     

      2.63 0.2     

88.8 8.29E+04 2.85E+03 2.56 0.22 7.3 0.06 

      3.2 0.25 6.3 0.05 

      2.81 0.26 7.9 0.06 

      3.28 0.24 6.9 0.05 

      2.95 0.26     

      3.12 0.27     

      2.89 0.19     

      3.17 0.21     

      3.26 0.21     

      3.36 0.22     

88.7 8.51E+04 2.78E+03 3.27 0.32 7.0 0.06 

      3.6 0.21 8.5 0.07 

      3.17 0.24 6.9 0.06 

      2.97 0.29 8.1 0.06 

      3.31 0.34     

      3.39 0.27     

      3.31 0.29     

      3.25 0.32     

      2.71 0.17     

      3.02 0.16     
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90.6 8.70E+04 2.79E+03 3.51 0.3 7.8 0.06 

      3.46 0.36 6.9 0.05 

      3.63 0.3 7.3 0.06 

      3.38 0.29 6.8 0.05 

      3.15 0.31     

      3.78 0.21     

      3.05 0.21     

      2.96 0.21     

      3.17 0.14     

      3.94 0.25     

 

 

Table A4 Variation of heat flux, departure diameter, and departure frequency with 

superheat for Silicon at 10°C Subcooling (Run 2) 

 

 
Superheat  

(°C) 

Heat Flux 

(W/m2) 

Absolute 

Uncertainty 

(W/cm2)  

Departure 

Diameter 

(mm) 

Diameter 

Uncertainty 

(mm) 

Frequency 

 (Hz) 

  

Frequency 

Uncertainty 

 (Hz) 

2.8 1.94E+04 2.68E+03         

13.1 4.28E+04 2.72E+03 0.53 0.1 20.8 0.17 

      0.48 0.09 31.3 0.25 

      0.56 0.1 41.7 0.33 

      0.53 0.09 16.7 0.13 

      0.5 0.1 10.4 0.08 

      0.65 0.11     

      0.48 0.1     

      0.46 0.07     

      0.5 0.1     

      0.53 0.09     

26.3 7.95E+04 2.73E+03 0.48 0.07 29.4 0.24 

      0.53 0.09 9.6 0.08 

      0.46 0.07 20.8 0.17 

      1.08 0.11 33.3 0.27 

      1.23 0.14     

      1.03 0.11     

      0.99 0.14     

      1.1 0.11     
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      0.75 0.09     

      0.91 0.12     

30.5 1.33E+05 2.77E+03 0.76 0.08     

      0.85 0.11     

      0.95 0.11     

      0.97 0.11     

      0.81 0.11     

      0.82 0.11     

      0.98 0.13     

      1.06 0.11     

      0.97 0.09     

      1 0.13     

91.1 8.06E+04 2.77E+03 2.76 0.23 6.9 0.05 

      2.73 0.17 6.7 0.05 

      3.1 0.18 7.4 0.06 

      3.57 0.3 7.6 0.06 

      3.03 0.21     

      3.07 0.26     

      3 0.24     

      3.03 0.18     

      2.98 0.15     

      2.69 0.22     

91.2 8.19E+04 2.91E+03 3.22 0.26 9.3 0.07 

      3.27 0.23 13.9 0.11 

      2.56 0.16 8.9 0.07 

      2.93 0.21 6.3 0.05 

      2.98 0.2     

      2.98 0.18     

      2.97 0.2     

      2.93 0.18     

      3.02 0.19     

      2.98 0.17     

91.1 8.32E+04 2.80E+03 2.87 0.18 7.3 0.06 

      3 0.19 12.8 0.05 

      3.05 0.18 10.2 0.08 

      3.12 0.2 7.6 0.06 

      3.14 0.22     

      3.04 0.2     
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      3.06 0.22     

      3.19 0.19     

      3 0.18     

      2.84 0.17     

91.2 8.46E+04 2.85E+03 3.09 0.3 6.9 0.05 

      2.84 0.27 9.8 0.08 

      3.36 0.35 5.2 0.04 

      3.12 0.25 24.4 0.1 

      2.93 0.18     

      2.93 0.21     

      3.08 0.2     

      3.05 0.29     

      2.91 0.2     

      2.97 0.21     

 

 

Table A5 Variation of heat flux, departure diameter, and departure frequency with 

superheat for Copper at Saturation temperature (Run 1) 

 

 

Superheat  

(°C) 

Heat Flux 

(W/m2) 

Absolute 

Uncertainty 

(W/cm2)  

Departure 

Diameter 

(mm) 

Diameter 

Uncertainty 

(mm) 

Frequency 

 (Hz) 

  

Frequency 

Uncertainty 

 (Hz) 

3.5 1.43E+04 2.72E+03 0.31 0.1 30.3 0.12 

      0.31 0.06 58.8 0.24 

      0.3 0.1 22.7 0.09 

      0.3 0.06 11.9 0.05 

      0.3 0.04     

      0.3 0.06     

      0.3 0.04     

      0.29 0.06     

      0.31 0.1     

      0.41 0.08     

8.4 3.24E+04 2.72E+03 1.04 0.1 15.2   

      0.82 0.11 18.3   

      0.76 0.08 31.3   

      0.72 0.07 31.3   

      0.7 0.08     
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      0.88 0.1     

      0.74 0.08     

      0.74 0.09     

      0.8 0.1     

      0.8 0.09     

11.6 6.14E+04 2.86E+03 0.5 0.11 41.7 0.33 

      0.34 0.05 50.0 0.4 

      0.43 0.07 20.0 0.16 

      0.35 0.07 10.9 0.09 

      0.47 0.09 23.8 0.19 

      0.4 0.09     

      0.33 0.07     

      0.4 0.09     

      0.42 0.09     

      0.43 0.11     

13.5 6.66E+04 4.82E+03 0.42 0.13     

      0.36 0.08     

      0.38 0.08     

      0.39 0.13     

      0.48 0.1     

      0.53 0.15     

      0.41 0.06     

      0.36 0.08     

      0.47 0.13     

      0.33 0.13     

95.1 6.85E+04 2.95E+03         

97.4 6.90E+04 2.80E+03 3.44 0.22 33.3 0.13 

      3.01 0.16 16.7 0.06 

      3.09 0.18 20.0 0.08 

      3.14 0.22 17.4 0.03 

      3.11 0.19     

      2.95 0.16     

      3.48 0.36     

      3.03 0.17     

      3.24 0.2     

      3.2 0.27     

106.9 7.24E+04 3.36E+03 3.54 0.14 26.3 0.21 

      3.48 0.16 23.8 0.19 
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      3.36 0.14 23.8 0.19 

      3.54 0.14     

      2.78 0.13     

      3.02 0.13     

      3.48 0.16     

      3.65 0.15     

      3.79 0.15     

      3.5 0.15     

112.8 7.58E+04 3.39E+03 3.05 0.12 22.7 0.18 

      3.46 0.08 23.8 0.19 

      3.28 0.12 18.5 0.15 

      3.02 0.12     

      2.85 0.08     

      3.32 0.08     

      4.24 0.13     

      3.21 0.09     

      3.12 0.16     

   2.70 0.08   

 

 

 

Table A6 Variation of heat flux, departure diameter, and departure frequency with 

superheat for Copper at Saturation temperature (Run 2) 

 

 

Superheat  

(°C) 

Heat Flux 

(W/m2) 

Absolute 

Uncertainty 

(W/cm2)  

Departure 

Diameter 

(mm) 

Diameter 

Uncertainty 

(mm) 

Frequency 

 (Hz) 

  

Frequency 

Uncertainty 

 (Hz) 

6.8 1.93E+04 2.70E+03 0.5 0.09 58.8 0.24 

      0.5 0.07 58.8 0.24 

      0.48 0.05 40.0 0.16 

      0.5 0.09 76.9 0.31 

      0.54 0.05 47.6 0.19 

      0.47 0.05     

      0.48 0.07     

      0.45 0.05     

      0.48 0.05     

      0.41 0.07     

25.5 6.04E+04 2.78E+03 0.74 0.1 41.7 0.33 

      0.64 0.08 9.3 0.07 

      0.64 0.08 23.8 0.19 
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      0.76 0.1     

      0.76 0.09     

      0.67 0.08     

      0.64 0.08     

      0.69 0.08     

      0.64 0.08     

      0.59 0.08     

36.1 1.04E+05 2.82E+03 0.28 0.07     

      0.27 0.07     

      0.27 0.05     

      0.29 0.07     

      0.36 0.07     

      0.34 0.08     

      0.37 0.1     

      0.29 0.07     

      0.35 0.08     

      0.37 0.08     

45.4 1.47E+05 2.78E+03 0.31 0.1     

      0.34 0.07     

      0.37 0.12     

      0.44 0.13     

      0.46 0.16     

      0.28 0.06     

      0.36 0.06     

      0.46 0.16     

      0.33 0.09     

      0.35 0.09     

92.2 6.83E+04 2.95E+03 4.25 0.25 18.5 0.04 

      4.77 0.27 21.3 0.09 

      4.53 0.32 15.4 0.06 

      4.2 0.24 19.6 0.08 

      4.71 0.35     

      5.12 0.21     

      4.92 0.28     

      4.52 0.29     

      4.72 0.19     

      4.33 0.25     

94.5 6.83E+04 2.98E+03 3.37 0.12 8.5 0.07 

      3.51 0.15 10.4 0.08 

      3.72 0.12 17.2 0.14 

      3.1 0.12 23.8 0.19 

      3.16 0.13     

      3.47 0.12     
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      3.07 0.15     

      3.4 0.13     

      3.13 0.12     

      3.22 0.13     

103.8 7.87E+04 3.20E+03 3.83 0.29 20.0 0.16 

      3.37 0.27 40.0 0.16 

      3.2 0.22 9.6 0.08 

      3.91 0.29 20.0 0.16 

      3.25 0.26     

      3.94 0.27     

      3.67 0.22     

      3.22 0.26     

      3.1 0.26     

      2.78 0.22     

112.8 8.27E+04 3.11E+03 3.93 0.22 20.8 0.17 

      2.78 0.19 16.1 0.13 

      2.87 0.17 17.2 0.14 

      2.63 0.16     

      3.29 0.2     

      3.53 0.2     

      3.22 0.21     

      2.73 0.18     

      3.61 0.21     

      3.35 0.2     

 

 

Table A7 Variation of heat flux, departure diameter, and departure frequency with 

superheat for Copper at 5°C Subcooling (Run 1) 

 

 
Superheat  

(°C) 

Heat Flux 

(W/m2) 

Absolute 

Uncertainty 

(W/cm2)  

Departure 

Diameter 

(mm) 

Diameter 

Uncertainty 

(mm) 

Frequency 

 (Hz) 

  

Frequency 

Uncertainty 

 (Hz) 

5.1 1.85E+04 2.72E+03 0.55 0.11 13.2 0.11 

      0.6 0.11 15.6 0.13 

      0.59 0.11 8.5 0.07 

      0.54 0.11 12.2 0.1 

      0.56 0.11     

      0.54 0.11     

      0.54 0.11     
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      0.53 0.11     

      0.53 0.11     

      0.54 0.11     

7.9 4.10E+04 2.65E+03 0.35 0.12 13.2 0.11 

      0.38 0.12 27.8 0.22 

      0.44 0.12 100.0 0.4 

      0.41 0.12 11.6 0.09 

      0.47 0.12     

      0.59 0.15     

      0.35 0.12     

      0.38 0.12     

      0.53 0.12     

      0.59 0.13     

10.8 7.39E+04 2.66E+03 0.44 0.13 37.0 0.15 

      0.47 0.13 29.4 0.12 

      0.53 0.16 10.8 0.04 

      0.44 0.13 7.3 0.03 

      0.5 0.13     

      0.47 0.13     

      0.47 0.13     

      0.53 0.13     

      0.47 0.13     

      0.5 0.13     

102.0 6.87E+04 2.79E+03 3.71 0.23 9.3 0.07 

      3.21 0.2 12.2 0.1 

      3 0.18 10.9 0.09 

      3.57 0.2 12.5 0.1 

      3.65 0.2     

      3.76 0.18     

      3.5 0.19     

      3.29 0.17     

      3.42 0.17     

      3.21 0.19     

109.5 7.30E+04 2.87E+03 4.12 0.26 13.5 0.11 

      3.58 0.21 16.7 0.13 

      4.29 0.19 13.2 0.11 

      3.63 0.2 13.9 0.11 

      3.96 0.23     
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      4.19 0.21     

      3.68 0.21     

      3.6 0.21     

      3.42 0.2     

      3.86 0.19     

116.7 7.79E+04 2.84E+03 3.91 0.24 9.8 0.08 

      3.72 0.26 13.2 0.11 

      3.62 0.27 8.6 0.07 

      3.26 0.25 8.8 0.07 

      3.94 0.25     

      3.69 0.23     

      3.75 0.2     

      3.58 0.23     

      3.6 0.22     

      3.79 0.19     

124.1 8.27E+04 2.83E+03         

131.2 8.73E+04 2.89E+03 4.04 0.23 7.8 0.06 

      4.34 0.28 8.3 0.07 

      4.49 0.25 9.1 0.07 

      4.72 0.3 8.8 0.07 

      4.38 0.29     

      3.95 0.2     

      3.39 0.23     

      3.66 0.25     

      3.89 0.29     

      3.93 0.21     

 

 

Table A8 Variation of heat flux, departure diameter, and departure frequency with 

superheat for Copper at 5°C Subcooling (Run 2) 

 

 

Superheat  

(°C) 

Heat Flux 

(W/m2) 

Absolute 

Uncertainty 

(W/cm2)  

Departure 

Diameter 

(mm) 

Diameter 

Uncertainty 

(mm) 

Frequency 

 (Hz) 

  

Frequency 

Uncertainty 

 (Hz) 

6.5 1.79E+04 2.68E+03         

18.4 4.00E+04 2.73E+03 0.68 0.09     

      0.55 0.06     

      0.53 0.06     
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      0.57 0.07     

      0.53 0.06     

      0.56 0.05     

      0.5 0.05     

      0.52 0.06     

      0.55 0.05     

      0.52 0.04     

23.5 7.55E+04 2.72E+03 0.77 0.08 50.0 0.2 

      0.8 0.09 34.5 0.14 

      0.85 0.1 30.3 0.12 

      0.83 0.1 31.3 0.13 

      0.69 0.09     

      0.67 0.07     

      0.65 0.08     

      0.72 0.07     

      0.59 0.1     

      0.6 0.1     

36.5 1.23E+05 2.73E+03 0.81 0.08 7.0 0.06 

      0.79 0.09 29.4 0.24 

      0.86 0.09 8.1 0.06 

      0.86 0.09     

      0.86 0.09     

      0.88 0.09     

      0.91 0.09     

      1.16 0.13     

      0.93 0.09     

      0.97 0.11     

42.8 1.45E+05 2.71E+03     100.0 0.4 

          23.3 0.09 

          142.9 0.57 

          26.3 0.11 

          55.6 0.22 

100.6 6.83E+04 2.95E+03         

104.5 7.11E+04 2.86E+03         

108.4 7.31E+04 2.84E+03 2.99 0.2 5.4 0.04 

      3.58 0.29 6.5 0.05 

      3.65 0.26 11.1 0.09 

      3.51 0.23 7.1 0.06 

      3.43 0.3     

      3.62 0.24     
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      3.05 0.2     

      3.41 0.21     

      3.66 0.25     

      3.52 0.31     

116.6 7.86E+04 2.88E+03 3.56 0.25 6.0 0.05 

      3.63 0.26 19.2 0.15 

      3.73 0.32 8.9 0.07 

      3.5 0.24 11.9 0.1 

      3.36 0.24     

      3.63 0.29     

      3.47 0.26     

      4.07 0.32     

      4.04 0.36     

      3.79 0.51     

123.8 8.26E+04 2.81E+03 3.3 0.36 10.2 0.08 

      4.18 0.47 21.7 0.17 

      3.61 0.38 10.2 0.08 

      4.15 0.48 5.6 0.04 

      3.3 0.36     

      3.77 0.41     

      3.25 0.35     

      3.34 0.35     

      3.83 0.42     

      3.53 0.38     

130.5 8.69E+04 2.81E+03 3.32 0.27 4.8 0.04 

      3.55 0.33 6.0 0.05 

      3.75 0.33 5.6 0.04 

      3.68 0.38 6.2 0.05 

      3.44 0.31     

      3.18 0.28     

      3.11 0.26     

      3.47 0.3     

      3.5 0.31     

      3.22 0.25     
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Table A9 Variation of heat flux, departure diameter, and departure frequency with 

superheat for Copper at 10°C Subcooling (Run 1) 

 

 

Superheat  

(°C) 

Heat Flux 

(W/m2) 

Absolute 

Uncertainty 

(W/cm2)  

Departure 

Diameter 

(mm) 

Diameter 

Uncertainty 

(mm) 

Frequency 

 (Hz) 

  

Frequency 

Uncertainty 

 (Hz) 

3.4 2.07E+04 2.70E+03 0.48 0.07 28.6 0.11 

      0.5 0.07 55.6 0.22 

      0.47 0.07 71.4 0.29 

      0.48 0.07 27.8 0.11 

      0.52 0.07 20.0 0.08 

      0.5 0.08     

      0.45 0.07     

      0.48 0.07     

      0.52 0.07     

      0.53 0.07     

11.3 4.35E+04 2.73E+03 0.3 0.06 11.6 0.09 

      0.51 0.07 50.0 0.4 

      0.51 0.08 9.1 0.07 

      0.66 0.1     

      0.54 0.07     

      0.46 0.08     

      0.51 0.08     

      0.45 0.08     

      0.69 0.07     

      0.58 0.08     

15.0 7.44E+04 2.69E+03 0.42 0.08 9.8 0.08 

      0.52 0.08     

      0.5 0.12     

      0.6 0.12     

      0.46 0.1     

      0.56 0.08     

      0.48 0.08     

      0.66 0.08     

      0.48 0.1     

      0.42 0.08     

46.7 2.02E+05 2.79E+03         

86.9 7.57E+04 2.92E+03 2.65 0.27 12.2 0.1 
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      2.88 0.27 9.8 0.08 

      2.91 0.22 9.4 0.08 

      2.88 0.23 8.9 0.07 

      2.98 0.25 9.4 0.04 

      2.86 0.23     

      2.88 0.21     

      3.21 0.22     

      2.92 0.21     

      3.03 0.21     

107.1 7.12E+04 2.87E+03 3.84 0.25 11.6 0.09 

      3.38 0.21 10.6 0.09 

      4 0.38 11.6 0.09 

      3.54 0.29 14.3 0.11 

      3.2 0.2 14.7 0.12 

      3.38 0.21     

      3.7 0.21     

      3.47 0.21     

      3.38 0.21     

      3.27 0.23     

121.2 7.94E+04 2.80E+03 3.12 0.19 14.5 0.06 

      3.24 0.28 13.5 0.11 

      3.18 0.28 13.5 0.11 

      3.64 0.2 12.7 0.05 

      3.33 0.25     

      3.04 0.26     

      3.04 0.17     

      3.85 0.3     

      3.88 0.2     

      3.32 0.21     

134.8 8.92E+04 2.76E+03 3.84 0.23 11.4 0.09 

      3.21 0.28 15.2 0.12 

      3.68 0.3 9.4 0.04 

      4.28 0.22 9.3 0.07 

      3.65 0.19 11.1 0.09 

      3.92 0.25     

      3.56 0.17     

      3.44 0.16     
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      4.02 0.19     

      3.78 0.21     

 

 

 

Table A10 Variation of heat flux, departure diameter, and departure frequency 

with superheat for Copper at 10°C Subcooling (Run 2) 

 

 

Superheat  

(°C) 

Heat Flux 

(W/m2) 

Absolute 

Uncertainty 

(W/cm2)  

Departure 

Diameter 

(mm) 

Diameter 

Uncertainty 

(mm) 

Frequency 

 (Hz) 

  

Frequency 

Uncertainty 

 (Hz) 

3.5 1.81E+04 2.75E+03         

20.3 4.20E+04 2.78E+03 0.56 0.05 8.1 0.06 

      0.58 0.05 10.0 0.08 

      0.74 0.08 29.4 0.24 

      0.69 0.06 29.4 0.24 

      0.63 0.08     

      0.66 0.06     

      0.71 0.06     

      0.69 0.08     

      0.76 0.08     

      0.69 0.06     

26.3 7.64E+04 2.70E+03 0.63 0.08 22.7 0.18 

      0.63 0.07 14.3 0.11 

      0.69 0.06 27.8 0.22 

      0.72 0.07 14.3 0.11 

      0.72 0.07     

      0.74 0.07     

      0.79 0.08     

      0.83 0.07     

      0.72 0.07     

      0.79 0.08     

32.4 1.32E+05 2.84E+03 0.76 0.09     

      0.72 0.09     

      0.72 0.1     

      0.68 0.08     

      0.7 0.08     

      0.72 0.08     
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      0.76 0.08     

      0.89 0.1     

      0.68 0.08     

      0.63 0.08     

100.1 7.23E+04 2.82E+03 3.12 0.23 16.1 0.13 

      3.33 0.25 11.1 0.09 

      2.76 0.21 9.1 0.07 

      3.52 0.27 8.6 0.07 

      3.07 0.22     

      3.07 0.25     

      2.83 0.16     

      2.66 0.17     

      2.69 0.15     

      3.26 0.21     

114.5 7.76E+04 2.91E+03 4.04 0.36 6.2 0.05 

      3.76 0.33 8.6 0.07 

      4.14 0.38 10.6 0.09 

      4 0.38 8.9 0.07 

      3.69 0.34     

      4.03 0.37     

      4.02 0.37     

      3.64 0.33     

      3.52 0.31     

      4.04 0.35     

131.5 8.58E+04 2.88E+03 3.59 0.16 14.7 0.12 

      3.51 0.18 12.7 0.05 

      3.44 0.19 16.1 0.13 

      3.95 0.24 16.1 0.13 

      3.68 0.23     

      3.3 0.22     

      3.65 0.24     

      3.43 0.2     

      3.46 0.21     

      3.51 0.21     
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Table A11 Variation of heat flux, departure diameter, and departure frequency 

with superheat for AAO at 5°C Subcooling (Run 1) 

 

 

Superheat  

(°C) 

Heat Flux 

(W/m2) 

Absolute 

Uncertainty 

(W/cm2)  

Departure 

Diameter 

(mm) 

Diameter 

Uncertainty 

(mm) 

Frequency 

 (Hz) 

  

Frequency 

Uncertainty 

 (Hz) 

3.8 2.29E+04 2.77E+03         

6.0 4.56E+04 2.73E+03 0.61 0.03 35.7 0.14 

      0.62 0.08 29.4 0.12 

      0.71 0.11 32.3 0.13 

      0.64 0.03 27.8 0.11 

      0.58 0.05     

      0.55 0.11     

      0.71 0.03     

      0.47 0.05     

      0.61 0.03     

      0.5 0.09     

7.5 7.89E+04 2.88E+03 0.55 0.06 27.8 0.22 

      0.49 0.09 17.9 0.14 

      0.59 0.14 12.8 0.1 

      0.46 0.09 17.2 0.14 

      0.41 0.03     

      0.46 0.08     

      0.4 0.08     

      0.38 0.05     

      0.53 0.03     

      0.5 0.06     

9.8 1.24E+05 3.00E+03         

10.6 1.43E+05 3.10E+03 0.55 0.05 22.7 0.18 

      0.56 0.08 50.0 0.4 

      0.43 0.03 14.3 0.11 

      0.49 0.09 50.0 0.4 

      0.52 0.05     

      0.73 0.06     

      0.36 0.09     

      0.53 0.05     

      0.53 0.03     

      0.41 0.08     
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Table A12 Variation of heat flux, departure diameter, and departure frequency 

with superheat for AAO at 5°C Subcooling (Run 2) 

 

 

Superheat  

(°C) 

Heat Flux 

(W/m2) 

Absolute 

Uncertainty 

(W/cm2)  

Departure 

Diameter 

(mm) 

Diameter 

Uncertainty 

(mm) 

Frequency 

 (Hz) 

  

Frequency 

Uncertainty 

 (Hz) 

4.2 2.04E+04 2.72E+03 0.22 0.03 58.8 0.24 

      0.18 0.03 100.0 0.4 

      0.24 0.05 62.5 0.25 

      0.16 0.03 76.9 0.31 

      0.22 0.03     

      0.18 0.03     

      0.26 0.03     

      0.34 0.03     

      0.14 0.03     

      0.21 0.05     

7.1 4.11E+04 2.80E+03 0.84 0.05 26.3 0.11 

      0.57 0.04 27.0 0.11 

      0.79 0.05 32.3 0.13 

      0.4 0.03 33.3 0.13 

      0.79 0.1     

      0.63 0.04     

      0.68 0.04     

      0.7 0.04     

      0.66 0.04     

      0.65 0.05     

9.9 8.58E+04 3.18E+03 0.38 0.08 58.8 0.24 

      0.38 0.05 47.6 0.19 

      0.4 0.03 34.5 0.14 

      0.46 0.07 45.5 0.18 

      0.42 0.03 83.3 0.33 

      0.46 0.05     

      0.46 0.04     

      0.37 0.05     

      0.46 0.04     

      0.45 0.05     

11.3 1.28E+05 3.92E+03         

11.2 1.39E+05 3.50E+03         
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Table A13 Variation of heat flux, departure diameter, and departure frequency 

with superheat for AAO at 10°C Subcooling (Run 1) 

 

 
Superheat  

(°C) 

Heat Flux 

(W/m2) 

Absolute 

Uncertainty 

(W/cm2)  

Departure 

Diameter 

(mm) 

Diameter 

Uncertainty 

(mm) 

Frequency 

 (Hz) 

  

Frequency 

Uncertainty 

 (Hz) 

1.3 2.83E+04 2.68E+03         

2.1 4.93E+04 2.73E+03 0.29 0.04 18.9 0.08 

      0.38 0.04 14.7 0.06 

      0.31 0.04 16.1 0.06 

      0.36 0.07 14.9 0.06 

      0.29 0.06     

      0.33 0.04     

      0.33 0.04     

      0.29 0.04     

      0.27 0.04     

      0.31 0.06     

4.1 8.25E+04 2.75E+03 0.33 0.03 9.5 0.04 

      0.4 0.03 17.9 0.07 

      0.35 0.08 27.8 0.11 

      0.35 0.03 41.7 0.17 

      0.32 0.06     

      0.36 0.06     

      0.28 0.06     

      0.38 0.03     

      0.33 0.03     

      0.3 0.05     

6.4 1.28E+05 3.00E+03 0.38 0.04 22.7 0.09 

      0.36 0.06 21.3 0.09 

      0.43 0.04 14.9 0.06 

      0.43 0.06     

      0.41 0.04     

      0.38 0.06     

      0.3 0.04     

      0.3 0.04     

      0.24 0.04     

      0.43 0.04     

5.7 1.41E+05 3.74E+03         
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Table A14 Variation of heat flux, departure diameter, and departure frequency 

with superheat for AAO at 10°C Subcooling (Run 2) 

 

 
Superheat  

(°C) 

Heat Flux 

(W/m2) 

Absolute 

Uncertainty 

(W/cm2)  

Departure 

Diameter 

(mm) 

Diameter 

Uncertainty 

(mm) 

Frequency 

 (Hz) 

  

Frequency 

Uncertainty 

 (Hz) 

0.3 1.86E+04 2.81E+03         

3.4 4.22E+04 2.75E+03 0.67 0.13 27.8 0.22 

      0.57 0.05 11.9 0.1 

      0.37 0.06 23.8 0.19 

      0.43 0.04 29.4 0.24 

      0.47 0.04     

      0.63 0.1     

      0.53 0.05     

      0.51 0.05     

      0.59 0.05     

      0.61 0.05     

5.2 6.81E+04 2.81E+03 0.58 0.06 19.2 0.15 

      0.58 0.06 16.7 0.13 

      0.68 0.07 19.2 0.15 

      0.54 0.06 14.7 0.12 

      0.62 0.05     

      0.58 0.06     

      0.52 0.04     

      0.52 0.04     

      0.52 0.08     

      0.4 0.06     

8.4 1.11E+05 3.24E+03 0.65 0.05 45.5 0.18 

      0.7 0.06 34.5 0.14 

      0.54 0.05 47.6 0.19 

      0.68 0.03 40.0 0.16 

      0.68 0.09 34.5 0.14 

      0.7 0.06     

      0.81 0.05     

      0.8 0.04     

      0.61 0.06     

      0.83 0.08     
 


