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ABSTRACT

In this work, a modified workflow for incorporating molecular effects into a macroscopic

fluid flow model via a mesoscopic transition model to more uniformly ascertain trans-

port properties during pore scale analysis, is presented and validated. A combined lattice

Boltzmann-molecular dynamics (LBMD) simulation approach to address this issue is em-

ployed. The hydrocarbon and shale system taken under consideration here were modeled

in molecular form as n−octane and silica respectively. The n-octane was set up using the

united atom (UA) model. The interaction forcefields primarily employed for the MD sys-

tem included the standard Lennard-Jones potential, the transferable potentials for phase

equilibria (TRAPPE) and the Buckingham potential. The properties studied here were

the volumetric flux per unit area, apparent permeability and general fluid dynamics for

hydrocarbon flow in the system.

Results from the MD showed a non-linear relationship between the force and the n-

octane density. This force was then incorporated into the LB system which already had

a Peng-Robinson equation of state embedded into a fluid-fluid particle interaction forcing

function. With the variation of the Knudsen number which accounts for slip effect (or

gradual deviation from continuum), the fluid dynamics of the system was then modeled.

Analysis showed that the slip effect as a function of the Knudsen regime was non-linearly

proportional to the volumetric flux per unit area, and thus the deduced permeability of

the fluid. The LBMD prediction of apparent permeability showed good agreement with

established apparent permeability correlations for shale found in literature. Good quali-

tative agreement with flow dynamics was also achieved when compared to lab-on-a-chip

experiment, representative of nanoscopic shale media and with all results obtained without

parameter fitting.
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This work aims to extend current understanding of fluid flow behaviour below the

continuum regime and improve the accuracy of apparent permeability computation on

tight rock geometric imagery, typical of shale rock physics when producing hydrocarbons

from shale gas reservoirs. This will be fundamental in the development of a more robust

and complex pore-scale modeling framework for simulating more accurate subsurface flow

dynamics.
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NOMENCLATURE

f discrete particle distribution function

x position of the molecule in space

Ψ potential function

t time

J volumetric flux per unit area

~ξ particle velocity

p pressure

Q non-linear integral collision operator

µ dynamic viscosity

Ω discrete collision operator

k permeability

ω relaxation frequency

λ mean free path of gas molecule

τ relaxation time

b Klinkenberg factor

e lattice velocity

α rarefaction coefficient

Kn Knudsen number

H distance from center of channel

R ideal gas constant

F body force term
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ρ density

r′ reflection coefficient

u fluid velocity

r distance between particles

σ length of scale

ε particle interaction strength

ε0 free space permittivity

e′ elementary charge

V volume

φ porosity

H distance from channel centerline to inner boundary

D channel width

ζ body force term for particle distribution function

ω̂ accentric factor

Π stress tensor

m column vector of moments

M transformation matrix

S relaxation time matrix

Ŝ collision matrix

U energy potential

Abbreviations

LB Lattice Boltzmann

MD Molecular Dynamics
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LBMD Lattice Boltzmann - Molecular Dynamics

PD Pore Distribution

RD Rock Distribution

LJ Lennard-Jones

Subscripts and Superscripts

s slip coefficient

eq equilibrium

~u macroscopic velocity vector

app apparent

T temperature

corr correction

m maximum

o characteristic

e effective

ff fluid-fluid

sf solid-fluid

dpdl pressure drop

g gravity

α, β phase space in x-axis,y-axis

i discretized phase space direction

d dimensionless

p physical

x



c critical

l lattice

r real

cut cut-off

lb− bc lattice Boltzmann - mixed boundary condition

lbmd lattice Boltzmann molecular dynamics

N north

S south

W west

E east
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1. INTRODUCTION

1.1 Background

Even with the recent decline in conventional resources, the global economy continues to

remain highly dependent on energy from fossil fuel. The main reason for this is the contin-

uous advancement made in research and development of unconventional resources. Shale

gas reservoirs are one of such resources. A key component to be considered during pro-

duction in such reservoir is the pore distribution network. This is because when it comes

to shale reservoirs specifically, there are four levels of pore size distribution scales that

can be associated with it and these are: mesoscopic scale comprising hydraulic fractures,

meso-microscopic scale comprising of natural fractures, micro-nanoscopic scale compris-

ing of interparticle pores and nanoscopic scale comprising of kerogen pores (Wang and

Reed, 2009). In particular, the kerogen pores consist of finely dispersed porous sediments

usually rich in organic content and having its pore size range from 2nm to 50nm (Fathi

and Akkutlu, 2012, Kang et al., 2011). A significant amount of the gas is stored in Kerogen

pockets as free gas and adsorbed gas is embedded on the surface of the resident organic

matter, which therefore makes it have great potential for natural gas production (Kang

et al., 2011). To efficiently estimate gas reserves locked in these pores, adequate under-

standing of the physics of gas flow through ultra low porosity-permeability network is

essential.

Diverse spectra of scales that consequently lead to different transport mechanisms oc-

cur in shale gas reservoirs. These can be characterized as Knudsen diffusion, slip flow,

adsorption-desorption and non-slip flow with the former two being more dominant in the

fluid transport process (Chen et al., 2015). Unlike in inorganic channels where two-phase

flow controls the gas transport, flow in organic nanochannels have slip flow and transition
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Figure 1.1: Schematic showing shale gas storage matrix and flow regime[adapted from
Sondergeld et. al.,(2010)]

diffusion flow as the dominant transport mechanism (Shi et al., 2013). High influence

of the rarefaction effect that is prominent below the micro-scale, results in reasonably

significant deviation of the gas flow from the continuum flow regime assumption and sub-

sequently inaccurately deduced flow variables (Fathi and Akkutlu, 2012, Michalis et al.,

2010). The Knudsen number (Kn), which can be defined as the ratio of the molecular

mean free-path (λ) to the characteristic system length scale (H) has in recent times been

used to characterize fluid flow regimes. These flow regimes have been described (Roy

et al., 2003, Sondergeld et al., 2010) as continuum fluid-flow regime (Kn < 10−3 ), slip

fluid-flow regime (10−3 < Kn < 10−1 ), transition fluid-flow regime (10−1 < Kn < 10 )

and free molecular fluid-flow regime (10 < Kn) as shown in Fig.1.1. For gas flow in mi-

cro and nanoporous geometries, the regimes encountered here are typically the slip flow

and the transition flow regime. This means the permeability that would typically be calcu-

lated based on the Darcy equation, may prove inadequate to properly model the dynamics

of flow when dealing with such scale.

2



1.2 Motivation

Traditionally, permeability has usually been obtained from core measurements during lab-

oratory experiments. Though accepted and employed over the years, it is well-known that

these experiments are not only quite expensive but they are also not very robust, especially

when dealing with core samples obtained from tight formations with ultra-low permeabil-

ity (Gong et al., 2013). In recent times, pore-scale modeling techniques have become

an emerging technology (Blunt et al., 2013). It employs micro x-ray computed tomogra-

phy (micro-CT) and scanning electron microscope (SEM) imagery based on the geometric

information obtained from cores in order to directly estimate rock properties.

Earlier attempts had been made to analytically describe flow and pore-fluid interface

behavior (Vafai and Kim, 1990). Other extensive studies of flow at nanoscale using tech-

niques like molecular dynamics and direct simulation Monte-Carlo have also been ex-

plored, with both methods seemingly computationally inefficient (Homayoon et al., 2011,

Zhang et al., 2014). The Lattice Boltzmann (LB) method which is one of a few known

mesoscopic simulation methods has in recent time garnered interest by the research com-

munity. This can be attributed to its simplicity in implementation with respect to other

existent methods, complex geometry suitability and numerical superiority when travers-

ing different spectra of scales (Guo et al., 2007). The LB equation can be derived from

the continuous Boltzmann transport equation based on the fluid particle distribution func-

tion (Mohamad, 2011). The LB method can be classified into two models which are single

relaxation-time models based on the Bhatnagar-Gross-Krook (BGK) approximation (Bhat-

nagar et al., 1954) and multiple relaxation-time models (dHumieres, 1992), which shall

be used for the purpose of this study. Some other authors have also shown the ability of the

LB method to handle multiphase flow and its effects on viscous coupling (Huang et al.,

2009, Wang et al., 2015). This makes it an ideal candidate in computing macroscopic flow

3



parameters, with emphasis in this case being on permeability.

Some attempts have used the LB method in porescale modeling of porous media

specifically to study flow behavior in micro models of reconstructed sandstone and carbon-

ate imagery (Al-Kharusi and Blunt, 2007, Blunt et al., 2013, Boek and Venturoli, 2010);

even in multiphase displacement systems (Boek, 2010). However, the permeability com-

puted at this scale is still replicable by continuum flow equations since it still falls in the

continuum regime. But for porous media possessing pore spaces below the micro-scale

like that observed in shale, the typical intrinsic permeability calculation has seemed inad-

equate. Over the past few years, the notion of apparent permeability (Javadpour, 2009)

has proven popular in order to facilitate simulation work in shale reservoir modeling. The

concept incorporates the slip flow and Knudsen diffusion with the advection flow and re-

expresses the computed volumetric flux as a coupled form of the Darcy equation already

having the intrinsic permeability. This is very useful when applied during studies of nat-

ural gas flow in shale, as it reduces computational complexity and establishes a paradigm

for which variations in permeability models can be juxtaposed. Due to the higher fluid-

wall interaction experienced at this scale, this approach had to be employed to capture this

effect.

Standard LB models have a direct proportionality relationship of the existent force

between the fluid and the rock and the fluid density. This assumption however is not repre-

sentative of the actual physical phenomena under certain flow circumstances (Gong et al.,

2013), particularly in the slip flow regime. Previous attempts to capture this phenomena

had come by way of boundary condition adjustment (Fathi and Akkutlu, 2012, Guo et al.,

2007, Homayoon et al., 2011, Succi, 2002, Zhang et al., 2014). This method however has

limitations with respect to the selected scheme and it’s first order accuracy, which con-

strains it’s applicability (Madiebo et al., 2015, Verhaeghe et al., 2009). Other attempts

have aimed at either combining or concurrently comparing the LB and the molecular dy-
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namics(MD) methods (Ahlrichs and Dunweg, 1998, 1999, Fyta et al., 2007, Horbach and

Succi, 2006, Sbragaglia et al., 2007, Succi et al., 2007). The former only involves com-

parison while the latter does attempt to couple LB and MD but simultaneous computation

and variable transfer between LB and MD for non-focus and focus portions of the sys-

tem. Gong et al. (2013) more recently has attempted to integrate LB and MD in the form

of forcing function inclusions into the standard LB method. However, the set-up consid-

ered was for a non-hydrocarbon system with little emphasis on nanoscale considerations.

In this work, a modified and more rigorous form of this approach will be adopted for a

hydrocarbon system on a pore size more representative of shale matrix.

This study proposes to model the volumetric flux, apparent permeability and general

fluid dynamics for hydrocarbon flow in a shale nanochannel using a combined lattice

Boltzmann-molecular dynamics simulation method. Results shall be validated by com-

parison with established apparent permeability correlations for shale and qualitative re-

sults from lab-on-a-chip experiment. The aim of this work is to provide a foundation for

implementation of this new lattice Boltzmann-molecular dynamics approach for apparent

permeability computation on tight rock geometric imagery. This will be fundamental in the

development of a more robust and complex pore-scale modeling framework for simulat-

ing more accurate subsurface flow dynamics. Particularly for ultra-low permeability core

measurements, where experimental accuracy could prove inconsistent when subjected to

repeatability under varying fluid and flow conditions.

1.3 Research Objectives and Dissertation Outline

The overall objectives of this research are listed as follows:

1. Develop a molecular dynamics simulation methodology for modeling hydrocarbon

phase behavior in nanocapillaries. The simulations involved here shall be executed
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using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

library which is an open source molecular dynamics software package. The freely

available Open Visualization Tool (OVITO) (Stukowski, 2010) would be employed

here for observation of molecular structures.

2. Develop an executable code based on a coupled lattice Boltzmann method and

molecular dynamics simulation scheme in order to model fluid flow in porous media

based on synthetic 2D nanomodel (or SEM image) of shale rock matrix.

3. Model the flow dynamics from hydrocarbon-in-nanofluidic chip experiment. Ap-

ply this new approach to calculate flow field and apparent permeability in these

nanomodels, which are exemplary of shale reservoir rocks.

The flow of this research and corresponding chapters can be summarized as follows.

Chapter 1: A general introduction, the problem statement and focus of this study

Chapter 2: A review of fluid flow concept and the fundamentals of the lattice Boltzmann

method and molecular dynamics simulation.

Chapter 3: Development of the standard LB code for macroscopic Navier-Stokes flow

Chapter 4: Describes molecular dynamics simulation system set-up for shale structure

and hydrocarbon model.

Chapter 5: Development of the LBMD approach and how MD would be incorporated.

Chapter 6: Implementation of the LBMD algorithm on test cases and discussion of its

performance on these models.

Chapter 7: Summarizes the conclusions and accomplishments of this study and states

future work.
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2. LATTICE BOLTZMANN METHOD OVERVIEW

2.1 Fluid Flow Fundamentals

2.1.1 Flow mechanics

Fluid flow behaviour can typically be described by the continuity equation and the com-

pressible Navier-Stokes equation (Latt, 2007, Schmidt and Federrath, 2001) which are

given by Eq. 2.1 and Eq. 2.2.
∂ρ

∂t
+∇ · (ρ~u) = 0, (2.1)

∂ (ρ~u)

∂t
+∇ · (ρ~u⊗ ~u) +∇p− µ∇2~u−

(µ
3

+ µ′
)
∇ (∇ · ~u) =

d~F

dV
(2.2)

where ρ is the fluid density, ~u is fluid flow velocity, p is the pressure, µ is the dynamic bulk

viscosity, µ′ is the volume viscosity (typically µ′ = 0 in monoatomic ideal gases (Viggen,

2009) and
d~F

dV
which is the total external body force assessed as a rate of change of the

Newtonian force F with the fluid volume V . When dealing with incompressible fluids, the

density variation becomes negligible. Hence at the incompressibility limit, this results in

an almost constant density

ρ ≈ ρo = constant (2.3)

Based on Eq. 2.3 along with the inclusion of the kinematic viscosity ν =
µ

ρ
, effective

viscous parameter νe = f (ν) and porosity φ, Eq. 2.1 and Eq. 2.2 can be simplified into

Eq. 2.4 and Eq. 2.5 (Guo and Zhao, 2002)

∂~u

∂t
+ (~u · ∇)

~u

φ
+

1

ρo
∇ (φp)− νe∇2~u =

1

ρo

d~F

dV
(2.4)

∇ · ~u = 0, (2.5)
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Eq. 2.4 and Eq. 2.5 are commonly known as incompresible Navier-Stokes equation and

incompressible continuity equation respectively. These equations are popularly used for

studying flow incompressible fluids, typical of most liquids. Since this study focuses on a

liquid hydrocarbon, these equations form a fundamental basis of this work. Mainly to link

the mesoscopic scaled - LB method to the macroscopic scale.

2.1.2 Mesoscopic concept in fluid dynamics

For most engineering problems, a macroscopic and continuum description has typically

proven adequate simply because of the huge disparity that exists between temporal and

spatial scales pertinent to these applications and the microscopic scales for the underlying

molecular dynamics. This usually results in the insensitivity of the macroscopic dynamics

to the underlying microscopic physics. With multi-scale and multi-physics engineering ap-

plications recently gaining more attention, macroscopic methods have proven inadequate

and microscopic or molecular methods may be impractical due to the unreasonable com-

putational demands required for execution. Mesoscopic techniques has proven popular in

recent years based on their ability to combine microscopic and macroscopic physics for

adequate fluid dynamics description especially in multi-scale applications. One of such

techniques is the lattice Boltzmann (LB) method while others include lattice gas cellular

automata, discrete velocity models, gas kinetic schemes, dissipated particle hydrodynam-

ics and smoothed particle hydrodynamics (Derksen et al., 2013). The focus of this study

shall be on the LB method.

2.2 Apparent Permeability

When it comes to reservoir engineering, a key concept to be considered is the permeability.

It is a measure of fluid flow capacity in any porous media. Popularly calculated from the

Darcy equation, it was originally derived on the basis of the continuum assumption. One
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of the several variants that could be used to express this equation is given as:

~u = J = −k
µ
∇p, (2.6)

where J is the volumetric flux rate per unit area, µ is the dynamic viscosity, ∆p is the pres-

sure gradient and k is the intrinsic permeability which is typically a function of the porous

media structure. Although Darcy’s equation has been used for fluid flow calculations in

porous media, it is important to note that with decreasing pore size comes an increase in

the Knudsen effect governed by an increase in Knudsen number. Thus, increasing the un-

certainty in the validity of its application involving flow at micro and nanoscale (Beskok

and Karniadakis, 1999). Such permeability parameter attempting to factor in this phenom-

ena in the Darcy equation is usually redefined as the apparent permeability. The apparent

permeability (Javadpour, 2009, Klinkenberg, 1941) based on the Dusty Gas model (DGM)

can be modeled as in Eq. 2.7, where fcorr(Kn) is the permeability correction factor that

is a function of the Knudsen number.

kapp = kfcorr (Kn) . (2.7)

Over the years, different correlations have been suggested in literature for apparent perme-

ability along with their corresponding Knudsen correction factors (Swami et al., 2012).

Some of these correlations had been compared and matched with actual experimentally

reported shale gas data (Civan, 2009) along with being defined solely on the Knudsen

phenomena, hence their selection for this study. The proposed correction based on the

Klinkenberg (1941) correlation for apparent permeability is shown in Eq. 2.8. Florence

et al. (2007) and Sakhaee-Pour and Bryant (2012) define the parameter Λ as 4 and 13.58
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respectively.

kapp = k (1 + ΛKn) . (2.8)

Civan (2009) gave a simplified form for the factor in the model initially proposed by

Beskok and Karniadakis (1999). This can be modeled by Eq. 2.9 and Eq. 2.10, where

b = −1 and α(Kn) denotes the rarefaction coefficient when dealing with slip flow. We

would refer to the combination of these two equations as the Beskok and Karniadakis

–Civan correction during the rest of this study.

fcorr (Kn) = [1 + α (Kn)]

[
1 +

4Kn

1− b ·Kn

]
. (2.9)

α (Kn) =
1.358

1 + 0.17Kn−0.4348
. (2.10)

Chen et al. (2015) studied the pore structures of shale based on a reconstructed pore

network obtained via Markov chain Monte Carlo (MCMC) on some SEM image slices,

and thus proposed a correction factor as described in Eq. 2.11.

fcorr (Kn) =

(
1 +

64

3π
Kn

)
. (2.11)

The variant of the Hagen-Poiseuille equation for parallel plates being employed here was

in its dimensionless form (Chen et al., 2015, Zhang et al., 2014) and representative of the

analytical permeability and velocity in the channel, are shown in Eq. 2.12 and Eq. 2.13,

respectively. Refer to appendix A for the analytical solution for Eq. 2.13.

k =
D2
p

12
. (2.12)

u

um
= 1.5

[
1− y2

H2

]
. (2.13)
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where u is the fluid velocity calculated at a given distance y from the center of line, um is

the mean fluid velocity of the nanochannel, y is the distance measured from the center line

of the width of the channel and H is the fixed distance measured from the nanochannel

center line to the inner boundary wall and it is equivalent to one half of the nanochannel

width,Dp. This equation along with the other aforementioned correlations, were employed

for comparison with the apparent permeability obtained from the lattice Boltzmann simu-

lation in this work.

2.3 Review of the Lattice Boltzmann method

The lattice Boltzmann method is a computational technique for simulating the physics of

flow using microscopic particle distribution functions via the evolution of preset direc-

tionally discretized positions and velocities. All this are done whilst still maintaining all

mass and momentum conservation laws. Despite being a numerical scheme based on mi-

croscopic physics, in the hydrodynamic limit of low Mach number it still possesses the

ability to to recover the Navier-Stokes equations (Chukwudozie, 2011, Succi et al., 1989).

Emanating from an attempt to address the anomalies of the lattice gas automata (McNa-

mara and Zanetti, 1988), the LB equation can be derived from the Boltzmann transport

equation (C., 1988, Homayoon et al., 2011) represented in Eq. 2.14.

∂f(x, ~ξ, t)

∂t
+ ~ξ · ∇f(x, ~ξ, t) = Q, (2.14)

where f(x, t, ~ξ) represents the Maxwellian probability distribution function of locating a

molecule at a particular position x, whilst traveling at a time t and at a given continuous

velocity ~ξ, with a non-linear integral term Q as the collision operator comprising of pre-

collision and post-collision distribution functions. Eq. 2.14 in its discrete form becomes
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Eq. 2.15
∂fi
∂t

+ ei · ∇fi = Ωi. (2.15)

Without loss of generality, the collision operator can be simplified to a discrete collision

operator Ωi with the phase space direction i. After ensemble averaging of the particle

distribution functions, the lattice Boltzmann evolution equation can be defined as

fi(x+ ei∆t, t+ ∆t)− fi(x, t) = Ωi, (2.16)

where we have fi which is the discretized particle distribution function, ei denotes the

discretized particle velocity, ∆t is the discretized time.

It should be noted that Eq. 2.16 is the foundation for the LB method. The fundamental

LB method comprises of two major steps: the streaming step and the collision step. In the

streaming step, particles are translated along particular velocity directions between nodes.

In the collision step, particles collide with one another at particular nodes which leads to

momentum exchange. It is defined by the collision operator in Eq. 2.16.

Transitioning from the discrete kinetic equation to macroscopic equations can easily be

done via the derivation of mass and momentum conservation equations using the distribu-

tion function fi and its moments in Eq. 2.17 and Eq. 2.18.

ρ(~x, t) =
∑
i

fi(~x, t) (2.17)

ρ(~x, t)~u(~x, t) =
∑
i

~eifi(~x, t) (2.18)

With the inclusion of ζ which is the change in particle probability distribution function

due to the total body force term F, Eq. 2.16 can be changed into the generalized lattice

Boltzmann equation (Gong et al., 2013, Qian et al., 1992, Shan and Chen, 1994) shown
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in Eq. 2.19

fi(x+ ei∆t, t+ ∆t)− fi(x, t) = Ωi (x, t) + ζi (x, t) , (2.19)

where ζ can be computed using the exact difference method (Kupershtokh and Medvedev,

2006) as shown in Eq. 2.20

ζi (x, t) = f eqi (ρ, ~u+ ∆~u)− f eqi (ρ, ~u) (2.20)

This now leads to Eq. 2.21 and Eq. 2.22 as required for retrieval of the generalized Navier-

Stokes equation with ~u representing the real fluid velocity (Guo et al., 2007).

ρ =
8∑
i=0

fi (x, t) . (2.21)

~u =
1

ρ

8∑
i=0

fi (x, t) · ~ei +
∆t

2
F. (2.22)

F can be categorized under any of the following: lattice fluid-fluid force interaction be-

tween neighbor lattice Fff , lattice solid-fluid boundary wall interaction Fsf , and macro

body force like the body force term for the pressure drop Fdpdl or body force term for

gravity Fg. Emphasis of this work was on the determination of the interaction force Fsf .

With the employment of the Chapman-Enskog expansion , the familiar version of the con-

servation laws analogous to Eq. 2.1 and Eq. 2.2 can be obtained in Eq. 2.23 and Eq. 2.24

(Tarakanov et al., 2016)

∂ (ρuα)

∂t
+

∂

∂xα
(
ρuαuβ

)
= − ∂

∂xβ
Παβ +

∑
i

Fie
α
i , (2.23)

∂ρ

∂t
+

∂

∂xα
(ρuα) = 0, (2.24)
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The function Παβ represents the stress tensor given by the expression

Παβ =
∑
i

(cαi − uαi )
(
cβi − u

β
i

)
fi, (2.25)

This can be approximated using the Taylor series expansion with a relaxation time param-

eter τ during the Chapman-Enskog procedure to obtain Eq. 2.26

Παβ = Pδαβ + τP

(
∂uα

∂xα
+
∂uβ

∂xβ
− 2

3

∂uγ

∂xγ
∂αβ
)

+ τ

(
ρ
∂P

∂ρ
− 1

3
P

)
∂uγ

∂xγ
∂αβ +O

(
τ 2
)

(2.26)

where
∑

i Fie
α
i accounts for the external macroscopic forces like electrical or gravitational

forces (Tarakanov et al., 2016). From Eq. 2.25 it is clear that there is an assumed depen-

dence of pressure on the fluid density specified, that is P = P (ρ) and τ =
µ

P
. In addition,

as the system approaches equilibrium, Eq. 2.22 - 2.25 approximates to a standard macro-

scopic fluid behaviour. See Guo and Zhao (2002), Latt (2007), Viggen (2009),Tarakanov

et al. (2016) for more details on the Chapman-Enskog expansion usage in the LB method

for macroscopic reformulation.

2.3.1 Lattice scheme

In order to implement the LB method, an exact lattice scheme has to be selected for the

simulation set-up (Frisch et al., 1986). Various schemes can be used for the lattice in either

two or three dimensions. For two dimensional simulations, a nine-speed square lattice

aligned in only two dimensions [D2Q9] has extensively been used (Abbaszadeh et al.,

2015, Amara et al., 2016, Benamram et al., 2016, Fathi and Akkutlu, 2012, Guo et al.,

2007, Homayoon et al., 2011, Madiebo et al., 2015, Succi, 2002, Tarakanov et al., 2016).

Fig. 2.1a shows this [D2Q9] scheme and Fig. 2.1b shows the particle distribution function

assigned to particular discretized molecular velocity. This is not only because of its ease

of implementation and its simplicity, but rather its ability to satisfy isotropic conditions
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necessary for the recovery of the incompressible Navier-Stokes equation (Viggen, 2009).

Hence, this was the lattice scheme implemented for this work.

Figure 2.1: (a) A discretized two-dimensional lattice vector scheme for the LB method.
(b) A discretized particle probability distribution function for a fluid f(e) as a function of
molecular velocity, e

2.3.2 Collision operator

In terms of kinetic models to approximate the collision term Ωi, the Bhatnagar-Gross-

Krook (BGK) approximation (Bhatnagar et al., 1954) and the Multiple Relaxation Time

(MRT)(dHumieres, 1992) are the most commonly employed operators..

2.3.2.1 BGK operator

The BGK operator is shown in Eq. 2.27. τ is the relaxation time (Note: τ =
1

ω
, where ω

is the relaxation frequency). It is usually assumed constant when handling an isothermally

incompressible fluid and f eqi is the local equilibrium distribution function. The operator

Ωi = −1

τ
(fi − f eqi ). (2.27)
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If Eq. 2.27 is inserted back into the collision operator of Eq. 2.19, Eq. 2.28 is obtained.

fi(x+ ~ei∆t, t+ ∆t)− fi(x, t) = −1

τ
[fi(x, t)− f eqi (x, t)] + ζi (x, t) , (2.28)

f eqi is the Maxwellian equilibrium particle distribution function that dictates the flow equa-

tions solved for the selected lattice Boltzmann scheme. In this case, for a D2Q9 scheme

needed for solving the Navier-Stokes equation this function can be expressed in the form

of Eq. 2.29 (Succi, 2002).

f eqi = wiρ

[
1 +

3 (~ei · ~u)

c2s
+

9 (~ei · ~u)2

2c4s
− 3 (~u · ~u)

2c2s

]
. (2.29)

Here, the weights wi are given as w0 = 4/9;w1 = w2 = w3 = w4 = 1/9;w5 = w6 =

w7 = w8 = 1/36; ~ei denotes the lattice velocity given as the ratio of the lattice size ∆x

to lattice timestep ∆t; the lattice speed of sound cs =
~ei√
3

; the fluid density ρ and the

fluid velocity u are macroscopic flow quantities. In this scheme, each particle travels over

a single lattice unit at a velocity e in any one of the designated eight directions shown

by 0 − 8 in Fig. 2.1, in which case each velocity can be computed by Eq. 2.30 (Fathi

and Akkutlu, 2012). Fig. 2.2 (a) − (c) shows the streaming and collision step for the

aforementioned D2Q9 discretized velocity scheme.

ei =



(0, 0), i = 0.

[
cos (i−1)π

4
· sin (i−1)π

4

]
, i = 1, 2, 3, 4.

√
2
[
cos (i−1)π

4
· sin (i−1)π

4

]
, i = 5, 6, 7, 8.

(2.30)
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Figure 2.2: (a) Before particle streaming. (b) After particle streaming. (c) Particle relax-
ation to local equilibrium post collision.

The rest particle positioned at the centre of the lattice possesses zero velocity.

2.3.2.2 MRT Operator

As stated earlier, another class of collision models that can be considered for use in Eq.

2.2 is that proposed by dHumieres (1992) which is the multiple relaxation time (MRT)

model. This model transforms the distribution function from the velocity space in the BGK

model into a moment space by invoking a transformation matrix that consists of different

relaxation times required to relax the various moments to their equilibrium states.

The evolution equation of the MRT model can be expressed in Eq. 2.31 as

fi(x+ ~ei∆t, t+ ∆t)− fi(x, t) = −M−1Ŝ [mi(x+ ~ei∆t, t+ ∆t)−mi
eq(x, t)] (2.31)

where m and mi
eq are column vectors of moments and equilibrium moments respectively

of the form, m = (m0,m1, ...mn)T .
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m = Mf and meq = Mf eq (2.32)

M =



1 1 1 1 1 1 1 1 1

−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 −2 0 2 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 −2 0 2 1 1 −1 −1

0 1 −1 1 −1 0 0 0 0

0 0 0 0 0 1 −1 1 −1



(2.33)

m =

[
ρ, E, ε̂, jx, qx, jy, qy, pxx, pxy

]T
(2.34)

S = diag

[
sp sE sε̂ sj sq sj sq ss ss

]T
(2.35)

meq =



ρ

−2ρ+ 3
(
j2x + j2y

)
ρ− 3

(
j2x + j2y

)
jx

−jx

jy

−jy(
j2x − j2y

)
jxjy



(2.36)
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M represents a transformation matrix, Ŝ = M · S ·M−1 represents a collision matrix while

S represents the relaxation time matrix. The velocity and moment spaces can be mapped

via linear transformation as seen in Eq. 2.32. For the D2Q9 model, the matrix M, m, S and

meq as expressed by Lallemand and Luo (2000), can be given in Eq. 2.33, Eq. 2.34, Eq.

2.35 and Eq. 2.36 respectively. They are defined by the following macroscopic variables:

ρ as the fluid density, ε̂ the square of the internal energy E, then jx, jy and qx and qy

representing the mass fluxes and energy fluxes in the x and y directions respectively, while

pxx and pxy are the diagonal component and off-diagonal component respectively for the

viscous stress tensor. The values of S in Eq. 2.34 used by Mohamad (2011) and defined

as S = diag (1.0, 1.4, 1.4, s3, 1.2, s5, 1.2, s7, s8), s7 = s8 = 2/ (1 + 6ν) , s3 = s5 = 1.0,

would be used for MRT computations in this work. The density and momentum would be

expressed as

ρ =
∑
i

fi, jx = ρux =
∑
i

fieix, jy = ρuy =
∑
i

fieiy (2.37)

The different moments would be relaxed at different relaxation times. It should be noted

that this model could still be reverted back to the BGK model (Verhaeghe et al., 2009) if

S = sαI where si = 1/τ ∀ i = 1...9. Further details of the MRT method can be found in

dHumieres (1992), Lallemand and Luo (2000), Mohamad (2011).

The permeability dependence on the viscosity has in recent times been considered an issue

when dealing with the BGK model (Pan et al., 2006, Verhaeghe et al., 2009, Zhang et al.,

2013). A suggestion typically given to reduce this effect is to use of the MRT. Regardless,

the BGK model still continues to remain very popular amongst several authors (Ansumali

and Karlin, 2005, Ansumali et al., 2007, Guo et al., 2007, Homayoon et al., 2011, Sofonea

and Sekerka, 2005, Succi, 2002) not only because of its ease of implementation but more

importantly its reliability and efficiency. Especially for first order Knudsen correction
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(Verhaeghe et al., 2009) in the slip regime which is the focus of this study. Comparisons

of both models under no-slip flow conditions have been included in this study just to show

the sufficiency of the BGK model in addressing flow considerations of this system.

2.3.3 Dimensional analysis

This is a mathematical method that employs fundamental units of dimension and dimen-

sionless numbers in order to analyse physical parameters that influence fluid flow mechan-

ics. It serves as a good basis for scale modeling of systems with the same geometry. The

flow in Eq. 2.5 is governed by the porosity and the following dimensionless parameters:

The Reynolds number, Darcy number and viscosity ratio; as shown respectively in Eq.

2.38.

Re =
ul

ν
; Da =

k

l2
; J =

νe
ν

(2.38)

This means if the use of characteristic quantities (Latt, 2008) having a subscript o are

employed such that xp = lo,p ~xd; tp = to,p~td; up =
lo,p
to,p

~ud; pp =
(
ρo

l2o,p
t2o,p

)
pd; and ∂tp =(

1
to,p

)
∂td Hence Eq. 2.5 becomes

∂ ~ud
∂td

+ ( ~ud · ∇d)

(
~ud
φ

)
+∇d (φpd)− νd∇2

d ~ud = ~Fd (2.39)

where subscript d and p are dimensionless and physical units respectively, the relationships

Red = Rep Dad = Dap Jd = Jp (2.40)

becomes very important in order properly scale the flow behaviour between systems of

similar geometry. This will be essential in order to transition from the lattice system to the

physical system.
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2.3.4 Equation of state

The implementation of the BGK operator in Eq. 2.27 introduces a second order truncation

error (He et al., 1998) that is be absorbed by the kinematic viscosity ν as shown in Eq.

2.41.

τ =
ρν

P
+ 0.5, (2.41)

where the fluid pressure P would be obtained from the equation of state (EOS). The EOS

is a mathematical representation that establishes a relationship between state variables like

pressure, volume and temperature in order to describe the state of matter with respect to

a set of physical conditions. Studies have shown that the EOS can be incorporated into

the LB method by: direct body force which involves addition of an extra term to the

distribution function post the collision process (Buick and Greated, 2000, Martys and

Chen, 1996) or by velocity-shifting of the equilibrium distribution function (Yuan and

Schaefer, 2006). This work will implement the method applied in the latter. From Yuan

and Schaefer (2006), this method starts by recalling the equilibrium form of Eq. 2.42 given

as

ρ(~x, t)~u(~x, t) =
∑
i

~eif
eq
i (~x, t) (2.42)

Then the macroscopic velocity u will be replaced by Eq. 2.43 such that

~ueq(~x, t) = ~u(~x, t) +
τFff
ρ(~x, t)

(2.43)

where
τFff
ρ(~x, t)

= ∆~u found in Eq. 2.20. Here Fff is the fluid-fluid interaction force

between particles and is approximated by Eq. 2.44. Fig. 2.3 showed the particle-particle

force of interaction that was accounted for by the EOS.

Fff (x) ≈ −c0ψ (x) g∇ψ (x) (2.44)
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Figure 2.3: Schematic of particles showing fluid-fluid interaction force Fff

g is a temperature dependent variable that controls the intensity of particle interaction and

psi is the effective mass and is defined as a function of the local density ψ (x) given by

ψ (ρ (x)) =

√
2P ∗

c0g
(2.45)

where P ∗ is the non-ideal portion of the EOS and is defined as P ∗ = P − c2sρ with the

square of the lattice speed of sound given as c2s =
1

3
. It is clear from Eq. 2.44 and Eq. 2.45,

the advantage of this method versus other popular LB phase models (Martys and Chen,

1996, Shan and Chen, 1993) is that the heuristic value g is eliminated and thus rendered

inconsequential since a real temperature value is already incorporated via the EOS in the

pressure variable (Yuan and Schaefer, 2006). For theD2Q9 LB scheme, the gradient term

∇ψ (x) can be defined using the six-point scheme for the x and y dimensions as

∂ψ (i, j)

∂x
= c1 [ψ (i+ 1, j)− ψ (i− 1, j)] +

c2 [ψ (i+ 1, j + 1)− ψ (i− 1, j + 1) + ψ (i+ 1, j − 1)− ψ (i− 1, j − 1)]

(2.46a)

∂ψ (i, j)

∂y
= c1 [ψ (i, j + 1)− ψ (i, j − 1)] +

c2 [ψ (i+ 1, j + 1)− ψ (i+ 1, j − 1) + ψ (i− 1, j + 1)− ψ (i− 1, j − 1)]

(2.46b)

where c1 and c2 are weighting coefficients for the closest and next-closest nodes related

by c1 = 4c2 =
1

3
, while c0 = 6. P is the fluid pressure obtained from the typical standard

forms of EOS. It can be seen clearly in Eq. 2.45 that the effective mass which controls
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the real pressure variation is governed by the choice of EOS implemented. This work

implements the ideal gas EOS and the Peng-Robinson EOS formulations. See Yuan and

Schaefer (2006) for more detailed study on several other equations of state and their use

in LB simulation.

2.3.5 Ideal Gas EOS

Here the fluid pressure is computed as shown in Eq. 2.47

P = ρ̂RT (2.47)

where ρ̂ is the specific density,R is the ideal gas constant and T the temperature (He et al.,

1998). The product RT deduced from the choice of lattice speed is given the value of 1/3

on the basis of the equation of state of an ideal gas (Guo and Shu, 2013).

2.3.6 Peng-Robinson EOS

The Peng-Robinson EOS (PR-EOS) calculates the fluid pressure as

P =
ρ̂RT

1− bρ̂
− aα (T ) ρ̂2

1 + 2bρ̂− (bρ̂)2
(2.48)

where

a =
0.458R2T 2

c

Pc
; b =

0.0778RTc
Pc

; α (T ) =

[
1 +

(
0.375 + 1.542ω̂ − 0.27ω̂2

)(
1−

√
T

Tc

)]2
with Pc, Tc and ω̂ representing the critical pressure, temperature and accentric factor re-

spectively of the fluid components. From the theory on principle of corresponding states,

all fluids show approximately the same level of deviation from ideality when compared at

the same reduced temperature and pressure. Based on this theory, the lattice fluid would
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be related to the real fluid based on the PR-EOS if Eq. 2.49 is satisfied (Gong et al., 2013).

P l

P l
c

=
P r

P r
c

;
T l

T lc
=
T r

T rc
;

ρ̂l

ρ̂lc
=
ρ̂r

ρ̂rc
(2.49)

the subscripts c, l and r represent the critical state, lattice and real fluid respectively. If Eq.

2.49 is satisfied, then analogous to Eq. 2.48 the lattice system should also have the form

P l =
ρ̂lRlT l

1− blρ̂l
−

alαl
(
T l
) (
ρ̂l
)2

1 + 2blρ̂l − (blρ̂l)2
(2.50)

with al = ar
(
RlT lc

)2
/P l

c

(RrT rc )2 /P r
c

; bl = br
RlT lc/P

l
c

RrT rc /P
r
c

; ρl = ρr
RrT rc /P

r
c

RlT lc/P
l
c

;

αl
(
T l
)

=

[
1 +

(
0.375 + 1.542ω − 0.27ω2

)(
1−

√
T l

T lc

)]2
.

where the values are given as al = 2/49 , bl = 2/21 and Rl = 1 to ensure stability and

accuracy of the simulation (Yuan and Schaefer, 2006). The desired EOS was applied to

Eq. 2.44 and used to calculate Fff .

2.3.7 Boundary Conditions

Accuracy of any fluid flow simulation set-up is typically hinged on proper selection of

the boundary conditions. Some boundary formulations used in the LB method and to

be implemented here include: bounce-back scheme; mixed boundary scheme; periodic

scheme; constant pressure boundary and velocity boundary conditions via the Zou-He

boundary scheme (Zou and He, 1997). Focus of this study however shall be on the first

two schemes mentioned. The mixed boundary condition scheme comprises of specular-

reflection boundary condition and bounceback boundary condition and is typically used

to represent the physics of slip flow in the LB methodology (Succi, 2002). When in the

continuum regime, the standard bounceback condition is obtained because the slip velocity

is approximately zero meaning the slip effect is negligible in this regime. Whereas on
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nanochannel capillary walls, the fluid velocity incurs slip on the capillary wall and thus the

slip effect is significant and has to be considered. Succi (2002) displayed the relationship

of this mixed boundary condition scheme as seen in Eq. 2.51. Where r′ and s = 1 − r′

are the reflection or bounceback coefficient and slip coefficient respectively with both

coefficients ranging from 0 to 1.

fi (x, t) = r′fr′ (x, t) + sfs (x, t) . (2.51)

The fs and fr′ are the specular portion and bounceback portion of the particle probability

distribution function respectively resulting based on the lattice scheme of choice. It can

clearly be seen that upon execution of this boundary condition scheme, when s = 0, r′ = 1,

thus the scheme reduces to the standard bounceback condition. This inadvertently means

that variation of the extent of the slip effect in the LB boundary condition will be controlled

by varying the factor s. Further details of the other aforementioned boundary conditions

and their formulations can be found in Mohamad (2011), Sukop and Thorne (2006), Zou

and He (1997).

2.4 Knudsen Phenomena

It is well established that one of the key parameters that governs flow in the continuum

regime is the Reynold′s number. However for transport at micro and nanoscale with the

slip flow regime, the Knudsen number dominates the flow transport (Fathi and Akkutlu,

2012).

Kn =
λ

H
=

ν

H

√
π

2RT
. (2.52)

Eq. 2.52, Eq. 2.53 and Eq. 2.54 show the correction of the single relaxation time to

an effective relaxation time τeff (Suga et al., 2010). This effective relaxation time that
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Figure 2.4: Schematic showing Knudsen layer phenomena occurring at the capillary wall
[adapted from Guo et. al.,(2013)]

tends to vary dynamically as a function of the Knudsen number captures wall effects that

could have been ignored in the continuum regime where the relaxation time would have

essentially remained constant and mis-representative of the physics at this scale.

τeff = τ ·Ψ(Kn). (2.53)

Ψ(Kn) =
2

π
arctan

√
2Kn−

3
4 . (2.54)

Fig. 2.4 represents the slip velocity affected by the Knudsen layer phenomena experienced

along the capillary wall for which macroscopic properties can be computed. It showed that

the actual velocity which is highly non-linear at the Knudsen layer in the flow regime of
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such system varies considerably from the macroscopic slip velocity obtained from the ex-

trapolation of the bulk phase Navier-Stokes velocity (Guo and Shu, 2013).

For the capillary walls, a mixed boundary condition scheme was involved comprising

of specular-reflection boundary condition and bounceback boundary condition could be

implemented to capture this effect (Succi, 2002). When in the continuum regime, the

standard bounceback condition is obtained because the slip velocity is approximately zero

meaning the slip effect is negligible in this regime. Whereas in nanochannels, the fluid

velocity incurs slip on the capillary wall and thus the slip effect is significant and has to

be considered. When simulating flow in capillary at this scale, incorporation of the nec-

essary physics of flow by ensuring adequate boundary conditions needs to be employed.

The mixed boundary scheme 0 < s < 1 could be employed to capture this effect and it

translates to a Knudsen range of 0 < Kn < 0.18. Its application and limitations would be

reviewed later in the course of this study.

2.5 Molecular Dynamics Simulation

2.5.1 Overview of the MD concept

Molecular dynamics (MD) refers to a computer simulation technique which is a more

detailed version of molecular simulation method that computes the motion of a set of

interacting particles (atoms, molecules or even constituent forms) (Allen and Tildesley,

1989). Newton’s equations of motions are coupled and accurately solved for these in-

teracting particles based on inter-molecular and intra-molecular potentials using several

forms of numerical integration schemes (Rapaport, 2004). It’s main difference from the

Monte Carlo molecular simulation lies in its ability to correctly estimate different con-

figurational properties and dynamic quantities (Haile, 1997). The interactions existent

between these particles comprise of complementary close range compression resistant and
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particle-binding forces. This is typically represented by potential functions which if cho-

sen appropriately can model the behavior of real substances. The most commonly used

form is the 12-6 Lennard-Jones potential

ULJ (r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(2.55)

where r separation between adjacent pair of particles, ULJ (r) is an external potential

field, σ defines the length of scale and ε represents the interaction strength (Rahman,

1964, Verlet, 1967). For MD, a truncated and shifted potential U tr−sh (r) whose potential

vanishes at the cutoff radius rcut is typically used mainly because the intermolecular focus

are always finite (Frenkel and Smit, 2002).

U tr−sh (r) =


ULJ (r)− ULJ (rcut) r ≤ rc

(0, 0) r > rcut.

(2.56)

If electrostatic charges happen to be exist in the system under consideration, the adequate

Couloumb potentials are included

UCouloumb (r) =
1

4πε0

qiqje
′2

rij
(2.57)

where i, j ∈ {Si,O}. The term UCouloumb (r) is the potential energy between the particles

i and j, qi and qj represent their partial charges and ε0 is the free space permittivity with

e′ as the elementary charge. The total energy of the system is given by the sum of dis-

persive(van der Waals) potential, electrostatic potential, bond stretch potential, bond angle

potential and dihedral potential interactions (Jorgensen et al., 1996, Le et al., 2016)

U total = UV DW + U electrostatic + U bond−stretch + Uangle−bend + U torsion (2.58)
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Figure 2.5: Schematic of particles showing solid(grey)-fluid(red) interaction force Fsf

UV DW and U electrostatic are defined by the ULJ and UCouloumb respectively. Other in-

tramolecular deformation energy potentials are shown

U bond−stretch =
1

2
Kr (r − r0)2 (2.59)

Uangle−bend =
1

2
Kθ (θ − θ0)2 (2.60)

U torsion = K1 [1 + cos (φ)] +K2 [1− cos (2φ)] +K3 [1 + cos (3φ)]

+K4 [1− cos (4φ)]

(2.61)

The standard Lorentz-Berthelot mixing rules from the values obtained from pure com-

pounds were employed to represent non-bonded LJ interactions between different site

types i and j.

εij =
√
εiiεjj and σij =

1

2
(σii + σjj) (2.62)

For this MD study, two systems of interacting particles shall be modeled: the fluid system

and solid system. A schematic of the solid-fluid particle interaction was shown in Fig. 2.5.

n−octane was the hydrocarbon chosen to be modeled in this study and would thus repre-

sent the fluid system. Shale pore structure characterization using SEM and x-ray diffrac-

tion(XRD) imagery analysis has shown it’s composition to be majorly quartz (SiO2),
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dolomite (CaMg(CO3)2), aragonite (CaCO3) and clay (Al3Si2O5(OH)4) (Gong et al.,

2013). So for this work, quartz in the form of silica was used to represent the shale rock and

thus the solid system of particles. Not only because of it’s large presence in the rock, but

also because it had been commonly used by other researchers (Javadpour, 2009, Le et al.,

2015) and thus serves for a good basis for model validation. The MD simulations involved

here was executed using the Large-scale Atomic/Molecular Massively Parallel Simulator

(LAMMPS) library (Plimpton, 1995) which is an open source molecular dynamics soft-

ware package. In addition to this library, code development was also complemented with

the use of linux and python software packages. The simulations here were performed using

facilities from the High Performance Research Computing Center of Texas A&M Univer-

sity. All initial structures were optimized by energy minimization. The equilibration step

was done for 2ns with NPT (certain number of particles, pressure and temperature) en-

semble and NVT (certain number of particles, volume and temperature canonical). Then

the molecular configuration for analyzing the final result was generated over an additional

5ns run.

2.5.2 Static and Thermodynamic Properties

In the past, various attempts had been made to effectively ascertain the phase behavior and

static properties of hydrocarbon fluids under confinement. Some were done experimen-

tally (Alfi et al., 2016, Luo et al., 2016), while others via molecular simulation (Jin and

Nasrabadi, 2016, Jin et al., 2017). Whereas, this work employs the molecular dynamic

approach to do the same study. Properties computed here were the mass density profiles,

self-diffusion coefficients and bulk viscosity. The Ds (c) in Eq. 2.63 is the self-diffusivity

defined by the mobility of tagged particles and would be calculated from the mean-squared
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displacement (MSD) (Rapaport, 2004, Wang et al., 2016a)

Ds (c) = lim
t→∞

1

6t

(
1

N

∑
N

|r (t)− r (0)|2
)

(2.63)

where r (t) is the molecule position at time t, N gives the number of molecules and c

the molecular concentration. The equilibrium dynamic viscosity η was computed here

by using the equilibrium molecular dynamic (EMD) based on the Green-Kubo formula

(Allen and Tildesley, 1989, Mondello and Grest, 1997) by analyzing fluctuations from the

off-diagonal components of the pressure tensor in the system.

η =
V

kBT

∫ ∞
0

〈Pαβ (t0)Pαβ (t+ t0)〉 dt (2.64)

Where V is the simulation box volume, kB is the Boltzmann constant, T the temperature,

t the time and Pαβ represents the off-diagonal elements for the pressure tensor. The angle

brackets represent the pressure tensor time-dependent correlation function, and hence the

ensemble average of 〈Pαβ (t0)Pαβ (t+ t0)〉 for all time regions initialized from t0 to t

(Makrodimitri et al., 2015).
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3. CODE DEVELOPMENT AND IMPLEMENTATION

3.1 Benchmark Case - Lid Driven Cavity Flow

A standard LB simulation code was first developed as a base for this study. Code de-

velopment was done using the Matlab software made available by the Texas A&M High

Performance Computing Research. As with most computational fluid dynamics (CFD)

programs, the typical lid driven cavity problem was used to validate this code.

A square cavity of 100 × 100 uniform grid is filled with a hydrocarbon, in this case

n-octane. The system is considered isothermal, one side having a tangential velocity of 0.1

at Re of 100, while the rest stay stationary. The lattice scheme used here was the D2Q9

scheme. Dirichlet boundary conditions were applied. Values given were in lattice units.

The geometric aspect ratio and dimensionless number were matched to those of the real

units for proper conversion as stated in previous chapter. Correctly ascertaining the fluid

density of the system was the first step. To do this, the average mass density of the domain

was preset and initialized using a 0.1% random perturbation for 5000 time-steps (Gong

et al., 2013, Yuan and Schaefer, 2006). Temperature was initially set at 298.15K. The

saturated state of the system is achieved after complete coalescence of smaller droplets to

get larger ones that represents the liquid until phase equilibrium is met, with the rest of

the domain being vapour. This was shown in Fig. 3.1a through 3.1d. Multiple simulations

were done at different temperatures using the computed corresponding pressure at that

temperature in Eq. 2.45 in order to generate the coexistence curves for the hydrocarbon.

The T − ρ plot comparisons are given in Fig. 3.2 and Fig. 3.3 for the reduced and actual

values respectively. It can be seen that the LB method showed very good agreement to

that from the PR-EOS using Maxwell equal-area construction as well as the experimental

values from the National Institute of Science and Technology (NIST) (Lemmon et al.,
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2005).

This indicates the ability of the LB method with the PR-EOS to accurately model a single

component flow system. Fig. 3.4 shows velocity contours at laminar flow propagating

(a) (b)

(c) (d)

Figure 3.1: Simulation snapshots for n-octane density(kg/m3) distribution after n number
of time steps where (a) n = 40∆t steps; (b) n = 120∆t steps; (c) n = 200∆t steps; (d)
n = 400∆t steps;
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Figure 3.2: Comparison of coexistence curves showing reduced quantities for n-octane
with theoretical values and NIST experimental values

Figure 3.3: Comparison of coexistence curves for n-octane with theoretical values and
NIST experimental values

from the moving boundary. When the dimensionless velocity ud was plotted along the

midsection xd = 0.5, a very good agreement was observed to exist when compared to the

analytical solution from Ghia et al. (1982). This was shown in Fig. 3.5
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Figure 3.4: Dimensionless velocity field of n-octane flow across 100 × 100 grid at Re =
100

Figure 3.5: Dimensionless velocity profile of n-octane at midsection and mid-height of
cavity at Re = 100
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3.2 Computation of Permeability in porous media

Pore-scale modeling has the ability to predict flow properties by using a topologically dis-

ordered pore network model that provides a realistic representation of the rock sample

geology. This network could be generated via stochastic methods, micro-CT scanning or

even direct imaging techniques. The LB method has proven to have the ability to model

petrophysical properties in porous media (Aksnes and Elster, 2009, Chen and Doolen,

1998, Rothman and Zaleski, 1997, Succi, 2002). Permeability is one of such parameters.

The porous media here would comprise of two networks: The Pore distribution(PD) net-

work and the Rock distribution(RD) network. This was generated by discretization and

conversion of 2D micro-CT and SEM images into binary images whose position vector ~x

could be defined by Eq. 3.1.

I (~x) =

 0 for ~x ∈ PD

1 for ~x ∈ RD

 for ~x = xi, xj = 0, 1, ...Ni − 1; 0, 1, ...Nj − 1 (3.1)

The permeability can be estimated straight from the rate flux or velocity fields generated

from the LB method in conjunction with Darcy’s law for the fluid under consideration. Fig.

3.6 shows the procedure used in the simulation model for the permeability calculations of

the digitized porous media generated in this study. Here, an external force Fdpdl was added

to the standard LB simulation model (comprising the initialization, collision and stream-

ing steps) as representation of the total pressure drop along the system length
4P
L

and

expected to cause the same change in momentum as the latter. The average macroscopic

velocity was then retrieved and compared to that of the initial time step dependent. The

permeability was calculated when the velocity field was at steady state, thus achieving con-

vergence. The system converged when the change in average velocity calculated between

iterations was less than the tolerance value tol = 10−10 in lattice-units.
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Figure 3.6: Procedure for permeability simulation model using the lattice Boltzmann
method

(a) (b)

Figure 3.7: (a) Pore distribution in 2D domain for Berea sandstone; (b) Velocity distribu-
tion in 2D domain for Berea sandstone
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In order to validate the effectiveness of this permeability calculation procedure for this

work, the Berea dataset (Blunt et al., 2013, Boek, 2010, Dong, 2008, Oren and Stig,

2003) with an already known average permeability of 1286 mD was used. This dataset

is a representation of the sandstone found in Berea, Ohio. It contains small portions of

dolomites, feldspars and clays, thus is popularly used for core analysis (Dong, 2008).

Since this code was written in 2D, a random slice from the 3D lattice size was taken, as

shown in Fig. 3.7a. The external force was applied in the x-direction and y-direction as

Fx = Fdpdl and Fy = 0 respectively. Upon execution of the simulation, the steady state

velocity fields are shown in Fig. 3.7b, the flow under consideration here was at low Re.

The velocity field showed the fluid flow direction as it percolates through the pore network

domain. Results shown in Fig. 3.8 reflect a good match for the different pressure drop val-

ues tested with the code for this work. An average permeability of 1323 mD was obtained.

Figure 3.8: Permeability calculated at different pressure drop values for the Berea sand-
stone dataset
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Figure 3.9: Schematic of D2Q9 lattice scheme displaying lattice geometry in capillary
nanochannel [adapted from Fathi et. al, (2012)]

The relative error was 2.87%. This permeability procedure was later modified and used to

perform diagnositics on different test cases to compute the apparent permeability values

for the digitized structure of the pore network distributions in this work.

3.3 Hydrocarbon flow in nanochannel considerations

With the verified base LB set-up, flow dynamics in nanochannels under confinement con-

ditions typical of the pore size of a tight rock matrix was investigated. This system is

analogous to experimental flow between parallel plates. In order to show this flow con-

cept at varying conditions, a lattice grid that was representative of this system had to be

initialized as displayed in Fig. 3.9. This was instantiated by defining a two dimensional

grid to accommodate the D2Q9 LB scheme employed for tis study. System condition
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Figure 3.10: Comparison of normalized velocity profile of gas flow across nanochannel
for analytical, LB-BGK, LB-MRT, IP and DSMC solutions at Kn = 0.0194

was kept isothermal at 298.15K for the n-octane having a capillary length by width of

40nm × 20nm. For the simulation, the relaxation frequency, pressure drop and channel

width parameters used here were all defined in lattice units as 0.5, 0.0125 and 20 respec-

tively. A two lattice unit layer buffer on each side of the capillary nanochannel was also

accounted for. Upon execution of the simulation, the standard LB method(BGK) was

compared with the LB-MRT, analytical Hagen-Poiseuille equation of fluid flow between

parallel plates,the LB multiple relaxation time method (Lallemand and Luo, 2000), and

both information preservation method(IP) and direct simulation Monte Carlo (DSMC)

which are both numerical solutions (Kn = 0.0194) by Shen et al. (2004) as shown in Fig.

3.10. At the system wall, the mixed boundary condition reformulated to the bounceback

condition (s = 0) was employed. Very good agreement was achieved between the LB-

BGK method used in this study and other numerical solutions in Fig. 3.10. The maximum
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Figure 3.11: Normalized velocity profile of gas flow across nanochannel for various slip
coefficients

dimensionless velocity of 1.5 was achieved at the center line axis of the nanochannel. This

is consistent with the theoretical derivation of the ratio of the maximum velocity to that of

the average velocity in the slip regime. Once this had been established, the slip coefficients

were introduced into the system. This consisted mainly of specular and bounceback pa-

rameters in order to obtain the required slip velocities existent at the boundaries. The slip

coefficient was varied from typical fluid flow displaying no slip to fluid flow displaying

full slip, as can be seen in Fig. 3.11. This denotes the slip regime expressed as a variation

in the Knudsen criterion which has a direct relationship with the slip coefficient. Velocity

profile comparison with theoretical solution was done only at the bounceback condition

here. Mainly because this was the only theoretically validated solution for velocity profile

under the slip flow regime that ws found during the course of this study. When s = 0,

a parabolic velocity profile is sustained akin of any fluid undergoing the Hagen-Poiseulle
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Figure 3.12: Surface plots showing normalized velocity profile of gas flow in the
nanochannel for various slip coefficients

flow stemming from the fluid flow assumption of the continuum regime. However as the

slip coefficient increases, the velocity profile starts to exhibit curvature inversion at the

flow front and consequently transitions into a planar profile. A clearer view of how the

flow would transition in a three dimensional rendition of the channel can be seen in Fig.

3.12. Further scrutiny of this regime showed that upon reaching a certain critical slip co-

efficient sc with a value of Kn ∼ 0.155, indefinite slip motion in the simulation system

is invoked (Madiebo et al., 2017). The term indefinite here describes a time scale sig-

nificantly larger than the fluid chemical scale instantiated at the initial stage of the lattice

simulation model set-up. This is very analogous to what is known as the glassy behavior

or non-vanishing slip flow of gas in the slip flow regime (Succi, 2002). The occurrence of

this phenomena which would henceforth be identified as the critical slip coefficient, causes
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Figure 3.13: Surface plots showing normalized velocity profile instability. (a)Kn ≈ 0.155
(b) Kn > 0.155

a very significant increase and even unstable nature of the velocity profile as shown in Fig.

3.13. It should be stated that this entire study was done at a fixed channel width. However,

there have been studies that have shown that an increase in the channel width will cause

an increase in the maximum velocity (Madiebo et al., 2017, Zhang et al., 2014). Subse-

quently, it will lead to an increment in velocity arising from the inclusion of the Knudsen

criterion which conversely becomes more important with decreased channel width. It is

noteworthy to highlight that this critical slip coefficient sc occurs just before the limit of

the maximum slip coefficient (sc = 1 ) was met. This stipulates that a measure of uncer-

tainty will be present when computing the apparent permeability from this critical regime

and thus should be addressed. Hence when implementing LB simulation involving mixed

boundary conditions, high confidence should be considered for volumetric flux values cal-

culated in the slip regime before the critical slip coefficient and not beyond. This serves as

a limitation of this procedure if applied to a tight rock matrix. Simply because the diverse
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spectra of scale in a heterogeneous tight rock displaying nanometric pore sizes, would

cause flow to continuously translate through Knudsen flow regimes even higher than that

of the slip flow as shown much earlier in Fig. 1.1. In addition, the flow computed with

the LB method assumes a linear relationship between the fluid density and the rock-fluid

interaction force. This is assumption evidently becomes highly questionable especially

since its a function of pore size dependence (Gong et al., 2013). Which means the smaller

the pore, the more pronounced the molecular interactions would be, and thus the less

likely this holds true. To address these issues, a different approach to represent this mixed

boundary condition had to be employed. It involved a more definite computation of the

rock-fluid interaction force via molecular dynamics for the system under consideration.
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4. MOLECULAR DYNAMICS SIMULATION MODEL

4.1 Model for n-octane and atomistic force fields

The united-atom (UA) concept based on the methyl (CH3) and ethyl (CH2) was used to

model the n−octane molecules which reduces computational costs but still maintains its

accuracy. This was shown in Fig. 4.1a. The forcefield employed here was the Transferable

Potential for Phase Equilibria (TraPPE) (Martin and Siepmann, 1998). The TraPPE-UA

force field produced realistic predictions of n−octane behavior. The hydrocarbon model

was described by bond stretching, angle bending and dihedral constraints. A cut-off radius

of 12 Å. was used for the Lorentz-Berthelot combining rules (Wang et al., 2016b, Yang

and Zhong, 2006). It had no partial charges. The bond length was set as 1.54 Å. The bond

angle was set as 114◦ and described based on a harmonic potential. The dihedral angles

were described based on the Optimized Potentials for Liquid Simulations for united atoms

(OPLS-UA) torsional potential.

(a) (b)

Figure 4.1: (a) United-Atom model for n-octane. Atom color code: blue and purple,
methyl(−CH3) and methylene(−CH2) groups respectively; (b) Three-dimensional simu-
lation cell with 48 n-octane molecules
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atom ε/kB (K) σ( Å) q (e)
CH3 98 3.75 0
CH2 46 3.95 0

Table 4.1: Force field parameters for n-octane.

Some other required parameters can be found in table 4.1. The simulation box is made

up of 432 unit cells (4× 12× 9) as shown in Fig. 4.1b. For this simulation, a 1fs in-

tegration time step was used in the velocity verlet algorithm to integrate the equations

of motion (Allen and Tildesley, 1989). Temperature was maintained constant by using a

Nosé-Hoover thermostat at a relaxation time of 0.1ps. The system was run for 2ns in the

NPT ensemble to achieve equilibration, and then trajectories for the next 5nswas collected

for result analysis. MD simulations were executed fort he n-octane at various temperature

conditions. Fig. 4.2 and Fig. 4.3 showed the density and viscosity values of this work

respectively in comparison to the NIST database (Lemmon et al., 2005). The MD den-

Figure 4.2: Comparison of n-octane density with experimental NIST data at different
temperatures
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sity and viscosity predictions showed good agreement with the NIST data for the 1 MPa

pressure at various temperatures. The density tends to gradually decrease with increasing

temperature. On the other-hand, viscosity tends to decrease as the temperature increases.

Figure 4.3: Comparison of n-octane viscosity with experimental NIST data at different
temperatures

Figure 4.4: n-octane diffusion coefficients simulated at different temperatures
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T (K) ρ (g/cm3)-NIST. ρ (g/cm3)
273.15 0.718 0.706
298.15 0.698 0.682
323.15 0.678 0.660
348.15 0.657 0.634
373.15 0.635 0.606
398.15 0.613 0.576
423.15 0.589 0.539

Table 4.2: Comparison of NIST data and simulation density values for n-octane at different
temperatures.

T (K) η (Pa.s)× 10−3-NIST. η (Pa.s)
273.15 0.710 0.858 ± 0.14
298.15 0.509 0.520 ± 0.1
323.15 0.384 0.487 ± 0.08
348.15 0.305 0.275 ± 0.06
373.15 0.247 0.189 ± 0.05
398.15 0.203 0.169 ± 0.04

Table 4.3: Comparison of NIST data and simulation viscosities for n-octane at different
temperatures.

Computed MD self-diffusion coefficients were also compared with experimental values

from Reis et al. (2001) and shown in Fig. 4.4. The diffusion coefficient exhibited a

direct proportionality relationship with the temperature. A good match with the experi-

mental data was also observed. Numerical values of the density, viscosity and diffusion-

coefficient values were shown in Table 4.2, 4.3 and 4.4 respectively. Average deviations

between the experimental values (NIST) and the measured MD values was about 5% for

of all computed properties.
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T (K) Ds (cm2/s× 10−4)-Expt. Ds (cm2/s× 10−4)
273.15 0.181 0.172 ± 0.06
298.15 0.243 0.29 ± 0.1
323.15 0.327 0.333 ± 0.11
348.15 0.441 0.405 ± 0.14
373.15 - 0.539 ± 0.18
398.15 - 0.728 ± 0.24
423.15 - 0.981 ± 0.32

Table 4.4: Diffusion coefficients obtained for n-octane at different temperatures.

4.2 Model for silica and atomistic force fields

The silica used in this study to represent the nanochannel was modeled using a short-range

Buckingham potential shown in Eq. 4.1, in conjunction with a long-ranged Couloumbic

potential. This model was chosen because of its popular usage by other researchers in

studying structural properties of glass and shale under various conditions (Le et al., 2015,

van Beest et al., April 16, 1990). The energy obtained from this potential can be calculated

from the expression in Eq. 4.2

UBuckingham = Aije
−Bijrij − Cij

r6ij
(4.1)

U (r) = UBuckingham + UCouloumb (4.2)

where Aij , Bij and Cij are pair potential constants. Values of these constants that would

be necessary to reproduce the energies needed to pair silica clusters have been obtained

from the studies by Sanders et al. (1984) and Hill and Sauer (1994) and is shown in

table 4.5. The partial charges were qO = −1.2 and qSi = +2.4. Fig. 4.5 showed the silica

structure with two slabs on both sides separated by a 4.37nm spacing. See Le et al. (2016),

Le Page and Donnay (1976), van Beest et al. (April 16, 1990), Wang et al. (2016a,b) for
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more details on the formulation of this structure.

i-j atoms A (eV ) B (Å−1) C (eV Å6)
O - O 1388.773 2.760 175.000
Si - O 18003.757 4.873 133.538
Si - Si 0 0 0

Table 4.5: Force field parameters for silica

Figure 4.5: Molecular dynamic model of silica system. Lx = 5.32nm,
Ly = 4.93nm, Lz = 6.57nm. Si (yellow atom) and O (red atom)

4.3 Silica +n-octane model formulation

When it comes to shale rock, research on imbibition has shown that such rocks have a

higher affinity to oleic phases with the capillary pressure obtained via the Young’s-Laplace

model being lesser than the force that actually translates the oil through its pores (Wang
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et al., 2016b). The reason behind this stems from the hydrocarbon adsorption onto the

shale rock surface. To gain insight on this adsorption effect caused by confinement of

the hydrocarbon in nanopores, the transport properties of the n-octane through the silica

nanochannel system were studied by running the NVT simulation for 6 ns post equili-

bration as stated earlier. Periodic boundary conditions were maintained in the x and y

direction for the 5.32nm × 4.93nm × 6.57nm box, as shown in Fig. 4.6. A CHARMM

forcefield was employed to account for the intermolecular interactions between different

phase molecules (Cruz-Chu et al., 2006). The cut-off radius selected here was 12Å (Wang

et al., 2016b). The density profile based on the center-of-mass of alkane and perpendicular

to the z dimension of the structure was computed, with the local mass density also deter-

mined. Fig. 4.7 shows this density profile distribution from this simulation at 298.15K.

The nanochannel width, measured as length between substrate slabs under consideration,

was given as 4.37nm. It is evident that the density profiles of the n-octane molecules

shows prominent oscillatory behaviour near the silica substrate walls and alot less pro-

Figure 4.6: Molecular dynamic model of Silica + n-Octane system
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nounced at the central z − axis plane as it moves farther away from the substrate. It grad-

ually approaches the bulk n-octane density simulation value 0.68g/cm3 which is close

to the experimental NIST value of 0.693g/cm3 (Lemmon et al., 2005). The oscillation

would diminish more and become even more bulk-like in the center plane as the channel

width increases (Wang et al., 2016a). Fig. 4.8 showed the mass density profile variations

predicted by the MD model for various temperatures.

Figure 4.7: Silica + n-octane mass density profile at T = 298.15K

The pore size also plays a key role in affecting the diffusion in pores. As pore size increases

the density of the hydrocarbon molecules would decrease because the molecules would be

adsorbed into the relatively larger pores of the pore surface. This pore size effect on

diffusion as a result of confinement is evident in Fig. 4.9. The smaller the channel width,

4nm in this case, the more hydrocarbon molecules were adsorbed on the contact surface

which leads to the a reduction in the diffusivity rate at that temperature. It is also worth
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Figure 4.8: Silica + n-octane mass density profile at different temperatures

Figure 4.9: Silica + n-octane diffusion coefficients at different temperatures

noting that even as the temperature was increased, the rate of increase in the diffusivity

rate was alot faster in the bulk phase than it was in the 4nm channel.
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5. LATTICE BOLTZMANN - MOLECULAR DYNAMICS (LBMD) MODEL

APPLICATION

5.1 Molecular Dynamics Force Computation

After the MD simulation model had reached equlibrium, the force of interaction between

the silica and the n-octane particles was also computed during the post equilibration run

for data analysis. Fig. 5.1a shows two-dimensional view of the pore channel where the

hydrocarbon interacts with the boundary structure.

(a) (b)

Figure 5.1: (a) A simulation snapshot showing n-octane flowing through a 4.37nm pore
channel (b) Force of interactions Fff and Fsf existent between individual hydrocarbon
particles and hydrocarbon particles and the boundary respectively

From Fig. 5.1b, it can be seen that the distance between the center fluid region and the

boundary wall exceeded the cut-off radius of 12 Å, thus the n-octane molecules in this

region can be considered to only be affected by the intraparticle potential Fff . Whereas in
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the regions closer to the boundary, the n-octane molecules were considered to be affected

by both Fff and Fsf functions. Fff would already be accounted for via the EOS. In order

to compute Fsf , the particle-boundary MD force of interaction Fmd would need to be

determined as Fsf = f (Fmd). This was calculated directly based on the prevailing 12-6

LJ potential in Eq.2.55. This calculation could be translated directly into the LB model as

follows:

Recalling Eq.2.55

ULJ (r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
; r < rc (5.1)

r is the particle to wall distance whereas rc is the cut-off distance beyond which the

particle-wall interaction ceases. rc would be approximated to equate the skin molecu-

lar mean free path λ of the n-octane molecules. From this Eq. 5.1, it is evident that ULJ

has an inverse relationship with the function of r. Hence, let’s assume a simple relation-

ship between these two parameters such that ULJ ∝ 1

r
. Also recall from the definition of

Kn that it is a function of λ. Now λ is the average distance a particle would travel in order

to interact or collide with another particle within a fluid system. Since r is the distance the

fluid particle would need to travel to collide with the wall particle and so long as it does

not exceed λ in the vacuum range (See Jennings (1988) for λambient values), a simplifying

assumption can be made such that r ≈ λ. Thus for a particle-wall interaction experiencing

a potential along a surface area A, the following expression for the potential per unit area

could be generated
ULJ

A
∝ 1

λ
(5.2)

ULJλ

A
= C (λ) (5.3)

where C is a system constant for the defined λ. This means for different values of λ
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ULJ
1 λ1
A1

,
ULJ
2 λ2
A2

,
ULJ
3 λ3
A3

, ... ,
ULJ
c λc
Ac

(5.4)

λc is the cut-off distance analogous to rc. If Eq. 5.4 is divided by the limiting function, it

becomes

ULJ
1 λ1Ac

ULJ
c λcA1

,
ULJ
2 λ2Ac

ULJ
c λcA2

,
ULJ
3 λ3Ac

ULJ
c λcA3

, ... ,
ULJ
n λnAc

ULJ
c λcAn

(5.5)

This expression gives a parameter, whose fundamental unit from dimensional analysis

yields
ULJλAc
ULJ
c λcA

[=]
M ′L′

T ′2
(5.6)

where M ′, L′, T ′ are mass, length and time respectively. This is dimensionally consistent

to the unit of Force F . Therefore, the expression in Eq. 5.6 would become

ULJλAc
ULJ
c λcA

≈ FLJ

FLJ
c

(5.7)

Since the surface area of the system under consideration remained constant, thus A = Ac.

Eq. 5.7 then becomes
ULJλ

ULJ
c λc

≈ FLJ

FLJ
c

(5.8)

Thus for the different values of λ, the expression for becomes

FLJ
1

FLJ
c

,
FLJ
2

FLJ
c

,
FLJ
3

FLJ
c

, ... ,
FLJ
n

FLJ
c

(5.9)

(Fmd)d1 , (Fmd)d2 , (Fmd)d3 , ... , (Fmd)dn (5.10)

where (Fmd)d is the dimensionless particle-boundary force of interaction.

Eq. 5.8 and Eq. 5.10 would serve as key expressions for the Fmd inclusion to the modi-
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Figure 5.2: Dimensionless particle-boundary interaction force from silica + n-octane sys-
tem Fmd was a function of the Knudsen number Kn

fied LB system for the LBMD formulation. Using these equations, the force based on the

pair-potential between the silica and n-octane molecules was obtained. Fig. 5.2 showed

the results of the dimensionless force as a function of the Knudsen number. This also im-

plied that as the particle density increased with respect to the boundary, there was also an

increase in the force of interaction. Unlike the conventional assumption of a linear relation-

ship between boundary interaction force and fluid density in the continuum flow regime,

this study has shown a non-linear force relationship existing between the shale(silica em-

ployed here) and the hydrocarbon (n-octane) as the density in a the slip flow regime, sim-

ilar to the study by Gong et al. (2013). This force was then incorporated into the already

existent LB model as a substitute for the mixed boundary condition.
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5.2 Forcing Function Computation and Model Formulation

In an attempt to amalgamate both simulation methodologies, a more detailed understand-

ing of the numerical implication when using the current mixed boundary condition and its

approximation given in Eq. 2.54 had to be addressed. From Fig. 3.13 shown earlier, it

was evident the mixed boundary condition showed limitations at high Knudsen numbers in

the Knudsen regime. This was better represented numerically when the resultant particle-

boundary forces for the mixed boundary condition LB system Flb−bc were calculated for

each of the corresponding Kn values as shown in Fig. 5.3. This indicated that at the early

stage of the simulation (s(Kn) = 0), the resultant force inducing the rate flux in the flow

would gradually increase until it stabilized, and from there it would remain constant. This

was to be expected as the system approached equilibrium. However, this occurs until a

certain critical regime (Horbach and Succi, 2006, Madiebo et al., 2017) where the force

kinks and continued increasing over time. Thus leading to unstable rate flux behavior that

prevents the system’s ability to achieve equilibrium. Taking the limit at the critical slip

where Knc = 0.155, the dimensionless force for the system (Flb−bc)d could be computed.

Fig. 5.4 showed a non-linear proportionality relationship between Flb−bc andKn. It is also

worth noting that the Flb−bc method seemed efficient at the early stages of the Kn regime

due to its closeness in dynamic behavior to a macroscopic flow system. This should be

expected since the standard LB method as stated earlier, was formulated on the basis of the

Navier-Stokes equation via the Chapman-Enskog expansion. In order to model systems

possessing higher Kn values, this concept had to be reformulated so as to have the ability

to handle higher Kn flow regimes.

Beginning from the concept of the adjusted boundary condition to capture this effect,

Eq. 2.51 could be recalled and modified into Eq. 5.11.
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Figure 5.3: Force of fluid-solid particle interaction Flb−bc from the lattice Boltzmann
mixed boundary condition

Figure 5.4: Dimensionless fluid-solid particle interaction force Flb−bc from the lattice
Boltzmann mixed boundary condition as a function of the Knudsen number Kn
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fi (x, t) = (1− s) fr′ (x, t) + sfs (x, t) (5.11)

Mathematically, this could be represented by either Eq. 5.12 or Eq. 5.13.

fi (x, t) = fr′ (x, t) + s [fs (x, t)− fr′ (x, t)] (5.12)

fi (x, t) = fs (x, t) + (1− s) [fr′ (x, t)− fs (x, t)] (5.13)

Since the typical LB method uses the bounceback condition that could be reproduced here

by setting s (Kn) = 0, hence the choice of Eq. 5.12. This means that the influence

from this adjusted boundary condition with respect to a standard LB model comes from a

particle density forcing function given by s [fs (x, t)− fr′ (x, t)]. This can thus be equated

to the nodal rock-fluid molecular interaction force
[
F̄sf
]
i

=

[
Fsf

ρu/∆t

]
i

with respect to the

system momentum density that accounts for the slip flow regime. This implies that

s [fs (x, t)− fr′ (x, t)] ≡
[
F̄sf
]
i

(5.14)

This could then be approximated by the particle-boundary MD interaction force as

∥∥∥∑ fi (x, t) ~ei

∥∥∥+ Fsf∆t ∼=
∥∥∥∑ fi (x, t) ~ei ± ~Fmd∆t

∥∥∥ (5.15)

This implementation of this formulation was summarized as shown in Fig. 5.5 and could

be described as follows: Analogous to the standard LB model, first the system parameters

fi, τ, ρ, u were initialized along with the forcing function (Fdpdl). Next the initial macro-

scopic quantities ρ and ~v were computed. The applicable EOS using the defined Fff as

described in earlier section was included then the corresponding feq was calculated. Fdpdl

was then imposed on the system and the collision operation performed.
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Figure 5.5: Procedure for LBMD simulation model for permeability computation
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Figure 5.6: Procedure for fluid-solid force Fsf calculation

The bounceback boundary condition scheme was employed and then the solid-fluid

interaction forcing function Fsf was incorporated, along with the final streaming step. De-

tails of this incorporation and the Fmd inclusion was shown in Fig. 5.6. To simply incor-

porate Fmd into the LB system, a maximum particle-boundary interaction force occurring

at the cut-off distance in the LB system (Fmd)c−lb was defined and multiplied by the pre-

vailing dimensionless force (Fmd)d obtained from the MD system initially configured. It

should also be noted that this force computed here is analogous to the interaction strength

potential possessing an adsorption coefficient by Shan and Chen (1993), Sukop and Or

(2004) when implemented in the LB model. Hence, it would be negative for stronger or

attractive forces(wetting) and would grow increasingly more positive vice versa. Thus, the

negative sign was employed for Fmd in the organic nanochannel system. This approach

was then used to compute the rate flux based on the procedure described earlier in Fig.

3.6, for the n-octane in silica along with the apparent permeability of the porous media .
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6. LBMD MODEL: SIMULATION DIAGNOSTICS

In order to validate this new model, two test cases were investigated and modeled.

(i) Flow in capillary nanochannel. (ii) n-Octane injection in nanofluidic chip experiment.

6.1 Flow in capillary nanochannel

Recalling the initial nanochannel system set up earlier for the LB method, the LB-BC

model was replaced with the new LBMD model. This was done by by incorporating the

Fmd onto the boundary walls as shown in Fig. 6.1 and by following the procedure as

described earlier in Fig. 3.6 and assuming |Fmd|c as 1 in lattice units for this system,

apparent permeability calculations were done. Firstly, the LB-BC solid fluid interaction

force |Flb−bc|was compared to that generated by the LBMD model |Flbmd| as shown in Fig.

6.2. It was evident that this force could clearly compute beyond the critical slip regime,

sc (Knc) ≈ 0.155, which was a limitation of the former. It was also worth noting that

at the early stage of Kn regime, Flbmd was not as efficient in estimating the rate flux as

Figure 6.1: Schematic of nanochannel showing inclusion of Fmd to nodes
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Figure 6.2: Comparison of the force from the LB boundary condition method and the the
LBMD method

Flb−bc as expected. Mainly because this regime is much closer to the Navier-Stokes flow,

and for which a molecular simulation approach is not adequately suited to represent. This

is because the the Navier-Stokes flow occurs in the macroscopic regime which was already

effectively modeled with the standard LB method. With the emphasis of this study being

to improve on the limitation of the prevalent boundary condition adjustment in the slip

regime, the Flbmd was then incorporated into the base LB model set-up in this work. A

ratio of the apparent permeability values adjusted for slip effect from the Knudsen layer

to their respective theoretical intrinsic permeability values and an understanding how they

vary with respect to both the Knudsen number was shown in Fig. 6.3. A good match of

both models was achieved, thus showing the precision of new model to still efficiently

replicate the results from the LB-BC model.
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Figure 6.3: Relationship between normalized apparent permeability and Knudsen number
for silica + n-octane system in slip flow regime

Figure 6.4: Comparison of normalized apparent permeability relationships and Knudsen
number for slip flow regime
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Subsequently, it’s performance in comparison to existent correlations from literature was

also evaluated and this was shown in Fig. 6.4. Good agreement was observed to ex-

ist between the LBMD simulation and all the other representative correlations. The best

agreement seemed to exist between this model and the correlation proposed by Florence

et al. (2007), as other correlations which marginally overestimated the apparent perme-

ability as the slip flow regime approached its end. This could be attributed to the basis of

Dimensionless apparent permeability model Slip flow correction factors
Florence et al. (2007) 1 + 4Kn

Beskok and Karniadakis (1999) (1 + α (Kn))

[
1 +

4Kn

1− bK̇n

]
; α =

1.358

1 + 0.17Kn−0.4348

Sakhaee-Pour and Bryant (2012) 1 + 13.58Kn

Chen et al. (2015) 1 +
64

3π
Kn

This work(silica+ n− octane) 1 + 2.67Kn

Table 6.1: Comparison of apparent permeability correction factors

the flow geometry considered during their formulation. Wherein this case both were based

on a singular straight micro or nanochannel (Florence et al., 2007), whereas the later

correlations try to incorporate more complex geometric nanochannels and more physical

parameter influence hence the slight variance from our LB simulation(Civan, 2009). Table

6.1 showed a comparison of the proposed apparent permeability correlations. As seen,

the LBMD model does show very good agreement in modeling a nanochannel system and

producing a good match with already existent models. It should be noted that this had been

done simply by ensuring proper system set-up along with the essential underlying physics

rather than attempted parameter-fitting. Therefore, this approach allowed the modeling of

the fluid flow behavior in order to produce a unique apparent permeability correlation for

this nanochannel system under consideration.
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6.2 Hydrocarbon injection in nanofluidic chip experiment.

The next test case assessed was to model hydrocarbon flow analogous to the experimental

set-up of a n-octane being injected into a nanofluidic chip. This concept employed here

was that of a lab-on chip technology experiment and its procedure was analogous to the

study by Alfi et al. (2016). The idea behind this technology simply involves the miniatur-

ization of various laboratory functions integrated into a small microfluidic or nanofluidic

chip. The motivation for adopting this process in this study was to use the nanofluidic

device as a replica of shale rock media in order to investigate the dynamic behaviour of

fluid flow in nanometer-sized pores prevalent in the pore distribution in a shale rock.

6.2.1 Lab-on-a-chip experiment: n-octane injection into glass nanofluidic chip

The nanofluidic device employed for this study was a glass nanofluidic chip that had pho-

tolitographically fabricated parallel channels. An image of the actual nanofluidic chip used

for this work was shown in Fig. 6.5. This particular design had 20 parallel nanochannels at

the center. Each channel was 5µm in width and 10 nm in depth. A glass substrate layered

the top of the channels and thus covered the nanochannels in the vertical direction. There

Figure 6.5: Fabricated nanofluidic chip
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are four reservoir ports located towards each corner of the square chip. These ports are

connected along a channels that are perpendicular to those at the center, for they would

serve as inlet or exit ports into the parallel center channels.

The experimental set-up for this study was shown in Fig.6.6. The summary of the

procedure employed for this study was in steps. First, proper placement of the nanofluidic

chip under the microscope to ensure the the center channels were properly aligned and in

focus. Next, the slow injection of the hydrocarbon (10−5µL n-octane) into the channels

through the inlet ports. This was to avoid high pressure drop across the chip that could lead

to damage. Then the fluid in the channels were allowed to stabilize, so the internal pressure

Figure 6.6: Schematic of the experimental set-up for the nanofluidic chip experiment
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could equilibrate with the atmospheric pressure effect from the open exit ports once all the

channels were filled. Finally, visualization and data acquisition via the microscope and

computer monitor were done. After the this was set-up but before the experiment starts,

trapped air was siphoned out of the nanochannels via suction and the channels replaced

with hydrocarbon vapor.

In order to model the dynamic behaviour of the n-octane as it transitioned through the

nanochannels, results for this study were generated in the form of time lapse snapshots as

shown in Fig. 6.7a - Fig. 6.7f. In Fig. 6.7a, the experiment had already commenced. The

two inlet ports had been injected with n-octane. By inducing a pressure drop across the

inlet and exit ports. Experiment already began, injection of n-octane was from both inlet

ports. In Fig. 6.7b, dry portions of channel continue to get occupied. Interestingly, n-

octane seemed to show higher affinity to first occupy channels along injected path before

other channels. In Fig. 6.7c, all the empty portions for the channels along the path of

injection become occupied. In Fig. 6.7d, flow begins to converge to the center of the

channels where there is still a some portion of the channels that are empty begins. In Fig.

6.7e, the final unfilled portion of the nanochannels located at the center of the channel got

filled In Fig. 6.7f, n-octane flow in the channels got stabilized the and the nanofluidic chip

became fully saturated.

From this study, it was clear that there was influence of confinement on the dynamics

of the n-octane flow. This was due to the fluid-wall interaction between the hydrocarbon

and the glass boundary wall. Slip flow was evident as the fluid transitioned through the

channels, especially along the path of the injection channel. This means the velocity along

these portions of the channels seemed to be faster than that relative to the fluid system. As

such produced the resulting flow dynamics observed during this experiment.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.7: Snapshots during visualization of n-octane injection into nanofluidic chip.
(a) Experiment already began, injection of n-octane was from both inlet ports (b) Empty
portions continue to get occupied. Channels along injected path occupied first before cen-
ter channels (c) Injection channels fully occupied (d) n-octane convergence to the center
of the channels where there is still some empty portion of the channels begins (e) Final
portion of the nanochannels that are empty and located at the center of the channel get
filled (f) Channels get fully saturated with n-octane
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6.2.2 Numerical simulation model: n-octane injection into glass nanofluidic chip

The next step of this study was to numerically model the experiment in the previous section

using the LBMD model. This simulation was set-up so as to mimic the actual experiment.

Fig. 6.8 showed the nanogrid model constructed for this simulation. The grid here was

212µm×490µm. Each of the channels had a 5µm channel width. Temperature and Pres-

sure were 298.15K and 1atm respectively. Since this simulation was done in 2D, the

confinement effect was assumed to only be prevalent along the x− y axis, and so slip flow

was modeled as such. A flow regime having a dimensionless force of interaction (Flbmd)d

of 0.0024 was also included to capture the confinement effect. Flow was set in the laminar

regime. Boundary conditions employed for this study involved: A constant inlet velocity

was set at the inlet ports; and a constant pressure condition was set at the exit ports. Refer

to appendix B for details on setting up these boundary conditions. The simulation was

then allowed to run a total of 10,000 steps to achieve equilibrium.

Figure 6.8: Schematic of nanogrid model representing nanofluidic chip
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(a) (b)

(c) (d)

(e) (f)

Figure 6.9: Snapshots of density variations of n-octane in LBMD simulation model after
n number of ∆t time steps where (a) n = 0∆t steps; (b) n = 500∆t steps; (c) T = 800∆t
steps; (d) n = 2000∆t steps; (e) n = 4000∆t steps; (f) n = 5000∆t steps
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Snapshots of the density distribution variation during the course of this simulation can be

seen in Fig. 6.9a - Fig. 6.9f. In Fig. 6.9a, the simulation time step here is at ∆t = 0steps.

The channels are empty. In Fig. 6.9b, ∆t = 500steps. Injection of n-octane from both

inlet ports has already begun. Dry portions of channel continue to get occupied. Inter-

estingly and just like with the experiment done earlier, n-octane seemed to show higher

affinity to first occupy channels along the injected path before other channels. In Fig. 6.9c,

∆t = 800steps. All the empty portions for the channels along the path of injection be-

come occupied. In Fig. 6.9d, ∆t = 2000steps. Flow began to converge to the center of the

channels where there is still a some portion of the channels that are empty begins. In Fig.

6.9e, ∆t = 4000steps. the final unfilled portion of the nanochannels located at the center

of the channel got filled. In Fig. 6.9f, ∆t = 5000steps. n-octane flow in the channels got

stabilized the and the nanofluidic chip became fully saturated. From these results, a good

degree of qualitative agreement seems to be prevalent between the results obtained from

the lab-on-a-chip experiment and the numerical simulation performed using the LBMD

model in this work. More importantly, the incorporation of the particle wall interaction

that properly modeled the slip flow proved significant in determining flow dynamics in

nanopore network distribution. This is evident when the standard LB model as shown in

Fig. 6.10 is compared to the the LBMD model shown in Fig. 6.11. Even when compared

to the experimental results in Fig. 6.12, the LBMD model still provided a better qualitative

match. This helps improve the current understanding as to why permeabilities observed

in very tight formations possessing ultra low permeability are usually underestimated with

the conventional simulation methodology. As slip flow that tends to increase fluid velocity

due to significant fluid-wall interactions that should be accounted for, is usually not. Ul-

timately, the results here showed that the LBMD model had the ability to properly model

the dynamic fluid behavior for both the flow in capillary nanochannels and the n-octane

flow in nanofluidic chip experiment.
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(a) (b) (c)

Figure 6.10: Snapshots of flow dynamics of n-octane flow in standard LB model

(a) (b) (c)

Figure 6.11: Snapshots of flow dynamics of n-octane flow in LBMD simulation model

(a) (b) (c)

Figure 6.12: Snapshots of flow dynamics of n-octane in lab-on-a-chip experiment
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7. CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

In this work, a combined lattice Boltzmann - molecular dynamics method was used to

simulate hydrocarbon flow in nanochannels, analogous to capillaries found in the pore

network of a shale matrix for flow in the region beyond the Navier-Stokes flow regime.

An assessment of its quantitative ability in deducing apparent permeability for such sys-

tems was also done. To achieve this, a representative solid-fluid interaction force was

computed from a molecularly set-up shale-hydrocarbon system, in the form of silica and

n-octane respectively. The dynamics of this molecular interaction was governed by the

12 − 6 Lennard Jones potential and the system dimension replicated one of a 4nm chan-

nel. This interaction force was then coupled into the lattice system simulation set-up and

computations of the desired transport properties were done. In particular, the resultant

effect on the volumetric flux per unit area and the apparent permeability of n-octane in a

nanochannel system were studied.

It was evinced that the capillary wall effects caused a significant increase of the n-

octane flow rate that essentially influenced the deduced permeability. Upon comparison of

this lattice Boltzmann simulation with different established correlations, very good agree-

ment was observed. Prior approaches that had aimed to capture this flow regime by im-

plementing a mixed boundary condition criteria had shown limitations in it’s ability to

efficiently compute beyond a certain Knudsen flow regime of Kn ≈ 0.15. Whereas, the

approach in this study would allow for a more efficient apparent permeability model for-

mulation without Knudsen flow regime limitations. Mainly because unlike the other mixed

boundary condition system, this approach actually takes into account the molecular con-

siderations of the actual system components (silica and n-octane) involved as part of the
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model. It is noteworthy to indicate that a limitation of this present model could be the

quality of the molecular dynamic system set-up. However, this is much better and easier

to deal with during simulation modeling since a lot of experimental data to validate such

molecular systems already exist. In addition, this new approach was also attempted to

replicate a lab-on-a-chip experiment involving the injection of n-octane into a nanoflu-

idic chip, representative of nanoscopic shale media. Good qualitative agreement with the

experiment was achieved when comparisons of the dynamic behavior of the hydrocarbon

as it saturated the nanochannel was compared to the simulation model. This could be

attributed to the model’s ability to efficiently capture the significant effect the fluid-wall

interactions had on flow of the n-octane when percolating through such nanochannel pore

network. Ultimately, this work aimed to serve as a foundation for an alternative approach

to inclusion of different flow phenomena when computing transport properties in pore

scale modeling.

7.2 Recommendations

Future recommendations to the present study could include the following:

- Development of the algorithm using a three-dimensional lattice model. Since this study

assumed homogeneity of the shale rock in the z-direction, a 3D approach would serve bet-

ter in dealing with heterogenous pore structures.

- Application of this pore scale modeling approach to digitized shale rock CT and SEM

imagery.

- Development of more complex molecular dynamic models to accurately simulate multi-

component hydrocarbon mixtures.

- Development of this algorithm to accommodate multi-phase modeling, so that the effects

of the different phases during pore scale modeling can be studied.
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APPENDIX A

ANALYTICAL SOLUTION FOR FLOW IN A CHANNEL SYSTEM

This analytical solution for flow in channel is assumed to be analogous to flow between

parallel plates, as derived from the fundamental Navier-Stokes equation.

From Eq. 2.5, the mass conservation was be obtained as

∇ · ~u =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
(A.1)

For steady state, the fully developed flow equation forms where vy = vz = 0;
∂v

∂y
= 0 and

∂w

∂z
= 0. Hence,

∂u

∂x
= 0 (A.2)

For a two dimensional flow in terms of cartesian coordinates, the Navier-Stokes expression

in Eq. 2.4 can be reduced to

µ
d2u

dy2
=

1

µ

dp

dx
(A.3)

Upon integration,

uy =
1

µ

dp

dx

y2

2
+ A1y + A2 (A.4)

then invoke no slip flow boundary conditions such that u (−H) = 0 and u (−H) = 0.

Recall that H is the fixed distance measured from the nanochannel center line to the inner

boundary wall and y is the distance measured from the center line of the width of the

channel. This yields

A1 = 0 ; A2 = − 1

µ

H2

2

dp

dx
(A.5)
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This gives the expression for the velocity profile as

uy = − 1

µ

H2

2

dp

dx

[
1− y2

H2

]
(A.6)

Now the mean velocity um could be defined as

um =
1

ρA

∫
A

ρudA (A.7)

If L is the plate width perpendicular to flow, um could be represented as

um =
1

Lρ (2H)

∫ L

0

∫ −H
H

ρudydz =
1

H

∫ H

0

dp

dx

[( y
H

)2
− 1

]
dy (A.8)

um = −H
2

3µ

dp

dx
(A.9)

dp

dx
= − 3µ

H2
um (A.10)

Substituting back into Eq. A.6 the dimensionless velocity profile then becomes

u

um
= 1.5

[
1− y2

H2

]
(A.11)
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APPENDIX B

BOUNDARY CONDITION FORMULATION

In this section, two different boundary conditions implemented in this work based on the

work done by Zou and He (1997), were described. They are the constant flux bound-

ary conditions and the constant pressure boundary conditions. Their method aimed at

calculating the remaining unknown distribution functions whilst maintaining equilibrium

condition assumptions that are normal to the boundary. The calculation done here would

highlight a derivation only in the a single direction (North). Final solutions of the other

directions (South,West and East) would only be presented here since they were all derived

in similar manner.

B.1 Von Neumann boundary conditions (Constant flux)

In this case, the flux at the boundaries are constrained. A known velocity vector for the

channel flow having x and y components with respect to the northern direction, could be

specified as uN and vN respectively.

From the macroscopic density formulation in Eq. 2.17

ρN = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 (B.1)

Using Eq. 2.18, the contributions of the x and y velocity components would be considered

as

ρNuN = f1 + f5 + f8 − f3 − f6 − f7 (B.2)

ρNvN = f2 + f5 + f6 − f4 − f7 − f8 (B.3)
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Figure B.1: Distribution functions to be computed (in blue) post streaming at a north-side
boundary

If the equilibrium bounce-back condition normal to the boundary holds, then

f2 − f eq2 = f4 − f eq4 (B.4)

This presents a system of four equations and four unknowns ρN , f4, f7 and f8.

Rearranging Eq. B.1 and Eq. B.3 to obtain

f4 + f7 + f8 = ρN − f0 − f1 − f2 − f3 − f5 − f6 (B.5)

f4 + f7 + f8 = f2 + f5 + f6 − ρNvN (B.6)

Upon equating the right hand sides of Eq. B.5 and Eq. B.6

ρN − f0 − f1 − f2 − f3 − f5 − f6 = f2 + f5 + f6 − ρNvN (B.7)

Then ρN would be obtained as

ρN =
1

(1 + vN)
[f0 + f1 + f3 + 2 (f2 + f5 + f6)] (B.8)
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Then from Eq. B.4, upon rearrangement

f4 − f2 = f eq4 − f
eq
2 (B.9)

Recall that f eq can be calculated from Eq. 2.29. Thus if substituted into Eq. B.9, it

becomes

f eq4 − f
eq
2 =

[
1

9
ρN +

1

3
ρN (−1 · vN) +

1

2
ρ2N −

1

6
ρN
(
u2N + v2N

)]
−[

1

9
ρN +

1

3
ρN (1 · vN) +

1

2
ρ2N −

1

6
ρN
(
u2N + v2N

)]
= −2

3
ρNvN

(B.10)

When Eq. B.10 was substituted back into Eq. B.9, f4 would be obtained as

f4 = f2 −
2

3
ρNvN (B.11)

Next, substitute Eq. B.2 and Eq. B.11 into Eq. B.3

ρNvN = f2 + f5 + f6−
[
f2 −

2

3
ρNvN

]
− f7− [ρNuN − f1 − f5 + f3 + f6 + f7] (B.12)

Then f7 would be obtained as

f7 = f5 +
1

2
(f1 − f3)−

1

6
ρNvN −

1

2
ρNuN (B.13)

Similarly, f8 was solved for by repeating the procedure for f7 however in this case Eq. B.2

was rearranged and used to solve for f7 in Eq. B.3

ρNvN = f2+f5+f6−
[
f2 −

2

3
ρNvN

]
− [−ρNuN + f1 + f5 − f3 − f6 + f8]−f8 (B.14)
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Then f8 was obtained as

f8 = f6 −
1

2
(f1 − f3)−

1

6
ρNvN +

1

2
ρNuN (B.15)

Thus, the unknowns for the northern boundary have now been specified. Similar approach

could be used to obtain the unknown distribution functions in the other directions.

South side velocity boundary condition

ρS =
1

(1− vS)
[f0 + f1 + f3 + 2 (f4 + f7 + f8)] (B.16)

f2 = f4 +
2

3
ρSvS (B.17)

f5 = f7 −
1

2
(f1 − f3) +

1

6
ρSvS +

1

2
ρSuS (B.18)

f6 = f8 +
1

2
(f1 − f3) +

1

6
ρSvS −

1

2
ρSuS (B.19)

West side velocity boundary condition

ρW =
1

(1− uW )
[f0 + f2 + f4 + 2 (f3 + f6 + f7)] (B.20)

f1 = f3 +
2

3
ρWuW (B.21)

f5 = f7 −
1

2
(f2 − f4) +

1

6
ρWuW +

1

2
ρWvW (B.22)

f8 = f6 +
1

2
(f2 − f4) +

1

6
ρWuW −

1

2
ρWvW (B.23)
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East side velocity boundary condition

ρE =
1

(1 + uE)
[f0 + f2 + f4 + 2 (f1 + f5 + f8)] (B.24)

f3 = f1 −
2

3
ρEuE (B.25)

f7 = f5 +
1

2
(f2 − f4)−

1

6
ρEuE −

1

2
ρEvE (B.26)

f6 = f8 −
1

2
(f2 − f4)−

1

6
ρEuE +

1

2
ρEvE (B.27)

B.2 Dirichlet boundary conditions (Constant pressure)

In this case, the pressure at the boundaries are constrained. Its solution is closely related to

that done for the constant velocity boundaries done earlier. A known density as computed

for the northern direction ρN , could be specified. Assuming the tangential velocity com-

ponent to the boundary uN = 0, the normal velocity component vN could be calculated.

Once again, Eq. B.1 through Eq. B.7 would be repeated, only this time in Eq. B.7, vN

would be obtained

vN = −1 +
1

ρN
[f0 + f1 + f3 + 2 ∗ (f2 + f5 + f6)] (B.28)

When Eq. B.28 was substituted back into Eq. B.9, f4 was obtained as

f4 = f2 −
2

3
ρNvN (B.29)

Then with similar procedure as before in the constant velocity scheme, f7 and f8 could be

obtained respectively as

f7 = f5 +
1

2
(f1 − f3)−

1

6
ρNvN (B.30)

f8 = f6 −
1

2
(f1 − f3)−

1

6
ρNvN (B.31)
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Thus, the unknowns for the northern boundary have now been specified. Similar approach

could be used to obtain the unknown distribution functions in the other directions at con-

stant pressure.

South side pressure boundary condition

vS = −1 +
1

ρS
[f0 + f1 + f3 + 2 (f4 + f7 + f8)] (B.32)

f2 = f4 −
2

3
ρSvS (B.33)

f5 = f7 −
1

2
(f1 − f3)−

1

6
ρSvS (B.34)

f6 = f8 +
1

2
(f1 − f3)−

1

6
ρSvS (B.35)

West side pressure boundary condition

vW = −1 +
1

ρW
[f0 + f2 + f4 + 2 (f3 + f6 + f7)] (B.36)

f1 = f3 +
2

3
ρWvW (B.37)

f5 = f7 −
1

2
(f2 − f4) +

1

6
ρWvW (B.38)

f8 = f6 +
1

2
(f2 − f4) +

1

6
ρWvW (B.39)

East side pressure boundary condition

vE = −1 +
1

ρE
[f0 + f2 + f4 + 2 (f1 + f5 + f8)] (B.40)

f3 = f1 −
2

3
ρEvE (B.41)

f7 = f5 +
1

6
(f2 − f4)−

1

6
ρEvE (B.42)

f6 = f8 −
1

6
(f2 − f4)−

1

6
ρEvE (B.43)
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