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ABSTRACT 

 

Rapid depopulation of infected poultry is the primary US strategy to contain and 

eradicate reportable diseases. Two experiments were conducted to develop a compressed 

air foam based depopulation method for caged layer hens. The hypothesis of the first 

experiment was that a compressed air foam (CAF) system may be used as an alternative 

means to carbon dioxide (CO2) inhalation for depopulating caged layer hens. In order to 

assess the stress response (corticosterone, CORT), young and spent hens were subjected 

to five treatments: normal handling (NEG control), CO2 added to a chamber, CO2 pre-

charged chamber, CAF in cages, and CAF in a chamber. The times to cessation of 

movement (COM) were determined using spent hens, which were randomly assigned to 

three treatments: CAF in cages, CO2 added to a chamber, and aspirated foam. Serum 

CORT levels of hens subjected to foam treatments were similar to CO2 inhalation except 

that of spent hens in the CAF in a chamber group. Times to COM of spent hens 

subjected to CAF in cages and aspirated foam were significantly longer as compared to 

CO2 in a chamber treatment. These data suggest that applying CAF in cages is a viable 

alternative for layer hen depopulation during a reportable disease outbreak.  

The second experiment posited that infusion of gases such as CO2 and nitrogen 

(N2) into the CAF would reduce physiological stress and shorten time to cessation of 

movement of spent hens. There were six treatments in this experiment: a negative 

control, CO2 inhalation, N2 inhalation, CAF with air (CAF), CAF with 50% CO2 (CAF 

CO2), and CAF with 100% N2 (CAF N2). Serum CORT and serotonin levels as well as 
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time to COM were measured. The addition of CO2 in CAF significantly reduced the 

foam quality as compared to the addition of N2. The addition of gases into the foam did 

not result in significant improvements in the CORT and serotonin levels of spent hens as 

compared to foam with air. The time to COM of spent hens in the CAF N2 treatment was 

significantly shorter than CAF and CAF CO2 treatments, but longer than the gas 

inhalation treatments. The findings suggest that the addition of N2 into foam is 

advantageous in terms of shortening time to death and foam quality than infusion of CO2 

for mass depopulation of caged layers. 

Public concern on the use of maceration as a method of euthanasia of male layer 

chicks has resulted in negative publicity of the egg industry. We hypothesized that gas 

inhalation and low atmospheric pressure stunning (LAPS) are viable and humane 

alternatives for chick euthanasia. The study consisted of seven treatments: breathing air 

(NEG), 25% CO2, 50% CO2, 75% CO2, 90% CO2, 100% nitrogen (N2), and LAPS. A 

custom made vacuum system was used to reduce air pressure inside the chamber from 

101.3 kPa to 15.3 kPa for the LAPS treatment. Serum CORT and serotonin levels as 

well as latencies to loss of posture and motionlessness of day of hatch chicks were 

evaluated. The 25% and 50% CO2 treatments were discontinued as the majority of the 

chicks recovered. The chicks in the NEG group had significantly  higher levels of CORT 

but lower concentration of serotonin than the other four euthanasia treatments. The 

latencies to loss of posture and motionlessness of chicks exposed to 75% and 90% CO2 

were significantly shorter than the LAPS and N2 inhalation treatments. These data 

suggest that LAPS and gas inhalation can be viable alternatives to maceration. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

The Economic Impact of Poultry Industry 

  Poultry farming has transcended into a global industry, providing inexpensive 

animal protein to billions of people. Besides addressing the growing demands for meat 

and eggs, the poultry industry contributes to the economy. The U.S. poultry industry 

employed 1.682 million people, paid $96.7 billion in wages, resulted in $441.2 billion in 

economic activity and provided $34.0 billion in taxes to the government in 2016 [1]. The 

chicken industry, turkey industry and egg industry together make up the U.S. poultry 

industry. The demand for chicken meat and eggs are expected to increase by 121% and 

65% from 2005 to 2050 respectively [2]. Along with this opportunity for potential 

growth, the poultry industry faces challenges such as disease epidemics, welfare issues, 

feed costs, food safety, use of antibiotics and others [3].  

Shell egg and processed egg product companies make up the U.S. table-egg 

industry [4]. Table or market type eggs, breaking eggs, and hatching eggs are products of 

the shell egg sector. The processed egg industries supply liquid, frozen and dried egg 

products. Within the table egg industry, 85% of production is from caged layer hens and 

the rest comes cage free (aviary, free range, and pasture) flocks [5]. As of July 1, 2017, 

the population of the table egg producing hens was 310 million in the U.S [6]. The 

commercial egg industry was responsible for 128,000 jobs, $7.2 billion in wages, $30.7 

billion in economic activity and $2.2 billion in government revenue [7].  
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Male Layers- Current Situation and Practices 

 Genetic selection of chickens for meat or eggs was pivotal for the development 

of modern poultry industry. The specialization significantly improved productivity as 

specific breeds of chickens were developed. Broiler breeds are raised solely for meat 

purposes while layer hen breeds for table eggs. There is an equal likelihood of male and 

female chick to hatch from an egg (50:50) [8]. Unlike in broiler industry, only female 

chicks are useful for commercial egg industry. Modern male layer chickens lack genetic 

potential for faster growth, better feed conversion, carcass characteristics and yield poor 

meat quality compared to broilers [9]. Hence, male layer chicks are immediately 

euthanized in hatcheries. For instance, 7.3 billion laying hens were raised globally in 

2015 [10] and an equal number of male layer chicks were euthanized.  

 Maceration (or instantaneous mechanical destruction) is the preferred method for 

euthanizing day-old male layer chicks in the U.S. [11]. Gas inhalation using carbon 

dioxide (CO2), nitrogen (N2) is another method being used in European countries. 

Despite these methods being approved by the American Veterinary Medical Association 

(AVMA) for poultry euthanasia, the public concerns on male layer chick euthanasia [12] 

has presented one such ethical challenge to the poultry industry  [13]. The U.S. egg 

industry is looking for viable alternatives to maceration for chick euthanasia. 

 

Reportable Diseases of Poultry 

Reportable diseases are a significant threat to the poultry industry. Poultry 

industries in the U.S lose 20% of the gross worth of production due to diseases 
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[14]. The National List of Reportable Animal Diseases for the U.S. was 

developed by the Animal and Plant Health Inspection Service (APHIS) 

Veterinary Service [15]. The reportable diseases of poultry according to the list 

are mentioned below:  

 Highly pathogenic avian influenza (HPAI) 

 Low pathogenic avian influenza (LPAI; H5 or H7 subtypes) 

 Exotic Newcastle disease (END) 

 Turkey rhinotracheitis 

 Avian infectious bronchitis 

 Avian infectious laryngotracheitis 

 Duck viral hepatitis 

 Fowl typhoid (Salmonella gallinarum) 

 Infectious bursal disease (Gumboro disease) 

 Mycoplasmosis (M. gallisepticum) 

 Avian chlamydiosis (psittacosis and ornithosis, Chlamydia psittaci) 

 Pullorum disease (Salmonella pullorum) 

 Mycoplasmosis (M. synoviae) 

 

 

Highly Pathogenic and Low Pathogenic Avian Influenza 

These are viral diseases caused by influenza type A viruses of Orthomyxoviridae 

family. These viruses have segmented negative-sense single stranded RNA [16]. The 

viral surface proteins hemagglutinin (HA) and neuraminidase determine the subtypes of 

the avian influenza virus. Each subtype has one of the 18 HA and 11 NA glycoproteins 

[17]. Based on virulence of the avian influenza viruses the World Organization for 

Animal Health (OIE) has classified these viruses into low and highly pathogenic strains 

[16]. The recent 2014-2015 outbreak of HPAI in the U.S. resulted in loss of 50.4 million 

commercial layer hens and turkeys combined across 15 states. The total economy wide 

loses was estimated to be $3.3 billion [18,19].  
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Exotic Newcastle Disease (END) 

Avulavirus of the Paramyxoviridae family is the causative agent of exotic 

Newcastle disease. These viruses have single-stranded, nonsegmented, negative sense 

RNA [20]. The disease can result in 100% mortality in unvaccinated poultry flocks [20]. 

The most recent outbreak of END was in 2002. It started from California and quickly 

spread to nearby states Arizona, Nevada and Texas. The epidemic affected 3.16 million 

birds and cost the federal government $180 million to eradicate the virus [21]. 

 

Reportable Diseases Control Strategies 

 Multiple methods are essential to control outbreaks of reportable diseases in 

poultry [22]. Factors such as species affected, housing and management practices, 

stocking density, pathogenicity, and economic value determine the appropriate disease 

eradication strategies. However, the key components of such strategies are similar and 

overlapping across different diseases (Figure 1). 

Education 

  Contract growers, integrators, farm workers, and industry should be informed on 

ways of transmission of viruses such as influenza virus or bacteria like Salmonella 

gallinarum in poultry flocks and activities that increase risks of introducing the disease 

(backyard flocks) into farms. They should also be trained on appropriate and effective 

biosecurity procedures (shower in and shower out, footbaths, cleaning and disinfection 

procedures), and risks to human health [22].  
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Biosecurity 

Biosecurity is one of the most effective ways to prevent diseases from entering 

poultry flocks. Poultry companies should implement effective structural and operational 

biosecurity procedures. The goal of a good biosecurity program is to prevent entry of 

pathogens into farms either through vectors or fomites [23]. Effective quarantine 

measures should be in place to achieve biosecurity in farms. Movement of people, 

vehicles, live birds, eggs, feed, and other supplies in and out of the farm should be 

controlled [22]. Likewise, proper cleaning and disinfection programs should be in place 

at poultry farm such as before placement of new flocks [24].  

 

Education

Stamping-Out

Reducing host 
susceptibility 

Biosecurity

Surveillance

Figure 1: Avian influenza control strategies.  
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Diagnostics and Surveillance 

Rapid diagnosis of the index cases of diseases like HPAI and END is vital for 

launching an immediate response, including emergency killing of infected flocks. 

Identification of infected flocks helps in limiting the spread of the pathogen by 

immediately eliminating them. Regular monitoring of flock health through serological 

tests such as enzyme linked immunoassays and plate agglutination tests should be 

conducted in areas where those diseases are epidemic [22]. Since dabbling ducks like 

mallards are reservoirs of influenza viruses [25], surveillance programs to monitor and 

detect HPAI in wild birds are helpful in enhancing biosecurity and emergency disease 

responses [23]. 

Reducing Host Susceptibility 

Vaccination programs should be followed under the guidance of field 

veterinarians. Effective vaccinations can prevent diseases like END, salmonellosis, 

infectious laryngotracheitis, infectious bursal diseases, and others. Homologous HA 

vaccines have been found to reduce host susceptibility to avian influenza viruses [22]. 

Use of dietary supplements and immunomodulators such as minerals can be helpful for 

enhancing the immune response of poultry to different pathogens [26]. 

Stamping-out 

The OIE defines stamping-out as the killing of animals infected and suspected of 

infection in the flock [27]. Rapid elimination of an infected poultry flock is the primary 

control and eradication strategy of the United States for HPAI [28]. Poultry flocks 

diagnosed with the disease as well as birds within a 3 km radius of the index case are to 
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be killed [29]. Stamping-out acts by stopping the replication of viruses. Euthanasia and 

mass depopulation methods are used for stamping-out poultry flocks infected with 

reportable diseases.  

 

Euthanasia and its Mechanisms 

 The word euthanasia is derived from two Greek words ‘eu’ means good and 

‘thanatos’ means death. In other words, euthanasia means a good death. The American 

Veterinary Medical Association [11] defines euthanasia as death of animals in a way that 

causes minimum or no pain and distress to the animals. Euthanasia is carried out to 

reduce pain or suffering of animals infected with chronic and life threatening diseases. 

Food producing animals at the end of their production life such as spent layers and 

breeders are culled and euthanized. Male layers and culled chicks are also euthanized in 

hatcheries as these lack economic value. The methods used should result in a rapid and 

humane death in animals. The mechanisms of euthanasia are described below.  

Depression of Cortical Neural System 

Euthanasia agents act directly on neurons and disrupt functioning of cerebral 

cortex. Animals lose consciousness and show signs similar to those under anesthesia. 

Ultimately, animals suffer from respiratory arrest and loss of brain function.  

Hypoxia 

Hypoxia means a deficiency of oxygen. Animals exposed to high concentrations 

of gases such as CO2, N2, and Ar suffer from a lack of oxygen. The brain cells die due to 

oxygen deficiency which leads to loss of consciousness and death.  
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Physical Disruption of Brain Activity 

Devices like captive bolt, pithing rod, and bullets directly destroy brain tissue. 

The respiratory and cardiac center immediately fails and animals ultimately die from 

injuries to the brain.  

 

Methods of Poultry Euthanasia 

 Different methods of poultry euthanasia result in death by following any one of 

the above mentioned mechanisms. The AVMA euthanasia guidelines [11] has enlisted 

gas inhalation, decapitation, cervical dislocation, captive bolt, electrocution, gunshot, 

manual blunt force trauma, and injectable agents as methods of euthanizing poultry. The 

methods used depend upon the species, the numbers of birds, and reasons for euthanasia.  

Injectable Anesthetics 

Drugs such as barbiturates and barbiturate derivatives are injected intravenously 

at higher doses. These substances result in death by depressing the cortical neural 

system. These agents are administered only under the supervision of a veterinarian. The 

method is not suitable for euthanizing poultry for meat purposes as tissues get 

contaminated by the anesthetic agents [11]. 

Inhalant Agents 

Carbon dioxide, N2, and Ar cause death of birds by hypoxia. Gases used for 

euthanasia should be in a pure form, without contaminants. Duration of exposure and 

flow rates are important factors to consider for humane death of poultry as birds can 

recover from these gases [30]. Some common gases used for euthanasia of poultry are 
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described below. 

Carbon dioxide  

 The AVMA guidelines on euthanasia as well as humane slaughter mention CO2 to 

be widely used for euthanizing animals including poultry  [11, 31]. Raj and Gregory [32] 

observed that broilers subjected to 55% CO2 died within 2 minutes. It is recommended to 

use CO2 at high concentrations such as 80-90% for euthanizing recently hatched chicks 

since chicks are exposed to higher concentrations of CO2 during embryogenesis [11, 33]. 

The exposure to CO2 inhalation decreases intracellular pH resulting in respiratory 

acidosis and anesthesia [34]. Continuous exposure to CO2 leads to death of the animal 

from hypercapnic hypoxia [35]. Compressed CO2 gas tanks can be used for euthanizing 

poultry in closed setups such as modified atmospheric killing (MAK) carts, CO2 

stunning chambers, and polyethylene tents [36, 37]. Liquid CO2 containers can be used 

for whole house gassing of poultry [38].  

Nitrogen and Argon  

 Inert gases such as N2 and Ar result in death of birds by displacing oxygen in air, 

causing anoxia. While using these gases the residual oxygen concentration should be less 

than 2% for a humane death of poultry [11, 39]. Birds subjected to inert gases in the CO2 

mixtures were found to demonstrate least aversive signs as compared to CO2 in air [40]. 

However, birds exposed to these anoxic gases undergo severe clonic and tonic 

convulsions as demonstrated by wing flapping and leg paddling after loss of posture 

[41]. These convulsions occur once the birds have become unconscious due to brain 

damage and hence they are not distressed [42].  
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Physical Methods 

Cervical dislocation  

Birds are killed by separating the cervical vertebrae from the cranium, either 

manually or mechanically, without crushing the spinal cord [11]. Birds rapidly become 

unconscious and display convulsive movements such as wing flapping and leg paddling 

[43]. Manual cervical dislocation is preferred for euthanizing small numbers of poultry. 

If performed manually, a maximum of 70 birds (up to 3 kg) are allowed to be killed per 

person per day by cervical dislocation in the European Union [44]. Manual cervical 

dislocation should not be used for birds larger than 3 kg as the procedure becomes 

arduous. 

Decapitation  

Severing the cranium from the body is known as decapitation. This method is 

used for collecting intact brain tissues from small birds (less than 200 g). Sharp 

instruments such as guillotines, blades rapidly sever the head from the neck inducing 

unconsciousness [11]. However, this method is not feasible for industry application as a 

large number of birds with different body weights have to be killed.  

Captive bolt  

Non-penetrating and penetrating captive bolts are used for killing individual 

turkeys, broiler breeders, ducks, hens, and geese [11, 45]. Birds should be restrained 

before discharging the captive bolt. The site for application of a captive bolt is the 

frontal bone in the middle between the ears and the eyes, above the cerebral cortex [45]. 

Birds should be monitored for any signs of recovery after they have been stunned using 
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captive bolt.  

Maceration 

The AVMA has approved the use of maceration for killing chicks up to 72 hours old, 

pipped eggs, and embryonated eggs [11]. The rotating blades of macerators result in an 

instantaneous death of chicks by physically disrupting their brain tissues [46]. The 

method is widely used for euthanizing recently hatched chicks in the U.S. because large 

numbers of chicks can be killed quickly and efficiently.  

 

Poultry Depopulation 

Depopulation, on the other hand, is an emergency measure for killing a large 

number of animals giving as much consideration to their welfare as possible [11]. 

Euthanasia methods can be used for depopulation, but not all depopulation methods meet 

guidelines for euthanasia. The circumstances that necessitate mass depopulation of 

poultry are natural disasters such as floods and tornadoes and during outbreaks of 

reportable diseases [47]. Elimination of poultry flocks infected with diseases like HPAI 

prevents the spread of the virus and reduces suffering of sick birds. Gas inhalation, 

electrocution, ventilation shutdown, and water-based foam are approved poultry 

depopulation methods [29, 48]. 

Gas Inhalation 

 Gases such as CO2, Ar, and N2 have been used for mass depopulation of poultry 

[41]. Birds are exposed to these gases following different procedures, such as whole 

house gassing, containerized gassing, polyethylene tent, and free standing panel 
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enclosures [48].  

Whole House Gassing 

A large number of birds can be killed in a short period of time with this method. 

Liquid CO2 tanks can be used as gas sources. Poultry houses should be sealed to prevent 

escape of gas so that the required gas concentration can be achieved. Similarly, 

ventilation systems of the houses are turned off [48]. The amount of gas required 

depends upon the dimensions of poultry houses. However, it is estimated that the volume 

of CO2 needed to reach fatal concentrations should be 1.5 times the volume of the house 

[49]. In addition, both of compressed CO2 gas tanks and dry ice are other potential 

sources of CO2. Turner et al. [38] observed that laying hens subjected to whole house 

gassing lost consciousness within 2 minutes of achieving an 18-20% CO2 concentration. 

However, factors such as need for specialized equipment, prolonged duration to reach 

fatal gas concentrations, and different designs of poultry houses limit the application of 

this method [48].  

Polyethylene Tent  

Instead of using the whole house, gases such as CO2 are applied to only a portion 

of the house. In broiler houses, polyethylene sheets (plastic sheets) are pulled from each 

sidewall of the house towards the opposite side. The outer edges of each plastic sheet are 

secured 2-3 feet deep in litter. Thus, birds are covered by two overlapping layers of 

plastic sheets [48, 49]. The front and back ends of the plastic are also closed. Valves of 

compressed CO2 gas cylinders are opened releasing gas within a polyethylene tent [36].  
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Containerized Gassing System  

Unlike whole housing and polyethylene tent methods, containerized gassing 

system has a closed set up which allows for easily controlling and monitoring gas 

concentration. Modified atmospheric killing cart is an example of containerized gassing 

system [50]. In this method, birds are manually caught and placed inside the containers. 

The containers are then filled with gases such as CO2 and N2 from compressed air tanks. 

It is a useful alternative to whole house gassing, especially if houses have structural 

damages or are naturally ventilated. The need for handling of birds as well as exposure 

to infective materials and gases in this method present safety risks to the personnel 

involved [37].  

Free Standing Panel Enclosures 

Metal or wooden panels are used to construct enclosed chambers inside poultry 

houses. Such enclosures can vary in dimensions depending upon number and size of the 

birds. Usually the panels are 4 ft. in height [48]. Once birds are driven into enclosed 

chamber, the top of the chamber is closed by plastic sheets. Compressed CO2 tanks are 

turned on and the chamber is filled with CO2. It is suitable for floor reared poultry only 

[48]. 

Electrocution 

 Each mobile electrocution unit consists of a water bath and a shackling line 

similar to electrical stunning system at broiler slaughter plants. It was used for poultry 

depopulation in the Netherlands during the 2003 HPAI outbreak [51]. Birds hoisted on 

shackling line moves through a water bath stunner where they are subjected to a high 
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current resulting in rapid death. The method is suitable for caged layer hens as well as 

floor reared poultry. However, handling and shackling makes this method stressful to 

birds.  

Ventilation Shutdown (VSD) 

   Poultry flocks infected with reportable diseases like HPAI are subjected to 

cessation of natural or mechanical ventilation of air into poultry houses [52]. 

Poultry houses are sealed using plastic or boards. However, supplemental heat may be 

required for rapid increase in temperature inside the house. The temperature in the 

poultry house is expected to rise above 104 ºF within 30 minutes and is maintained for 3 

hours. This leads to death of birds by hyperthermia [52]. Birds do have access to 

drinking water. Ventilation shutdown is implemented on case by case basis such as if 

other depopulation methods are not available or will not be available on time to meet the 

USDA-APHIS 24 hour depopulation goal [53].  

Foam Depopulation 

Foam is a mixture of air, water and foam concentrate. Specialized equipment is 

used to produce the finished foam. Benson and colleagues [47] of the University of 

Delaware developed the method of killing poultry using water-based foam in response to 

the 2004 Delmarva Avian Influenza (AI) event. The method works by forming a blanket 

of foam around birds which occludes the respiratory tracts. Birds suffer from hypoxia 

which leads to loss of consciousness followed by terminal convulsions, brain death and 

altered terminal cardiac activity [54]. The AVMA and the USDA-Animal and Plant 

Health Inspection Service (APHIS) have conditionally permitted the use of water based 
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foam for the depopulation of floor reared poultry [47, 55].  

Expansion ratio refers to the volume of foam formed to total volume of soap and 

water solution. The expansion ratios of low, medium, and high expansion foam are less 

than 20:1, 20:1 to 200:1 and more than 200:1, respectively [56]. A low expansion foam 

is wetter than medium and high expansion foam. Medium and high expansion foam are 

more viscous than low expansion foam [57]. 

 Some studies have focused on infusing gases like N2, CO2 into foam for poultry 

depopulation. Raj et al. [58] reported that laying hens exposed to dry foam infused with 

N2 died (within seconds) due to inhalation of pure N2 in the foam while birds exposed to 

foam with air survived for 5 minutes (till the end of the test period). McKeegan et al. 

[59] showed that high expansion foam containing N2, CO2 or air resulted in death of 

birds by anoxia. The birds exposed to foam with N2, CO2 demonstrated similar 

behavioral responses such as headshakes, loss of posture, wing flapping except gasp ing 

in the case of CO2 infused foam [59].  

 The advantages of foam based depopulation methods are reduction in human 

exposure to birds infected with zoonotic diseases like HPAI, alternative to gas inhalation 

methods, and useful for poultry houses that cannot be effectively sealed [47, 59]. The 

methods available for eliminating caged laying hens at times of disease epidemics and 

natural disasters are limited. Unlike floor pens, layer cage houses present a different 

challenge for foam depopulation due to high stocking densities (100,000 or more layers 

per house), mesh cage floors preventing foam build up, and are multi-tier buildings (5-10 

tiers of cages) limiting access to foam [60]. Foam produced using aspirated nozzles or 
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high expansion generators are not suitable for use in commercial cage layer operations.  

Compressed air foam system (CAFS) 

 A CAFS produces finished foam by mixing of compressed air with foam solution 

in a mixing chamber and firefighting hoses [61]. The finished foam thus produced is 

known as compressed air foam (CAF). The finished foam is discharged using 

firefighting hoses. The components of a typical CAFS unit are (1) a water tank, (2) a 

foam concentrate tank, (3) a gasoline engine, (4) a water pump, (5) a foam proportioner, 

and (6) an air compressor [56]. 

Contrary to CAFS, general air mixture system (GAMS) is more traditional 

method of foam generation [62] in which foam is produced within the nozzle by drawing 

air into an aqueous foam solution [63]. The foam thus produced is commonly known as 

aspirated foam. An aspirated foam drains faster than CAF [63]. On the other hand, CAF 

has uniformly distributed bubble size which results in lower drainage rate [64]. It 

enhances stability of CAF [62, 65]. In a CAFS unit, the proportion of foam concentrate 

into aqueous foam solution can be altered using a foam proportioner. Other factors like 

flow rates of foam water solution and compressed air can be adjusted to alter foam 

characteristics such as the expansion ratio [57, 65]. A CAFS unit allows production of 

different kinds of foam as desired. Other advantages of CAFS come from its flexibility. 

In a CAFS unit, being a closed system, gases such as CO2 and N2 can replace 

compressed air to make a foam infused with gases.  

Low Atmospheric Pressure Stunning (LAPS) 

   The method of stunning chickens by a gradual reduction of air pressure and a 
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subsequent decrease in partial pressure of oxygen (pO2) using a vacuum pump is known 

as LAPS [66-68]. When the threshold of a minimum pO2 is reached diffusion of oxygen 

from alveoli (in lungs) into blood (in capillaries) ceases. The animal suffers from 

hypobaric hypoxia and loses consciousness [69]. Purswell et al. [70] reported 100% 

death of broilers subjected to negative air pressure of 17.8 kPa. In the same study, 

Purswell and colleagues determined the maximum air pressure for 99.99% mortality of 

broilers to be 19.4 kPa. In the studies by McKeegan et al. [67]; Mackie and McKeegan 

[69]; Martin et al. [71] the total time period for each LAPS cycle was 280 s. The AVMA 

Guidelines for Humane Slaughter of Animals [68] has mentioned LAPS as a means of 

killing broiler chickens. The USDA has provided “no objection” status to LAPS for its 

application in broiler slaughter plants in the U.S. [67]. 

 

Poultry Welfare 

 Hans Selye [72] developed the “general adaptation syndrome” model to explain 

the response of an organism to nocuous agents. He later termed it “stress” [73]. Moberg 

[74] defines stress as a biological response of an individual to challenges to its 

homeostasis. Welfare is a state with no stress or a low level of stress [75].  

Methods used for poultry euthanasia and depopulation should present minimum 

challenges to their welfare [11]. Birds should lose consciousness as quickly as possible 

without unnecessary fear, aversion, pain, and distress [76]. During emergencies such as 

an outbreak of HPAI, natural disasters like hurricanes and floods, the goal is to rapidly 

exterminate flocks to minimize their suffering and contain the disease. While doing so, 
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measures are taken giving due consideration to the welfare of birds as feasible.  

However, procedures like handling and catching are stressful to poultry [77, 78]. 

Similarly, procedures such as exposure of poultry to gases or foam, and shutting off 

ventilation are likely to stress to these birds. Stressed animals exhibit behavioral and 

physiological responses to stressors [79, 80]. Assessment of such stress responses is vital 

for evaluating welfare of animals [81]. There are multiple indicators of stress in animals, 

such as biochemical, immunological, neuroendocrine parameters, and behavioral tests 

and observations [74, 82]. Evaluation of a single parameter does not provide a complete 

and accurate description of the welfare of birds [75, 83].  Assessment of physiological 

and behavioral responses are keys to understand bird welfare.  

 

Physiological Responses to Stress 

The physiological responses of animal to stressors are mediated mainly by two 

mechanisms: (1) sympathetic-adrenalmedullary (SAM) axis or “Fight or Flight” 

response (2) hypothalamo-pituitary-adrenal (HPA) axis [84, 85]. These two mechanisms 

have complementary actions for retaining or restoring homeostasis during stress [86]. 

The SAM axis acts by releasing catecholamines while effects of the HPA axis are 

mediated by glucocorticoids [75]. In addition to glucocorticoids and catecholamines, 

effects of stressors on serotonin (5-HT) and the serotonergic system have been reported 

[87, 88]. Leonard [89] in his review on the interaction between 5-HT and the HPA axis 

reported that stressors like restraining and electric shocks increase serotonin levels in 

brain.   
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Sympathetic-adrenalmeduallary (SAM) axis 

 Walter Cannon [90] summed up the phenomenon of increased secretion of 

adrenaline during fear, pain, rage and asphyxia as the “fight or flight” response. Such 

responses are mediated by the release of catecholamines (adrenaline, noradrenaline, 

dopamine) from chromaffin cells of the adrenal medulla and adrenergic neurons of the 

central and sympathetic nervous systems (CNS and SNS) [85]. Noradrenaline (or 

norepinephrine) is a precursor to adrenaline (ADR or epinephrine) synthesis and a 

neurotransmitter in the SNS [91]. Hypoglycemia (low blood sugar levels), glucopenia 

(condition of hypoglycemia), immobilization (shackling, restraining), and emotional 

stressors like fear and anxiety increase levels of ADR in the peripheral blood. On the 

other hand, physical stressors like cold, pain, immobilization results in rapid release of 

NA [91]. The measurement of concentration of catecholamines is an indicator of stress 

in animals. However, rapid secretion of hormones and their short half-life of 10-30 s 

followed by immediate metabolism and elimination affect their measurement in plasma 

and serum [92].   

Hypothalamo-pituitary-adrenal (HPA) axis 

The anatomic structures that comprise the HPA axis are paraventricular nucleus 

(PVN) of hypothalamus, anterior lobe of pituitary gland and adrenal gland [84]. 

Corticotropin-releasing factor (CRF) is the major regulator of the HPA axis. When 

animals are under stress CRF is released from the PVN of hypothalamus and through 

blood circulation reaches anterior lobe of pituitary gland. Adreno-corticotropic hormone 

(ACTH) is released by the pituitary gland which is carried by systemic circulation to the 
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adrenal cortex. The binding of ACTH to its receptors in the cortex of the adrenal gland 

induces synthesis and release of glucocorticoids. Cortisol (predominant in humans) and 

corticosterone (common in rodents, birds and reptiles) are the most common 

glucocorticoids [93].  

Corticosterone 

 An assessment of the concentration of corticosterone (CORT) in the peripheral 

circulation is a method to evaluate the stress response [75]. In poultry, CORT is the 

major glucocorticoid released in response to stressors. Scanes [75] has reviewed 

literature on the responses of CORT to different stressors in poultry. The stressors such 

as light source [94], heat and cold [95], immobilization [96], fasting [97], molting [98], 

and shackling [99] have been reported to increase concentrations of CORT in peripheral 

circulation. Altholtz et al. [100] observed a higher CORT levels in the rats, euthanized 

by a 70%:30% CO2:O2 mixture compared to isoflurane administration. The elevated 

CORT level is vital for coping with stress by inducing glucose synthesis, lipolysis, and 

protein degradation [75].  

Serotonin  

Serotonin or 5-hydroxytryptamine (5-HT), is found in both plants and animals 

[101] and functions as a neurotransmitter, a hormone, and a mitogen [102, 103]. 

Serotonin, a biogenic monoamine, has roles in central nervous, digestive, and 

cardiovascular systems [104]. Only 2% of total body’s 5-HT is found in the CNS [105]. 

The effects of the remaining 98% of body’s serotonin are outside the CNS. 

Vasoconstriction, vasodilation, gastrointestinal motility, platelet aggregation, 
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hemostasis, regulation of heart rate, and glucose and lipid metabolism are some of the 

effects of 5-HT in peripheral tissues [105, 106]. Serotonin in the brain has behavioral 

effects such as appetite, mood, memory, fear, anxiety, anger, and addiction. The 

physiological processes like circadian rhythms, respiratory drive, motor control, body 

temperature, and CNS vascular tone are also affected by 5-HT in CNS [106].  

 

Behavioral Responses 

Different studies have reported behavioral responses such as head shaking, 

gasping, ataxia, loss of posture, and motionlessness in poultry subjected to euthanasia 

and depopulation methods [38, 107-109]. Head shakes, gasping, and depressed 

respiration are indicators of respiratory distress [40]. The formation of carbonic acid 

upon exposure of mucous membrane to CO2 results in aversive responses in animals 

[110]. In addition, birds have intrapulmonary chemoreceptors sensitive to CO2 [111]. 

Therefore, head shaking, gasping, and sneezing are more common in birds exposed to 

CO2 [112,113]. On the other hand, inert gases like N2 or Ar elicited fewer head shakes in 

birds [108]. Further exposure to these gases results in ataxia or loss of muscle 

coordination. Ataxia is shown by animals prior to loss of posture [114]. Signs like 

dizziness, staggering, swaying of body and/or head, attempts to stand or sit indicate 

ataxia [69]. Loss of posture is an indicator of unconsciousness in poultry depopulation 

trials [107]. Finally, after the end of convulsive movements the animals are in a state of 

motionlessness. Motionlessness is the visible absence of respiratory movement in an 

animal [69, 115].  
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Loss of posture and onset of terminal convulsions cannot be evaluated in birds 

immersed in water based foam [116]. The clonic and tonic convulsions are followed by 

relaxation and death [117]. The termination of these neuromuscular spasms or cessation 

of movement is an indicator of brain death [118]. Accelerometers can detect changes in 

velocity as a result of motion. Dawson et al. [116,119] demonstrated that accelerometers 

can detect cessation of movement (COM) in broilers subjected to foam depopulation. In 

case of gas inhalation and LAPS, loss of posture and motionlessness can be determined 

by visual observations. Video recording is a useful tool for measuring latencies to these 

behaviors. Vizzier-Thaxton et al. [66] observed the average time from the first 

movement to loss of posture to be 64.9 s in broilers subjected to LAPS. Behavioral 

responses of broilers in LAPS were different from birds exposed to the control 

atmospheric stunning [66]. Male broiler chickens during LAPS displayed a consistent 

pattern of behavioral signs: ataxia, loss of posture, clonic and tonic convulsions, leg 

paddling, and motionlessness [69, 71].  

Outbreaks of reportable diseases and the growing public sentiment on methods 

and practices used in the poultry industry such as euthanasia are key challenges faced by 

the poultry companies today. The solutions to these issues can only come from scientific 

and rationale studies on alternative and innovative methods. The study aimed to develop 

novel methods for industry applications for the purposes of euthanizing day-old male 

layer chicks and depopulating caged layer hens. The experiments were designed to meet 

specific objectives of developing compressed air foam system for caged layer hen 

depopulation, infusing gases into the foam to reduce physiological stress and shorten 
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time to death, and evaluating the physiological and behavioral responses of male layer 

chicks to gas inhalation and LAPS methods of euthanasia.  
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CHAPTER II 

DEPOPULATION OF CAGED LAYER HENS WITH A COMPRESSED AIR 

FOAM SYSTEM 

 

Description of Problem 

The U.S. poultry industry has faced disease outbreaks and natural disasters that 

require flocks to be destroyed. Natural disasters such as hurricanes and floods cause 

damage to poultry houses, feed mills, roads, and power lines leading to the emergency 

killing of flocks to prevent further suffering [47]. Reportable poultry diseases such as 

highly pathogenic avian influenza (HPAI), exotic Newcastle disease (END), avian 

infectious laryngotracheitis, avian infectious bronchitis, and mycoplasmosis are also 

threats to the poultry industry [15]. The last reported US END outbreak was in 2002-

2003 in California which resulted in the loss of 3.16 million birds and $161 million [21]. 

Most recently, the U.S. poultry industry lost 43 million layer and pullet hens, and 7.4 

million turkeys during the 2014-2015 HPAI outbreak [120]. The layers and turkeys lost 

alone were worth $1.6 billion, and the overall economic losses were estimated to be $3.3 

billion [18, 19].  

Euthanasia is the act of terminating the life of an animal in a way that involves 

minimum pain and distress [11]. Euthanasia, meaning a good death, is distinct from 

depopulation. Depopulation is an emergency measure used to rapidly kill animals with 

as much consideration given to their welfare as possible [11, 55]. Elimination of poultry 

infected or at risk of infection from HPAI is a primary US animal health policy to 
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control and eradicate the virus [28]. Therefore, birds within a three kilometer radius of 

an infected zone are killed and disposed of. Methods used for mass depopulation of 

poultry depend upon the species, housing type, age of bird, ambient temperature and 

available carcass disposal methods [47].  

The AVMA has approved carbon dioxide (CO2) inhalation as a means of 

euthanizing poultry [11]. Carbon dioxide is an analgesic and anesthetic gas [112, 121]. 

Exposure to CO2 inhalation induces hypercapnic hypoxia in birds which results in rapid 

unconsciousness and ultimately leads to death [35]. However, mammals and birds show 

aversive responses to CO2 inhalation [108]. Humans exposed to CO2 concentrations 

between 40 and 55% experienced painful sensations [122] due to acidification of 

respiratory mucosa upon exposure to CO2 [110]. Birds experience respiratory distress 

such as gasping (breathlessness) and deep breathing while remaining conscious [59]. 

Birds exposed to liquid CO2 may also suffer from cold stress [123]. The use of CO2 

inhalation may not be suitable for some types of poultry houses due to differences in 

construction. The method requires effective sealing of poultry houses, special 

equipment, and the rapid flow of a large volume of gas over the birds [47, 59]. 

Application of CO2 also presents a safety risk to human personnel involved [59]. 

Water-based foam is a suitable depopulation alternative to CO2 inhalation of 

floor reared poultry [55]. Foam is a collection of air-filled bubbles derived from a 

solution of detergents and water [47, 62]. Foam has been widely used by firefighting 

departments for extinguishing fires [65, 124]. Water-based foam depopulation was 

developed in response to the 2004 Delmarva AI event [47]. Broilers and turkeys are 
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immersed in foam which blocks the respiratory tract resulting in hypoxia, leading to a 

loss of consciousness, convulsions, cerebral death, and cessation of cardiac activity  [54]. 

However, depopulation of caged layer hens poses a different challenge. Foam developed 

for the floor reared poultry is a wet foam that drains quickly through mesh cage floors 

making it unfit for cage layer houses. Furthermore, commercial cage farms have high 

stocking densities (100,000 or more layers per house) and are multi-tier buildings (5-10 

tiers of cages) which limit access to foam [60]. The outbreak of a disease, like avian 

influenza, in a caged layer facility would be the worst case scenario; as a large number 

of birds would have to be depopulated rapidly, safely and humanely.  

The methods used for mass depopulation should be efficient and give due 

consideration to personnel safety and bird welfare. Birds subjected to euthanasia and 

depopulation methods suffer stress until they lose consciousness. It is vital for a 

depopulation method to result in a quick death to minimize suffering and contain the 

spread of viruses. Birds undergo clonic and tonic convulsions upon a loss of 

consciousness during euthanasia [116, 125]. Termination of such neuromuscular spasms 

(or cessation of movement) is an indicator of brain death [118]. Birds engulfed by foam 

cannot be visually evaluated for behavioral changes such as loss of posture, onset and 

cessation of convulsions. Accelerometers are sensors that measure changes in velocity 

due to movement [126]. Dawson and colleagues [116, 119] determined time to cessation 

of movement of broilers subjected to water-based foam depopulation based on their 

accelerometer data. Physiological responses of birds to stress are mediated by the limbic 

hypothalamo-pituitary-adrenocortical (HPA) axis and sympathetic-adrenalmedullary 
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(SAM) axis [84, 85]. The effects of HPA axis are mediated by release of glucocorticoids, 

like corticosterone, in response to stress [84, 127]. Serum corticosterone is a common 

physiological parameter used to assess welfare in birds [128-131]  

Benson and colleagues [47] reported the use of compressed air foam (CAF) for 

broiler depopulation. A CAF system uses energy to make foam from the compressed air. 

A CAF system consists of a centrifugal water pump, a foam concentrate proportioner, an 

air compressor and a mixing chamber [61, 62]. In a CAF system, compressed air agitates 

a foam solution in a mixing chamber to produce a thick foam [61]. The ratio of aqueous 

foam solution and compressed air can be adjusted in a CAF to produce a drier or wetter 

foam [64, 65]. Ideal foam for cage operations (conventional, colony or enriched colony) 

would be one that has a longer dewatering time and at the same time has a small bubble 

size, since such foam would persist long enough in cages depriving birds of oxygen 

ultimately leading to death from mechanical hypoxia [132]. Compressed air foam has a 

uniform bubble size and better stability than air-aspirated foams [64].  

We hypothesized that a compressed air foam is a rapid and humane means for 

caged layer hen depopulation. The specific objectives of this study were to determine 

and compare serum corticosterone levels and time to cessation of movement of birds 

subjected to CAF, CO2 inhalation, and negative (NEG) control treatments. Hens 

subjected to CAF and CO2 treatments were necropsied to evaluate signs of trauma or 

presence of foam in the respiratory tract.  
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Materials and Methods 

Experimental Animals 

Lohmann LSL young and spent hens were obtained from an egg integrator and 

housed in the Texas A&M University Poultry Science Research, Teaching, and 

Extension Center layer barn prior to trials. The young hens were 20 weeks of age while 

the spent hens were 76-95 weeks old. All birds were cared for under an approved TAMU 

Institutional Animal Care and Use Committee protocol.  

Experiments 

 Based on the objectives of the study, two separate experiments were carried out. 

The objective of experiment 1 was to evaluate corticosterone (CORT) levels while that 

of experiment 2 was to determine time to cessation of movement (COM). Young and 

spent hens were the test subjects in experiment 1 while only spent hens were used in 

experiment 2. Birds in experiment 1 were subjected to five treatments: NEG control, 

CO2 added to a chamber after bird placement, pre-charged CO2 chamber, CAF in cages, 

and CAF in a chamber. Twelve young hens and thirteen spent hens were subjected to 

each of the five treatments. Experiment 2 consisted of three treatments: CO2 added to a 

chamber, CAF in cages, and aspirated foam in a floor pen. The number of spent hens 

randomly assigned to each of the three treatments in experiment 2 was 16. The 

concentration of CO2 in both experiments was 100%. A 55-gallon (208 liters) chamber 

was used for application of treatments in both experiments. Hens in the NEG control 

group were handled normally and placed in cages. Compressed air foam was filled into 

the cages of hens assigned to the CAF in cages group. In experiment 2, hens allocated to 
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the aspirated foam treatment were placed in a floor pen of the dimensions of 2.44 m × 

2.44 m. The conventional cages used in the CAF in cages treatment, in both trials, were 

positioned 0.1524 m above a plywood platform to simulate a layer house manure belt. 

Foam Production 

The CAF unit (Rowe CAF LLC, Washington, AR ) consisted of a 0.03 cubic 

meter per second rotary screw air compressor (Vanair Inc., Michigan City, IN), a 29.42 

kW (40 HP) gasoline engine (Kohler, WI), a 9.46 liter per second centrifugal water 

pump (Hale Products, Inc., Ocala, FL), and a foam concentrate proportioner (0.1% - 

10%; FoamPro, Kingston,NY). Water for the CAF was supplied from a 1135.62 liters 

tank. A 37.85 liters foam cell contained the foam concentrate necessary for the 

experiment. A Class A foam concentrate (ICL Performance Products, Rancho 

Cucamonga, CA) was used at 3.5% in the CAF and 1% in the aspirated foam. Foam 

concentrate was injected by the proportioner into the water manifold of the CAF unit. A 

separate air manifold supplied compressed air to the mixing chamber. These three 

constituents of foam were agitated in the mixing chamber of the CAF unit. The flow of 

air and water into the mixing chamber was adjusted to produce a foam of the desired 

consistency and thickness. The finished CAF was released from a 3.81 cm CAF unit 

through a 15 m long and 3.81 cm internal diameter firefighting hose attached to a 6.4 cm 

wide and 6 m long suction hose. An aspirated nozzle (Spumifer American Company, 

Ridgefield Park, NJ) was used to produce the finished foam which is commonly used for 

depopulation of floor reared broilers and turkeys.  
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Experiment 1 

Serum CORT levels of young and spent hens were evaluated in this trial. A total 

of 65 spent hens and 60 young hens were used. Blood samples were collected from the 

right jugular vein of live birds in the NEG control group and by severing the femoral 

artery of recently killed birds in the rest of the treatment groups. Blood was allowed to 

clot for 1 hour at room temperature and transported on ice to the laboratory. The blood 

was stored at 4°C for 24 hours. Serum was collected by centrifuging blood at 1000×g 

for 15 min. Serum corticosterone was evaluated by competitive ELISA kit ADI-901-097 

(ENZO Life Sciences, Farmingdale, NY) according to the instructions from manual. 

Samples were run in duplicate. Absorbance was measured for each sample using a plate 

reader at 405 nm (BioTek Instruments, Inc., VT). A four-parameter logistic regression 

model was used for curve fitting to interpolate the CORT levels from absorbance 

readings for each individual experimental subject. Intra-assay variability was 2.8% and 

inter-assay variability was 7.2%. 

Experiment 2 

The trial was conducted to determine time to cessation of movement of laying 

hens subjected to each depopulation treatment. Accelerometer data loggers (HOBO 

Pendant G, Onset Computer Corporation, MA) were attached to the shanks of each bird 

by zip ties to measure changes in the movement as hens were exposed to the treatments. 

The accelerometers were programmed to start logging data every second. The end point 

of convulsive movements was determined as the point where a flat line (no signal) was 

recorded. The time-interval between application of treatment until loss of body 
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movement was determined for each hen. Forty-eight spent hens were used in total in this 

trial. 

Postmortem Examination 

Gross necropsy was performed on spent hens subjected to foam or CO2 

treatments in experiment 1. Respiratory tracts were visually evaluated for signs of 

physical injury or presence of foam.  

Statistical Analysis 

In experiment 1, samples with concentrations outside the range of the standard 

curve were removed from the study. Therefore, in case of pullet hens 4 samples were 

removed from CO2 in cage group and one sample was omitted from negative control 

group. In case of spent hens all treatments had 13 samples each except CAF in a 

chamber group which had 12 samples. So, statistical analyses were performed on CORT 

values of serum samples from a total of 55 young and 64 spent hens. Statistical analyses 

of CORT and time to COM data were done by one-way ANOVA using the PROC 

ANOVA procedure (SAS 9.4, Cary, NC). Means deemed significant were further 

evaluated using Fisher’s LSD post-hoc test. The tests were carried out at the 5% level of 

significance (α = 0.05).  

 

Results and Discussion 

Serum Corticosterone Concentrations 

The mean serum CORT concentration of young hens subjected to the NEG 

control, CO2 added to a chamber, CO2 pre-charged chamber, CAF in cages, and CAF in 
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a chamber treatments were 3.8 ng/mL, 4.8 ng/mL, 2.9 ng/mL, 3.4 ng/mL, and 7.02 

ng/mL respectively (Figure 2). There were no statistically significant differences in 

serum CORT concentration of young hens subjected to the five treatments (P = 0.569). 

The stress responses of the young hens to gas inhalation and compressed air foam 

treatments were comparable to the NEG control group. Unlike the young hens, a 

statistically significant difference was observed in the CORT concentrations of spent 

hens among the treatment groups. Birds in the CAF in a chamber group had significantly 

higher CORT levels (P = 0.0005) than hens in the remaining four treatment groups. The 

mean serum CORT concentrations of spent hens assigned to CAF in a chamber group 

was 27.1 ng/mL while that of the NEG control, CO2 added to a chamber, CO2 pre-

charged chamber, and CAF in cages were 5.0 ng/mL, 5.5 ng/mL, 2.6 ng/mL, and 6.8 

ng/mL respectively.  

Scanes [75] reported that stressors like heat, cold, floor space, restraining, 

catching, shackling, feed restriction, and nutrient deficiency elevates plasma CORT in 

poultry. Exposure to CO2 causes pain or distress in animals [133]. Results of the CORT 

experiment suggest that poultry subjected to CAF might also elicit stress response due to 

fear and anxiety. The results of the CORT assay trial demonstrates that CAF in a 

chamber method was significantly more stressful for spent hens than the CO2 inhalation, 

CAF in cages, and NEG control treatments. However, the serum CORT levels of young 

hens as well as spent hens subjected to CAF in cages were similar to the NEG control 

and CO2 inhalation treatments. Benson and colleagues [47] reported that serum CORT 

levels of broilers had no statistically significant difference among foam alone, foam with 
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CO2, and the CO2 polyethylene tent method. 

 
  

 

Figure 2. Mean serum corticosterone levels of young and spent hens.  

The CORT concentrations were measured in duplicates and expressed in ng/mL. Bars 

(mean ± SEM) with different superscripts (a, b) are statistically significantly different by 
Fisher’s LSD test (P < 0.05). Young and spent hen trials were conducted separately. 

Number of young and spent hens per treatment were 12 and 13 respectively. 
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Time to Cessation of Movement 

Birds undergo terminal convulsive movements after the onset of unconsciousness 

until they become motionless [116]. The termination of clonic and tonic phase of 

convulsions is known as cessation of movement. The times to COM of spent hens 

subjected to the CAF in cages, CO2 added to a chamber and aspirated foam in floor pens 

were determined based on accelerometer readings (Figure 3). The average time to COM 

was 90 s for birds treated by carbon dioxide in a chamber, 195 s for birds in CAF in 

cages, and 192 s for hens subjected to aspirated foam. A statistically significant 

difference in mean time to COM was observed among the three treatments (P < 0.05). A 

post hoc Fisher’s LSD test revealed that cessation time of hens subjected to carbon 

dioxide added to a chamber was significantly shorter than that of hens in the CAF in 

cages and aspirated foam groups. Based on electrocardiography (ECG) readings, Benson 

et al. [47] reported that time to cessation of cardiac activity of broilers subjected to foam 

with CO2, foam without CO2, and the polyethylene tent method were 73 s, 64 s, and 139 

s respectively.  

In our study, the times to cessation of movement of spent hens assigned to CAF 

in cages and aspirated foam treatments were within the ranges reported in previous 

studies. Dawson et al. [116] reported the time to cessation of movement of broilers 

subjected to water-based foam to be in range from 25 s to 179 s. In our study, spent hens 

depopulated using carbon dioxide gas took significantly less time to become motionless 

than hens subjected to the aspirated foam and CAF in cages. The data suggest that hens 

in the CO2 added to a chamber group lost consciousness in a shorter time period. Mean 
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cessation times of spent hens belonging to the CAF in cages and aspirated foam 

treatments were not significantly different. Wing flapping and struggling of the hens 

may have agitated foam bubbles creating air pockets in foam treatments. The time taken 

for foam to fill the cages and form a blanket of foam around the birds was longer than 

filling of the chamber with CO2, which may suggest a second reason for increased 

cessation times in both of the foam treatments. 

 
 

  

Figure 3. Average cessation times of spent hens. 

Time to cessation of movement is also known as cessation times. The treatments were 
CO2 added to a chamber, CAF in cages, and aspirated foam treatments. Bars (mean ± 
SEM) with different superscripts (a, b) have statistically significant difference by 

Fisher’s LSD test (P < 0.05). Sixteen spent hens per treatment were used in this trial. 
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Gross Necropsy Findings 

 In the CORT trial, gross necropsy of hens subjected to CAF and CO2 treatments 

was performed. The trachea, syrinx, and bronchi were evaluated for signs of 

hemorrhage, presence of foam, and the presence of blood. Foam was present within the 

first 5 cm of the upper trachea of all hens in the foam treatments. There were no signs of 

trauma or injury in the airways of hens since no blood or hemorrhages were found on 

necropsy. The hens randomly assigned to the CO2 added to a chamber, and CO2 pre-

charged chamber groups had no signs of hemorrhage or injury to the respiratory tract. 

Birds exposed to CO2 treatments died from hypercapnic hypoxia. The cause of death of 

all hens subjected to the CAF treatments was due to occlusion of airways by foam 

leading to hypoxia. Benson et al. [47] reported that broilers subjected to foam died due 

to mechanical hypoxia. In the same study, Benson and colleagues showed that foam was 

present in the trachea and lungs of broiler chickens. Blood was found in the syrinx, 

bronchi, and lungs upon histological examination. Raj et al. [58] conducted a trial to kill 

end-of-lay hens using a dry nitrogen foam in which they observed foam bubbles around 

the larynx and upper part of trachea. McKeegan et al. [59] in their study on gas filled 

high expansion foam observed small foam bubbles in trachea and tracheal openings of 

broilers exposed to high expansion nitrogen foam.  

 The CORT and COM trials data suggests that CAF applied in cages is a viable 

alternative to CO2 inhalation for mass depopulation. Use of CAF for depopulation does 

not require manual handling of live birds. Unlike CO2 inhalation, CAF does not present 

safety risks to the personnel involved. In addition, a CAF can be used as a means for 
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cleaning and disinfection of infected premises after completion of depopulation and 

disposal of the carcasses [135]. The paper is the first peer reviewed manuscript on the 

application of CAF as a means of depopulation of caged layer hens.  
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CHAPTER III 

CARBON DIOXIDE AND NITROGEN INFUSED COMPRESSED AIR FOAM 

FOR DEPOPULATION OF CAGED LAYING HENS 

 

Description of Problem 

The U.S. poultry industry lost 50.4 million birds (layers, turkeys, and backyard 

flocks) in 15 states during the 2014-15 highly pathogenic avian influenza (HPAI) 

outbreak [120]. The overall economic loss was estimated to be $3.3 billion [18]. Besides 

HPAI, outbreaks of other reportable diseases like exotic Newcastle disease (END), 

infectious laryngotracheitis, mycoplasmosis, and Marek’s disease have occurred in the 

past and pose significant risks to the industry [15]. The 2002-2003 California END 

outbreak resulted in the loss of 3.16 million birds and cost $180 million in federal money 

to remediate [136]. Protecting poultry from reportable diseases is still a major challenge 

facing the industry today [137]. 

Euthanasia and depopulation methods are followed to eliminate animals infected 

or suspected of infection after confirmation of a reportable disease. The AVMA defines 

euthanasia as an act of killing animals in a way that causes no or minimum pain and 

suffering. Depopulation, on the other hand, refers to an emergency measure to rapidly 

eliminate animals with as much consideration given to their welfare as possible [11].  

These methods are vital for controlling the multiplication and spread of a reportable 

disease. The Animal and Plant Health Inspection Service (APHIS) depopulation goal 

during a HPAI outbreak is to kill infected poultry within 24 hours of a presumptive 
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diagnosis of a case [29]. The timing of depopulation is important to contain the disease, 

prevent further cases of infection, eradicate the pathogen, and facilitate business 

continuity [28].  

 Current depopulation methods are broadly categorized as gas inhalation and 

foam based methods [11, 29]. The most commonly used gas for mass depopulation 

during disease outbreaks is carbon dioxide. Carbon dioxide (CO2) has been widely used 

as a means of euthanizing laboratory animals and stunning broilers, pigs and turkeys in 

slaughter plants  [138, 139,140]. It is an analgesic and anesthetic gas [121] which causes 

rapid loss of consciousness by decreasing intracellular pH [34]. Chickens exposed to 45-

50% CO2 died within 2 to 5 minutes of exposure [141]. Water-based foam has been 

approved as a means for depopulation of floor reared poultry by the [55]. Foam is a 

collection of air filled bubbles produced from a solution of water and foam concentrate 

(detergents). Benson et al. [47] developed water-based foam as a method of 

depopulation in response to the Delmarva AI event in 2004. Poultry houses are flooded 

with the foam which forms a thick blanket around birds. Birds die due to mechanical 

hypoxia as a result of an obstruction of airflow [37, 47]. The advantages of this method 

are minimum safety risks, limited human contact with infected birds, no requirement for 

tight sealing of poultry houses, reduction in dusts and aerosols, and rapid depopulation. 

Ventilation shutdown was recently implemented as a method of depopulation by the 

USDA-APHIS to meet the 24 hour depopulation goal [29]. During ventilation shutdown 

the birds in poultry houses are deprived of natural or mechanical ventilation with or 

without increasing the temperature. The birds ultimately die from hyperthermia.   
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However, these methods have limitations and associated risks to use in 

commercial cage layer farms. The use of CO2 is not suitable for all kinds of poultry 

houses as it requires effective sealing, needs special equipment, and has safety risks for 

the personnel involved [47, 59]. Chickens demonstrate aversive signs to CO2 inhalation 

[142] as they possess intrapulmonary chemoreceptors for the gas [40, 111]. Water-based 

foam is not suitable for commercial caged layer operations. Caged layer houses present a 

different challenge for foam depopulation due to high stocking densities (100,000 or 

more layers per house), mesh cage floors that prevent foam build up, and multi-tier 

buildings (5-10 tiers of cages) which limit access to foam [60]. It is essential to develop 

alternative methods to rapidly and humanely depopulate caged layer hens during disease 

outbreaks. Ventilation shutdown is used only when all other methods are found to be 

inadequate to contain the spread of a pathogen [52, 53]. However, ventilation shutdown 

presents significant challenges to bird welfare. 

A study in our laboratory found that CAF can be used as an alternative method 

for depopulation of caged layer hens (unpublished data). A CAF system is a widely used 

fire extinguishing method which makes use of foam concentrate, water, and compressed 

air to make a finished foam [61, 62, 65]. The foam and water solution is mixed inside a 

mixing chamber with compressed air in a CAF system [61]. The ratio of aqueous foam 

solution and compressed air can be changed as desired to produce a drier or wetter foam 

[64]. It is important that foam used for depopulation in cage operations (conventional, 

colony or enriched colony) has a longer dewatering time and a small bubble size. Such 

characteristics would allow foam to persist long enough in cages, depriving hens of 
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oxygen and ultimately causing their death from hypoxia [132]. Compressed air foam has 

a longer drainage time and uniform bubble size compared to aspirated foam [63]. Gases 

such as CO2 or N2 can be used instead of air to make CAF since a CAF unit is a closed 

system. Benson et al. [47] reported addition of CO2 into the finished CAF using a gas 

injection nozzle for floor reared poultry depopulation. However, the concentration of 

CO2 in the foam was 1% or less as reported by Benson and colleagues [47]. In our study, 

CO2 or N2 was agitated with the aqueous foam solution in the mixing chamber of the 

CAF system to make the finished foam.  

We hypothesized that the addition of 40-50% CO2 in air or 100% N2 to make 

CAF would reduce physiological stress and shorten time to cessation of movement. The 

aim of the study was to evaluate the efficacy of CAF infused with CO2 or N2 to 

depopulate caged layer hens. The specific objectives were to develop CAF with CO2 or 

N2, to evaluate physiological responses of laying hens subjected to the treatments, and to 

determine time to cessation of movement of hens to estimate time to death. 

 

Materials and Methods 

Test Subjects 

A total of 192 Lohman LSL spent hens of 90 weeks of age, were obtained from 

an egg integrator. These hens were housed at a layer barn in the Texas A&M University, 

Poultry Science Research, Teaching and Extension Center. The hens were supplied with 

clean drinking water and a diet that met industry recommendations. These birds were 

cared for following an approved Institutional Animal Care and Use Committee protocol.  
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Experimental Design 

Spent hens were subjected to six treatments. The treatments were a negative 

control (NEG), 50% CO2 in air (CO2), 100% N2 (N2), CAF with air (CAF), CAF with 

50% CO2 (CAF CO2), and CAF with 100% N2 (CAF N2). Four spent hens were chosen 

at random and assigned to each treatment. A total of 24 spent hens were used in each 

replication. The trial was replicated 8 times over a period of 4 months. Hens in the NEG 

group were placed inside the cage for the same duration as other treatments before 

removing them for blood collection. 

Foam Production 

The components of the CAFS unit (Rowe CAFS LLC, Hope, AR) were a 0.03 

m3/s rotary screw air compressor (Vanair Inc., Michigan City, IN), a 29.42 kW (40 HP) 

gasoline engine (Kohler, Kohler, WI), a 0.01 m3/s centrifugal water pump (Hale 

Products, Inc., Ocala, FL), and a foam proportioning unit (0.1% - 10%) (FoamPro, 

Kingston, NY). The foam proportioning unit injected Class A foam concentrate (ICL 

Performance Products, Rancho Cucamonga, CA) into the water manifold of the CAFS 

unit to make a 3.5% foam water solution. An 1135.6 liters water tank installed on the 

trailer bed supplied water for producing foam. A separate air manifold supplied 

compressed air to the mixing chamber from the air compressor. The three constituents, 

air, water, and foam concentrate, were agitated in the mixing chamber of the CAFS unit. 

Foam of a desired consistency and thickness was produced by adjusting the flow of 

aqueous foam solution. A 6.4 cm wide and 6 m long suction hose connected to a 3.8 cm 

CAF system through a 15 m of firefighting hose of the same diameter was used to 
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deliver CAF to the spent hens.  

CAF Infused with Gases 

Liquid CO2 and N2 tanks delivered respective gases to produce CAF CO2 and 

CAF N2 foam. The liquid gases were heated using a 480 volt vaporizer set at 65 °C 

(Thermax Inc., MA) before flowing through mass flow controllers (Alicat, Tucson, AZ). 

In the CAF CO2 treatment, compressed air from the air compressor was first diverted 

through two consecutive water/oil separators, a desiccant dryer and finally a particulate 

filter before flowing through the mass flow controller. The flow rates of CO2 and 

compressed air were same, 0.008 m3/s each, to obtain a gas mixture of equal parts of 

CO2 and air. The gas mixture was then agitated with the foam water solution in the 

mixing chamber to make CAF CO2 foam. The mixing tank was completely emptied each 

time before another gas was filled in. In the case of CAF infused with N2, 100% N2 gas 

was mixed with the foam water solution in a mixing chamber to make CAF N2 foam. 

The flow rate of N2 gas was adjusted at 0.02 m3/s. A 25 kVA diesel engine generator 

(Multiquip Inc., Carson, CA) supplied power necessary for the vaporizer and mass flow 

controller. An infrared CO2 analyzer was used to measure the concentration of the gas in 

the finished foam (Servomex, Crowborough, UK).  

Gas Inhalation Treatments 

Thick polyethylene was fixed to the sides of a cage to make a closed chamber for 

the 50% CO2 and 100% N2 treatments. The gases were introduced into the chamber 

using the same hoses used for application of the foam treatments. 
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Measurement of Expansion Ratio and CO2 Concentration 

Foam samples were collected in 125 liter containers. The foam was allowed to 

dewater overnight and the aqueous foam solution at the bottom of the container was 

measured using a graduated cylinder. The same procedure was followed for all three 

kinds of foam samples, CAF, CAF CO2, and CAF N2. The expansion ratio was 

calculated as the ratio of the volume of the finished foam to the volume of aqueous foam 

solution.  

Foam samples from CAF CO2 treatment were collected in 3.8 liter zip-lock bags. 

These bags were sprayed with a 10% anti-foam solution (Sigma-Aldrich, St. Louis, MO) 

to allow foam bubbles to rupture releasing CO2 for measurement of the gas 

concentration in the samples. The infrared CO2 analyzer was calibrated using 80% CO2 

prior to the measurements. A 20-gauge needle, connected through a delivery hose to the 

analyzer, was inserted into the top of each sample bag headspace for measurement of the 

CO2 levels. Four samples were measured in each replication.  

Assessment of Stress Hormones 

Blood samples were collected from each individual bird postmortem by severing 

the femoral artery, except in the NEG group. Blood was collected from the jugular vein 

of birds in the NEG group. The blood samples were allowed to clot overnight before 

being centrifuged at 1000 × g for 10 minutes at 4° C to collect serum. Serum 

corticosterone (CORT) and serotonin (5-HT) levels were determined using competitive 

ELISA assay kits ADI-901-097 and ADI-900-175, respectively (Enzo Life Sciences, 

Farmingdale, NY) according to the manufacturer’s directions. Three spent hens 
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subjected to the CAF treatment and one exposed to CAF CO2 treatment had survived. 

Two blood samples of hens in the negative control and one sample in the CAF treatment 

group did not yield enough serum. Therefore, out of total 192 spent hens used in the 

study, only 185 serum samples were used in ELISA. In order to assess the 5-HT levels, 

sixteen serum samples from each treatment group were used except CAF CO2 treatment 

(only 15 samples due to availability). Hence, the total number of samples for 5-HT 

assays was 95. Serum samples were run in duplicates for the CORT and 5-HT assays. 

The intra-assay and inter-assay variability of the corticosterone assay were 2.25% and 

8.3% respectively. The intra-assay and inter-assay variability of the 5-HT assay were 

2.3% and 5.7% respectively. 

Determination of Cessation of Movement 

In each of the six treatments, accelerometers were attached to the shank of each 

bird individually before placing them into a cage. However, data from spent hens in the 

NEG group were not used for statistical analysis. Time to cessation of movement (COM) 

was determined based on the accelerometer readings. The time to COM was calculated 

as the difference in time from the application of treatment to cessation of convulsive 

movements as indicated by a flat line in the accelerometer readings. Three spent hens in 

the CAF treatment and one in the CAF CO2 treatment had survived the process. In 

addition, accelerometers fell off the shank of three hens exposed to CO2 treatments and 

one off the hen subjected to CAF. Therefore, data was collected from 152 spent hens 

only. 
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Statistical Analysis 

All data collected on CORT and 5-HT concentrations as well as time to COM 

from accelerometers were compiled in a spreadsheet (MS-EXCEL, Microsoft, Santa 

Rosa, California). Tukey’s boxplot method was followed to identify four outliers from 

CAF CO2 and one each from CAF and N2 treatment groups. These outliers were 

removed and CORT levels of 179 samples were used in the statistical analysis. 

Statistical analysis of the CORT data was done using Welch’s ANOVA following the 

PROC ANOVA procedure (SAS 9.4, Cary, NC) since these data violated homogeneity 

of variance assumption. For all other data on expansion ratio, 5-HT levels, and time to 

COM were analyzed using traditional one-way analysis of variance following PROC 

ANOVA procedure. Means deemed significant were further analyzed using Fisher’s 

LSD test. All statistical tests were conducted at 5% significance level.  

 

Results and Discussion 

Foam Quality Parameters 

 Expansion ratios of all three kinds of foam and concentration of CO2 in the CAF 

CO2 foam were determined (Figure 4). The addition of CO2 in the foam, CAF CO2, 

significantly decreased the expansion ratio of the finished foam compared to CAF and 

CAF N2 (P = 0.004). The mean expansion ratios of CAF, CAF CO2, and CAF N2 were 

measured to be 111:1, 66:1, and 111:1 respectively. The average CO2 concentration 

achieved in the CAF CO2 foam across the eight replications was measured at 43%. 

However, the mass flow meter was set to obtain a 50/50 blend of CO2 and air. This 



 

47 

 

discrepancy could be due to sample contamination and intact foam, which did not 

release enough gas for measurement from the headspace.   

Expansion ratio is one major factor affecting foam viscosity [57]. Low-expansion 

foams have lower viscosity [143] and hence, they drain faster. In commercial layer 

operations, foam should be stable in cages for considerable period to cause death of birds 

by mechanical hypoxia. The probable mechanism for a decrease in the expansion ratio of 

CAF CO2 foam is the reduction of pH of foam solution due to the formation of carbonic 

acid. Carbon dioxide gas when reacts with water forms carbonic acid, H2CO3. 

Preliminary works on measurement of pH of compressed air foam with and without CO2 

had determined the values to be 5.8 and 8.1 respectively (unpublished data).  
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Figure 4.  Mean expansion ratios of the three types of foam.   

The three foam treatments were CAF with air, CAF with CO2, and CAF with N2. 
Expansion ratio is the ratio of volume of finished foam to volume of aqueous foam 

solution.  Bars (mean ± SEM) with different superscripts (a, b) are significantly different 
by Fisher’s LSD test (P < 0.05).  The number of samples per treatment was 8.   
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CORT binds to the intracellular glucocorticoid receptors. Glucose synthesis, lipolysis, 

and protein degradation are some of the effects of CORT to cope with stressors [84]. 

The mean CORT levels of spent hens subjected to NEG, CO2, N2, CAF, CAF 

CO2, and CAF N2 treatments were 12.1 ng/mL, 8.4 ng/mL, 8.5 ng/mL, 8.4 ng/mL, 8.0 

ng/mL, and 6.8 ng/mL respectively (Figure 5). The CORT values of spent hens in all six 

treatment groups had no significant differences (P = 0.1249). The CORT level of spent 

hens subjected to the NEG group was numerically higher than the rest of the treatment 

groups. On the other hand, the spent hens in the CAF N2 group had numerically the 

lowest CORT concentration among all six treatments. The three foam treatments CAF, 

CAF CO2, and CAF N2 did not differ among themselves (P > 0.05). The infusion of 

gases into CAF did not bring significant changes in the CORT concentration of spent 

hens as compared to the CAF treatment. The CORT concentration of spent hens 

subjected to foam treatments (CAF, CAF CO2, and CAF N2) did not differ significantly 

with that of the birds in gas inhalation treatments, CO2 and N2 (P > 0.05). These findings 

indicate that foam treatments are similar to the AVMA approved poultry euthanasia 

method of gas inhalation. Benson et al. [47] observed no significant differences in serum 

CORT levels of broilers among foam, foam with CO2, and CO2 polyethylene tent 

treatments. A study in our lab reported no significant differences in the serum CORT 

concentrations of young hens subjected to the negative control, CO2 inhalation, and CAF 

treatments (Chapter II findings).  
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Figure 5.  Mean serum corticosterone levels of spent hens.   
The CORT concentrations were measured in duplicates and expressed in ng/mL.  Bars 

(mean ± SEM) with no superscripts are not significantly different by Fisher’s LSD test 
(P > 0.05).  The total number of samples per treatment was 32.    
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be affected by handling and social separation in White Leghorn chicks [146].  

The mean serum 5-HT concentration of the hens in NEG, CO2, N2, CAF, CAF 

CO2, and CAF N2 were 6.3 µg/mL, 8.8 µg/mL, 7.9 µg/mL, 10.1 µg/mL, 11.0 µg/mL, 

and 11.7 µg/mL respectively (Figure 6). The serum 5-HT levels of the spent hens 

differed significantly among the six treatments (P = 0.0010). The hens in the NEG group 

had significantly lower 5-HT levels as compared to CAF, CAF CO2, and CAF N2. 

However, foam treatments where gases were infused CAF CO2 and CAF N2 did not 

differ significantly with CAF in terms of mean 5-HT concentration. The 5-HT 

concentration of spent hens killed by AVMA approved euthanasia method of CO2 

inhalation was similar to CAF and CAF CO2 treatments but significantly lower than 

CAF N2 group. Birds in the N2 inhalation treatment had similar 5-HT levels to CAF but 

significantly lower than CAF CO2, and CAF N2 treatments. Higher levels of whole blood 

5-HT was found to be associated with positive mood in male volunteers [147] while 

higher concentration of corticosterone indicates higher stress levels [75]. The spent hens 

in the CAF N2 treatment seemed to have lower anxiety and fear response as indicated by 

lower 5-HT levels than birds in the NEG, CO2, N2 treatment groups.  

Uitdehaag et al. [148] suggested that peripheral 5-HT levels could be indicative 

of brain 5-HT activity in laying hens. Correlations between brain 5-HT and blood 5-HT 

were reported to be in range from 0.34 to 0.57 [148]. Uitdehaag et al. [148] reported 

mean blood 5-HT levels of Rhode Island Red and White Leghorn hens in pure groups 

(birds of the same breed) after 5 minutes of manual restraint to be 11 µg/mL and 7.8 

µg/mL respectively. The 5-HT concentration of spent hens in our study varied from 6.5 
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µg/mL (NEG) to 11.7 µg/mL (CAF N2). In this study, spent hens in the NEG group had 

the highest CORT concentration (numerically) but the lowest 5-HT levels. In contrast, 

birds subjected to CAF N2 had the lowest CORT levels (numerically), but the highest 5-

HT levels. Other studies have reported similar relationship between corticosteroids and 

brain 5-HT levels. Inoue and Koyama [149] observed that acute corticosterone 

administration decreased 5-HT in the hippocampus of rats. Similarly, Karten et al. [150] 

reported that chronic exposure to corticosteroid reduces 5-HT responses in hippocampus 

of rats.  
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Figure 6.  Mean serum serotonin levels of spent hens.   
The 5-HT concentrations were measured in duplicates and expressed in µg/mL.  Bars 

(mean ± SEM) with different superscripts (a-d) are significantly different by Fisher’s 
LSD test (P < 0.05).  The total number of samples per treatment was 16.    

 
 
 

 
Time to Cessation of Movement 
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onset of clonic and tonic convulsions [151]. The cessation of convulsive movements is 

an indicator of brain death [118].  

The times to COM of the spent hens to the five treatments (except NEG) were 

derived from the accelerometer readings logged from each hen. The spent hens in the 

CO2, N2, CAF, CAF CO2, and CAF N2 treatments took 63 s, 73 s, 180 s, 167 s, and 132 s 

to demonstrate COM, respectively (Figure 7). The time to COM differed significantly 

among the five treatment groups (P = < 0.0001). Spent hens exposed to the AVMA 

approved euthanasia methods of CO2 and N2 inhalation had significantly shorter time to 

COM than the birds exposed to rest of the treatments. These two methods resulted in 

faster death as indicated by the shortest time to COM. A previous study in our lab 

reported that spent hens subjected to CAF in cages took longer time to die than the hens 

exposed to CO2 in a chamber (unpublished data). Birds subjected to CAF N2 treatment 

took significantly shorter time to the COM than the birds in the CAF and CAF CO2 

treatments. Compressed air foam with N2 had better foam quality than CAF CO2. The 

foam bubbles contained N2 in CAF N2 while CAF had air. Therefore, the poor foam 

quality of CAF CO2 and the presence of air in the CAF might have led to delayed 

termination of convulsive movements in spent hens subjected to these treatments.  
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Figure 7.  Mean time to cessation of movement of spent hens. 

The time was expressed in s. Bars (mean ± SEM) with different superscripts (a-c) are 
significantly different by Fisher’s LSD test (P < 0.05). The total number of samples per 

treatment was 32.    
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depopulation. Future studies should focus on replicating the process in a commercial 

layer facility.   
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CHAPTER IV 

EVALUATION OF ALTERNATIVE EUTHANASIA METHODS OF 

NEONATAL CHICKENS 

 

Description of Problem 

Genetic selection of chickens for either eggs or meat has benefitted the poultry 

industry and its consumers [152]. The broiler industry raises both males and females for 

meat, while the layer industry rears females only for eggs. The global laying flock 

reached 7.3 billion in 2015 producing 70.8 million metric tons of eggs [10]. In the US 

alone, 317 million laying hens produced 88.4 billion eggs in 2016 [153]. For each laying 

hen that is hatched, a male chick will also be produced. However, male layers do not 

have any economic value. These birds do not produce eggs, grow slowly, have a poor 

feed conversion ratio, incur high fattening costs to producers, and yield inferior quality 

meat [154, 155]. Therefore, recently hatched male layer chicks are euthanized after 

being sexed in hatcheries. In the EU that number is around 280 million every year [12].  

The AVMA has approved maceration and carbon dioxide (CO2) gassing as 

acceptable methods for euthanasia of chicks up to 72 hours of age [11]. Maceration 

results in instantaneous death of chicks, poults, and embryonated eggs by physical 

disruption of the brain [11]. The method requires special equipment, called macerators, 

which have rotating blades for rapid fragmentation and death. Carbon dioxide inhalation 

quickly reduces intracellular pH resulting in respiratory acidosis and anesthesia [34]. 

Continued exposure to the gas leads to hypercapnic hypoxia, respiratory depression, and 
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ultimately death [35]. Raj and Whittington [156] reported that day-old chicks subjected 

to 90% CO2 in the air died within two minutes of exposure. The Council Directive 

93/119/EC guidelines of the EU on animal protection at the time of slaughter or killing 

requires chicks to be exposed to the highest possible concentration of CO2 dispensed 

from a 100% source and requires that the gas concentration be maintained until the death 

of the chicks [157]. Nitrogen (N2) and argon (Ar) are tasteless, odorless gases that 

displace oxygen from breathing air resulting in loss of consciousness from anoxia and 

finally lead to death in birds [158]. Residual oxygen concentration should be maintained 

below 2% while using these anoxic gases for euthanasia [111, 156]. Raj and Whittington 

[156] reported that recovery rates of chicks exposed to mixtures of 20-40% CO2 in Ar 

with 5% residual oxygen concentration ranged from 15-100%.  

An alternative method for poultry stunning by reduction in atmospheric pressure 

has been developed [31]. The method is known as low atmospheric pressure stunning 

(LAPS) [66, 70]. The process induces unconsciousness in subjects by decreasing in air 

pressure inside a chamber, subsequently decreasing partial oxygen pressure and 

ultimately causing hypoxia [41, 66, 71]. The LAPS method received ‘no objection’ 

status from the USDA in 2010 [31, 71]. Purswell et al. [70] stated that during LAPS the 

anatomy of avian respiratory system makes it unlikely for gases to be trapped in body 

cavities in chickens unless the trachea is blocked.  

The methods of euthanasia by gas inhalation, maceration, and LAPS have 

welfare concerns to address. Inhalation of CO2 gas at concentrations between 40-55% 

cause painful sensations in humans [122]. Hens when exposed to CO2 gas concentrations 
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of 40-50% can also feel pain or discomfort [108]. Similarly, Raj et al. [159] reported that 

47% CO2 gas in air is aversive to laying hens. Chicken neonates are exposed to high CO2 

concentrations, as much as 14%, in eggs before hatching [33] and therefore, require 

higher concentrations of CO2 and longer exposure times as compared to adult chickens 

for euthanasia [11]. Birds exposed to inert gases and do not exhibit aversiveness upon 

initial exposure to such gases [111, 158]. Nevertheless, birds subjected to inert gases 

have shown severe wing flapping and convulsions [41]. Exposure to a reduced air 

pressure of 17.8 kPa for two minutes was lethal to broilers [70]. However, the 

requirement for day-old chicks and poults may be different. Therefore, scientific studies 

on potential applications of LAPS for euthanizing recently hatched chicks and poults are 

needed.  

Scientific studies evaluating the current euthanasia procedures of day-old chicks 

are limited [160]. Raj and Whittington’s 1995 paper titled “Euthanasia of day-old chicks 

with carbon dioxide and argon” is the single research article found in the scientific 

record on day-old chick euthanasia. Studies on behavioral and physiological responses 

of day-old male layers to these different euthanasia methods have not been published to 

the author’s knowledge scientific literature yet. The poultry industry is also looking for 

humane and viable alternative methods to maceration for euthanasia of neonatal 

chickens. The aim of study was to develop viable alternative methods to maceration for 

chick euthanasia. The specific objectives of the study were to evaluate physiological 

responses of day-old male layers to gas inhalation and LAPS by measuring serum 

corticosterone (CORT) and serotonin (5-HT) concentrations and to assess behavioral 
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responses of chicks such as latencies to loss of posture and motionlessness. 

 

Materials and Methods 

Experimental Design 

 The study evaluated and compared alternative methods to maceration. The 

treatments included a negative control (breathing air), 25% CO2, 50% CO2, 75% CO2, 

90% CO2, 100% N2, and LAPS. Since it was practically unfeasible to achieve 100% CO2 

inside the chamber, we decided to use 90% CO2 as one of our treatments instead of 

100%. In each treatment, a batch of 10 day of hatch Hy-Line W-36 male chicks were 

used. Each treatment was replicated on 10 different days. The treatments- 25% CO2 and 

50% CO2 were discontinued after the first replication due to a high number of survivors. 

A total of 520 male layer chicks were used during the entire study. The chicks were 

provided with clean drinking water. A 250 watt heating lamp was used to maintain 

optimal temperature during the trial. All birds were cared for under an approved 

Institutional Animal Care and Use Committee protocol.  

Experimental Chamber 

A custom built vacuum system mounted on a cart was procured from a 

manufacturer (Laco Technologies, UT). It included a horizontal cylindrical vacuum 

chamber, 0.45 m internal diameter and 0.5 m length, with a clear acrylic lid, a vacuum 

pump of flow rate 0.003 m3/s, and a vacuum controller unit. The vacuum chamber was 

also used as the experimental chamber for all 7 treatments. A thermocouple measured 

the temperature of the chamber during each treatment.  
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Treatment Application 

A batch of 10 chicks were exposed to each treatment gas or reduction in air 

pressure until the desired concentration or final air pressure was achieved inside the 

chamber. The chicks were then held inside the chamber for an additional five minutes. 

Gas tanks containing 100% CO2, 100% N2, and breathing air were procured from a local 

supplier for the study. A uniform gas delivery pressure of 103.4 kPa was used in all gas 

treatments. A variable area flow meter (Cole-Parmer, Vernon Hills, IL) was used to 

control the flow rates of the gases into the chamber. Flow rates of all CO2 treatments 

were set at 0.0007 m3/s while that of 100% N2 and negative control (air) were 0.001 

m3/s. Carbon dioxide (100%) was delivered into the chamber, on the chicks, until the 

desired concentration of CO2 was achieved inside the chamber. An infrared CO2 sensor 

(Servomex, Crowborough, UK) was used to measure and confirm the gas concentration. 

Nitrogen gas flowed into the chamber until the oxygen concentration reached below 2%. 

The oxygen concentration inside the chamber was measured using an electrochemical 

sensor (Sper Scientific, Tucson, AZ). In the LAPS treatment, the air pressure inside the 

chamber was decreased gradually which subsequently reduced the partial pressure of 

oxygen. Purswell et al. [70] estimated that a negative atmospheric pressure of 19.4 kPa 

would result in 99.9% broiler mortality. However, our laboratory found that chicks 

survived the negative air pressures of 17.9 kPa and 19.4 kPa. Further preliminary trials 

determined that a negative air pressure of 15.3 kPa would result in 100% mortality of the 

chicks. Therefore, air pressure inside the chamber was reduced from 101.3 kPa to 15.3 

kPa in the LAPS treatment.  



 

62 

 

Recovery 

Chicks were observed for any signs of recovery after the end of 5 minutes of 

holding time. Death was ascertained in each chick by observing corneal and pedal 

reflexes.  

Stress Physiology 

Blood samples were collected from each chick by cardiac puncture after death 

had been verified in all treatments except negative control. In the negative control group, 

chicks were decapitated within 30 seconds of removal from the experimental chamber at 

the end of the duration of treatment. The blood samples were allowed to clot overnight at 

4 ºC. The next day serum was collected from the blood samples by centrifuging at 500 × 

g at 4 ºC. Competitive ELISA kits ADI-901-097 and ADI-900-175 were used to 

measure the concentration of CORT and 5-HT, respectively (Enzo Life Sciences, 

Farmingdale, NY) following the instructions from kit manuals. All samples were run in 

duplicates. The intra-assay and inter-assay variability were 1.9% and 7.2% respectively 

for corticosterone assay. The intra-assay and inter-assay variability for 5-HT assay were 

1.6% and 5.8% respectively. 

Behavioral Observations 

Treatments were videotaped for evaluation of behavioral responses of the chicks 

using a digital video camera (Sony, USA). The parameters measured were latencies to 

loss of posture and motionlessness.  

Statistical Analysis 

Serum CORT and 5-HT concentrations were interpolated from a standard curve 
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using a curve fitting software (Gen 5.0, Bio-Tek Instruments, Winooski, VT). The 

behavioral data were summarized in a spreadsheet (MS-EXCEL, Microsoft). Statistical 

analyses were done using a one-way analysis of variance following PROC ANOVA 

procedures (SAS 9.4, Cary, NC). Means deemed significant were further analyzed using 

Fisher’s LSD post hoc test. The statistical tests were carried out at 5% significance level. 

Two CORT values from 90% CO2 and one from 100% N2 were identified as outliers by 

Tukey’s boxplot method and removed from study.  

 

Results and Discussion 

Day-old male chicks exposed to the 25% CO2 and 50% CO2 treatments recovered 

after the end of a five minute holding period. All 10 chicks in the 25% CO2 group 

recovered and only two chicks, out of ten, died in the 50% CO2 group. Therefore, the 

two treatments were discontinued after the first replication. The results described are of 

five treatments- negative control (air), 75% CO2, 90% CO2, 100% N2, and LAPS.  

Serum Corticosterone 

The average CORT levels of the chicks subjected to the negative control, 75% 

CO2, 90% CO2, 100% N2 and LAPS were 12.9 ng/mL, 6.3 ng/mL, 6.8 ng/mL, 7.4 

ng/mL, and 7.8 ng/mL respectively (Figure 8). The chicks in the negative control 

treatment had significantly higher serum CORT concentrations than that of the rest of 

the treatments (P = < 0.0001). However, the serum CORT concentrations of the chicks 

subjected to the gas inhalation methods, namely 75% CO2, 90% CO2, and 100% N2 were 

similar to the LAPS treatment (P > 0.05). The chicks in the negative control group were 
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alive until they were decapitated for blood collection at the end of the treatment. The 

noise of flow of gases into the chamber and handling of chicks prior to decapitation for 

blood collection are probable reasons for such higher CORT levels in the chicks.  

 Carbon dioxide causes pain and discomfort to the animal due to the formation of 

carbonic acid in the mucous membrane [110]. Kaye et al. [161] reported that 

hypercapnia due to CO2 stimulated sympathetic and hypothalamo-pituitary-adrenal axis. 

In our study, the chicks in 75% and 90% CO2 groups might have lost consciousness 

before the potentially painful CO2 level was attained inside the chamber. Therefore, the 

serum CORT levels were statistically lower as compared to negative control group. 

Exposure to 100% N2 did not elevate CORT levels in the chicks as compared to the 

negative control. Birds lack intrapulmonary chemoreceptors sensitive to N2 [111] and do 

not demonstrate aversive responses in the beginning. In addition, normal breathing air 

has 78% N2 by volume and hence, animals are continuously being exposed to higher 

levels of N2. In LAPS, the chicks experienced a reduction in air pressure and 

subsequently the partial pressure of oxygen, which led to failure in diffusion of oxygen 

into blood circulation and chicks died from anoxia. The mechanism of death from LAPS 

is similar to gas inhalation methods. The CORT data also suggests that LAPS method is 

similar to CO2 and N2 inhalation in terms of stress response. Broilers subjected to LAPS 

had significantly lower CORT levels as compared to electrical stunning [66]. Shackling 

during electrical stunning might be the reason for higher CORT concentration than 

LAPS.  
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Figure 8. Mean serum corticosterone levels of male layer chicks.  
The CORT concentrations were measured in duplicates and expressed in ng/mL. Bars 
(mean ± SEM) with different superscripts (a, b) are significantly different by Fisher’s 

LSD test (P < 0.05). Number of samples per treatment was 100.   
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 The 5-HT concentration in peripheral blood of male layer chicks subjected to the 

five treatments were evaluated and compared. The mean serum 5-HT levels of chicks in 
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the negative control, 75% CO2, 90% CO2, and 100% N2, and LAPS treatments were 3.5 

µg/mL, 6.3 µg/mL, 5.9 µg/mL, 5.9 µg/mL, and 6.2 µg/mL respectively (Figure 9). 

Chicks in the negative control group had significantly lower concentration of serum 5-

HT than rest of the treatments (P = < 0.0001). No significant differences were found in 

5-HT levels among 75% CO2, 90% CO2, 100% N2, and LAPS.  

 Serotonin has multiple functions in the central nervous system and in peripheral 

tissues and organ systems. The 5-HT in the brain affects behavioral and 

neuropsychological processes such as mood, perception, memory, anger, aggression, 

fear, stress responses, appetite, behavior, and circadian rhythm [106]. Peripherally, 5-HT 

is vital in platelet aggregation, vasoconstriction, vasodilation, and intestinal motility  

[103]. In humans, decrease in brain 5-HT levels and anxiety disorders are related [162]. 

Patients with depression have reduced whole blood [163, 164] and platelet [165] 5-HT 

levels. In the present study, chicks in the negative control group had significantly higher 

CORT levels but lower 5-HT levels. This finding suggests that the chicks in the negative 

control group were stressed and suffered from anxiety. Studies in our lab on layer hen 

depopulation also had similar findings. Spent hens with higher CORT levels were found 

to have lower 5-HT levels (unpublished results). Williams et al. [147] reported that 

higher blood 5-HT levels were positively associated with better mood. The chicks in 

75% CO2, 90% CO2, 100% N2, and LAPS treatments had significantly higher 5-HT but 

lower CORT levels as compared to the negative control. The data suggests that gas 

inhalation and LAPS treatments were less stressful to the chicks. Fear and anxiety 

responses were minimal with the euthanasia treatments as compared to the air treatment. 
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Figure 9. Mean serum serotonin levels of male layer chicks. 

The 5-HT concentrations were measured in duplicates and expressed in µg/mL. Bars 

(mean ± SEM) with different superscripts are significantly different by Fisher’s LSD test 
(P < 0.05). Number of samples per treatment was 20. 
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determined for all treatment groups except the negative control.  

Loss of posture is a behavioral indicator of loss of consciousness [151]. It is 

manifested by the inability to maintain neck tension and body balance [107,151].In the 

present study, the latencies to loss of posture of chicks subjected to 75% CO2, 90% CO2, 

100% N2, and LAPS were 43 s, 42 s, 148 s, and 58 s respectively (Figure 10). 

Significant differences were observed in latencies to loss of posture among four 

euthanasia treatments. The chicks subjected to 100% N2 took the longest time to lose 

body posture compared to rest of the treatments (P < 0.05). The chicks exposed to the 

75% CO2 and 90% CO2 lost body posture significantly faster than those chicks in LAPS 

or the 100% N2 groups. The chicks subjected to LAPS lost posture earlier than chicks in 

100% N2 but later as compared to CO2 inhalation treatments (P < 0.05). The findings of 

our study also demonstrate that CO2 is faster than N2 to induce loss of posture in the male 

layer chicks. Poole and Fletcher (1995) reported that time to loss of posture of broilers 

exposed to CO2 was significantly shorter than N2. Gerritzen et al. [113] showed that the 

time to loss of posture of broilers subjected to multistage CO2 stunning ranged from 80 s 

to 93 s. Unlike N2, exposure to CO2 leads to reduction of intracellular pH [166]. Martoft 

et al. [34] reported that exposure to higher concentration of CO2 leads to a rapid 

induction of anesthesia mediated by a decrease in the intracellular pH of brain. The 

anesthetic [167] and analgesic effect of CO2 [121] may be the probable mechanism for 

rapid loss of posture. Nitrogen inhalation results death by anoxia [11]. Unlike in CO2 

inhalation, chicks in the LAPS did not experience the anesthetic effect. Therefore, chicks 

in the LAPS method took significantly longer time than CO2 treatments.  
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Figure 10.  Mean latencies to loss of posture of male layer chicks. 

The latencies are expressed in s. Bars (mean ± SEM) with different superscripts are 

significantly different by Fisher’s LSD test (P < 0.05). Number of samples per treatment 
was 10.  

 
 

 

The cessation of visible movements including respiratory motion is a state of 

motionlessness [115]. Latencies to motionlessness were determined for chicks in each 

replication in all treatment groups except for the negative control (Figure 11). In our 
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chicks followed a similar pattern to latencies to loss of posture. The chicks in the 100% 

N2 treatment took significantly longer time to be motionlessness as compared to the rest 

of the treatments. The chicks in the LAPS group took longer time than 75% CO2 and 

90% CO2 groups but shorter time than 100% N2 to be motionlessness (P < 0.05). In the 

present study, the treatments that induced rapid loss of posture were the ones in which 

the chicks demonstrated motionlessness faster. The maintenance of concentration of the 

gas was also vital for preventing any recovery and finally leading them to death. In the 

present study, the chicks subjected to CO2 treatments were motionlessness faster than 

100% N2. A similar result was reported by Gerritzen et al. [107]. They reported that 

broilers (2 weeks old) exposed to 100% CO2 were motionlessness significantly faster 

than other treatments including 50% N2 + 50% CO2 and 30% O2 + 30% N2 + 40% CO2 

gas mixtures. Broilers stunned by LAPS took on average 199.4 s to be motionlessness 

with a range of 158.2 s to 245.6 s [69]. In our study, the latency to motionlessness of 

chicks subjected to LAPS ranged from 115 s to 151 s.  
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Figure 11.  Mean latencies to motionlessness of male layer chicks. 

 The latencies are expressed in s. Bars (mean ± SEM) with different superscripts are 
significantly different by Fisher’s LSD test (P < 0.05). Number of samples per treatment 

was 10. 
  

 
 

The research findings demonstrate that LAPS can be as effective as CO2 or N2 

inhalation for euthanizing day-old male layer chicks. The euthanasia treatments, both, 

gas inhalation and LAPS are similar in terms of physiological stress responses. 

However, the use of CO2 results in a faster onset of unconsciousness and leads to death 

earlier than other methods. 
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CHAPTER V 

CONCLUSIONS 

 

 Reportable diseases are a constant threat to the poultry industry. Elimination of 

infected poultry flocks is a key strategy to prevent such diseases from becoming an 

epidemic. The current methods of depopulation available for the commercial layer 

industry have limited usage. The layer industry needs alternative methods for rapid and 

humane depopulation of diseased birds.  

 In the first study, we evaluated the efficacy of a compressed air foam system for 

killing layer hens in caged houses. The corticosterone levels of hens subjected to 

compressed air foam in cages and the AVMA approved carbon dioxide inhalation 

treatments were similar to that of birds in the NEG control. The time to cessation of 

movement of hens exposed to CO2 was shorter than foam treatments. The presence of 

foam in the upper trachea of hens confirmed that the cause of death was due to 

mechanical hypoxia. This research work in our laboratory established compressed air 

foam as a viable alternative method for caged layer hen depopulation during reportable 

disease outbreaks or natural disasters. 

The second study aimed at enhancing the efficacy of compressed air foam by 

infusing CO2 or N2 into the foam. We were able to produce a viable compressed air foam 

infused with CO2 or N2. Compressed air foam with N2 had better foam quality than foam 

with CO2. Stress responses of spent hens were similar among compressed air foam with 

and without gas treatments. The time to cessation of movement of spent hens subjected 
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to compressed air foam with N2 was faster as compared to foam with air or CO2, but 

slower than CO2 or N2 inhalation. The data suggests that N2 could be infused into 

compressed air foam for shortening time to death of spent hens.  

The third study dealt with male layer chick euthanasia. The issue of euthanasia of 

male layer chicks in hatcheries has brought negative publicity to the layer industry. 

Maceration is the common method used by hatcheries for euthanizing recently hatched 

male layer chicks in the U.S. The layer industry needs alternative methods to maceration 

as public view this method as inhumane and aesthetically unpleasant.  

The work in our lab focused on assessing CO2, N2, and low atmospheric pressure 

stunning as alternative methods for euthanizing day old male layer chicks. The study 

showed that male layer chicks can be euthanized using at least 75% CO2 in air or a 100% 

N2. Low atmospheric pressure stunning can be used for chick euthanasia provided that 

the negative air pressure is at least 15.3 kPa. There was no significant differences 

between CO2 or N2 inhalation and LAPS methods based on corticosterone and serotonin 

levels. Carbon dioxide treatments were significantly faster than the LAPS and N2 

inhalation based on latencies to loss of posture and motionlessness. Future studies should 

evaluate the efficacy of these alternative methods through on-field trials. 

Thus, the study demonstrated that compressed air foam with air can be used for 

mass depopulation of caged layer hens. The addition of N2 into the foam reduces the 

time to death and such foam has better quality as compared to CO2 infusion into foam. 

Low atmospheric pressure stunning or at least 75% CO2 or 100% N2 can be viable 

alternatives to maceration for male layer chick euthanasia.  
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