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ABSTRACT 

Sixty multiparous, late-gestation beef cows (462 kg initial BW) were limit-fed, 

high-concentrate diets. Cows were blocked by BW and individually fed one of four 

treatments (70, 85, 100, and 115% of NRC-predicted maintenance energy) in Calan 

gates for an average of 71 d prior to calving. Diets consisted of 2.00 kg of wheat straw 

(2.5% CP; 79% NDF) and one of four levels of a mixture of corn (45%), distiller’s grain 

(42%) and premix (13%) fed 2.70, 3.41, 4.12, and 5.84 kg/d to correspond with the 70, 

85, 100, and 115% treatments. Digestible energy intake increased linearly (5.92, 6.78, 

7.77 and 8.86 Mcal/d for 70, 85, 100, and 115%; P < 0.01) per design. No effects (P > 

0.05) for diet digestion were observed; DM digestion averaged 62%. Cow retained 

energy during the limit-feeding period (d 0 to 52) increased linearly (P < 0.01) from 

46.6 Mcal for 70% to 50.7, 106.3, and 123.8 Mcal for 85, 100, and 115%. Body weight 

gain increased linearly over the same time period (P < 0.01) from 0.7 kg for 70% to 3.6, 

17.7, and 24.2 kg for 85, 100, and 115%. Calf birth weight increased linearly (P = 0.01) 

from 32.5 kg for 70% to 35.5, 35.2, and 36.8 kg for 85, 100, and 115%. Brix (%) values 

for colostrum at parturition and 24 h post parturition did not differ (P > 0.05). 

Immunoglobulin G levels in calf serum collected at birth, 24 h and 7 d did not differ (P 

> 0.05) and averaged 0, 4,749, and 4,464 mg/dL, respectively. Cow body weights 

remained greater (linear, P < 0.05) in cows fed increasing levels of energy at days 60 

and 90 post parturition; however, treatments no longer differed (P > 0.05) at 120 or 160 

days post parturition or at weaning their calves (d 270). Level of energy intake during 

gestation did not result in significant differences (P > 0.05) in calf weights at 60, 90, 120 
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or 160 days post parturition or at weaning (averaged 206 kg). Cow 30 and 60 d 

conception rates were 82% and 98%, respectively. 
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CHAPTER I 

INTRODUCTION 

Introduction 

Life requires energy, or the capacity to do work. Hall et al. (2009) argue that 

societies, systems and organisms that do not amass energetic profits will cease to persist. 

Even so, determining the best approach to securing surplus energy through the 

multivariate complexities that accompany a large and growing population is difficult. 

Additionally, shrinking profit margins, increased production costs, political incentives 

and social pressures have put a strain on surplus energy acquisition. Though driving 

factors, courses of implementation and even its definition are widely contested, 

increased sustainability via increased efficiency in production has been the ubiquitous 

approach to realizing energetic profits in public and private sectors. 

Complex questions, such as how to acquire surplus energy, require complex 

problem solving approaches, one example is the modern decision support tool. Since 

their extensive application beginning in the early 1970’s, decision support tools, 

characterized by the use of data and models to inform decision makers of effective 

problem solving actions, have dramatically changed the environment in which global 

businesses operate (Eom and Kim, 2006). To better understand that change, Eom et al. 

(2006) surveyed the tools published between 1995 and 2001. Their scholarly search 

delimited to, “decision support systems,” returned more than 1600 published articles, 

from which 271 were selected for further analysis based on their adherence to the 

following criteria: inclusion of descriptions regarding the decision(s) in question, the 
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human-computer interface and support utilized, and the data-dialog-model system. 

Though the selected articles represented decision support tools in phases ranging from 

initial design to a finished and utilized product, the authors cautioned considering the list 

to be all inclusive of decision support tools in existence globally, especially considering 

many remain unpublished. However, trends in decision support tools identified from 

their findings are justifiably representative; The most significant being that the largest 

percentage (41%) of decision support tools they surveyed were utilized to inform 

production and operation management (POM) decisions, ultimately aimed at optimizing 

business production, i.e. achieving the highest productivity considering relevant 

limitations. 

Worrell et al. (2003) reveal application of productivity decisions; they describe 

productivity as the “relationship between the quantity of goods and services produced by 

a business or an economy and the quantity of labor, capital, energy, and other resources 

that are needed to produce those goods and services.” They describe productivity 

advancements as those capable of any one or combination of the following: lowering 

capital and operating costs, increasing yields and reducing energy and resource use. 

However, they indicate that the zenith of production impacts come from the 

implementation of ‘energy-efficient’ technologies because they not only reduce energy 

use but also increase productivity. 

Worrell et al. (2003) examined the connection between energy efficiency and 

productivity in a review of 77 case studies from the U.S. iron and steel industry. In doing 

so, they developed a methodology to assess productivity related outcomes connected to 
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investments in energy saving technologies. Their methodology of analysis included cost 

analysis, productivity impacts and energetic savings potential. Their work reported 

productivity related benefits, i.e. those outside of strictly energy-related benefits, 

resulting from energy efficient technologies into the following five groups: 1) waste 

reduction, 2) emission reduction, 3) reduced maintenance and operating costs, 4) 

increased production and quality of production, and 5) augmented working 

conditions.  In an analysis of the potential impacts of energy saving technologies in the 

U.S. iron and steel industry, those that included calculation of productivity related 

benefits showed twice the energy saving potential compared to those that did not include 

productivity benefits, resulting in a difference close to 170 petajoules in annual energy 

savings across the industry. 

Eom and others (2006) shed light on the number of firms seeking to understand 

how to improve their productivity with the use of decision support tools and Worrell et 

al. (2003) defend increasing energy efficiency as the preeminent answer with the greatest 

number of benefits. Surplus energy acquisition, via increased production efficiency is 

worthy of substantial and global consideration and application across various industries, 

and the outcomes of which will undoubtedly affirm its utility. For example, the total 

global energy required to generate one unit of GDP decreased by 1.3 percent per year 

between 1990 and 2011. A portion of this decrease can be ascribed to energy efficiency 

programs across multiple sectors (Enerdata, 2013). In another example, U.S. agrarian 

outputs, including crops and livestock have increased, on average, 1.49 percent each 

year between 1948 and 2011. However, use of production inputs including land, labor, 
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and fertilizer have increased by only 0.07 percent each year during that same time period 

(Wang et al., 2015), suggesting evidence of energy management in the agriculture 

sector. 

The beef industry’s energetic contributions to society 

By converting human inedible energy, i.e. forage and bi/co-products from other 

industries, to a human-edible protein with a greater biological value (Oltjen and Beckett, 

1996), beef production has an intrinsic capacity to realize an energetic profit, or the 

ability to make ‘more from less,’ at the societal level. This is significant because the 

estimated contribution of animal-sourced foods comprises 16% of the calories and 36% 

of the protein consumed by humans across the globe (Delgado et al., 1998). Global per 

capita supply of beef is 9.41 kg/yr which equates to 40 Kcal/d, while the United States’ 

is 37 kg/yr and 102 Kcal/d (FAOSTAT, 2016). To think about this, if the global per 

capita beef supply of 9.41 kg/yr is multiplied by the 2016 global population of 7.4 billion 

humans (Population Reference Bureau, 2016) we get an estimated 69 billion kg of beef 

produced per year. De Vries and De Boer, (2010) determined in a life-cycle assessment 

of non-organic beef production in the UK that it takes 27,800 MJ/kg of energy to 

produce 1 kg of beef. Multiplying the annual 69 billion kg of beef by their estimate of 

27,800 MJ/kg, yields 1.9 quadrillion MJ/yr as the total energy used for global beef 

production. A two-percent reduction of this total, which is on par with the reduction of 

the energy used by the U.S.’s beef value chain between 2005 and 2011 (Cattlemen’s 

Beef Board and National Cattlemen’s Beef Association, 2014) would equate to 38 
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trillion MJ/yr in energetic savings. Global beef production represents a large-scale 

energy saving potential, justifying inquiry into this space. 

In addition to contributing to human caloric needs with a highly-palatable and 

nutrient-dense food, the beef industry also provides by-products (secondary products 

made during the manufacturing of another product) that may be used in a different 

industry, such as: leather and other textiles, organic fertilizer, industrial oils, soaps, 

additives in cosmetic products etc.  In addition to by-product production, the beef 

industry is capable of utilizing by-products from other industries such as distiller’s 

grains from the ethanol industry. In different operations around the world beef animals 

are kept for their fringe benefits such as vegetation management and as a relatively 

liquid asset which can be utilized to improve financial stability (Siegmund-Schultze et 

al., 2007) especially for smallholder farmers. 

Though uniquely positioned to benefit all three components of sustainable 

production, i.e. the environment, economy and society, if not appropriately managed 

these benefits of beef production may be squandered and/or reversed. Examples of 

potentially unfavorable impacts of the beef industry include: making inefficient use of 

human-edible foods, overgrazing arable/non-arable land to the point of permanent 

degradation and increasing on-farm capital risk. Additionally, adverse effects of an 

intensified focus on increasing efficiency of production are discussed by Rauw et al. 

(1998). Citing instances in broiler, pig and dairy production, they suggest that 

intensifying genetic selection for increased productivity in the livestock sector has the 

potential to disturb what Siegel (1995) refers to as the animal’s “homeostatic balance,” 
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which could potentially lead to, “increased susceptibility to disease, impaired 

reproduction or inefficient metabolism, and thus impaired animal welfare” (Rauw, 

1998). For example, due to commercial turkey breeder’s focus on growth rates 

(McCartney et al., 1968) the average live weights of turkeys in the U.S. increased by 4 

kg between 1960 and 1995 (Rauw, 1998). Today, breeding of U.S. turkeys is 100% 

accomplished by artificial insemination performed by humans because natural mating is 

too difficult for the birds that have continuously been selected for superior growth. 

Intensified focus on growth of commercial turkeys have rendered the birds incapable of 

persisting without continued human intervention, a fact not well received in mainstream 

media (Butler, 2014). 

The U.S. turkey example illuminates a few caveats to genetic selection for 

increased productivity 1) that increased focus on production outcomes may come at a 

cost to other biological functions, 2) that the production traits selected for may alter the 

necessary support for a resource-limited environment in which those production traits 

are realized 3) there may be social ramifications related to production decisions. As 

such, Rauw et al. (1998) caution that economic wins in production traits should not 

come at a cost of biological successes. They also suggest solutions such as selecting for 

more than just production traits. In practice, this looks like selection for temperament. 

They also suggest efforts towards better understanding of the “underlying physiological 

processes,” that genetic selections impact.   
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Significance of energy exchanges in the beef industry 

Cow-calf production systems ideally produce a healthy and productive weaned 

calf at the rate of one calf per cow per year. Feed costs, a significant source of energy 

input in beef production, represent the largest variable cost in cow-calf production 

systems (Miller et al., 2001) and nutrition is the biggest driver of successful reproduction 

(Roche, 2006). U.S. cow-calf production systems are typically extensive, and are based 

on grazing/forage (Pelletier et al., 2010). These systems depend on forage growth and 

availability to provide the caloric supply necessary to maintain cows and to support the 

growth and health of the calves born to and raised by them. Consequently, 

uncontrollable/unpredictable reductions in forage availability, for instance, due to 

drought, which vary in severity across regions and time (Panu and Sharma, 2002), may 

unfavorably impact beef production by reducing the energy available for meeting animal 

requirements. 

Severe drought across the southern plains of the U.S. starting in 2011, compelled 

producers to sell more of their feeder cattle at lighter weights than traditionally 

practiced. This spike in the supply of light-weight feeder cattle, especially in the 2012 

and 2013 markets, reduced prices paid to producers for these feeders (USDA, 2012). 

This same drought was a contributing factor to a decrease in cow herd numbers across 

the Great Plains by 11-14% in 2012 (Paterson, 2014) which lead to a 60 year low for the 

U.S. cattle inventory (Schnepf, 2012) as grazing systems, at the time, could no longer 

meet the energetic requirements of the existing herd. A non-exhaustive list of other 

factors that contributed to the volatility of the beef market in the early 2010’s included: a 
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previous drought in the Southeast of the U.S. (NASA, 2007), increasing prices for real 

estate across the country (USDA, National Agriculture Statistics Services, 2015) which 

increased production costs, decreases in the number of cow/calf operations, cattle 

feeders and beef packers in the U.S. (Kester, 2003), changes in the international export 

of U.S. beef as a result of the 2003 Bovine Spongiform Encephalopathy event (Miller, 

2012), increased production from international competitors (Miller, 2012). 

The response of beef production to the 2011 drought and overall industry 

climate, exemplifies the industry’s, at least short-term, inability to endure or maintain 

supply with changes in grazing forage availability which illuminates inherent risk to the 

industry. 

Inability to maintain production burdens the economic health of the industry, and 

contributes to global price volatility (Subervie, 2008). Changes in an agricultural 

commodity’s supply and subsequent impacts of this change on the price and aggregate 

demand of that product are often first demonstrated at the household, then country, and 

then global level (Collier, 2002). Expectedly, households were presented with record 

high prices for beef during 2012 following the aforementioned multifactorial shrinkage 

of the U.S. beef herd (Schnepf, 2012) which, due to the elastic nature of beef demand, 

reduced demand for the product (Schroeder et al., 2000). When beef prices exceed 

consumer’s willingness to pay threshold, consumers may be impelled to purchase other 

proteins such as pork or poultry instead (Marsh, 2013). Further, a reduction in beef’s 

share of the animal protein market would represent a missed profit opportunity 
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associated with the growing global middle class’ propensity to increase its protein 

consumption (Hansen and Gale, 2014). 

Using less production inputs, or energy, is something producers are generally 

motivated to work towards. Also, the aforementioned Great Plains drought and its 

immediate market effects, in combination with the implications of permanent loss in 

forage availability following prolonged periods of disturbance, intensified the pursuit of 

non-forage dependent cattle feeding strategies. Alternative approaches to managing 

energy supply and producing beef, which can withstand and/or which introduce reduced 

input use, merit investigation. One such approach involves limit-feeding high-

concentrate diets to cows in confinement for part or all of their production cycle. 

Researchers supposed that this feeding approach could mitigate risk associated with 

unreliable forage availability, reduce capitalization requirements, and incentivize heard 

expansion for producers (Trubenbach, 2014). Based on those merits, they investigated 

limit-feeding in confinement’s effect on nutrient utilization and maintenance energy 

requirements in mid-gestation cows (Trubenbach, 2014). They found that increasing 

energy density while simultaneously decreasing total intake decreased energy lost from 

the cow as heat. The limit feeding studies by Trubenbach (2014) and Boardman (2015) 

were investigated using mature cows in their second-trimester of gestation, given the 

significant differences between the gestational trimesters of a beef cow, especially in 

terms of energy allocation, each stage warrants independent research.  However, their 

work suggests that with the right management practices in place, limited forage use 
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could represent a win for the “energy balance sheet” of beef production rather than a 

symbol of impending loss in production. 

Energetic profit provided to society by the beef industry is highly dependent on 

the cattle feeding strategy and ensuing efficiency of feed conversion (Oltjen & Beckett, 

1996). A complete life cycle assessment of the beef industry between 2005 and 2011 

determined that nearly 80 percent of the industry’s energy use was in the form of animal 

feed (NCBA, 2014). Increasing the efficiency of the beef industry through carefully and 

intentionally managed feeding methodologies is both feasible and worthy of study 

(Bradford, 1999). Ultimately though, optimizing beef production’s energetic profits 

requires measuring the circumambient inputs and outputs at all levels of the production 

cycle. 

Currently the NRC (2000) uses Garrett and Lofgreen’s (1968) net energy system 

to delineate energy values in beef cattle. A NE analysis initiates with quantifying the 

energetic inputs, which in the case of a beef animal are the feedstuffs the animal 

consumes. Gross energy (GE) describes the energy of an organic substance released as 

heat in response to combustion (complete oxidation). It does not appropriately quantify 

the energetic value of a feedstuff in terms of energy available to the animal because it 

does not account for the energetic losses that accompany nutrient digestion and 

metabolism in living organisms. Digestible energy (DE) accounts for intake energy 

losses associated with fecal energy. Additional whole-system energetic losses as animals 

utilize nutrients, including urinary energy and gaseous energy losses are subtracted from 

DE and what is left is the metabolizable energy (ME) available to the animal. Energy 
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metabolized by an animal results in either heat energy (HE) released (i.e. lost) from the 

animal or retained energy (RE), such that ME = RE + HE. Energy from ME not lost to 

HE, referred to as retained energy is utilized by the animal differently depending 

multiple biological variables (e.g. breed, sex, stress) and the animal’s production status 

(e.g. lactation, pregnant; NRC, 2000). 

Maintenance energy requirements represent the total amount of energy used for 

basal metabolism that is lost as heat when the animal is fasting, referred to as fasting 

heat production (FHP), plus the heat of activity and additional energy lost when the 

animal consumes a level of feed sufficient to maintain body energy content referred to as 

heat increment. As an equation, metabolizable energy for maintenance (MEm) = FHP + 

heat associated with voluntary activity (HjE) + the heat increment of feeding (HiE); 

(McBride and Kelly, 1990). An animal’s FHP is a measure of that animal’s basal 

metabolism. Basal metabolism is the energy required to sustain life processes such as 

vital cellular activity, and the circulation of blood and oxygen. 

Contributions to energy expenditure in beef cattle 

Energy expenditure necessary to maintain a beef animal is significant. Of the 

entire beef production cycle, 60-70% of total energy expended is used for maintenance 

functions (Ferrell, 1988). Accordingly, input energy provided for maintenance, in the 

form of feed, represents a major cost of production. Maintenance energy requirements 

must be met before nutrients may be utilized for deposition of gain, gain that leads to 

beef products and, ultimately, profit. In addition to scientific intrigue, this large 

economic element makes explaining and potentially reducing the energy expenditure 
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associated with maintenance, a topic of interest for many of the beef industry’s 

stakeholders. As in the iron, steel and other industries described earlier, decision support 

tools and other endeavors that inform the most efficient way(s) for the beef industry to 

realize energetic profits, that go beyond the overhead-like costs of a beef animal’s 

maintenance energy requirements is essential. Therefore, an understanding of 

contributors to the maintenance energy requirements of beef is key and the thus the 

following potential contributors will be discussed: body composition and the mass and 

metabolic activity of highly metabolic organs with particular focus on the liver. 

It would be a reasonable presumption to attribute variations in maintenance 

energy expenditure to variations in an animal’s body composition. However, research 

has demonstrated that the cause and effect links may not be so straight forward. Ferrell 

et al., (1986) fed lambs to realize different live weight gains. Fasting heat production 

was determined and lambs were subsequently harvested. Lamb organ weights and body 

composition (fat to lean ratio) at slaughter were recorded. Lambs fed to gain more live 

BW had correspondingly greater empty BW and chemical tissue components (water, fat, 

protein and ash) but the lambs on the lower gain treatment had a greater protein to fat 

ratio. Fasting heat production levels differed among animals with similar live weight 

gain and empty body chemical composition. Lambs that had significantly different gains 

and composition of gain did not have differences in NEm requirements.  This result 

would not be expected if FHP expenditure were a function of body composition. 

Vermorel et al. (1976) observed no difference in energy expenditure between double-

muscled and normal muscled Charolais bulls. These findings support the conclusions 



13 

that noted changes in FHP, or NEm, are not due to differences in chemical body 

composition nor composition of weight gain. 

In the discussion of potential influences to variations in whole-animal energy 

expenditures, there is noteworthy data pointing to visceral organ energy expenditure 

(Ferrell, 1988). The liver is a highly metabolic organ and therefore highly active in 

energy exchange in an animal. Energy use by the liver has been estimated by Johnson et 

al. (1990) to account for 45-50% of whole-animal heat energy. Biochemical processes of 

the liver are influenced by diet composition and intake level, age, endocrine status, and 

physiological state (McBride and Kelly, 1990). Therefore, a look into these factors and 

their interactions is an important lens from which to view the energetic expenditures of 

the liver and its contributions to whole-animal energy expenditure. 

Cañas et al. (1982) investigated the effect of physiological status changes on 

energy expenditure changes in rats, primarily focusing on why maintenance energy 

requirements tend to escalate during gestation and lactation. They considered two 

possibilities for this occurrence:  First, that increases in the metabolic rates of tissues 

during gestation and lactation are due to altered nutrient intake and hormone levels 

(associated with pregnancy); and second, that increases in the proportional weights of 

highly metabolic organs cause increases in whole body energy expenditure per unit of 

body weight. Metabolic activity of an organ is referred to as the product of an organ’s 

size and the metabolic activity per unit of tissue of that organ (Burrin et al., 1990), such 

that increases in total energy expenditure may result from increases in organ size, 

increases in metabolic activity per unit, or both. 
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To address the effects of gestation and lactation on the metabolic activities of 

tissues, rats were split into four different treatment groups with ten rats in each: virgin, 

pregnant, early lactation and late lactation. All rats were fed ad libitum. Pregnant rats 

were 19 d pregnant when harvested. Early lactation rats were harvested on d 3 of 

lactation and the late group on d 19 of lactation. At harvesting, liver, heart and digestive 

tracts were removed and weighed and then the metabolic activities of these organs were 

measured from samples. When compared to non-pregnant and non-lactating rats, 

oxidation of glucose, palmitate and pyruvate by the liver, heart and intestines were 1.5 

times greater for gestating rats and 3 times greater for lactating rats indicating that 

elevated maintenance energy requirements during gestation and lactation might be 

attributed, in some degree, to an increase in energy use per unit of organ mass. 

There was some evidence that thyroxine, a thyroid produced hormone known to 

be involved in the regulation of metabolism (Danforth and Burger, 1984), may have 

initiated the increases in oxidation. Other studies have supported the notion of increased 

levels of thyroxine during gestation and lactation. For example, thyroxine levels of 

lactating cows (Anderson and Bauman, 1968) were four times higher than those of 

heifers. Sibai and Frangieh (1995) found elevated levels of total thyroxine 

concentrations and thyroxine stimulating hormone in serum from pregnant humans, but 

suggest that levels of free thyroxine during pregnancy is controversial. In more recent 

findings, Araujo et al. (2010)concur that thyroid hormones impact the oxygen 

consumption of different organs and tissues and that these may result in changes in 

animal’s metabolic rates. 
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In the portion of the study investigating impacts of intake level on relative 

masses of the liver, heart and intestines, forty lactating and nonlactating rats were fed at 

varying intake levels for one week. After the rats in each group were harvested, all 

gastrointestinal tracts, livers and hearts were removed and weighed. Lactating rats 

consuming twice the amount of feed consumed by non-lactating rats had heavier livers, 

hearts and intestine. It’s important to note that, due to their highly metabolic nature, 

these organs require more energy expenditure when compared to other essential organs 

(Huntington, 1990) and when their masses increase so does their energy expenditure. In 

summary, Cañas et al. (1982), suggest that increases in the metabolic rates and weights 

(as impacted by increased intake) of highly metabolic organs, observed in gestating and 

lactating rats contribute to an explanation of the increased maintenance energy 

requirements associated with these rats when compared to open and non-lactating rats. 

However, Burrin et al. (1988) determined that whole-animal energy expenditure of 

fasted rats was not a result of a reduced ME use per unit of liver tissue, but rather a result 

of a reduction in total liver mass. As such, the impacts of liver size on whole-animal 

energy expenditure will be discussed further. 

Johnson et al. (1990) conducted four sheep studies, two steer studies and a 

Holstein cow study. Animals in each study were fed at different ME intake levels, each 

of which remained constant for at least twenty-one days prior to slaughtering of the 

animals. Following treatment and slaughter, relationships among visceral organ growth 

and diets were examined. In order to compare organ weights across studies, the weights 

were expressed as their ratio to empty body weight (kg) raised to the three-quarter power 
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i.e., liver weight per unit of metabolic BW. The livers of growing steers and sheep fed at

their NRC predicted maintenance levels weighed 40 and 30 g/kg MBW, respectively. 

Comparatively, similar animals that had been fed above their maintenance requirements, 

had livers that weighed 60 and 50 g/MBW when slaughtered. With the use of similar 

techniques and data expression, the liver mass per MBW of lactating cows fed above 

their maintenance energy requirements was 2-fold greater than those fed at maintenance. 

In the same study by Johnson et al. (1990), organ weight alterations per unit of 

diet alteration were similar across sheep, steer, and lactating cow studies. Liver weights 

increased, on average, 29 g per dietary ME increase of 0.24 Mcal. When diet 

compositions alone were changed, in other words metabolizable intake was held 

constant but the source of it was changed, the results did not differ. Animals fed at a 

higher plane of nutrition, regardless of source exhibited larger liver weights. They 

concluded that liver mass increases about 15 g per kg MBW for each 1 × maintenance 

increase in ME intake. They characterized such changes in metabolizable energy intake 

as an explanation for changes in mass, and resulting changes in energy consumption of 

the liver. 

 Smith and Baldwin (1974) investigated the effects of dairy cattle breed, 

pregnancy and lactation status on the weight of cow organs and tissues. Holstein (25 

head, 15 lactating and 10 nonlactating) and Jersey (23 head, 7 lactating, 9 non-pregnant 

and nonlactating and 7 pregnant nonlactating) cows were incorporated into the study. As 

no differences were found due to pregnancy status in nonlactating cows, data from these 

animals was combined. Whole body weights of animals involved in the study varied but 
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absolute liver weights were greater in lactating cows than non-lactating cows of both 

breeds. Specifically, the liver of non-lactating cows was 1.30% of total body weight, 

whereas, in lactating cows the liver was estimated to account for 1.65% of total body 

weight. The demand for metabolic products are elevated in order to support lactation, 

and it is possible that this requires the highly metabolic liver to engorge. 

In their study, (Reynolds et al., 2004) explained the liver needs to increase in 

capacity to meet lactation demands. They further investigated to conclude whether this 

increase in capacity is just a function of lactation, for example alterations of different 

hormone levels, or more specifically the changes in dry matter intake (DMI) associated 

with lactating animals. The control ration, given to all cows, was designed to meet ME 

and CP requirements of the cows. Non-control treatments included: no supplement, a 

protein supplement, or a barley meal supplement. Cows were individually fed using 

Calan-Broadbent electronic gates. Cows were scheduled to be harvested at different 

times ranging from twenty-one to seven days before their expected calving date and ten 

and twenty days after calving. 

Cows harvested twenty-one days after calving had larger livers than cows harvest 

ten days after calving. As in other studies (Smith and Baldwin, 1974, Johnson et al., 

1990, McLeod and Baldwin, 2000) changes in liver mass were dictated by changes in 

DMI. In this study, mass changes were not evident until twenty-one days postpartum, the 

same time at which intake of dry matter increased. Neither protein nor energy 

supplementation appeared to significantly affect visceral organ mass. Dry matter intake 

affected relative mass of the liver, not just the function of lactation. In conclusion, the 



18 

increase in the capacity of the liver during lactation is a result in the increase of DM 

intake associated with lactation. 

Ferrell (1988) explored the impact of changing liver mass on changes in lactating 

cow’s FHP, suggesting a strong relationship between differences in liver weights and 

changes in daily heat production. This relationship indicates that liver mass changes may 

explain variations in total animal energy expenditures. The liver’s contribution to total 

heat production in lactating cows was not reported. However, data reported for percent 

of total heat production for non-lactating cows was based on previous studies (Brody 

1945, Bard 1961) and was reported as 22.5% of total heat production. They credited 

liver growth in lactating cows as a factor involved in increasing the maintenance 

requirements of these cows. Again, this growth in liver mass during lactation was 

attributed to changes in the level of DMI observed during lactation. The estimated effect 

of liver mass change on maintenance requirements was made assuming energy 

expenditures per kilogram of liver tissue were the same for both non-lactating and 

lactating cows. 

Energy requirements are increased during lactation and gestation. This is 

significantly a result of the increase in total mass of the liver. Increases in liver mass in 

turn increase total energy use of the already highly metabolic organ.   

Changing energy expenditure in beef cattle: increasing efficiency 

Cows reliant on available pasture commonly gain and lose weight depending on 

forage quality and availability (Swingle et al., 1979; NRC 2000). To offset these 

fluctuations, cow-calf producers often provide additional supplementation when forage 
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availability/quality is insufficient. Otherwise, cows unable to maintain adequate weight 

during calving, lactation, and rebreeding could be reproductively compromised (Selk et 

al., 1988; Hough et al., 1990; Freetly et al., 2000) and growth rates of calves born to 

these cows may be stunted (Corah et al., 1975). However, strategically designing periods 

of limit-feeding and re-alimentation during the cow’s production cycle has demonstrated 

energetic advantages (Freetly and Nienaber, 1998, Freetly et al., 2008, Trubenbach, 

2014) in mature cows. These advantages are primarily observed as a reduced energetic 

loss to heat production during digestion and metabolism (Freetly and Nienaber, 1998; 

Trubenbach, 2014) in energy restricted cows. 

In a study on growing heifers fed isonitrogenous, pelleted, diets of either 75% 

concentrate or 75% alfalfa, heifers fed the greater proportion of concentrate produced 

less heat, methane and retained more body tissue (Reynolds et al., 1991). The portal-

drained viscera (PDV) of the heifers fed 75% alfalfa tended to require greater blood 

flow, which was ascribed to greater O2 consumption of those heifer’s PDV. To keep the 

treatments at equal ME intake, heifers fed the 75% alfalfa diets consumed more DM than 

heifers fed the 75% concentrate diet which was reported to have induced the differences 

in PDV activity, heat production, and utilization of ME for tissue retention between the 

alfalfa fed and concentrate fed heifers. However, due to confounding effects, sussing out 

whether these results were due to the differences in the energy density or DMI across 

treatments is nearly impossible. In summary, feeding energetically dense, high-

concentrate diets facilitates reduced DMI, improved efficiency of energy utilization and 

reduces maintenance energy requirements. 



20 

In addition to inaugurating energetic savings at the individual cow and whole 

system levels, limit-feeding, high-concentrate diets to cows in confinement for a portion 

of their production cycle may be an economically and logistically attractive option. 

Baber et al. (2016) fed 3 treatment rations for 112 d: a TMR, TMR with the hay and 

concentrate portions fed 12 h apart, and an ad libitum Bermuda grass hay to mid- to late-

gestation beef cows. The TMR and the separated TMR were limit fed at 80% of the 

cow’s NRC-predicted requirements for maintenance. There were no differences in final 

cow BW or BCS; however, the cows on the limit-fed rations retained more energy than 

the cows fed ad libitum hay. She concluded that limit-fed, high-concentrate rations can 

be parsed into hay and concentrate portions fed separately, without compromising cow 

performance. This feeding strategy alleviates energetic and monetary costs associated 

with mixing a TMR as well as concerns of over-mixing which may be problematic if 

particle sizes become too small and hinders rumen function (Allen, 1997). If producers 

were equipped with alternative feeding strategies, they may be able to preserve total cow 

numbers during times of drought or other arduous circumstances. Additionally, and 

perhaps of greater importance than maintaining total cow numbers, is maintaining the 

U.S. beef supply by optimizing the productivity of those cows and their annual calf-crop. 

Energy exchange from dam to calf 

After 5-6 days of mitotic cellular division, which is initiated by fertilization of a 

cow’s oocyte, the bovine embryo travels from the oviduct to the uterus. Maternal 

recognition of the pregnancy occurs between 15 and 17 days after fertilization, followed 

by placental attachment to the uterus that occurs between 18 and 22 days post 
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fertilization. The placenta and uterus attach at isolated locations referred to as caruncles. 

As the metabolic demands of the bovine conceptus increase throughout its 

approximately 283 day gestation, the vasculature of the caruncles continues to develop. 

Adequate growth and development of the utero-placental connection is extremely 

important to the viability and productivity of the bovine fetus, as it is the organ through 

which respiratory gases, nutrients and wastes are exchanged between dam and conceptus 

(Reynolds & Redmer, 1995). Most of the growth of the placental interface occurs during 

the first half of gestation, whereas 75% of calf growth occurs during the third trimester; 

however, if placental transport capacity (i.e. blood flow) does not keep pace with the 

fetus, fetal growth will be compromised (Reynolds and Redmer, 1995). 

Fetal growth is influenced by genetics yet limited by the uterine environment, 

specifically the nutrient and oxygen flow from dam to fetus. Fetal programming 

describes the process whereby a “stimulus or insult during a critical period of 

development [in utero] has lasting or lifelong effects,”(Godfrey and Barker, 2000). 

Maternal nutrition has been shown to have long-term effects on human and animal 

offspring (Bellows and Short, 1978; Barker et al., 1993; Godfrey et al., 1996; Freetly et 

al., 2000; Whorwood et al., 2001); however, mechanisms by which nutrient prompted 

changes in fetal programming, resulting in observed post-natal impacts, are not fully 

elucidated. 

One well-understood process with lasting impacts on calf health is 

colostrogenesis, or the process by which immunoglobulins are transported from the 

dam’s blood to specified IgG receptors in her mammary glands, which begins several 
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weeks before parturition (Weaver et al., 2000). This biological occurrence may help to 

explain the increased protein requirements which characterize the final two months of a 

cow’s pregnancy (Quigley and Drewry, 1998); Up to 500g of IgG are transported via 

selective transfer from maternal circulation to the mammary system during each week of 

colostrogenesis (Barrington et al., 2001), such that the colostrum has a five-fold greater 

concentration of  IgG  compared to the dam’s serum IgG levels. As a frame of reference, 

maximum fetal growth, which occurs on d 230 of gestation (Eley et al., 1978; Prior and 

Laster, 1979) was reported by Eley et al. (1978) as 220 g/d and as 352 g/d by Prior and 

Laster (1979). 

In addition to IgG proteins, colostrum is densely packed with essential 

macromolecules including fats, proteins, carbohydrates, growth factors, hormones, 

minerals, vitamins and other immunoglobulins. Protease inhibitors in colostrum reduce 

protein degradation (Pácha, 2000) so that proteins, such as IgG, can be absorbed intact 

from the dam by the calf. 

The presence of multiple placental barrier layers inhibits placental transfer of 

maternal antibodies between cow and calf (Chucri et al., 2010), rendering the immune 

system of the newborn partially inactive. As such, the calf relies on a period of passive 

immunity acquired via immunoglobulin transfer from colostrum its dam’s immune 

system post-parturition. Successful colostrogenesis is the critical first-step for the 

passive immune transfer from dam to calf and ultimately the survivability of the young 

ruminant (Barrington et al., 2001). The second imperative step is accomplished by the 

calves’ ingestion of colostral macromolecules which may penetrate the calf’s intestinal 
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epithelium for approximately 24 h postpartum, with optimal transfer occurring in the 

first 4 h. Following ingestion, macromolecules including IgG enter the calf’s circulatory 

system via the thoracic duct. 

To provide efficient absorption and utilization of colostral macromolecules, it is 

suggested that the calf ingest at least 100 g of colostral IgG within the first 4 hours of 

life (Barrington et al., 2001). This time period is characterized by the animal’s use of an 

esophageal groove, which allows ingested colostrum and milk to bypass the rumen and 

associated fermentation, permitting absorption of intact macromolecules later in the 

calf’s gastrointestinal tract. Absorption of colostral macromolecules is facilitated by 

specific receptor-mediated and nonspecific transcytosis in the calf’s intestinal epithelium 

(Pácha, 2000). 

Failure of absorption and thus immune transfer can result in substantial losses in 

calf health, productivity and potentially life especially during the first 21 d of the calf’s 

life (Wells et al., 1996). According to Weaver (2000), if passive immune transfer has 

been successful, peak serum IgG level occur 32 hours post-birth. Failed passive immune 

transfer was defined as calf serum IgG concentrations, measured between 24 and 48 

hours of age, less than 10mg/mL (Weaver et al., 2000) and as total protein levels below 

5.2 g/dL (Naylor and Kronfeld, 1977). 

Hitherto, efforts to measure, and the resulting ability to manage, colostrum IgG 

levels have not been widespread in the beef industry, likely because calves are born in 

pastures with little if any human contact during their first few days of life. That said, 

colostrum IgG measurement techniques are increasing in on-farm ease and accuracy. 
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Radial immunodiffusion assay laboratory assessment is referred to as the gold standard 

approach for measuring IgG concentration in bovine colostrum (Bielmann et al., 2010). 

However, this approach requires equipment and expertise often unavailable on-farm. As 

an alternative, estimating the colostrum IgG content by measuring the Brix percent of 

colostrum is an accepted approach during which the Brix percent of a liquid such as 

colostrum is measured utilizing a digital or optical refractometer. The refractometer 

works by passing light through a liquid and measuring the bend to that light created by 

the contents of the liquid. The amount of light bent by a colostrum sample, given in 

numbers on a Brix scale by a refractometer, have been shown to be highly correlated 

with the level of antibodies in the sample (Deelen et al., 2014). 

Beilmann and associates (2010) compared the use of digital and optical 

refractometers against radial immunodiffusion (RID) assays to estimate colostrum IgG 

levels in frozen and fresh samples via 288 colostrum samples collected from 3 different 

dairies. They measured each colostrum sample four times and determined correlations 

between the different measurement techniques using correlation plots. No differences 

between fresh and frozen measurements using digital and optical refractometers were 

observed. 

A correlation of 0.73 (n=273) was observed between the RID and digital 

refractometer. A similar correlation of 0.71 (n=272) was noted between the RID and 

optical refractometer. When comparing samples read by the optical and digital 

refractometers, their correlations to the RID method appeared to be impacted by cow 

age. Samples from first calf heifers had the highest correlations between instruments 
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ranging from 0.77 and 0.83 (P < 0.001; n=272) followed by correlations between 

samples from cows in their third lactation or greater which ranged from 0.71 and 0.73. 

Colostrometers may also be used to estimate IgG concentration in colostrum 

and/or milk. Colostrometers measure the specific gravity of the sample which Fleenor 

and Stott (1980) reported as being highly correlated (r = .699) with the globulin content. 

However, unlike with digital and optical refractometers, the temperature of the sample 

will affect its readability. Use of a colostrometer also requires a full cup of sample 

whereas use of a refractometer may only require 1 mL of sample. Additionally, fat 

and/or non-IgG proteins present in the sample may impact the specific gravity reading 

made by the colostrometer. The colostrometer and the refractometer alike may be useful, 

on-farm tools for beef producers interested in managing or investigating passive immune 

transfer between dams and calves on their operation. 

Overall summary 

For the beef industry to deliver an energetic profit to society, it is imperative, 

from a productivity standpoint, that nutrient or feed delivery during the beef cow’s third 

trimester not hinder the ability of the dam to wean a competitively marketable calf each 

year. The third trimester is marked by significant increases in energy requirements for 

maintenance including metabolic output from the heart and liver (Freetly, 2008), growth 

of the fetus and gravid uterus (Moe and Tyrrell, 1972; Quigley and Drewry, 1998), a 

rapid increase in maternal heat production and an overall decrease in the use of ME for 

body tissue retention (Freetly et al., 2008). However, limit-feeding high-concentrate 

diets to beef cows in confinement during this production phase may be an energetically 
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efficient option for the cow-calf sector. Exploration of this topic could yield data 

necessary to source energetic profits from the beef industry that support both producer’s 

returns and consumer’s dietary needs. 
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CHAPTER II 

EFFECT OF DIETARY ENERGY INTAKE ON NUTRIENT UTILIZATION, 

PERFORMANCE, AND MAINTENANCE REQUIREMENTS IN LATE GESTATION 

COWS AND THEIR CALVES 

Synopsis 

Sustainability of the U.S. cow-calf sector is vulnerable to drought and elevated 

land prices. Limit-feeding high-concentrate diets to cows in confinement may mitigate 

risk associated with unreliable forage availability and reduce capitalization requirements 

while increasing efficiency of nutrient utilization. Limit feeding was investigated using 

60 multiparous, late-gestation beef cows (462 kg initial BW). Cows were blocked by 

BW and individually fed one of four treatments (70, 85, 100, and 115% of NRC-

predicted maintenance energy) in Calan gates for an average of 71 d prior to calving. 

Diets consisted of 2.00 kg of wheat straw (2.5% CP; 79% NDF) and one of four levels of 

a mixture of corn (45%), distiller’s grain (42%) and premix (13%) fed at 2.70, 3.41, 

4.12, and 5.84 kg/d to correspond with the 70, 85, 100, and 115% treatments. Following 

calving, pairs were managed as a group on pasture. Digestion was determined using 

ADIA as an internal marker. Cows were weighed on days 0, 22, 52, at parturition, at 60, 

90, 120 and 160 days post parturition, and at weaning (d 270). Cow body energy was 

estimated on days 0 and 52 using back fat values measured between the 12th and 13th rib 

via ultrasonography. Digestible energy intake increased linearly (5.92, 6.78, 7.77 and 

8.86 Mcal/d for 70, 85, 100, and 115%; P < 0.01) per design; ME intake responded 

similarly (4.85, 5.56, 6.37 and 7.26 Mcal/d). No effects (P > 0.05) on DM, OM, or GE 
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digestion were observed; ADF digestion tended to decrease linearly (P = 0.07), DM 

digestion averaged 62%. Cow retained energy during the limit-feeding period (d 0 to 52) 

increased linearly (P < 0.01) from 46.6 Mcal for 70% to 50.7, 106.3, and 123.8 Mcal for 

85, 100, and 115%. Empty body weight gain increased linearly over the same time 

period (P < 0.01) from 0.7 kg for 70% to 3.6, 17.7, and 24.2 kg for 85, 100, and 115%. 

Calf birth weight increased linearly (P = 0.01) from 32.5 kg for 70% to 35.5, 35.2, and 

36.8 kg for 85, 100, and 115%. Brix (%) values for colostrum at parturition did not differ 

(P ≥ 0.14) as a result of dietary treatment and at 24 h post parturition showed a cubic 

response (P = 0.03). Immunoglobulin G levels in calf serum collected at birth, 24 h and 

7 d did not differ among treatments (P > 0.05) and averaged 47, 4,749, and 4,464 

mg/dL, respectively. Cow body weights remained greater (linear, P < 0.05) in cows fed 

increasing levels of energy at days 60 and 90 post parturition, tended to be greater (P = 

0.09) at d 120, but no longer differed (P ≥ 0.33) at 160 days post parturition or at 

weaning (d 270). Level of energy intake during gestation did not result in significant 

differences (P > 0.05) in calf weights at 60, 90, 120 or 160 days post parturition or at 

weaning (averaged 206 kg). Cow 30 and 60 d conception rates were 82% and 98%, 

respectively and did not differ across treatments. Production goals of the cow-calf sector 

were successfully met by limit-feeding late-gestation beef cows at intake levels at least 

70% of NRC-predicted energy requirements for maintenance. 

Introduction 

Sustainability efforts for many businesses and industries across the globe are 

aimed at more than good citizenship and positive public relations. They are efforts to 
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secure a competitive advantage and/or remain afloat in highly saturated markets and 

shrinking profit margins. In a study including 99 companies from 18 different industries, 

the companies operating sustainability strategies, defined as those, “geared toward 

protecting the environment and promoting social well-being while achieving shareholder 

value,” are securing average returns 15% greater than their peers (Winners, 2009). 

Agriculture is hearing the same, sustainability-focused, call to action. With a 

charge to meet the nutritional demands of approximately 9 billion people requiring a 

50% increase in demand for food by 2050 (Godfray et al., 2010; Alexandratos and 

Bruinsma, 2012) – maintaining and/or increasing production yields, enduring 

impediments, and achieving optimized impacts on the global environment, economy and 

society are an undeniable expectation (Tilman et al., 2002). Beef as a source of high-

quality, human-edible protein aims to contribute to meeting global requirements; 

however, doing so in an unsustainable manner would be fiscally and socially 

irresponsible. To that end, the US beef industry improved sustainability across the entire 

beef production life-cycle by 5 percent between the years 2005 and 2011 (Cattlemen’s 

Beef Board and National Cattlemen’s Beef Association, 2014). 

Preserving beef production as a profitable enterprise for producers and attainable 

product for consumers is challenged by factors such as: uncertain forage availability, 

rebuilding of the US cow-herd following a severe drought-induced liquidation, and 

increasing land prices. Limit-feeding cows in confinement, for all or part of their life-

cycle, provides a strategic response to these challenges. Further benefits of an intensified 

feeding model include a reduction of energy required for cow maintenance and the 
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opportunity to increase the number of mature cows an operation can support (Sawyer, 

2015). The goal of this study is to investigate the reproductive and growth performance, 

nutrient utilization, and maintenance requirements of late-gestation beef cows as they are 

affected by limited intake of high-concentrate diets. Data will be used to determine the 

effectiveness of diet delivery systems in the cow-calf sector to provide productive 

returns on feed investments. By taking a systematic approach to the research, data 

collected can be used to improve the economic, environmental, and social sustainability 

of beef production. 

Materials and methods 

The experimental protocol involving the use of live animals was approved by 

Texas A&M University’s Institutional Animal Care and Use Committee for research 

conducted at the Animal Science Complex for Teaching, Extension, and Research 

(ASTREC) in College Station, TX. 

Sixty, multiparous beef cows (3 4⁄  Bos taurus, 1 4⁄  Bos indicus; 3-14 yr)

confirmed to be in late-gestation pregnancy, via ultrasound using an Aloka 500 

ultrasound console (Hitachi Aloka Medical, Ltd., Wallingford, CT), and in good health 

were used in an experiment to investigate the effects of dietary energy intake on nutrient 

utilization, performance, and maintenance requirements in late gestation cows and their 

calves. The experiment was arranged in a complete block design with four treatments of 

15 cows each. Cows were stratified by initial BW (462 kg) and assigned to 15 pens of 4 

head each. Treatments consisted of four levels of net energy (NE) intake of a total mixed 

ration (TMR) provided to supply: 70, 85, 100, and 115% of NRC-predicted maintenance 
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energy requirements. Predicted energy requirements for maintenance were calculated 

using the NRC (2000) model estimates and the mean BW of cows 26 d prior to treatment 

application. 

Diets consisted of 2.00 kg of wheat straw (2.5% CP; 79% NDF) and one of four 

levels of a mixture of corn (45%), distiller’s grain (42%) and premix (13%) fed at 2.89, 

3.67, 4.46, and 5.28 kg/d to correspond with the 70, 85, 100, and 115% treatments 

(Table 2.1). Cows were observed for health and individually fed in Calan gates 

(American Calan Inc., Northwood, NH) at approximately 0600h daily for an average of 

71 d prior to calving. Feed refusals (orts), if present, were collected daily at 0600h prior 

to feeding. Cows had ad libitum access to fresh water throughout the entire experiment. 

At calving, pairs were moved to their own pen for 24 h, after which, pairs were managed 

as a group on a pasture supplemented with Bermudagrass (Cynodon dactylon) hay 

provided ad libitum. 

Cows were adapted to the Calan gate feeding system for at least 22 d prior to the 

onset of treatments. Pens were 6 m wide × 12 m long, and equipped with six individual 

feeding Calan gates, 1 m wide × 1.5 m tall and a float-controlled continuous water 

trough approximately 1 m long × 0.5 m wide and 0.15 m deep. The front one-third of the 

pens containing the feed bunks was covered by a pole barn. Continuous low-level 

lighting was used in the center of the barn to facilitate sample collection and project 

management. Pens were cleaned once per week. 
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Table 2.1. Formulated ingredient and nutrient composition of treatment diets1 

Treatment2 

70 85 100 115 

Ingredient % As fed 

   Wheat straw 44.84 39.06 34.52 31.04 

   Cracked corn 24.81 27.40 29.46 28.92 

   Dried distillers’ grains 23.13 25.60 27.46 31.02 

   Urea 0.93 1.00 1.10 1.16 

   Molasses 4.21 4.70 5.00 5.27 

   Mineral3 2.07 2.30 2.46 2.59 

Diet components DM basis 

   CP, % 14.47 15.62 16.53 17.20 

   TDN, % 53.28 56.36 58.70 60.62 

   ME, Mcal/kg 2.32 2.40 2.47 2.52 

   NEm, Mcal/kg 1.42 1.50 1.56 1.61 
1According to NRC (2000) model estimates.  
270 = received 70% NRC requirements; 85 = received 85% NRC requirements;  

100 = received 100% NRC requirements; 115 = received 115% NRC requirements. 
3Purina Wind and Rain All Season 7.5:  Calcium (Min) 14.00 % Calcium (Max) 16.00 

% Copper (Min) 2,500 PPM Iodine (Min) 60 PPM Phosphorus (Min) 7.50 % 

Selenium (Min) 27 PPM Salt (Min) 19.00 % Salt (Max) 21.00 % Zinc (Min) 7,500 

PPM Magnesium (Min) 1.00 % Potassium (Min) 1.00 % Manganese (Min) 4,000 

PPM Cobalt (Min) 12 PPM Vitamin A (Min) 150,000 IU/LB  Vitamin D (Min) 15,000 

IU/LB Vitamin E (Min) 150 IU/LB.  
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On d 0, prior to diet consumption, the following initial (pre-treatment) 

measurements were collected: body weight, body condition score (BCS), and 

ultrasonography measurements of intramuscular fat, ribeye area and fat thickness of the 

rump and ribs (between the 12th and 13th rib). Due to the unpredictable nature of calving 

date and the work from Swingle et al. (1979), Sawyer et al. (2004) and Trubenbach 

(2014), day 52 was selected for collection of final measurements which were the same as 

those mentioned above. 

Body weights and BCS were also determined on d -26, -10, 0, 22, at calving, and 

at 60, 90, 120 and 160 days post-calving and at weaning. Body conditions scores were 

determined via visual assessment and based on the guidelines discussed by Richards et 

al. (1986). Three independent visual assessment scores, from a 9-point scale, were 

averaged and utilized in the data analysis of this study. 

Diet samples, of concentrate and hay sampled separately, were collected daily at 

0700 h, and equal daily amounts were composited weekly for subsequent analysis. Diet 

samples collected on days 43, 44, and 45 were analyzed for acid detergent-insoluble ash 

(Van Soest et al., 1991), the internal marker utilized to measure digestion. Six cows per 

treatment group were randomly selected for fecal collection to determine digestion. 

Fecal grab samples of 100 g each were collected and immediately frozen on days 43, 44 

and 45. Samples collected on day 43 at 0400 and 1600, on day 44 at 0800 and 2000, and 

on day 45 at 1200 and 2400. Fecal grab samples were composited on an equal weight 

(100 g) basis within cow and a representative subsample, of approximately 500 g of the 

composite was retained for subsequent analysis. 
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On-farm colostrum IgG concentration was measured using a Brix refractometer 

(Atago, Bellevue, WA) at calving and 24 ± 3 h post-partum. Calf weights were measured 

and recorded at birth, and 60, 90, 120 and 160 d post birth and at weaning. Blood 

samples were drawn from calves within 3 h of calving and prior to nursing, at 24 ±3 h 

and 7 d post-partum. Upon collection, whole blood samples sat at room temperature for 

30 minutes and were then centrifuged for 15 min at 1300 × g (approximately 2,900 rpm). 

Serum was aliquoted into microcentrifuge tubes and placed in a -20o C freezer until 

ready for analysis. Serum samples were sent to Texas A&M Veterinary Medical 

Diagnostic Laboratory (TVMDL) to measure total IgG count. 

On d 131, two Hereford bulls, of 2 and four years of age were put in a common 

pasture with the cows from the study to facilitate live breeding of the cows. On d 194, 

approximately 60 days after the cows were first exposed to the bulls, 3 ml of whole 

blood was drawn from the jugular vein of the cows. The whole blood was immediately 

sent to TVMDL for measurement of pregnancy specific binding protein (PSBP) levels in 

each sample. Cows were deemed pregnant when their PSBP levels measured greater 

than 1.6 ng/ml. Bulls were removed on d 194. On d 230, 3 ml of whole blood was drawn 

from cows not previously deemed pregnant and analyzed as previously described. 

Laboratory analysis 

Fecal and feed samples were similarly processed and analyzed. All samples were 

dried at 55°C in a forced-air oven for 96 h and then allowed to air equilibrate before 

being weighed again to determine partial DM. Samples were then ground through a 1-

mm screen using a Wiley mill (Thomas Scientific, Swedesboro, NJ) and then analyzed 
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for laboratory DM after being dried at 105°C for 16 h and OM was determined as the 

loss in dry weight on combustion at 405°C (Undersander et al., 1993). Analysis for ADF 

was performed using an Ankom Fiber Analyzer with sodium sulfite and amylase omitted 

and without correction for residual ash (Ankom Technology Corp., Macedon, NY). Acid 

detergent insoluble ash was determined by loss in ADF DM weight after combustion in a 

muffle furnace at 405°C. Crude Protein (CP) was calculated as N × 6.25, N being 

measured using an Elementar rapid N cube (Elementar, Hanua, Germany). Gross energy 

was determined using a Parr 6300 Bomb Calorimeter (Parr Instrument Company, 

Moline, IL). 

Calculations 

Digestibility of DM, OM, ADF and GE were each calculated using the following 

formula: 

Digestibilityx, % = 
Intakex−Fecalx

Intakex
 × 100% 

where: 

Intakex = DMI (kg) × dietary nutrient concentration (%DM) 

Fecalx = Fecal production (kg) × fecal nutrient concentration (%DM) 

Fecal production was calculated by dividing ADIA consumption by fecal ADIA 

concentration: 

Fecal production, kg = 
DMI×ADIAd

ADIAf

where: 

DMI, kg 

ADIAd = Dietary ADIA concentration (%DM) 
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ADIAf = Fecal ADIA concentration (%DM) 

Digestible energy (DE) and metabolizable energy (ME) were calculated by the 

following equations: 

DE (Mcal/kg DM) = GE × DigestibilityGE 

ME (Mcal/kg DM) = DE × 0.82 per NRC (2000). 

Where: 

DigestibilityGE = observed coefficient of energy digestibility (%) 

Body condition score (BCS) was calculated at the beginning and end of the pre-

parturition limit-feeding period (d 0 and d 52) using a regression equation generated 

from observations of fat thickness corresponding to observed BCS (Herd and Sprott, 

1986) 

BCS = -1.2927x2 + 6.0916x + 2.2114 

where: 

x = Rib fat thickness (cm) determined by ultrasonography 

Equations published in NRC (2000) and Ferrell et al., (1976a) were used to 

calculate empty body energy. 

Body energy (BE) was calculated as: 

BE (Mcal) = (9.4 × TF + 5.7 × TP) - UE 

Where: 

TF = total fat, kg 

TP = total protein, kg 

UE = gravid uterus gross energy, Mcal 



37 

Gravid uterus gross energy (UE) was calculated per NRC (2000) as: 

CBW × 1.811× ^ ((0.03233-(0.0000275 × DG)) × DG) 

Where: 

CBW = calf birth weight, kg 

DG = day of gestation 

Body components were calculated as: 

TF = AF × EBW 

TP = AP × EBW 

Where: 

AF = proportion of empty body fat 

AP = proportion of empty body protein 

EBW = empty body weight, kg 

Body composition was estimated using the following equations: 

AF = 3.768 × rBCS 

AP = 20.09 – 0.668 × rBCS 

EBW = (BW – UF) ×.96 ×.891 

Where: 

BW = body weight, kg 

UF = Gravid uterus fresh weight, kg 

Gravid uterus fresh weight (UF) was calculated per Ferrell et al., (1976a) as: 

(743.9 ^ ((0.02-0.0000143 × DG) × DG) 

Where: 
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DG = day of gestation 

Retained energy and HE were calculated as: 

RE, Mcal = BEf  - BEi 

HE, Mcal = MEI - RE 

Where: 

BEf = total body energy on d 52, Mcal 

BEi = total body energy on d 0, Mcal 

MEI = metabolizable energy intake, Mcal. 

Maintenance level of intake for metabolizable energy (MEm) was calculated (per 

Trubenbach, (2014) for each of the four treatments using a linear regression of the means 

of RE on MEI. The linear functions representing each diet were solved for RE = zero; 

the solution of which represented MEm for the respective diet. 

Fasting heat production was estimated for each treatment using the linear 

regression of the means of log (HE) on MEI. The linear functions representing each diet 

were solved for MEI = zero; the solution of which represented the estimate of FHP for 

each respective diet. 

Statistical analysis 

Conception rate data was analyzed using GLIMMIX procedure. All other data 

collected was analyzed using the PROC MIXED procedure of SAS 9.3 (SAS Institute, 

Inc., Cary, NC). Terms in the model included treatment, and pen. Treatment means were 

calculated using the LSMEAN option. Orthogonal polynomial contrasts (linear, 

quadratic and cubic) were used to partition treatment sums of squares.  Statistical 
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significance was considered at P < 0.05 and trends were considered between P =0.05 

and 0.10. Random effect was pen and model effect was treatment. 

Results 

Concentrate intake, total DM intake, and ADF intake increased linearly across 

treatments (P < 0.01; Table 2.2). No effects (P ≥ 0.43) for DM, OM or GE digestion 

were observed; DM digestion averaged 62%. There was a trend (P = 0.07) for a linear 

decrease in ADF digestion as energy intake increased. Digestible energy intake 

increased linearly (5.92, 6.78, 7.77 and 8.86 Mcal/d for 70, 85, 100, and 115%; P < 

0.01) per design; ME intake responded similarly (4.85, 5.56, 6.37 and 7.26 Mcal/d; 

Table 2.3). 

Table 2.2 Apparent nutrient digestion of treatment diets fed to confined beef 

cows at four different levels of NRC predicted requirements for maintenance1 

Treatment2 Contrast P-value4 

Item 70 85 100 115 SEM3 L Q C 

Intake, kg/d 

   Forage DM 2.00 2.00 1.99 1.99 0.02 0.67 0.89 0.73 

   Concentrate 

DM 

2.70 3.41 4.12 4.84 0.08 <0.0

1 

0.97 0.92 

   Total DM 4.70 5.41 6.11 6.83 0.07 <0.0

1 

0.94 0.85 

ADF 1.25 1.32 1.37 1.43 0.03 <0.0

1 

0.90 0.77 

Digestion, % 

   DM 62 62 62 63 2.0 0.80 0.71 0.80 

   OM 67 65 66 67 2.0 0.94 0.66 0.81 

   ADF 46 41 39 39 3.0 0.07 0.43 0.94 

   GE 63 62 63 64 2.0 0.65 0.63 0.87 
1Observed via feed and fecal nutrient analysis.  
270 = received 70% NRC requirements; 85 = received 85% NRC requirements; 

100 = received 100% NRC requirements; 115 = received 115% NRC 

requirements. 
3SEM = standard error mean.  
4L = Linear; Q = Quadratic; C = Cubic.   
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Table 2.3.  Apparent energy availability of treatment diets and estimates of 

retained energy1 and heat production2 in confined beef cows fed at four different 

levels of NRC predicted requirements for maintenance  

Treatment3 Contrast P-value5 

Item 70 85 100 115 SEM4 L Q C 

Energy Intake, Mcal/d 

   GE 9.41 10.91 12.35 13.86 0.27 <0.01 0.95 0.86 

   DE 5.92 6.78 7.77 8.86 0.17 <0.01 0.26 0.94 

ME6 

4.85 5.56 6.37 7.26 0.14 <0.01 0.26 0.94 

RE 0.90 0.97 2.04 2.38 0.34 <0.01 0.67 0.23 

HE 4.03 4.56 4.23 4.89 0.33 0.08 0.92 0.24 
1Mcal/d, Calculated as RE/d. 
2Mcal/d, Calculated as (ME - RE)/d. 
370 = received 70% NRC requirements; 85 = received 85% NRC requirements; 

100 = received 100% NRC requirements; 115 = received 115% NRC 

requirements. 
4SEM = standard error mean.  
5L = Linear; Q = Quadratic; C = Cubic  
6Calculated as DE *.82.

Percent of diet consumption (Table 2.4) significantly decreased with increasing 

diet provision (P = 0.03) and this difference, between the lowest and highest intakes, 

was 3.6% or approximately 0.21 kg. Rate of consumption in g/min was not significantly 

different (P ≥ 0.19) for the treatments; however, consumption time linearly increased as 

feed offered increased (P < 0.01). 
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Table 2.4. As-fed consumption of treatment diets fed to confined beef cows at 

four different levels of NRC predicted requirements for maintenance1  

Treatment1 Probability (P =)3 

Item 

70 85 100 115 

SE

M2 

L Q C 

No. of observations 15 14 12 14 

Percent consumption 98.4 98.6 98.0 94.8 1.19 0.03 0.16 0.76 

Rate, g/min4 75.8 69.8 66.6 72.9 5.67 0.55 0.19 0.74 

Consumption time, 

min 
75.6 85.3 93.3 98.2 2.35 

<0.0

1 
0.26 0.89 

170 = received 70% NRC requirements; 85 = received 85% NRC requirements; 

100 = received 100% NRC requirements; 115 = received 115% NRC 

requirements. 
2SEM = standard error mean.  
3L = Linear; Q = Quadratic; C = Cubic.   

Initial (d 0) BW did not differ across treatments (P ≥ 0.65), final (d 52) BW 

increased linearly (P = 0.05; Table 2.5), and BW gain linearly increased over the limit-

feeding time period (P < 0.01; Table 2.6) from 0.7 kg for 70% to 3.6, 17.7, and 24.2 kg 

for 85, 100, and 115%. Body condition scores did not differ across treatments on d 0 (P 

≥ 0.16), but by d 52 they significantly increased (P = 0.02) with increased feed offered. 

Cow BW remained greater (linear, P ≤ 0.04) in cows offered increasing levels of energy 

at days 60 and 90 post parturition; and tended (P = 0.09) to increase at d 120, however, 

treatments no longer differed (P ≥ 0.33) at 160 days post parturition or at weaning (d 270 

post parturition). Cow BCS tended (P = 0.07) to remain linearly greater at 120 d post-

parturition but these differences were not apparent at 160 d post-parturition or at 

weaning (P ≥ 0.12). 

Ultrasound measurements (Table 2.6) for rib fat, measured prior to the 

application of treatment increased linearly (P = 0.03) from 6.35 mm for 70% to 6.35, 
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8.09, and 8.25 for 85, 100 and 115%. Rib fat measurements at the termination of the 52 

d period tended to increase linearly (P = 0.09); however, change in rib fat was not 

significantly affected (P ≥ 0.70) by level of intake. There were no significant differences 

(P ≥ 0.13) between treatments for initial, final or change in rump fat or intramuscular fat. 

No differences (P ≥ 0.25) in ultrasound measurements for Ribeye area (REA) at d 0 

were detected. However, REA at d 52 tended (P = 0.09) to increase linearly and change 

in REA (d 0 to d 52) increased (P = 0.05) with increasing energy offered. 

Cow daily RE estimates (Table 2.3) calculated using the NRC (2000), Herd and 

Sprott (1988) and Ferrell et al., (1976a), during the limit-feeding period (d 0 to 52) 

increased linearly (P < 0.01) from 0.90 Mcal/d for 70% to 0.97, 2.04, and 2.38 Mcal for 

85, 100, and 115%. Calculated heat energy (HE), estimated using NRC (2000) 

equations, tended to increase linearly (P = 0.08) in response to increased energy 

consumption. 
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Table 2.5. Calving and post calving body weight and condition score4 

measurements of confined beef cows fed at four different levels of NRC 

predicted requirements for maintenance 

Treatment1 Probability (P =)3 

Item 70 85 100 115   SEM2 L Q C 

Body weight, 

kg 

-26 d 525 529 523 526 18.94 0.94 0.91 0.66 

-10 d 492 491 487 488 15.93 0.70 0.96 0.88 

0 d 473 476 472 480 15.61 0.67 0.78 0.65 

22 d 489 490 497 500 15.90 0.34 0.91 0.78 

52 d 507 502 523 532 18.51 0.05 0.48 0.50 

   Calving 469 476 489 510 17.61 <0.01 0.49 0.96 

Post Calving 

   60 d  469 471 491 504 16.78 <0.01 0.58 0.61 

   90 d   473 488 492 498 15.97 0.04 0.63 0.78 

   120 d 492 504 509 515 16.61 0.09 0.81 0.86 

   160 d   505 514 513 519 16.31 0.33 0.85 0.73 

Weaning 

(200 d) 

479 489 486 493 16.05 0.36 0.93 0.59 

BCS4 

-26 d 5.87 5.87 5.86 5.73 0.10 0.36 0.54 0.82 

-10 d 5.33 5.26 5.23 5.26 0.13 0.57 0.59 0.93 

0 d 5.13 5.33 5.26 5.40 0.13 0.16 0.78 0.37 

22 d 5.42 5.41 5.51 5.52 0.14 0.44 0.95 0.68 

52 d 5.41 5.48 6.00 5.79 0.21 0.02 0.40 0.12 

   Calving 5.12 5.32 5.87 5.77 0.19 <0.01 0.39 0.20 

Post Calving 

   60 d  4.85 4.91 5.40 5.19 0.15 <0.01 0.26 0.05 

   120 d  5.88 6.04 6.42 6.13 0.19 0.07 0.12 0.18 

   160 d   5.70 5.98 6.09 6.01 0.17 0.12 0.22 0.96 

Weaning 

(200 d) 

5.28 5.16 5.42 5.15 0.16 0.85 0.57 0.17 

170 = received 70% NRC requirements; 85 = received 85% NRC 

requirements;  

100 = received 100% NRC requirements; 115 = received 115% NRC 

requirements. 
2SEM = standard error mean.  
3L = Linear; Q = Quadratic; C = Cubic.  
4BCS of 1 = emaciated; 9 = obese.  
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Table 2.6. Initial and final body weight and ultrasound measurements, over a 

52 d limit-feeding period, of confined beef cows fed at four different levels of 

NRC predicted requirements for maintenance 

Treatment1 Probability (P =)3 

Item 70 85 100 115 SEM2 L Q C 

Initial 

measurements 

   EBW, kg 465 464 457 460 15.52 0.59 0.81 0.67 

   EBW0.75, kg 97 97 96 98 2.53 0.79 0.62 0.41 

   Hip fat, mm 7.75 8.50 9.03 9.38 1.08 0.19 0.83 0.99 

   Rib fat, mm 6.00 6.35 8.09 8.25 0.97 0.03 0.91 0.44 

   Ribeye area, 

cm2 

68.19 70.13 70.74 71.39 2.26 0.25 0.75 0.89 

Intramuscular 

fat, %  

3.84 3.70 3.81 3.69 0.25 0.73 0.93 0.63 

Final 

measurements  

   EBW, kg 476 465 477 484 19.49 0.47 0.45 0.65 

   EBW0.75, kg 98 97 100 102 3.06 0.11 0.39 0.65 

   Hip fat, mm 7.03 7.65 9.44 8.87 1.27 0.13 0.59 1.49 

   Rib fat, mm 5.99 5.97 7.65 8.02 1.23 0.09 0.85 0.53 

   Ribeye area, 

cm2 

60.42 68.13 68.96 76.18 4.48 <0.01 0.95 0.45 

Intramuscular 

fat, %  

3.78 3.63 3.49 3.56 0.27 0.44 0.36 0.86 

Change in 

measurements 

   EBW, kg 0.7 3.6 17.7 24.2 4.64 <0.01 0.66 0.33 

   EBW0.75, kg 0.1 0.6 2.9 3. 9 0.75 <0.01 0.68 0.31 

   Hip fat, mm -0.91 -1.03 0.23 -0.78 0.81 0.58 0.52 0.26 

   Rib fat, mm -0.29 -0.37 -0.20 -0.20 0.30 0.70 0.88 0.75 

   Ribeye area, 

cm2 

-7.64 -1.71 -0.82 5.35 4.36 0.02 0.96 0.56 

Intramuscular 

fat, %  

-0.29 -0.06 -0.26 -0.09 0.17 0.52 0.85 0.23 

170 = received 70% NRC requirements; 85 = received 85% NRC requirements; 

100 = received 100% NRC requirements; 115 = received 115% NRC 

requirements. 
2SEM = standard error mean. 
3L = Linear; Q = Quadratic; C = Cubic.
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Calving date was not significantly affected (P < 0.05) by energy intake. 

However, calf birth weight (Table 2.7) increased linearly (P = 0.01) from 32.5 kg for 

70% to 35.5, 35.2, and 36.8 kg for 85, 100, and 115%. However, level of energy offered 

during gestation did not result in significant differences (P ≥ 0.24) in calf weights at 60, 

90, 120 or 160 days post parturition or at weaning (averaged 206 kg). Cow 30 and 60 d 

conception rates were 82% and 98%, respectively. Post-partum interval and subsequent 

calf birth weights were not significantly different (P > 0.05). 

Brix (%) values for colostrum (Table 2.8) at parturition did not differ (P = 0.14) 

as a result of dietary treatment and at 24 h post parturition showed a cubic response (P = 

0.03). Immunoglobulin G levels (Table 2.9) in calf serum collected at birth, 24 h and 7 d 

did not differ (P ≥ 0.15) and averaged 47, 4,749, and 4,464 mg/dL, respectively. 
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Table 2.7. Body weight measurements of progeny from beef cows fed in confinement at four different levels of NRC 

predicted requirements for maintenance after returning to a common herd1 

Treatment1 Probability (P =)3 

Item 70 85 100 115 SEM2 L Q C 

Calf BW, kg 

   Birth 32 35 35 37 1.20 0.01 0.54 0.34 

   60 d 85 87 92 90 5.68 0.37 0.67 0.70 

   90 d 107 105 116 114 6.98 0.26 0.97 0.41 

   120 d 144 151 154 150 6.02 0.42 0.36 0.89 

   160 d 177 180 184 181 6.33 0.49 0.67 0.80 

Weaning weight 199 205 217 204 8.47 0.41 0.24 0.39 
1Cows were returned to a common heard 24 h post parturition.  
270 = received 70% NRC requirements; 85 = received 85% NRC requirements;  

100 = received 100% NRC requirements; 115 = received 115% NRC requirements. 
2SEM = standard error mean.  
3L = Linear; Q = Quadratic; C = Cubic.  

Table 2.8. Colostrum measurements of beef cows fed in confinement at four different levels of NRC predicted requirements 

for maintenance  

Treatment1 Probability (P =)3 

Item 70 85 100 115 SEM2 L Q C 

Brix, % 

   At parturition 27.41 27.77 25.99 24.72 1.57 0.14 0.59 0.71 

   24 h post-parturition 13.61 10.93 14.18 12.39 1.16 0.93 0.67 0.03 

Colostrum somatic cell count4 1365.00 2626.67 1670.29 521.78 1099.46 0.41 0.24 0.67 
170 = received 70% NRC requirements; 85 = received 85% NRC requirements;  

100 = received 100% NRC requirements; 115 = received 115% NRC requirements. 
2SEM = standard error mean.  
3L = Linear; Q = Quadratic; C = Cubic.  
4Collected 24 h post parturition.   
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Table 2.9. Serum immunoglobulin G measurements of progeny from beef cows fed in confinement at four different levels 

of NRC predicted requirements for maintenance  

Treatment1 Probability (P =)3 

Item 70 85 100 115 SEM2 L Q C 

Serum Immunoglobulin G, mg/dL 

   At birth 55 68 32 34 39 0.56 0.88 0.60 

   24 h post-birth 4822 4679 4612 4886 208 0.87 0.21 0.72 

   One week post-birth4 4650 4745 4164 4300 257 0.15 0.94 0.23 
170 = received 70% NRC requirements; 85 = received 85% NRC requirements;  

100 = received 100% NRC requirements; 115 = received 115% NRC requirements. 
2SEM = standard error mean.  
3L = Linear; Q = Quadratic; C = Cubic.   
4Cows were returned to a common heard 24 h post parturition.  
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Discussion 

The objective of this study was to quantify the effects of dietary energy intake on 

nutrient utilization, performance, and maintenance requirements in late gestation cows 

and their calves. 

Reduced intake is associated with slower passage of digesta (Colucci et al., 1990) 

which is known to increase the digestion of feed (Tyrrell and Moe, 1975). Reducing DM 

intake across treatments in this study did not result in increased DM or OM digestion, 

unlike what has been observed in similar studies (Galyean et al., 1979, Trubenbach 

2014, Boardman 2015).  

As intake increased across treatments, so did the concentrate to forage ratio of 

the diets – since concentrate is more rapidly digested  (Colucci et al., 1982) this may 

have countered the slower passage rate and associated higher digestion expected in the 

lower DMI treatments. High-concentrate diets have been associated with increased 

activity of ruminal amylolytic bacteria (Mackie et al., 1979).  Activity of amylolytic 

bacteria in this study, particularly in the rumen of cows fed diets with greater proportions 

of concentrate might have outcompeted the cellulolytic bacteria, helping to explain the 

significant decrease in ADF digestion observed as intake increased. Additionally, the 

significant increase in ADF intake may explain the significant decrease in ADF 

digestion across treatments. Acid detergent fiber digestion is inversely related to DM 

digestion (Erdman et al., 1986), which may further explain the absence of a greater DM 

digestion in the low intake treatments. 
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Retained energy was predicted using regression equations (NRC, 2000; Ferrell et 

al., 1976a and Herd and Sprott, 1988), and as expected and similarly demonstrated by 

Trubenbach (201X), it significantly increased with increasing levels of MEI. Though RE 

was above zero for all treatments this may be attributed to the extensive growth of the 

conceptus and gravid uterus during the third trimester (Quigley III and Drewry, 1998; 

Reynolds et al., 1986; Tyrell, 1972). Reduced intake resulted in decreased heat 

production in multiple studies (Freetly and Nienaber, 1998; Freetly et al., 2006, 

Trubenbach, 2014; Boardman, 2015), in this study comparing cows fed at 70% to those 

fed at 115% resulted in an estimated reduction in daily HE of 17%. 

Dam body weight and BCS score at parturition is often cited for its impact on 

post-partum interval (Wiltbank et al., 1962; Bellows and Short, 1978; Dunn and 

Kaltenbach, 1980; Bellows et al., 1982). Body weight and BCS scores increased linearly 

with increased nutrient provision on d 52 of the trial. However, these differences were 

no longer significant in cows by 120 d post parturition, suggesting that cows were able 

to overcome previous intake restriction. Additionally, cow 30 and 60 d conception rates 

were 82% and 98%, respectively and post-partum interval did not significantly differ. 

In concurrence with data (Wiltbank et al., 1962; Tudor, 1972; Hough et al., 1990) 

feed restricting dams during late pregnancy resulted in significantly lower calf birth 

weights. However there were no significant differences in calf weights by 60 d post 

parturition similar to findings from Freetly et al., (2000). Calf weight data in this study 

suggests that limit-feeding cows during their third trimester of gestation may be a 

strategy to reduce calf birth-weight associated dystocia without ensuing deleterious 
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effects on calf weaning weights. Reduced intake of third trimester cows did not 

negatively affect passive immune transfer as calf serum IgG levels did not differ at birth 

(pre-nursing), 24 h post-birth or 7 d post-birth. Additionally, calf mortality measured 

until weaning did not differ across treatments.  Successful passive immune transfer was 

expected as no significant differences in dam’s colostrum Brix %, an indicator of 

colostrum IgG levels, or colostrum somatic cell counts were observed in this study. 

Though total colostrum volume was not measured, intake restriction did not appear to 

effect colostrum quality or subsequent passive immune transfer from dam to calf. 

Feed restricting cows during late-gestation to 70% of their NRC predicted 

maintenance energy requirements did not result in deleterious effects on calf growth or 

subsequent reproductive success of the dam. However, an economic assessment of this 

feeding strategy should be considered in order to determine its efficacy in a production 

system. In terms of diet delivery, data from Baber et al. (2016) showed that limit-fed, 

high-concentrate diets can be parsed into hay and concentrate portions fed separately 

without compromising cow performance, eliminating costs associated with mixing a 

TMR. In terms of diet depletion, rate of consumption, in g/min did not differ across 

treatments in this study. However, use of the Calan gate feeding system may have 

eliminated intake differences associated with differences in cow eating behaviors. 
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CHAPTER III 

SUMMARY 

Results from this study successfully demonstrated the effects of offering 

decreasing levels of energy to third-trimester cows. Cows offered 70% of their NRC-

predicted maintenance energy requirements remained in a positive energy balance 

throughout the limit-feeding portion of this study, averaged total pounds of calf weaned 

similar to cows offered energy at and above their NRC-predicted requirements, and 

remained reproductively sound through the following calving season. 

It is possible that these results were obtained because cows adapted their 

maintenance energy requirements in response to their treatment scenarios. It is also 

possible that results were observed because the NRC over predicted the maintenance 

energy requirements of cows in this study. Additionally, a combination of both of these 

circumstances is also possible. In any case, the results of this study indicate the viability 

of limit-feeding, high-concentrate diets to third trimester cows in confinement as an 

option for beef producers. Future research, illuminating the effects of limit-feeding, 

high-concentrate diets to cows through their calving and subsequent production cycles 

would be meaningful to this area of study. 
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APPENDIX A 

COW METABOLITE MEASURES 

Table 3.1.  Serum metabolite measurements of calves from beef cows fed at four 

different levels of NRC predicted requirements for maintenance 

Treatment1 Probability (P =)9 

Item 70 85 100 115 SEM2 L Q C 

At birth, 

mg/dL 

Total Serum 

Protein 

4.22 4.21 4.29 4.22 0.08 0.82 0.72 0.47 

Albumin 2.78 2.82 2.74 2.79 0.06 0.83 0.96 0.40 

Calcium 12.51 11.92 12.18 11.89 0.18 0.03 0.37 0.07 

Phosphorus 7.77 7.55 7.53 7.50 0.25 0.41 0.69 0.85 

Glucose  44.83 54.33 50.43 41.21 6.29 0.57 0.12 0.77 

BUN 14.68 16.60 17.69 18.41 0.85 <0.0

1 

0.46 0.90 

Creatinine 3.27 3.55 3.41 3.71 0.37 0.42 0.97 0.58 

CK 141.93 195.33 208.93 151.57 49.61 0.84 0.24 0.88 

AST 14.33 19.92 29.71 14.43 1.98 0.89 <0.0

1 

0.79 

GGT 12.62 18.99 50.13 12.79 19.90 0.70 0.25 0.28 

Magnesium 1.93 1.98 1.96 1.99 0.07 0.61 0.89 0.68 

Sodium 148.00 147.08 147.64 148.14 0.68 0.73 0.27 0.60 

Potassium 4.95 4.70 4.81 4.81 0.10 0.40 0.13 0.24 

NaK Ratio 30.10 31.36 30.85 30.90 0.67 0.45 0.30 0.38 

Cloride  100.38 101.27 100.88 101.22 0.69 0.46 0.68 0.51 

24 h post birth 

Total Serum 

Protein 

8.15 7.73 7.53 7.49 0.42 0.15 0.57 0.96 

Albumin 2.20 2.28 2.24 2.28 0.57 0.39 0.64 0.41 

Calcium 12.05 11.95 11.79 11.71 0.19 0.15 0.97 0.85 

Phosphorus 8.29 8.71 7.70 8.31 0.25 0.31 0.67 <0.0

1 

Glucose 136.10 144.30 134.49 144.46 6.81 0.59 0.89 0.20 

BUN 9.51 9.61 10.88 10.03 0.74 0.34 0.49 0.30 

Creatinine 1.43 1.45 1.43 1.34 0.09 0.38 0.52 0.93 

CK 232.43 653.58 296.00 213.71 169.5

6 

0.55 0.12 0.16 

AST 60.57 72.58 68.64 65.50 5.44 0.63 0.15 0.48 

GGT 2852.2

7 

2478.6

1 

2369.4

9 

2438.0

5 

522.8

3 

0.51 0.64 0.97 

Magnesium 2.43 2.41 2.29 2.37 0.09 0.38 0.52 0.45 
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Sodium 141.40 144.51 143.71 145.07 1.45 0.09 0.53 0.34 

Potassium 5.22 5.53 5.42 5.45 0.15 0.30 0.29 0.36 

NaK Ratio 27.39 26.23 26.86 26.79 0.77 0.68 0.42 0.42 

Cloride  96.84 99.77 98.94 100.66 1.20 0.05 0.52 0.25 

1 week post 

birth 

Total Serum 

Protein 

7.39 7.10 6.90 6.89 0.30 0.14 0.60 0.93 

Albumin 2.69 2.77 2.68 2.79 0.05 0.34 0.94 0.10 

Calcium 12.95 13.07 12.15 12.04 0.23 <0.0

1 

0.60 0.06 

Phosphorus 9.63 9.01 9.26 9.72 0.46 0.74 0.15 0.70 

Glucose 122.54 123.00 121.62 117.294 5.08 0.41 0.61 0.96 

BUN 8.62 8.75 10.48 10.014 0.75 0.06 0.67 0.25 

Creatinine 0.94 0.90 0.94 0.944 0.04 0.71 0.53 0.54 

CK 83.97 101.66 118.35 142.624 17.14 <0.0

1 

0.82 0.90 

AST 39.40 36.65 34.28 41.674 2.78 0.67 0.04 0.41 

GGT 567.72 539.69 402.24 437.694 106.2

1 

0.21 0.74 0.53 

Magnesium 1.83 1.90 1.78 1.884 0.06 0.98 0.83 0.12 

Sodium 141.55 141.84 141.00 142.714 0.65 0.30 0.24 0.19 

Potassium 5.65 5.55 5.37 5.574 0.10 0.31 0.12 028 

NaK Ratio 25.17 25.64 26.345 25.684 0.45 0.23 0.18 0.42 

Cloride 94.23 93.88 95.985 95.864 0.75 0.02 0.86 0.13 
1 70 = received 70% NRC requirements; 85 = received 85% NRC requirements;  

100 = received 100% NRC requirements; 115 = received 115% NRC requirements 
2 SEM = standard error mean  
3 L = Linear; Q = Quadratic; C = Cubic.  




