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ABSTRACT 

The present work aims at revealing the effect of grain size on the post processing 

mechanical behavior of the equiatomic CoCrFeMnNi high entropy alloy (HEA) upon 

severe plastic deformation (SPD). SPD has been applied using the equal channel angular 

extrusion (ECAE) process where the billets are extruded through a 90° corner die 

achieving near simple shear deformation. The microstructure and mechanical properties 

of successfully extruded billets were reported using Scanning Electron Microscopy 

(SEM), Transmission Electron Microscopy (TEM), Energy Dispersive Spectroscopy 

(EDS), tension experiments and microhardness measurements. The effects of extrusion 

conditions, such as temperature, processing route and extrusion rate on the microstructure 

and mechanical properties, are investigated for the extrusion and flow plane of each billet. 

The ECAE deformation of CoCrFeMnNi at high homologous temperatures results in 

deformation twinning. Refined mean grain size leads to significant increase in tensile 

flow stresses at room temperature. Further work is needed to find processing schedules at 

low temperatures to refine the grain size further to determine the lower limit of grain size 

one can achieve in bulk HEAs. 
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CHAPTER I  

INTRODUCTION 

1.1 History and Background on High-Entropy Alloys 

In history, most scientists in materials science tried to design and produce enormous alloys 

depending on one principal element and one or more minor element/elements, which are 

called traditional alloys. In the twenty-first century, two scientists named Brian Cantor 

and Jien-Wei Yeh independently made a groundbreaking discovery apart from traditional 

alloys [1-6]. It was the first time some of the multi-phase alloys were coined as high-

entropy alloys (HEAs). 

Brian Cantor and his student Alain Vincent made several equiatomic alloys by mixing at 

least 5 and even up to 20 components. In [1], it was observed that only equiatomic 

CoCrFeMnNi formed a single-phase dendritic FCC structure, and the lattice parameters 

of CoCrFeMnNi were calculated with X-ray diffraction experiment. In that study, there 

were many significant conclusions. The first conclusion was that adding some other 

components, such as Cu, V, Mo and Ge, to CoCrFeMnNi indicated the same majority FCC 

phase, yet adding more electronegative components made the alloy less stable than others. 

Cantor also proved this claim with Gibbs phase rules [1]. Another important conclusion 

was that alloys with 20 and 16 components were multi-phase as opposed to other alloys. 

Nevertheless, the alloys containing more components that are especially rich in Cr, Mn, 

Fe, Co, Ni mainly showed FCC structure [1, 7].  
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Another scientist, Jien-Wei Yeh, who studied multi-component alloy systems, showed that 

high mixing entropy is significant for single-phase alloys. He stated that achieving enough 

high mixing entropy in experiments could reduce the number of phases in an alloy which 

is essential for outstanding properties of material. By using the arc melting technique, 40 

equiatomic alloys with five to nine components were fabricated. In his first study, Yeh 

focused on the hardness of the HEAs and concluded that except for the nine-element 

HEAs, if the number of the components increases, the hardness of the alloy also increases. 

Moreover, the addition of the element B also increases the hardness of the alloy. In 

addition to hardness experiments, his research team also conducted studies of wear 

behavior, annealing behavior, deformation behavior, and thin film deposition and coating 

of HAEs studies. All fabricated HEAs showed excellent corrosion resistance despite 

strong acidic solutions such as HCl, HF, H2SO4 and HNO3. With these experiments, he 

introduced HEAs with their unique properties such as high-entropy effect, lattice 

distortion effect, slow diffusion effect and cocktail effect.  

Following the history of HEAs, it is important to mention their concept and definition as 

well. Yeh introduced HEAs  [6]  as the alloys that consist of at least five principal 

components in equimolar ratios or near-equimolar ratios, where the atomic percentage of 

each element ranges between 5% and 35%. As opposed to traditional alloys, HEAs tend 

to form simple solid-solution phases. This tendency results in high mixing entropy and the 

term ‘high-entropy’ comes from this inherent behavior [2-8]. From thermodynamics, any 

alloy system achieves equilibrium state when differences in Gibbs free energy,	∆𝐺/01, at 

any two different states reach a minimum value. Equation 1.1 gives a formula for ∆𝐺/01, 
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∆𝐺/01 = ∆𝐻/01 − 𝑇∆𝑆/01 1.1  

where ∆𝐻/01, ∆𝑆/01		and 𝑇 are the difference in enthalpy, the difference in entropy, and 

temperature, respectively [9-11]. Boltzmann’s equation can be used to find a relationship 

between entropy and system parameters, 

∆𝑆789: = 𝑘 ln𝑤 1.2  

where	∆𝑆789: is the difference in configurational entropy per mole of a system, 	𝑘 is the 

Boltzmann’s constant, and 𝑤 is the number of microstates that are consistent with the 

given macrostate [11]. Even though the mixing entropy consists of four contributors, 

configurational entropy dominates the other three contributors. Therefore, mixing entropy 

is often replaced by configurational entropy to be in tune with the literature of HEAs [6, 

12, 13]. 

Equation 1.2 can be defined in terms of the number of different elements 𝑛, and mole 

fractions	of i-th element 𝑋0	as follows: 

Δ𝑆789: = −𝑅 𝑋0 ln 𝑋0

9

0CD

 

where 𝑅 = 8.31	 G8HIJ
K8H.L

 is the gas constant. In [6], Yeh suggested a new approach to the 

mixing entropy of multi-phase alloys in equimolar or near-equimolar conditions, 

calculated below.  

𝑋D = 𝑋M = ⋯ = 𝑋9  

𝑋D =
1
𝑛
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∆𝑆789: = −𝑅
1
𝑛
𝑙𝑛𝑋0 =

9

0CD

− 𝑅
1
𝑛
ln
1
𝑛
+
1
𝑛
ln
1
𝑛
+⋯+

1
𝑛
ln
1
𝑛
	  

∆𝑆789: = −𝑅 ln
1
𝑛
= 𝑅 ln 𝑛  

Table 1.1 and Figure 1.1 show that for any alloy system, ∆𝑆789: increases when 𝑛 

increases, as expected [2, 6, 7]. 

Table 1.1 ∆𝑆789:	of equimolar alloys with up to 8 elements. 

 

 

Figure 1.1	∆𝑆/01	as a function of 𝑛 for equiatomic alloys. 
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By Richard’s rule, during the melting process, ∆𝑆/01	can be named as 	∆𝑆:IQ089 which is 

approximately the gas constant 𝑅 for metals [11].  

∆𝑆:IQ089 = 2.2 7RH.L
/8H

= 9.204 G8IHJ.L
/8H

»	𝑅 1.3   

During melting, the correlation between entropy change and enthalpy change can be 

defined as below.  

∆𝐺:IQ089 = ∆𝐻:IQ089 − 𝑇/∆𝑆:IQ089 1.4   

Here ∆𝐺:IQ089,		∆𝐻:IQ089 and 𝑇/ are the difference in Gibbs free energy at a melting point, 

the difference in enthalpy at a melting point or latent heat, and the melting temperature of 

an alloy, respectively. Since ∆𝐺:IQ089 is zero during a melting process, Equation 1.4 can 

be deduced to the following equation. 

∆𝐻:IQ089 = 𝑇/∆𝑆:IQ089 1.5

Due to the difference in bond at liquid and solid state, ∆𝐻:IQ089 is required to break nearly 

one-twelfth of the bonds in the closed packed structure per mole.  

∆𝐻:IQ089»
𝐸X89Y
12

1.6  

If Equation 1.3 and Equation 1.6 are substituted in Equation 1.5, we can achieve Equation 

1.7 [13]. The gas constant 𝑅 is significant in order to achieve equilibrium state by reducing 

Gibbs free energy sharply. There is a strong direct relationship between bond strength and 

melting temperature of the material. 

𝐸X89Y
12

= 𝑇/𝑅 1.7  



 

 6 

As mentioned before, Yeh defined HEAs for major elements. In addition to these major 

elements, if there is any minor element in the alloy, its atomic percentage should be less 

than 5% [3, 13]. The definition can be expressed as below. 

𝑛/R\8] ≥ 5  

5% ≤ 𝑋0 ≤ 35%  

𝑛/098] ≥ 0  

𝑋\ ≤ 5%  

Here 𝑛/R\8] and	𝑛/098] denote the number of major and minor elements, whose atomic 

percentages are 𝑋0 and 𝑋\, respectively [3, 13]. 

HEAs can also be defined as the alloys that have configurational entropies greater than or 

equal to 1.5𝑅 at a random solution state [3, 13]. In Table 1.1, the mixing entropy value for 

five elements is equal to 1.61𝑅. Yeh explained the reason why the lower limit is 1.5𝑅 

instead of 1.61𝑅 is because the latter is for equiatomic HEAs, whereas the values between 

1.5𝑅 and 1.61𝑅 are for non-equiatomic alloys. Therefore, to cover all types of HEAs 

(equiatomic and non-equiatomic), the lower limit is taken to be 1.5𝑅. To illustrate that, 

for equimolar CrCuFeMnNi, mixing entropy is 13.38 [J/ (mol. K)], which is equal to 

1.61𝑅. In contrast, the mixing entropy of CrCu2Fe2MnNi2 is 12.97 [J/ (mol. K)] which is 

equal to 1.56𝑅 or mixing entropy of Cr2Cu2FeMn2Ni2 is 13.14 [J/ (mol. K)] which is equal 

to 1.58𝑅. They are both slightly smaller than the mixing entropy of equiatomic 

CrCuFeMnNi [13].  
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Since the lower limit for HEAs is 1.5R, there is a need for further categorization to separate 

the alloy groups with mixing entropy difference lower than 1.5R. Low-entropy alloys 

(LEAs) and medium-entropy alloys (MEAs); in other words, traditional alloys, where 1R 

is the boundary between these two alloys are defined as in Equation 1.8 and Equation 1.9, 

respectively [3, 13]. To put it differently, alloys based on one principal element were 

classified by Yeh as LEAs, while MEAs consist of two to four principal elements as shown 

in Figure 1.2. 

∆𝑆789: ≤ 𝑅 1.8  

𝑅 ≤ ∆𝑆789: ≤ 1.5𝑅 1.9 	 

 

Figure 1.2 Classification of alloys in terms of configurational entropy range. 

Low-entropy alloys

�Sconf  R

Medium-entropy alloys

R  �Sconf  1.5R

High-entropy alloys

�Sconf � 1.5R
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To sum up, HEAs are significant due to two related reasons. The first reason is to have 

high entropy which improves the quality of solid solution phases. The second reason is to 

prevent the formation of intermetallic compounds, such as crystalline or quasicrystalline, 

which are brittle by nature. If an alloy has these two properties, then it will have 

outstanding mechanical properties which notably contribute to the current body of 

scientific knowledge [3, 7, 13]. 

1.2 Core Effects of HEAs 

Physical metallurgy studies the relationship between composition, manufacturing, lattice 

structure, physical and mechanical properties of materials [9, 10]. Because HEAs are quite 

different from traditional alloys in terms of the number of compositions, these principles 

might need to be altered. HEAs have unique properties which are combined in four core 

effects; high-entropy effect, sluggish diffusion effect, severe lattice distortion effect and 

cocktail effect. These effects have impacts on thermodynamics, kinetics, structure, and 

properties, respectively as shown in Figure 1.3. 
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Figure 1.3 The scheme of four core effects of HEAs with impacts on physical metallurgy. 

1.2.1 High-Entropy Effect 

The high-entropy effect can be considered as the most important feature of HEAs. This 

effect is well known with enhancing the solid phase formation; therefore, it affects 

toughness by increasing strength and ductility. However, the reasons why high entropy 

improves the solution phase formation were not clear until Yeh explained in [3]. Some 

technical background needs to be mentioned before starting to explain reasons behind 

high-entropy effect.  

There are three possible groups to finalize an alloy’s solid state: elemental phases, 

intermetallic compounds, and solid solution phases [3]. Elemental phase is based on one 

metallic element, while the intermetallic compound consists of special superlattices. 
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Lastly, solid solution phases can be categorized into two groups, random and ordered solid 

solutions. When the atoms of solute are present in the lattice of the solvent, the solid 

solution is formed. The crystal structure of the solvent remains unchanged by the addition 

of the solutes. An ordered solid solution, or intermetallic phase, is a solid solution in which 

atoms arrange themselves in a regular or a preferential position in the lattice such as Ba2Pt. 

For a random solid solution, atoms from different components arrange their positions in 

lattice sites by probability. FCC, BCC and HCP are common examples of the random solid 

solution.  

From thermodynamics, a system reaches equilibrium state when the Gibbs free energy 

attains the lowest at given T and P. If we recall Equation 1.1 and think of all parameters 

that affect Gibbs free energy, we can compare all types of solid states in terms of their 

Gibbs free energy in Table 1.2. The values in Table 1.2 are approximate values, and they 

do not contain any strain energy contribution to mixing enthalpy due to atomic size 

differences. 
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Table 1.2  Comparisons of elemental phases, intermetallic compounds, partially ordered 
and random solid solutions in terms of ∆𝐺/01, ∆𝐻/01 and −𝑇∆𝑆/01.  

 

As can be seen from Table 1.2, the random solid solution group includes HEAs. Although 

initially solid solutions have medium negative enthalpy, at the end, solid solutions finalize 

solid state with large negative Gibbs free energy due to contribution of large negative 

entropy. For all groups, it is hard to calculate the exact value of each parameter except for 

mixing entropy of multi-principal elements. Mixing entropy is often replaced by 

configurational entropy, which is the parameter that can be calculated easily. Therefore, 

even mixing entropy reflects approximate values. To sum up, rather than knowing the 

exact values, they are only comparable through groups. It is known that all kind of multi-

principal elements can be thought of as solid solutions, and HEAs are inside this group. 

Therefore, this brings up the question why HEAs have medium mixing enthalpy, while 

intermetallic compounds have large mixing enthalpy. It is due to the number of bonds 

which affects mixing enthalpy directly. For example, one mole of NiAl intermetallic phase 
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(B2) has (½)x8xNo bonds, whereas the same compound, NiAl, in random solution would 

have half as many intermetallic phase bonds, which is equal to (½)x(½)x8xNo. Therefore, 

the mixing enthalpy of ordered solid solution is twice that of random solid solution.  

1.2.2 Severe Lattice Distortion Effect 

Solid solution phases of HEAs are usually thought of as the whole matrix even if its 

structure is partially ordered such as FCC, BCC, HCP or other more complex structures 

due to the first effect of HEAs, high-entropy effect [5]. Since atoms in the matrix are 

surrounded by unlike atoms having different atomic sizes, each multi-principal alloy 

suffers from the lattice strain and stress represented in Figure 1.4. Different bonding 

energies and crystal structures also make tension and compression forces through whole-

solute matrix even worse. In contrast, for traditional alloys, lattice distortion value is 

considerably smaller than that of HEAs, because of the possibility of having a same sort 

of atoms as neighbors [2-7, 10, 12-14]. 

  

Figure 1.4 A schematic diagram indicating a severely distorted matrix of a solid solution 
with five different components in two-dimension. 
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A well-known approach to describe the lattice distortion is consideration of atomic size 

differences, which can be thought of as only parameter [8, 15, 16]. There is a direct 

relationship between the lattice distortion and the difference in atomic size (d) given in 

Equation 1.10 where 𝑐0, 𝑟0 and 𝑟 are the atomic percentage, the atomic radius of the i-th 

element and the average atomic radius, respectively.  

𝛿 = 100 𝑐0 1 −
𝑟0
𝑟

M
9

0CD

1.10  

𝑟 = 𝑐0𝑟0

9

0CD

 

Although this is the most common way to describe the lattice distortion, there are some 

drawbacks. First, Equation 1.10 is valid for pseudo-unary matrix systems. However, with 

some assumptions, this equation was used for multi-component matrix. The second 

drawback is that this approach only covers the effects of the atomic size differences on the 

lattice distortion; therefore, not only is the different bonding energy neglected, but also 

the different crystal structure tendencies are neglected.  

Severe lattice distortion can affect some properties of a material such as hardness, strength, 

electrical and thermal conductivity. Hardness and strength increase with the lattice 

distortion, which in turn, is caused by solution hardening. For instance, for the equiatomic 

CoCrFeMnNi HEA, Vickers hardness test results show that a homogenized sample has a 

higher hardness value (1192 MPa) than the one obtained by the mixture rules (864 MPa) 

[17]. In the same paper, Senkov also studied on MoNbTaVW which has BCC lattice 
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structure, and its Vickers hardness result is 5250 MPa. He concluded that BCC alloys have 

higher hardness values than alloys with FCC lattice structure. This might be because FCC 

lattice has twelve nearest neighbor atoms, whereas BCC lattice only has eight nearest 

neighbor atoms.  

On the other hand, electrical and thermal conductivity sharply decrease as severe lattice 

distortion increases [4, 18, 19]. In 2007, Yeh studied X-ray diffraction on HEAs, and he 

stated that because of the diffuse scattering on the severely distorted surface, the intensity 

of the peak sharply decreases compared with others [4]. In [18], Kao et al. contributed to 

Yeh’s studies and focused on physics behind the HEAs, especially electrical, magnetic 

and thermal behavior of HEAs. Kao stated that the lattice distortion causes electron 

scattering, which results in a remarkable drop in electrical conductivity. In the following 

years, thermal conductivity and thermal diffusivities of HEAs were studied, and it was 

pointed out that thermal diffusivities of HEAs also decrease with the lattice strain and 

stress. Thermal diffusivities of four different HEAs and pure Al were expressed as a 

function of temperature. Thermal diffusivity of pure Al is quite sensitive to temperature 

differences, while four HEAs samples are not [19]. The reason why HEAs have a 

relatively small temperature coefficient of resistance than traditional alloys or pure 

elements is that the lattice distortion generated by thermal vibrations is negligible in 

comparison with the severe lattice distortion [4]. 
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1.2.3 Sluggish Diffusion Effect 

The sluggish diffusion effect is related to phase transformation and diffusion. A phase 

transformation caused by diffusion in HEAs is slower compared to conventional alloys. 

Before understanding the reasons behind this effect, it is necessary to know some concepts 

about diffusion and the vacancy effect in thermodynamics. A vacancy is one of the point 

defects which is a zero-dimensional imperfection in the crystal. Vacancies cause a 

distortion of planes which means excess elastic energy in the lattice so the internal energy 

increases, hence; the enthalpy of the whole system also increases. Therefore, Gibbs free 

energy is supposed to increase; yet Gibbs free energy is smaller for a certain concentration 

of point defect at a given temperature. Thus, the number of vacancies in the crystal will 

seek the value that makes Gibbs free energy a minimum at any given temperature. It is 

due to the fact that the increase in the entropy outweighs the increase in enthalpy [11]. The 

relation between the vacancy and the activation energy at a given temperature is as shown 

below. 

𝑁d
𝑁
= 𝑒

fgh
ij  

Here  𝑁d, 𝑁, 𝑄d, 𝑘 and 𝑇 denote the number of vacancies, the number of atoms in the 

crystal, the activation energy, the Boltzmann’s constant and temperature, respectively.  

For the first time, in 2013, Tsai et al. studied [20] the sluggish diffusion effect of HEAs to 

prove indirect evidence. The authors used three diffusion couples and six different alloy 
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systems in diffusion experiments to calculate temperature dependence of the diffusion 

coefficient for some transition elements.  

Various researchers working on HEAs indicated that sluggish diffusion has some 

advantages on HEAs’ microstructure and mechanical properties [5, 6, 14, 21-30]. For 

example, increased recrystallization temperature, slower grain growth, increased creep 

resistance, toughness and strength are just a few of them. In [23], Liu showed how 

improved grain structure affects mechanical behavior of CoCrFeMnNi HEAs with FCC 

phase due to sluggish diffusion effect.  

1.2.4 Cocktail Effect 

In 2003, the term ‘cocktail effect’ was first used by Ranganathan in [31] for HEAs 

although conventional alloys also have this property. HEAs can be single-phase or multi-

phase consisting of at least five elements; therefore, the cocktail effect plays an important 

role in HEAs’ design. The cocktail effect can be thought of as a composite effect. To 

illustrate that, if more light elements are used such as Al, the overall density of an alloy 

will decrease. There are two different studies conducted about the cocktail effect on HEAs. 

The first study was conducted by Yeh in 2006. The AlxCrCoCuNiFe HEAs with various 

Al content (between 0-43 atomic percentage) were prepared by vacuum-arc melting 

technique, and Table 1.3 shows how hardness and phase of the AlxCrCoCuNiFe HEA 

change with an addition of Al element.  
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Table 1.3 Contributions of the cocktail effect on AlxCrCoCuNiFe alloys in terms of 
hardness. 

 

Another study was conducted by Senkov, and he showed the differences in mechanical 

behavior between two different refractory HEAs with BCC structure, which are the 

quinary near-equiatomic VNbMoTaW alloy and the quaternary near-equiatomic 

NbMoTaW alloy. As can be seen from Figure 1.5, both compression samples have the 

remarkable plastic strain at 600 °C and above, yet both samples experienced about %30 

drop in yield strength between room temperature and 600 °C. For the near-equiatomic 

NbMoTaW alloy, the yield strength at room temperature, the maximum strength and 

Young’s modulus are 1058 MPa, 1211 MPa and 220 ± 20 GPa, respectively, while the 

near-equiatomic VNbMoTaW alloy at the same temperature shows the yield point at 1246 

MPa and the maximum stress strength 1270 MPA with 180 ± 15 GPa Young’s modulus. 
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On the other hand, the NbMoTaW alloy at 1200 °C flows the near-steady state condition, 

while VNbMoTaW experiences considerable softening after yielding [28]. 

Figure 1.5 Compressive engineering stress-strain curves of quaternary near-equimolar 
NbMoTaW and quinary near-equiatomic VNbMoTaW (a) at room temperature and (b) 
at various temperatures between 600 °C and 1600 °C. Reprinted with permission from 
[28].

To understand cocktail effect in depth, I will show different superalloys that were studied 

in [28]. Figure 1.6 indicates the temperature dependence of the yield stress of NbMoTaW, 

VNbMoTaW and two other superalloys which are Inconel 718 and Haynes 230. As can 

be seen from Figure 1.6, even at elevated temperatures such as 1600 °C, two HEA samples 

resist to softening and complete the experiments above 400 MPa, whereas other 

1
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superalloys could not achieve to reach at this value. The reason behind this impressive 

mechanical behavior is that, for NbMoTaW and VNbMoTaW HEAs, all constituent 

elements are selected from refractory elements. As a result, melting points of NbMoTaW 

and VNbMoTaW HEAs are above 2600 degrees due to cocktail effect. In addition to 

cocktail effect, these results are also explained with the sluggish diffusion effect at 

elevated temperatures [17, 28]. 

Figure 1.6 Yield strength of NbMoTaW, VNbMoTaW and two superalloys as a function 
of temperature. Reprinted with permission from [28].

1.3 Previous Studies on CoCrFeMnNi High-Entropy Alloy 

Numerous HEAs have been developed because they have a favorable combination of 

outstanding mechanical and thermal properties such as strength, toughness, corrosion 
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resistance and thermal-stability. The composition is a unique factor in order to determine 

crystallographic features, microstructure, and thus all characteristic properties. 

CoCrFeMnNi is one of the most common and fundamental quinary HEAs. Using 

transition metals, such as Co, Cr, Fe, Mn and Ni in an alloy, are important for high-

temperature load-bearing structures and thermal systems. In addition to composition, 

concentration of these atoms in an alloy is also important for characteristic properties. 

Their presence in an equiatomic concentration allows an alloy to have maximum 

configurational entropy. As a result, many researchers have tended to study equiatomic 

CoCrFeMnNi.  

The equiatomic FCC-structured CoCrFeMnNi HEA was first reported by Cantor in 2004 

[1]. Several equiatomic HEAs containing components up to 20 have been fabricated. Some 

alloys, such as the ones with 16 and 20 components, are multi-phase which result in brittle 

mechanical properties in nature. Cantor explained the reason why some alloys are 

predominantly a single FCC phase is because they contain high atomic percentage in 

transition metals. It has also been concluded that with an addition of Cu, Ge and Nb to 

CoCrFeMnNi individually has not change FCC phase, yet adding more electronegative 

components results in incredibly less solubility. Figure 1.7 shows that all the alloys have 

a dendritic structure, yet the size and morphology alter for each alloy [1].  



21 

Figure 1.7 (a) Optical images of equimolar CoCrFeMnNi and SEM images of equimolar 
(b) FeCrMnNiCoNb; (c) FeCrMnNiCoGe; (d) FeCrMnNiCoCu; (e) FeCrMnNiCoTi; (f) 
FeCrMnNiCoV. Reprinted with permission from [1]. 

Instead of comparing properties of the equimolar quinary and the sexinary HEAs as in [1], 

Gali researched the tensile properties of the equiatomic CoCrFeMnNi HEA and the 

CoCrFeNi MEA, which were manufactured by arc melting, drop casting and hot rolling 
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[32]. Backscattered electron images were obtained, and Figure 1.8 shows that equimolar 

CoCrFeMnNi contains isolated dark particles, which were manganese oxide or/and 

chromium oxide detected with X-ray. On the other hand, these dark particles were not 

present in equimolar CoCrFeNi. The author did not explain the reason why CoCrFeMnNi 

has oxygen contamination and CoCrFeNi does not. The melting point ranges of 

CoCrFeMnNi and CoCrFeNi were also determined to be 1280 -1349 °C and 1422-1462 

°C. As can be seen in Figure 1.8, CoCrFeMnNi has three times larger grains than 

CoCrFeNi (32µm and 11µm) after hot rolling at 1000 °C. The larger grain size was 

explained by the higher homologous temperature of CoCrFeMnNi (~0.81 𝑇/).  

Figure 1.8 Backscattered electron images of as-cast and homogenized (a) CoCrFeMnNi 
(b) CoCrFeNi and hot-rolled (c) CoCrFeMnNi (d) CoCrFeNi. Reprinted with permission 
from [32]. 
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Tension tests with two sample sets for each alloy were performed at various temperatures 

with different strains. It was observed that these two alloys have a strong temperature 

dependence yet a weak strain rate dependence. Figure 1.9 shows a comparison of the yield 

stress and the ultimate tensile stress of CoCrFeMnNi HEA and CoCrFeNi MEA with a 

wide range of temperature differences. As can be seen in Figure 1.9, the difference 

between the yield stress and ultimate tensile stress (strain hardening) at a low temperature 

was expressed as a considerable work hardening effect. The reason behind the existence 

of significant work hardening at a low temperature is due to mechanical twinning 

mechanisms. The yield stress and the ultimate tensile stress showed the same tendency 

across increased temperatures; they decreased sharply when the temperature increased 

[32]. 

Figure 1.9 The yield stress and the ultimate tensile stress of CoCrFeMnNi HEA and 
CoCrFeNi MEA as a function of temperature range between -196 °C and 1000 °C. The 
circles and squares represent CoCrFeMnNi and CoCrFeNi, respectively; for each, the 
filled symbols for 10-3 s-1 and open symbols are 10-1 s-1. Reprinted with permission from 
[32].  
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Unexpectedly, strength and ductility are not mutually exclusive like many conventional 

materials. Ductility and strength have the same tendency through increment in 

temperature. They both decrease with increasing temperature as shown in Figure 1.10 (a) 

[32]. In Figure 1.10 (b) and (c), there is almost no necking at -196 °C for CoCrFeMnNi 

tension fracture sample, whereas this is not the case at 400 °C. The large elongation in 

Figure 1.10 (b) was explained with necking instability being postponed to a higher strain. 

Microvoids, or dimple rupture, in the interior of the sample can be seen in Figure 1.10 (c) 

at the fracture point, which is an indicator of a ductile material. In Figure 1.10 (e), there is 

a remarkable necking at high temperatures and lower ductility at a higher temperature. It 

can be associated with the earlier onset of the necking, which explains the lower work 

hardening at elevated temperatures.  

Figure 1.10 (a) Ductility of the CoCrFeMnNi HEA and the CoCrFeNi MEA as a function 
of temperature, (b, c) are images of the CoCrFeMnNi tension specimen at -196 °C and (d, 
e) at 400 °C. Reprinted with permission from [32]. 
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1.4 Principle of Equal Channel Angular Extrusion 

Nanostructured and ultra-fine grained materials have grabbed researchers’ attention due 

to their remarkable enhanced mechanical and physical properties [33, 34]. There are 

numerous techniques used to fabricate nanostructured and ultra-fine grained materials [34, 

35]. Severe plastic deformation (SPD) technique is just one of them. SPD techniques have 

a lot of advantages over others. To name a few, with SPD techniques, very high strains 

can be achieved at relatively low temperatures in order to form nanostructured materials. 

Moreover, traditional techniques can result in a cellular type microstructure with low angle 

grain boundaries, while SPD techniques may reduce grain sizes from 1 mm to 100-200 

nm with high angle grain boundaries.  

In this study, we focus on one of the SPD techniques, which is called the equal channel 

angular extrusion (ECAE) process. The idea behind the ECAE process is to develop a 

simple shear, and it was introduced by Vladimir Segal [36, 37]. The ECAE method is 

performed by putting a ceramic-glazed billet into a lubricated die, which consists of two 

integrated channels with an equal cross-section area. This process is described in Figure 

1.11. There are two essential assumptions for this process. The first one is that plastic flow 

occurs under steady-state conditions, which means that plastic flow is not a function of 

time. The second assumption is that shear deformation occurs in two dimensions, not in 

three dimensions. It enables us to predict and interpret results more easily than three-

dimensional shear deformation.  
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Figure 1.11 A schematic diagram of an ECAE die and a heavily deformed uniform 
microstructure representation. 

The angle between the two integrated channels is denoted by 2Ø. Simple shear achieves 

deformation at the crossing plane of the channels. Before and after the crossing plane, we 

assume the billet motion is rigid body motions, which means that the distance between 

any two points inside the billet does not change permanently. In other words, the surfaces 

of the channel and billets create some friction force that affects billet motion, but we 

neglect all kinds of frictions and deformations except for the crossing plane [34, 36]. The 

billet moves forward along the die with the same uniform manner, except for the small 

end regions and minor surface areas of the billet. The relationship between strain and the 

ECAE die geometric parameter, which is a half of the angle between two channels, Ø, per 

pass for the processed billet, is shown below [36, 38]. 

6

2
cot

3 yp σ φ= ⋅ ⋅

where σy is the yield stress of the material. 

The equivalent reduction ratio (RR) and the equivalent area reduction (AR) values of 

ECAE for N passes with respect to conventional extrusion can be found as: 

exp( )RR N ε= ⋅      and
1(1 ) 100%AR RR−= − ⋅

In the current study the intersection angle is 90o and the billet is pressed through the die 

using a servohydraulic press. With a die angle of 90o, a true plastic strain of 1.15 and 

equivalent area reduction of 69% can be reached [38].

φ Shear  
Plane 

Punch

Fig. 1.2.1. Schematic demonstrating the ECAE process. The representative material 
element goes through simple shear deformation. 

The most important advantage of ECAE is the development of near uniform, 

intensive and simple shear in bulk billets. It is reported that simple shear is a near ideal
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𝜀 = 	
2
3
×cot ∅	

The ECAE process can be repeated several times to reach the desired deformation, which 

increases proportionally with the number of passes and initial strain [38]. 

𝜀r = 𝑁×𝜀

Here 𝜀 is the initial Von Misses strain, 𝜀r is the final strain, and 𝑁 is the number of passes. 

The critical punch pressure (𝑃7]0r07RH) which is required to press bulk billet can be 

expressed as below. 

𝑃7]0r07RH =
2
3
×𝜎v× cot ∅

Here 𝜎v is the initial yield stress of the material. To calculate the equivalent area reduction 

(AR), first, the reduction ratio (RR) is required, the formulas for which are as shown 

below. 

𝑅𝑅 = 𝑒w×x

𝐴𝑅	 % = 1 −
1
𝑅𝑅

×100%

In this study, the die angle, 2Ø, is equal to 90º. By the help of servo hydraulic punch, the 

billets can be pressed several times through the channels. Some significant variables 

depending on a 90º die and the number of passes are shown in Table 1.4. These parameters 

are calculated up to N=4. 
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Table 1.4 Some important calculated ECAE parameters affecting mechanical behavior up 
to N=4. This table is valid for Ø=45º. 

There are several routes to complete the ECAE process, and just a few of them, which are 

conducted in and related to this research, are discussed. Figure 1.12 describes some ECAE 

routes schematically. 
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Table 1.5 Some routes of the ECAE process and their dependent variables. 

Table 1.5 shows the summary of routes and other parameters. In Route A, each pass the 

billet keeps its original position, which means there is no rotation between passes about 

the extrusion axis. Therefore, when the number of passes increases, the microstructure of 

the billet is becoming more and more elongated due to distortion in the same direction.  
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In Route B, two directions (+90º / -90º) are chosen about the extrusion axis. The billet in 

each odd numbered pass (N= 3, 5, etc.) is rotated -90º from the previous position, and in 

each even numbered pass (N=2, 4, etc.) is rotated +90º from the previous location. The 

first pass is called N=1, so billet at N=1 can be extruded in any positions. The rest will 

depend on the first pass position. Therefore, after each completed odd-numbered passes, 

the billet comes to its unprocessed position. After the ECAE process in Route B, the 

microstructure of the billet is neither lamellar like Route A when N=2, 3, etc. nor equiaxed 

like Route C when N=2,4, etc. Filamentary type grains are fabricated during Route B after 

even-numbered passes are completed. Route B is one of the three-dimensional 

deformations.  

In Route C, after each pass, the billet is rotated +180º around its extrusion axis. After each 

odd-numbered pass, the billet is deformed, and after each even-numbered pass, the 

microstructure of the billet is restored to its near-original grain shape. Similar to Route A, 

Route C is also a two-dimensional deformation. 

The only difference between Route C and Route C’ is the rotation degree. Instead of +180º 

in Route C’, the rotation after each pass is +90º. Likewise Route B, Route C’ is also three-

dimensional deformation. 

Route E is a kind of combination of Route C and C’. At even-numbered passes, the billet 

is rotated +180º around the axis and at odd-numbered passes, +90º. The grain size 

refinement is better than Route C. 
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In this study, we used the combination of the original routes for each billet. Also, to 

observe the differences in the microstructure, we tried to use different routes over four 

billets. In Chapter 2, which routes were chosen and combined will be discussed in detail. 

1.5 Motivation 

A composition of an alloy is the unique factor to determine crystallographic features, 

microstructure, and thus all characteristic properties of an alloy. CoCrFeMnNi is one of 

the most common and fundamental quinary HEAs. Although in [2-7, 13] Yeh claimed that 

high mixing entropy is sufficient to predict whether or not an equiatomic alloy will form 

a stable single-phase solid solution, Otto pointed out that it is not the only factor and 

disproved Yeh’s hypothesis  [27]. By replacing a component of CoCrFeMnNi with other 

transition metal elements, five different alloys were produced in equimolar condition such 

as TiCrFeMnNi, CoVFeMnNi, CoMoFeMnNi, CoCrVMnNi, CoCrFeMnCu. The 

replaced elements were chosen due to the same crystal structure at room temperature and 

the similar electronegativity (EN) of the elements being replaced to retain configurational 

entropy. Equimolar CoCrFeMnNi was proven as stable single-phase HEA by Cantor [1]. 

Then, CoCrFeMnNi were fabricated to investigate similarities with and differences from 

other five alloys. Based on Otto’s calculations, the best candidate for single-phase solid 

solutions is CoCrFeMnCu due to its lowest average EN and metallic radius (ratom) values 

among other five alloys. After solidification, their microstructures are as shown in Figure 

1.12. As Cantor studied [1], Otto also proved that CoCrFeMnNi has a stable single FCC 

phase shown in Figure 1.12 (a). As shown in Figure 1.12 (b), the best candidate, 

CoCrFeMnCu,  did not show stable single-phase like other four alloys  [27] despite what 
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Yeh predicted in [2-6]. Experimentally proven results in two separate studies about phase 

stability are one of the reasons why CoCrFeMnNi will be chosen as a material for this 

proposed work. A stable phase is important and is required for the desired physical 

property of high-temperature load-bearing structures and thermal systems.  

Figure 1.12 Backscatter electron (BSE) images of six manufactured alloys. Reprinted 
with permission from [27].

The concentration of atoms in an alloy is also important for characteristic properties of 

materials. Being present in equiatomic concentration allows an alloy to have maximum 

configurational entropy. Therefore, in this research, near-equimolar CoCrFeMnNi alloy 

will be investigated due to the notable reasons mentioned above.  
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As mentioned in Section 1.4, nanocrystalline and ultra-fine grained materials have been 

attractive due to their enhanced physical and mechanical properties. There are several 

techniques to fabricate ultra-fine grained materials. Severe plastic deformation (SPD) is 

the most popular technique due to its applicability and feasibility to the industry. One of 

SPD techniques, the ECAE process, benefits from shear stress to obtain heavily deformed 

microstructure.   

There are numerous remarkable reasons to use the ECAE process. The first reason is to 

create uniform and simple shear through billet which is important for near-ideal 

deformation [36, 37, 39]. In addition to uniform strain distribution, without any changes 

in a cross-section area of billet, uniform deformation can be obtained even at low pressure 

and force. Also, the process can be repeated several times to reach the desired deformation, 

which increases proportionally with the number of passes and the initial strain [38]. In [23, 

26, 32, 40, 41], with different SPD techniques, grain size effects of HEAs on mechanical 

behavior were investigated. Nevertheless, none of the researchers examined the 

mechanical behaviors of the ECAE processed CoCrFeMnNi. In [41], Yoshida showed 

how a grain size affects the tensile stress behavior for MEA which can be observed in 

Figure 1.13. As seen in Figure 1.13, the yielding stress increases enormously with 

decreasing the grain size. In addition to stress-strain curve, with Hall-Petch plot, the 

relationship between grain size of the alloy and mechanical strength is obvious. Compared 

with pure Ni and Ni-40Co, the slope of CoCrNi MEA is highly greater. 
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Figure 1.13 Grain size effects on engineering stress-strain curves and Hall-Petch plot of 
CoCrNi MEA. Reprinted with permission from [41]. 

In this research, the effects of the ECAE method on the mechanical properties of 

equiatomic CoCrFeMnNi HEA were investigated in detail. The aims were to increase the 

dislocation density and to obtain the submicron grain size. Therefore, the effect of the 

increased dislocation density and the submicron grain size on the mechanical properties 

of CoCrFeMnNi were also assessed by performing tension tests.  

The specific tasks of the current study are outlined as follows: 

1) Conducting the ECAE process on the as-cast CoCrFeMnNi HEA.

2) Investigating the microstructure evaluation during the ECAE process under

different conditions via the Secondary Electron Microscopy (SEM) and the

Backscattered Electron (BSE) images.
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3) Comparing the microstructures of the as-cast and the as-processed ECAE samples. 

4) Pointing out the mechanical properties of extruded billets at room temperature with 

tension and Vickers hardness tests. 

5) Correlating the mechanical properties with the created microstructures after the 

ECAE process. 
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CHAPTER II  

EXPERIMENTAL METHODS 

Near-equimolar quinary CoCrFeMnNi HEA was supplied from the company called 

Sophisticated Alloys in the form of a cylindrical rod with 1.25-inch diameter and 20-inch 

length.  The alloy had a composition of 23.01% Co, 16.98% Cr, 19.79% Fe, 18.85% Mn, 

21.37% Ni and was fabricated by the vacuum induction melting technique under the Argon 

backfill. The melt chamber was evacuated to 1 x 10-4 Torr and then it was filled back with 

Argon to 100 Torr before induction heating. The alloy was melted in an Alumina crucible 

and was poured in a Graphite mold, which was coated with a Zirconia wash. This was 

followed by hot isostatic pressing at 15 Ksi and 2200 °F for 4 hours followed by furnace 

cooling.  

2.1 As-Cast Condition of the Material 

Examination of the as-received material was important to compare the results of the as-

processed material. Before the ECAE process, the as-cast material was investigated with 

EDS and SEM. Figure 2.1 shows the EDS images of the as-received material. Even though 

we had the metal chemistry results that was sent by the company, we wanted to make sure 

whether or not the as-received metal was near-equiatomic CoCrFeMnNi. Another reason 

to perform EDS test was to investigate the effect of porosity on the material. Frequently, 

we observed black cumulative dots which means that they were oxide or porosity. With 

EDS results, we deduced that they were not oxide particles. Table 2.1 shows the nominal 

composition and the composition of EDS results. 
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Figure 2.1 EDS results of the as-received material. 

Table 2.1 The comparison of the nominal composition and the composition of EDS 
results. 

Nominal Composition (at%) 

Co Cr Fe Mn Ni 

23.01 16.98 19.79 18.85 21.37 

Composition of EDS Results (at%) 

Co Cr Fe Mn Ni 

22.13 17.59 19.68 18.97 21.63 

Co Cr

Fe Mn

Ni

1
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Secondly, the SEM study was conducted to calculate the initial grain size and to observe 

the microstructure of as-cast materials. This was important because we needed to compare 

a mean grain size of the material before and after the ECAE process. Therefore, knowing 

the grain size of the material was a good indicator to correlate the mechanical behaviors 

and the microstructure of the materials. In addition, the SEM study was a good way to see 

the as-cast porosity condition. As seen in Figure 2.2, in some places a few porosity clusters 

were observed, and in general uniformly distributed porosity and small voids inside the 

material were defined. After the ECAE process, we claimed that these porosities would 

close down. In Chapter 3, the porosity and its effects on the mechanical behavior after the 

ECAE process will be discussed in detail. 

 

Figure 2.2 Porosity clusters inside the as-received material. 

Figure 2.3 shows the BSE images of the as-received material which had very large coarse 

grains with a mean grain size of 200 ± 118 µm.  

Porosity
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Figure 2.3 BSE images of the as-received material with high and low magnification. 

For this research, each mean grain size calculation was determined by using the equivalent 

diameter calculation method instead of the linear intercept method due to elongated near 

ellipse-shaped grains. Figure 2.4 shows a schematic illustration of elongated grains. 
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Figure 2.4 A schematic illustration of elongated near ellipse-shaped grains. |AB| and |CD| 
are maximum and minimum length of grains. 

AB = a	and	 CD = b  

𝑑J�I0�RHJ9r =
𝑎M + 𝑏M

2
 

2.2 ECAE Conditions for Each Billet 

The ingot was cut into 4 billets via electrical discharge machining (EDM). The billets were 

machined down to a 25 ´ 25 mm2 cross section prior to ECAE. After EDM, we decided 

which ECAE parameters would be used. Table 2.2 shows the ECAE parameters of this 

research. As a first pass, we chose Route A for each billet. As a second pass, we chose 

Route C to be recovered to its near-original grain shape after Route A for each billet. After 

the even Cs pass, such as 2C and 4C, the microstructure shapes of the billets became 
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equiaxed, meaning grains have axes of almost the same length. This was important 

because having equiaxed grains was a sign of a successful recrystallization. 

Table 2.2 The ECAE process conditions and parameters for the four billets.  

 

Figure 2.5 shows the equal channel angular extrusion die that was used for this study. Only 

3C-900-700-500 °C was exposed to three passes. Extrusions were performed at different 

rates. The ECAE deformation of CoCrFeMnNi was conducted at high homologous 

temperatures. We performed a heat treatment for all the billets at 1200 °C for two hours 

2C-900-1000
�
C 2C-900-300

�
C 3C-900–700-500

�
C 2C-900-700

�
C

Heat Treatment

Temperature (
�
C) and

Time

– 1200�C
2 hours

1200�C
2 hours

1200�C
2 hours

Temperature for 1st

Pass(
�
C)

900�C 900�C 900�C 900�C

Temperature for 2nd

Pass(
�
C)

1000�C 300�C 700�C 700�C

Temperature for 3rd

Pass(
�
C)

– – 500�C –

1A 1A 1A 1A

Routes for Each Pass 2C 2C 2C 2C

3C

0.5 0.5 0.5 0.5
Extrusion Rates for

Each Pass (inch/sec)
0.5 8.33⇥10�4 0.5

0.2

0.5

1
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to obtain homogenized material under the Argon backfill, which was used to avoid 

oxidation except for 2C-900-1000 °C.  

 

Figure 2.5 Equal channel angular extrusion die to provide severe plastic deformation. 

After the heat treatment and each pass, the billets were water quenched at room 

temperature to maintain the microstructure produced by the ECAE process and to avoid 

oxidation. Another method to protect material from oxidation was coating the billets with 

a ceramic-based glaze one-day before for every pass. Also, using a coating, such as 

ceramic-based glaze, was useful to conduct a smooth ECAE process and to prevent shear 

localization due to die chilling. Before each ECAE process, the die was preheated to 300 

°C. Even though lubricant was used in the ECAE channels, during the ECAE process, 
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high load rate was observed. Hence, we performed only two passes for some billets, while 

we conducted three passes for 3C-900-700-500 °C. 

2.3 EDM Process for As-ECAE-Processed Billets 

After the ECAE process, the billets were cut into tension samples, compression samples, 

the SEM samples and the TEM samples via EDM. Figure 2.6 shows a diagram of cutting 

schema where FD, LD, ED stand for flow directions, longitudinal directions and extrusion 

directions, respectively.   

 

Figure 2.6 3-D billet representation during a 90º-ECAE process and the orientations of 
tension and compression samples on the billet.  

2.4 Mechanical Tests 

The mechanical properties of successfully extruded billets were reported using tension 

experiments and microhardness measurements in results and discussion parts. Therefore, 
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the preparation of the samples for each experiment and the experimental methods were 

briefly explained. 

The preparation of the tension samples after the ECAE process was the first step. The 

tension samples, which were oriented parallel to the extrusion and flow direction, were 

cut by using EDM through longitudinal direction. Dog-bone shaped tension specimens 

were cut with a gage section of 8mm x 3mm with thicknesses varying from 0.45 mm to 

1.30 mm whose technical drawing is shown in Figure 2.7. 

 

Figure 2.7 A schematic illustration of the tension samples with various thickness (0.45-
1.3 mm).  

Tension tests of the as-processed ECAE samples were performed using a MTS servo 

hydraulic test frame controlled with a Teststar II system as shown in Figure 2.8. The 

tension tests were done by displacement control during loading and force control during 

unloading. A high temperature extensometer, shown in Figure 2.9, with a gage length of 
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12.7 mm, was used in tension tests to record the axial strain. The tension samples were 

tested at a strain rate of 4x10-3 s-1  up to failure. Tension tests whose results were mainly 

classified into two groups, depending on the applied force direction: ED or FD, were 

performed at room temperatures. Experiments were repeated several times for each billet 

and for each direction to check repeatability and to minimize any errors caused by shape 

effects and the extensometer. 

 

Figure 2.8 Servo hydraulic MTS load frame used for mechanical tension tests. 
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Figure 2.9 High temperature extensometer used to measure axial strain.  

Additionally, as another sign of mechanical strength, hardness tests were done by using 

the Buehler Micromet II digital microhardness test machine. The Vickers hardness test 

was performed with 500 gr force. As an indenter, a square based pyramidal diamond 

Vickers indenter was used. Ten measurements were taken from the samples apart from 

each other and away from the boundary. 

2.5 SEM and TEM Studies 

Examining of the grain size of the EP and the FP for each billet and the as-received sample 

with SEM were the fundamental part of this study to find relationship between mechanical 

properties and microstructure. Due to the ECAE process, ultra-fine submicron grained 

structure was produced. Therefore, with usual preparation, the observation of submicron 

grains was hard with SEM. In this section, the preparation of the EP and the FP samples 

from each billet, and the as-received samples were explained. We followed the steps of 

sectioning, mounting, polishing and electropolishing, or using the Vibromet machine to 
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examine them at optical microscope and SEM. Sectioning was the first step which 

minimized the areas of the samples by using the Buehler Isomet 1000 diamond saw with 

a water based lubricant. After the first step, the sectioned samples were mounted with a 

mixture of epoxy and epoxy hardener. Then, polishing was performed starting from 400 

to 1200 grit SiC paper. After SiC paper, special suspensions were used such as 6, 3, 1 and 

0.25 µm diamond suspensions, 0.5 µm Al2O3 powder, and colloidal silica having a particle 

size of 60 nm. Lastly, electropolishing or vibratory polisher was used. Since there was a 

lack of information in the ECAE process of CoCrFeMnNi HEA, numerous techniques 

were tried to see nanosized grains at the SEM studies. One of the successful methods was 

electropolishing. Figure 2.10 shows the setup for electropolishing. The samples were 

electropolished with 16 volume % H2SO4 in a methanol solution at 0 ºC to protect from 

over etching. First, to figure out optimum voltage for CoCrFeMnNi HEA, dummy samples 

were used and the voltage of power supply was gradually increased. The data from the 

computer was then collected and a graph was drawn, shown in Figure 2.11.  

 

Figure 2.10 Electropolishing setup utilized throughout the research. 
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Figure 2.11 Current and voltage relationship of equimolar CoCrFeMnNi HEA during 
electropolishing. 

As seen from Figure 2.11, the optimum voltage for equimolar CoCrFeMnNi HEA ranges 

between 1.5 and 2 voltages, which could vary with the different this power supply and the 

different setup conditions. As a final step, the electropolishing of each sample was 

completed between 30 to 60 seconds depending on surface quality and sample thickness. 

Another option as a final step was the VibroMet 2 vibratory polisher machine as shown in 

Figure 2.12. Before decided to use the VibroMet 2 vibratory polisher as a final step, the 

samples were polished starting from 400 to 600 grit SiC and then 0.5 µm Al2O3 powder. 

Then, the samples were polished for a few days with non-dry colloidal silica having a 

particle size of 60 nm.  
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Figure 2.12 VibroMet 2 vibratory polisher to prepare high quality polished surfaces. 

The SEM study was performed for secondary electron (SE) imaging and backscattered 

secondary electron (BSE) imaging of the as-received and the as- processed ECAE samples 

for the EP and the FP of each billet. For the SEM studies, FEI Quanta 600 FE-SEM was 

used with high magnification and low accelerating voltage as shown in Figure 2.13. 

 
Figure 2.13 FEI Quanta 600 FE-SEM used for high-resolution imaging of surfaces. 
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Figure 2.14 FEI Tecnai G2 F20 –TEM used for providing high-magnification images of 
the internal structure of samples.  

Samples for the TEM examination were prepared by grinding, mechanical polishing of 

slice down to 0.1 mm, punching 3mm foils. The TEM study was performed on the as-

processed 2C-900-300 °C FP and 3C-900-700-500 °C FP. Prepared 2C-900-300 °C FP 

and 3C-900-700-500 °C FP foils were twin jet electropolished with 20 volume % H2SO4 

in a methanol solution at -20 ºC.  

The TEM study was conducted with FEI Tecnai G2 F20 –TEM at 200 kV for thin foils of 

2C-900-300 °C FP and 3C-900-700-500 °C FP. Figure 2.14 shows the TEM which was 

used for this study. Figure 2.15 shows the summary of the experimental process. 
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Figure 2.15 Summary of experimental methods utilized throughout the research.  
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CHAPTER III  

RESULTS AND DISCUSSIONS ON 2C-900-1000 °C 

3.1 ECEA Conditions and Processing of 2C-900-1000 °C  

The as-received equiatomic CoCrFeMnNi HEA initially heated up to 900 °C for 30 

minutes. Meanwhile, the ECAE die was preheated to 300 °C. The as-received 

CoCrFeMnNi billet was extruded in a 90° die. For the first pass, the extrusion took place 

at a rate of 0.5 inch/sec. After the first pass, the billet was water quenched to protect the 

microstructure that was successfully achieved during the ECAE process. After each pass, 

the billets were water quenched. During the first pass, we achieved a very high load; 

therefore, we increased the temperature of the second pass to 1000 °C. For the second 

pass, the billet was reheated to 1000 °C for 30 minutes and with the same extrusion rate; 

the second pass was completed successfully. Figure 3.1 summarizes all the conditions for 

2C-900-1000 °C. 
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Figure 3.1 The flowchart of the ECAE processed 2C-900-1000 °C material. 

3.2 Microstructure Evaluation After ECAE 

After the ECAE process, we examined the FP and the EP of 2C-900-1000 °C with SEM 

to evaluate the grain size of the samples. Figure 3.2 shows the BSE images of 2C-900-

1000 °C on the extrusion plane with high and low magnification. It can be seen that the 

microstructure consisted of both equiaxed and somewhat elongated grains. The long axes 

of the elongated grains were near parallel to the shear direction. The mean grain size of 

2C-900-1000 °C on the extrusion plane was 0.48 ± 0.16 µm, which was calculated by the 

equivalent diameter method, whereas there were also some other grains whose sizes are 

up to 1.5 ± 0.5µm containing poorly defined dislocation arrangements. 

 

As-received

1st pass

T	=	900	C

Route:	1A

Ext	Rate	=	
0.5	inch/sec

2nd pass

T	=	1000	C

Route:	2C

Ext	Rate	=	
0.5	inch/sec
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Figure 3.2 BSE images of the as-processed 2C-900-1000 °C ECAE material on the EP 
with low and high magnification. 

 

 

Figure 3.3 BSE images of the as-processed 2C-900-1000 °C ECAE material on the FP 
with low and high magnification. 

Figure 3.3 shows the SEM images of 2C-900-1000 °C on the flow plane with high and 

low magnification. The microstructure of 2C-900-1000 °C on the flow plane was most 
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likely to be equiaxed. The mean grain size of 2C-900-1000 °C on the flow plane was 0.67 

± 0.18µm. In Figure 3.3, we observed annealing and deformation twinning mechanisms, 

which were shown with red and blue arrows, respectively. Even at a high temperature, we 

achieved small equiaxed grains and occasionally deformation twinning. It could be 

because of high strain rate during the ECAE process. 

3.3 Mechanical Behavior After ECAE 

In [25], Otto showed tensile test results of the as-received samples with a mean grain size 

155µm at room temperature. He stated that yielding stress and ultimate tensile stress of 

as-cast material were around 165 and 500 MPa, respectively. For our as-cast material, we 

expected the same results for yielding stress because of very similar grain size effect. After 

2C-900-1000 °C ECAE, on the extrusion plane, the increase in yielding stress was almost 

5 times larger than the as-received material with more than 20% strain. On the other hand, 

with the same ECAE-processed sample along flow directions, the results were a bit 

different than the extrusion direction. The yielding stress of the samples was still almost 

4 times greater than the as-received one, yet 2C-900-1000 °C-FD was not as ductile as 

2C-900-1000 °C-ED as shown in Figure 3.4. Some mechanical properties, such as 

ductility, depend on the orientation of the grains and the texture of the billets. As further 

research, the texture and grain orientation can be investigated in detail to understand the 

reason behind the different strains. 
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Figure 3.4 The tensile engineering stress-strain curves of the ECAE processed 2C-900-
1000 °C samples along the ED and the FD, respectively. 
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As another sign of strength of the material, the Vickers hardness test was conducted for 

as-received material and the first and the second pass of 2C-900-1000 °C materials. The 

hardness of the as-cast materials was around 140 HV, while the hardness of the first pass 

sample was almost 2 times greater than that of the as-received material. Hardness results 

of the first and the second pass of 2C-900-1000 °C were almost the same.  

 

Figure 3.5 The hardness test results of as-received material and the ECAE processed 2C-
900-1000 °C samples after the first pass and after the second pass. 

We thought that after the ECAE process, the porosity coming from as-cast material could 

be closed down, yet as can be seen from Figure 3.6, we could not close them down. In 

fact, the reason why we could not achieve more ductility for this billet could be expressed 

with these porosity clusters. They were smaller than as-cast porosities, but they were more 

homogenized among the billet. Therefore, initial porosity affected the void nucleation and 

the crack propagation significantly. We could achieve more ductile materials after ECAE 

if we would get rid of as-cast porosity. 
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Figure 3.6 Porosity clusters inside as-ECAE-processed 2C-900-1000 °C material. 

 
  

Porosity after
the ECAE
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CHAPTER IV  

RESULTS AND DISCUSSIONS ON 2C-900-300 °C 

4.1 ECEA Conditions and Processing of 2C-900-300 °C  

Heat treatment was conducted for the as-received equiatomic CoCrFeMnNi HEA with the 

Argon backfill for 2 hours at 1200 °C to homogenize the sample before the ECAE process.  

Then, the billet was water quenched at room temperature. Afterwards, it was heated up to 

900 °C for 30 minutes. Meanwhile, the ECAE die was preheated to 300 °C. The as-

received CoCrFeMnNi billet was extruded. For the first pass, the extrusion took place at 

a rate of 0.5 inch/sec. After the first pass, the billet was water quenched to protect the 

microstructure that was successfully achieved during the ECAE process, as mentioned in 

Section 3.2. For the second pass, the billet was reheated to 300 °C for 30 minutes, and the 

second pass was completed successfully with the very low extrusion rate (8.33´10-4). We 

chose slow extrusion rate at 300 °C because it is hard to perform ECAE at room 

temperature. Therefore, when the temperature decreases, to protect the billet and the 

ECAE die, we should proceed the ECAE process at a low extrusion rate. Figure 4.1 

summarizes all the conditions for 2C-900-300 °C. 
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Figure 4.1  The flowchart of the ECAE processed 2C-900-300 °C material. 

4.2 Microstructural Evaluation After ECAE 

Figure 4.2 shows the SEM images of 2C-900-300 °C on the extrusion plane with low 

magnification quality. As can be seen in Figure 4.2, the microstructure consisted of both 

large equiaxed and somewhat small elongated grains. The mean grain size of 2C-900-300 

°C on the extrusion plane was 0.63 ± 0.1 µm, which was calculated by the equivalent 

diameter method. However, there were also some other grains whose sizes were up to 1 ± 

0.3 µm. The reason why some grains’ sizes were remarkably larger than the rest is 

containing poorly defined dislocation arrangements. 

Annealing	2	hours	at	
1200	C

1st Pass

T	=	900	C

Route:	1A

Ext	Rate	=	0.5	
inch/sec

2nd Pass

T	=	300	C

Route:	2C

Ext	Rate	=	
8.33x10-4
inch/sec

As-received



 

 61 

 

Figure 4.2 BSE images of the as-processed 2C-900-300 °C ECAE material on the EP with 
low magnification. 

 

Figure 4.3 BSE images of the as-processed 2C-900-300 °C ECAE material on the FP with 
low magnification. 
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Figure 4.3 shows the SEM images of 2C-900-300 °C on the flow plane with low 

magnification. The investigation of the microstructure with high magnification was 

performed. The microstructure consisted of elongated grains. The mean grain size of 2C-

900-300 °C on the flow plane was 0.43±0.09 µm, which was calculated by the equivalent 

diameter method. On the other hand, there were also some other grains whose sizes were 

up to 0.67±0.1 µm.  

The TEM study was conducted on the flow plane of the as-processed 2C-900-300 °C 

ECAE sample. The reason why the TEM sample was conducted for this sample is to 

observe annealing and deformation twinning. We did not investigate any twinning for this 

sample via the SEM. Therefore, we wanted to make sure whether or not there was a 

twinning mechanism for this samples.  

Figure 4.4 shows the bright field TEM micrographs of 2C-900-300 °C on the FP. These 

were the proofs that the quite refined structure was achieved by the ECAE process. Figure 

4.5 indicates that the most significant finding with the TEM studies was deformation 

twinning. This was the first-time that deformation twinning were detected at such high 

homologous temperatures because of a high rate deformation, which was caused by the 

ECAE process. 
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Figure 4.5 Continued. 
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Figure 4.5 Continued. 
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Figure 4.5 Continued. 



 

 69 

4.3 Mechanical Behavior After ECAE 

As we know, there is a trade-off between strength and ductility of the ECAE materials. 

When strength increases, the material usually shows brittle mechanical properties. 

Compared with 2C-900-1000 °C, there was an increase in the yielding stresses of the 2C-

900-300 °C samples, whereas there was a drop in ductility as shown in Figure 4.6. The 

yielding stress of the 2C-900-300 °C ECAE sample along the ED was almost 6 times 

greater than the as-received one and 1.4 times greater than the 2C-900-1000 °C ECAE 

sample along the ED. On the other hand, 2C-900-300 °C-ED was not as ductile as 2C-

900-1000 °C-ED. The engineering strain of 2C-900-300 °C-ED was around 12%. Similar 

to 2C-900-1000 °C, there was an increase in the yielding stress of 2C-900-300 °C-FD and 

a decrease in ductility compared with 2C-900-300 °C-ED. Some mechanical properties, 

such as ductility, depend on the orientation of the grains and the texture of the billets. As 

further research, the texture and grain orientation can be investigated in detail to 

understand the reason behind the different strain rates. 
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Figure 4.6 The tensile engineering stress-strain curves of the ECAE processed 2C-900-
300 °C samples along the ED and the FD, respectively.  
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In addition to traditional tensile tests, a tension test with DIC method was performed for 

this billet along the ED. Figure 4.7 shows the stress field during the experiment. With the 

set of the images, the stress field was analyzed on the sample. For example, the red color 

region was the high stress field which means propagation of the crack was on that field.  

 

Figure 4.7 (a) The tensile engineering stress-strain curve along the ED, and (b) one of the 
DIC images during the experiment with the stress field.  

1

(a)

(b)
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CHAPTER V  

RESULTS AND DISCUSSIONS ON 3C-900-700-500 °C 

5.1 ECEA Conditions and Processing of 3C-900-700-500 °C  

Similar to the 2C-900-300 °C billet, heat treatment was conducted for the as-received 

equiatomic CoCrFeMnNi HEA with the Argon backfill for 2 hours at 1200 °C to 

homogenize the sample before the ECAE process.  Then, the billet was water quenched at 

room temperature. Afterwards, it was heated up to 900 °C for 30 minutes. Meanwhile, the 

ECAE die was preheated to 300 °C. The as-received CoCrFeMnNi billet was extruded at 

a rate of 0.5 inch/sec following Route A. After the first pass, the billet was water quenched 

to protect the microstructure that was successfully achieved during the ECAE process.For 

the second pass, the billet was reheated to 700 °C for 30 minutes and the second pass was 

completed successfully following Route C with the same extrusion rate. For the third pass, 

Route C was followed with slower extrusion rate (0.1 inch/sec) than the previous ones. 

Figure 5.1 summarizes all the conditions for 3C-900-700-500 °C. 
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Figure 5.1  The flowchart of the ECAE processed 3C-900-700-500 °C material. 

5.2 Microstructural Evaluation After ECAE 

Figure 5.2 shows the SEM images of 3C-900-700-500 °C on the extrusion plane with low 

magnification. The microstructure consisted very small grains. The mean grain size of 3C-

700-500-300 °C on the extrusion plane is 0.29 ±0.07 µm, which is almost 690 times 

smaller than the as-received grains. 

As-received
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Figure 5.2 BSE images of the as-processed 3C-900-700-500 °C ECAE material on the EP 
with low magnification. 

 

Figure 5.3 BSE images of the as-processed 3C-900-700-500 °C ECAE material on the 
FP with low magnification. 

Figure 5.3 shows the SEM images of 3C-900-700-500 °C on the flow plane with low 

magnification. The microstructure consisted of both equiaxed and somewhat elongated 
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grains. The mean grain size of 3C-900-700-500 °C on the flow plane was 0.57 ±0.15 µm, 

which was almost twice greater than that of 3C-900-700-500 °C on the extrusion plane. 

The TEM study was conducted on the flow plane of the as-processed 2C-900-300 °C 

ECAE sample. The reason why the TEM sample was conducted for this sample is to 

observe annealing and deformation twinning. We did not investigate any twinning for this 

sample via SEM. Therefore, we wanted to make sure whether or not there was a twinning 

mechanism for this samples.  

Figure 5.4 shows the bright field TEM micrographs of 3C-900-700-500 °C on the FP. 

They were the proofs that quite refined structure was achieved by the ECAE process. 

Figure 5.5 indicates that the most significant finding with the TEM studies wass 

deformation twinning. This was the first-time that deformation twinning was detected at 

such high homologous temperatures because of a high rate deformation caused by the 

ECAE process. 



 

 76 

 

1

Fi
gu

re
 5

.4
 T

EM
 im

ag
es

 o
f t

he
 a

s-
pr

oc
es

se
d 

3C
-9

00
-7

00
-5

00
 °

C
 E

C
A

E 
m

at
er

ia
l o

n 
th

e 
FP

. 



 

 77 

  

1

Fi
gu

re
 5

.4
 C

on
tin

ue
d.

 



 

 78 

1

Fi
gu

re
 5

.4
 C

on
tin

ue
d.

 



 

 79 

  
1

Fi
gu

re
 5

.5
 B

rig
ht

-f
ie

ld
, d

ar
k-

fie
ld

 a
nd

 th
e 

di
ff

ra
ct

io
n 

pa
tte

rn
 o

f T
EM

 im
ag

es
 o

f 3
C

-9
00

-7
00

-5
00

 °
C

 p
ro

ce
ss

ed
 m

at
er

ia
l o

n 
th

e 
FP

. 



 

 80 

 

 

Figure 5.5 Continued. 
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Figure 5.5 Continued. 
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5.3 Mechanical Behavior After ECAE 

There was an incredible increase in the yielding stresses of the 3C-900-700-500 °C 

samples, which was more than 1 GPa for along FD. However, there was a drop in ductility 

of that as shown in Figure 5.6. Although the strongest as-processed material among others 

was fabricated, the ductility was below 1%. The yielding stress of the 3C-900-700-500 °C 

ECAE sample along the FD was almost 7 times greater than the as-received one. Some 

mechanical properties, such as ductility, depend on the orientation of the grains and the 

texture of the billets. As an additional study, the texture and grain orientation can be 

investigated in detail to understand the reason behind the low ductility. After ECAE, the 

as-cast porosity did not close down, so it was the solid evidence of why the low ductility 

material was processed. 
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Figure 5.6 The tensile engineering stress-strain curves of the ECAE processed 3C-900-
700-500 °C samples along the ED and the FD, respectively. 
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After all tests, the comparison of the results in terms of the SEM images and mechanical 

test would be necessary to figure out the differences between each as-ECEA-processed 

billet. Figure 5.7 shows how successfully grain refinement was achieved for each billet 

and for each plane. The images consisted of elongated and equiaxed grains, which means 

they were bimodal grains. The max grain refinement was achieved at 3C-900-700-500 °C 

on the EP due to one more C pass differently from other billets. For 3C-900-700-500 °C 

on the FP, there was some non-uniformity. Figure 5.8 indicated how microstructure 

evaluation was completed after the ECAE process. As can be seen, there were still pores 

after severe plastic deformation, which were not desirable results due to numerous reasons. 

Yet, the most important reason why porosities were unwanted microstructural defects was 

that they enormously affected the mechanical behavior of samples. In this research, as-

cast porosity did not close down after the ECAE process and they were most likely to 

affect crack propagation during tensile tests as shown in Figure 5.9. The most brittle 

material was 3C-900-700-500 °C, whereas the most ductile one was 2C-900-1000 °C, 

among others.  
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Figure 5.8 SEM images to show porosities after ECAE of 2C-900-1000 °C and 3C-900-
700-500 °C on EP. 
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Figure 5.9 The comparison of all tension test result of billets along ED and FD. 
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CHAPTER VI  

RESULTS AND DISCUSSIONS ON 2C-900-700 °C 

Except for the last pass of 3C-900-700-500 °C billet, we followed the same procedure for 

this billet. We conducted totally two passes following Route A and Route C, respectively. 

Heat treatment was conducted for the as-received equiatomic CoCrFeMnNi HEA with the 

Argon backfill for two hours at 1200 °C to homogenize the sample before the ECAE 

process.  Then, the billet was water quenched at room temperature. Afterwards, it was 

heated up to 900 °C for 30 minutes. Meanwhile, the ECAE die was preheated to 300 °C. 

The as-received CoCrFeMnNi billet was extruded at a rate of 0.5 inch/sec following Route 

A. After the first pass, the billet was water quenched to protect the microstructure that was 

successfully achieved during the ECAE process. For the second pass, the billet was 

reheated to 700 °C for 30 minutes and with the same extrusion rate, the second pass was 

not completed successfully following Route C. Figure 6.1 summarizes the all the 

conditions for 3C-900-700-500 °C. For this billet, due to lots of cracks we did not do any 

tests. As can be seen in Figure 6.2, the cracks proceed even at the center of the billet. It 

could be because of delamination, which is a kind of a failure of a material. High shear 

stress could cause delamination, which generally follows grain boundaries. 
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Figure 6.1 Flowchart of the ECAE processed 2C-900-700 °C material. 

 
 

 

Figure 6.2 Extruded 2C-900-700 °C after two passes at 900 °C and 700 °C. 
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CHAPTER VII  

CONCLUSIONS AND FUTURE DIRECTIONS 

Near-equimolar quinary CoCrFeMnNi HEA was supplied from the company called 

Sophisticated Alloys in the form of a cylindrical rod with 1.25-inch diameter and 20-inch 

length.  The alloy had a composition of 23.01% Co, 16.98% Cr, 19.79% Fe 18.85% Mn, 

21.37% Ni and was fabricated by the vacuum induction melting technique under the Argon 

backfill. To fabricate ultra-fined grains from as-cast materials, Equal Channel Angular 

Extrusion (ECAE), which has been successful and feasible method, was used. The 

different microstructures, such as different grain size and different shaped-grains, were 

obtained after the ECAE process. The SEM studies were conducted to observe the 

microstructures of the extrusion plane and the flow plane of each billet. To interpret the 

deformation mechanisms, such as deformation twinning, another microstructural analysis 

was conducted by TEM after the ECAE process. In addition to microstructural analysis, 

mechanical tests were conducted in this research to interpret dependently the 

microstructure evaluation and mechanical behavior. Based on our observations, the 

following conclusions can be drawn for each billet.  

2C-900-1000 °C 

1. The mean grain size of 2C-900-1000 °C on the extrusion plane was 0.48 ± 0.16 

µm, whereas on the flow plane this value was 0.67 ± 0.18 µm. Another observation 

about grains was their shapes. On the flow plane, the grains were more likely to be 

equiaxed, while on the extrusion plane, they were bimodal, which was a sign that 
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small part of the sample had some non-uniformity after severe plastic deformation. 

2. On the flow plane, the deformation and the annealing twinning mechanisms were 

observed in the SEM studies. 

3. Mechanical tests were performed for this samples along ED and FD several times. 

The tensile strains along ED was impressive for 2C-900-1000 °C which was 

greater than 20%. In addition to 20% strain, the yielding stress which was around 

700 MPa along ED, was remarkable. 

4. Along FD, there was a decrease in ductility and yielding stress for 2C-900-1000 

°C because of the grains’ orientations and the texture. Additional study about 

texture analysis is needed to understand the difference between tensile results of 

FD and ED. 

2C-900-300 °C 

1. On the extrusion plane, the average grain size of 2C-900-300 °C was 0.63 ± 0.1 

µm, while on the flow plane this value was 0.43 ± 0.09 µm. Via the SEM studies, 

we concluded that on the extrusion plane, the shapes of the grains were equiaxed, 

while on the flow plane they were bimodal, which means grains were mixture of 

equiaxed and elongated grains with the different size. 

2. On the flow plane, the TEM studies were conducted. The most important finding 

was that deformation twinning pairs were observed. This is the first time we 

observed twinning mechanisms at such a high temperature. The reason was that 

we achieved high rate deformation via the ECAE process so it caused deformation 
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twinning on the FP. 

3. Mechanical tests were performed for this samples along ED and FD several times. 

The yielding stress was remarkable which was around 1 GPa along ED and more 

than 1 GPa along FD. As a result of the increased strength, a bit drop in ductility 

was as expected. Tensile strains along ED were greater than 10%, while that along 

FD were around 5%. 

4. There was a decrease in ductility for 2C-900-300 °C along ED because of the 

grains’ orientations and the texture. Further study about texture analysis is needed 

to understand the difference between tensile results of FD and ED. 

3C-900-700-500 °C 

1. The average grain size of 3C-900-700-500 °C on the EP was 0.29 ± 0.07 µm, while 

that on the FP was 0.57 ± 0.15 µm. After the SEM studies, we observed that on the 

extrusion plane the shapes of the grains were equiaxed, while on the flow plane, 

they were bimodal. 

2. On the flow plane, the TEM studies were conducted. Again, for this sample, the 

most significant finding with the TEM studies was the observation of deformation 

twinning. As mentioned before, this is the first-time deformation twinning was 

detected at such high homologous temperatures because of high rate deformation 

caused by the ECAE process. 

3. Again, mechanical tests were performed for this samples along ED and FD several 

times. The yielding stress was remarkable which was around 1 GPa along FD. 
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Surprisingly, there was a drop-in ductility and strength along ED compared with 

FD. The porosity was most likely to cause these drops. 

4. Compared with other billet tensile test results, the strain rates were quite low. We 

thought that it could be because of one more C pass differently from other billets. 

Future research is needed to understand the reason behind low ductility behavior. 

2C-900-700 °C 
  

1. For this billet, due to lots of cracks we did not perform any tests.  

2. As can be seen in Figure 6.2, the cracks proceed even at the center of the billet. It 

could be because of delamination which is a kind of failure. High shear stress could 

cause it, which generally follows grain boundaries. 

3. To understand and investigate the reason behind the deep crack propagation, 

further study is necessary. 

 
Although we gained a greater understanding of the effects of the ECAE deformation on 

equimolar CoCrFeMnNi HEA in this study, as a future study, we can perform some 

experiments to clarify the questions about this research. Based on what kind of 

clarification is needed, the following future directions can be drawn. 

 
1. As-received material was used for the entire study, and porosity caused some 

issues. Therefore, instead of starting from as-cast material we should have started 

with wrought materials. We ordered new material and we applied hot extrusion in 

order to close down to porosity. Unluckily, we did not have time to process that 
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material. Therefore, we need to process this material to see the differences. With 

hot-extruded material, the results can be better in terms of ductility after the ECAE 

process. 

2. The texture and the grains’ distribution should be looked to investigate the results 

more deeply. 

3. We need to populate more different processing by altering temperatures, routes, 

the number of passes and extrusion rates to observe the differences between each 

other. 
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