
EFFICIENT EXTERNAL-MEMORY ALGORITHMS FOR GRAPH MINING

A Dissertation

by

YI CUI

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Dmitri Loguinov
Committee Members, Riccardo Bettati

James Caverlee
A. L. Narasimha Reddy

Head of Department, Dilma Da Silva

December 2017

Major Subject: Computer Science

Copyright 2017 Yi Cui

ABSTRACT

The explosion of big data in areas like the web and social networks has posed big

challenges to research activities, including data mining, information retrieval, security

etc. This dissertation focuses on a particular area, graph mining, and specifically pro-

poses several novel algorithms to solve the problems of triangle listing and computation

of neighborhood function in large-scale graphs.

We first study the classic problem of triangle listing. We generalize the existing in-

memory algorithms into a single framework of 18 triangle-search techniques. We then de-

velop a novel external-memory approach, which we call Pruned Companion Files (PCF),

that supports disk operation of all 18 algorithms. When compared to state-of-the-art avail-

able implementations MGT and PDTL, PCF runs 5-10 times faster and exhibits orders of

magnitude less I/O.

We next focus on I/O complexity of triangle listing. Recent work by Pagh etc. provides

an appealing theoretical I/O complexity for triangle listing via graph partitioning by ran-

dom coloring of nodes. Since no implementation of Pagh is available and little is known

about the comparison between Pagh and PCF, we carefully implement Pagh, undertake an

investigation into the properties of these algorithms, model their I/O cost, understand their

shortcomings, and shed light on the conditions under which each method defeats the other.

This insight leads us to develop a novel framework we call Trigon that surpasses the I/O

performance of both techniques in all graphs and under all RAM conditions.

We finally turn our attention to neighborhood function. Exact computation of neigh-

borhood function is expensive in terms of CPU and I/O cost. Previous work mostly focuses

on approximations. We show that our novel techniques developed for triangle listing can

also be applied to this problem. We next study an application of neighborhood function

ii

to ranking of Internet hosts. Our method computes neighborhood functions for each host

as an indication of its reputation. The evaluation shows that our method is robust to rank-

ing manipulation and brings less spam to its top ranking list compared to PageRank and

TrustRank.

iii

DEDICATION

To my family

iv

ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to my advisor, Dr. Dmitri Loguinov,

without whom this dissertation would not have been possible. I learned from him not only

the knowledge of the field, but also the attitude towards research. His insight into my

research topics and continuous guidance have been of great importance to me. Under his

supervision, I developed my skills in programming, writing research papers, and giving

good presentations. I believe that these valuable skills would help me success in my future

career.

I would also like to thank the other committee members, Dr. Riccardo Bettati, Dr.

James Caverlee, and Dr. A. L. Narasimha Reddy, for their time and effort in serving my

committee. I also appreciate Dr. Radu Stoleru’s attendance to my dissertation defense due

to the absence of Dr Riccardo Bettati. Their comments and suggestions provide meaning-

ful insight into my work.

I also want to thank all the members of the Internet Research Lab whom I spent a great

time with – Tanzir Ahmed, Xiaoyong Li, Siddhartha Mathiharan, Zain Shamsi, Sadhan

Sood, Patrick Webster, Xiangzhou Xia, Di Xiao, Xiaoxi Zhang, Yue Zhuo. I’m always

grateful for their companion during my studies.

Finally, I would like to express my deepest thanks to my parents for their endless love

and support.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Dmitri

Loguinov, Riccardo Bettati, and James Caverlee of the Department of Computer Science

and Engineering and Professor A. L. Narasimha Reddy of the Department of Electrical

and Computer Engineering.

Di Xiao helped with modeling and simulation work in Triangle listing.

All other work conducted for the dissertation was completed by the student indepen-

dently.

Funding Sources

Graduate study was supported in part by NSF Grant CNS-1319984.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . xi

LIST OF TABLES. xiii

1. INTRODUCTION. 1

1.1 Overview . 1
1.2 Pruned Companion Files (PCF) . 2
1.3 Trigon. 4
1.4 Neighborhood Function . 5

2. PRUNED COMPANION FILES (PCF). 8

2.1 Introduction . 8
2.2 Generalized Iterators (GI) . 10

2.2.1 Redundancy Elimination. 10
2.2.2 Relabeling . 11
2.2.3 Orientation. 12
2.2.4 Search Order . 13
2.2.5 Algorithms . 14
2.2.6 Taxonomy . 16

2.3 Pruned Companion Files (PCF) . 17
2.3.1 Overview . 17
2.3.2 Graph Partitioning . 18
2.3.3 Partition Balancing . 20
2.3.4 Companion Files . 21

2.4 Analysis . 23

vii

2.4.1 Overview . 23
2.4.2 Modeling I/O . 25
2.4.3 I/O Comparison . 28
2.4.4 CPU-I/O Tradeoffs . 31
2.4.5 Lookups and Minimum RAM .. 32
2.4.6 Summary . 32

2.5 Implementation . 33
2.5.1 Intersection . 33
2.5.2 Relabeling and Orientation . 35
2.5.3 Parallelization . 36
2.5.4 Evaluation Setup and Datasets . 36
2.5.5 Preprocessing Time . 37
2.5.6 Triangle-Listing Time. 38
2.5.7 Parallelization Efficiency . 40
2.5.8 Effect of RAM: Bottlenecked by CPU . 41
2.5.9 Effect of RAM: Bottlenecked by I/O. 42

2.6 Conclusion . 42

3. TRIGON . 44

3.1 Introduction . 44
3.1.1 Overview of Results . 45

3.2 Related Work . 46
3.3 Preliminaries . 47
3.4 Analysis of Pagh . 49

3.4.1 Algorithm. 49
3.4.2 Pagh+ . 51
3.4.3 Discussion . 53

3.5 Analysis of PCF. 54
3.5.1 Operation . 54
3.5.2 Model . 56
3.5.3 Bounds . 59
3.5.4 Discussion . 62

3.6 Asymptotic Comparison . 63
3.6.1 Definitions . 63
3.6.2 Dynamics of PCF . 64
3.6.3 Analysis . 67
3.6.4 Discussion . 70

3.7 Trigon. 70
3.7.1 Generalized Coloring . 70
3.7.2 Unified Partitioned Iterator . 72
3.7.3 Trigon . 75
3.7.4 Analysis . 76

viii

3.7.5 Minimizing I/O. 79
3.7.6 Minimizing Runtime . 81

3.8 Evaluation . 83
3.8.1 I/O . 84
3.8.2 Runtime. 85

3.9 Conclusion . 86

4. SHALLOW NEIGHBORHOOD FUNCTION . 87

4.1 Introduction . 87
4.1.1 Counting vs. Listing . 88

4.2 Algorithm . 89
4.2.1 SNF-A . 89
4.2.2 SNF-B . 90

4.3 CPU Complexity . 93
4.3.1 Runtime. 94

4.4 I/O Complexity. 95
4.4.1 I/O Upper-Bound. 97
4.4.2 Load Balancing. 97
4.4.3 I/O Comparison . 99

4.5 Host Ranking . 99
4.5.1 Contributions . 101

4.6 Related Work . 102
4.6.1 Spam Detection . 102
4.6.2 Ranking . 103

4.7 Topological Ranking . 104
4.7.1 Single-Graph Ranking . 104
4.7.2 Multi-Graph Ranking . 106

4.8 Domain Supporters . 108
4.8.1 DataSets . 109
4.8.2 Manual Analysis . 109
4.8.3 Automated Analysis . 114

4.9 Nameserver Supporters . 117
4.9.1 DNS Resolution . 117
4.9.2 IP Subnet Graph . 117
4.9.3 DNS Co-Hosting . 121
4.9.4 Spam Filter . 124
4.9.5 Evaluation . 125

4.10 Computational Complexity . 127
4.11 Conclusion . 128

5. SUMMARY AND FUTURE WORK . 130

ix

5.1 Summary . 130
5.1.1 PCF . 130
5.1.2 Trigon . 131
5.1.3 Neighborhood Function. 131

5.2 Future Work . 132
5.2.1 Triangle Listing . 132
5.2.2 Neighborhood Function. 132

REFERENCES . 134

x

LIST OF FIGURES

FIGURE Page

2.1 Search-order operators in triangle listing. 13

2.2 Four CPU and three I/O classes. 17

2.3 Graph partitioning. 19

2.4 Better-than relationships across the I/O of various PCF methods. 28

2.5 Scaling rate of PCF-1 on Twitter under θD. 29

2.6 Comparison against prior methods. 30

2.7 Parallel intersection with STTNI. 33

2.8 Descending-degree relabel with a histogram. 36

2.9 Speedup vs. number of cores (8 GB of RAM).. 40

3.1 Directed triangle (u > v > w). 49

3.2 Special cases in Pagh.. 51

3.3 Colors among N+
u in PCF. 57

3.4 Model accuracy in PCF-1B. 61

3.5 Comparison of scaling rates. 68

3.6 Actual I/O with curve-fitted scaling rates. 69

3.7 Heterogenous 2D partitioning of remote edges. 71

3.8 Trigon tradeoffs between I/O and lookups (p = 1024). 82

4.1 Level-2 supporters. 88

4.2 Host graph. 106

4.3 Host-Domain graph. 109

xi

4.4 Host-Domain-Domain chain. 109

4.5 Manual spam count. 114

4.6 GTR analysis on top ranked hosts. 115

4.7 L3-NS example. 123

4.8 GTR analysis on top ranked hosts. 126

xii

LIST OF TABLES

TABLE Page

2.1 Taxonomy of Vertex/Edge Iterators . 16

2.2 Summary of PCF Algorithms Using Remote Graph G+
θ . 25

2.3 Composition of Companion Lists in PCF. 26

2.4 Twitter I/O (in Billion Edges) Under 16 MB of RAM .. 29

2.5 CPU-I/O Complexity Classes in Twitter under 16 MB of RAM 31

2.6 Single-Core Speed (Intel i7-3930K @ 4.4 GHz) . 34

2.7 Dataset Properties . 34

2.8 Dataset Triangle Properties . 35

2.9 Preprocessing Time (Seconds) . 38

2.10 Runtime (Seconds) With 8 GB of RAM .. 39

2.11 Results from Prior Work . 39

2.12 Runtime (Seconds) . 41

2.13 I/O Comparison . 43

3.1 Graph Properties . 83

3.2 I/O (Billion Edges). 84

3.3 Preprocessing and Enumeration Time (Minutes) . 86

3.4 Number of Lookups (Billion) . 86

4.1 CPU complexity of SNF . 93

4.2 Runtime (sec) in IRL domain . 94

4.3 Runtime (sec) in ClueWeb domain. 95

xiii

4.4 I/O complexity in IRL domain . 98

4.5 I/O complexity in ClueWeb domain . 99

4.6 Top-10 ranked hosts in IRLbot by PageRank-style methods. 110

4.7 Top-10 ranked hosts in IRLbot by degree-based methods. 111

4.8 Top-10 ranked hosts in ClueWeb by PageRank-style methods. 112

4.9 Top-10 ranked hosts in ClueWeb by degree-based methods. 113

4.10 Projected fraction of spam. 113

4.11 Spam Categories . 114

4.12 Top-10 subnets ranked by IN in IRLbot. 118

4.13 Top-10 subnets ranked by IN in ClueWeb. 118

4.14 Top-10 subnets based on host density. 119

4.15 Top-10 subnets based on domain density. 120

4.16 Top-10 subnets based on manual spam count. 122

4.17 Projected fraction of spam. 123

4.18 Comparison of computational complexity. 125

xiv

1. INTRODUCTION

1.1 Overview

With the explosion of big data in areas like the web and social networks, research

activities including data mining, information retrieval, security etc. are now facing big

challenges. This dissertation studies one particular research area – graph mining. In many

areas, the data is represented as graphs that model the relationships between entities, e.g.,

linking structures between web pages, friend relationships between social network users,

connections between Internet routers etc. Data mining in these graphs provides important

insights into how they are structured and how they evolve, as well as other useful infor-

mation. However, this task is facing increasing challenge as the graphs scale in orders of

magnitude fast speed. For example, Yahoo disclosed crawling 150B web pages and using

graphs with 5T edges [58] in late 2010; Google was crawling 20B pages/day and keeping

track of 30T unique URLs [72] in 2012. Facebook keeps expanding its social network that

now involves 1.94B monthly active users [25].

One of the major challenges of data mining in such large-scale graphs is the tremen-

dous computation cost, e.g., CPU cycles and disk I/O, needed to manage and process the

graphs. Instead of devoting more computation resources (e.g., machines and CPU cores),

our goals to deal with this challenge is to deeper our understanding of the underlying algo-

rithms, build accurate models of their cost, and propose novel techniques that optimize the

cost. With these goals in mind, this dissertation revisits two classic problems in graph the-

ory that play a key role in graph mining – triangle listing and computation of neighborhood

function. A set of novel algorithms in graph orientation, relabeling, and external-memory

partitioning are developed that can be generally applied to solving these graph mining

problems.

1

The next three chapters in this dissertation present algorithms for efficient triangle

listing and computation of neighborhood function in large-scale graphs, and demonstrate

an application of depth-2 neighborhood function in ranking of Internet host graphs. The

rest of this chapter briefly introduces each of the topics in turn.

1.2 Pruned Companion Files (PCF)

Triangle listing is a classic problem that has been studied for over 35 years [41]. Its im-

portance has long been recognized in various areas. In network analysis, many important

measurements, including clustering coefficient [78], transitivity [55], and triangular con-

nectivity [6], rely on the computation of triangles. In social networks, triangles help detect

fake accounts [88], identify web spam [7], locate communities [11], and measure quality

of content [7]. In bioinformatics, triangles are an important type of network motifs [53]

that provide meaningful information in protein-protein, gene-regulatory, and metabolic

networks [43]. Applications also emerged in other areas such as k-truss [20] and dense

subgraph mining [77] in graph theory; query planning optimization in databases [5].

Despite a significant amount of effort [1], [3], [15], [17], [20], [29], [38], [41], [44],

[48], [62], [63], [67], [69], [74] devoted into studying this problem, our understanding is

still limited – little is know about the accurate CPU cost of triangle listing, its behavior un-

der different acyclic orientations, and comparison across the different methods. Moreover,

external-memory solutions remain largely unexplored. Most recent work [3], [17], [29],

[38], [44] requires an I/O complexity that is quadratic to the graph size, which is difficult

to scale when the graph size becomes large.

Our work [84] creates a unified framework that covers 6 possible triangle search orders

and 18 vertex/edge iterator algorithms to actually perform the search. All previous work

falls into the coverage of our framework. Furthermore, 4 CPU-cost equivalent classes are

identified among the 18 options, each with its own optimal relabeling. We then propose

2

a single external-memory framework called Pruned Companion Files (PCF) that supports

disk operation of all 18 algorithms. PCF achieves deterministic and balanced graph par-

titions. Each partition is associated with a companion file that helps to discover triangles

within the partition. By carefully pruning edges in the companion file and keep only the

ones that potentially form a triangle, PCF is able to significantly reduce the I/O cost. In

order to gain more insight into PCF’s I/O performance, we next model its I/O cost and

derive an upper bound of it. We show that in certain cases, PCF’s I/O cost can be linear to

graph size, which is the first report of linear I/O in triangle listing. Applying PCF to the

18 algorithms, we find 3 I/O equivalent classes. Combined with the 4 CPU-cost equivalent

classes, we eventually identify the optimal solution that minimizes both CPU and I/O cost.

We finish this chapter by providing a high-performance multi-threading C++ imple-

mentation of the optimal solution and evaluating its performance in various datasets. Be-

sides several standard graphs that are normally used in previous work, we introduce new

graphs from two web crawls: IRLbot [49] and ClueWeb [19] in order to test our algorithms

in handling real large-scale graphs that contain billions of nodes and trillions of triangles.

Armed with our novel techniques in graph relabeling, orientation, and external-memory

partitioning, plus the introduction of SIMD (single instruction, multiple data) instructions

into graph processing, our implementation runs 5 − 10 times faster and exhibits order of

magnitude less I/O compared to state-of-the-art competitors. To highlight some of the re-

sults, our implementation finds 1T triangles in 237 seconds using a desktop CPU, which

translates to discovering over 4B triangles per sec. On the largest graph in our evalua-

tion with 8.2B nodes and 102B edges, we are able to finish triangles listing in only 1,747

seconds.

3

1.3 Trigon

This chapter will focus on I/O cost of triangle listing as it is often the main bottleneck

when dealing with large-scale graphs, especially with a small amount of memory or slow

hard drives. Our method PCF is equipped with a highly optimized in-memory triangle-

listing solution that includes optimal triangle search order and graph relabeling. However,

its I/O performance can be suboptimal in certain cases. Although we have picked the

optimal choice under PCF’s graph partitioning scheme, it is not clear if there exists a novel

graph partitioning scheme that can beat PCF’s best configuration in I/O. Recent work by

Pagh etc. [60] proposes to partition a graph with random coloring of nodes and proves

an appealing theoretical I/O cost of triangle listing by using such graph partitioning. This

motivates us to conduct a comprehensive I/O comparison between PCF and Pagh. Our

goal is to understand the I/O behavior of both algorithms, under what conditions can one

be better than the other, and whether it is possible to develop a new graph partitioning

scheme that outperforms both of them in all cases.

The original Pagh algorithm only provides its I/O analysis at a high level with certain

details omitted and no implementation available. Thus, this chapter starts by discussing

our refinements to Pagh that make it practical. We next perform a comprehensive analysis

of both Pagh and PCF by deriving accurate I/O models for them and pointing out their

limitations, e.g., under what conditions one loses performance and what are the memory

restrictions for them. While it is difficult to obtain a closed-form formula of PCF’s I/O,

we derive a series of strict upper bounds of its I/O and use them in comparison to the I/O

of Pagh. Our asymptotic comparison of the two methods shows that each of them can beat

the other in certain cases. PCF has the highest advantage when the graph is sparse, the

variance of out-degree is small, and RAM is growing slowly with the graph size. Pagh

wins when the conditions are reversed. When the number of nodes n→∞, PCF can beat

4

Pagh by a factor of n in its best case and lose to Pagh by a factor of
√
n in the worse case.

With the lessons learned from the two algorithms, we are now ready to deliver a novel

method called Trigon that inherits advantages from both previous ones, overcomes their

shortcomings, and consistently beats them in all cases. Assume graphs are stored as adja-

cency lists, each of them consists of a source node and a neighbor list. Two variations of

PCF either partition by source nodes or destination nodes, which we call one dimensional

(1D) partitioning. Trigon extends this to 2D partitioning that splits both source and desti-

nation nodes. Instead of random coloring in Pagh, Trigon adopts sequential coloring that

reduces I/O and possesses several advantages in CPU processing, e.g., faster list compres-

sion, intersection, and hash table lookups. Besides these, we show that Trigon eliminates

certain memory constraints from PCF and handles certain graphs that cause problems for

Pagh.

We finish this chapter by evaluating the performance of Trigon. In order to test the

ability of each algorithm to handle large-scale graphs, we set the available RAM size to

be 3 − 4 orders of magnitude smaller than the graph size. Since most real-world graphs

in areas like the web and social networks are sparse, we find PCF outperforms Pagh by

a factor up to 15 in five out of the six cases. The only exception is a dense graph with

average degree 1,030. In the densest graphs, i.e., complete graphs, PCF loses to Pagh by

a factor of 16. This observation confirms our conclusion about the two methods. Our new

method Trigon consistently beats the other two methods in all cases. In the best cases, it

beats Pagh by a factor of 199 and outperforms PCF by a factor of 32.

1.4 Neighborhood Function

The next problem we study in this dissertation is neighborhood function. For each

node, its neighborhood function computes the nodes reachable within d steps in a graph.

Normally, only a count of the number of neighborhood nodes is needed. In certain appli-

5

cations, more complex functions may be required, e.g., each node has some weigh and the

goal is to collect the weights among the neighborhood. This function is important in data

mining as to compute the effective diameter of a graph, measure network robustness, and

check graph similarity [13], [61]. It is also used in ranking web graphs and detecting spam

[8], [9], [73].

The exact computation of neighborhood function is costly, especially when the graph

does not fit into RAM. Previous work [8], [9], [13], [61], [73] focuses on approxima-

tion of neighborhood function, which suffers from estimation errors and is counting only,

e.g., cannot perform more complex functions. Motivated by recent work [73] that applies

neighborhood function with d = 2 to ranking web graphs, we take an investigation into

efficient computation of exact neighborhood function at depth 2. We show that this is a

similar but more difficult problem compared to triangle listing. Our developed techniques

in graph relabeling and external-memory partitioning can be generally applied to solving

this problem as well.

In the end, we demonstrate an application of neighborhood function at depth 2 to

ranking of Internet hosts. Ranking hosts is difficult since they can be infinitely generated

for free by using automated scripts and DNS wildcard entries. Spammers can potentially

generate any number of spam hosts and form any linking structures to manipulate ranking

algorithms. To overcome this problem, our approach is to leverage finite Internet resources

in ranking, e.g., domains, IP addresses, DNS nameservers. Controlling such resources in

a large scale is difficult due to the financial cost involves in creating them. Additionally,

we find that spam is prevalent inside web-hosting services, where people can purchase

domain names and setup their websites. Spammers heavily use such services to host their

spam content. Since websites within the same hosting services share the same network

infrastructure, e.g., IP subnets and DNS nameservers, we propose the use of co-hosted

domain density to combat spam.

6

We test our ranking algorithms in host graphs from two large-scale web crawls – IRL-

bot [49] and ClueWeb [19] and compare with classic methods including PageRank [59]

and TrustRank [34]. Our first method ranks hosts by the number of domain supporters

at depth 2, which we call L2-D. Manual analysis shows that our method brings no spam

hosts in its top-10 list; while both PageRank and TrustRank admits spam in the same range.

Looking at a larger range, L2-D only has 0.2% and 0.1% spam in its top-1K in IRLbot and

ClueWeb, respectively. This is a factor of 70 and 20 less spam compared to PageRank

and TrustRank. L2-D keeps its advantage all the way to top-100K list. Another important

metric we use in evaluation is Google Toolbar Rank (GTR) [66], which is a value from 0

to 10 that indicates Google’s option about the quality of websites. L2-D is again the clear

winner of this metric. Within the top-100K list, L2-D delivers the highest average GTR

value and the least unwanted hosts, i.e., hosts with a GTR value ≤ 3.

To further improve the ranking, we next study DNS co-hosting behaviors, which refers

to multiple hosts and domains sharing the same IP addresses or DNS nameservers. Our

analysis shows that a large fraction of the spam hosts identified during our manual inspec-

tion are inside web-hosting services. We first eliminate the inflation of ranking scores from

the same co-hosted structure by computing the number of supporting DNS nameservers

instead of domains. Then, we propose a method that utilizes domain density of each /24

IP subnet to accurately identify web-hosting services. This allows us to directly punish the

hosts that come from web-hosting services. With all the effort, we are now able to create

a spam-free top-1K list and only 0.2% spam from 1K to 10K.

The rest of this dissertation is organized as the following. In Chapter 2 we present PCF

for efficient external-memory solution of triangle listing. Chapter 3 discusses Trigon that

further improves the I/O performance of PCF. Chapter 4 will address another problem –

neighborhood function and illustrate its application in ranking of Internet hosts. We finish

with Chapter 5 that summarizes the dissertation and discuss future work.

7

2. PRUNED COMPANION FILES (PCF)∗

2.1 Introduction

Enormous size of modern datasets poses scalability challenges for a variety of algo-

rithms and applications. One particular area affected by the explosion of big data is graph

mining and, more specifically, motif discovery in large networks. Motifs are important

building blocks of real-life networks in biology, physics, chemistry, sociology, and com-

puter science [31], [37], [51], [53], [76], [81]. They capture local composition of graphs

and allow reasoning about the underlying construction processes that result in the observed

phenomena. Three-node cycles (i.e., triangles) have received the most attention, attracting

research interest for over 35 years [41] and developing many applications in graph theory

[6], [55], [77], [78], [82], bioinformatics [43], [53], computer graphics [28], databases [5],

and social networks [7], [11], [20], [88].

Until recently [85], little was known about the CPU cost of triangle listing, its behavior

under different acyclic orientations, and comparison across the different methods. Much

of the previous work [2], [38], [48] utilized O(.) bounds that were exactly the same for all

involved methods (i.e., vertex/edge iterators). As it turns out [85], there are 18 algorithms

for traversing the nodes of a triangle and handling the neighbors, which can be reduced

to four equivalence classes from the CPU-cost perspective, each with its own optimal

orientation. However, external-memory triangle listing remains largely unexplored. Given

the same 18 options, how many different I/O classes are there, what node permutations do

they require, and is it possible for some methods to simultaneously achieve optimal CPU

and I/O complexity using the same orientation?

If m is the number of edges and M is RAM size, previous implementations [3], [29],

∗ c⃝ 2016 IEEE. Reprinted, with permission, from Yi Cui, Di Xiao, and Dmitri Loguinov, “On Efficinet
External-Memory Triangle Listing,” IEEE ICDM, Dec 2016

8

[38], [44] operate with a simple I/O model that requires reading the graph m/M times,

for a total overhead of m2/M . In theoretical development, better bounds can be achieved

using random coloring of the graph [39], [60]; however, there are no implementations that

use this method and the constants inside its bound O(m1.5/
√
M) are unknown. What

makes these two approaches similar is that their performance does not depend on the

traversal order within each triangle or preprocessing manipulations applied to the graph,

which leaves little for additional investigation.

Instead, we show below that there exists a technique for graph partitioning that maps

the 18 triangle-listing algorithms into six distinct classes, each of which possesses differ-

ent I/O performance characteristics that depend on the acyclic orientation of the original

graph. We call this framework Pruned Companion Files (PCF) and demonstrate how all

18 methods can be combined under an umbrella of a single algorithm. Taking into account

both I/O and CPU cost [85], we discover 16 unique ways to perform triangle listing in

external memory, none of which were known before.

While accurate modeling of I/O complexity is difficult, we are still able to identify

the best partitioning scheme, deduce its optimal permutation, and prove that the amount of

data read from disk is min(m2/M,O(m)) in random graphs with Pareto degree sequences,

where shape parameter α > 4/3. Note that this is the first result with linear I/O bounds

under constant memory size. In contrast, both of the previous techniques [38], [60] require

M to scale at least as fast as m to achieve the same performance. We also demonstrate that

our partitioning scheme keeps the number of list intersections and table lookups unchanged

compared to RAM-only methods, which means that its runtime remains constant for all

M as long as I/O is not the bottleneck.

To test these developments in practice, we build an implementation that combines PCF

with a novel application of SIMD to edge iterator. Our solution, which we call PaCiFier,

is benchmarked on a variety of real-world graphs, including four new ones that have not

9

been examined for triangles before. Our densest graph contains over 1T triangles, while

the largest has over 100B edges. Results show that PaCiFier is 1− 2 orders of magnitude

faster than the best vertex iterator [38] and 5 − 10 times faster than the best edge iterator

[29]. More importantly, it achieves 10 − 50 times lower I/O complexity when RAM size

is small compared to m.

2.2 Generalized Iterators (GI)

Recent work [85] created a taxonomy of 18 vertex and edge iterators. They use figures

to highlight the intuitive differences among the methods; however, the lacking formal treat-

ment makes it difficult to extend these results to external-memory scenarios. We therefore

introduce a new description framework, which we call Generalized Iterators (GI), that ex-

plicitly encodes the traversal order in each triangle. This allows us to parameterize a single

algorithm to cover execution of all alternative methods.

2.2.1 Redundancy Elimination

Naive triangle-listing algorithms do not enforce order among the neighbors, which

results in extremely inefficient operation. Besides discovering each triangle 3! = 6 times,

there are serious repercussions stemming from the fact that the number of pairs checked

at each node is a quadratic function of its degree. Even on relatively small graphs, this can

lead to 1000× more overhead than necessary [85].

The redundancy can be eliminated by converting the graph into a directed version, in

which quadratic complexity applies only to the out-degree (or in-degree, depending on the

method), whose second moments are kept significantly smaller than those of undirected

degree. Assume the nodes are first shuffled using some algorithm and sequentially as-

signed IDs from sequence (1, 2, . . . , n). This creates a total order across the nodes and

is often called relabeling. A directed graph is then created, where out-neighbors of each

node have smaller labels and in-neighbors have larger. This step is called acyclic orienta-

10

tion. Finally, in the directed graph, triangles ∆xyz are listed in ascending order of the new

labels, i.e., x < y < z.

This procedure generalizes all previous efforts in the field, some of which perform

only relabeling [48], [67], [69] and others only orientation [3], [29], [38], [44], [67], [71],

[74]. The drawbacks of not doing both are discussed in [85].

2.2.2 Relabeling

Consider a simple (i.e., no self-loops) undirected graph G = (V,E) with n nodes and

m edges. Define θ to be a permutation of node IDs that starts with the ascending-degree

order and re-writes the label of each node in position i to θ(i). Among the n! possibilities,

there are several named permutations [85], which include ascending-degree θA(i) = i,

descending-degree θD(i) = n+ 1− i, round-robin

θRR(i) =

⌈n+i

2
⌉ i is odd

⌊n−i
2
⌋+ 1 i is even

, (2.1)

and complementary round-robin θCRR(i) = θRR(n + 1 − i), each of which optimizes a

different class of triangle-listing methods [85]. The difference in CPU cost between the

best and worst permutations can be orders of magnitude. Even worse, this ratio may be

unbounded as n → ∞ [85]. For a given permutation θ, define its reverse to be θ′(i) =

n+ 1− θ(i). This is a useful concept that allows detection of equivalence classes later in

the chapter.

Suppose Gθ is the relabeled graph under permutation θ. Its construction typically

requires sorting the degree sequence of G using θ, re-writing the source nodes of each list,

inverting the graph using external memory, and re-writing the source nodes again. It is

also common during this process to drop all nodes with degree one since they cannot be

part of a triangle.

11

2.2.3 Orientation

Define Ni to be the adjacency list of node i in Gθ and di = |Ni| to be its undirected

degree. In general, i /∈ Ni because the graph is simple. Suppose the neighbors within each

Ni are sorted ascending by their ID and Gθ is kept as a sequence of pairs {(i, Ni)}ni=1. Our

next goal is to define notation that allows splitting arbitrary sets into values smaller/larger

than a given pivot. The most immediate use is construction of in/out lists in the directed

graph, but we will encounter other applications shortly.

Suppose N is the set of natural numbers and consider two finite sets S, T ⊆ N. Then,

let

(T, S)+ = {j ∈ S|j ≤ max(T)} (2.2)

be a subset of S that is bounded from above by the largest value in T . When T consists of

a single element i, we simply write (i, S)+. Similarly, define

(T, S)− = {j ∈ S|j ≥ min(T)} (2.3)

to contain elements of S no smaller than the minimum in T . Then, the out-list of i in

the oriented graph is given by N+
i := (i, Ni)

+, while the corresponding in-list by N−
i :=

(i, Ni)
−.

When the +/− operator is specified by a variable φ, i.e., (T, S)φ, we say that S is

φ-oriented by T . This notation can be extended to other graph concepts. For example,

Gφ
θ consists of tuples {(i, Nφ

i)}, where i is the source node and Nφ
i is its neighbor list,

and dφi := |Nφ
i | is the corresponding degree in the directed graph. Define 1− φ to be the

inverse of operator φ, i.e., a plus becomes a minus and vice versa. It is then not difficult to

see that Gφ
θ′ is identical to G1−φ

θ , i.e., reversing the permutation is equivalent to inverting

12

the orientation.

2.2.4 Search Order

i

j

k

ϕ
1

ϕ
2

ϕ
3

(a) general case

i

j

k

(b) +−−

i

j

k

(c) +−+

Figure 2.1: Search-order operators in triangle listing.

Given six different ways to permute the nodes of a triangle, we next show how φ

allows us to describe the various trajectories during search that result in exactly one listing

of each triangle. Suppose i is the first visited node by an algorithm, j ∈ Ni is the second,

and k ∈ Ni is the last one. The larger/smaller relationship between these nodes is what

differentiates the various traversal orders. All possible combinations are captured by Fig.

2.1(a), where each dashed arrow represents a φ-relationship between the two neighboring

nodes. If labeled with a plus, a dashed arrow indicates that the source node is larger than

the destination. The roles are reversed when the label is a minus. Note that unlike our

earlier notation ∆xyz, where the order x < y < z was fixed, the relationship between

(ijk) is fluid, i.e., changed by parameter φ̄ = (φ1, φ2, φ3).

Once the φ̄ vector is chosen, the dashed arrows become oriented and are replaced with

solid lines that specify greater-than relationships among the nodes. One example is shown

in Fig. 2.1(b), where k > i > j. A simple rule to remember is that a + keeps the direction

of the dashed arrow, while a − reverses it. Out of the 23 = 8 possible φ̄ vectors, two

13

produce loops, such as the one in Fig. 2.1(c). These are invalid because they lead to a

contradiction, e.g., k > i > j > k. The remaining six combinations are studied next.

2.2.5 Algorithms

In Algorithm 1, we create the generalized vertex iterator (GVI) that can handle all

valid φ̄ vectors. The method starts by populating all directed edges from Gφ3

θ into a hash

table. The reason for using φ3 is that the algorithm performs lookups of (j, k) against H ,

which we know from Fig. 2.1(a) have relationship φ3. Then, for each node i, GVI creates

two sets – the hit list X , from which j will be drawn, and the local list Y consisting of

neighbors k that may complete a triangle. From Line 6, the algorithm examines every node

j ∈ X , orients Y using φ3 with respect to j, and checks the resulting pairs (j, k) against

the hash table. Note that Line 7 is important for eliminating the possibility of redundancy.

Algorithm 1: Generalized vertex iterator

1 Function GVI (φ̄)
2 build hash table H with all directed edges from Gφ3

θ

3 for i = 1 to n do
4 X = (i,Ni)

φ1 ▹ neighbors of i in Gφ1

θ (hit list)
5 Y = (i,Ni)

φ2 ▹ same in Gφ2

θ (local list)
6 foreach j ∈ X do
7 Y ′ = (j, Y)φ3 ▹ set Y φ3-oriented by j
8 foreach k ∈ Y ′ do
9 if (j, k) ∈ H then report triangle ∆sort(ijk)

The next technique is the generalized lookup edge iterator (GLEI) whose operation is

presented in Algorithm 2. The main difference begins in line 5, where GLEI populates the

local list Y into a small hash table H . For each j ∈ X , the method constructs a remote

list Z consisting of j’s neighbors according to φ3, orients it by φ2 with respect to i, and

checks its members against H . GLEI and GVI perform the same number of memory hits

[85], with the only difference being the time needed to clear the hash table in Line 11.

14

Algorithm 2: Generalized lookup edge iterator

1 Function GLEI (φ̄)
2 for i = 1 to n do
3 X = (i,Ni)

φ1 ▹ neighbors of i in Gφ1

θ (hit list)
4 Y = (i,Ni)

φ2 ▹ same in Gφ2

θ (local list)
5 add elements of Y to hash table H
6 foreach j ∈ X do
7 Z = (j,Nj)

φ3 ▹ neighbors of j in Gφ3

θ (remote list)
8 Z ′ = (i, Z)φ2 ▹ set Z φ2-oriented by i
9 foreach k ∈ Z ′ do

10 if k ∈ H then report triangle ∆sort(ijk)

11 empty H

The last method is the generalized scanning edge iterator (GSEI), which is described

by Algorithm 3. It relies on sequential traversal of neighbor lists to perform set intersec-

tion in Line 9. This is in contrast to GLEI that uses hash tables for this purpose. The

rest of the algorithm is quite similar. Before intersecting local and remote lists (Y, Z), the

method orients them in Lines 7-8 to be consistent with Fig. 2.1(a). Note that the former

is done by GVI and the latter by GLEI. In practice, orientation of the local list Y imposes

no additional overhead since j monotonically increases within the loop, which is a conse-

quence of Nφ1

i being sorted ascending. However, certain GSEI traversal orders require a

binary search in the remote list Z to locate i [85].

Algorithm 3: Generalized scanning edge iterator

1 Function GSEI (φ̄)
2 for i = 1 to n do
3 X = (i,Ni)

φ1 ▹ neighbors of i in Gφ1

θ (hit list)
4 Y = (i,Ni)

φ2 ▹ same in Gφ2

θ (local list)
5 foreach j ∈ X do
6 Z = (j,Nj)

φ3 ▹ neighbors of j in Gφ3

θ (remote list)
7 Y ′ = (j, Y)φ3 ▹ set Y φ3-oriented by j
8 Z ′ = (i, Z)φ2 ▹ set Z φ2-oriented by i
9 K = Intersect (Y ′, Z ′)

10 foreach k ∈ K do report triangle ∆sort(ijk)

15

2.2.6 Taxonomy

Table 2.1: Taxonomy of Vertex/Edge Iterators

GVI GLEI GSEI Binary Search Vector φ̄ i j k
T1 L1 E1 No +++ z y x
T2 L2 E2 No −++ y z x
T3 L3 E3 No −−− x y z
T4 L4 E4 No ++− z x y
T5 L5 E5 Yes +−− y x z
T6 L6 E6 Yes −−+ x z y

A combination of Algorithms 1-3 comprises our Generalized Iterators (GI) frame-

work. Analysis above shows that each of the main algorithms (i.e., GVI, GLEI, GSEI)

admits six traversal orders and that this classification is exhaustive (i.e., no other patterns

are possible). Table 2.1 assigns names to all methods based on their φ̄, specifying whether

the edge iterators require a binary search and how to relate (ijk) to (xyz). In prior litera-

ture, T1 can be found in [38], [44], [74], E1 in [3], [29], [71], E2 in [48], [67], E3 in [15],

[17], and E5 in [69]. Methods T1-T3, E1, E3, E4 are listed in [57].

While there are 18 techniques total, their CPU cost can be reduced to just four non-

isomorphic classes [85]; however, this may no longer hold when I/O is taken into account.

What can be said for sure is that reversing θ, or similarly inverting φ̄, produces an identical

method from the I/O standpoint. This allows reduction of scope to a subset of methods

that cannot be converted into each other through inversion of φ̄.

For example, keeping only methods that utilize G+
θ for remote edges, i.e., φ3 is the

plus operator, would eliminate rows (3, 4, 5) in Table 2.1. In that case, Fig. 2.2 shows the

position of the remaining 9 methods on a 2D plane, where the columns share the CPU cost,

while the rows do the same for I/O. We use analysis from [85] to position the columns

16

T1

L2

T6-L6

L1
T2

E1

E2

E6

θD θRR θD θCRR
optimal permutations

for CPU cost

Figure 2.2: Four CPU and three I/O classes.

in order of increasing CPU complexity, with T1 being the best and E6 being the worst;

however, it is currently unknown if the rows do in fact differ in cost, whether they can be

split into multiple subrows depending on additional factors, and how their I/O relates to

each other. This is our next topic.

2.3 Pruned Companion Files (PCF)

This section presents a general family of disk-based algorithms that supports all of the

methods in Table 2.1. It also aims to achieve better I/O complexity than prior approaches.

2.3.1 Overview

It is important to discuss the performance objectives of external-memory algorithms

before explaining our solution. There are four metrics that contribute towards the runtime

of a method and its ability to handle large graphs. The first is the triangle-identification

time, which consists of lookups against H in GVI/GLEI and intersection in GSEI (i.e.,

Lines 9, 10, 9, respectively). For a method M, suppose cn(M, θ) is the number of ele-

mentary operations, which we call the CPU cost, and r(M) is the speed of these operations

in nodes/sec. For a fixed pair (i, j), the CPU cost equals |Y ′| for GVI, |Z ′| for GLEI, and

|Y ′|+ |Z ′| for GSEI. Then, the triangle-identification time is given by cn(M, θ)/r(M).

The second metric is the amount of I/O performed. Because all reads are sequential,

this overhead is measured by the length of adjacency lists across all graphs participating

17

in the algorithm. The third metric is the number of lookups based on hit list X (i.e., Lines

6, 6, 5), which is generally a function of the partitioning scheme. This is in contrast to

RAM-only operation, where this value is always fixed at m, i.e., the number of edges in

Gθ. Finally, the last parameter is the minimum amount of RAM supported by the method.

It is possible that some of these metrics are tradeoffs of each other; however, if an ideal

algorithm exists, it would simultaneously beat the other methods in all four categories.

2.3.2 Graph Partitioning

Because GSEI explicitly maintains remote and local lists, both GVI and GLEI can be

viewed as its special cases that replace one of the lists with a hash table. For example,

GVI uses H in place of scanning Z, while GLEI does the same for scanning of Y . As

a result, any I/O partitioning scheme that handles GSEI can be adopted to work with the

other two algorithms without incurring additional overhead. Therefore, our description of

I/O techniques targets Algorithm 3.

In general, triangle-partitioning schemes work by placing one (or more) edges in some

RAM buffer and then scanning the disk for discovery of the remaining edges that complete

each triangle. Since node j and its neighbors k must be retrieved using random access,

one crucial observation is that all methods require the remote edge (j, k) to be present

in RAM, while the other two lists (X,Y) may be streamed from disk sequentially. This

framework, coupled with general φ̄ and the algorithms developed in this section, is what

we call Pruned Companion Files (PCF).

Assume the set of nodes V is divided into p pair-wise non-overlapping and jointly

exhaustive sets V = (V1, . . . , Vp). In a method we call PCF-A, we split Gφ3

θ along the

destination node of each pair (j,Nφ3

j) to create a set of remote-edge graphs

Gr
θ(l) = {(j,N

φ3

j ∩ Vl)}, (2.4)

18

i

j

k∈Vl

ϕ
1

ϕ
2

ϕ
3

X

Y

Z

(a) PCF-A

i

j∈Vl

k

ϕ
1

ϕ
2

ϕ
3

X

Y

Z

(b) PCF-B

Figure 2.3: Graph partitioning.

where l = 1, 2, . . . , p. In a method we call PCF-B, we do the same along the source nodes

Gr
θ(l) = {(j,N

φ3

j)|j ∈ Vl}. (2.5)

These technique are illustrated in Fig. 2.3 and their properties are given by the next

result.

Theorem 1. Algorithms 1-3 operating over PCF-A/B find each triangle exactly once. Fur-

thermore, the triangle-identification cost cn(M, θ) remains constant for all p.

Proof. First notice that every edge (j, k) belongs to a unique partition Gr
θ(l). Then, replac-

ing Gφ3

θ with Gr
θ(l) in Algorithms 1-3 and repeating for all l = 1, 2, . . . , p, we immediately

obtain that no triangle is missed or counted more than once.

To show that the triangle-counting overhead remains constant, we focus on GSEI, with

the other methods being similar. Fix a node j and assume the length of its neighbor list Z

after orientation by node i in Line 8 is given by qij . Note that list Y ′ is independent of the

partitioning scheme and can be ignored. For RAM-only operation, the intersection cost

19

related to j can be expressed as

∑
(i,j)∈Gφ1

θ

qij. (2.6)

In PCF-A, assume the length of Z oriented by i in partition l is given by qij(l). This

leads to an overall cost for j

p∑
l=1

∑
(i,j)∈Gφ1

θ

qij(l). (2.7)

Since the partitions are mutually disjoint and exhaustive, it must be that for all i

p∑
l=1

qij(l) = qij, (2.8)

which yields the same cost in (2.7) as in (2.6) after changing the order of summations.

In PCF-B, the analysis is even simpler. Because j appears as the source node in exactly

one partition, it experiences the same overhead (2.6) in that partition and zero in all others.

This result shows that partitioning does not create any additional list-intersection op-

erations, which allows us to focus on the remaining three objectives in the rest of the

chapter.

2.3.3 Partition Balancing

Assume M is the RAM size. To achieve the smallest p, each partition size |Gr
θ(l)|

must equal M , which requires explicit balancing. Note that splitting the range [1, n] into

p = m/M equal-size bins fails to accomplish this objective since permutation θ is degree-

dependent. For example, with θD, smaller node IDs indicate larger degree. Therefore,

20

nodes in the first bin may bring significantly more (or less depending on φ3) edges into

Gr
θ(l) than those in the last bin.

Balancing is accomplished by setting up boundaries a1, a2, . . . , ap+1 such that a node

is included in Vl if and only if it belongs to [al, al+1). While a1 = 1 and ap+1 = n + 1

are obvious, the other values require more attention. For PCF-A in Fig. 2.3(a), notice

that inclusion of k into Vl implies that all edges from list N1−φ3

k are placed into Gr
θ(l).

Therefore, we must select the boundaries such that

al+1−1∑
k=al

d1−φ3

k = M, (2.9)

which can be accomplished in one pass over G1−φ3

θ . For PCF-B in Fig. 2.3(b), the roles of

j, k are reversed, which leads to

al+1−1∑
j=al

dφ3

j = M. (2.10)

Balancing in PCF-A and B is equally fast, except the former requires existence of an

inverted version of Gφ3

θ .

2.3.4 Companion Files

The fastest previous implementations [3], [29], [38], [44] use a framework that would

scan the entire file Gφ1

θ to obtain hit lists X and Gφ2

θ for local lists Y . When φ1 = φ2, these

files coincide, which cuts the overhead by half compared to other vectors φ̄. Nevertheless,

the amount of I/O produced by these schemes is still quite substantial, i.e., mp = m2/M .

Instead, our approach is to prune lists X,Y to be optimally suited for each partition l

and write them into special companion files Gc
θ(l). Each of them, when paired with the

corresponding remote-edge graph Gc
θ(l), allows identification of all triangles with either k

21

Algorithm 4: One-pass graph partitioning

1 Function PartitionGraph (method, φ̄,V)
2 for i = 1 to n do
3 X = (i,Ni)

φ1 ▹ hit list from Gφ1

θ

4 Y = (i,Ni)
φ2 ▹ local list from Gφ2

θ

5 Z = (i,Ni)
φ3 ▹ remote list from Gφ3

θ

6 for l = 1 to p do ▹ go through each partition
7 if method = PCF-A then
8 X = (Vl, X)1−φ3 ▹ hit list oriented by Vl

9 Y = Y ∩ Vl ▹ keep only nodes in Vl

10 Z = Z ∩ Vl ▹ keep only nodes in Vl

11 else
12 X = X ∩ Vl ▹ keep only nodes in Vl

13 Y = (Vl, Y)φ3 ▹ local list oriented by Vl

14 Z = Z · 1i∈Vl
▹ Z if i ∈ Vl and ∅ otherwise

15 Y ′ = Y ▹ local list to be written to Gc
θ(l)

16 if Z ̸= ∅ then
17 write record (i, Z) into Gr

θ(l)
18 if φ1 = φ3 then
19 X = X\Z ▹ further prune X
20 if φ2 = φ3 then
21 Y ′ = Y \Z ▹ further prune Y

22 if X ̸= ∅ and Y ̸= ∅ and |X ∪ Y | ≥ 2 then
23 write record (i,X, Y ′) to Gc

θ(l)

(PCF-A) or j (PCF-B) in Vl.

Consider Algorithm 4, which is our one-pass solution to creating both companion and

remote-edge files. If tuples {(i, Ni)} are sorted by the source node i, Lines 3-5 simultane-

ously construct the three lists (X,Y, Z) by scanning multiple files in parallel; otherwise,

only methods with φ1 = φ2 = φ3 are supported. In Lines 7-14, the algorithm prepares the

necessary lists for each partition l. Among these, Line 8 can be explained with the help of

Fig. 2.3(a). Notice that PCF-A can (1−φ3)-orient set X with respect to Vl without losing

any relevant nodes j. Similarly Line 13 uses an observation from Fig. 2.3(b) that PCF-B

can φ3-orient Y with respect to Vl without omitting any essential nodes k.

In Lines 18-19, where φ1 = φ3 indicates that sets X and Z may overlap, the algorithm

drops redundant edges from X . The same operation applies to Y in Lines 20-21. Finally,

22

the companion file receives triple (i,X, Y ′) if both hit list X and local list Y are non-

empty, and there exist at least two nodes j ∈ X and k ∈ Y such that j ̸= k.

Note that when φ1 = φ2, it is possible for X to overlap with Y . An important aspect

of these cases is that Y is always φ3-oriented against X . If additionally Y ′ ̸= ∅, either

X ⊆ Y ′ or Y ′ ⊆ X holds. Not only that, but the smaller list is always either at the bottom

or top of the larger one. In such cases, only their union X ∪ Y ′ is written to disk, with an

additional field indicating the offset that separates them. Algorithm 4 omits this detail to

prevent clutter, but actual implementations should take it into account.

The main search function is shown in Algorithm 5. One noteworthy aspect is Line 8,

which handles X being in RAM for PCF-A, and Line 10, which does the same for PCF-B.

In the latter case, only nodes j ∈ Vl should be included in the hit list, which explains the

need for additional pruning. Since X being in RAM implies that Y is too, Line 11 uses

Ni(l) as the local list. Processing of individual nodes is given by Algorithm 6, which is

identical to the corresponding section of GSEI, except it finds Z via the hash table rather

than from the full graph Gφ3

θ .

2.4 Analysis

This section examines the introduced methods in comparison to each other. Our ob-

jective is to select a technique and its permutation so as to simultaneously maximize per-

formance across all four criteria, if possible.

2.4.1 Overview

From this point on, we parameterize PCF with a specific φ̄ from Table 2.1 by adding

the corresponding row index. As before, we consider only rows 1, 2, 6. When the A/B

designation is non-essential, we omit it. For example, PCF-2 refers to φ̄ = (−++) under

both A/B, while PCF-2A narrows it down to the A partitioning scheme.

This creates the six I/O mechanisms in Table 2.2, where i → j signifies the out-list

23

Algorithm 5: Disk-based GSEI

1 Function FindTriangles (φ̄)
2 for l = 1 to p do
3 load Gr

θ(l) = {(i,Ni(l))} in RAM
4 build hash table H to map each i to its neighbor list Ni(l)
5 if φ1 = φ3 then ▹ possible for parts of X to be in RAM
6 foreach (i,Ni(l)) in RAM do
7 if method = PCF-A then
8 X = Ni(l) ▹ unrestricted hit list
9 else

10 X = Ni(l) ∩ Vl ▹ restrict hit list to Vl

11 ProcessOneNode (φ̄, i,X,Ni(l))

12 while not EOF(Gc
θ(l)) do

13 read one record (i,X, Y) from companion Gc
θ(l)

14 if Y = ∅ then
15 Y = H.find(i) ▹ local list must be in RAM
16 ProcessOneNode (φ̄, i,X, Y)

17 empty H

Algorithm 6: Modified GSEI intersection

1 Function ProcessOneNode (φ̄, i,X, Y)
2 foreach j ∈ X do
3 Z = H.find(j) ▹ remote list is always in RAM
4 Y ′ = (j, Y)φ3 ▹ set Y φ3-oriented by j
5 Z ′ = (i, Z)φ2 ▹ set Z φ2-oriented by i
6 K = Intersect (Y ′, Z ′)
7 foreach k ∈ K do report triangle ∆sort(ijk)

neighbor relationship, i.e., j ∈ N+
i , and i← j the opposite, i.e., j ∈ N−

i . Note that PCF-

1A and 2A place two edges in RAM and load the third one from disk. This explains why

their local list Y is always omitted from companion files. The remaining four techniques

do the opposite – one edge is contained in Gr
θ(l) and two in Gc

θ(l). In three of these cases,

edge direction is kept the same between X and Y , which ensures that either X ⊆ Y ′ or

Y ′ ⊆ X , with only one of them actually written to disk. Method PCF-2B is the lone

exception with its X ∩ Y ′ = ∅.

Table 2.3 summarizes the pruning rules and specifies the contents of each companion

24

Table 2.2: Summary of PCF Algorithms Using Remote Graph G+
θ

PCF Gr
θ(l) Condition X Y ′

1A (y, z)→ x x ∈ Vl z → y ∅
2A (y, z)→ x x ∈ Vl y ← z ∅
6A z → y y ∈ Vl x← z x← y
1B y → x y ∈ Vl z → y z → x
2B z → x z ∈ Vl y ← z y → x
6B z → y z ∈ Vl x← z x← y

list. Notice that PCF-1B uses stricter conditions for achieving X,Y ̸= 0 than PCF-1A

and its X ∪ Y ′ is the same or smaller, which indicates that it out-performs its counterpart.

Assuming θD, further scrutiny of companion lists in Table 2.3 reveals that PCF-1A pro-

duces less I/O than any of the remaining four methods, with PCF-6A/6B being essentially

identical to each other.

2.4.2 Modeling I/O

Additional insight can be gleaned from bounding the size of companion files. Assume

uil is the length of i’s hit list X ′ in Gc
θ(l) and vil is that of Y ′\X ′. Then, the total amount

of companion I/O (in edges) is Hc = Hc
X +Hc

Y , where

Hc
X =

n∑
i=1

p∑
l=1

uil, Hc
Y =

n∑
i=1

p∑
l=1

vil, (2.11)

and that for remote-edge graphs is

Hr =
n∑

i=1

|Gr
θ(l)| = m. (2.12)

Since Hr is constant for all φ̄, comparison across the various approaches in Table 2.2

needs to involve only Hc. Closed-form derivation of accurate models for (2.11) currently

appears intractable. Even ballparking the scaling rate is quite elusive for certain extremely

25

Table 2.3: Composition of Companion Lists in PCF

PCF X Y Y ′

1A N+
i ∩ [al+1, n] N+

i ∩ Vl ∅
1B (N+

i ∩ Vl) · 1i≥al+1
N+

i ∩ [1, al+1) Y
2A N−

i N+
i ∩ Vl ∅

2B N−
i ∩ Vl N+

i Y · 1i/∈Vl

6A N−
i ∩ [al, n] N−

i ∩ Vl Y
6B N−

i ∩ Vl N−
i ∩ [1, al+1) Y

heavy-tailed degree distributions [85]. Instead, we offer bounds achievable in two worst-

case scenarios and leave more precise modeling for future work. Assume Hc(k) refers to

the companion overhead of PCF-k and consider the next result.

Theorem 2. The PCF I/O complexity (in edges) is upper-bounded by

Hc(1) ≤
n∑

i=1

min
(d+i − 1

2
, p− 1

)
d+i , (2.13)

Hc(2) ≤
n∑

i=1

min(d+i , p)d
−
i , (2.14)

Hc(6) ≤
n∑

i=1

min
(d−i + 1

2
, p
)
d−i , (2.15)

where d+i is the out-degree of i and d−i is the in-degree.

Proof. We only consider PCF-A since PCF-B uses similar arguments and produces the

same bounds. It is not difficult to see that PCF-1A writes Hc = Hc
X edges to companion

files since its pruned hit lists Y ′ are always empty. First, notice that a list cannot be split

into more than p chunks. Due to removal of overlap X ∩ Z, we can do even better – the

last partition Vp produces a hit list X only for neighbors j ≥ ap+1 = n + 1. Since no

label can exceed n, there are actually at most p − 1 partitions where uil ̸= 0. Therefore,∑p
l=1 uil ≤ (p− 1)d+i .

26

Our second observation is that an out-list cannot be split into more than d+i files. Then,

the worst case arises when each Vl consists of a single node, where partition l contains the

largest d+i − l out-neighbors of i. Thus,

p∑
l=1

uil ≤
d+i∑
l=1

uil ≤
d+i∑
l=1

(d+i − l) =
d+i (d

+
i − 1)

2
, (2.16)

which combined with the first case yields (2.13).

For PCF-2A, the first case is very similar, except it uses the in-degree d−i and fails to

remove the overlap X ∩ Z. The second case writes the full in-neighbor list exactly d+i

times, which yields the result in (2.14). Finally, PCF-6A operates similar to 1A, except it

uses the in-degree and fails to prune the lists as efficiently. Due to these small differences,

its bound (2.15) is not perfectly symmetrical to (2.13).

Using [85], we obtain that the I/O bound of PCF-1 is minimized by the descending-

degree permutation θD, that of PCF-2 by round-robin θRR, and that of PCF-6 by ascending-

degree θA. Furthermore, under their respective optimal permutations, (2.14) is strictly

worse than (2.13). The bound of PCF-6 under θA rivals that of PCF-1 under θD, although

it is still slightly higher due to a less-efficient pruning of overlap between (X,Y) and Z.

The worst permutations corresponding to (2.13)-(2.15) are θA, θCRR, and θD, respectively

[85].

For the asymptotics, let Dn ∼ Fn(x) be the random degree of a node in a graph of

size n. As n → ∞, suppose Fn(x) → F (x) and let D ∼ F (x). Then, under θD and

E[D4/3] <∞, the scaling rate of (2.13) is no worse than linear [85]

Hc(1) ≤ min
(m2

M
,O(m)

)
. (2.17)

For example, Pareto distributions F (x) = 1− (1+ x/β)−α satisfy this requirement iff

27

1B 1A

2

θD 2 6

θRR

θA 6A 2 1

1,6

6B

Figure 2.4: Better-than relationships across the I/O of various PCF methods.

α > 4/3. For PCF-2 and θRR, the rate (2.17) holds iff α > 1.5 [85]. Note that (2.17) is

strictly better than m2/M from prior implementations [3], [29], [38], [44]. When M is a

constant, it is also better than theoretical results of [39], [60] whose O(m1.5/
√
M) bound

cannot be linear unless M grows at least as fast as m.

Based on Table 2.3, Theorem 2, and symmetry of PCF-1A/6B and 1B/6A, Fig. 2.4

places the I/O of the various methods in relationship to each other under different permu-

tations. When we do not differentiate between the PCF variants A/B of a given method,

it is usually because they have similar I/O. From the picture, it emerges that PCF-1B with

θD is globally the most efficient technique.

2.4.3 I/O Comparison

For an illustration of the ideas presented earlier in this section, we employ the com-

monly considered Twitter graph [45] with 41M nodes and m = 1.2B edges. The file

occupies 9.3 GB and its adjacency lists contain 2m = 2.4B node IDs. We start with Table

2.4, which shows the size of companion files Hc. Observe that the predicted best-case

permutations in each column (highlighted in gray) agree with earlier analysis. Addition-

ally, notice that reversal of θ swaps PCF-A/B, switches PCF-1 to PCF-6, and maps PCF-2

back to itself. These effects were expected based on (2.13)-(2.15). Even though PCF-1

and PCF-6 are close under their optimal permutations, the former comes out ahead for the

28

Table 2.4: Twitter I/O (in Billion Edges) Under 16 MB of RAM

Permutation 1A 1B 2A 2B 6A 6B
θD 43.8 24.5 61.3 55.6 119.1 126.8
θRR 94.1 83.0 51.0 51.7 83.6 94.2
θA 125.7 118.4 54.8 61.7 25.5 44.2

10
0

10
1

10
2

10
30

50

100

150

200

RAM size (MB)

C
om

pa
ni

on
 I/

O
 (

bi
lli

on
 e

dg
es

)

PCF−2A
PCF−1A

(a) PCF-A

10
0

10
1

10
2

10
30

50

100

150

200

RAM size (MB)

C
om

pa
ni

on
 I/

O
 (

bi
lli

on
 e

dg
es

)

PCF−2B
PCF−1B

(b) PCF-B

Figure 2.5: Scaling rate of PCF-1 on Twitter under θD.

reasons discussed above.

We now examine how the methods scale as M → 0. We dismiss PCF-6 due to its

similarity to PCF-1. We also fix θD since it achieves the best CPU cost among the methods

in Fig. 2.2. We vary RAM size from 1 GB down to 1 MB and plot the result in Fig. 2.5,

where PCF-A cannot go lower than 16 MB due to inability to fit the largest in-degree into

RAM. Observe that not only is PCF-1 more efficient than PCF-2, but the gap between the

two grows as M decreases. As M → 0 and p→∞, both methods converge towards their

upper bounds, which are 150B in (2.13) and 360B in (2.14) [85]. The figure shows that

PCF-1 is getting there at a slower pace than PCF-2.

We next analyze the scaling rate of our best method PCF-1B against the two previous

models of I/O. Recall that the m2/M technique was proposed by MGT [38], while the

29

10
0

10
1

10
2

10
310

0

10
1

10
2

10
3

10
4

RAM size (MB)

C
om

pa
ni

on
 I/

O
 (

bi
lli

on
 e

dg
es

)

MGT
Pagh
PCF−1B

(a) Twitter

16 32 48 64 80
10

0

10
1

10
2

10
3

10
4

number of nodes n (million)

C
om

pa
ni

on
 I/

O
 (

bi
lli

on
 e

dg
es

)

MGT
Pagh
PCF−1B

(b) random graphs (M = 1 MB)

Figure 2.6: Comparison against prior methods.

O(m1.5/
√
M) bound is due to Pagh et al. [60]. Since there is no actual implementation

for the latter, it is difficult to assess the constants inside O(.). We thus take some lib-

erty in assuming how this method would work in practice. It randomly colors the nodes

using c =
√
m/M unique values and splits the edges into c2 files based on the color

of source/destination nodes. It then combines three files of colors (ij, jk, ki) and runs

MGT over the result. Since the size of each combined subgraph is 3m/c2, the I/O cost of

the method is 9m1.5/
√
M , which accounts for all c3 combinations of triplets (ij, jk, ki).

While [60] deals with undirected graphs, whose size is
∑n

i=1 di = 2m edges, we assume

the method can be applied to G+
θ . Thus, both MGT and Pagh use m = 1.2B in their

respective models.

The result for Twitter and M → 0 is shown in Fig. 2.6(a). After the initial jump,

PCF-1B becomes parallel to Pagh’s curve 1/
√
M . Both of them scale significantly better

than MGT’s inverse linear function. In Fig. 2.6(b) we use random graphs with a Pareto

degree distribution (α = 1.5, E[D] = 30) to examine the scaling rate of I/O as n → ∞.

In this range, PCF-1B is roughly linear, while the other two methods grow significantly

faster. As n increases, the ratio of MGT to PCF-1B jumps from 51 to 219, while that for

30

Table 2.5: CPU-I/O Complexity Classes in Twitter under 16 MB of RAM

Under CPU-optimal permutation Under I/O-optimal permutation
Perm GI CPU I/O Perm GI CPU I/O
θD T1 150B 24B θD T1 150B 24B

L2 150B 56B L1 360B 24B
T6-L6 150B 119B E1 511B 24B
E1 511B 24B θRR T2 255B 51B
E2 511B 56B L2 63T 51B

θRR L1 255B 83B E2 63T 51B
T2 255B 51B θA T6-L6 123T 25B

θCRR E6 63T 45B E6 123T 25B

Pagh from 15.5 to 29.3. To put this in perspective, n = 80M nodes requires 25B edges of

I/O for PCF-1B, 734B for Pagh, and 5.5T for MGT.

2.4.4 CPU-I/O Tradeoffs

As it turns out, Fig. 2.2 splits into 16 different CPU-I/O complexity classes, i.e., two

(A/B) for each of the 8 unique GI methods, with T6-L6 being a single entity. In the past,

it was believed that GVI and GLEI were functionally identical. However, this is not the

case when I/O is taken into account. For example, T1 shares the I/O cost with L1, but at

lower CPU complexity. Similarly, it shares the CPU cost with L2-L6, while imposing less

I/O. In the same vein, it was unknown until now whether E1 and E2 were interchangeable.

Results above confirm that they are not.

These observations are emphasized using Table 4.18, where each I/O cell reports the

best number achieved by either PCF-A or B. Observe that the best GVI is T1, which

exhibits optimal CPU and I/O complexity under θD. The decision is also easy for GSEI,

where E1 is the top contender. On the other hand, GLEI must choose which of the two

objectives is more important – L1 has the best I/O and L2 the best CPU cost, both under

θD. Other GLEI combinations are much worse.

31

2.4.5 Lookups and Minimum RAM

Recalling that PCF-B prunes X such that X ⊆ Vl holds, while PCF-A does not, the

next result follows immediately.

Theorem 3. PCF-A issues Hc
X hit-list lookups and requires M ≥ maxi d

1−φ3

i . PCF-B

performs exactly m lookups and requires M ≥ maxi d
φ3

i .

In graphs with heavy-tailed degree and M ≪ m, it is common that the hit list size

Hc
X ≫ m (e.g., see Table 2.4). Therefore, for small RAM size, PCF-B should have a

noticeably better CPU performance than PCF-A. In fact, its number of hash-table hits is

optimal as it equals that in RAM-only algorithms.

In terms of restrictions on RAM, all considered methods PCF-1/2/6 have a plus for

φ3, which means that PCF-A lower-bounds M by the largest in-degree, while PCF-B by

the largest out-degree. It is well-known that θD keeps the latter no larger than
√
2m;

however, its maximum in-degree equals maxi di, which can be significantly higher, i.e.,

up to n− 1. Therefore, PCF-B under θD is definitively less restrictive than PCF-A. When

the permutation is reversed, the bounds on in/out degree are swapped and PCF-A becomes

better than PCF-B. Finally, θRR has both maximum in/out degree equal to maxi di, which

makes this permutation equally bad in both PCF-A/B.

2.4.6 Summary

From the analysis above, two methods T1B and E1B emerge as clear winners within

their respective classes (i.e., hash tables and scanning intersection). Among the 18 meth-

ods, they achieve the smallest companion I/O, perform the minimal number of hit-list

lookups, impose the lowest RAM requirements, do not need to invert Gφ3

θ during creation

of {Vl}, and obtain (X,Y, Z) from a single file in Algorithm 4.

We next consider which of them has a smaller runtime. There are two aspects involved

32

1

1 2 5 6 9 11 12 15

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

3
4
5
8
10
12
16

vector A

vector B
parallel comparison

matrix

1 0 1 0 0 0 1 0

OR

result

Figure 2.7: Parallel intersection with STTNI.

– the relative CPU cost

wn :=
cn(E1, θD)

cn(T1, θD)
(2.18)

and the relative speed s = r(E1)/r(T1). While [85] proves existence of random graphs

where wn → ∞ as n → ∞, ratio wn is only 2 − 3 in real graphs commonly studied in

this area. Given that s is at least 20 on modern CPUs, it is conclusive that scanning edge

iterators will remain the best option until graphs are discovered with significantly larger

wn.

2.5 Implementation

We now build a fast implementation of E1B that takes advantage of SIMD for scanning

the lists and PCF-B for I/O. We call this method PaCiFier and make it available in [22].

2.5.1 Intersection

Since E1B spends almost all of its CPU time on intersection, it is crucial to address

this bottleneck first. With support for SIMD in modern CPUs, we can exploit data-level

parallelism and achieve a significant speedup compared to traditional CPU-based methods.

We adopt the technique from [68], which utilizes STTNI intrinsics from SSE 4.2. They

33

Table 2.6: Single-Core Speed (Intel i7-3930K @ 4.4 GHz)

Implementation Speed (M/sec)
Hash table 19
Naive scalar intersection 264
Branchless intersection 416
SIMD 32-bit intersection 1, 119
SIMD 16-bit intersection 1, 801

Table 2.7: Dataset Properties

Graph Nodes (n) Degree sum (2m) Size
LJ 4,846,609 85,702,474 364 MB
USRD 23,947,347 57,708,624 403 MB
BTC 164,660,997 772,822,094 4.1 GB
WebUK 62,338,347 1,877,431,056 7.5 GB
Twitter 41,652,230 2,405,026,390 9.3 GB
Yahoo 720,242,173 12,869,122,070 53.3 GB
IRL-domain 86,534,416 3,416,273,404 13.3 GB
IRL-host 641,982,060 12,872,821,328 52.7 GB
IRL-IP 1,588,925 1,636,848,800 6.1 GB
ClueWeb 8,179,508,503 102,394,528,124 358 GB

work on two 128-bit vector registers, treating them as four 32-bit or eight 16-bit integers.

Fig. 2.7 shows how STTNI builds an all-to-all comparison matrix and outputs a vector of

matches using just one instruction. While 32-bit intersection is fast, better results can be

procured by compressing labels into 16-bit numbers. This is performed by grouping node

IDs into chunks that share the same upper 16 bits. For each chunk, PaCiFier additionally

keeps its length and a list of the lower two bytes from each original label. This works well

because all vertices are sequentially relabeled and adjacency lists are kept in ascending

order. Besides almost doubling intersection speed, this method reduces graph size by

approximately 50%.

For lists that are shorter than some threshold (e.g., 16), both compression and 16-bit

34

Table 2.8: Dataset Triangle Properties

Graph Triangles wn cn(E1, θD) E[di] maxi di maxi d
+
i

LJ 285,730, 264 3.01 2.1B 17.7 20,333 685
USRD 438,804 2.37 25M 2.4 9 4
BTC 28,498,939 1.59 3.5B 4.7 1,637,619 646
WebUK 179,076,331,071 1.99 364B 30.1 48,822 5,692
Twitter 34,824,916,864 3.38 511B 57.7 2,997,487 4,102
Yahoo 85,782,928,684 1.47 433B 17.9 7,637,656 1,540
IRL-domain 112,797,037,447 3.63 1.4T 39.5 2,948,635 4,481
IRL-host 437,436,899,269 2.85 2.6T 20.1 5,475,377 4,516
IRL-IP 1,032,158,059,864 3.17 4.2T 1,030 669,776 8,915
ClueWeb 879,280,163,294 2.00 3.0T 12.5 44,383,637 1,747

intersection do not work well. In these cases, we keep the lists in 32-bit format and ap-

ply the branchless scalar (i.e., non-SIMD) intersection from [40]. A benchmark of these

operations together with the Google Hash Table are shown in Table 2.6. With 1.8B oper-

ations/sec, PaCiFier’s ratio s is a whopping 94.7. This places even more doubt that T1B

will be competitive in the near future, especially given that RAM bandwidth scales much

faster than latency [65], i.e., s will continue increasing.

2.5.2 Relabeling and Orientation

For degree-based permutations, prior work sorts pairs (degree, ID) to establish a total

order. This becomes a major bottleneck in preprocessing, especially for large graphs where

these tuples do not fit in RAM. In contrast, we use a novel approach that decides the new

labels without sorting the nodes. We first accumulate a histogram of degree frequency in

one pass over pairs (i, di), which are kept separately from the adjacency lists {Ni}. Using

a prefix sum of the histogram, we then establish the starting IDs for nodes of each unique

degree value. Performing another scan of the tuples, we find the degree of each source

node i in the histogram and create a mapping from old labels to the corresponding new

IDs. This is shown in Fig. 2.8. Frequently accessed parts of the histogram typically fit in

35

32 15 9 2 1 deg[]

hist[] 1 1 2 4 6

newIDs[] 1 2 3 5 9

prefix

sum

Figure 2.8: Descending-degree relabel with a histogram.

the L2 cache, which makes lookups against them extremely fast.

If the mapping fits in RAM, PaCiFier performs a scan over the adjacency lists and

rewrites all edges in one pass. Otherwise, it changes the source nodes, inverts the graph,

and updates the source nodes again.

2.5.3 Parallelization

Scaling PaCiFier to multiple cores is rather straightforward. In Algorithm 5, the pro-

cessing of each record (i,X, Y) ∈ Gc
θ(l) is an independent job, which allows multiple

threads to work on different lists without interfering with each other. The lookup table H

is read-only and can be safely shared by all worker threads without any locks. Assuming c

available cores and hyper-threading, we run 2c worker threads and set the affinity mask to

bind each thread to a dedicated core. This configuration ensures 100% CPU utilization for

the entire execution and almost linear scalability with the number of cores (see below).

2.5.4 Evaluation Setup and Datasets

Experiments use a six-core Intel i7-3930K @ 4.4 GHz, Asus Rampage IV Extreme

motherboard, and quad-channel DDR3 RAM @ 2133 MHz. We compare PaCiFier against

four methods with available implementations – RGP [17], DGP [17], MGT [38], and

PDTL [29]. For the first three techniques, we use a multi-threaded binary shared by the

authors of [38].

36

We employ all standard graphs in the field – Live Journal (LJ) [38], US road maps

(USRD) [38], Billion Triples Challenge (BTC) [35], WebUK [38], Twitter [45], and Yahoo

[87]. Note that the original Yahoo graph has n = 1.4B, which reduces to 720M after

removing zero-degree nodes. To cover a wider variety of options, we add two web crawls:

IRLbot [49] and ClueWeb [19]. Out of the former, we extract domain, host, and IP-level

graphs. Assuming I(x) is the IP address of an authoritative nameserver for domain x,

graph IRL-IP contains edges I(x)→ I(y) iff x→ y in IRL-domain, which may be useful

for spam detection and ranking. The original ClueWeb dataset published online [19] does

not contain any dynamic links and is limited to 7.9B edges [63]. We remedy this problem

by running our HTML parser over all pages, which yields a much larger graph with 102B

links. The new files can be downloaded from [22].

Tables 2.7-2.8 summarize statistics of the graphs, where the old datasets require billion-

scale intersection cost cn(E1, θD) and the new ones trillion-scale. The densest graph IRL-

IP has an average degree 1,030, contains over 1T triangles, and requires 4.2T intersection

operations. ClueWeb comes in at a hefty 358 GB, but neither its number of triangles nor

CPU cost can top those of IRL-IP. Also note that the longest out-list in the table occupies

just 35 KB of RAM, far smaller than the longest undirected neighbor set (i.e., 177 MB).

2.5.5 Preprocessing Time

RGP/DGP do not require preprocessing, while the other three methods manipulates

the input graph G into a suitable format prior to actual listing of triangles. It is common

to time the two phases separately, especially since the former can be performed once and

the latter repeated many times on the same preprocessed data. Table 2.9 shows the result

using a RAID system capable of reads at 1 GB/s. Even though PaCiFier is the only one

performing both relabeling and orientation, its usage of the histogram to avoid sorting

makes it 2− 8 times faster than MGT and up to 20 times faster than PDTL.

37

Table 2.9: Preprocessing Time (Seconds)

Graph MGT PDTL PaCiFier
LJ 2.2 1.0 1.7
USRD 2.0 1.4 2.0
BTC 18.8 11.6 8.9
WebUK 36.9 24.5 14.7
Twitter 88.9 38.4 24.5
Yahoo 295 276 149
IRL-domain 149 61.9 31.8
IRL-host 736 456 221
IRL-IP 33.9 19.1 8.5
ClueWeb 8,192 19,502 962

2.5.6 Triangle-Listing Time

We run the next set of tests using an 8-GB RAM constraint, which ensures that I/O

is not a bottleneck for our RAID. As a result, Table 2.10 presents an evaluation of pure

CPU efficiency of each algorithm. PaCiFier’s performance is determined by the length of

neighbor lists, i.e., efficiency of SIMD scanning. Compared to MGT, which implements

T1, its speedup varies from a factor of 13.6 on Yahoo to 78.6 on IRL-IP. In the latter

graph, PaCiFier finds 1T triangles in 237 seconds, which translates into 17.7B neighbor

checks/sec and 4.3B discovered triangles/sec using all six cores. Compared to PDTL,

which is an optimized version of E1 with MGT’s partitioning scheme, PaCiFier achieves a

5− 10× faster runtime.

The number of found triangles is consistent across the methods, except RGP/DGP fail

to finish within 12 hours on several graphs, which we indicate with a dash. Additionally,

MGT quits with an unrealistically small number of triangles (i.e., 170M) after spending

24K seconds on ClueWeb, which we show with an asterisk. Its traces point toward early

termination before processing all of the partitions; however, unavailability of the source

code prevents further analysis.

38

Table 2.10: Runtime (Seconds) With 8 GB of RAM

Graph RGP DGP MGT PDTL PaCiFier
LJ 22.3 22.2 11.2 2.8 0.7
USRD 12.3 12.3 1.2 6.2 0.3
BTC 111 110 11.4 12.1 2.1
WebUK 1,299 891 599 93.6 17.1
Twitter 10,300 9,814 2,238 327 63.4
Yahoo 31,945 13,990 1,080 619 79.2
IRL-domain 17,717 16,919 5,946 849 148
IRL-host – – 11,099 1,773 367
IRL-IP – – 18,617 2,358 237
ClueWeb – – * 13,782 1,737

Table 2.11: Results from Prior Work

Type Algorithm Runtime (sec) Cores or
Twitter Yahoo servers

RAM-only [69] 101 – 16
[71] 55.9 77.7 40

External PATRIC [3] 552 – 200
OPT [44] 469 819 6

MapReduce [20] 36,300 – 47
GP [74] 28,980 – 1,636
TTP [62] 12,780 – 47
CTTP [63] 5,520 61,920 40

39

1 2 3 4 5 6
1

2

3

4

5

6

cores

sp
ee

du
p

(a) Twitter

1 2 3 4 5 6
1

2

3

4

5

6

cores

sp
ee

du
p

(b) IRL-domain

Figure 2.9: Speedup vs. number of cores (8 GB of RAM).

To put these results in perspective, Table 2.11 cites the runtime from prior work on

Twitter and Yahoo. We split the algorithms into several categories – RAM-only, external-

memory, and MapReduce. We report the number of utilized cores for the former two

groups and cluster size for the last one. The first two methods in the table [69], [71]

produce comparable numbers to those of PaCiFier, but using 3− 6 times more late-model

Xeon cores. Due to their RAM-only operation, we do not consider them competitors

for PaCiFier. The next two techniques [3], [44] are extensions of RGP/DGP and MGT to

multiple machines. They are generally faster than their respective predecessors, but still far

slower than PaCiFier. The final four methods [20], [74], [62], [63] in the table are entirely

disappointing – 87 to 572 times slower than PaCiFier while consuming substantially more

resources.

2.5.7 Parallelization Efficiency

We now examine how PaCiFier scales with the number of cores, which indicates how

well the algorithm benefits from additional CPU resources. As discussed earlier in sec-

tion 2.5.3, PaCiFier’s parallelization framework partitions the computation (i.e., triples

40

Table 2.12: Runtime (Seconds)

Graph RAM (MB) MGT PDTL PaCiFier

Twitter

8,192 2,238 323 63.3
4,096 2,248 327 63.2
2,048 2,260 327 61.9
1,024 2,285 347 61.0
512 2,354 464 61.4
256 2,487 1,003 67.2

IRL-domain

8,192 5,947 849 148
4,096 5,976 851 144
2,048 6,020 853 143
1,024 6,090 898 143
512 6,252 995 145
256 6,540 1,484 149

(i,X, Y ′) from the companion file) into equal-sized jobs, which are processed lock-free

by worker threads. As shown in Fig. 2.9, PaCiFier’s runtime indeed scales almost lin-

early. The reason for a slightly suboptimal outcome is that certain auxiliary operations

(e.g., indexing of Gr
θ(l) in Line 4 of Algorithm 5) are executed sequentially.

2.5.8 Effect of RAM: Bottlenecked by CPU

Next, we analyze the performance of each algorithm under varying RAM size. We

showed earlier that PaCiFier’s CPU cost was constant for all M . While the I/O complex-

ity does increase as M → 0, double buffering and prefetching can keep this overhead

negligible until the disk becomes a bottleneck. Table 2.12 supports this discussion – using

our RAID system, PaCiFier completes in virtually the same amount of time for all M in

the range between 256 MB and 8 GB. The initial drop in runtime can be explained by

smaller lookup tables and better cache locality; however, as M decreases further, SIMD

becomes less efficient and this effect is reversed. While MGT is not bottlenecked by I/O

either, PDTL increases its runtime by 49− 116% at M = 256 MB. More interesting cases

where the disk can no longer keep up with the computation are studied next.

41

2.5.9 Effect of RAM: Bottlenecked by I/O

For comparison of disk activity, we use the exact model m⌈m/M⌉ for MGT/PDTL

and compute the size of all companion files in PaCiFier by running Algorithm 4. Although

DGP/RGP share the same Θ(m2/M) asymptotic cost with MGT, these methods require

two orders of magnitude more I/O due to slow convergence, which we omit from analysis.

Instead, we contrast against MapReduce methods. The first one is GP [74], which uses at

least ρ = ⌈3
√
m/M⌉ reducers and shuffles

30(ρ− 1)(ρ− 2)m

ρ
(2.19)

bytes of data [62]. A later method called TTP [62] reduces ρ by a factor of
√
3 and

improves the shuffle to 20(ρ− 1)m.

Table 3.2 shows the I/O in bytes on the two largest graphs under consideration. PaCi-

Fier starts off beating GP/TTP by a factor of 32 − 78 and MGT/PDTL by a factor of

3.7 − 9. This advantage keeps accumulating as M decreases. Eventually, PaCiFier de-

velops a 58 − 195× lead over the former and 34 − 64× over the latter as M reaches 256

MB. In the last scenario, the I/O phase of MGT/PDTL would require 34.5 hours to finish

ClueWeb using our 1 GB/s RAID. With a magnetic hard drive (i.e., 100 MB/s read speed),

this would take over two weeks. On the other hand, PaCiFier lowers these numbers to 32

minutes and 5.3 hours, respectively.

2.6 Conclusion

The chapter created a taxonomy of 18 triangle-listing methods using a unifying frame-

work called Generalized Iterators (GI), developed a new set of algorithms called Pruned

Companion Files (PCF) for external-memory operation of GI, and showed that it possessed

better complexity than current implementations in the field. It then determined which of

42

Table 2.13: I/O Comparison

Graph RAM (MB) GP TTP MGT/PDTL PaCiFier

Yahoo
(in GB)

8,192 2,099 1,066 88.8 40.4
4,096 3,271 1,599 177.6 47.6
2,048 5,247 2,132 355.1 55.5
1,024 7,632 3,198 710.2 64.8
512 11,219 4,531 1,420 74.6
256 16,408 6,663 2,841 84.4

ClueWeb
(in TB)

8,192 47.4 19.2 3.91 0.69
4,096 68.4 27.9 7.82 0.87
2,048 99.8 40.2 15.6 1.10
1,024 141.7 55.9 31.3 1.36
512 204.6 80.4 62.6 1.64
256 291.1 113.6 125 1.93

the 18 methods was the most efficient when both CPU and I/O objectives were taken into

account and created a working solution that exhibited 5− 10× smaller runtime and orders

of magnitude less I/O compared to the best previous technique.

43

3. TRIGON∗

3.1 Introduction

Triangle listing is a field of graph mining that aims to identify all three-node cycles

in undirected graphs G. This problem has many applications in theory and practice [5],

[6], [7], [11], [20], [28], [55], [77], [78], [82], [88], including areas outside of computer

science [31], [37], [43], [51], [53], [76], [81]. Due to the scale of modern graphs (i.e.,

billions/trillions of edges) and anticipated emergence of even bigger datasets in the future,

reducing I/O complexity during graph manipulation has become an important topic.

Triangle listing involves two components – in-memory search, whose purpose is to

finds all relevant motifs (i.e., triangles) within portions of the graph loaded in RAM, and

graph partitioning, whose responsibility is to chunk G into such pieces that ensure no

triangle is missed or discovered more than once. In-memory search entails verification

of neighboring relationships between all pairs of candidate nodes. The majority of these

solutions [3], [15], [17], [29], [38], [44], [48], [64], [67], [69], [71], [74] can be expressed

under the umbrella of 18 vertex/edge-iterator algorithms [21], [84], where a single method

E1 has emerged as a clear winner.

In graph partitioning, however, the situation is more interesting. As of this writing, the

two most-efficient approaches to splitting the graph are a coloring scheme called Pagh [60]

and the PCF framework from [21]. The main caveat is that the former has lower I/O bounds

on complete graphs, while the latter on sparse, i.e., neither one is better than the other.

Besides I/O, execution time also depends on the amount of hash-table lookups, which is a

function of the partitioning algorithm. This raises a possibility that some methods might

exhibit less I/O, but require more CPU cost.

∗ c⃝ 2017 IEEE. Reprinted, with permission, from Yi Cui, Di Xiao, Daren B.H. Cline, and Dmitri Logu-
inov, “Improving I/O Complexity of Triangle Enumeration,” IEEE ICDM, Nov 2017

44

It currently remains unclear under what specific conditions Pagh is better than PCF

in terms of I/O, which of them should be chosen for a particular G, why one approach

may have inherent advantages over the other, and whether it is possible to design a single

algorithm that can perform better than both of these techniques. If so, how does one decide

on its parameters in order to achieve the smallest runtime? Our goal in the chapter is to

address these questions.

3.1.1 Overview of Results

We start by analyzing the asymptotics of I/O in Pagh and PCF, aiming to achieve an

understanding of their strengths and weaknesses. While the former has a simple model,

the overhead of the latter is a complex function of the acyclic orientation θ, the resulting

directed graph Gθ, and specific traversal order of nodes in each triangle. We derive the

exact overhead of PCF; however, this formula proves difficult for closed-form analysis.

We therefore obtain tight upper/lower bounds on its growth rate, which are then used in

the comparison against Pagh.

This analysis shows how the scaling rate of average degree, memory size, and variance

of out-degree affect which method is better. In general, PCF has the highest advantage

when the graph is sparse, the variance of out-degree is small, and RAM is growing slowly

with the number of edges m. Pagh wins when these conditions are reversed. As the

number of nodes n → ∞, our results demonstrate that under the best scenario for PCF, it

beats Pagh by a factor of n. In the worst case, it looses by a factor of
√
n. We also prove

existence of graphs where PCF scales I/O no faster than Pagh for all memory sizes and

vice versa.

Our investigation reveals that each method brings a significant amount of redundant

edges into RAM, but they do so under different conditions. This gives hope that a single

method can combine the strengths of these techniques and simultaneously avoid their indi-

45

vidual drawbacks. To this end, we first generalize graph partitioning to cover all possible

ways to execute vertex/edge iterators in external memory. Not surprisingly, both Pagh and

PCF, as well as previous techniques based on MGT [29], [38], are special cases of this

unifying framework. Under its umbrella, we then create a particular scheme, which we

call Trigon, that leverages the lessons learned from the preceding analysis. We show that

Trigon’s I/O is never worse, and in many cases much better, than either of its predecessors.

Not only that, but it is also the first method that allows balancing between I/O and CPU

cost in order to achieve the smallest runtime.

We implement Trigon in C++ and show its performance in real systems. In one con-

figuration, we use a single computer, restricted to 1.9 MB of RAM, and one magnetic hard

drive. Given a 37-GB complete graph, which is the best-case for Pagh, Trigon finds 167

trillion triangles in 4 hours. In contrast, PCF requires 31 TB of I/O and an estimated 2.3

days, while Pagh takes roughly 11 hours.

3.2 Related Work

The issue of optimal speed for in-memory algorithms appears to be settled. In the

last decade, the fastest techniques have come from the family of vertex/edge iterators [3],

[29], [38], [44], [48], [67], [69], [71], [74]. The former methods typically rely on hash

tables to perform neighbor checks, where the speed is limited by that of random memory

access. On the other hand, scanning edge iterators can be implemented using vectorized

CPU intrinsics, which are not bottlenecked by RAM latency. With 128-bit SIMD and list

compression, it is feasible to achieve two orders of magnitude faster neighbor verification

[21]. In the taxonomy of 18 vertex/edge iterators, method E1 [3], [29], [71] is by far the

best technique [21], [84].

In external memory, early methods used a variety of techniques, including disk seeking

[23], [52], MapReduce [20], [62], [74], general graph libraries [30], [47], and iterative

46

graph shrinkage [17], which are difficult to summarize here analytically. Due to their

low efficiency, however, these approaches are not considered competitive today. In more

recent development, algorithms have been streamlined to access the disk only sequentially,

allowing comparison using just the amount of edges read from disk and RAM size M . In

MGT [38], the graph is split into equal-size chunks. After each is loaded into RAM,

the graph is scanned again to discover the missing edges that complete triangles with the

portion already in RAM. Ignoring small terms, MGT reads m2/M edges.

This result was superseded by a method we call Pagh [60], which achieves a strictly

better asymptotic bound O(m1.5/
√
M). We review its operation in more detail below. A

different approach is proposed in [21], where a set of six PCF algorithms covers all 18

vertex/edge iterators in external memory. While there is no model for PCF I/O, upper

bounds show that it is currently the only method that can achieve linear complexity under

constant M .

3.3 Preliminaries

Assume a simple undirected graph G = (V,E) with n nodes and m edges. Detection

of triangles requires a large number of neighbor checks, whose complexity is normally a

quadratic function of undirected degree. This overhead can be substantially reduced by

performing an acyclic orientation on G, which makes cost depend on the much-smaller

directed degree. In recent literature [84], orientation is modeled as some permutation θ

that decides the direction of each edge. Specifically, each node u is placed into a new

location θ(u), the permuted sequence of nodes is relabeled from 1 to n, and all edges

are directed from larger to smaller node IDs. This splits each neighbor list Nu into out-

neighbors N+
u and in-neighbors N−

u , with the corresponding graphs G+
θ and G−

θ . Note that

adjacency lists are sorted by the new node label.

Throughout the chapter, we use orientation θD that arranges the nodes in descending

47

Algorithm 7: Method E1 processing source node u in memory

1 foreach v ∈ N+
u do ▹ visit all out-neighbors

2 find N+
v using a hash table

3 W = Intersect(N+
u , N+

v) ▹ intersect two sorted out-lists
4 foreach w ∈W do report ∆uvw

order of undirected degree du. This permutation, also known as largest-first in graph

theory [50], [80], is optimal for both the fastest edge iterator E1 and its corresponding PCF

algorithms in [21], [84]. Since Pagh’s performance is independent of θ, this choice does

not affect its I/O. Letting Yu = |N−
u | and Xu = |N+

u | be the respective in/out-degrees of u

in directed Gθ, it follows that Xu + Yu = du and
∑n

u=1Xu =
∑n

u=1 Yu = m.

After orientation, E1 searches for all directed triangles△uvw, where u > v > w. This

is done by calling Algorithm 7 for each source node u in G+
θ . The CPU cost consists of

the number of hash-table lookups to retrieve N+
v and the size of intersection in Line 3. For

in-memory operation, the former is just γ(n) = m− n, while the latter is given by [84]

ρ(n) =
n∑

u=1

(Xu(Xu − 1)

2
+XuYu

)
. (3.1)

To emphasized the importance of keeping track of lookups, consider the example of

Twitter [46]. With m = 1.2B edges, Algorithm 7 requires 60 seconds worth of lookups

using one core of an Intel i7. The time to perform 511B intersections is an additional 250

seconds. Increasing the lookup cost just 5 times shifts the bottleneck to the hash table and

causes triangle search to increase the runtime from 310 to 550 seconds.

When E1 is used in external memory, the partitioning scheme must ensure that all

three edges of a triangle are eventually present in RAM at the same time. This can be

accomplished by holding one of them in RAM and streaming the other two from disk (e.g.,

MGT [38], PCF-1B [21]), keeping two in RAM and streaming the third one (e.g., PCF-1A

48

[21]), or loading all three simultaneously [60], [64]. Because of the random lookup needed

to obtain N+
v , it does not currently appear feasible to stream all three edges.

Note that all methods require the same amount of I/O to store the found triangles.

We therefore focus on the cost needed to create this list, which is what differentiates the

various approaches.

3.4 Analysis of Pagh

The original Pagh algorithm [60] has certain details omitted from the paper, while oth-

ers are sketched at a high level. While I/O complexity of this method has known bounds

in the O(.) notation [60], analytical comparison between the algorithms, as well as imple-

mentation, both require the missing constants. Additionally, since coupling of Pagh to E1

has not been discussed before, we perform this extension as well.

3.4.1 Algorithm

Pagh assigns to each node u a uniformly random color ϕu drawn from a set 1, 2, . . . , c,

where c =
√
m/M . Then, all nodes are split into c subsets V1, . . . , Vc such that

Vi = {u ∈ V | ϕu = i}. (3.2)

u

v

w

remote

local

hit

(a) notation

i

j

k
(b) color assignment

Figure 3.1: Directed triangle (u > v > w).

49

Algorithm 8: Graph partitioning in Pagh

1 for u = 1 to n do
2 i = ϕu ▹ color of source node
3 for j = 1 to c do ▹ color of destination nodes
4 N+

uj = N+
u ∩ Vj ▹ out-neighbors of color j

5 write (u,N+
uj) to subgraph E+

ij

This can be visualized with the help of Fig. 3.1. Part (a) shows a directed triangle

(uvw), as seen by Algorithm 7, with three uniquely-identifiable edges. While they have

several different names in previous literature, we follow the notation of [21] for compat-

ibility with E1.From u’s perspective, edge (uv) results in a hit on the hash table, (uw)

participates in local intersection at u, and (vw) is part of remote intersection. The map-

ping to colors is shown in part (b) of the figure, where i refers to the color of the largest

node, j to that of the middle, and k to that of the smallest.

The edges of G+
θ = (V,E+

θ) are partitioned into c2 subsets {E+
ij} according to the

color of source/destination nodes, i.e.,

E+
ij = {(u, v) ∈ E+

θ | ϕu = i, ϕv = j}. (3.3)

This is demonstrated in Algorithm 8, which splits the out-graph into tuples (u,N+
uj),

where N+
uj contains u’s out-neighbors of color j. Note that the expected size of each Vi

is n/c and that of E+
ij is m/c2 edges. After this preprocessing step, Pagh suggests using

MGT [38] to find triangles in each of the c3 triples (E+
ij , E

+
jk, E

+
ik), where the remote edge

belongs to E+
jk. MGT relies on vertex iterator T1 [21], which is 15− 80 times slower than

E1 on real graphs. Additionally, it does not by default handle heterogeneous partitions

(i.e., hit/remote/local edges all being stored separately). To create a fully working system,

we need a few refinements.

50

j

j

j

RAM

RAM

RAM

(a) case 1

i≠j

j

j

RAM

Eij

Eij

(b) case 2

j

j

k≠j RAM

RAM

Ejj

(c) case 3

Figure 3.2: Special cases in Pagh.

Algorithm 9: Pagh+ handling one remote graph

1 load E+
jk = {(v,N+

vk)} in RAM; set up hash table to source nodes
2 for i = 1 to c do
3 while file E+

ij not empty do
4 load (u,N+

uj) from E+
ij and (u,N+

uk) from E+
ik

5 foreach v ∈ N+
uj do ▹ visit all neighbors in the hist list

6 find remote list N+
vk using the hash table

7 W = Intersect(N+
uk, N+

vk) ▹ local/remote lists
8 foreach w ∈W do report ∆uvw

3.4.2 Pagh+

Assuming partitions are well-balanced, i.e., all have size M within some tolerance,

MGT can be combined with E1 to efficiently solve the problem. Algorithm 9, which we

call Pagh+, loads remote edges E+
jk into RAM and then scans the other two subgraphs.

Since Algorithm 8 writes source nodes in the same order for all subgraphs, Pagh+ can

obtain both hit and local lists of each u by concurrently reading E+
ij and E+

ik. The resulting

system detects each triangle once and performs no more intersections than in-memory E1.

Note that we skipped discussing cases when some of the colors are duplicate; however,

our implementation handles them efficiently (i.e., without reading unnecessary files).

Theorem 4. Pagh+ needs IP (n) = (2c− 1)m edges of I/O.

Proof. First notice that Algorithm 9 loads each remote subgraph once, for a total I/O

51

cost of m. The remaining overhead comes from hit/local edges, which we consider next.

While there are c3 possible triples (ijk), there are three special cases. The first one is

shown in Fig. 3.2(a), where all three edges are in RAM. This results in no additional cost

beyond E+
jj . The second configuration in Fig. 3.2(b) has file E+

jj loaded in RAM and the

remaining color i is not equal to j. There are c(c− 1) such cases, each requiring |E+
ij | I/O.

The last special case in Fig. 3.2(c) involves c(c − 1) files E+
jk, each producing |E+

jj| I/O.

The remaining scenarios are outside the scope of Fig. 3.2. There are c(c − 1) files E+
jk

such that j ̸= k, each of which can be coupled with c − 1 values of i ̸= j. This yields

c(c− 1)(c− 1) cases that load 2m/c2 edges each.

Combining the various terms, we get

m+
m

c2
(0 + 2c(c− 1) + 2c(c− 1)(c− 1)), (3.4)

which simplifies to 2cm−m = (2c− 1)m.

Since (2c − 1)m = 2m1.5/
√
M − m, Pagh+ has the best multiplicative constant in

the literature. The closest alternative [64] uses the undirected graph G, assigns direction

to colors rather than edges, and increases c to
√

5m/M such that certain combinations

of subgraphs fit in RAM. This leads to
√
5m1.5/

√
M ≈ 2.2m1.5/

√
M total I/O, which is

worse than the result above. Another drawback to this approach is usage of undirected

graphs, where E1 has to perform unnecessary intersections [84].

It is also simple to obtain the number of hash-table lookups in Pagh+. When they

become a CPU bottleneck, E1 may essentially deteriorate into T1 and lose its advantages.

The next result shows that this value is linear in c.

Theorem 5. Pagh+ performs γP (n) = cm lookups.

Proof. Denote by Xuj = |N+
uj| the out-degree of u with respect to neighbors of color j.

52

Now, notice that the size of hit lists processed by Algorithm 9 for all (j, k) equals

c∑
k=1

c∑
j=1

c∑
i=1

(n∑
u=1

1ϕu=i Xuj

)
, (3.5)

where 1A is an indicator of event A. Swapping the order of summations, this becomes

c∑
k=1

c∑
j=1

n∑
u=1

(c∑
i=1

1ϕu=i Xuj

)
=

c∑
k=1

c∑
j=1

n∑
u=1

Xuj

=
c∑

k=1

n∑
u=1

Xu. (3.6)

Leveraging the fact that
∑n

u=1Xu = m, we get the statement of the theorem.

3.4.3 Discussion

Slightly unbalanced partition sizes |E+
ij | due to randomness of color assignment are a

minor issue in practice. However, when the graph contains nodes with large degree, Pagh

requires a different algorithm. One example is the star graph, where all nodes connect

to a center node of some color k. To avoid optimizations that discard (ijk) if any of the

subgraphs is empty, the star graph can be augmented with c2 random edges between the

leaf nodes. Neglecting small terms, Algorithm 8 produces c partitions of size m/c≫ M .

In fact, two of the three subgraphs involving color k have size m/c. Pagh+ cannot be

applied here, but MGT can be modified to handle any triple (ijk) with I/O complexity

2(m/c)2/M = 2m. Repeating this c2 times for all (ij) produces a total of 2m2/M .

Depending on m and M , this result can be significantly worse than in Theorem 4.

Pagh [60] handles this case by isolating nodes of degree larger than
√
mM into a

separate category. Each of them requires sorting up to m edges on disk. Since there are no

more than c such nodes, the I/O can be bounded by c · sort(m) ∼ cm logm/ logM edges.

If RAM scales as some power of m, as assumed in [60], we get the usual O(m1.5/
√
M);

53

Algorithm 10: PCF-1A graph partitioning

1 for u = 1 to n do ▹ iterate over all nodes
2 for i = 1 to p do ▹ go through each partition
3 Hui = N+

u ∩ [ai+1, n] ▹ pruned hit list
4 Lui = N+

u ∩ [ai, ai+1) ▹ local/remote list
5 if Lui ̸= ∅ then
6 write (u, Lui) to Gr

θ(i) ▹ remote file i
7 if Hui ̸= ∅ then
8 write (u,Hui) to Gc

θ(i) ▹ companion file i

however, the hidden constants may be non-negligible. But more importantly, the CPU cost

for sorting the graph c times may be quite hefty.

On the bright side, Pagh does not impose much restriction on minimum RAM or disk

size. Setting c = n, it is possible to create subgraphs that contain just one edge each,

resulting in O(1) memory consumption. Furthermore, its disk-space requirement is only

m edges. However, when c3 is large, Pagh has to read many small files and its I/O speed

may be adversely affected by disk seeking.

3.5 Analysis of PCF

The I/O complexity of PCF is quite peculiar due to the dependency on the underlying

graph. This section develops the methodology and insight that not only sheds light on

PCF, but also helps later with comparison against Pagh+ and design of our new method.

3.5.1 Operation

PCF [21] is a suite of six algorithms 1A, 1B, 2A, 2B, 6A, 6B. All of them partition the

graph along the remote edge of the corresponding in-memory algorithm (i.e., E1, E2, and

E6). In the notation of Fig. 3.1(a), these are (vw) for 1A/1B, (uw) for 2A/2B, and (uv) for

6A/6B. The A variants split based on the destination node of the remote edge, while the

B versions do the same on the source node. After preprocessing, PCF sequentially loads

chunks of G+
θ in RAM and scans so-called pruned companion files to obtain the missing

54

Algorithm 11: PCF-1B graph partitioning

1 for u = 1 to n do ▹ iterate over all nodes
2 for i = 1 to ϕu − 1 do ▹ go through each partition below u
3 Hui = N+

u ∩ [ai, ai+1) ▹ hit list
4 Lui = N+

u ∩ [1, ai+1) ▹ local list
5 if Hui ̸= ∅ and |Lui| ≥ 2 then
6 write (u, Lui) to Gc

θ(i) ▹ save to companion file i

7 if N+
u ̸= ∅ then ▹ out-degree non-zero?

8 write (u,N+
u) to Gr

θ(ϕu) ▹ remote file of u’s color

edges.

Method E1 requires PCF-1A/1B, which we review and analyze next. Both of them

start by dividing the set of nodes V into p = m/M non-overlapping subsets V1, . . . , Vp.

PCF utilizes sequential partitions such that u ∈ Vi iff u ∈ [ai, ai+1), where boundaries

{ai} are determined by load-balancing either the in-degree (1A) or out-degree (1B) of

each partition to equal memory size M . To be consistent with other parts of the chapter,

we say that nodes in Vi have color i. We also use the same function ϕu to map u to its

color.

File G+
θ is split into p disjoint subgraphs Gr

θ(1), . . . , G
r
θ(p) that contain all remote

edges (vw) matching the corresponding color. Specifically, (vw) is written into Gr
θ(i) iff

w ∈ Vi in PCF-1A and v ∈ Vi in PCF-1B. The corresponding companion files Gc
θ(i)

contain nodes u and their hit/local lists, but only if they are relevant to partition i. For

example, PCF-1B skips node u unless it has at least one neighbor of color i and another

neighbor with a smaller ID. While [21] has a comprehensive algorithm that covers all six

methods, it may be difficult to parse. We therefore find it useful to show the minimal

versions of PCF-1A and 1B using Algorithms 10-11.

55

3.5.2 Model

Since
∑p

i=1 |Gr
θ(i)| = m is fixed, the main open question is companion I/O, i.e.,∑p

i=1 |Gc
θ(i)|. For a source node u, suppose ϕus is the color of its s-th out-neighbor in

sorted order. For a given list N+
u , denote by Rus the number of colors to the left of posi-

tion s, excluding the color of s, and by R′
us the number to the right, but not counting u’s

own color

Rus = |{ϕut | t < s, ϕut ̸= ϕus}|, (3.7)

R′
us = |{ϕut | t > s, ϕut ̸= ϕu}|. (3.8)

With this in mind, consider the next result.

Theorem 6. The companion I/O of PCF-1A is given by

IA(n) =
n∑

u=1

Xu∑
s=1

Rus (3.9)

and that of PCF-1B by

IB(n) =
n∑

u=1

[
R′

u1 +
Xu∑
s=1

R′
us

]
. (3.10)

Proof. In PCF-1A, consider some source node u and color i. As long as the local list

Lui = N+
u ∩ Vi ̸= ∅, all out-neighbors with labels at least ai+1 are saved to disk in

Algorithm 10. Therefore, from a perspective of some fixed position s ∈ [1, Xu] in the out-

list N+
u , the number of times this node is written to disk equals the number of non-empty

local lists in positions [1, s − 1], excluding those that contain s. An example is shown in

Fig. 3.3(a), where s is written twice. This happens to be the number of distinct colors,

except ϕus, among the nodes preceding s, which equals Rus in (3.7). Taking a summation

56

s

color 1 color 2 color 3

Rus = 2

(a) PCF-A

s

color 1 color 2 color 3

R
′

us = 3

(b) PCF-B

Figure 3.3: Colors among N+
u in PCF.

over all u and s yields (3.9).

For PCF-1B, we first have to remove neighbors of color ϕu from consideration since

these edges are found in RAM (i.e., included in the remote graph). Once this is done,

notice that Algorithm 11 writes a node in position s into R′
us files as part of some local

list. Fig. 3.3(b) shows one such example. However, there is one exception for s ≥ 2. The

last node of each color (within u’s neighbor list) has overhead R′
us + 1, where the extra

1 accounts for s being included in the hit list of companion file Gr
θ(ϕus). The affected

neighbors are shown in Fig. 3.3 using shading. Putting the pieces together,

IB(n) =
n∑

u=1

[
R′

u1 +
Xu∑
s=2

(
R′

us + 1ϕu,s+1 ̸=ϕus

)]
, (3.11)

where condition ϕu,Xu+1 ̸= ϕu,Xu is always true (i.e., we always count an extra 1 for the

very last node in N+
u). Rearranging the terms, we get

IB(n) =
n∑

u=1

[Xu∑
s=1

R′
us +

Xu∑
s=2

1ϕu,s+1 ̸=ϕus

]
. (3.12)

Now notice that the sum of indicator variables yields the number of unique colors in

positions [2, Xu]. Since this value is R′
u1, we obtain (3.10).

Note that (3.9)-(3.10) are exact. While Rus and R′
us appear symmetric to each other,

57

there is a subtle difference. PCF-1A load-balances using in-degree, while PCF-1B us-

ing out-degree. Hence, their color assignments are not directly comparable to each other.

However, on real graphs, PCF-1B commonly demands less I/O [21]. Additionally, it re-

quires a lot fewer lookups. For the next result that shows this, define Ru = Ru,Xu + 1 to

be number of colors in N+
u .

Theorem 7. The number of hash-table hits in PCF-1A is

γA(n) = IA(n) +m−
n∑

u=1

Ru, (3.13)

and that in PCF-1B is

γB(n) = m− n. (3.14)

Proof. PCF-1A writes only pruned hit-lists, which produce IA(n) lookups when they are

loaded back to RAM. Additionally, a portion of each hit list is removed by Algorithm 10

and kept in RAM as part of the local list Lui. In fact, the entire Lui, except its first node,

is part of the hit list for node u. Adding the two terms together yields (3.13).

For PCF-1B, every node in N+
u is part of the hit list, except the one in position s = 1.

Writing

γB(n) =
n∑

u=1

(Xu − 1), (3.15)

we immediately get (3.14).

Note that γA(n) can be orders of magnitude larger than m, while γB(n) is always opti-

mal (i.e., the same as in-memory E1). Further problems of PCF-1A include a requirement

that RAM size be no smaller than the largest in-degree maxu Yu, which can be as large

58

as n − 1. In contrast, PCF-1B only needs M ≥ maxuXu, whose largest value under

descending-degree permutation θD stays bounded by
√
2m. While PCF-1A can be dis-

missed for now as being inferior, we later come back to it and explain what features the

new method shares with it.

3.5.3 Bounds

Computing the exact I/O formula (3.10) requires processing the entire G+
θ and splitting

all m edges into colors. In certain cases, this may be too expensive, especially if repeated

many times (e.g., in an iterative search for optimal parameters). To overcome this issue,

we derive simple upper bounds that require one pass over the out-degree sequence {Xu}.

Theorem 8. For a given out-degree sequence {Xu}, the expected size of companion I/O

in PCF-1B is bounded by

E[IB(n)] ≤
n∑

u=a2

ζu

[
Xu − ζu + 1 + (ζu − 2)qXu−1

u

]
, (3.16)

where qu = 1− 1/ζu and ζu = ϕu − 1.

Proof. Note that uniformly random, rather than sequential, color assignment can only

make R′
us stochastically larger. Therefore, replacing R′

us with some other variable Qus

that uniformly draws from among ζu colors can yield only larger I/O in expectation. Since

Qus = 0 for u < a2, we get

E[IB(n)] ≤
n∑

u=a2

(
E[Qu1] +

Xu∑
s=1

E[Qus]
)
. (3.17)

To expand this, continue assuming random color choices and define

Wusi =
Xu∑

t=s+1

1ϕut=i (3.18)

59

to be the number of u’s out-neighbors to the right of s that have color i. Conditioning on

the out-degree sequence, each Wusi is Binomial(Xu − s, 1/ζu), where E[Wusi] = Xu/ζu

and P (Wusi ≥ 1) = 1− (1− 1/ζu)
Xu−s. Then,

Qus =

ζu∑
i=1

1Wusi≥1 (3.19)

is the number of uniform colors to the right of s. Setting qu = 1− 1/ζu, we get

E[Qus] = ζuP (Wusi ≥ 1) = ζu(1− qXu−s
u). (3.20)

Next, observe that

Xu∑
s=1

E[Qus] = ζu

Xu∑
s=1

(1− qXu−s
u) = ζu

(
Xu −

Xu−1∑
s=0

qsu

)
= ζu

(
Xu −

1− qXu
u

1− qu

)
= ζu

[
Xu − ζu(1− qXu

u)
]
. (3.21)

Adding E[Qu1] to the last result, we get

E[IB(n)] ≤
n∑

u=a2

ζu

[
Xu − ζu + ζuq

Xu
u + 1− qXu−1

u

]
≤

n∑
u=a2

ζu

[
Xu − ζu + 1 + (ζu − 2)qXu−1

u

]
, (3.22)

where we use the fact that ζuqu = (ζu − 1).

Bound (3.16) should hold in most situations, but there are adversarial graphs and color

assignments that may violate it. Therefore, our second bound is deterministic, but some-

what looser in sparse graphs. It shows a more clear dependency of I/O on the second

60

10
0

10
1

10
2

10
3

10
4

10
50

50

100

150

200

number of partitions p

I/O
 (

bi
lli

on
 e

dg
es

)

Cui2016
Theorem 6
Theorem 5
actual I/O

(a) Twitter (m = 1.2B)

10
0

10
1

10
2

10
3

10
4

10
50

100

200

300

400

number of partitions p

I/O
 (

bi
lli

on
 e

dg
es

)

Cui2016
Theorem 6
Theorem 5
actual I/O

(b) IRL-domain (m = 1.7B)

Figure 3.4: Model accuracy in PCF-1B.

moment of out-degree.

Theorem 9. The companion I/O of PCF-1B is bounded by

IB(n) ≤
n∑

u=1

min
((Xu − 1)(Xu + 2)

2
, Xuζu

)
. (3.23)

Proof. Trivially, R′
us ≤ min(Xu − j, ζu). Thus, we get

IB(n) ≤
n∑

u=1

[
min(Xu − 1, ζu) +

Xu∑
s=1

min(Xu − s, ζu)
]

=
n∑

u=1

[
min(Xu − 1, ζu) +

Xu−1∑
j=1

min(s, ζu)
]

≤
n∑

u=1

min
(
Xu − 1 +

Xu−1∑
s=1

s,Xuζu

)
, (3.24)

which becomes (3.23) after expanding the inner sum.

Note that [21] also obtains an upper-bound on IB(n); however, they neglect the stan-

dalone term R′
u1 in (3.10). This issue notwithstanding, their bound is a special case of

61

(3.23) where ζu = ϕu − 1 is replaced by p− 1. Fig. 3.4 shows a comparison between that

result and our models, where we use Twitter from [46] and IRL-domain from the authors

of [21].

3.5.4 Discussion

PCF-1B requires that the longest out-list fit in memory, i.e., M ≥ maxuXu. While

much better than in PCF-1A, this condition is stricter than in Pagh, which can work with

constant M as n → ∞. Additionally, PCF-1B needs enough disk space to write all com-

panion files. In some cases, the read-only operation of Pagh may be preferable. Further-

more, it is common to exclude the preprocessing stage from comparison, because triangle

enumeration can run multiple times over the same input (e.g., feeding the found ∆uwv to

different consumers on the fly). However, if this is not the case, all I/O of PCF-1B needs

to be doubled. This is of no consequence to asymptotics, but we benchmark both stages

separately in the experimental section.

On the positive side, PCF achieves deterministic load-balancing and its sequential

color assignment brings many benefits compared to random colors in Pagh. First, contigu-

ous coloring produces stochastically smaller R′
us because u’s neighbors are more drawn

towards colors with a large mass of degree. Since such colors are concentrated at the start

of the range [1, n], neighbor lists contain more duplicate colors than would be possible

under uniform assignment. This effect is most pronounced on graphs with heavy-tailed

degree. Second, due to sequential grouping of nodes into each color, splitting of neighbor

lists in Algorithm 11 does not require a hash-table lookup for each edge. Similarly, when

PCF-1B loads the remote graph into RAM, it can use an array of offsets instead of a hash

table to perform retrieval of remote edges. Third, placing similar node IDs into individual

partitions allows better compression of neighbor lists. This can save up to 50% on byte

I/O. Similarly, [21] shows that SIMD intersection is 80% faster on compressed lists.

62

3.6 Asymptotic Comparison

We are now interested in the conditions that cause each of the candidate methods to be

better than the other. Deciding this for finite n requires a specific graph and computation of

the various models/bounds from the previous section. Instead, we study cases of n→∞,

which should provide a qualitative assessment of each method’s capabilities and types of

graphs they are most suited for.

3.6.1 Definitions

Suppose the average directed degree of the graph, i.e., m/n, grows proportionally to

na, where a ∈ [0, 1] is a constant. In general, we write f ∼ g to mean that f(n) = O(g(n))

and g(n) = O(f(n)). Similarly, assume memory size Mn ∼ nr, where r ∈ [0, 1 + a] is

also fixed. To ignore contribution from constants and slowly growing terms, we have the

following definition.

Definition 1. The scaling rate of a function f(n) is given by

ω(f) = lim
n→∞

logn f(n), (3.25)

as long as the limit exists and is finite.

For example, f(n) = 5n2.3/ log(n) has ω(f) = 2.3. Since the scaling rate of m is

1 + a, Pagh has a very simple result

ω(IP) =
3(1 + a)− r

2
. (3.26)

However, the corresponding model for PCF is less obvious. We therefore perform a

separate investigation into it.

63

3.6.2 Dynamics of PCF

We start with an upper bound on ω(IB), which requires studying the second moment

of out-degree. To this end, define

πn =
n∑

u=1

X2
u (3.27)

consider the next result.

Theorem 10. The scaling rate of (3.27) is ω(π) = 1 + 2a+ ϵ, where ϵ ∈ [0, (1− a)/2].

Proof. Suppose πn ∼ n1+2a+ϵn , where ϵn is some unknown function. Our goal is to put

bounds on it. Assuming E[Xu] = m/n is fixed, it is obvious that minimizing the variance

of set X1, . . . , Xn yields the lowest πn. Since this is achieved by constant Xu = m/n, we

get

πn ≥ n
m2

n2
∼ n1+2a. (3.28)

This shows that ϵn ≥ 0 must hold. To arrive at the upper bound on πn, first notice that

Xu cannot exceed the number of nodes preceding it (i.e., u − 1). At the same time, Xu

must be no larger than 2m/u; otherwise, the degree sum
∑u

v=1 dv of the largest u nodes

would exceed 2m, which is impossible. As a result,

πn ≤
n∑

u=1

min
(
u− 1,

2m

u

)2

≤

√
2m∑

u=1

u2 +
n∑

u=
√
2m

(2m)2

u2

∼ (2m)1.5

3
+ 4m2

(1√
2m
− 1

n

)
∼ n3(1+a)/2. (3.29)

Since we assumed that πn ∼ n1+2a+ϵn , we get that ϵn ≤ (1− a)/2. Letting ϵn → ϵ as

n→∞, the statement of the theorem follows.

64

Note that regular graphs (i.e., all degree equal to each other) yield ϵ = 0 for all a.

Another well-known case follows from [84]. Specifically, for a sequence of graphs {Gn},

define Dn to be a random variable with the same distribution as undirected degree in Gn.

Then, assuming E[D
4/3
n] converges to a finite constant as n → ∞, these graphs also

achieve ϵ = 0. For more general cases, the family of dense-core graphs introduced next

allows realization of any ϵ.

Theorem 11. For any ϵ ∈ [0, (1− a)/2], there exists a graph with ω(π) = 1 + 2a+ ϵ.

Proof. Assume a graph where the first kn nodes, each with degree ln ≤ kn, link to nodes

with labels (1, 2, . . . , ln). All remaining nodes have degree two and link to nodes (1, 2).

Then, assuming kn ∼ nz1 and ln ∼ nz2 , where z1 ≥ z2 and z1 + z2 ≥ 1, we get

E[Dn] =
knln + 4(n− kn)

n
∼ nz1+z2−1 (3.30)

and

πn ∼
ln∑

u=1

u2 +
kn∑

u=ln

l2n + n− kn ∼ knl
2
n ∼ nz1+2z2 . (3.31)

Assume a is selected first and ϵ is selected second in the range [0, (1 − a)/2]. Then,

we can construct the system above using z1 = 1 − ϵ and z2 = a + 1 − z1. Note that

z1 + z2 = a + 1 ≥ 1 is satisfied with any a ≥ 0. Furthermore, condition z1 ≥ z2 is

equivalent to 2z1 ≥ a+ 1, or ϵ ≤ (1− a)/2, which is satisfied by any valid ϵ.

Leveraging the last two theorems finally produces a usable upper bound on the scaling

rate of IB(n).

65

Theorem 12. The rate of PCF-1B I/O is upper-bounded by

ω(IB) ≤ min(1 + 2a+ ϵ, 2 + 2a− r). (3.32)

Furthermore, in the worst-case of ϵ = (1 − a)/2, the graphs built in Theorem 11 reach

(3.32) for all a and r.

Proof. From (3.23), it is clear that

IB(n) ≤ min(πn, (p− 1)m) ≤ min
(
πn,

m2

M

)
. (3.33)

Converting this into rates yields (3.32).

Next, for any a and ϵ = (1 − a)/2, the graphs introduced in Theorem 11 require

z1 = z2 = (1 + a)/2. Then, we can set kn = 2ln and obtain that out-lists of source nodes

u ∈ [ln, 2ln] have Xu = ln neighbors and roughly ζu = l2n/M colors. Converting this into

asymptotics, it follows that the out-degree of these nodes scales as z2 and the number of

colors as 2z2 − r. Therefore, when z2 < 2z2 − r, or equivalently r < 1− ϵ = (1 + a)/2,

PCF-1B has the same asymptotics as πn. This makes ω(IB) = 1 + 2a + ϵ. Otherwise,

IB(n) scales as knlnζu ∼ n2+2a−r. Both cases and the condition to switch between them

are exactly the same as in (3.32).

The graphs from Theorem 11 bring out the worst in PCF, to which we come back

shortly. In the mean time, we show that it has a pretty impressive best-case as well.

Theorem 13. In bipartite graphs, PCF-1B has I/O overhead IB(n) = m for all a and r,

i.e., ω(IB) = 1 + a.

Proof. Suppose the nodes are divided into two sections, which we call S1 and S2, of size

kn and n − kn, respectively. Each node in S1 connects to all nodes in S2. We assume

66

that kn < n/2, i.e., the first section is smaller, and kn ∼ na. Notice that this graph

has an average degree proportional to na and that none of the nodes in S1 have any out-

neighbors in G+
θ . Therefore, PCF-1B assigns them the same color 1. It then follows that

the companion I/O from all nodes u ∈ S2 is no more than m since each out-neighbor list

N+
u has nodes of one color and thus can only produce output to one companion file Gc

θ(1).

Furthermore, this result holds for all Mn.

Because PCF-1A load-balances partitions on the in-degree, rather than the out-degree,

it fails to achieve the same benefits on bipartite graphs. Since PCF-1B cannot have less

I/O than m, Theorem 13 reveals a non-trivial lower bound.

3.6.3 Analysis

We summarize the findings of this section using Fig. 3.5(a). The x-axis shows rate r

at which RAM increases as n → ∞. This value ranges from zero (i.e., constant Mn) to

1 + a (i.e., the entire graph fits in memory). On the y-axis, we have Pagh’s scaling rate

ω(IP), represented by a dashed line, and the PCF-1B rate ω(IB), given by the UY TZ

trapezoid. Pagh’s curve is a straight line that comes from (3.26). On the other hand, the

rate of PCF-1B is contained somewhere in the trapezoid, with each interior point possibly

corresponding to some graph G. The upper boundary, delineated by segments UY and

Y T , is produced by graphs from Theorem 11. The lower boundary, shown by line ZT , is

the bipartite graph from Theorem 13.

At r = 0, i.e., constant RAM, Pagh begins in point X that is always no lower than

PCF-1B’s worst initial point U . This happens because 1.5 + 1.5a ≥ 1 + 2a + ϵ for all

ϵ ≤ (1 − a)/2. As r increases, Pagh descends and eventually intersects with the upper

bound of PCF-1B in point W . Therefore, in the range [0, 1− a− 2ϵ), Pagh has no chance

of beating PCF-1B, regardless of the actual G. Between points W and T , some of the

graphs are solved quicker by Pagh and others by PCF-1B.

67

1+a

r
1—ǫ

1—a—2ǫ

1+a

1+2a+ǫ

1.5+1.5a

0

X
Y

Z

W U

T

(a) general case

1

r

1

1.5

0

(b) a = ϵ = 0

1+a

r (1+a)/2

1+a

1.5+1.5a

0

(1+a)/4
Y

(c) ϵ = (1− a)/2

1+a

r
1—ǫ

1—a—2ǫ

0

W
U

(d) Mn ≥ maxu Xu

Figure 3.5: Comparison of scaling rates.

It can be seen from the figure that the largest gap between the two methods occurs at

r = 0, where PCF-1B in point Z beats Pagh in point X by (1 + a)/2. Using a complete

bipartite graph with a = 1, this yields a factor of n improvement in favor of PCF-1B. Out-

side of this custom-tailored graph, a more realistic best-case scenario for PCF-1B consists

of graphs with a constant average degree and ϵ = 0. This is depicted in Fig. 3.5(b), where

PCF-1B collapses the trapezoid into a single line and defeats Pagh for all r. The biggest

gap occurs at r = 0, where PCF-1B has a factor of
√
n less I/O.

On the other hand, the best case for Pagh is ϵ = (1− a)/2, which is shown in part (c)

of the figure. In this situation, it beats the upper-bound of PCF-1B for all memory sizes.

Consequently, knowing that G has a dense core similar to the graphs in Theorem 11, Pagh

is the method of choice. The largest improvement is achieved in r = (1 + a)/2, where

Pagh undercuts the scaling rate of PCF-1B by (1 + a)/4. Since a ≤ 1, point Y causes the

68

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

n (million)

I/O
 (

bi
lli

on
 e

dg
es

)

Pagh+ 1.250
PCF−1B 1.022

(a) a = ϵ = 0, r = 1/2

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

n (million)

I/O
 (

tr
ill

io
n

ed
ge

s)

PCF−1B 2.250
Pagh+ 1.875

(b) a = 1/2, ϵ = 1/4, r = 3/4

Figure 3.6: Actual I/O with curve-fitted scaling rates.

most damage to PCF in complete graphs, i.e., when a = 1. On these, Pagh has smaller

cost by a factor of
√
n.

The final caveat is shown in Fig. 3.5(d), where the trapezoid has its left boundary

moved forward to reflect the fact that Mn ≥ maxuXu must hold for PCF-1B to work.

While it is hard to predict how far point U shifts without access to the actual graph, we

know it is no further than r = (1 + a)/2 since maxu Xu ≤
√
2m. This may be to the left

of W , as show in the picture, or to the right. In either case, Pagh wins by default for all r

where PCF-1B is unable to execute.

To see some of these cases in practice, Fig. 3.6(a) shows the actual I/O of the two

methods in a random graph with Pareto degree, where with shape α = 1.5 and average

degree is 30. As predicted by our analysis and Fig 3.5(b), the asymptotic gap between the

methods is n1/4. Continuing to Fig. 3.6(b), we examine a dense-core graph from Theorem

11 whose average degree scales as
√
n, RAM size Mn = n3/4, and ϵ = 1/4. This puts

the graph on the upper-bound of PCF, where the model suggests Pagh should win by n3/8.

Indeed, it does.

69

3.6.4 Discussion

We can now summarize the insight gained from dissecting both methods. Pagh’s main

pitfall is that it fails to exclude nodes u that obviously cannot be in any triangles of relevant

color. For example, if u has out-neighbors of color j, but none of color k, it should not

be used in conjunction with remote edges E+
jk. This leads to epic redundancy when the

graph is sparse, i.e., there are few colors among the neighbors. On the other hand, this

strategy works well for dense graphs where little pruning is necessary in the first place.

The number of hash-table lookups proportional to c is also a concern.

On the other hand, the main downside of PCF lies in one-dimensional color partition-

ing. This creates a large number of colors p and causes unnecessary duplication of effort.

Usage of 2D coloring could help reduce the number of files into which the out-neighbors

must be written. This can be seen in (3.10), where making R′
us pick out of

√
p colors,

rather than p, would be a noticeable improvement.

3.7 Trigon

Our investigation discovered that an ideal algorithm should prune unnecessary edges,

be able to utilize
√
p colors, deterministically load-balance partitions, leverage sequential

colors for faster compression/intersection/lookups, handle star graphs without exorbitant

overhead, operate with O(1) RAM, and post lower I/O numbers than either of the current

techniques. We offer such an approach next.

3.7.1 Generalized Coloring

All vertex/edge iterators [21] require the remote edge of enumerated triangles to be

retrievable using random lookup in RAM. Therefore, for such methods to operate in exter-

nal memory, the oriented graph must be split into at least p = m/M chunks. For now, we

ignore the issue of how partitioning should be done and focus on the general concepts that

70

1 2

3

2 2 1

3 1 3 2

3

2

4

1

5

(a) general case

c2

c1

(b) contiguous case

Figure 3.7: Heterogenous 2D partitioning of remote edges.

would allow the in-memory search to function properly. The framework developed below

applies to all 18 methods from [21]; however, to keep the notation to a minimum, we only

describe how it works with E1.

Since G+
θ is oriented and without self-loops, only the lower half of the adjacency ma-

trix has non-zero entries. Therefore, any edge partition can be viewed as a subset of

B = {(u, v) ∈ N2 | v < u ≤ n}, (3.34)

which is a collection of all integer pairs (u, v) such that u > v and both numbers are no

larger than n. Now suppose there exist sets B1, . . . , Bp that form a partition on B, i.e.,

Bℓ ⊆ B for all ℓ, Bi ∩ Bj = ∅ for i ̸= j, and ∪p
ℓ=1Bℓ = B. This is illustrated using Fig.

3.7(a), where a 5 × 5 adjacency matrix is split into three subgraphs. The number in each

cell specifies the partition ℓ it belongs to.

Note that all previous methods are special cases of this formalization. For example,

Pagh uses B(j−1)c+k = {(u, v) | u ∈ Vj, v ∈ Vk}, where c =
√
p is the number of colors.

Both PCF methods utilize contiguous partitions shown in Fig. 3.7(b), where destinations

are split into c1 colors and sources nodes into c2 = p/c1. PCF-1A uses c1 = p, while

71

PCF-1B does the opposite, i.e., c1 = 1.

Once partitions are decided, the edges of G+
θ must be separated into sets E+

1 , . . . , E
+
p ,

where E+
ℓ = E+

θ ∩Bℓ for ℓ = 1, 2, . . . , p and the following condition enforced.

Definition 2. A partition {Bℓ} is called admissible with respect to G+
θ if it guarantees that

|E+
ℓ | = m/p for all ℓ.

As discussed earlier, Pagh fails to produce admissible partitions on star graphs and

similar structures. PCF-1A attempts to split the destinations into c1 = p colors in Fig.

3.7(b) and runs into the same problem. On the other hand, PCF-1B is able to produce

admissible partitions in all G as long as maxu Xu ≤M .

3.7.2 Unified Partitioned Iterator

Assume the edges of G+
θ have been separated into individual files. What remains

is creation of companion files, which is done in a framework we call Unified Partitioned

Iterator (UPI). Let Sℓ = {u | (u, v) ∈ Bℓ} be the source nodes and Dℓ = {v | (u, v) ∈ Bℓ}

be the destination nodes in partition ℓ. For the example in Fig. 3.7(a), S3 = {2, 5}.

Operation of UPI is summarized in Algorithm 12. For each node u and its out-neighbor v,

Line 3 finds all partitions ℓ where v is a source. Next, recalling Fig. 3.1(a), observe that the

local list needs to be customized to include only those neighbors w of u that are possibly

neighbors of v in Bℓ. This is done in Lines 4-5. If the local list is empty or contains only

v, then v cannot be u’s hit node for partition ℓ and the algorithm moves on in Line 6.

Line 7 checks if u itself participates in Bℓ as a source node. If so, the entire local

list is already included in E+
ℓ , which Line 8 signals by emptying Luvℓ. Additionally, it

is possible that link (u, v) is also contained in the remote graph, which happens if v is a

destination node in Bℓ. Line 9 takes care of this condition. Finally, Line 10 saves the triple

(u, v, Luvℓ) into the companion file, which is done even if Luvℓ was previously emptied in

Line 8.

72

Algorithm 12: UPI creating companion files

1 for u = 1 to n do
2 foreach v ∈ N+

u do ▹ iterate through all out-neighbors
3 foreach partition ℓ where v ∈ Sℓ do ▹ v is a source in Bℓ

4 Zvℓ = {w | (v, w) ∈ Bℓ} ▹ take neighbors of v in Bℓ

5 Luvℓ = N+
u ∩ Zvℓ ▹ local list for (u, v) in partition ℓ

6 if Luvℓ\{v} = ∅ then continue
7 if u ∈ Sℓ then ▹ u is also a source in partition ℓ
8 Luvℓ = ∅ ▹ all local nodes in E+

ℓ

9 if v ∈ Dℓ then continue ▹ (u, v) already in E+
ℓ

10 write (u, v, Luvℓ) to companion graph C+
ℓ

Algorithm 13: UPI processing one partition ℓ

1 load E+
ℓ = {(v,N+

vℓ)} in RAM; set up hash table to source nodes
2 while companion file C+

ℓ not empty do
3 load (u, v, Luvℓ) from C+

ℓ

4 find remote list N+
vℓ using the hash table

5 W = Intersect(Luvℓ, N+
vℓ) ▹ local/remote lists

6 foreach w ∈W do report ∆uvw

Triangle search in UPI is shown in Algorithm 13. The only difference from Pagh+ is

that each partition ℓ has its own companion file, from which nodes u, their hit neighbors

v, and local lists Luvℓ are obtained.

Theorem 14. UPI finds each triangle exactly once and exhibits no more intersection over-

head than in-memory E1.

Proof. Because the edges are partitioned into non-overlapping and exhaustive sets, de-

tecting the same triangle multiple times or missing some of them is impossible. This is a

consequence of the fact that remote edge (vw) belongs to exactly one partition ℓ.

We now consider the intersection overhead of Algorithm 12. The local intersection

73

cost at node u can be written as

∑
v∈N+

u

p∑
ℓ=1

|Luvℓ| =
∑
v∈N+

u

p∑
ℓ=1

|N+
u ∩ Zvl|. (3.35)

Since {Zv1, . . . , Zvp} is a partition of v’s possible neighbor options [1, v − 1], we get

that

∑
v∈N+

u

p∑
ℓ=1

|N+
u ∩ Zvl| =

∑
v∈N+

u

|N+
u ∩ [1, v − 1]|

=
Xu(Xu − 1)

2
, (3.36)

which is exactly the same as in E1.

Now suppose Yvℓ is the in-degree of v from hit lists in partition ℓ and let Xvℓ be its

out-degree in the remote graph E+
ℓ . Since node v is hit Yvℓ times in ℓ, each causing a scan

over Xvℓ neighbors, the remote intersection overhead for v equals

p∑
ℓ=1

XvℓYvℓ ≤ Yv

p∑
ℓ=1

Xvz = XvYv. (3.37)

Combining the upper bound in (3.37) with (3.36), we get the cost of E1 in (3.1).

The proof of this theorem shows that intersection cost can actually reduce as p in-

creases. This happens because node v participates in remote intersection only when there

is a hit-list edge (u, v) in the corresponding companion file. However, if u has no other

neighbors smaller than v in partition ℓ, Line 6 of Algorithm 12 discards v as being ineli-

gible. In practice, cost reduction only affects the XuYu term in (3.1) and happens only in

partitioning schemes that break some of the out-lists N+
u across multiple E+

ℓ (i.e., Pagh

and PCF-1A).

74

3.7.3 Trigon

We next decide how to achieve the best admissible partition within the general frame-

work above. On one hand, it is theoretically possible to customize set {Bℓ} to a particular

G+
θ in order to achieve the absolute minimum I/O for that graph. However, this solution

is expensive (i.e., NP-hard) as it requires steam-rolling through all possible subsets of m

edges. Instead, we are interested in alternative approaches that can be computationally

reasonable.

To this end, recall our discussion of PCF and Pagh, where random assignment of nodes

into colors would have produced stochastically larger Rus and R′
us in (3.7)-(3.8). The best

technique, which comes from PCF, is to group nodes of the same color together. This

forces members of N+
u to pick color from a smaller range of options (i.e., those contained

in [1, u− 1]). Additionally, continuous colors simplify preprocessing, remove redundancy

between local lists of different hit nodes v, and improve intersection/compression perfor-

mance. At the same time, Pagh’s lowering of c to
√
p is appealing as well. Combining

these ideas, the design in Fig. 3.7(b) is the most sensible solution.

We call this approach Trigon and discuss its operation next. Since there are two colors

involved (i.e., along the source and destination nodes), we call the one whose partitions

are decided first primary and the other secondary. One option is to use c1 primary and

c2 secondary colors, which is the case in Fig. 3.7(b). This approach starts by selecting

vertical boundaries such that the number of edges contained in each primary color equals

m/c1. This is done by computing set {ak}c1k=1 such that

ak+1−1∑
u=ak

Yu =
m

c1
, (3.38)

where Yu is the in-degree of u. Note that this is exactly how PCF-1A begins and that the

75

{Yu} sequence is available during orientation of G, i.e., at no extra cost.

Then, for each primary color k, suppose boundaries {bkj}c2j=1 specify the corresponding

ranges of secondary colors. This is accomplished by load-balancing the out-degree within

each partition (kj), i.e.,

bk,j+1−1∑
u=bkj

|N+
u ∩ [ak, ak+1)| = M, (3.39)

which is similar to PCF-1B. Note that if (3.38) fails to create enough partitions of primary

color, e.g., on star-like graphs, the value of c1 is lowered to match the particulars of G+
θ . To

compensate for the lack of vertical partitions, (3.39) automatically increases the number

of secondary colors such that c1c2 = p continues to hold.

The second option is to reverse this process, i.e., use source nodes for primary colors.

However, it is not difficult to see that this procedure offers no I/O benefits due to symmetry,

but at the same time has a major drawback in inability to adapt c1 to G+
θ . Therefore, the

configuration in Fig. 3.7(b) is better.

The Trigon split technique is shown in Algorithm 14, where we continue using color k

for node w and color j for v to maintain compatibility with Fig. 3.1(b). The algorithm is

pretty much self-explanatory, with the only caveat being Line 8. Under Trigon’s coloring

model, it is now possible for local list Luk to contain nodes w larger than any hit node

in Hukj . They can never complete directed triangles in Fig. 3.1, which explains their

removal.

3.7.4 Analysis

Suppose ϕu and ϕus are defined as before, except they now refer to respectively the

primary color of u and that of its s-th out-neighbor. In this notation, expression (3.7) still

works for Rus. Similarly, Ru counts the number of primary colors in N+
u . To handle the

76

Algorithm 14: Trigon writing companion files

1 for u = 1 to n do
2 for k = 1 to c1 do ▹ run thru primary colors
3 Luk = N+

u ∩ [ak, ak+1) ▹ local list for color k
4 if Luk ̸= ∅ then ▹ work to be done?
5 for j = 1 to c2 do ▹ run thru secondary colors
6 Hukj = N+

u ∩ [bkj , bk,j+1) ▹ hit list for pair (kj)
7 if Hukj ̸= ∅ and |Luk ∪Hukj | ≥ 2 then
8 Luk = Luk ∩ [1,max(Hukj)] ▹ prune
9 if φu(k) = j then ▹ local list in RAM

10 write (u,Hukj\Luk) to companion C+
kj

11 else
12 write (u,Hukj ∪ Luk) to C+

kj

vertical dimension, let φu(k) be the secondary color of node u with respect to primary

color k and assume φus(k) is the same for u’s out-neighbor s. Then, (3.8) is replaced with

R′′
us = |{φut(ϕs) | t > s, φut(ϕs) ̸= φu(ϕs)}|, (3.40)

which counts the number of secondary colors to the right of s, again excluding the color

of u. Using the analysis of PCF-1B, the next result follows immediately.

Theorem 15. The I/O complexity of Trigon is

IT (n) ≈
n∑

u=1

[
R′′

u1 +
Xu∑
s=1

(Rus +R′′
us)

]
(3.41)

and the number of hash-table lookups is

γT (n) =
n∑

u=1

Xu∑
s=1

Rus +m−
n∑

u=1

Ru. (3.42)

With the exception of minor terms related to overlapping local/hit lists, the result in

(3.41) is exact. To perform a self-check, notice that PCF-1A (i.e., c1 = p) has R′′
us = 0,

77

which converts (3.41) into (3.9). For PCF-1B (i.e., c1 = 1), we get Rus = 0 and R′′
us =

R′
us, which makes the Trigon model identical to (3.10). Intuitively speaking, (3.41) can

be viewed as a sum of I/O in PCF-1A running with c1 colors and PCF-1B with c2 colors,

although this is approximate since R′′
us does not equal R′

us unless c1 = 1. Recalling (3.13),

also observe that (3.42) is exactly the number of lookups in PCF-1A under c1 partitions,

where more primary colors always cause more CPU cost.

Following the proof of Theorem 9, there exists a simple bound on IT (n) that shows

the impact of each color.

Theorem 16. The Trigon I/O is upper-bounded by

IT (n) ≤
n∑

u=1

Xuh(Xu), (3.43)

where h(x) = min(x/2, c1) + min(x/2, c2 − 1).

The first term of h(x) represents the number of lookups, while the second models the

size of local lists streamed from disk. Additionally, since h(x) ≤ c1 + c2 − 1, usage of

c1 = c2 =
√
p in (3.43) yields a looser bound

IT (n) ≤
n∑

u=1

Xu(c1 + c2 − 1) = (2
√
p− 1)m, (3.44)

which is the I/O cost of Pagh+ in Theorem 4. Since colors are sequential, Trigon beats

(3.44) even in complete graphs, where it comes the closest to this bound, by roughly a

factor of 2. It is also clear that (3.42) is upper bounded by c1m. Recalling Theorem 5, this

makes γT (n) better than the corresponding metric in Pagh+ for all c1 ≤
√
p.

Under appropriately-chosen c1, Trigon is always no worse than any of the previous

methods; however, the best choice for the number of primary colors remains far from

obvious.

78

3.7.5 Minimizing I/O

One big question is whether deploying c1 =
√
p is optimal for achieving the lowest

I/O. This seems logical as it reduces the number of colors in each direction to their mini-

mum. Because analysis of the accurate model (3.41) currently appears intractable, we only

consider insight that might be gained from the upper-bound (3.43), which can be written

as E[Xh(X)] for some random variable X .

Since c1 and c2 are almost interchangeable in h(x), it makes sense to study the follow-

ing simplified problem. Suppose we are interested in minimizing

ξ(c) = E[X(min(X, c) + min(X, p/c))], (3.45)

where X is a random variable that represents the out-degree of G+
θ and c is the number of

primary colors.

Theorem 17. If X has density f(x), (3.45) is minimized by c = 1, c = p, or any solution

to g(c) = g(p/c), where

g(y) = y

∫ ∞

y

xf(x)dx. (3.46)

Proof. Suppose X ∼ F (x). Then, we can expand the expectation in (3.45) as

ξ(c) =

∫ ∞

0

x(min(x, c) + min(x, p/c))dF (x)

=

∫ c

0

x2dF (x) + c

∫ ∞

c

xdF (x) +

∫ p/c

0

x2dF (x)

+
p

c

∫ ∞

p/c

xdF (x). (3.47)

79

Differentiating with respect to c and applying Leibnitz’s integration rule four times,

dξ(c)

dc
= c2f(c)− c2f(c) +

∫ ∞

c

xf(x)dx− p3f(p/c)

c4

+
p3f(p/c)

c4
− p

c2

∫ ∞

p/c

xf(x)dx

=

∫ ∞

c

xf(x)dx− p

c2

∫ ∞

p/c

xf(x)dx

=
g(c)− g(p/c)

c
. (3.48)

Optimal c is either a solution to g(c) = g(p/c) or lies on the boundary, i.e., c = 1 or

c = p.

Notice that c =
√
p is a trivial solution to g(c) = g(p/c). Furthermore, it is the only

solution if g(x) is monotonic. Outside of certain esoteric cases, this result shows that the

optimal Trigon configuration is PCF-1A, PCF-1B, or c1 =
√
p. However, there is no clear

winner for all graphs G. The next example shows one such case.

Theorem 18. If X < 2
√
p− 1 with probability 1, then c = 1 or c = p is optimal in (3.45).

On the other hand, if X > 2
√
p− 1 with probability 1, then c =

√
p is optimal.

Proof. Because the objective function is symmetric in c, we only need to consider c ∈

[1,
√
p]. Any optimal solution c has an optimal counterpart 1/c. Suppose X ∼ F (x) is

defined in [1, n− 1] and rewrite (3.45) as

ξ(c) =

∫ n−1

1

xξ(c, x)dF (x), (3.49)

where ξ(c, x) = min(x, c)+min(x, p/c). First suppose that x ≤ √p, in which case ξ(c, x)

becomes min(x, c) + x. This is trivially minimized by c = 1. Second, suppose x >
√
p,

in which case we get ξ(c, x) = c+min(x, p/c). There are two subcases here – 1) x < p/c

80

yields c + x, where c = 1 is optimal; and 2) x ≥ p/c produces c + p/c, where c =
√
p is

best. In the former subcase, the lowest cost is x+ 1 and in the latter it is 2
√
p. Therefore,

c = 1 is better when x < 2
√
p − 1, worse when x > 2

√
p − 1, and the two are equal

otherwise.

As a result, if X is limited to [1, 2
√
p− 1], we get that (3.49) minimized by c = 1. On

the other hand, if X is always larger than 2
√
p− 1, the integral is minimized by

√
p.

One example that falls under Theorem 18 are d-regular graphs. This is illustrated in

Fig. 3.8(a) using a random graph with d = 10, n = 10M, and p = 1024. The I/O function

of Trigon in this graph is an inverted cup, with the middle being the worst and the two

boundaries being the best, which is one of the few cases where PCF-1A wins over PCF-

1B. A more common scenario is given by Twitter in Fig. 3.8(b), where c1 =
√
p = 32 is

clearly optimal.

If the program has access to G+
θ , it can compute our models shown earlier in the

chapter and always make the right decision. However, if graph G+
θ cannot be examined

before choosing c1, the next result explains which choice would always be safer.

Theorem 19. Usage of c =
√
p in (3.45) yields at most double the optimal I/O. On the

other hand, c = 1 or c = p can be worse than optimal by a factor of
√
p.

3.7.6 Minimizing Runtime

When achieving the quickest execution time is a priority, the choice of optimal c1 may

involve balancing conflicting objectives. This is exemplified by Fig. 3.8(c)-(d), where

optimal points c1 do not coincide with those in plots (a)-(b). Note that the x-axis is on a

log2 scale and lookup growth is sublinear. On the d-regular graph, Trigon increases γT (n)

by 3.5 times between c1 = 1 and
√
p. On Twitter, the number of lookups goes up by a

factor of 9.8. As predicted earlier, both values are much smaller than Pagh’s linear (i.e.,

32-fold) increase.

81

1 4 16 64 256 1024
100

150

200

250

300

primary colors c
1

I/O
 (

m
ill

io
n

ed
ge

s)

(a) I/O (d-regular)

1 4 16 64 256 1024
0

20

40

60

80

primary colors c
1

I/O
 (

bi
lli

on
 e

dg
es

)

(b) I/O (Twitter)

1 4 16 64 256 1024
0

50

100

150

200

primary colors c
1

lo
ok

up
s

(m
ill

io
n)

(c) lookups (d-regular)

1 4 16 64 256 1024
0

20

40

60

80

primary colors c
1

lo
ok

up
s

(b
ill

io
n)

(d) lookups (Twitter)

Figure 3.8: Trigon tradeoffs between I/O and lookups (p = 1024).

With overlapped operation between CPU and I/O, the runtime is determined by the

maximum of disk read time and in-memory operations. Define SD, SI , and SH to be

respectively the speed of the disk, intersection, and lookups (in edges/sec), which can be

easily benchmarked on startup. Parameterizing IT (n) and γT (n) with c1, an objective

might be to minimize

r(c1) = max
(IT (n, c1)

SD

,
ρ(n)

SI

+
γT (n, c1)

SH

)
(3.50)

where ρ(n) is the intersection cost from (3.1).

To obtain IT (n, c1) and γT (n, c1), one can use (3.41)-(3.42). Direct computation of

82

these values may be costly; however, approximation (3.43), as well as its refinement using

(3.16) or (3.23), work quite well. A binary search over r(c1) requires efficient computa-

tion of the models, i.e., without scanning the degree sequence {Xu}, which may not fit in

RAM. Our approach is to create a short digest of the necessary information during con-

struction of G+
θ , which summarizes the in/out degree sequences of the graph. Since {Xu}

typically contains many runs of similar values (Xu, Xu+1, . . . , Xu+s−1), each of them can

be compressed into one entry that keeps track of the count s and the starting value Xu. As

a result, minimization of (3.50) often takes negligible time.

3.8 Evaluation

We finally come to the stage of putting the ideas developed in the previous section to

work. To enable a fair comparison, we use C++ to implement Trigon and Pagh+ as sep-

arate modules that share the same in-memory and disk components (i.e., multi-threading,

overlapped I/O, SIMD intersection). Setting c1 = 1 in Trigon, we obtain PCF-1B. There-

fore, the only difference between the three methods lies in their partitioning scheme. As

PCF-1A is not competitive on most real-world graphs, we do not consider it here.

Table 3.1: Graph Properties

Graph Nodes n Edges m Size (GB) Triangles
Twitter [46] 41M 1.2B 9.3 35B
Yahoo [87] 720M 6.4B 53.3 86B
IRL-domain [21] 86M 1.7B 13.3 113B
IRL-host [21] 642M 6.4B 52.7 437B
IRL-IP [21] 1.6M 818M 6.1 1040B
ClueWeb [21] 8.2B 51B 358 879B
Complete 100K 5.0B 37.2 167T
Bipartite 100K 2.5B 18.6 0

Out of the standard graphs used for triangle listing, we engage the six largest from

83

Table 3.2: I/O (Billion Edges)

Graph p Pagh+ PCF-1B Trigon RAM
Twitter 1,024 75.6 43.5 19.5 4.5 MB
Yahoo 392.3 25.5 25.5 23.2 MB
IRL-domain 104.8 98.4 33.8 6.2 MB
IRL-host 386.5 137.9 59.7 22.9 MB
IRL-IP 51.5 145.7 23.4 3.0 MB
ClueWeb 2,869.9 457.1 326.2 169.7 MB
Complete 10,000 995.0 15,742 493 1.9 MB
Bipartite 497.0 2.5 2.5 1.0 MB

[21]. Their characteristics are shown in Table 3.1. In the last two rows, we add into the

mixture best-case scenarios from Pagh and PCF.

3.8.1 I/O

Performance of triangle listing depends on the ratio between graph size and available

RAM, i.e., p = m/M . Since our I/O methods are quite efficient, this affords us an oppor-

tunity to examine scenarios where graphs are substantially larger than memory. In fact,

this is the first experiment that runs an actual implementation with RAM size that is 3− 4

orders of magnitude smaller than the oriented graph G+
θ .

On real-world graphs, Table 3.2 shows that Pagh+ loses to PCF-1B in five out of six

cases, sometimes by as much as a factor of 15. The only graph where it wins is IRL-

IP, which is quite dense (average degree 1,030). This is not surprising given our earlier

analysis. If we consider preprocessing to be part of triangle listing and double the PCF-1B

result, it becomes worse that Pagh+ in three cases. On the other hand, Trigon beats both

previous methods on each of the graphs. Furthermore, even if its I/O is doubled, it still

stays below Pagh+, in some cases by a wide margin.

On the complete graph and 10K partitions, Pagh+ has 15 times less I/O than PCF-1B.

However, its overhead is still double that of Trigon, which follows from the dichotomy

84

of sequential vs random coloring discussed earlier. On the bipartite graph, PCF-1B and

Trigon both annihilate Pagh+ by issuing 200 times less I/O, which also agrees with our

analysis.

3.8.2 Runtime

For the experiments, we use one machine with a six-core Intel i7-3930K (desktop CPU

released in 2011). We equip this computer with a single 3-TB magnetic hard drive (Hitachi

Deskstar 7K3000) that is capable of reads at 160 MB/s. We omit PCF-1B since slow I/O

makes it predictably worse than Trigon. Instead, we compare against Pagh+ to investi-

gate the impact of non-sequential colors, lookup load, and disk seeking. Furthermore, we

consider the total delay, which includes the partitioning phase, as one of the measures of

performance.

Table 3.3 shows the result. In the first four rows, Trigon completes triangle search

15−60 times quicker than Pagh+. One notable example is Yahoo, where purely sequential

I/O in Pagh+ would have been responsible for only 163 minutes (i.e., 392B edges, four

bytes each, read at 160 MB/s). Instead, Pagh+ spends an additional 1,132 minutes (i.e.,

18 hours) on lookups. A similar scenario occurs with ClueWeb in row six, where Pagh+

gets bogged down for 5 days just checking the hash table. Table 3.4 confirms that Pagh+

requires substantially more random memory access than Trigon. The larger the hash-table

size, the worse the lookup speed, which explains the huge runtime gap between the two

methods on ClueWeb.

In dense-graph scenarios of Table 3.3, Pagh+ is 3− 5 times slower than Trigon. Usage

of 10K partitions for the complete graph creates a noticeable bottleneck in reading c3 =

1M combinations of files. Analysis of the total delay, i.e., both preprocessing and triangle

listing, shows a more favorable outcome for Pagh+; however, Trigon is still faster in all

graphs, sometimes by a wide margin (e.g., 24× on Yahoo).

85

Table 3.3: Preprocessing and Enumeration Time (Minutes)

Graph Pagh+ Trigon
pre run total pre run total

Twitter 3.3 144.0 147.4 14.8 10.0 24.8
Yahoo 27.8 1,296.4 1,324.2 35.5 19.1 54.6
IRL-domain 3.5 191.4 194.9 21.0 14.8 35.8
IRL-host 26.2 1,070.3 1,096.5 52.7 32.0 84.7
IRL-IP 0.2 31.7 31.9 12.1 8.7 20.8
ClueWeb 181.8 8,331.1 8,512.9 426.8 254.3 681.1
Complete 2.5 1,050.7 1,053.2 624.2 238.6 862.8
Bipartite 8.8 629.5 638.3 6.6 2.3 9.9

Table 3.4: Number of Lookups (Billion)

Graph Pagh+ Trigon Ratio
Twitter 38.4 11.5 3.5
Yahoo 199.2 19.9 10.0
IRL-domain 53.2 19.4 2.7
IRL-host 196.3 34.3 5.8
IRL-IP 26.2 13.2 2.0
ClueWeb 1,457.8 205.3 7.1
Complete 500.0 252.0 2.0
Bipartite 250.0 2.5 100.0

3.9 Conclusion

We analyzed I/O complexity of the best methods in the literature, compared their

asymptotics, identified their inherent strengths and weaknesses, and developed a novel

framework that surpassed the existing efforts in all performance measures relevant to trian-

gle listing. Our approach works by trading I/O cost for lookups, which makes the method

adaptable to whatever bottlenecks triangle listing may be facing in a particular hardware

configuration.

86

4. SHALLOW NEIGHBORHOOD FUNCTION

4.1 Introduction

In a given graph G = (V,E), assume each node v has some weight wv and let Pd(v) be

the set of paths of length d that originate from v. The end points of the paths in Pd(v) form

a multiset Nd(v) and Wd(v) = {wu | u ∈ Nd(v)} is the collection of the corresponding

weights. A neighborhood function is a function that applies to the set of weights and paths

in the vicinity of v up to some distance d, i.e., f(W1(v), . . . ,Wd(v), P1(v), . . . , Pd(v)).

Note that the neighborhood function can work with duplicates or eliminate them.

In practice, we focus on a neighborhood distance d ≤ 2 as most applications lie in

this distance and the computation complexity grow exponentially for larger d. PageR-

ank/TrustRank can be viewed as examples of neighborhood function at d = 1 since the

score of each node relies on direct neighbors. Computation of supporters and four cycles

is a neighborhood function at d = 2. Triangle listing requires information at both d = 1

and d = 2 since a triangle indicates that a node has both a d = 1 path and a d = 2 path to

another node.

In this chapter, we discuss the problem of computing level-2 supporters. Given a

directed graph, define d(i, j) as the shortest distance from j to i along out-links. Our goal

is that for each node i, compute the set of nodes whose shortest distance to i is 2:

N(i, 2) = {j | d(i, j) = 2}. (4.1)

For example, in Figure 4.1, we have N(x1, 2) = {z1, z3}, N(x2, 2) = {z1, z2, z3}, and

N(x3, 2) = {z1}. Note that a node z may reach x through different length-2 paths, i.e., via

different middle nodes y. This requires us to detect duplicates when computing the unique

87

x1

x
2

x
3

y
1

y
2

y
3

z
1

z
2

z
3

Figure 4.1: Level-2 supporters.

number of level-2 supporters for each x. Such duplicate elimination makes this problem

more difficult than computing triangles.

The input of this problem is an out-graph G+ and an in-graph G−. An algorithm

may choose to utilize both graphs or only one of them. When the graphs do not fit into

memory, a graph partitioning scheme can be applied to partition the graphs either by x

or z. When partitioning by x, we compute the full supporter list for a subset of x each

time; when partitioning by z, we compute a partial supporter list of all x each time. Both

partitioning scheme guarantees no redundant counts. Partitioning by y currently seems

infeasible as the same z may reach the same x via different y partitions. It thus requires to

carry information across multiple partitions for possible duplicate elimination, which may

be costly.

4.1.1 Counting vs. Listing

Due to high CPU and I/O cost, exact computation of neighborhood function has not

been explored before. Previous work, including ANF (Approximate Neighborhood Func-

tion), BitVector, and TSE (Top Supporters Estimation), focuses on estimation of neigh-

borhood function. However, these estimation methods only provide an estimated count of

neighbors. Thus, they cannot produce a full list of neighbors or accomplish more advanced

88

Algorithm 15: SNF-A

1 Function SNF-A (G+, G−)
2 while G− is not finished do
3 load next chunk from G−, invert it into partial out-lists (y,OUT (y))
4 build hash table H that maps each y to OUT (y)
5 while G+ is not finished do
6 load next chunk of out-lists (z,N+(z)) from G+

7 foreach y ∈ N+(z) do
8 MarkL2-A(z, y,H) ▹ mark level-2 supporters
9 ClearL1-A(z,H) ▹ clear level-1 supporters

Algorithm 16: Mark level-2 supporters

1 Function MarkL2-A (z, y,H)
2 locate OUT (y) from H
3 foreach x ∈ OUT (y) do
4 if lastSupporter[x] != z then
5 lastSupporter[x] = z ▹ mark z as a level-2 supporter of x
6 cnt[x] += 1

functionalities beyond counting. Our study focuses the exact computation of neighborhood

function, which guarantees us to actually visit every neighbor. Beside accurate counting,

we can achieve more functionalities such as computing max/min weight among neighbors,

summing up weights of neighbors, etc.

4.2 Algorithm

In this section, we introduce our algorithm that computes neighborhood function at

depth 2, which we call Shallow Neighborhood Function (SNF). There exist two versions

of this algorithm, i.e., SNF-A and SNF-B, that traverse the links in different directions.

4.2.1 SNF-A

SNF-A (Algorithm 15-17) partitions the graph by x. Assume the node set V is parti-

tioned into p subsets V1, V2, . . . , Vp, where Vi ∩ Vj = ∅ (1 ≤ i ̸= j ≤ p) and ∪pi=1Vi = V .

In the i-th iteration, SNF-A loads a chunk of G−, which contains the in-neighbors of

89

Algorithm 17: Clear level-1 supporters

1 Function ClearL1-A (z,H)
2 locate OUT (z) from H
3 foreach x ∈ OUT (z) do
4 if lastSupporter[x] == z then
5 cnt[x] -= 1 ▹ z is a level-1 supporter of x, remove its count

x ∈ Vi. It then inverts the in-neighbor lists (x ← y1, y2, . . .) into out-neighbor lists

(y → x1, x2, . . .), denoted as OUT (y). Note that OUT (y) only contains the portion of

y’s out-neighbors that belong to Vi, i.e., OUT (y) = N+(y) ∩ Vi. A hash table is built to

map each y to OUT (y). Then, SNF-A scans G+ from disk to obtain out-lists (z,N+(z)).

For each y ∈ N+(z), locate OUT (y) via the hash table H . It then follows that each

x ∈ OUT (y) can be reached by z in two hops along out-links.

In order to eliminate duplicates, i.e., z may reach x via different intermediate nodes y,

we need to record the last supporter z that reaches each x. Since we only process a small

subset of nodes Vi each time, we can keep a supporter count and the last supporter ID of

each x ∈ Vi in memory. After marking all unique x that z can reach in two hops, the

last step is to clear the mark when x is a direct out-neighbor of z, i.e., d(x, z) = 1. After

finishing G+, SNF-A has exhausted all possible level-2 supporters z and obtained the final

supporter count for each x ∈ Vi.

4.2.2 SNF-B

SNF-A works by starting from each z, walking along out-links for two hops, and

reaching x. SNF-B partitions by z and does the reverse by starting from x, walking along

in-links for two hops, and finding its supporters z. SNF-B allows us to focus on a single x

each time, which has advantages including: 1) We only need to maintain a single counter,

which can be held in register for efficiency; 2) Instead of keeping track of the last supporter

ID for each x, we now only need to keep 1-bit information of whether each z has been

90

Algorithm 18: SNF-B

1 Function SNF-B (G+, G−)
2 while G+ is not finished do
3 load next chunk from G+, invert it into partial in-lists (y, IN(y))
4 build hash table H that maps each y to IN(y)
5 setup a bitmap B of source nodes z ∈ Vi in this chunk
6 while G− is not finished do
7 load next chunk of in-lists (x,N−(x)) from G−

8 c = 0
9 foreach y ∈ N−(x) do

10 MarkL2-B(y,H,B, c) ▹ mark level-2 supporters
11 ClearL1-B(x,H,B, c) ▹ clear level-1 supporters
12 cnt[x] += c
13 foreach y ∈ N−(x) do
14 ClearL2-B(y,H,B) ▹ clear level-2 supporters

Algorithm 19: Mark level-2 supporters

1 Function MarkL2-B (y,H,B, c)
2 locate IN(y) from H
3 foreach z ∈ IN(y) do
4 if B[z] == 0 then
5 B[z] = 1 ▹ mark the bit of z
6 c += 1

marked as a level-2 supporter. The main CPU bottleneck lies in marking supporters. By

using a bit map, SNF-B significantly reduces the size of data structure needed for marking

supporters. Depending on the size of each node partition, i.e., |Vi|, the bit map may be

small enough to fit into CPU’s L1 cache, which would significantly boost CPU processing

speed.

The detail of SNF-B is illustrated in Algorithms 18-21. Compared to SNF-A, SNF-B

reverses the processing order of G+ and G−. It scans G+ in the outer loop. In the i-th

iteration, SNF-B loads a chunk of G+ that contains out-lists of source nodes z ∈ Vi, i.e.,

(z → y1, y2, . . .). It then inverts it into partial in-lists of each y, i.e., (y ← z1, z2, . . .),

denoted as IN(y). Note that IN(y) = N−(y) ∩ Vi. Two auxiliary data structures are

91

Algorithm 20: Clear level-1 supporters

1 Function ClearL1-B (x,H,B, c)
2 locate IN(x) from H
3 foreach z ∈ IN(x) do
4 if B[z] == 1 then
5 B[z] = 0 ▹ z is a level-1 supporter of x, remove its count
6 c -= 1

Algorithm 21: Clear level-2 supporters

1 Function ClearL2-B (y,H,B)
2 locate IN(x) from H
3 foreach z ∈ IN(x) do
4 B[z] = 0 ▹ clear all set bits

needed in SNF-B: a hash table H that maps each y to IN(y) and a bit map for all z ∈ Vi.

The algorithm then traverses the graph along in-links by scanning each in-list from G−.

Starting from x, for each of its in-neighbors y, locate IN(y) from H . For each z ∈ IN(y),

check it against the bit map. If the corresponding bit is not set, then z is a new level-

2 supporter of x that has not been encountered before, we set the bit and increase the

counter; otherwise, z is deemed as a duplicate. Similarly, the algorithm has to eliminate

level-1 supporters from the bit map.

In the last, SNF-B needs one additional step to reset the bit map. One possible ap-

proach is to reset the entire bit map memory space to zero, e.g., by calling function

memset(). However, we find this approach extremely slow in practice as we need to

repeat this for every node. In fact, we find that most positions of the bit map are 0, which

does not need to be touched. We only need to find the positions that are potentially set.

Therefore, we repeat the process that is used to mark level-2 supporters and this time we

reset all positions that we hit. This novel approach is illustrated in Algorithm 21.

92

4.3 CPU Complexity

In this section, we analyze the CPU complexity of SNF algorithms. The main CPU

bottleneck is marking level-2 supporters. In both SNF-A/B algorithms, the number of

attempts to mark level-2 supporters equals to the total number of nodes, including dupli-

cates, that can be reached in two hops from each source node. This number is known as

QVS (Quick-Visit Suppoters). Note that this number is the same regardless of traversing

directions (i.e., along in-links or out-links) and can be computed by

QV S =
n∑

i=1

XiYi. (4.2)

Among these attempts, most of them will be deemed as duplicates and thus lead to

no consequences. Such duplicate attempts only cause memory reads. Only the unique

ones will cause an actual mark operation, i.e., a memory write. The total number of actual

marks equals to the total number of supporters computed. Let SUPP2(i) be the number

of level-2 supporters of node i, the number of marks is
∑n

i=1 SUPP (i).

Eliminating level-1 supporters requires to check all direct neighbors of each node,

which leads to a total of m =
∑n

i=1Xi =
∑n

i=1 Yi checks. The number of checks that

actually lead to a memory write which clears a bit depends on the number of times that a

direct neighbor can also reach the source node in two hops. Finally, SNF-B requires an

additional QVS number of memory writes to clear the bit map.

Table 4.1: CPU complexity of SNF

Function IRL domain ClueWeb domain
Read Write Read Write

MarkL2 3.1T 1.9T 4.2T 3.4T
ClearL1 1.8B 1.3B 415M 340M
ClearL2 – 3.1T – 4.2T

93

Table 4.2: Runtime (sec) in IRL domain

B (MB) SNF-A B (MB) SNF-B
32 6,209 256 3,201
64 6,189 512 2,853
128 6,348 1,024 2,709
256 7,008 2,048 3,135

Table 4.1 illustrates the CPU cost of SNF on two graphs – IRL domain with 89M nodes

and 1.8B edges, and ClueWeb domain with 31M nodes and 415M edges. As we can see

from the table, in IRL domain graph, SNF issues 3.1T attempts to mark level-2 supporters

and among which 1.9T lead to success (i.e., not duplicates). Such large number of memory

operations may easily become the bottleneck and make the computation of neighborhood

function CPU intensive. The other graph, ClueWeb domain, requires even more memory

operations, 4.2T reads and 3.4T writes, despite the fact that this graph is smaller. This

is because ClueWeb domain graph has higher density. The overhead of clearing level-1

supporters is relatively small compared to that of marking level-2 supporters and thus can

be ignored. Note that SNF-B requires another 3.1T and 4.2T operations to clear the bit

map in the two graphs; while SNF-A does not have this step. However, this does not

necessarily mean that SNF-A is superior than SNF-B as the latter works on a bit map,

which is a much smaller data structure and more cache efficient.

4.3.1 Runtime

Next, we analyze the runtime of each algorithm. Tables 4.2-4.3 illustrates the runtime

using a six-core 4.4 GHz Intel i7 CPU and a disk RAID system @ 1 GB/sec. As we can

see, the runtime is a function of the chunks size B. Instead of being a monotonic function,

we notice that there exists an optimal B for runtime. This is because of a tradeoff between

CPU and I/O. In terms of CPU, cache efficiency is an important factor as it determines

94

Table 4.3: Runtime (sec) in ClueWeb domain

B (MB) SNF-A B (MB) SNF-B
2 3,317 256 3,216
4 2,900 512 3,134
8 3,408 1,024 2,747
16 8,420 2,048 3,329

how fast the CPU operations can be done. When B is small, the data structure maintained

by SNF is small, which is able to greatly benefit from caching; however, a small B also

means SNF needs to scans the graphs more times, which causes a larger I/O. When B is

large, the effect reverses. The optimal B in the IRL domain graph is 64 MB and 1 GB for

SNF-A and SNF-B, respectively, and 4 MB and 1 GB in the ClueWeb case.

Note that SNF-A requires an array of last supporter IDs and counters, which is a much

larger data structure than that of SNF-B, where the latter only requires a single counter

and a bit map. This leads to two consequences: 1) SNF-A is slower than SNF-B due

to less cache efficiency, despite that SNF-B does more CPU operations as it needs an

additional step to clear marks. Looking at the optimal runtime, SNF-B is 2.3x and 1.1x

faster than SNF-A in the two graphs; 2) In order to achieve the best performance, SNF-A

has to operate with smaller B as it needs to maintain larger data structures. It achieves best

performance with the chunks size 64 MB and 4 MB; while SNF-B can work well with 1

GB chunks. When the graph size scales, SNF-A may experience much larger I/O cost as

it can only work with small chunks.

4.4 I/O Complexity

When the graphs do not fit into memory, external-memory operation is required to

compute neighborhood functions. Our proposed algorithms SNF-A/B have already taken

care of external-memory cases. They assume a simple I/O model that loads a chunk of

95

Algorithm 22: SNFD-A partition

1 Function SNFD-A Partition (G+, G−)
2 concurrently scan G+ and G− to obtain both out/in-list of each node (i,N+(i), N−(i))
3 for l = 1 to p do
4 X = N+(i) ∩ Vl

5 if X ̸= ∅ then
6 write (i,X) to subgraph G+

l

7 write (i,N−(i)) to companion Gc
l

either G+ or G− and scan the other graph from disk. Given the graph size |G+| = |G−| =

m and chunk size B, SNF-A/B requires a total I/O m2/B. Increasing chunk size B leads

to fewer passes of scan over input graphs and thus less I/O. The maximum chunk size

can be as large as memory size M . However, as we discussed in previous sections, larger

chunk size may also lead to lower cache efficiency and thus slow down CPU operations.

As the graph size increases, the quadratic I/O complexity m2/B may soon become the

bottleneck. In order to achieve more efficient I/O, we next propose a novel graph parti-

tioning scheme called SNFD (Shallow Neighborhood Function on Disk) that can support

disk operation of both SNF-A/B. Similar to SNF-A/B, SNFD starts by partition the nodes

into p mutually exclusive and jointly exhaustive subsets V1, . . . , Vp. Then, as shown in

Algorithm 22, SNFD-A (which works similarly to SNF-A) partitions G+ into p subgraphs

G+
1 , . . . , G

+
p by splitting the out-neighbors of each source node i according to the node

partition, i.e., the portion of out-neighbors N+(i) ∩ Vl is written to G+
l . We also create a

companion file Gc
l for each subgraph G+

l that contains in-neighbors of each source node

i written to G+
l . SNFD-B (Algorithm 23) works similar to SNF-B, splits in-neighbors

according to the node partition, and writes out-neighbors to the corresponding companion

file. After partitioning, SNFD works on each pair of subgraph and companion file in the

same way as SNF working on (G+, G−).

96

Algorithm 23: SNFD-B partition

1 Function SNFD-B Partition (G+, G−)
2 concurrently scan G+ and G− to obtain both out/in-list of each node (i,N+(i), N−(i))
3 for l = 1 to p do
4 Y = N−(i) ∩ Vl

5 if Y ̸= ∅ then
6 write (i, Y) to subgraph G−

l

7 write (i,N+(i)) to companion Gc
l

4.4.1 I/O Upper-Bound

We next give a strict upper bound of the SNFD I/O cost. Note that the subgraph

partitioning is non-redundant, i.e.,
∑p

l=1 |G
+
l | = m. Therefore, we only need to focus

on companion file size. Considering SNFD-A, for each source node i, suppose its out-

neighbors are split into c subgraphs, then we need to duplicate its in-neighbors into c

companion files. It is easy to see that c ≤ min(Xi, p). Thus, the total companion size is

upper-bounded by

H ≤
n∑

i=1

min(Xi, p)Yi. (4.3)

Similarly, we can give the upper-bound of SNFD-B’s I/O as

H ≤
n∑

i=1

min(Yi, p)Xi. (4.4)

4.4.2 Load Balancing

Since SNFD requires to hold the entire subgraph in memory for processing, the sub-

graph size cannot exceed memory size M . In order to achieve the best I/O performance,

load balancing is required to equalize the size of each subgraph to M , which produces the

minimum possible p. Note that SNFD partitioning relies on node partitioning, i.e., how

nodes are split into subsets Vl. We next introduce a deterministic node partitioning scheme

97

Table 4.4: I/O complexity in IRL domain

RAM SNF-A/B SNFD-A SNFD-B
1,024M 3.6B 2.8B 3.2B
512M 7.2B 4.9B 5.6B
256M 14.4B 8.2B 9.1B
128M 27.0B 14.5B 15.5B
64M 52.2B 25.4B 25.9B
32M 102.6B 44.4B 42.9B

that controls the size of each subgraph and achieves load balancing.

We utilize sequential node partitioning that places nodes with consecutive IDs into

the same partition. This brings the following advantages: 1) Instead of keeping track of

which nodes belong to a particular partition Vl, we now just need to remember the partition

boundaries a1, a2, . . . , ap+1, where a1 = 1 and ap+1 = n + 1, such that node i belongs to

partition Vl if al ≤ i < al+1; 2) by grouping nodes with consecutive IDs together, it makes

future memory operations, e.g., hash table lookups, more cache efficient.

In SNFD-A, the subgraph size |G+
l | depends on the total in-degree of nodes in Vl.

Similarly, SNFD-B’s subgraph size |G−
l | depends on the total out-degree of nodes in Vl.

Combined with sequential node partitioning and the maximum subgraph size M , we can

compute each node partition Vl in SNFD-A by

al+1−1∑
i=al

Yi = M, (4.5)

and that of SNFD-B by
al+1−1∑
i=al

Xi = M, (4.6)

98

Table 4.5: I/O complexity in ClueWeb domain

RAM SNF-A/B SNFD-A SNFD-B
256M 830M 579M 775M
128M 1.7B 995M 1.3B
64M 2.9B 1.7B 2.2B
32M 5.4B 2.9B 3.8B
16M 10.8B 4.9B 6.5B
8M 21.6B 8.6B 10.9B

4.4.3 I/O Comparison

Finally, we compare the I/O performance of each algorithm in the IRL and ClueWeb

domain graphs. Tables 4.4-4.5 show how the I/O cost scales with RAM size, where both

I/O and RAM are measured by number of edges. As we can see from the tables, SNFD

significantly outperforms SNF-A/B, where the latter requires quadratic I/O complexity.

The smaller the RAM size, the more advantage SNFD has. On the other hand, SNFD-A

tends to be better than SNFD-B in I/O.

We next present an important application of shallow neighborhood function in ranking

Internet host.

4.5 Host Ranking

Search engines have become the primary mechanism for users to access the content of

the Internet and for websites to attract visitor traffic. To achieve high ranking in search

results, web spammers attempt to deceive search engines and manipulate their ranking

algorithms by employing such tactics as content stuffing, link exchanges, and page hijack-

ing [33]. In order for search engines to remain robust against these exploits, it is crucial

to properly manage spam. Instead of doing this in the indexing or querying phase, we

address the problem from another angle: avoiding spam during data collection.

A search engine typically relies on a distributed web crawler to download web pages

99

and maintain a copy of the web. In order to produce spam-free input to indexing and data-

mining algorithms, web crawlers need a prioritization scheme to schedule the crawl order

of pages in the frontier [73]. Ideally, pages from highly reputable websites achieve top

priority and are crawled first. Similarly, spam pages are scheduled towards the end of the

crawl or avoided altogether. Traditional crawlers [12], [36], [54], [70] do not implement

spam avoidance and usually rely just on BFS. Simulations of page scheduling [4], [16]

suggest ranking the frontier by PageRank [59]; however, these methods have not been

used in non-commercial web crawls due to computational complexity and have remained

largely untested.

Instead, we investigate a prioritization model that ranks websites and assigns budgets

to them according to the ranking position. Budgets specify the amount of crawl resources

(i.e., bandwidth, RAM, and disk space) allocated to each site. Generally, a crawler pro-

vides non-trivial budgets to the top-R (e.g., 100K) highest-ranked hosts∗ and crawls all

others with a small fixed budget. This model is efficient since it ranks websites rather than

pages and is concerned only with ordering the top-R hosts.

The key to this model is a good host-ranking algorithm that achieves the following

three goals. First, it must exclude spam from the top list. Since top-ranked hosts get a

disproportionally high fraction of the budget, any spam at the top is likely to waste large

amounts of crawl resources and pollute the final dataset. Second, the algorithm must be

efficient as it needs to rank hosts in real-time and frequently update the ordering as more

hosts and links are discovered. Finally, the method should not rely on human input (e.g.,

whitelisting/blacklisting) or complex training. The web evolves rapidly, which makes

human and machine classification difficult to keep up-to-date.

Unfortunately, not much attention has been paid to this problem in the academic com-

∗In this chapter, we refer to websites as hosts, which can be identified by hostnames. A hostname is a
label assigned to a host computer and can be mapped to IP addresses by using a DNS resolver. For example,
en.wikipedia.org, mail.google.com, and news.bbc.co.uk are hosts.

100

en.wikipedia.org
mail.google.com
news.bbc.co.uk

munity. Related work that attempts to rank hosts either simply applies PageRank to the

host graph [24] or computes the sum of PageRank values inside each website [26]. More-

over, neither of these approaches produces detailed analysis of the obtained ranking list.

This calls for more evaluation and possibly better methods for ordering websites.

4.5.1 Contributions

We study host ranking on two large web crawls: a 641M-host dataset IRLbot and a

118M-host dataset ClueWeb. These datasets are crawled with different seed pages and

algorithms, providing complementary results.

We start by showing that existing techniques such as PageRank [59], TrustRank [34],

in-degree (IN), and level-2 supporters (SUPP2) [9], [73] leave much to be desired. For

example, PageRank produces 14% spam in the top-1K, while IN is even worse with 24%.

TrustRank beats both of these by taking advantage of its whitelist, but 3.8% spam within

its top-1K is still far from ideal. SUPP2 drops this number to 0.7%, but allows 8.4%

spam within the top-100K. These methods’ main drawback lies in using hosts themselves

as indication of endorsement. Since spammers can create any number of hosts for free,

inflating the ranking of arbitrary targets becomes easy.

To overcome this issue, we propose a novel ranking framework that utilizes multiple

graphs and ranks hosts with the endorsement from finite Internet resources. We first con-

sider the use of domains†. Due to the financial cost involved, it is difficult for a spammer

to get a large number of domains under control. We rank hosts by the number of level-

2 domain supporters and call this algorithm L2-D. Our evaluation on IRLbot shows that

compared to the best existing methods, L2-D produces 3.5 times less spam among the

top-1K list, 6.0 times less spam from 1K to 10K, and keeps its advantage all the way up to

100K. Results with ClueWeb are similar.
†A domain must be purchased at a TLD or cc-TLD registrar (e.g., google.com, wikipedia.org, amazon.

co.uk).

101

google.com
wikipedia.org
amazon.co.uk
amazon.co.uk

To further improve performance of L2-D, we incorporate the DNS infrastructure into

our ranking framework. We replace level-2 domains with their authoritative DNS name-

servers. In web-hosting services such as GoDaddy, there can be millions of domains co-

hosted under a shared DNS cluster. Thus, by using authoritative DNS nameservers instead

of domains, we eliminate inflation from a large number of low-quality domains within

web-hosting services. Moreover, we propose simple ways to detect and remove highly

co-hosted websites and links suspected of being hijacked. In our final method, we end up

with no spam among the top-1K, less than 0.2% among the top-10K, and only 2.0% within

the top-100K.

The rest of this chapter is organized as follows. Section 4.6 introduces related work.

Section 4.7 formalizes the problem of topological ranking and proposes our multi-graph

framework. We analyze two examples that use our framework to rank hosts with do-

mains and authoritative DNS nameservers in section 4.8 and 4.9, respectively. Section

4.10 briefly compares the complexity of different multi-level supporter algorithms. Fi-

nally, section 4.11 concludes the chapter with our findings.

4.6 Related Work

4.6.1 Spam Detection

Web spam has become prevalent [33]. There have been numerous solutions to detect

spam using the web topology. SpamRank [10] proposes to penalize a page if the PageRank

score distribution of its in-neighbors does not follow a power law. Spam mass [32] of a

page estimates the portion of PageRank that is contributed by spam nodes. A page is

suspicious if the spam mass is larger than some threshold τ . Study [83] starts with a set

of blacklisted pages and propagates penalties in the neighborhood of blacklisted nodes.

Spam farms have been found to create densely connected structures in the webgraph and

have been detected by decomposing the graph into strongly connected components (SCC)

102

[18].

There has been earlier work [27], [79], [86] that suggests to leverage DNS information

for spam detection. A high number of hostnames resolving to a single IP is considered

indicative of spam in [27]. Spam domains are known to use wildcard DNS entries to

generate hostnames with popular keywords. Similarly, IPs have been used as one of the

features while classifying spam [79], and connected components in DNS queries have

been used to find botnet client-server communication inside a network [86].

Other work [27], [42], [56], [75], relies on additional features for spam detection,

including URL structure, HTTP headers, redirection, click-through data, and content anal-

ysis. These methods normally require human labeling and training with large amounts of

prior knowledge.

While spam detection techniques can potentially help us to remove spam, they do not

further distinguish the quality of the rest non-spam content (e.g., microsoft.com vs. some

personal homepage). Such quality difference is important for web crawlers to decide the

budgets. Thus, we are facing a different problem: websites ranking and budgeting. Our

goal is not to develop a spam detection method, but a method to detect good websites and

assign the majority of budgets to them.

4.6.2 Ranking

The problem of ranking websites has not been widely studied. Existing work [24], [26]

is limited to simply applying PageRank on the host graph. Another method SUPP2, which

extends in-degree rank (IN) by counting the number of neighbors at distance 2, is found

effective in eliminating spam when ranking domains [73]. Its performance in ranking hosts

still needs to be examined.

Other methods that are originally created for page ranking, can be potentially applica-

ble to websites. TrustRank [34] modifies PageRank by teleporting to trusted nodes only.

103

microsoft.com

Trust scores then propagate through neighbors from a seed set of whitelist nodes. Cred-

ibleRank [14] assigns credibility to all pages by measuring the probability for random

walks to end up on blacklisted nodes. However, selection of comprehensive whitelists or

blacklists is difficult considering the size and dynamics of the Internet. As stated in intro-

duction, one of our goals is to create an automatic algorithm that works on any underlying

graph and keeps up with the changing web.

4.7 Topological Ranking

In this section, we formalize the problem of topological ranking and present a novel

multi-graph ranking framework.

4.7.1 Single-Graph Ranking

The web is a huge collection of web pages linked to each other, which can be repre-

sented as a directed graph. In order to study host ranking, we first construct the host graph

by condensing all pages found in the same website into a single node and adding an edge

from node i to node j if any page in i links to any page in j. To avoid ranking inflation

from duplicate inter-host hyperlinks, the graph is unweighted (i.e., duplicate edges are

removed).

Based on the linking structure of the graph, an importance score, which we call reputa-

tion, can be computed for each node. For example, if host A has a hyperlink to host B, this

implies that A recommends the content of B and can be viewed as an endorsement of B.

Thus, the reputation of B can be computed simply by the number of hosts that recommend

it. This method is known as in-degree ranking (IN). We call the nodes that contribute to

the reputation of a target its supporters.

In general, it may be argued that not all supporters are equally important. Consider two

nodes with the same in-degree but one is pointed to by Yahoo and the other by a number

of spam hosts. Thus, a weight may be assigned to each supporter to distinguish between

104

them. PageRank [59] decides the weights using the stationary probability for a random

walker on the graph to be found at each node. Given a directed graph G with n nodes,

at each step, the walker either chooses one of the out-links to follow with probability

α = 0.85 or teleports to a random node with probability 1− α. In this case, the reputation

of node j is given by:

Rj = α
∑

(i,j)∈E

Ri

dout(i)
+

1− α

n
, (4.7)

where dout(i) is the out-degree of node i. The reputation is computed in multiple iterations,

which can be viewed as a progressive adjustment to weights of supporters.

One problem of PageRank is that even nodes without any value gain some reputa-

tion from random teleportation. TrustRank [34] solves this problem by teleporting to

trusted nodes only. Prior work [24] has shown that by using two selected reputable sites

(i.e., www.microsoft.com and www.yahoo.com) as the whitelist (W), TrustRank produces

much better top ranking lists than PageRank. In this chapter, we use www.google.com as

the only trusted node since it is the most popular Internet service today. We also tried to

use a larger W ; however, it turned out to perform worse than www.google.com alone (we

omit the results here for brevity). The lesson we learn is that TrustRank boosts neighbors

of W , which for large W may not always be desirable as reputable hosts are not required

to link to other similarly ranked nodes.

Supporters can also be generalized to multiple levels. Defining d(i, j) to be the shortest

distance from node i to node j, the reputation of j can be given by:

Rj = |{i : d(i, j) = D}|. (4.8)

We call i a level-D supporter of j. Note that this is equivalent to backwards BFS from

each node to depth D. If D = 1, we get IN. With D ≥ 2, we call the algorithm SUPPD

105

www.microsoft.com
www.yahoo.com
www.google.com
www.google.com

target.example.com

A.example.com

B.example.com

C.example.com

D.example.com

E.example.com

Figure 4.2: Host graph.

(supporters at level-D).

4.7.2 Multi-Graph Ranking

We define a graph to be an infinite graph if the nodes contained in the graph can be

infinitely created for free; otherwise it is a finite graph. A host graph is infinite because

once a spam domain is registered, a spammer can use automated scripts and DNS wild-

card entries to create an infinite number of hosts under this domain. These hosts can be

densely connected to each other and form link farms. Traditional algorithms that work on

this single infinite graph are susceptible to trivial inflation. Figure 4.2 shows an example

of manipulating the single-graph ranking techniques at the host level. A spammer who

controls example.com creates a link farm with five dummy hosts. Two of them (A and B)

are boosting the IN ranking of the target. The other three hosts C, D and E support the

target at level-2 and inflate its SUPP2 count. Meanwhile, the target’s PageRank score is

boosted as well by receiving credit from dummy in-neighbors.

To address this issue, we propose a set of novel ideas for ranking purpose. First, we

restrict supporters to come only from finite graphs, whose nodes cannot be controlled in a

large number by spammers due to the financial cost involved. Two obvious examples of

such nodes are domains and DNS nameservers. Second, we use heterogenous graphs that

contain links between different types of nodes. This allows the reputation score of nodes

106

example.com

in infinite graphs to be computed using nodes in finite graphs. Finally, we use multiple

graphs to create ranking methods that are more resistant to spam.

In order to rank on multiple graphs, we need a mechanism that allows reputation scores

to flow between them. Given two directed graphs G1(V1, E1), G2(V2, E2) (Vi is the set of

nodes and Ei is the set of edges) and two edges (x1 ← y1) ∈ E1, (x2 ← y2) ∈ E2, if the

pair (y1, x2) satisfies certain condition θ (i.e., θ(y1, x2) = 1), then we can connect the two

edges together to form a chain that allows one to traverse between the two graphs. Based

on this concept, we define the theta join operation between two graphs to be:

G1 ◃▹θ G2 = {x1 ← y1 ← x2 ← y2 : x1 ← y1 ∈ E1,

x2 ← y2 ∈ E2, θ(y1, x2) = 1}.

If the θ condition is y1 = x2, we define the natural join of two graphs as:

G1 ◃▹ G2 = {x1 ← y1 ← y2 : x1 ← y1 ∈ E1,

x2 ← y2 ∈ E2, y1 = x2}.

Note that one edge in a graph can be connected with multiple edges in the other graph.

These joins are similar to their usage between tables in database systems. More generally,

these operations can be applied to n graphs:

G1 ◃▹ G2 · · · ◃▹ Gn = {x1 ← y1 ← y2 · · · ← yn :

x1 ← y1 ∈ E1, . . . , xn ← yn ∈ En,

y1 = x2, . . . , yn−1 = xn}.

In the chain above, nodes y1, . . . , yn are supporting the target x1 at levels 1 to n.

107

Note that y1, . . . , yn can be completely different types of nodes and there may be mul-

tiple chains supporting x1. If G1 = Gn, the chain becomes a cycle, which potentially

allows PageRank-style iterative methods to be applied on multiple graphs. This new rank-

ing framework allows us to compute the reputation score of x1 using a variety of nodes

(e.g., domains and DNS nameservers) from multiple graphs.

4.8 Domain Supporters

In this section, we show an example of incorporating domains into our ranking frame-

work. A straightforward way is to create a heterogenous Host-Domain graph from the host

graph by condensing in-neighbors into their domains and count the number of domain in-

neighbors. Figure 4.3 shows such a graph constructed from Figure 4.2. Two in-neighbor

hosts (A and B) are merged into one domain node (example.com). This prevents infla-

tion within direct neighbors. In our experiment, we find this technique outperforms IN

and PageRank, but still falls behind TrustRank and SUPP2. Since supporters at level-2

are found to produce good ranking lists [73], we extend domain supporters to level-2 (we

call this method L2-D) by applying natural join on the Host-Domain graph and a Domain-

Domain graph, which can be similarly constructed from the host graph. This produces

Host-Domain-Domain chains. Figure 4.4 shows such a chain constructed from Figure

4.2. The original nodes C, D, and E at level-2 are also merged into a single domain

node. There are zero domain supporters at level-2 in the above case since the distance

from example.com to the target is 1. Thus, L2-D completely eliminates the effect of such

manipulation in Figure 4.2. Moreover, by condensing hosts into domains, the graph size

and computational overhead are significantly reduced. The rest of this section compares

the performance of L2-D with single-graph techniques.

108

example.com
example.com

target.example.com example.com

Figure 4.3: Host-Domain graph.

target.example.com example.com example.com

Figure 4.4: Host-Domain-Domain chain.

4.8.1 DataSets

Our first dataset IRLbot contains 6B HTML pages and reveals a subset of the web with

41B unique pages. The corresponding host graph consists of 641M sites and 6.8B edges.

Our second dataset ClueWebhas 1B HTML pages. The corresponding host graph contains

118M nodes and 1.1B edges. In our experiment, we find ClueWebhas much less spam

than IRLbot.

4.8.2 Manual Analysis

A crawler should assign most of the budget to top-ranked hosts, which will consume

most of the crawl resources and contribute the major portion of the final crawl dataset.

Thus, the most important goal for a host ranking algorithm is to exclude spam from the

top list, which explains why our evaluation focuses on the quality of top-ranked hosts.

During our evaluation, we manually label each host by sampling a few pages (always

including the home page) within it. We consider the following categories as spam: (1)

parked: hosts primarily used to monetize web traffic by displaying ads, which mostly con-

sist of previously expired domains and are kept alive for the value of incoming links; (2)

adult: hosts that serve pornographic content; (3) content spam: hosts with no meaningful

109

Table 4.6: Top-10 ranked hosts in IRLbot by PageRank-style methods.

PageRank TrustRank
Site GTR Site GTR

go.microsoft.com 4 www.google.com 9
www.blogger.com 9 go.microsoft.com 4
www.adobe.com 9 www.microsoft.com 8

www.microsoft.com 8 www.adobe.com 9
www.google.com 9 www.macromedia.com 9

searchportal.information.com – www.trafic.ro 7
www.macromedia.com 9 www.statcounter.com 9
www.sedoparking.com – searchportal.information.com –

find-fm.com 3 validator.w3.org 9
validator.w3.org 9 www.apple.com 9

information, excessive use of keywords and machine generated text; (4) link spam: hosts

involved in link exchanges or affiliate marketing with a large number of revenue links.

We also use Google Toolbar Ranks (GTR) [66] of the home page to help us assess

the quality of each websites. GTR is a value from 0 to 10 that indicates Google’s opinion

about the reputation of each page. Pages with a higher GTR value are more reputable.

Google also returns a special “no GTR" response if the page has not been crawled, no

longer exists, or has been removed from the index on purpose.

We first list the top-10 ranked hosts and their GTRs in Tables 4.6-4.9. In both datasets,

SUPP2 and L2-D produce reliable top-10 lists with reputable websites whose GTR values

are at least 7, while PageRank suffers from significant amounts of spam. For example,

this includes searchportal.information.com, find-fm.com and www.sedoparking.com. The

first two are revenue-marketing search engines hosting predominantly spam; the last one

provides parking services with highly questionable content. Also, we find that the entire

domain information.com runs a large number of parked hosts that mostly serve ads.

One interesting case occurs in ClueWeb, where both PageRank and IN end up with 10

110

searchportal.information.com
find-fm.com
www.sedoparking.com
information.com

Table 4.7: Top-10 ranked hosts in IRLbot by degree-based methods.

IN SUPP2 L2-D
Site GTR Site GTR Site GTR

www.blogger.com 9 www.microsoft.com 8 www.microsoft.com 8
www.google.com 9 www.google.com 9 www.google.com 9
validator.w3.org 9 www.adobe.com 9 www.adobe.com 9
go.microsoft.com 4 en.wikipedia.org 8 www.macromedia.com 9

www.microsoft.com 8 groups.google.com 8 www.geocities.com 7
www.adobe.com 9 www.geocities.com 7 www.apple.com 9
wordpress.org 9 www.macromedia.com 9 en.wikipedia.org 8

www.yahoo.com 9 www.amazon.com 8 www.youtube.com 9
www.geocities.com 7 www.myspace.com 8 www.amazon.com 8
en.wikipedia.org 8 www.youtube.com 9 www.w3.org 9

hosts from skyrock.com in their top-30 lists. Further analysis shows that skyrock.com is

a social network where each user is assigned a unique hostname. Users frequently link

to each other, which promotes their PageRank and in-degree values. Also, skyrock.com

is massively crawled in ClueWeb (i.e., 4.2M pages downloaded), which brings a large

number of inter-host links inside skyrock.com into the host graph. This gives a good

example of how the classic methods are susceptible to inflation.

Next, we extend our manual analysis to a larger range and see how each ranking algo-

rithm manages spam. We first compare the spam occurance within the top-1K list of each

algorithm. Define ur to be the number of spam nodes in ranking position [1, r]. Figure 4.5

plots ur vs r for each algorithm. Observe that SUPP2 and L2-D produce almost spam-free

top-1K lists. In the IRLbot case shown in Figure 4.5(a), we find only 7 spam cases from

SUPP2, with the first one being www.pathfinder.com in position 282. L2-D is even better

with only 2, www.spywareinfo.com in position 463 and www.rense.com in position 865.

In the ClueWeb case shown in Figure 4.5(b), we do not find any spam within the top-1K

list of SUPP2. For L2-D the only suspicious entry is www.pathfinder.com ranked at 825.

111

skyrock.com
skyrock.com
skyrock.com
skyrock.com
www.pathfinder.com
www.spywareinfo.com
www.rense.com
www.pathfinder.com

Table 4.8: Top-10 ranked hosts in ClueWeb by PageRank-style methods.

PageRank TrustRank
Site GTR Site GTR

www.adobe.com 9 www.google.com 9
login.live.com 8 www.adobe.com 9
g.live.com – www.macromedia.com 9
g.msn.com 6 www.microsoft.com 8

go.microsoft.com 4 validator.w3.org 9
www.google.com 9 www.amazon.com 8
www.blogger.com 9 www.statcounter.com 9
www.skyrock.com 6 maps.google.com 9
uk.skyrock.com 5 www.youtube.com 9
es.skyrock.com 3 jigsaw.w3.org 6

In sharp contrast, we discover spam throughout the entire top-1K lists of IN, PageRank,

and TrustRank. In the IRLbot case, they end up with 238, 139, and 38, respectively.

Although, the result is better in ClueWeb, these methods still amass 59, 67, and 23 hosts.

Another indication of how poor traditional approaches are is that spam in their ranking

lists starts showing up at the very top (e.g., within the top-10), which severely undermines

their credibility.

While SUPP2 and L2-D have comparable performance on top-1K lists, SUPP2 starts

to fall behind as we extend our analysis up to 100K. Since evaluating the entire list is quite

labor intensive, we only sample 10% of the hosts from position 1K to 10K and 1% from

position 10K to 100K. Table 4.10 lists the projected spam fraction. As before, PageRank

and IN produce a significant amount of spam in all intervals. Additionally, their top-1K

list contains more spam than the other intervals, which is the opposite from the desired

situation where the spam probability is minimized near the top. TrustRank performs better

than IN and PageRank, but it is still not able to match either of the supporters algorithms.

While SUPP2 does well in the top-1K, it delivers a significant amount of spam in 1K-10K

112

Table 4.9: Top-10 ranked hosts in ClueWeb by degree-based methods.

IN SUPP2 L2-D
Site GTR Site GTR Site GTR

login.live.com 8 www.google.com 9 www.google.com 9
g.live.com – www.youtube.com 9 www.adobe.com 9

go.microsoft.com 4 www.adobe.com 9 www.microsoft.com 8
g.msn.com 6 www.microsoft.com 8 en.wikipedia.org 8

www.skyrock.com 6 www.myspace.com 8 www.youtube.com 9
uk.skyrock.com 5 en.wikipedia.org 8 www.apple.com 9
es.skyrock.com 3 www.apple.com 9 www.geocities.com 7
fr.skyrock.com 5 www.amazon.com 8 www.macromedia.com 9
qc.skyrock.com 5 www.flickr.com 9 www.amazon.com 8
ca.skyrock.com 1 www.facebook.com 9 www.myspace.com 8

IRLbot ClueWeb
Algorithm top-1K 1K-10K 10K-100K top-1K 1K-10K 10K-100K
IN 23.8% 13.9% 13.3% 5.9% 7.2% 7.7%
PageRank 14.0% 11.9% 8.8% 6.7% 4.8% 5.9%
TrustRank 3.8% 7.8% 7.6% 2.3% 2.2% 5.6%
SUPP2 0.7% 8.4% 6.0% 0.0% 2.3% 2.9%
L2-D 0.2% 1.4% 5.3% 0.1% 0.6% 2.6%

Table 4.10: Projected fraction of spam.

(8.4% and 2.3% respectively in the two datasets). In the same interval, L2-D manages

to keep the fraction at 1.4% and 0.6%, which are respectively 6 times and 4 times less.

Between 10K and 100K, we also see non-trivial improvements from L2-D.

Finally, we summarize the results of our manual inspection in Table 4.11. In total, we

analyzed 25, 398 unique hosts and marked 1, 601 of them as spam. Parked hosts are the

most common category. We identified several large groups of parked hosts (e.g., infor-

mation.com), where sites in the same group display mostly identical content, which is ad

links.

113

10
0

10
1

10
2

10
310

0

10
1

10
2

10
3

Rank

M
an

ua
l S

pa
m

 C
ou

nt

PageRank
IN
TrustRank
SUPP
L2−D

(a) IRLbot

10
1

10
2

10
310

0

10
1

10
2

Rank

M
an

ua
l S

pa
m

 C
ou

nt

PageRank
IN
TrustRank
SUPP
L2−D

(b) ClueWeb

Figure 4.5: Manual spam count.

Table 4.11: Spam Categories

Content Spam 160 Link Spam 119
Adult 413 Parked 909

Non-existent 3, 600 Non-spam 20, 197

4.8.3 Automated Analysis

In this section, we rely on GTR to build an automated evaluation method for top-ranked

hosts. We query the GTR values from Google for all top-100K hosts of each algorithm.

After removing duplicates, we collect GTRs for 588, 586 unique websites.

Figure 4.6 illustrates the results of GTR analysis. We first look at the running average

of GTRs up to position 100K in subfigures (a) and (b). Define gi to be the GTR value of

the host in ranking position i, the running average GTR up to position K is given by:

avgK =

∑K
i=1 gi
K

.

L2-D clearly maintains the highest average in both datasets. SUPP2 initially stays close

114

10
0

10
1

10
2

10
3

10
4

10
54

5

6

7

8

9

10

Rank

A
ve

ra
ge

 G
T

R

L2−D
SUPP
TrustRank
PageRank
IN

(a) IRLbot average GTR

10
0

10
1

10
2

10
3

10
4

10
54

5

6

7

8

9

10

Rank

A
ve

ra
ge

 G
T

R

L2−D
SUPP
TrustRank
PageRank
IN

(b) ClueWeb average GTR

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

10
3

10
4

Rank

G
T

R
−

0
H

os
ts

IN
PageRank
TrustRank
SUPP
L2−D

(c) IRLbot GTR-0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

10
3

10
4

Rank

G
T

R
−

0
H

os
ts

IN
PageRank
TrustRank
SUPP
L2−D

(d) ClueWeb GTR-0

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

10
3

10
4

10
5

Rank

1<
=

G
T

R
<

=
3

H
os

ts

IN
PageRank
TrustRank
SUPP
L2−D

(e) IRLbot 1 ≤GTR≤3

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

10
3

10
4

10
5

Rank

1<
=

G
T

R
<

=
3

H
os

ts

IN
PageRank
TrustRank
SUPP
L2−D

(f) ClueWeb 1 ≤GTR≤3

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

10
3

10
4

10
5

Rank

N
o−

G
T

R
 H

os
ts

IN
PageRank
TrustRank
SUPP
L2−D

(g) IRLbot no-GTR

10
0

10
1

10
2

10
3

10
4

10
510

0

10
1

10
2

10
3

10
4

10
5

Rank

N
o−

G
T

R
 H

os
ts

IN
PageRank
TrustRank
SUPP
L2−D

(h) ClueWeb no-GTR

Figure 4.6: GTR analysis on top ranked hosts.

115

to L2-D, but falls behind after position 1K, where the average GTR of both SUPP2 and

TrustRank experiences a dramatic drop in IRLbot due to a large number of hosts with no

or low GTR value. This agrees with our manual evaluation results. PageRank and IN trail

in last place.

Parts (c) and (d) shows the cumulative distribution of hosts with a GTR value 0, which

is a strong indication of poor quality and potential spam. L2-D is again the clear winner

and maintains a significant separation from other methods. It admits almost no GTR-0

hosts into its entire top-10K list. SUPP2 takes a second place. The other three techniques

IN, PageRank, and TrustRank all contains GTR-0 hosts within the top-1K. When compar-

ing the number of hosts with low (i.e., 1− 3) and no GTR in subfigures (e)-(h), L2-D still

holds advantage over all other algorithms, and PageRank and IN lose in every aspect of

the comparison. TrustRank splits the difference. While IN and PageRank are close to each

other, the former requires much lower computational complexity, which leaves the latter

even more at a disadvantage.

Note that although we rely on GTR in our evaluation, it cannot be used during crawls

because this information for such a huge number of hosts (e.g., 641M in IRLbot) cannot

be acquired in real-time without getting blocked by Google. Additionally, GTR data is not

fine-granular enough to build a useful ranking. Instead, our goal is to design a framework

that has comparable performance with Google GTR, but without resorting to hundreds of

features, manual input, and complex machine-learning rules.

To summarize, the existing methods that utilize a single infinite graph (IN, PageRank,

TrustRank, and SUPP2) all produce a significant amount of spam and low-GTR hosts in

the top list. If these algorithms were used to drive a web crawler, a large portion of crawl

resources could be wasted on low-quality content. Our proposed algorithm L2-D works on

multiple graphs and uses finite resources to compute reputation scores. It produces much

better ranking, although still admits occasional outliers. This motivates us to seek even

116

better methods.

4.9 Nameserver Supporters

While domains cannot be infinitely proliferated, the spammers can register a certain

number of them through web-hosting services and participate in link exchanges with other

spammers to accumulate domains supporters. Additionally, web-hosting companies them-

selves are now more involved in parking activities, where millions of expired domains are

stuffed with keywords and sponsored links. While providing easy access for web users

to register domains and build websites, parking is mostly spam from the perspective of a

search engine. We notice that such parking domains normally share common DNS infras-

tructures (see section 4.9.3 for more details). Thus, we seek to leverage DNS resources

and incorporate them into our ranking framework.

4.9.1 DNS Resolution

To collect IP addresses and DNS nameservers, we traverse the DNS tree to perform

lookups on all discovered hosts in both crawls using a custom C++ DNS resolver we de-

veloped for this purpose. Combining 641M hosts from IRLbot and 118M from ClueWeb,

we obtain 721M total after removing duplicates (i.e., 39M hosts are in common). In or-

der to collect comprehensive DNS information for each host, we implement an iterative

resolver that starts from the root and fully traverses the tree to identify the authoritative

DNS nameservers responsible for each domain. We end up with mapping these hosts to

4.9M unique IP addresses, and 809K different /24 subnets. This experiment also discovers

902K unique nameserver IPs.

4.9.2 IP Subnet Graph

Since a large number of companies normally own entire /24 subnets and a host may

be assigned multiple IPs within the subnet, we group IPs into /24 subnets. Then, we build

117

Rank Subnet WHOIS in-degree
1 64.4.11.0/24 Microsoft MSN 273, 961
2 74.125.227.0/24 Google 210, 068
3 82.98.86.0/24 Sedo GmbH 197, 264
4 192.150.16.0/24 Adobe 175, 862
5 208.87.35.0/24 Secure Host 171, 096
6 184.168.221.0/24 GoDaddy 164, 004
7 50.63.202.0/24 GoDaddy 159, 354
8 208.73.211.0/24 Oversee.net 139, 308
9 69.43.161.0/24 Trellian Pty 133, 207
10 208.91.197.0/24 Confluence Inc. 130, 893

Table 4.12: Top-10 subnets ranked by IN in IRLbot.

Rank Subnet WHOIS in-degree
1 74.125.227.0/24 Google 167, 249
2 192.150.16.0/24 Adobe 129, 805
3 82.98.86.0/24 Sedo GmbH 122, 082
4 184.168.221.0/24 GoDaddy 108, 732
5 208.87.35.0/24 Secure Host 107, 496
6 50.63.202.0/24 GoDaddy 106, 038
7 64.4.11.0/24 Microsoft MSN 90, 908
8 208.80.154.0/24 Wikimedia 89, 747
9 208.73.211.0/24 Oversee.net 85, 022
10 69.43.161.0/24 Castle Access Inc. 81, 179

Table 4.13: Top-10 subnets ranked by IN in ClueWeb.

subnet graphs by replacing hosts with their subnets and removing duplicate edges. In order

to find reputable hosts in highly ranked subnets, we apply IN on the subnet graphs of both

datasets and list the top-10 nodes in Tables 4.12-4.13.

We arrive at a somewhat unexpected discovery that subnet ranking does not differenti-

ate between parking sites and reputable domains. Although, several legitimate companies

appear near the top, such as Microsoft, Google, Adobe, and Wikimedia, the others are

mostly parking services. Since they are hosting millions of domains inside their subnets,

118

R
an

k
Su

bn
et

W
H

O
IS

H
os

ts
D

om
ai

ns
N

am
es

er
ve

rs
Ty

pe
1

18
4.
16
8.
22
1.
0/
24

G
oD

ad
dy

12
,9
86
,1
77

94
9,
32
4

16
4

Pa
rk

in
g

2
82
.9
8.
86
.0

/2
4

Se
do

G
m

bH
10
,8
57
,3
25

76
3,
29
8

44
9

Pa
rk

in
g

3
19
8.
20
2.
14
3.
0/
24

L
ev

el
3

C
om

m
7,
16
5,
12
5

25
,3
84

4
C

on
te

nt
Sp

am
4

21
6.
21
.2
39
.0

/2
4

W
eb

.c
om

7,
05
4,
48
8

59
,9
31

85
3

Pa
rk

in
g

5
74
.1
25
.2
27
.0

/2
4

G
oo

gl
e

In
c.

5,
44
7,
90
4

1,
46
4

12
B

lo
gs

6
91
.2
03
.1
84
.0

/2
4

Sk
yr

oc
k

4,
71
1,
43
5

68
13

So
ci

al
N

et
w

or
k

7
19
3.
93
.1
25
.0

/2
4

Sk
yr

oc
k

4,
71
0,
58
3

86
19

So
ci

al
N

et
w

or
k

8
15
7.
55
.9
6.
0/
24

M
ic

ro
so

ft
M

SN
3,
91
7,
70
8

32
10

So
ci

al
N

et
w

or
k

9
87
.1
18
.1
18
.0

/2
4

K
ey

w
eb

3,
79
1,
88
2

87
3

11
2

Pa
rk

in
g

10
74
.6
3.
15
3.
0/
24

V
ia

W
es

t
2,
98
2,
24
8

5
4

A
ffi

lia
te

M
ar

ke
tin

g

Ta
bl

e
4.

14
:T

op
-1
0

su
bn

et
s

ba
se

d
on

ho
st

de
ns

ity
.

119

R
an

k
Su

bn
et

W
H

O
IS

H
os

ts
D

om
ai

ns
N

am
es

er
ve

rs
Ty

pe
1

18
4.
16
8.
22
1.
0/
24

G
oD

ad
dy

12
,9
86
,1
77

94
9,
32
4

16
4

Pa
rk

in
g

2
50
.6
3.
20
2.
0/
24

G
oD

ad
dy

1,
34
5,
70
9

84
1,
66
0

16
3

Pa
rk

in
g

3
82
.9
8.
86
.0

/2
4

Se
do

G
m

bH
10
,8
57
,3
25

76
3,
29
8

44
9

Pa
rk

in
g

4
20
8.
87
.3
5.
0/
24

C
ab

le
B

ah
am

as
2,
43
4,
09
1

58
8,
43
2

47
Pa

rk
in

g
5

81
.1
69
.1
45
.0

/2
4

ST
R

A
TO

65
2,
34
4

58
4,
34
9

14
0

Pa
rk

in
g

6
64
.9
5.
64
.0

/2
4

In
te

rn
ap

1,
55
3,
46
7

46
2,
47
9

87
Pa

rk
in

g
7

10
7.
20
.2
06
.0

/2
4

A
m

az
on

Pa
rk

in
g

87
8,
42
7

29
0,
13
3

52
Pa

rk
in

g
8

20
8.
91
.1
97
.0

/2
4

C
on

flu
en

ce
In

c.
74
9,
25
8

23
8,
79
4

41
4

Pa
rk

in
g

9
20
8.
73
.2
11
.0

/2
4

O
ve

rs
ee

.n
et

1,
03
2,
99
6

23
7,
08
2

30
Pa

rk
in

g
10

21
3.
18
6.
33
.0

/2
4

O
V

H
Sy

st
em

s
30
2,
83
8

23
3,
54
6

1,
55
5

Pa
rk

in
g

Ta
bl

e
4.

15
:T

op
-1
0

su
bn

et
s

ba
se

d
on

do
m

ai
n

de
ns

ity
.

120

links to any of those domains contribute to the in-degree of the subnet and boost its ranking

position.

4.9.3 DNS Co-Hosting

In order to find ways to eliminate the ranking inflation from parking domains, we

analyze in detail DNS co-hosting, which refers to multiple hosts and/or domains on the

same IP. We merge DNS results of two datasets and compute the density of each /24 subnet.

Table 4.14 lists the top-10 subnets based on host density. We find that a high host density

does not necessarily indicate spam or low-quality content. For example, Google is hosting

over 5M hosts within its subnet and most of them are from blogspot.com. Skyrock.com

with over 4M hosts and Microsoft MSN with 3.9M hosts are also not spam. These blogs

and social networks still provide valuable content.

There are also cases where the whole network appears to be spam. Inside Level 3

Communications, we find over 7M hosts from ustreasuryfunds.com, which is a parked

domain. The spammers create millions of hosts with automatically generated keywords

inside the hostnames, such as lumber-companies-okechobee-florida.ustreasuryfunds.com

and gas-presure-washer.ustreasuryfunds.com. Another example is ViaWest, which is host-

ing 3M websites from the affiliate marketing company clickbank.net.

However, a high domain density is a strong indication of spam as shown in Table

4.15. We identify all of the top-10 subnets based on domain density as parking services.

Moreover, as we manually go through the top-100 such subnets, 92% of them are classified

as parking.

While the humongous amounts of hosts and domains inside parking services can po-

tentially support each other and inflate their ranking positions, the size of the DNS infras-

tructures behind them is limited. Each parking service maintains a set of authoritative DNS

nameservers that keep the zone records for all the domains inside the service and answer

121

blogspot.com
Skyrock.com
ustreasuryfunds.com
lumber-companies-okechobee-florida.ustreasuryfunds.com
gas-presure-washer.ustreasuryfunds.com
clickbank.net

R
an

k
Su

bn
et

W
H

O
IS

Sp
am

H
os

ts
H

os
ts

D
om

ai
ns

Ty
pe

1
81
.1
71
.3
4.
0/
24

E
w

ek
a

In
te

rn
et

Se
rv

ic
es

17
0

14
3,
81
2

1,
24
1

Pa
rk

in
g

2
82
.9
8.
86
.0

/2
4

Se
do

G
m

bH
82

10
,8
57
,3
26

76
3,
29
8

Pa
rk

in
g

3
20
8.
91
.1
97
.0

/2
4

C
on

flu
en

ce
In

c.
62

74
9,
26
1

23
8,
79
4

Pa
rk

in
g

4
82
.2
06
.1
23
.0

/2
4

T
IT

A
N

-N
E

T
W

O
R

K
S

48
1,
55
3,
38
0

92
3

Pa
rk

in
g

5
20
8.
87
.3
5.
0/
24

C
ab

le
B

ah
am

as
45

2,
43
4,
09
1

58
8,
43
2

Pa
rk

in
g

6
20
8.
73
.2
11
.0

/2
4

O
ve

rs
ee

.n
et

39
1,
03
2,
99
6

23
7,
08
2

Pa
rk

in
g

7
14
1.
8.
22
4.
0/
24

C
on

flu
en

ce
In

c.
34

64
3,
17
0

76
,7
50

Pa
rk

in
g

8
18
4.
16
8.
22
1.
0/
24

G
oD

ad
dy

29
12
,9
86
,4
23

94
9,
32
4

Pa
rk

in
g

9
8.
5.
1.
0/
24

eN
om

In
c

19
52
1,
40
8

10
0,
53
6

Pa
rk

in
g

10
62
.1
16
.1
43
.0

/2
4

In
te

rN
et

X
G

m
bH

17
1,
40
0,
19
1

17
0,
59
2

Pa
rk

in
g

Ta
bl

e
4.

16
:T

op
-1
0

su
bn

et
s

ba
se

d
on

m
an

ua
ls

pa
m

co
un

t.

122

IRLbot ClueWeb
Algorithm top-1K 1K-10K 10K-100K top-1K 1K-10K 10K-100K
L2-D 0.2% 1.4% 5.3% 0.1% 0.6% 2.6%

L3-NS 0.1% 0.9% 4.9% 0.0% 0.2% 2.6%

L3-NS-filter 0.0% 0.2% 2.0% 0.0% 0.1% 0.7%

Table 4.17: Projected fraction of spam.

target.parking.com

parkingA.com

parkingB.com

parkingC.com

parkingD.com

parkingE.com

ns.parking.com

Figure 4.7: L3-NS example.

corresponding DNS queries. As illustrated in Tables 4.14-4.15, the number of nameservers

is several orders of magnitude smaller than that of hosts and domains in parking services.

In order to use nameservers in our ranking framework, we first build a Domain-Nameserver

DNS graph, where if a nameserver is responsible for the zone records of a domain, a

link is added from the nameserver to that domain. We extend our previous method L2-

D by adding the DNS graph. A natural join on three graphs, a Host-Domain graph,

a Domain-Domain graph, and a Domain-Nameserver graph, gives us the chain Host-

Domain-Domain-Nameserver that supports the target host. This allows us to compute

the reputation score of a host by using the number of nameservers behind level-2 domains.

We call this method nameserver supporters at level-3 (L3-NS). Figure 4.7 shows an exam-

ple where parking domains parkingC.com, parkingD.com, and parkingE.com are created

to support the target at level-2. However, since they share the same authoritative DNS

nameserver ns.parking.com, the L3-NS value of the target is only boosted by one.

123

parkingC.com
parkingD.com
parkingE.com
ns.parking.com

4.9.4 Spam Filter

To further remove spam hosts from the top list, we try to understand the features of

top-ranked spam hosts. We briefly talk about some simple rules to filter spam since this is

not our main contribution. First, we analyze if they come from any particular IP clusters.

As we map all 1, 601 spam hosts manually identified in section 4.8.2 to their /24 subnets,

we find that most of them come from a small number of sources. Table 4.16 lists the top-10

subnets with the most spam hosts. They are all parking services and are responsible for

545 spam entries, or 34% of the total.

Using high domain density as the main feature of parking services, we remove websites

that are hosted on IPs with domain density exceeding some threshold α. After careful

analysis of the domain density on each IP, we set α = 1, 000. This removes 2, 083 IPs out

of 4.9M total. We set α to a relatively large number to reduce false positive since we notice

that some reputable websites also register a large number of domains, which for example

include typos of the original domain (e.g., amozon.com, verisgn.com) and domains under

different TLDs (e.g., google.net, google.co.uk).

Another major feature we find is hijacking, which refers to spammers stealing links

from reputable websites to support their targets. Through hijacking, in-neighbors of rep-

utable sites become level-2 supporters of the target, which is a huge boost. However,

hijacking does not inflate in-neighbors much since hijacking one website only boosts it

by one. Thus, spam websites that benefit from hijacking reveal the following property:

a small number of level-i supporters generate a disproportionately large number of level-

i+ 1 supporters. As an example, host www.areapropertiesllc.com is a small website for a

real estate services company. Its GTR value is 0, which indicates low reputation. However,

it manages to enter the top-100K list of L3-NS with 245K level-3 nameserver supporters.

We find it has only 13 domain in-neighbors with one of them being google.com, which

124

amozon.com
verisgn.com
google.net
google.co.uk
www.areapropertiesllc.com
google.com

IRLbot ClueWeb
Links Avg. deg C Links Avg. deg C

SUPP2
Host→Host 6.8B 69.4

2.54T
1.1B 38.0

627B
Host←Host 6.8B 10.5 1.1B 9.4

L2-D
Domain→Host 3.3B 107.4

2.31T
578M 50.5

767B
Domain←Domain 1.8B 20.8 415M 13.7

L3-NS
Domain→Host 3.3B 107.4

1.09T
578M 50.5

590B
Domain←Nameserver 1.25B 32.7 587M 22.4

Table 4.18: Comparison of computational complexity.

brings almost all the level-3 nameserver supporters for the target.

To filter out hijacked links, we set a minimal threshold on their number of level-2

nameserver supporters (L2-NS), which can be similarly computed by join a Host-Domain

graph and a Domain-Nameserver graph. We first rank hosts by L2-NS to find the minimal

number β needed for a host to enter the top-100K list (in IRLbot, β = 1099; in ClueWeb,

β = 557). Then, hosts whose L2-NS count is less than 0.5β will be filtered out from the

top list of L3-NS.

After applying the spam filter to the top list of L3-NS, we collect the new top-100K

websites. We call this algorithm L3-NS-filter. While machine learning may produce other

features and complex rules, we aim to keep both features and rules simple in order to

maintain high efficiency since that is one of the goals for our host ranking algorithm. Note

that the domain density of IPs and L2-NS counts can be easily collected during the crawl.

Thus, the filter does not bring much additional overhead.

4.9.5 Evaluation

For brevity, we compare DNS based methods only with L2-D since the later is a clear

winner in previous comparison. As shown in Table 4.17 for IRLbot, L3-NS finds only one

spam node within its top-1K list, which is www.spywareinfo.com in position 474, while

L3-NS-filter completely gets rid of spam in the same interval. From 1K to 10K, both DNS

125

www.spywareinfo.com

1 2 3 4 5 6 7 8 9 10
x 10

4

4.5

5

5.5

6

6.5

Rank

A
ve

ra
ge

 G
T

R

L3−NS−filter
L3−NS
L2−D

(a) IRLbot average GTR

1 2 3 4 5 6 7 8 9 10
x 10

4

5

5.5

6

6.5

7

Rank

A
ve

ra
ge

 G
T

R

L3−NS−filter
L3−NS
L2−D

(b) ClueWeb average GTR

1 2 3 4 5 6 7 8 9 10
x 10

4

0

500

1000

1500

2000

2500

Rank

G
T

R
−

0
H

os
ts

L2−D
L3−NS
L3−NS−filter

(c) IRLbot GTR-0

1 2 3 4 5 6 7 8 9 10
x 10

4

0

100

200

300

400

Rank

G
T

R
−

0
H

os
ts

L2−D
L3−NS
L3−NS−filter

(d) ClueWeb GTR-0

1 2 3 4 5 6 7 8 9 10
x 10

4

0

5000

10000

15000

Rank

1<
=

G
T

R
<

=
3

H
os

ts

L2−D
L3−NS
L3−NS−filter

(e) IRLbot 1 <=GTR<= 3

1 2 3 4 5 6 7 8 9 10
x 10

4

0

2000

4000

6000

8000

Rank

1<
=

G
T

R
<

=
3

H
os

ts

L2−D
L3−NS
L3−NS−filter

(f) ClueWeb 1 ≤GTR≤3

1 2 3 4 5 6 7 8 9 10
x 10

4

0

0.5

1

1.5

2x 10
4

Rank

N
o−

G
T

R
 H

os
ts

L2−D
L3−NS
L3−NS−filter

(g) IRLbot no-GTR

1 2 3 4 5 6 7 8 9 10
x 10

4

0

2000

4000

6000

8000

10000

Rank

N
o−

G
T

R
 H

os
ts

L2−D
L3−NS
L3−NS−filter

(h) ClueWeb no-GTR

Figure 4.8: GTR analysis on top ranked hosts.

126

methods show improvement over L2-D, with the filter reducing spam to an impressive

0.2%, which is 7 times less. From 10K to 100K, while the spam rate of both L2-D and

L3-NS increases to around 5%, L3-NS-filter keeps its value at 2.0%, which is a 2.5 times

improvement. On ClueWeb, the results are similar.

On the GTR analysis, we find that all of the three algorithms have similar performance

in their top-10K lists and the main difference appears between 10K and 100K. In order

to see this clearly, Figure 4.8 plots the curves starting from 10K and using a linear scale.

In the IRLbot case, L3-NS is slightly better than L2-D, while L3-NS-filter shows a clear

advantage. For the average GTR in Fig. 4.8(a), L2-D-filter ends up with an average of 5.37

by position 100K, while the other two algorithms all fall below 5. In comparison of the

avoidance of hosts with unreputable GTRs in (c)-(h), L3-NS-filter often shows 2 times less

unreputable hosts than the best remaining methods. In the ClueWeb case, the difference is

smaller. However, L3-NS-filter is still the clear winner.

We finish the evaluation by briefly looking at the performance of the spam filter. As we

check all the spam hosts manually identified in L3-NS against the top-100K list of L3-NS-

filter, we find that over 60% of them are filtered out. When looking at the GTR distribution

of removed hosts, we find around 60% of the them have a GTR ≤ 3 or no GTR in IRLbot.

In ClueWeb, this fraction is 33.09%, which is still high. While it is quite effective in re-

moving spam and low-GTR hosts, we also see 2.22% and 3.71% filtered hosts with a GTR

≥ 7, respectively on two datasets. While this potentially indicates the false positive of the

spam filter, we find that many of these hosts are unpopular ones from reputable websites

(e.g., jmlr.csail.mit.edu, blog.360.yahoo.com, featuresblogs.chicagotribune.com).

4.10 Computational Complexity

Besides the quality of top-ranked hosts, the computational complexity of the algorithm

is another important aspect. Since the algorithm runs in real-time and periodically updates

127

jmlr.csail.mit.edu
blog.360.yahoo.com
featuresblogs.chicagotribune.com

the ranking list, high complexity is undesirable.

In this section, we quantify the overhead of different kinds of multi-level supporter

algorithms (SUPP2, L2-D and L3-NS) by the total number of link traversals in BFS.

In practice, when computing L3-NS, we first transform the Domain-Domain graph to a

Domain-Nameserver graph by replacing the domain in-neighbors with their nameservers

(note the difference between this graph and the DNS graph we showed earlier). Then, L3-

NS is computed by joining the Host-Domain graph and the Domain-Nameserver graph.

Thus, its complexity is similarly computed as other level-2 methods. The general structure

behind a level-2 supporter algorithm is Host ← i ← j, and its computation requires a

reverse BFS to depth 2. Given i’s out-degree Ai and its in-degree Bi, the total number of

links to be visited through node i is AiBi. Suppose there are n nodes at level-1, the total

overhead is C =
∑n

i=1AiBi. Both n and the average degree at level-1 affect complexity.

Table 4.18 lists the number of links in each single graph and the complexity C of each

algorithm. By grouping hosts into domains, we reduce the number of links; however, the

average degree also increases. For example, in IRLbot, the number of links in the first

graph reduces from 6.8B to 3.3B, while the average degree grows from 69.4 to 107.4. In

the second graph, the number of links reduces from 6.8B to 1.8B, but the average degree

doubles from 10.5 to 20.8. That is why Table 4.18 shows complexity C staying the same

(IRLbot) or slightly increasing (ClueWeb) from SUPP2 to L2-D.

In L3-NS, we see improvement on both datasets. To be specific, L3-NS reduces the

overhead by 57% compared to SUPP2 for IRLbot, which is quite significant. For ClueWeb,

this improvement is 6%.

4.11 Conclusion

In this chapter, we formalized the problem of topological ranking and showed that tra-

ditional techniques that worked a single infinite graph often failed to produce good ranking

128

lists. We solved this problem from a novel angle and proposed a framework ranking on

multiple and finite graphs. Based on our framework, a set of new techniques could be

created. Our two examples using domains and nameservers were proved to be resistant

to inflation. Additionally, by examining two sizable crawl datasets, we showed that our

framework worked well in multiple diverse graphs. It is well known that PageRank has

been manipulated by spammers ever since it was published. Spam farms are built to boost

PageRank scores of target pages. Our method is arguably more resistant to manipulation

than PageRank. Even if the algorithm is learned by spammers, it will still be difficult to

get a large number of domains and nameservers under control for them to compete with

highly reputable sites.

Future work involves using our ranking methods to drive a real web crawler.

129

5. SUMMARY AND FUTURE WORK

5.1 Summary

This dissertation was motivated by the growing needs of processing large-scale data

in many research areas. Our approach is to analyze classic algorithms, understand their

cost and shortcomings, and make them suitable for dealing with modern data size. To

be specific, the dissertation addressed two problems, triangle listing and neighborhood

function, which have been researched for many years and a lot of important applications

have been explored.

5.1.1 PCF

Although plenty of research has been done to solve the triangle listing problem, our

effort in modeling triangle listing cost has shown that much of the previous work involves

significant amount of redundant computation and is far from optimal. Moreover, simi-

larities between prior studies suggest that they can potentially be unified under a single

framework. Our work creates such a framework that exhausts 6 different triangle search

orders and 18 triangle listing algorithms. Then, a novel algorithm called PCF is proposed

to handle the external-memory operation of all 18 algorithms. Through efficient pruning

of companion files, PCF achieves favorable I/O complexity compared to existing methods.

Our I/O model suggests PCF as the first algorithm that can achieve linear I/O complexity

in certain cases. In the evaluation, PCF beats its closest competitors by a significant mar-

gin. More importantly, we see PCF efficiently handles very large graphs, e.g., billions of

nodes and hundreds of billions of edges, which demonstrates its huge potential to process

even larger graphs as the data size keeps growing in the future.

130

5.1.2 Trigon

Motivated by a recent proposal from Pagh etc., we try to seek better graph partitioning

schemes that can further optimize the I/O cost of existing methods Pagh and PCF. We

first take an investigation into the properties of the two methods, model their I/O cost,

understand their shortcomings, and shed light on the conditions under which each method

defeats the other. Our analysis shows that there is no definite winner among these two

methods. Their comparison results can be flipped over as conditions change. Learned from

the comparison, we propose a novel algorithm called Trigon that consistently beats both

previous methods in all cases. Trigon utilizes 2D graph partitioning scheme and sequential

coloring, which enables better I/O complexity and faster CPU processing in list compress,

intersection, and hash table lookups. Our evaluation shows that Trigon consistently beats

both previous methods in I/O and runtime in all graphs that we use.

5.1.3 Neighborhood Function

We show that exact computation of neighborhood function at depth 2 is a similar prob-

lem to triangle listing. It is more difficult as it requires duplicate elimination among depth-

2 neighbors. The good news is that our developed techniques for triangle listing, e.g.,

graph relabeling and external-memory partitioning, can be generally applied to solving

this problem as well. We next demonstrate an application of neighborhood function in

ranking of Internet hosts. We propose the use of finite Internet resources in ranking that

efficiently eliminates trivial inflation by spam. We also look at web-hosting services and

identify it as a main source of spam hosts. Then, domain density of IP subnets is used

to detect web hosting and punish hosts originated from there. With all the techniques,

we finally show that our ranking method brings much less spam into its top ranking list

compared to PageRank and TrustRank.

131

5.2 Future Work

The work presented in this dissertation demonstrates how our techniques can be used

in large-scale graph processing. There is still plenty of additional research that can be done

from our current position.

5.2.1 Triangle Listing

Future work includes better models for the I/O complexity of PCF and Trigon. Since

closed-form formulas are difficult to derive, we only show several I/O upper bounds. Ex-

periments suggest that these upper bounds can be quite loose and there is still room for

improvement. Also, we observe that curves of the upper bounds and the actual I/O often

stay in parallel. The conjecture is that the actual I/O differs with the upper bounds by only

a constant factor. Additional investigation is needed to verify the conjecture. In order to

further test the scaling of our methods, we would like to build larger graphs. The largest

graph available to us is the IRLbot web graph, which comes from our web crawler and

consists of 43B nodes and 390B edges. Another direction is to study the applications of

triangle listing. With this efficient tool to compute triangles, many data mining problems

can be potentially better solved. For example, triangles can be potentially used in graph

ranking, spam detection, and network measurement etc.

5.2.2 Neighborhood Function

This dissertation focuses on neighborhood function at depth 2 as an effective metric for

ranking purposes. In the future, more depth can be explored for many other applications.

This problem then becomes similar to external-memory breath-first search (BFS). Both

CPU and I/O cost will be extremely high when reaching out to more depth. While it is

possible to repeat our depth-2 algorithm multiple times to compute neighborhood function

at larger depth, more efficient algorithms are needed to make this problem actually feasi-

132

ble. As for host ranking, we initially study it for frontier prioritization in web crawlers.

The ranking will help web crawlers to decide which content has high quality and should be

explored first. Thus, the next step is to actually use our ranking methods in real crawlers.

Besides the two problems studied in this dissertation, our novel techniques in graph

relabeling, orientation, and external-memory partitioning can be potentially applied to

solving other graph-mining problems, e.g., listing four-node cycles and other structures

in a graph, computing network coefficient, and measuring graph diameter etc.

133

REFERENCES

[1] N. Alon, R. Yuster, and U. Zwick, “Finding and Counting Given Length Cycles,” in

Proc. ESA, 1994, pp. 354–364.

[2] N. Alon, R. Yuster, and U. Zwick, “Finding and Counting Given Length Cycles,”

Algorithmica, vol. 17, no. 3, pp. 209–223, Mar. 1997.

[3] S. Arifuzzaman, M. Khan, and M. Marathe, “PATRIC: A Parallel Algorithm for

Counting Triangles in Massive Networks,” in Proc. ACM CIKM, Oct. 2013, pp. 529–

538.

[4] R. Baeza-Yates, C. Castillo, M. Marin, and A. Rodriguez, “Crawling a Country:

Better Strategies than Breadth-First for Web Page Ordering,” in Proc. WWW, May

2005.

[5] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Reductions in Streaming Algorithms,

with an Application to Counting Triangles in Graphs,” in Proc. ACM-SIAM SODA,

Jan. 2002, pp. 623–632.

[6] V. Batagelj and M. Zaveršnik, “Short Cycle Connectivity,” Elsevier Discrete Mathe-

matics, vol. 307, no. 3-5, pp. 310–318, Feb. 2007.

[7] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient Semi-streaming Algo-

rithms for Local Triangle Counting in Massive Graphs,” in Proc. ACM SIGKDD,

Aug. 2008, pp. 16–24.

[8] L. Becchetti, C. Castillo, D. Donato, S. Leonardi, and R. Baeza-Yates, “Link-based

Characterization and Detection of Web Spam,” in Proc. AIRWeb, Aug. 2006.

134

[9] L. Becchetti, C. Castillo, D. Donato, S. Leonardi, and R. Baeza-Yates, “Using Rank

Propagation and Probabilistic Counting for Link-Based Spam Detection,” in Proc.

WebKDD, Aug. 2006.

[10] A. A. Benczur, K. Csalogany, T. Sarlos, and M. Uher, “Spamrank – Fully Automatic

Link Spam Detection,” in Proc. AIRWeb, May 2005.

[11] J. W. Berry, B. Hendrickson, R. A. LaViolette, and C. A. Phillips, “Tolerating the

Community Detection Resolution Limit With Edge Weighting,” Physical Review E,

vol. 83, no. 5, p. 056119, May 2011.

[12] P. Boldi, B. Codenotti, M. Santini, and S. Vigna, “UbiCrawler: A Scalable Fully

Distributed Web Crawler,” Software: Practice & Experience, vol. 34, no. 8, pp. 711–

726, Jul. 2004.

[13] P. Boldi, M. Rosa, and S. Vigna, “HyperANF: Approximating the Neighbourhood

Function of Very Large Graphs on a Budget,” in Proc. WWW. ACM, Mar. 2011,

pp. 625–634.

[14] J. Caverlee and L. Liu, “Countering Web Spam with Credibility-Based Link Analy-

sis,” in Proc. ACM PODC, Aug. 2007, pp. 157–166.

[15] N. Chiba and T. Nishizeki, “Arboricity and Subgraph Listing Algorithms,” SIAM J.

Comput., vol. 14, no. 1, pp. 210–223, Feb. 1985.

[16] J. Cho, H. Garcia-Molina, and L. Page, “Efficient Crawling through URL Ordering,”

in Proc. WWW, Apr. 1998, pp. 161–172.

[17] S. Chu and J. Cheng, “Triangle Listing in Massive Networks and Its Applications,”

in Proc. ACM SIGKDD, Aug. 2011, pp. 672–680.

[18] Y.-J. Chung, M. Toyoda, and M. Kitsuregawa, “A study of link farm distribution and

evolution using a time series of web snapshots,” in Proc. AIRWeb, 2009, pp. 9–16.

135

[19] ClueWeb09, “ClueWeb09 Dataset,” http://www.lemurproject.org/clueweb09/.

[20] J. Cohen, “Graph Twiddling in a MapReduce World,” Computing in Science & En-

gineering, vol. 11, no. 4, pp. 29–41, Jul.-Aug. 2009.

[21] Y. Cui, D. Xiao, and D. Loguinov, “On Efficient External-Memory Triangle Listing,”

in Proc. IEEE ICDM, Dec. 2016.

[22] Y. Cui, D. Xiao, and D. Loguinov, “IRL Triangle Datasets and Code,” Sep. 2016.

[Online]. Available: http://irl.cs.tamu.edu/projects/motifs/.

[23] R. Dementiev, “Algorithm Engineering for Large Data Sets,” Ph.D. dissertation, Uni-

versität des Saarlandes, 2006.

[24] N. Eiron, K. S. McCurley, and J. A. Tomlin, “Ranking the Web Frontier,” in Proc.

WWW, May 2004, pp. 309–318.

[25] Facebook, “Facebook stats,” https://newsroom.fb.com/company-info/.

[26] G. Feng, T.-Y. Liu, Y. Wang, Y. Bao, Z. Ma, X.-D. Zhang, and W.-Y. Ma, “Aggregat-

eRank: Bringing Order to Web Sites,” in Proc. ACM SIGIR, Aug. 2006, pp. 75–82.

[27] D. Fetterly, M. Manasse, and M. Najork, “Spam, Damn Spam, and Statistics: Using

statistical analysis to locate spam web pages,” in Proc. WebDB, 2004, pp. 1–6.

[28] I. Fudos and C. M. Hoffmann, “A Graph-Constructive Approach to Solving Systems

of Geometric Constraints,” ACM Transactions on Graphics, vol. 16, no. 2, pp. 179–

216, Apr. 1997.

[29] I. Giechaskiel, G. Panagopoulos, and E. Yoneki, “PDTL: Parallel and Distributed

Triangle Listing for Massive Graphs,” in Proc. IEEE ICPP, Sep. 2015, pp. 370–379.

[30] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “PowerGraph: Dis-

tributed Graph-parallel Computation on Natural Graphs,” in Proc. USENIX OSDI,

2012, pp. 17–30.

136

http://irl.cs.tamu.edu/projects/motifs/

[31] P. Gupta, V. Satuluri, A. Grewal, S. Gurumurthy, V. Zhabiuk, Q. Li, and J. Lin, “Real-

Time Twitter Recommendation: Online Motif Detection in Large Dynamic Graphs,”

PVLDB, vol. 7, no. 13, pp. 1379–1380, Aug. 2014.

[32] Z. Gyöngyi, P. Berkhin, H. Garcia-Molina, and J. Pedersen, “Link Spam Detection

Based on Mass Estimation,” in Proc. VLDB, 2006, pp. 439–450.

[33] Z. Gyöngyi and H. Garcia-Molina, “Web Spam Taxonomy,” in Proc. AIRWeb, May

2005, pp. 39–47.

[34] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen, “Combating Web Spam with

TrustRank,” in Proc. VLDB, Aug. 2004, pp. 576–587.

[35] A. Harth, “Billion Triples Challenge Data Set,” 2009. [Online]. Available:

http://km.aifb.kit.edu/projects/btc-2009/.

[36] J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke, “WebBase: A Repository

of Web Pages,” in Proc. WWW, May 2000, pp. 277–293.

[37] T. Hocevar and J. Demsar, “A Combinatorial Approach to Graphlet Counting,” Bioin-

formatics, vol. 30, no. 4, pp. 559–565, Feb. 2014.

[38] X. Hu, Y. Tao, and C. Chung, “Massive Graph Triangulation,” in Proc. ACM SIG-

MOD, Jun. 2013, pp. 325–336.

[39] X. Hu, M. Qiao, and Y. Tao, “Join Dependency Testing, Loomis-Whitney Join, and

Triangle Enumeration,” in Proc. ACM PODS, May 2015, pp. 291–301.

[40] H. Inoue, M. Ohara, and K. Taura, “Faster Set Intersection with SIMD Instructions

by Reducing Branch Mispredictions,” PVLDB, vol. 8, no. 3, pp. 293–304, Nov. 2014.

[41] A. Itai and M. Rodeh, “Finding a Minimum Circuit in a Graph,” SIAM Journal on

Computing, vol. 7, no. 4, pp. 413–423, 1978.

137

http://km.aifb.kit.edu/projects/btc-2009/

[42] M. Ivory and M. Hearst, “Statistical Profiles of Highly-Rated Web Sites,” in Proc.

CHI, Apr. 2002, pp. 367–374.

[43] Z. R. Kashani, H. Ahrabian, E. Elahi, A. Nowzari-Dalini, E. S. Ansari, S. Asadi,

S. Mohammadi, F. Schreiber, and A. Masoudi-Nejad, “Kavosh: A New Algorithm

for Finding Network Motifs,” Bioinformatics, vol. 10, no. 318, Oct. 2009.

[44] J. Kim, W. Han, S. Lee, K. Park, and H. Yu, “OPT: A New Framework for Over-

lapped and Parallel Triangulation in Large-Scale Graphs,” in Proc. ACM SIGMOD,

Jun. 2014, pp. 637–648.

[45] H. Kwak, C. Lee, H. Park, and S. Moon, “Twitter Graph,” 2010. [Online]. Available:

http://an.kaist.ac.kr/traces/WWW2010.html.

[46] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, A Social Network or a

News Media?” in Proc. WWW, Apr. 2010, pp. 591–600.

[47] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-scale Graph Computa-

tion on Just a PC,” in Proc. USENIX OSDI, 2012, pp. 31–46.

[48] M. Latapy, “Main-memory Triangle Computations for Very Large (Sparse (Power-

law)) Graphs,” Elsevier Theor. Comput. Sci., vol. 407, no. 1-3, pp. 458–473, Nov.

2008.

[49] H.-T. Lee, D. Leonard, X. Wang, and D. Loguinov, “IRLbot: Scaling to 6 Billion

Pages and Beyond,” ACM Trans. Web, vol. 3, no. 3, pp. 1–34, Jun. 2009.

[50] D. W. Matula and L. L. Beck, “Smallest-Last Ordering and Clustering and Graph

Coloring Algorithms,” Journal of the ACM, vol. 30, no. 3, pp. 417–427, Jul. 1983.

[51] L. A. A. Meira, V. R. Maximo, A. L. Fazenda, and A. F. D. Conceicao, “Acc-Motif:

Accelerated Network Motif Detection,” IEEE/ACM Trans. Computational Biology

and Bioinformatics, vol. 11, no. 5, pp. 853–862, Apr. 2014.

138

http://an.kaist.ac.kr/traces/WWW2010.html

[52] B. Menegola, “An External Memory Algorithm for Listing Triangles,” Universidade

Federal do Rio Grande do Sul, Tech. Rep., 2010.

[53] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, “Net-

work Motifs: Simple Building Blocks of Complex Networks,” Science, vol. 298, no.

5594, pp. 824–827, Oct. 2002.

[54] M. Najork and A. Heydon, “High-Performance Web Crawling,” Compaq SRC,

Tech. Rep. 173, Sep. 2001. [Online]. Available: http://www.hpl.hp.com/techreports/

Compaq-DEC/SRC-RR-173.pdf.

[55] M. E. Newman, D. J. Watts, and S. H. Strogatz, “Random Graph Models of Social

Networks,” Proceedings of the National Academy of Sciences, vol. 99, no. Suppl. 1,

pp. 2566–2572, Feb. 2002.

[56] A. Ntoulas, M. Najork, M. Manasse, and D. Fetterly, “Detecting spam web pages

through content analysis,” in Proc. WWW, 2006, pp. 83–92.

[57] M. Ortmann and U. Brandes, “Triangle Listing Algorithms: Back from the Diver-

sion,” in Proc. ALENEX, Jan. 2014, pp. 1–8.

[58] J. Padmanabhan, “Introduction to Grid Computing via Map-Reduce & Hadoop,”

http://internationalnetworking.iu.edu/sites/internationalnetworking.iu.edu/files/indo-

us-preso.pdf, Dec. 2010.

[59] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation Ranking:

Bringing Order to the Web,” Stanford Digital Library Technologies Project, Tech.

Rep., Jan. 1998. [Online]. Available: http://dbpubs.stanford.edu:8090/pub/1999-66.

[60] R. Pagh and F. Silvestri, “The Input/Output Complexity of Triangle Enumeration,”

in Proc. ACM PODS, Jun. 2014, pp. 224–233.

139

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-173.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-173.pdf
http://dbpubs.stanford.edu:8090/pub/1999-66

[61] C. R. Palmer, P. B. Gibbons, and C. Faloutsos, “ANF: A Fast and Scalable Tool for

Data Mining in Massive Graphs,” in Proc. ACM SIGKDD, 2002, pp. 81–90.

[62] H. Park and C. Chung, “An Efficient MapReduce Algorithm for Counting Triangles

in a Very Large Graph,” in Proc. ACM CIKM, Oct. 2013, pp. 539–548.

[63] H. Park, F. Silvestri, U. Kang, and R. Pagh, “MapReduce Triangle Enumeration With

Guarantees,” in Proc. ACM CIKM, Nov. 2014, pp. 1739–1748.

[64] H.-M. Park, S.-H. Myaeng, and U. Kang, “PTE: Enumerating Trillion Triangles On

Distributed Systems,” in Proc. ACM SIGKDD, Aug. 2016, pp. 1115–1124.

[65] D. A. Patterson, “Latency Lags Bandwidth,” Communications of the ACM, vol. 47,

no. 10, pp. 71–75, Oct. 2004.

[66] Google Toolbar Rank. [Online]. Available: http://toolbar.google.com/.

[67] T. Schank and D. Wagner, “Finding, Counting and Listing All Triangles in Large

Graphs, an Experimental Study,” in Proc. WEA, May 2005, pp. 606–609.

[68] B. Schlegel, T. Willhalm, and W. Lehner, “Fast Sorted-Set Intersection using SIMD

Instructions,” in Proc. ADMS, Sep. 2011.

[69] M. Sevenich, S. Hong, A. Welc, and H. Chafi, “Fast In-Memory Triangle Listing for

Large Real-World Graphs,” in Proc. ACM SNA-KDD, Aug. 2014, pp. 1–9.

[70] V. Shkapenyuk and T. Suel, “Design and Implementation of a High-Performance

Distributed Web Crawler,” in Proc. IEEE ICDE, Mar. 2002, pp. 357–368.

[71] J. Shun and K. Tangwongsan, “Multicore Triangle Computations without Tuning,”

in Proc. IEEE ICDE, Apr. 2015, pp. 149–160.

[72] A. Signhal, “Breakfast with Google’s Search Team,”

https://www.youtube.com/watch?v=8a2VmxqFg8A, Aug. 2012.

140

http://toolbar.google.com/

[73] C. Sparkman, H.-T. Lee, and D. Loguinov, “Agnostic Topology-Based Spam Avoid-

ance in Large-Scale Web Crawls,” in Proc. IEEE INFOCOM, Apr. 2011, pp. 811–

819.

[74] S. Suri and S. Vassilvitskii, “Counting Triangles and the Curse of the Last Reducer,”

in Proc. WWW, Mar. 2011, pp. 607–614.

[75] J. Tomlin, “A New Paradigm for Ranking Pages on the World Wide Web,” in Proc.

WWW, May 2003.

[76] N. H. Tran, K. P. Choi, and L. Zhang, “Counting Motifs in the Human Interactome,”

Nature Communications, vol. 4, p. 2241, Aug. 2013.

[77] N. Wang, J. Zhang, K.-L. Tan, and A. K. Tung, “On Triangulation-Based Dense

Neighborhood Graph Discovery,” PVLDB, vol. 4, no. 2, pp. 58–68, Nov. 2010.

[78] D. J. Watts and S. Strogatz, “Collective Dynamics of ‘Small World’ Networks,” Na-

ture, vol. 393, pp. 440–442, Jun. 1998.

[79] S. Webb, J. Caverlee, and C. Pu, “Predicting web spam with HTTP session informa-

tion,” in Proc. CIKM, 2008, pp. 339–348.

[80] D. J. Welsh and M. B. Powell, “An upper bound for the chromatic number of a graph

and its application to timetabling problems,” Comput. J., vol. 10, no. 1, pp. 85–86,

Jan. 1967.

[81] S. Wernicke and F. Rasche, “FANMOD: A Tool for Fast Network Motif Detection,”

Bioinformatics, vol. 22, no. 9, pp. 1152–1153, Feb. 2006.

[82] V. Willians and R. Williams, “Subcubic Equivalences Between Path, Matrix, and

Triangle Problems,” in Proc. IEEE FOCS, Oct. 2010, pp. 645–654.

[83] B. Wu and K. Chellapilla, “Extracting link spam using biased random walks from

spam seed sets,” in Proc. AIRWeb, 2007, pp. 37–44.

141

[84] D. Xiao, Y. Cui, D. Cline, and D. Loguinov, “On Asymptotic Cost of Triangle Listing

in Random Graphs,” in Proc. ACM PODS, May 2017.

[85] D. Xiao, Y. Cui, D. B. Cline, and D. Loguinov, “On Asymptotic Cost of Triangle

Listing in Random Graphs,” Texas A&M University, Tech. Rep. 2016-9-2, Sep.

2016. [Online]. Available: http://irl.cs.tamu.edu/publications/.

[86] S. Yadav, A. K. K. Reddy, A. N. Reddy, and S. Ranjan, “Detecting algorithmically

generated malicious domain names,” in Proc. ACM IMC. ACM, 2010, pp. 48–61.

[87] Yahoo Altavista Graph, 2002. [Online]. Available: http://webscope.sandbox.yahoo.

com/catalog.php?datatype=g.

[88] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Zhao, and Y. Dai, “Uncovering Social

Network Sybils in the Wild,” in Proc. ACM IMC, Nov. 2011, pp. 259–268.

142

http://irl.cs.tamu.edu/publications/
http://webscope.sandbox.yahoo.com/catalog.php?datatype=g
http://webscope.sandbox.yahoo.com/catalog.php?datatype=g

	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	Introduction
	Overview
	Pruned Companion Files (PCF)
	Trigon
	Neighborhood Function

	PRUNED COMPANION FILES (PCF)
	Introduction
	Generalized Iterators (GI)
	Redundancy Elimination
	Relabeling
	Orientation
	Search Order
	Algorithms
	Taxonomy

	Pruned Companion Files (PCF)
	Overview
	Graph Partitioning
	Partition Balancing
	Companion Files

	Analysis
	Overview
	Modeling I/O
	I/O Comparison
	CPU-I/O Tradeoffs
	Lookups and Minimum RAM
	Summary

	Implementation
	Intersection
	Relabeling and Orientation
	Parallelization
	Evaluation Setup and Datasets
	Preprocessing Time
	Triangle-Listing Time
	Parallelization Efficiency
	Effect of RAM: Bottlenecked by CPU
	Effect of RAM: Bottlenecked by I/O

	Conclusion

	TRIGON
	Introduction
	Overview of Results

	Related Work
	Preliminaries
	Analysis of Pagh
	Algorithm
	Pagh+
	Discussion

	Analysis of PCF
	Operation
	Model
	Bounds
	Discussion

	Asymptotic Comparison
	Definitions
	Dynamics of PCF
	Analysis
	Discussion

	Trigon
	Generalized Coloring
	Unified Partitioned Iterator
	Trigon
	Analysis
	Minimizing I/O
	Minimizing Runtime

	Evaluation
	I/O
	Runtime

	Conclusion

	Shallow Neighborhood Function
	Introduction
	Counting vs. Listing

	Algorithm
	SNF-A
	SNF-B

	CPU Complexity
	Runtime

	I/O Complexity
	I/O Upper-Bound
	Load Balancing
	I/O Comparison

	Host Ranking
	Contributions

	Related Work
	Spam Detection
	Ranking

	Topological Ranking
	Single-Graph Ranking
	Multi-Graph Ranking

	Domain Supporters
	DataSets
	Manual Analysis
	Automated Analysis

	Nameserver Supporters
	DNS Resolution
	IP Subnet Graph
	DNS Co-Hosting
	Spam Filter
	Evaluation

	Computational Complexity
	Conclusion

	SUMMARY AND FUTURE WORK
	Summary
	PCF
	Trigon
	Neighborhood Function

	Future Work
	Triangle Listing
	Neighborhood Function

	REFERENCES

