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ABSTRACT 

 

Many naturally occurring structures have been shown to exhibit superior mechanical 

properties when compared to their constituent materials, such as the pomelo fruit, which, due to 

its hierarchical arrangement, allows the material to excel in both static and dynamic situations. 

For the case of the pomelo fruit (Citrus maxima) the peel has been shown to handle sudden 

shock and/or impact remarkably well, despite its relatively weak constituent materials. It has 

also been shown to exhibit a rather favorable quasi-static response with its high amount of 

energy dissipation. There have been many efforts to experimentally quantify aspects of the 

pomelo fruit along with interesting work taking place that ventures to fabricate biomimetic 

materials deriving from the pomelo fruit such as the utilization of a modified investment foam 

casting process to fabricate a foam-like material that resembles the mechanical structure of the 

pomelo peel. Little effort has been made to build mechanical models or finite element models 

that would allow users to tailor some aspects of the pomelo fruit peel to fit a certain need. The 

work presented here endeavors to define a feasible method that can be used to quickly build a 

finite element model using commonly known methods such as a Voronoi tessellation of space 

to construct the foam on a micrometer scale, while focusing on capturing the unique physics 

that are occurring due to the arrangement and structure of the pomelo peel. Using the network 

of beams, an input file can then be written that can be used with a finite element solver to 

quickly determine the response of the structure.  

Of high importance was validating such a model with published literature, and upon 

completion a tool was made available that would enable designers to modify parameters such 
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as the porosity of the structure at any given point, the cell count, material selection, etc. in a 

design scenario. The model was validated not only by having its mechanical response 

compared to the typical response of cellular materials, but was further validated when 

compared directly to compaction studies of the pomelo peel. 
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1. INTRODUCTION  

 

The pomelo is a fruit native to South and Southeast Asia, with a peel ranging from 2-

3 cm that most likely accounts for most of the energy dissipation (Figure 1). The fruit itself 

can experience falls from 10m to 15m in its natural environment and must be able to 

withstand that impact without cracking or at the very least allowing the inner fruit to be 

damaged. The peel, also known as the pericarp, consists of three layers starting with an 

exocarp referred to as the flavedo, a mesocarp often called the albedo, and the endocarp 

which surrounds the seed/center of the fruit. The three layers vary with respect to different 

parameters commonly used in describing cellular materials, such as the relative density 

(𝜌/𝜌𝑠), where 𝜌 is the density of the foam and 𝜌𝑠 is the density of the solid of which the 

foam is made [1]. There are many other naturally occurring structures that are composed of 

different layers, albeit serving a different unique purpose, such as the walls of nuts and the 

shells of the coconuts [2]. 
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Figure 1. Composition of the pomelo fruit peel, adapted from Thielen et al. [3] 
 

 

Throughout the course of history, nature has designed and optimized a topology that 

allows the pomelo to thrive despite it having to withstand such high impact forces. 

Borrowing from this structure, the work presented here investigates whether the material 

geometry can be applied to various applications and utilized to possibly outperform other 

materials that do not capture the unique structure of the pomelo peel. Being able to simulate 

and replicate the key traits of the pomelo peel would not only prove enlightening but also 

serve as an additional option to designers looking for materials to suit their needs. 

Impact damping and energy dissipating materials can have a host of applications 

ranging from simple packaging to high speed vehicular impacts along with other safety 

concerns in a wide range of industries. As a form of beginning work with the pomelo, 

building a functional mechanical model under quasi-static and dynamic conditions that 

replicates real-world results would serve as a foothold to expanding the model to include 

high impact crushing and other loading scenarios. For the pomelo peel, some of the critical 
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characteristics that will be modified and tested in this paper are the gradient to which the 

foam varies from dense to less dense (when related to foams, this is often called the porosity 

of the foam), the overall thickness of the foam, and many properties related to the individual 

struts in the design. It has been seen that the overall structure of the foam can help in 

dispersing up to 90% of the impact energy [4], and a unique characteristic of the peel known 

as the vascular bundles (Figure 2) act as stiffening elements within the structure, showing a 

higher resistance to compressive forces than the surrounding foamy peel [5]. Assessing the 

full impact of design variables such as these could expand the applicability and property 

range of a bioinspired pomelo peel foam.  

 Recently there has been many projects determining the different material properties 

of both the pomelo peel itself and open cell foams that are inspired by the pomelo peel but 

none to generate a model that would accurately reflect the material properties of either one. 

To be able to tune the design variables mentioned, first a functional mechanical model must 

be developed that can be used in a finite element software in a way that can predict how the 

material will behave before fabricating such a foam. Then, there needs to be a way to 

validate the results derived from the finite element model, which can be done by checking 

the computed property values and comparing them with experimental results from either the 

work presented here or other published projects. 
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Figure 2. Compaction behavior of a vascular bundle, adapted from Thielen et al. [5] 
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2. LITERATURE REVIEW 

 

There have been many efforts made to fabricate a bioinspired material with a 

structure similar to the pomelo fruit peel, such as utilizing a modified investment casting 

process [6] using Bi57Sn43 which performed better than a typically popular aluminum alloy 

that is usually used in casting processes (AlSi7Mg). Another approach was taken by 

Sebastian et al. [7] which produced an aluminum/aluminum-silicon-alloy composite tensile 

specimen to resemble the struts present in the pomelo peel. It can be seen in related literature 

that varying the overall thickness of the peel and retaining certain characteristics can result 

in what seem to be different structures but, upon further investigation, are structures that 

actually share similar principles. Nut shells exhibit something like this by showing a similar 

hierarchy when compared to the pomelo peel while simultaneously exhibiting toughness 

comparable to ceramic and glass [8]. 

 As a starting point, a quite famous article written by Ashby and Medalist [1] gives 

great descriptions of what stress-strain curves should look like for different cellular solids. 

For the purposes of the work presented here, a focus will be made on the general curve 

given on pg. 1758 of the same article, shown in Figure 3.  
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Figure 3. Stress-strain curve for cellular a solid, adapted from Ashby and Medalist [1] 

 

 

As can be seen, there are three primary regions that can be discerned in Figure 3, the 

linear-elastic regime, the stress plateau (or collapse) region, and finally the densification 

region. There are two primary types of foams known as open-cell and closed-cell foams. 

Mechanically speaking, most foams can be idealized to behave like open-cell foams and, 

from the microstructure of the pomelo peel given in Figure 4 with the help of a scanning 

electron microscope (SEM), the model utilized in this study will approximate the peel as 

such. The main difference between an open-cell and closed-cell foam is that the cells (or 

pores) of the foam are either closed off from each other or separated by struts (also known as 

ligaments). This is surprising, since although on a macro scale the peel appears to be a 

closed-cell foam, studying the peel on the micrometer scale reveals its open-cell like 

topology.  
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Figure 4. SEM image of the pomelo peel, adapted from Thielen et al. [2] 

 

 

In the way of computational modeling, there have been numerous studies completed 

in order to predict the mechanical behavior of a variety of foams, including monodisperse 

and polydisperse foams.  Until recently, it was difficult to model a cellular structure up 

through densification because such a model would have to include contact forces between 

ligaments and that would prove to be computationally very expensive. Gaitanaros et al. [9] 

has been able to do so with impressive agreement when compared to experimental values. 

Figure 5 shows a computationally generated stress-strain graph for an open cell material 

undergoing compression. The tractability of modeling an open cell structure with contact is 

increased when a beam to beam contact algorithm is used. When using a beam to beam 

contact algorithm there is generally a loss in resolution of the stress occurring at the contact 

patch between beams, but this is traded off for with a reduction in computational time and 
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effort. This method of analysis is especially suited for simulation of cellular solids since it is 

not primarily concerned with high resolution of the stresses at the contact patches been each 

of the beams, rather, the primary concern of such a model is to extract the overall 

compaction behavior of the structure that arises from these large number of contact 

interactions. Such a contact algorithm becomes especially becomes useful when introducing 

many beam elements in the model such that, at any given time, there can be hundreds if not 

thousands of beams exhibiting the nonlinearities associated with contact stresses.  

 

 

 

Figure 5. Computational compressive stress-strain curve for an open cell foam, 

adapted from Gaitanaros et al. [9] 
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When compared to their own experimental values and the general cellular 

compression graph depicted in Figure 3 there are some immediate similarities that can be 

drawn. Primarily the three regions (elastic, plateau, and densification) are captured, as well 

as the slight variation it has with experimental values that is primarily due to the way each 

model is produced which introduces some level of randomness into the structure and is a 

trait that is also introduced for the work presented here. 

The pomelo peel itself, as stated earlier, can be modeled as an open-cell structure due 

to its topology on a micro scale. However, there are still some unique and possibly 

beneficial characteristics of the peel in that it has a gradient porosity across the peel, which 

has various impacts during compression or cyclic loading. A typical stress strain curve in 

which a pomelo peel sample is cyclically loaded through quasi-static compression is in 

Figure 6. By inspection of the figure, one can note the energy dissipation properties the peel 

seems to have through its hysteretic response, and is one of the responses that is investigated 

further in this work. 
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Figure 6. Stress-strain response for a pomelo peel, adapted from Thielen et al. [5] 

 

 

It is hypothesized in this paper that the stress-strain curve depicted for the pomelo 

peel can be related to the stress strain curve for that of a typical open cell foam by 

comparing their nonlinear regions. Due to the change in relative density throughout different 

segments of the pomelo peel, there are portions of the peel, such as the middle, that have 

very little material available to resist compressive/tensile loads on the top or bottom of the 

peel. Due to this, there is no linear elastic regime that can be seen in the curve for the 

pomelo peel. Rather, it seems the mechanical behavior of the peel skips this regime entirely 

and picks up possibly where the plateau region is and exhibits a behavior known as the onset 

strain of densification (OSD). OSD is defined as when the cell walls begin interacting and 

contacting each other, essentially the ligaments and the foam in general get so compressed 
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that all the empty space in the cell is removed and the ligaments begin compressing each 

other. Thielen et al. [5] showed that conventional methods could not be used in determining 

the beginning of the OSD and instead used a variation of the OSD defined as the maximum 

of the energy absorption efficiency. However, for the model presented in this paper, because 

there are regions in which there is a very small amount of material present to elastically 

absorb compression, it seems the material rather is immediately experiencing buckling and 

is forced to recruit larger and larger parts of the peel to deform until the entire peel is 

compressed. Another factor that may be influencing the behavior of the foam would be the 

cell lumen contained within the ligaments themselves. As compression occurs, these cells 

burst and lose some of their mechanical strength. For the purposes of this paper, the main 

aspects studied will be the gradient porosity along with the effect it has on computational 

models, and if it can be used to accurately assess the capabilities of a similarly manufactured 

foam. 

On a macroscopic level, in compression testing the pomelo peel acts as a viscoelastic 

material, showing reactions to different percentage strains that are time dependent. As can 

be seen from Figure 7, a typical loading of a peel sample shows force relaxation on various 

levels of strain. For quasi-static loading, the modulus was found to vary linearly with respect 

to strain, and can be used to justify some results from a mathematical derivation, which is 

one of the results that this paper will be using. 
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Figure 7. Force relaxation curve for pomelo peel, adapted from Thielen et al. [2] 

 

 

A close look at the structure of the pomelo peel reveals some interesting aspects 

about the structure and how they interact with one another. As can be seen from Figure 4, 

the foam is compiled of a network of struts that vary in number according to the location 

within the peel. Randomly dispersed within this network, the vascular bundles are the 

localized areas that are denser then the surrounding region. This combination of struts and 

vascular bundles seems to have evolved out of a necessity of impact absorption, and has 

provided the basis of the analysis. 

 Seidel et al. [8] mapped the distribution of intercellular material, cell lumen, and cell 

wall material as a function of radial distance, which is shown in Figure 8, where the graph’s 

origin (left end) starts at the exterior of the pulp and moves radially inward towards the pulp.  
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Figure 8. Distribution of cellular, lumen, and empty space within the pomelo peel, 

adapted from Seidel et al. [8] 

 

 

Thielen et al. [5] also provided information on the dispersion of the vascular bundles 

as a function of the radial distance as well, shown in Figure 9. These pieces of information 

can combine to determine at any cross section within the peel: the amount of struts, the 

intercellular area, the lumen area, the cell wall area, and the area occupied by any randomly 

dispersed vascular bundles. 
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Figure 9. Vascular bundles vs radial distance, adapted from Thielen et al. [5] 

 

 

When looking at the entire system in compression, it can be seen when the denser 

end is loaded with a uniform stress, the middle section is the first part of the system that is 

susceptible to plastic deformation, because it has a smaller effective area to absorb the stress 

due to the increase in intercellular space. The entire peel then, begins to fail beginning on 

the smallest area all the way up to the maximum area, where there is no intercellular space. 

Furthermore, on the cross sections that do not have much cross-sectional area to absorb the 

loading, the stresses will be even higher assuming that they remain planar. It should be 

mentioned, however, that that flavedo of the pomelo does have a slight curvature associated 

with it which would disrupt a uniform distribution of stress but assuming the flavedo to be 

planar is still a good approximation. 
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To understand at what points the foam will fail then, a cross sectional area can be 

represented as cutting through a serious of cylindrical vessels undergoing an axial 

compressive force. The struts have some various dimensions given by Fischer et al.[7], such 

as an average outer diameter of 38 micrometers, and an average inner diameter of 31 

micrometers. By knowing the amount of intercellular space that should be present at any 

given cross-sectional area, a specified number of cylindrical vessels with average strut 

dimensions can be arranged at each interface to fit these physical constraints. 
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3. METHODOLOGY 

 

3.1 Development of open-cell structure 

 

For the work presented here, the gradient porosity and variation in foam density 

across the thickness of the peel will be replicated through a pseudo random Voronoi 

tessellation of space which a higher concentration of seed points at the boundaries of the 

computer model and a lower concentration towards the center. Since the geometry is being 

generated with a process that incorporates randomness, it will never produce two models 

that are exactly the same. Therefore, there will always be some level of variation when 

comparing two models or a model and some experimental values, as was seen in Figure 5. 

To generate the skeletal open-cell structure, open source C++ libraries collectively 

known as Voro++ were used, with the full code used given in Appendix A. The algorithm 

utilizes a commonly used method known as a Voronoi three-dimensional tessellation of 

space to systematically create cells of various sizes within a given volume. The program 

starts by defining the volume that will be tessellated, or split, into different cells. For the 

purposes of this paper a cylindrical volume was used to benchmark results with published 

compaction data of the pomelo peel. A set number of points are then randomly placed into 

the volume, known as “seeds”, that will go on to form the pores (or cells) of the material. 

Using Figure 8 as a model, it can be seen that generally speaking there is more cellular 

material at the ends of the foam and less material in the middle of the foam, which is also an 

observation commonly made throughout published literature. To replicate the variation in 
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pore size and empty space that is present in the pomelo peel, there are a high number of 

these random points placed near the top and bottom ends of the volume space followed by a 

smaller amount that are then dispersed within the center portion. As these seed points are 

randomly distributed within the material, the perpendicular bisector is calculated between 

that point and all the other points to ultimately form a cell around each seed point. The 

decision-making process is rather straight forward and essentially forms a cube around each 

seed while cutting away portions of it corresponding to the perpendicular bisecting planes 

calculated with nearby points. Eventually, the bisectors lie outside of the cell containing a 

seed, and the process moves on to another seed point. A preliminary visualization of the 

topology is then visualized in gnuplot, as shown in Figure 10.  

 

 

 

Figure 10. Gnuplot showing a 3D Voronoi tessellation of space using Voro++ 
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3.2 Exporting structure to ABAQUS 

 

 Using the file contents of the gnuplot, the points used in the plot are then exported to 

ABAQUS, a commonly used finite element solver, and connected using 3D beam elements. 

To complete this, a python script was used that reads points from the gnuplot file, a portion 

of which is given in Figure 11, and connects them in sequence if there is no empty line 

separating the consecutive points to be connected.  

 

 

 

Figure 11. Portion of a typical gnuplot’s file contents 

 

 

When the script encounters an empty line, this is gnuplot’s way of saying the chain 

of points is to be broken, and the next point given is not meant to be connected to any 

previous points, rather only to the points that lie after it (until another empty line is 

encountered), and the process is repeated until it reaches the end of the text file. However, 
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importing the beams into ABAQUS as geometric features was shown to take a prohibitive 

amount of time, mainly because each geometric entity must be rendered and added to the 

model which becomes an arduous task computationally once the model consists of 

thousands of beams. To remedy this, the input file for ABAQUS was written directly from 

the gnuplot’s file contents, and the input file was imported into ABAQUS which produces 

something known as an orphan mesh. In short, in orphan mesh is simply a mesh that is not 

associated with any geometry but instead only has information on the nodal coordinates, 

element types, and element connectivity’s. This has the benefit of greatly reducing the 

amount of time to import a model into ABAQUS, and once the input file has been written it 

be submitted and ran without ever opening the graphical user interface (GUI) in ABAQUS. 

The full python script used is given in Appendix B. 

One of the rather subtle features of the python script is it removes duplicate beams 

that are present in the gnuplot format. Placing multiple wires in the same 3D space would 

prove to not only be detrimental to a finite element analysis, but also makes the already 

lengthy process of importing the cellular beam structure unnecessarily longer. The number 

of duplicate beams in the gnuplot file typically depends on the number of beams present in 

the model, and can generally vary from around 33% all the way up to around 60% as the 

number of beams increases.  

The second feature the script has the ability of doing is removing wire segments that 

are below a tolerance value, which can be passed as an input parameter to the python script. 

As the number of beams in the model is increased, there are multiple beams generated that 

have either a length of 0, or some value very close to it. From the perspective of a finite 
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element analysis, if beam segments of such short length were permitted to be present in the 

model it would be prohibitive to the stable time increment that an explicit analysis would be 

able to have and most certainly cause convergence issues during analysis. To remedy this, if 

the script encounters a beam segment below the given tolerance value it removes the beam 

and merges its endpoints, while making the appropriate adjustments to the edges connected 

to those endpoints. A further step is then taken to remove any more edges that may be 

present and are below the tolerance once the geometry is in ABAQUS, which is explained in 

the next section. 

As a last step in importing and conditioning the geometry for ABAQUS, the mesh 

was queried and any beam segments that remained and were below a given tolerance value 

were extended until they were at or above the tolerance. For the specimens presented here, 

any beams that were below 200 micrometers were extended until they were at or above that 

length. This would then conclude the conditioning of the geometry and the mesh to ensure 

reasonable stable time increments and an overall tractable computational problem. 

 

3.3 Finite element analysis using ABAQUS 

 

Once the skeletal model has been successfully imported into ABAQUS, the 

compressive testing was completed by constraining the bottom face in all directions and 

rotations and displacing the top face using a rigid body in the shape of a simply plate to 

replicate a simple experimental quasi-static compression test. A variety of approaches and 

boundary conditions were taken throughout the modeling process, and much care must be 
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taken in this step not only to ensure convergence but to be able to accurately reflect the 

materials real-world response. The units used in the model were cm for length, and other 

units were adjusted to remain consistent, and the initial dimensions chosen were used to 

match experimental samples that were prepared by Thielen et al. The beams were given a 

circular cross section with a radius of .002cm according to experimental studies that have 

characterized the topology of the pomelo peel. An example of the finished structure is 

shown in Figure 12. 
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Figure 12. Open cell specimen with 83,771 beam elements with uniform porosity 

 

 

To begin, the first analysis completed on the specimen was a quasi-static 

compression. To ensure the test was quasi-static in nature and did not incorporate many 

dynamic effects the displacement of the top face was defined using a 5th order polynomial 

that has zero slope at the beginning and the end of the time step to avoid sudden transitions 

in displacement or velocity, and is shown in Figure 13: 
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Figure 13. Visualization of displacement of top face vs time 

 

 

To allow the finite element model to be tractable, there was the utilization of mass 

scaling on some of the elements that has the effect of increasing the stable time increment 

for an explicit finite element analysis. In an explicit analysis, the solution is obtained by 

integrating through time using many small-time increments that are dictated (approximately) 

by the ratio of the element length divided by the dilatational wave speed. Thus, for elements 

that have a short length compared to others, they are going to have the smallest transit time 

of the dilatational wave and therefore constrain the stable time increment for the entire 

model. To remedy this, the dilatational wave speed is inversely proportional to the density of 

the material and thus the density can be artificially increased in order to decrease the 

dilatational wave speed and increase the stable time increment. Explicit dynamic procedures 

involving quasi-static simulations tend to have very long simulation times compared to that 

of shorter dynamic responses such as impact or shock. Additionally, mass scaling is the 
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preferred method of reducing the solution time if rate dependencies are included in the 

problem, which is a possibly for this project. When used correctly, mass scaling can often 

improve the efficiency of a finite element model by allowing it to run faster while still 

maintaining a degree of accuracy for the problem at hand. Like the portions of the import 

process that removed beams that were shorter than a certain length, beams that are above 

this tolerance but comparatively still very small tend to constrain the stable time increment 

of the entire model and can cause an analysis to take a prohibitively large amount of time. 

Mass scaling can be used uniformly over the entire model or only on elements that are 

below a target stable time increment, the latter being the method that was utilized in this 

paper. There was a lot of attention taken to ensure that the mass scaling was not significantly 

altering the solution of our model, with a primary indicator being a comparison of the 

internal strain energies to the kinetic energy of the model throughout the analysis. For the 

case of the quasi-static loading, a figure depicting a comparison of the internal strain energy 

and the kinetic energy throughout the two second compression cycle is provided in Figure 

14. 
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Figure 14. Comparison of internal energy and kinetic energy vs time 

 

 

As can be seen, throughout the simulation the kinetic energy is a small fraction of the 

internal strain energies. Since the simulation is attempting to replicate a quasi-static 

scenario, this condition must be true for every simulation and throughout their entirety. The 

benefit of using the 5th order polynomial curve can then be seen when looking at this figure, 

since the kinetic energies are essentially zero at the beginning and end of the time step as 

result of the zero slope the polynomial curve has at these points in time. The peak kinetic 

energy is them achieved in the middle of the time step, but remained very low because of the 

how the loading curve gradually slopes upward as opposed to a ramp or step function that 

would surely have much more abrupt changes and would elicit a much more dynamic 

response from the structure. 
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4. RESULTS 

 

4.1 Quasi-static compressions 

 

Computational specimens were then loaded for a variety of time scales and their 

mechanical responses were post-processed. The loadings completed were primarily quasi-

static in order to benchmark with published literature on the study of pomelo peel samples. 

Primarily, there were studies such as Thielen et al.[2] that excised a cylindrical specimen 

from the pomelo peel and tested it under quasi-static conditions. Interestingly, computational 

models can be seen to exhibit a similar response to experimental studies even without 

including rate dependent effects. This serves to help validate the hypothesis this paper had in 

that the compression responses of the peel seemed to simply be hysteretic cycles of a typical 

foam loaded up to and past densification.  

 To begin, first a uniform cylindrical specimen was generated and compressed to 

elicit a typical compressive response that is present in almost all cellular materials with a 

uniform pore distribution with which will then provide a baseline to compare other models 

to. The specimen has 8000 pores which resulted in 83,771 beams that were placed in a 

cylindrical volume with a 1.267 cm radius and 3 cm height and was shown in Figure 12. 

Eight frames of the compressive cycle are shown in Figure 15 along with the reaction force 

that was recorded throughout the analysis. Furthermore, a comparison of internal strain 

energies to kinetic strain energies is shown in Figure 16 and was used to ensure the quasi-

static nature of the simulation. 
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Figure 15. Compressive cycle for a uniform specimen with 83,771 beam elements 

 

  

 

 

Figure 16. Reaction force for uniform specimen 
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Figure 17. Internal strain energy and kinetic energy vs time for uniform specimen 

 

 

As can be seen from the figures, the methodology does a good job of accurately 

modeling the response of typical cellular materials, while finding the optimal mass scaling 

point that allows the models to be tractable without deviating from a true quasi-static 

analysis, shown in Figure 17. The three typical regimes present in the compaction of cellular 

materials (elastic, plateau, and densification) can also be seen when studying the stress 

contours during the compaction cycle as well. Initially there are many beams that are 

incorporated in resisting the deformation, and then gradually more beams begin to 

plastically deform and fail while the beams begin to compact each other.  The plateau 

regime may not be as noticeable in the samples presented here simply because of the number 

of beam present in the model. 
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The next sample, provided in Figure 18, is one that has the same number of pores as 

the uniform sample along with 81,438 beams but now 66% percent of the pores are 

dispersed within .6cm of the top and bottom faces of the sample to begin replicating the 

changing porosity present in the pomelo peel. 

 

 

 

Figure 18. Open cell specimen with 81,438 beams and changing porosity 
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The analysis conducted on the specimen with the changing porosity mimics that of 

the uniform specimen, in which the top was displaced by 2 cm with a 5th other polynomial 

amplitude curve, mass scaling was used on prohibitive elements, and the results were post 

processed. Eight frames of the compression cycle are depicted in Figure 19 along with a 

comparison of the reaction forces for the two specimens generated thus far being depicted in 

Figure 20 (specimen with uniform porosity and specimen with changing porosity), with the 

uniform porosity specimen being depicted with the red line. 

 

 

 

Figure 19. Compressive cycle for specimen with changing porosity 
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Figure 20. Reaction force of uniform and changing porosity specimens 

 

 

 To once again ensure the analysis was completed without dynamic effects being 

introduced the same comparison of the internal energies with the kinetic energies was 

conducted and was seen to look the same as Figure 17, and is therefore omitted for brevity. 

Initially both compaction behaviors of the specimens with uniform and changing 

porosity seem very similar, but upon studying the magnitudes of the reaction forces some 

differences can then be realized. Although the specimen with a changing porosity has the 

same number of pores and roughly the same number of beam elements, it can produce a 

smaller reaction force when compared to the specimen with uniformly distributed pores 
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which is depicted in Figure 20. Yet another way of interpreting how much energy has been 

absorbed by the structure is by a comparison of the strain energies throughout the analysis, 

which is shown in Figure 21. The uniform specimen is depicted in dark green and exhibits 

the expected result of being able to absorb more energy due it exhibiting a higher reaction 

force.  

 

 

 

Figure 21. Strain energy comparison for the two specimens 
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To exaggerate the changing porosity, another specimen was modeled with 32,618 

beams but a much larger shift in the porosity when compared to the previous model, and is 

shown in Figure 22 followed by 6 frames showing the compaction of the material using the 

same boundary conditions as before, shown in Figure 23. 

 

 

 

Figure 22. Specimen with changing porosity and 32,618 beams 
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Figure 23. Compression of computational model with 32,618 beams 

 

 

 As was seen twice already, the kinetic energy compared to the internal strain energy 

of the model was seen to be of negligible value and the graph showing this was once again 

omitted for brevity. The effect of the changing porosity can then be seen much more clearly 

in this model. The first material to yield and undergo plastic deformation is located at the 

center of the specimen which has the least amount of “effective” cross sectional area to 

resist the loads applied. It therefore enters the plateau regime, which is exaggerated in this 

analysis because of the exaggeration in change in porosity of the model, and the beams seem 

to be almost in “free-fall” waiting to reach the densification regime. Upon reaching the 

densification regime, the reaction force then begins to rise again throughout the end of the 

analysis, as expected. As an added portion of the analysis, the specimen was then unloaded 
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and loaded again to the same amount of strain the reaction force was tracked producing 

something that begins to look a lot like the compaction behavior of the pomelo peel, as is 

shown in Figure 24. 

 

 

 

Figure 24. Compressive response of specimen with 32,618 beams 

 

 

4.2 Impact analysis 

 

 Once the proper mass scaling was determined from the quasi-static analysis, that 

same amount of scaling was carried over to the dynamic analysis in which the only thing 

that was changed were the boundary conditions applied to the structure. The focus was to 
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place the specimen in some real-world conditions subjecting to a drop from roughly 5 feet, 

and determining its deformation once it impacts the ground. To accomplish this, all of the 

elements in the specimen were given a predefined field value of 5.47 meters per second 

(which was converted to centimeters per second for the units to remain consistent in the 

model). The specimen was then placed 2.1 * 10-5 meters from a rigid plate that would be 

replicating the ground that the specimen would be impacting, with the plate being fully fixed 

in all displacements and rotations. Figure 25 depicts a specimen with 82,355 beam elements 

with the prescribed velocity shown with the orange arrows, and the floor in this case being 

the solid black line above the specimen. 
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Figure 25. Boundary conditions for impact analysis of specimen with 82,335 beam 

elements and changing porosity 

 

 

 Due to impacts generally taking place over very short spans of time, the analysis for 

this case was not as computationally taxing as was the prior quasi-static analysis. Rather, the 

entire impact was seen to take place over roughly a mere 5.5 * 10-4 seconds, although 

attention does need to be paid to ensure the boundary conditions are properly defined and 

there is not excessive element distortion taking place. Figure 26 below captures the 

deformation and stress distributions that takes place during this time span. 
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Figure 26. Stress distributions of specimen during impact (across 5.5 * 10-4 seconds) 

 

 

 As was done with the quasi-static analysis, a comparison of the strain energy and the 

kinetic energy of the structure was completed throughout the duration of the simulation in 

order to gain some more insight into how the structure is behaving and responding to the 

impact. The comparison is shown below in Figure 27, with an additional energy now 

included which is the plastic dissipation of the structure.  
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Figure 27. Comparison of energies during impact 
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5. CONCLUSIONS 

 

It can then be seen that the changing porosity of the pomelo peel may play a more 

critical role in the mechanical response of the peel than was previously considered. Even 

without including a viscoelastic material model, a very similar trend can be seen to occur in 

which the first loading cycle dissipates a high amount of energy, and the second cycles then 

dissipates much less. This behavior can be attributed to a variety of reasons, some which 

being the plastic deformation of the structure during the loading cycle and another being the 

frictional dissipation between the beam elements during densification. A rather interesting 

aspect of these specimens is that they are almost immediately entering the densification 

stage, seemingly because of the limited free space that exists the pores. As mentioned 

previously, such a model containing hundreds if not thousands of unique contact patches 

would previously prove to be a rather difficult problem to solve with just the amount of 

computational resources required alone. However, utilizing Abaqus’ beam to beam contact 

allows open cell foams to be modeled with relative ease compared to if one were to use 

three-dimensional solid elements or shell elements. 

For the quasi static compressions, some rather interesting features were able to be 

exploited with a simple manipulation of the porosity density across the foam specimen, such 

as reducing the contact force along with reducing the strain energy that the structure 

absorbed although both the uniform and gradient specimens were under the application of 

the same boundary conditions. As for the cyclical loading, it was rather interesting to be able 

to replicate the response of the pomelo peel although the material properties were entirely 
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different (Aluminum 6061-T6). The only location this difference in material properties can 

be denoted is at the very initial stages of the loading, in which there is a notable linear elastic 

regime that coincides with the elastic region of the aluminum material itself. This 

corresponds to typical compressions of cellular materials, in which the initial stages are the 

beam ligaments undergoing simple bending. It goes to say then, if the material properties 

were modified to replicate that of cellular material that constitutes the pomelo peel, this 

elastic regime would disappear and the loading cycle would then look even more similar to 

that of a pomelo peel.  

The impact analyses were also interesting in the sense that they shed light on some 

very favorable characteristics of the gradient cellular material. When studying Figure 26, it 

was rather intriguing to see the shock from the impact propagate through the material but be 

arrested before reaching the other end (the bottom end). These results can be indicative of 

materials like this being favorable for applications involving high impact, shock, vibration, 

etc. Comparing Figure 26 with Figure 27, the kinetic energy seems to be turned into strain 

energy of the structure while some of it gets dissipated through plastic dissipation. After this 

initial impact stage, the strain energy then drops by some amount and seems to oscillate 

around some steady state value, while some of the strain energy is then converted back to 

kinetic energy as the specimen at the point is then bouncing off the ground and is no longer 

contact with the rigid plate. By inspection, the conversion of energies back and forth 

between strain and kinetic energies seems to ultimately dampen the impact that this structure 

has with the ground and, ideally, would also be serving the purpose of dampening the impact 

of whatever structure that resides on the other side of the foam specimen.  
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APPENDIX A: C++ CODE FOR VORONOI TESSELLATION OF SPACE 

 

#include "voro++.hh" 
#include <iostream> 
#include <fstream> 
#include <sstream> 
#include <math.h> 
#include <algorithm> 
using namespace voro; 
 
// Set up constants for the container geometry 
const double x_min=-.5,x_max=.5; 
const double y_min=-.5,y_max=.5; 
const double z_min=0,z_max=.5; 
double R = .5; 
double centerStart = .2*(z_max-z_min); 
double centerLength = .6*(z_max-z_min); 
double topStart = .8*(z_max-z_min); 
double topLength = .2*(z_max-z_min); 
double bottomLength = .2*(z_max-z_min); 
 
/* Setting a base value  for the number of particles that are 
 going to be randomly introduced into the different sections of foam*/ 
const int particles=1000; 
 
// Function that returns a random double between 0 and 1 
double rnd() { 
    return ((double)rand()/(RAND_MAX)); 
} 
 
// Set the computational grid size 
const int n_x=7,n_y=7,n_z=14; 
 
int main() { 
    //Creating a set of 10 cylindrical tessellations 
    for(int k = 0; k < 1; k++){ 
        int i; 
        double x, y, z; 
        // Create a container with the geometry given above, and make it 
        // non-periodic in each of the three coordinates. Allocate space for 
        // eight particles within each computational block. 
        container con(x_min,x_max,y_min,y_max,z_min,z_max,n_x,n_y,n_z, 
                      false,false,false,8); 
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        //Seeding the random number function 
        srand(time(NULL)); 
         
        // Add a cylindrical wall to the container 
        wall_cylinder cyl(0,0,0,0,0,1,.5); 
        con.add_wall(cyl); 
         
        //Randomly add points to the foam 
        for(i=0;i<particles;i++) { 
            double a = int(10000*rnd())/10000.0; 
            double b = int(10000*rnd())/10000.0; 
             
            //If b is less then a, swap the two values 
            if(b<a) { 
                double temp = a; 
                a = b; 
                b = temp; 
            } 
             
            //Placing the particles into the container 
            x=b*R*cos(2*M_PI*a/b); 
            y=b*R*sin(2*M_PI*a/b); 
            z=rnd()*4; 
            con.put(i,x,y,z); 
        } 
         
         
        // Output the particle positions in gnuplot format 
        std::string fileName = "uniformPractice_3"; 
        fileName += std::to_string(k); 
        con.draw_cells_gnuplot(fileName.c_str()); 
    } 
} 
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APPENDIX B: PYTHON SCRIPT TO IMPORT BEAMS INTO ABAQUS 

 

from abaqus import* 
from abaqusConstants import * 
from part import * 
from material import * 
from section import * 
from assembly import * 
from step import * 
from interaction import * 
from load import * 
from mesh import * 
from optimization import * 
from job import * 
from sketch import * 
from visualization import * 
from connectorBehavior import * 
import csv 
 

import math 
 
#Function that finds the vector between two points 
def vector(arg1, arg2): 
  connectionVect = [0,0,0] 
  for j in range(3): 
    connectionVect[j] = round(arg2[j] - arg1[j],3) 
  return connectionVect 
 
#Function that finds the negative vector between two points 
def vectorNeg(arg1, arg2): 
  connectionVect = [0,0,0] 
  for j in range(3): 
    connectionVect[j] = -1*(round(arg2[j] - arg1[j],3)) 
  return connectionVect 
 
#Function converts set of coords from string to float and rounds to 3 after the decimal 
def stringToFloat(arg1): 
  threeFloats = arg1.split() 
  for j in range(len(threeFloats)): 
    threeFloats[j] = round(float(threeFloats[j]),3) 
  return threeFloats 
 
#Function that gets the magnitude of a vector 
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def mag(arg1): 
  return math.sqrt(arg1[0]**2 + arg1[1]**2 + arg1[2]**2) 
 
#Function that counts number of beams below tolerance and returns their 
#index in beamLengths, which is the same for currentCoords and nextCoords 
def shortCount(beamLengths,tolerance): 
  shortBeamCounter = 0 
  shortBeamIndex = [] 
  for i in range(len(beamLengths)): 
    if beamLengths[i] <= tolerance: 
      shortBeamCounter = shortBeamCounter + 1 
      shortBeamIndex.append(i) 
  return shortBeamCounter, shortBeamIndex 
 
#Function that copies list for given range, not including the upper element 
def copy(inputList, lower, upper): 
  listCopy = [None]*(upper-lower) 
  for i in range(0, (upper-lower)): 
    listCopy[i] = inputList[lower+i] 
  return listCopy 
 
#Function that finds the midpoint of a line 
def mid(arg1,arg2): 
  copy1 = arg1 
  copy2 = arg2 
  midLocation = [0,0,0] 
  for i in range(0,3): 
    midLocation[i] = .5*(copy1[i]+copy2[i]) 
  return midLocation 
 
#Function that simply prints the information for the beams 
def beamInfo(): 
    print "Length of beamLengths:", len(beamLengths) 
    print "Number of beams in model:", len(beams) 
    print "Shortest beam in model:", min(beamLengths) 
    print "Longest beam in model:", max(beamLengths) 
    shortBeamCount, shortBeamLocation = shortCount(beamLengths,tolerance) 
    print "Number of beams below tolerance: ", shortBeamCount, "\n" 
 
#Function the builds all the beam arrays 
def beamBuild(inputString): 
    for i in range(len(myString)-1): 
        #If the next line is not blank, store the two points in space to be used later to  
        #create a beam element between them   
        if myString[i+1] != "" and myString[i] != "": 
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            #Storing the current line and calling stringToFloat function 
            currentCoord = stringToFloat(myString[i]) 
             
            #Storing the next line and calling stringToFloat function 
            nextCoord = stringToFloat(myString[i+1]) 
             
            #Checking if this vector is already in beams, if not then append 
            if vector(currentCoord,nextCoord) not in beams and vectorNeg(currentCoord,nextCoord) not 
in beams: 
                currentCoords.append(myString[i]) 
                nextCoords.append(myString[i+1]) 
                beams.append(vector(currentCoord,nextCoord)) 
                beamLengths.append(mag(vector(currentCoord,nextCoord))) 
 
#Function that sweeps the short beams from a structure 
def sweep(tolerance,currentCoords,nextCoords,beams,beamlengths): 
    shortBeamCount, shortBeamLocation = shortCount(beamLengths,tolerance) 
    for i in range(0,shortBeamCount): 
        changeIndex = shortBeamLocation[i] 
        oldCurrent = stringToFloat(currentCoords[changeIndex-i]) 
        oldNext = stringToFloat(nextCoords[changeIndex-i]) 
        midPoint = mid(oldCurrent,oldNext) 
        del currentCoords[changeIndex-i], nextCoords[changeIndex-i], beamLengths[changeIndex-i], 
beams[changeIndex-i] 
        for j in range(0,len(currentCoords)): 
            if currentCoords[j] == oldCurrent: 
                currentCoords[j] = midPoint 
            elif nextCoords[j] == oldNext: 
                nextCoords[j] = midPoint 
 
#Function the creates the node list and writes to an output file 
#f is the input file that is passed to the function 
def nodeList(f): 
    skips = 0; 
    for i in range(2*len(currentCoords)): 
        if i < len(currentCoords): 
            if currentCoords[i] not in nodes.values(): 
                nodes[i+1-skips] = currentCoords[i] 
            else: 
                skips = skips+1 
        elif i >= len(currentCoords): 
            if nextCoords[i-len(currentCoords)] not in nodes.values(): 
                nodes[i+1-skips] = nextCoords[i-len(currentCoords)] 
            else: 
                skips = skips+1 
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#    for i in range(len(nodes)): 
#        nodes[i+1] = nodes[i+1].split(" ") 
#        currentCoords[i] = currentCoords[i].split(" ") 
#        nextCoords[i] = nextCoords[i].split(" ") 
     
    #Writing node list to an output file to match the abaqus input file format 
    for i in range(len(nodes)): 
        temp = nodes[i+1].split(" ") 
        f.write("      " + str(i+1) + ",  " + temp[0] + ",  " + temp[1] + ",  " + temp[2] + "\n") 
         
        #Adding nodes to bot or top foam sets if they are at the top or bottom 
        if temp[2] == bot: 
            botFoamNodes.append(i+1) 
        elif temp[2] == top: 
            topFoamNodes.append(i+1) 
 
#Builds the element connectivity from the currentCoords and nextCoords arrays  
#using the node number built from nodeList 
def elementConnectivity(f): 
    for i in range(len(beams)): 
        f.write(str(i+1) + ", ") 
        f.write(str(nodes.keys()[nodes.values().index(currentCoords[i])]) + ", ") 
        f.write(str(nodes.keys()[nodes.values().index(nextCoords[i])]) + "\n") 
         
        #If the element being added is either at the top or the bottom, add to top or bottom element 
sets 
        currentCoordsTemp = currentCoords[i].split(" ") 
        nextCoordsTemp = nextCoords[i].split(" ") 
        if currentCoordsTemp[2] == bot and nextCoordsTemp[2] == bot: 
            botFoamElems.append(i+1) 
        elif currentCoordsTemp[2] == top and nextCoordsTemp[2] == top: 
            topFoamElems.append(i+1) 
    return i+1 
 
#Function that write set information 
def writeSet(inputSet): 
    for i in range(len(inputSet)): 
        if i%12 == 0 and i != 0: 
            f.write("  " + str(inputSet[i]) + "\n") 
        elif i == len(inputSet)-1: 
            f.write("  " + str(inputSet[i]) + "\n") 
        else: 
            f.write("  " + str(inputSet[i]) + ",") 
inputFile1 = open('twoSandCyl_Thielen_100cells_10.txt', 'r') 
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#Read entire input file and store as an array of strings separated by new lines (\n) 
myString = inputFile1.read().split('\n') 
 
#Array that will track beam vectors and beam lengths 
beams = [] 
beamLengths = [] 
 
#Arrays to track currentCoords and nextCoords 
currentCoords = [] 
nextCoords = [] 
 
#Dictionary to track nodes and corresponding coordinates 
nodes = {} 
bot = '0' 
top = '3' 
topFoamNodes = [] 
botFoamNodes = [] 
topFoamElems = [] 
botFoamElems = [] 
 
#Tolerance to be used when sweeping the structure 
tolerance = .02 
 
#Building arrays for starting and ending coordinates, beam vectors, and beam lengths 
beamBuild(myString) 
 
#Sweeping the structure for beams below tolerance structure 
sweep(tolerance, currentCoords, nextCoords, beams, beamLengths) 
 
#input parameters for the input file generation 
jobName = "practiceJob" 
modelName = "practiceModel" 
partName = "practicePart" 
 
#Writing the input file 
f = open('Thielen10grad.inp','w') 
f.write("*Heading\n") 
f.write("** Job name: " + jobName + " Model name: " + modelName + "\n") 
f.write("** Generated by: Abaqus/CAE 6.14-1\n") 
f.write("*Preprint, echo=NO, model=NO, history=NO, contact=NO\n") 
f.write("**\n** PARTS\n**\n*Part, name=" + partName + "\n") 
f.write("*Node\n") 
#---------------------------------------------------------------------# 
#Need to import all the nodes here 
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#---------------------------------------------------------------------# 
nodeList(f) 
 
f.write("*Element, type=B31\n") 
#---------------------------------------------------------------------# 
#Need to import all the beams here 
#---------------------------------------------------------------------# 
numbElements = elementConnectivity(f) 
 
#This just seems to be the last node and element in a set 
f.write("*Nset, nset=_PickedSet28081, internal, generate\n") 
f.write("     1,  " + str(len(nodes)) + ",      1\n") 
f.write("*Elset, elset=_PickedSet28081, internal, generate\n") 
f.write("     1,  " + str(numbElements) + ",      1\n") 
f.write("** Section: beamSection  Profile: beamProfileSolid\n") 
f.write("*Beam Section, elset=_PickedSet28081, material=Aluminum_cm, 
temperature=GRADIENTS, section=CIRC\n") 
f.write("0.002\n") 
 
#Not sure what this is 
f.write("0.5,0.5,-1.\n") 
f.write("*End Part\n") 
f.write("**  \n") 
f.write("*Part, name=plate\n") 
f.write("*End Part\n") 
f.write("**  \n") 
f.write("**\n") 
f.write("** ASSEMBLY\n") 
f.write("**\n") 
f.write("*Assembly, name=Assembly\n") 
f.write("**  \n") 
f.write("*Instance, name=Model-1-Part-1, part=" + partName + "\n") 
f.write("*End Instance\n") 
f.write("**  \n") 
f.write("*Instance, name=plate-1, part=plate\n") 
f.write("          0.,           0.,       3.0021\n") 
f.write("          0.,           0.,       3.0021,           1.,           0.,       3.0021,          90.\n") 
f.write("*Node\n") 
#Not sure what this is 
f.write("      1,           0.,           0.,           0.\n") 
f.write("*Nset, nset=plate-1-RefPt_, internal\n") 
f.write("1, \n") 
f.write("*Surface, type=CYLINDER, name=topSurf\n") 
#Not sure what this is 
f.write("START,          2.5,           0.\n") 
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f.write(" LINE,         -2.5,           0.\n") 
f.write("*Rigid Body, ref node=plate-1-RefPt_, analytical surface=topSurf\n") 
f.write("*End Instance\n") 
f.write("**  \n") 
f.write("*Nset, nset=botFoam, instance=Model-1-Part-1\n") 
#-----------------------------------------------------------------------------# 
#Writing all the nodes that are in botFoamNodes 
writeSet(botFoamNodes) 
#-----------------------------------------------------------------------------# 
 
f.write("*Elset, elset=botFoam, instance=Model-1-Part-1\n") 
#-----------------------------------------------------------------------------# 
#Writing all the elements that are in botFoamElems 
writeSet(botFoamElems) 
#-----------------------------------------------------------------------------# 
 
f.write("*Nset, nset=plateRP, instance=plate-1\n") 
f.write(" 1,\n") 
 
f.write("*Nset, nset=topFoam, instance=Model-1-Part-1\n") 
#-----------------------------------------------------------------------------# 
writeSet(topFoamNodes) 
#-----------------------------------------------------------------------------# 
 
f.write("*Elset, elset=topFoam, instance=Model-1-Part-1\n") 
#-----------------------------------------------------------------------------# 
writeSet(topFoamElems) 
#-----------------------------------------------------------------------------# 
 
f.write("*End Assembly\n") 
f.write("*Amplitude, name=cyclic, time=TOTAL TIME, definition=PERIODIC\n") 
f.write("1,          1.5708,              0.,             0.5\n") 
f.write("           -0.5,              0.\n") 
f.write("*Amplitude, name=quasi, definition=SMOOTH STEP\n") 
f.write("             0.,              0.,              2.,              1.\n") 
f.write("** \n") 
f.write("** MATERIALS\n") 
f.write("** \n") 
f.write("*Material, name=Aluminum_cm\n") 
f.write("*Density\n") 
f.write(" 2.7,\n") 
f.write("*Elastic\n") 
f.write(" 7e+11, 0.33\n") 
f.write("*Plastic\n") 
f.write(" 7.6e+08,0.\n") 
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f.write("** \n") 
f.write("** INTERACTION PROPERTIES\n") 
f.write("** \n") 
f.write("*Surface Interaction, name=Fric\n") 
f.write("*Friction\n") 
f.write(" 0.3,\n") 
f.write("*Surface Behavior, pressure-overclosure=HARD\n") 
f.write("** ----------------------------------------------------------------\n") 
f.write("** \n") 
f.write("** STEP: movePlate\n") 
f.write("** \n") 
f.write("*Step, name=movePlate, nlgeom=YES\n") 
f.write("*Dynamic, Explicit\n") 
f.write(", 2.\n") 
f.write("*Bulk Viscosity\n") 
f.write("0.06, 1.2\n") 
f.write("** Mass Scaling: Semi-Automatic\n") 
f.write("**               Whole Model\n") 
f.write("*Fixed Mass Scaling, dt=1e-05, type=below min\n") 
f.write("** \n") 
f.write("** BOUNDARY CONDITIONS\n") 
f.write("** \n") 
f.write("** Name: fixedBottom Type: Symmetry/Antisymmetry/Encastre\n") 
f.write("*Boundary\n") 
f.write("botFoam, ENCASTRE\n") 
f.write("** Name: movePlate Type: Displacement/Rotation\n") 
f.write("*Boundary, amplitude=cyclic\n") 
f.write("plateRP, 3, 3, -2.\n") 
f.write("** Name: stablePlate Type: Displacement/Rotation\n") 
f.write("*Boundary\n") 
f.write("plateRP, 1, 1\n") 
f.write("plateRP, 2, 2\n") 
f.write("plateRP, 4, 4\n") 
f.write("plateRP, 5, 5\n") 
f.write("plateRP, 6, 6\n") 
f.write("** \n") 
f.write("** INTERACTIONS\n") 
f.write("** \n") 
f.write("** Interaction: genContact\n") 
f.write("*Contact, op=NEW\n") 
f.write("*Contact Inclusions, ALL EXTERIOR\n") 
f.write("*Contact Property Assignment\n") 
f.write(" ,  , Fric\n") 
f.write("** \n") 
f.write("** OUTPUT REQUESTS\n") 
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f.write("** \n") 
f.write("*Restart, write, number interval=1, time marks=NO\n") 
f.write("** \n") 
f.write("** FIELD OUTPUT: F-Output-1\n") 
f.write("** \n") 
f.write("*Output, field, variable=PRESELECT\n") 
f.write("** \n") 
f.write("** HISTORY OUTPUT: H-Output-1\n") 
f.write("** \n") 
f.write("*Output, history, variable=PRESELECT\n") 
f.write("** \n") 
f.write("** HISTORY OUTPUT: reactionForce\n") 
f.write("** \n") 
f.write("*Output, history, time interval=0.0004\n") 
f.write("*Node Output, nset=plateRP\n") 
f.write("RF3, U3\n") 
f.write("*End Step\n") 
 
f.close() 
 


