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ABSTRACT 

 

Under common-item nonequivalent groups design linking, the functionality of 

common items as bridge between two parallel forms entails strict content and statistical 

restrictions on these items. Despite representativeness to the whole test, and similar 

positions of item placement on each of the parallel forms, common items could present 

differential item functioning (DIF) effects between test takers of different forms, 

especially when the groups of test takers are not equivalent in ability profiles. DIF 

common items under such scenario should impair the adequacy of linking if they were 

used as linking items instead of being examined and then taken care of. However, the 

menace of DIF common items on linking has not been substantiated by research yet. 

In the current study, I have reviewed the related literature in item response theory, 

equating, and differential item functioning with emphases on linking methods, forms of 

DIF, and DIF detection methods. Responding to the scarcity of research on DIF common-

item effects on linking, a series of Monte Carlo simulation studies were conducted under 

common-item nonequivalent groups design linking, testing potential influential factors in 

empirical research, i.e., sample size, ratio of common items, ratio of DIF items, magnitude 

of DIF, form of DIF, and direction of DIF. Recovery of equating slope A and equating 

intercept B, and item discrimination a and item location b was evaluated using signed bias 

and root mean square error (RMSE).  

My results show that generally as sample size went up, the bias and RMSE went 

down, an effect tended to level off at 1000 participants in each group. The number of DIF 
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common items and the magnitude of uniform DIF items were testified as more influential 

factors than number of common items and the direction of DIF. As the number of DIF 

common items increased, and/or the magnitude of uniform DIF increased, the bias and 

RMSE increased quickly. Bias and RMSE of equating intercept B was mostly related to 

the uniform DIF common items against or in favor of group 2 test takers, while bias and 

RMSE of equating slope A was mostly related to the nonuniform DIF common items 

against or in favor of group 2 test takers. Only B was seriously biased when having uniform 

DIF. Both B and A were seriously biased when having uniform and nonuniform DIF at the 

same time. Overall, the mean bias and mean RMSE of item discrimination a, and the mean 

bias and mean RMSE of item location b were small on most simulation conditions. Within 

common items, the mean bias and mean RMSE of item discrimination a, and the mean 

bias and mean RMSE of item location b were sensitive to simulation condition changes. 

Results were canvassed and limitations were pointed out at the end of this dissertation 

with recommendations for future research. 
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1. INTRODUCTION 

 

Test equating is one of the constant challenges that exist in the process of assigning 

numbers (i.e., test scores) to individuals to represent their certain trait or characteristic and 

using test scores for decision-making. Almost all types of test scores are of concern, e.g., 

norm-referenced scores used for school placement and grade advancement, such as SAT, 

ACT, and GRE, and criterion-referenced scores used for licensing purpose, such as 

driver’s license exam, medical licensing examination, and a bar examination in law. 

Testing practitioners, educational researchers, and policy makers should take cautions 

when reporting, analyzing, and making decisions with test scores coming from different 

sittings or forms among different groups of test takers. The ideal situations include 1) 

multiple groups of people taking exactly the same form of a test; and 2) the same group of 

people repeatedly taking different forms of the same test. For the first situation, the 

observed mean differences are indicators of true ability differences among groups. Test 

scores could be compared directly without transformation or adjustment. In the second, 

the observed mean differences originate as test forms are different in difficulty. Testing 

scores between two forms could be compared after adjusting for the mean difference. 

However, it is not uncommon that different groups of people take alternate forms of the 

same test for the same purpose on different dates or in different terms of the examination 

due to test security concerns. Under such circumstances, meaningful comparisons are not 

achievable without test equating.  
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Equating existed as a statistical procedure to adjust for reasonable amount of 

difference in testing difficulties between alternate forms that are constructed under the 

same construct, content, and statistical specifications (Kolen & Brennan, 2013). Without 

adequate equating, some test takers could be advantaged sitting in an easy form of a test, 

while others could be disadvantaged sitting in an alternate form of the same test that is 

difficult. Equating is leverage to fairness in psychological measurement. Another leverage 

to measurement fairness is the testing of measurement invariance, the process of 

identifying measurement bias and purifying the test items to build an unbiased instrument. 

Even though acknowledged as two aspects that could impair testing fairness when not 

handled properly, research in two areas are not going hand in hand. Seldom has associated 

the two areas at the same time to explore the effect of measurement noninvariance or 

differential item functioning (DIF) on linking/equating results.  

 Measurement invariance has long been tested within the multiple group 

confirmatory factor analysis framework for factorial invariance (Reise, Widaman, & 

Pugh, 1993). Within IRT framework, Likelihood ratio test, Wald statistics, Mantel-

Haenszel statistics, Raju area statistics, differential functions of items and tests (DFIT), 

and SIBTEST have been used and studied in item bias detection (Embretson & Reise, 

2000; Millsap & Everson, 1993; Roussos & Stout, 1996). The evaluative studies with 

simulations generally favored DFIT method. Item bias detection methods are applied with 

the assumption that parameter estimates on different forms are on the same scale. When 

groups of test takers are not randomly equivalent and separate estimation is performed, 

linking step is required to put parameter estimates from different forms on the same scale. 
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Hanson and Beguin (1999) found it was even beneficial to perform linking and parameter 

scaling with randomly equivalent groups. Commonly used parameter linking methods 

include mean/mean method, mean/sigma method, item characteristic curve method, test 

characteristic curve method, minimum chi-square method (Divgi, 1985; Haebara, 1980; 

Loyd & Hoover, 1980; Marco, 1977; Stocking & Lord, 1983). Evaluative studies have 

emerged and favored toward the test characteristic curve method.  However, adequate 

linking and item bias detection are not separate procedures but dependent on each other. 

The isolation of linking methods to DIF detection methods will still result in inefficiency 

altogether. Therefore, several two-stage iterative procedures were proposed by researchers 

to take care of the two problems at the same time (Lord, 1980; Marco, 1977; Park, 1988; 

Park & Lautenschlager, 1990; Segall, 1983).  

Past research was performed and recommendations were generated on how to do 

linking in the context of item bias detection, but few studies investigated effects of item 

bias on linking and equating results when alternate forms were used for testing. Or rather, 

most studies in literature were based on different groups taking exactly the same form of 

a test, and equating was not of a concern. Bowles (2016) had pointed out that measurement 

variance or DIF should be included as important topics in the test equating illustration 

considering the measurement invariance and test equating are closely related to each other 

in the process of detection and linking.  

Limited number of studies in literature targeted measurement invariance or DIF 

and test equating at the same time. And they were not without limitations. Kim and Cohen 

(1992) compared three linking methods under both iterative and noniterative DIF 
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detection procedures and concluded that linking with test characteristic method was most 

accurate in flagging misbehaved items even when the sample size was small. However, 

the DIF effects on linking procedures were not the focus of the study. Chu and Kamata 

(2000; 2004) proposed and tested a multilevel IRT model that handles and controls DIF 

effects on equating. The focus was the performance of the multilevel IRT model when 

DIF presented compared with traditional single level IRT model. Still the DIF effects on 

linking and equating were not investigated and compared in details. Huggins (2014) has 

investigated the impact of DIF on the property of population invariance of equating and 

concluded that the population invariance property could be jeopardized when anchor items 

display DIF. Kabasakala and Kelecioğlub (2015) have investigated the effect of DIF items 

on equating under both traditional IRT and multilevel IRT models with varied magnitudes 

of DIF and different placements of DIF. However, the study was conducted under the 

common items equivalent groups design.  

In addition to the fact that limited number of studies investigated DIF effects on 

linking and equating in details, another characteristic of existed studies was the origins of 

DIF. Among all studies mentioned in the previous paragraph, DIF happened between a 

focal and reference groups, e.g., subpopulations in test score reporting, gender, or other 

demographic variable. Since DIF was not related to the study design or forms of the test, 

both focal and reference groups still took the same set of items. I will scrutinize the effects 

of DIF on linking when DIF happens due to nonequivalent abilities in two groups. Under 

common items nonequivalent groups design and the nature of DIF I will explore, the bias 

is only possible within the common items on different forms. Two groups of test takers no 
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longer take the same items as previous studies. Examples of DIF due to group ability 

difference could be a grade based subject test, like a math or a reading comprehension test. 

Common items are placed on tests for adjacent grades, e.g., grade 3 and grade 4 sharing 

common items, and grade 4 and grade 5 sharing the same set or another set of common 

items, a situation that is not uncommon in educational assessment.  

There are several reasons to hypothesize the relationship of DIF and linking under 

common items nonequivalent groups data collection design. First, common-items in 

equating designs are required to be miniature of the whole test especially when group 

ability difference presents (Cook & Petersen, 1987). When DIF presents, the 

representative of those common items should be impaired. Consequently, assumption of 

the equating design is violated and equating adequacy will be compromised. Second, the 

deduction of linking constant, A and B, no matter through moment methods or test 

characteristic curve methods, should be affected when DIF appears in the common items. 

In a more specific way, the DIF items will have different item parameters and the moments 

of the common items or the item characteristic curves will be affected directly. Since the 

characteristic curve methods used the raw information from each biased item directly, 

linking functions obtained from characteristic curve methods have been assumed to 

contain more bias. Third, the item bias could happen in a subtler way. Even though, the 

common items are well established in the previous test developing, linking, and equating 

procedures, the item parameters could change in the long run. That is the item might 

become dated to the current test takers. When equating the new form to the old form, the 

adequacy of the equating could be comprised due to dated and biased items. Also, within 
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the common-item nonequivalent groups design or when vertical equating is under concern, 

some of the common items could have different item performance due to the difference in 

test difficulty and the difference between group abilities. 

Considering the current status of literature on DIF, liking, and equating studies, it 

is necessary to explore the DIF effects on linking and item parameter recovery in details. 

Given various reasons that DIF items could present within common items nonequivalent 

groups design due to group ability difference, it is also important to delineate the impact 

of DIF items on equating coefficients and item parameter recovery. I will address the 

related issues in this study. 
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2. LITERATURE REVIEW 

 

2.1. Overview of Item Response Theory 

The theoretical and applicable development of item response theory (IRT) 

followed two lines, one represented by Lord, Novick, and Birnbaum with the publishing 

of Statistical Theories of Mental Test Scores (Lord, Novick, & Birnbaum, 1968), and the 

other characterized by Rasch and his book Probabilistic Models for some Intelligence and 

Attainment Tests (Rasch, 1960). However, up until the 1970s and 1980s, the basics and 

skills of IRT were new or remain unknown to most of psychological practitioners 

(Embretson & Reise, 2000). 

In general, the IRT model is a logistic function with bounded area between 0 and 

1. Depending on the type of the data collected, binary or Likert type scale, IRT models 

can be divided into dichotomous IRT models and polytomous IRT models. Based on the 

dimensions of the data, IRT models can have unidimensional models and 

multidimensional models. In the current research, only unidimensional models are 

discussed.  

2.1.1. Assumptions  

 Three assumptions are made when using unidimensional IRT modeling, i.e., 

unidimensionality, local independence, and form of item response function. 

Unidimensionality requires only one latent variable underlies the response to all items, or 

the test only measures one latent variable. The unidimensionality seems to restrict on test 

development stage. However, upon responding to the items developed to measure a single 
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latent variable, a lot of other factors are concerted to give the best answer. For example, 

in working out a solution toward a mathematic problem, the reading comprehension and 

the special imagination ability may also come into cooperation. In most cases, the 

unidimensionality is reduced to have a principal single factor underlying the response to 

items. Using collected data and fitting a unidimensional IRT model, unless the assumption 

of unidimensionality is severely violated, the model still provides useful information about 

item parameters and latent variable.  

Local independence is satisfied if the joint probability of p number of item 

response pattern is equal to the multiplication product of the probability of each item 

response given a latent variable, which could be expressed as 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑝|𝜃) = ∏ 𝑃(𝑋𝑗|𝜃)𝑝
𝑗=1 .   (1) 

Local independence states that with the test targeted latent variable taking into account, 

the responses to any pair of items are not associated. Local independence does not indicate 

that a person’s responses to items are not correlated, but are all accounted for by the latent 

variable to be measured. This is very similar to the idea in the factor analysis. If only one 

latent factor is behind all measured variables, the residual variance of the all measured 

variables are not correlated after accounting of the one common factor. The local 

independence confirms that responses to all items are determined by one latent variable, 

which echoes the assumption of unidimensionality. However, local independence can be 

obtained even when the data is multidimensional. As a necessary condition for 

unidimensionality, the local independence will hold when unidimensionality assumption 

is met. 
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 The IRT modeling also requires the shape of item response function (IRF) or the 

item characteristic curve (ICC) to be a monotonically increasing function. As the latent 

variable 𝜃 is increasing, the probability of getting form the IRF is increasing, indicating 

the probability of passing an item is increasing, given the item parameters. A typical three 

parameters logistic model is written as  

𝑃((𝑋𝑖𝑗 = 1|𝜃𝑖) = 𝑐𝑗 + (1 − 𝑐𝑗)
𝑒𝑥𝑝[𝑎𝑗(𝜃𝑖 − 𝑏𝑗)]

1 + 𝑒𝑥𝑝[𝑎𝑗(𝜃𝑖 − 𝑏𝑗)]
,                            (2) 

Where 𝑋𝑖𝑗  is the item response of 𝑖𝑡ℎ  person on 𝑗𝑡ℎ  item, 𝜃𝑖  is the 𝑖𝑡ℎ  person latent 

variable score, and 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗  are the 𝑗𝑡ℎ  item discrimination, difficulty, and pseudo-

guessing parameter, respectively. If  𝜃1 < 𝜃2 , 𝑃((𝑋1𝑗 = 1|𝜃1) < 𝑃((𝑋2𝑗 = 1|𝜃2) . The 

shape of the response function is curvilinear with a bounded area between 0 and 

2.1.2. Dichotomous IRT Models 

 When the collected data is binary type or scale that is binned to binary type for 

analysis, a set of dichotomous IRT models available for model fitting, including Rasch 

model, one parameter logistic model (1PL), two parameters logistic model (2PL), and 

three parameters logistic model (3PL). 

 Rasch model is a special case of 1PL model. The distance between person ability 

and the item location (difficulty) will predict the probability of item response. Rasch 

model is written as 

𝑃(𝑋𝑖𝑗 = 1|𝜃𝑖) =
𝑒𝑥𝑝(𝜃𝑖 − 𝑏𝑗)

1 + 𝑒𝑥𝑝(𝜃𝑖 − 𝑏𝑗)
=

1

1 + 𝑒𝑥𝑝[−(𝜃𝑖 − 𝑏𝑗)]
 .                       (3) 



10 
 

Person ability or latent variable score 𝜃𝑖 and item location 𝑏𝑗, also known as item difficulty 

are put on the same latent continuum, the range for which is (−∞, +∞). Putting on z score 

scale, the range of latent variable score 𝜃𝑖 and item location 𝑏𝑗 is roughly within (−3, +3). 

The probability of passing or endorsing an item is changing with the distance between 

latent variable score and item location. 

When 𝜃𝑖 = 𝑏𝑗, P=0.5; 

When 𝜃𝑖 > 𝑏𝑗 , P>0.5; 

When 𝜃𝑖 < 𝑏𝑗 , P<0.5. 

The item location 𝑏𝑗 is estimated at the latent variable score that has the probability of 0.5 

of passing/endorsing the item. 

 The general 1 PL model is written as having an additional constant item 

discrimination parameter 𝑎 to the Rasch model, which is 

𝑃(𝑋𝑖𝑗 = 1|𝜃𝑖) =
𝑒𝑥𝑝[𝑎(𝜃𝑖 − 𝑏𝑗)]

1 + 𝑒𝑥𝑝[𝑎(𝜃𝑖 − 𝑏𝑗)]
=

1

1 + 𝑒𝑥𝑝[−𝑎(𝜃𝑖 − 𝑏𝑗)]
 .         (4) 

When 𝑎 = 1, 1PL model is reduced to Rasch model. Using Rasch or 1PL model, each 

item is equally important in determining the item response in terms of distance between 

person ability and item location. The unweighted sum of item scores is sufficient statistics 

for estimating 𝜃𝑖. 

 Two parameters logistic model allows the items differ in both location and 

discrimination. The expression of the 2PL model is written as  

𝑃(𝑋𝑖𝑗 = 1|𝜃𝑖) =
𝑒𝑥𝑝[𝑎𝑗(𝜃𝑖 − 𝑏𝑗)]

1 + 𝑒𝑥𝑝[𝑎𝑗(𝜃𝑖 − 𝑏𝑗)]
=

1

1 + 𝑒𝑥𝑝[−𝑎𝑗(𝜃𝑖 − 𝑏𝑗)]
 .          (5) 
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The parameter 𝑎𝑗 is added to represent the item discrimination of 𝑗𝑡ℎ item. According to 

the function, the distance between person ability and item location (𝜃𝑖 − 𝑏𝑗) is weighted 

by 𝑎𝑗  in determining the probability of passing/endorsing an item. Consequently, the 

weighted sum of item scores is the sufficient statistics for estimating 𝜃𝑖. The item location 

𝑏𝑗 is still estimated at the point where the latent variable score having a probability of 0.5 

of passing/endorsing an item. The range of 𝑎𝑗 is within (0, 2). Based on the shape and 

monotonicity of IRF, the item discrimination cannot be 0 or a negative value. If 𝑎𝑗 = 0, 

the item response function will give a constant probability of 0.5 regardless of the distance 

between person ability and item location. The ICC will be a straight line at 0.5 probability 

across the x-axis continuum for person ability. If 𝑎𝑗 < 0, the IRF will be monotonically 

decreasing as the person ability increases. The larger the item discrimination is, the larger 

the difference in probabilities of passing/endorsing an item with the same amount of 

distance between person ability and item location.  

 Three parameters logistic model admits that guessing is a factor influence the item 

response when the person ability is very low. By adding the guessing parameter to the 2PL 

model, the IRF of a 3PL model is expressed in equation 2. The probability of 

passing/endorsing an item is the sum of two probabilities, i.e., the probability of guessing 

and the probability without guessing. 𝑐𝑗  is the pseudo-guessing parameter. While the real 

guesting parameter is difficult to know, the estimated value of 𝑐𝑗 usually is smaller than 

the random guessing probability. The item location is not estimated at the latent variable 

score where the probability of passing/endorsing an item is 0.5 with guessing, but the 



12 
 

latent variable score where the probability of passing/endorsing an item is 0.5 without 

guessing. When 𝜃𝑖 = 𝑏𝑗 , the 𝑃((𝑋𝑖𝑗 = 1|𝜃𝑖) = 𝑐𝑗 + (1 − 𝑐𝑗) × 0.5 = 0.5 + 0.5 × 𝑐𝑗 . In 

3PL model, the probability of passing/endorsing an item is larger than 0.5 when 𝜃𝑖 = 𝑏𝑗. 

2.1.3. Polytomous IRT Models 

  In addition to dichotomous data and binary IRT models, polytomous data are often 

used in psychology measurement, especially those measuring person’s attitude, 

endorsement, and personality. An example is the Likert type scale which might has the 

number of 1 standing for strongly disagree, 2 for disagree, 3 for neutral, 4 for agree, and 

5 for strongly agree. Binary IRT models can be fitted to those data with more than two 

categories if the data are binned into two categories according to certain cutoff values. 

However, upon reducing the data into a lower level, some of the information (variance) in 

the data is lost. Instead of stick to binary IRT models, researchers have developed IRT 

models to deal with polytomous data type. Samejima (1970) has proposed the graded 

response model, which is a more general form of 2PL model in terms of item locations. 

Other polytomous models include partial credit model, generalized partial credit model, 

rating scale model, and nominal response model (Andrich, 1978a, 1978b; Bock, 1972; 

Masters, 1982; Muraki, 1992, 1993, 1997). Categorical response function (CRF) is an 

important concept in understanding polytomous IRT model. Let’s suppose an item has 

𝑚 + 1 response options. A specific category of item response is represented by 𝑘, and 

𝑘 = 0,1,2 … 𝑚. The probability of passing/endorsing a particular response option 𝑘  is 

defined as the categorical response probability, and the CRF is written as, 

𝑃(𝑋𝑖𝑗 = 𝑘|𝜃𝑖).                              (6) 
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Categorical response function in polytomous data is not monotonic in most cases. It is 

intuitive that as the person’s ability is increasing, the probability of endorsing the lower 

response category decreases. For some intermediate response options, the probability of 

endorsing the item might be increasing as the person’s ability increases, but the probability 

of endorsing the item could also decreases as the person’s ability increases given the 

person’s ability is higher enough.  

 Graded response model (GRM) gives the cumulative probability of 

passing/endorsing the 𝑘𝑡ℎ category or higher by modifying the item location parameter 

into threshold parameters. The general expression of GRM is written as, 

𝑃(𝑋𝑖𝑗 ≥ 𝑘|𝜃𝑖) =
𝑒𝑥𝑝[𝑎𝑗(𝜃𝑖 − 𝑏𝑗𝑘)]

1 + 𝑒𝑥𝑝[𝑎𝑗(𝜃𝑖 − 𝑏𝑗𝑘)]
,                                       (7) 

where 𝑘 = 0, 1, 2, … , 𝑚 are 𝑚 + 1 response options of item j. The categorical response 

function is the difference between the cumulative probabilities of two adjacent categories 

in GRM. The categorical response function is written as,  

𝑃(𝑋𝑖𝑗 = 𝑘|𝜃𝑖) = 𝑃(𝑋𝑖𝑗 ≥ 𝑘|𝜃𝑖) − 𝑃(𝑋𝑖𝑗 ≥ 𝑘 + 1|𝜃𝑖)         

=
𝑒𝑥𝑝[𝑎𝑗(𝜃𝑖 − 𝑏𝑗𝑘)]

1 + 𝑒𝑥𝑝[𝑎𝑗(𝜃𝑖 − 𝑏𝑗𝑘)]
−

𝑒𝑥𝑝[𝑎𝑗(𝜃𝑖 − 𝑏𝑗(𝑘+1))]

1 + 𝑒𝑥𝑝[𝑎𝑗(𝜃𝑖 − 𝑏𝑗(𝑘+1))]
.            (8) 

The discrimination parameter 𝑎𝑗 indicates the steepness of the ICCs or how the categorical 

response function peaks, narrowly steep or widely flat. Parameter 𝑏𝑗𝑘  is the difficulty 

parameter of transitioning from one lower category to the adjacent higher category. 

For 𝑘 = 1 and 𝑘 = 𝑚, 𝑏𝑗1 and 𝑏𝑗𝑚 are the latent ability points when the probabilities of 

passing/endorsing an item are 0.5 on the lowest category and highest category, 
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respectively. For the intermediate category, 𝑏𝑗𝑘  is the point of the peak of the 

corresponding response category. If an item has 𝑚 + 1 response categories, there will be 

𝑚 + 1  categorical response curves and m threshold parameters. GRM does not have 

requirement on the same number of response options within a test. Items can have different 

formats in terms of response categories. 

 Partial credit model (PCM) is another polytomous IRT model when the partial 

credit is desired to be given to those who have finished some intermediate steps or on the 

medium levels of an aptitude test. Following the same assumption of having 𝑚 + 1 

response options, there will be m-1 possible partial credits could be given in addition to 0 

for no credit and m for full credit. In partial credit model, all items are assumed to be 

equally discriminating which is the same as the Rasch model. The general expression of 

IRF for partial credit model of passing/endorsing the 𝑘𝑡ℎ  category conditioning on 

completing (𝑘 − 1)𝑡ℎ category correctly, is written as, 

𝑃((𝑋𝑖𝑗 = 𝑘|𝜃𝑖 , 𝑋 = 𝑘 − 1  ) =
𝑃(𝑋𝑖𝑗 = 𝑘|𝜃𝑖)

𝑃(𝑋𝑖𝑗 = 𝑘 − 1|𝜃𝑖) + 𝑃(𝑋𝑖𝑗 = 𝑘|𝜃𝑖)
 

=
𝑒𝑥𝑝(𝜃𝑖 − 𝑏𝑗𝑘)

1 + 𝑒𝑥𝑝(𝜃𝑖 − 𝑏𝑗𝑘)
 .      (9) 

The category response function, also known as the unconditional response function for 

each response option under PCM is written as, 

𝑃(𝑋𝑖𝑗 = 𝑘|𝜃𝑖) =
𝑒𝑥𝑝[∑ (𝜃𝑖 − 𝑏𝑗𝑐)𝑘

𝑐=1 ]

1 + ∑ 𝑒𝑥𝑝[∑ (𝜃𝑖 − 𝑏𝑗𝑐)𝑘
𝑐=1 ]𝑚

𝑘=1

 ,           (10) 

where 𝑘 = 1, 2, 3, … , 𝑚, and  
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𝑃(𝑋𝑖𝑗 = 0|𝜃𝑖) =
1

1 + ∑ 𝑒𝑥𝑝[∑ (𝜃𝑖 − 𝑏𝑗𝑐)𝑘
𝑐=1 ]𝑚

𝑘=1

 ,             (11) 

when k=0. The step difficulty 𝑏𝑗𝑘 is the point of latent variable score where two adjacent 

response curves intersect. If an item has five response options, there will be four step 

difficulties, 𝑏𝑗1  is the step difficulty intersecting at 𝑘 = 0  and  𝑘 = 1 , 𝑏𝑗2  is the step 

difficulty intersecting at 𝑘 = 1 and 𝑘 = 2, and so on. 

 Another commonly used polytomous IRT model is rating scale model (RSM), 

which is a modified PCM. The step difficulty in the PCM is divided into two parts, the 

base item location and the relative difficulty of each step across all items. The model is 

obtained by replacing the 𝑏𝑗𝑘 with  𝑏𝑗𝑘 = 𝛾𝑗 
+ 𝛿𝑘  in the PCM for both conditional 

probability function and categorical response functions. For example, item 1 has five 

response categories, and the base item location is 1.66 (𝛾𝑗). The four step difficulties are 

-0.34 (𝛿1), -0.05(𝛿2), 0.67(𝛿3), 0.83(𝛿4). Item 2 also has five response options with 𝛾𝑗 =

0.78, while item 1 and item 2 will have the same 𝛿𝑘. Hence, the four step difficulties for 

item 2 are also -0.34 (𝛿1), -0.05(𝛿2), 0.67(𝛿3), 0.83(𝛿4). 

 Other polytomous IRT models included the generalized PCM, generalized PCM 

with rating scale for step difficulty, GRM with rating scale for step difficulty. Due to the 

similarity in response function, these modified models will not be introduced in detail.   

2.2. Overview of Equating 

Equating is of concern when testing scores on parallel or matched forms of a test 

from two groups are compared. Equating exists as a statistical method and a procedure to 

adjust for difficulty difference between test forms while the forms are constructed to the 
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same content specifications and statistical restrictions (Kolen & Brennan, 2013). Adequate 

equating is possible when several requirements are met. The test forms are parallel in 

terms of content (unidimensional), difficulty, validity and reliability of scores (Cook & 

Petersen, 1987; Harris & Crouse, 1993).  

Two types of equating are generally used for different data collection designs, i.e., 

horizontal equating and vertical equating. Horizontal equating is applied to equate scores 

on similar forms of a test with equivalent groups of test takers, while vertical equating is 

used to equate scores on alternate forms of a test with nonequivalent groups of test takers 

(Loyd & Hoover, 1980). Common items are usually placed in adjacent forms or among 

alternate forms in vertical equating. For example, a reading comprehension test may have 

alternate forms for grade 3 through 6. For each grade there are items are grade unique in 

terms of curriculum instructions, and there are common items placed between adjacent 

forms, like grade 3 and grade 4, and nonadjacent forms, like grade 3 and grade 5. Common 

items are used as linkage between forms. The design with common items is especially 

advantageous when using IRT modeling due to the population independent quality of item 

parameter estimates. The moments of item parameter estimates or the item response 

characteristics for the same items from different groups are used to build the linking 

functions between forms. 

2.2.1. Equating Property 

Adequate equating has several properties. Based on these properties, equating 

methods are developed, e.g., linear method, equipercentile method. After equating being 

done, these properties can also be used evaluative criteria. 
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The symmetry (exchangeable) property of equating requires that the equation that 

is used to find a score on form T (target form) that is equivalent to a specified score on 

form S (base form) (e.g., 85 is the form T equivalent score of 88 on form S) is the reverse 

function of getting a score on form S that is equivalent to a specified score on from T. The 

symmetry property could be expressed as 

𝑆∗ =  𝑓𝑇→𝑆(𝑋) = 𝑓𝑆→𝑇
−1 (𝑋),      (12) 

AND 

𝑇∗ = 𝑓𝑆→𝑇(𝑌) = 𝑓𝑇→𝑆
−1 (𝑌),        (13) 

Where 𝑓𝑆→𝑇 is the function of equating form S scores Y to the form T scale, and 𝑓𝑇→𝑆 is 

the function of equating form T scores X to the form S scale. X is the random variable 

score on form T, and Y is a random variable score on form S. 𝑋∗ is the equated random 

variable score of Y. 𝑌∗ is the equated random variable score of X. 

The equity property requires the mean, standard deviation, and the distributional 

shape of the scores that is equated from form T scale to the form S scale is the same as the 

scores originally on form S, conditioning on that the two groups of examinees have the 

same true score, or at least the mean of the true score is equal (Lord, 1980). Linear 

methods, mean and linear equating, are based on this assumption. The equity property is 

presented as 

𝑆∗[𝑦∗ = (𝑓𝑇→𝑆(𝑥)|𝜏)] = 𝑆(𝑦|𝜏).     (14) 

𝜏 is the true ability level for all examinees; 𝑆 is the cumulative distribution of form 

S scores; and 𝑆∗ is the cumulative distribution on form S scale for all equated form T 

scores. 𝑥 is a specific score of random variable score X on form T, and 𝑦 is a specific score 
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of random variable score Y on form S. 𝑦∗ is the equated score of 𝑥 on form S scale. The 

Lord’s equity property is restrictive. A relaxed version of equity property is proposed by 

Morris (1982), which requires the expectation of the equated scores is the same as the 

expected values of the scores on the base scale, i.e., 

𝐸[𝑌∗ = (𝑓𝑇→𝑆(𝑋)|𝜏)] = 𝐸[(𝑌|𝜏)],     (15) 

where 𝜏 is the true score of all examinees. 𝑌∗ is the equated random variable score of 

random variable X. 

 Observed score equity property just requires the converted scores of form T has 

the same distribution as scores on from S without condition on examinees true scores. This 

assumption is applied when using equipercentile method. The observed score equity 

property is presented as  

𝑆∗[𝑦∗ = 𝑓𝑇→𝑆(𝑥)] = 𝑆(𝑦),     (16) 

Where 𝑆 and 𝑆∗ are the same as defined in Lord’s equity property. 

Adequate equating is also group invariant in terms of the equating relationship. 

The equating function should match well no matter using the subpopulation of examinees 

or the whole examinees, or using the two subpopulations of the examinees (Cook & 

Petersen, 1987; Dorans & Holland, 2000; Dorans, Liu, & Hammond, 2008; Kolen, 2004; 

Petersen, 2007, 2008; Yi, Assessment, Harris, & Gao, 2008). In other words, the equating 

function should be population independent. Let G represents the group membership, group 

invariance property could be expressed as 

[𝑓𝑇→𝑆(𝑋)|𝐺] = 𝑓𝑇→𝑆(𝑋),             (17) 

OR 
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[𝑓𝑆→𝑇(𝑌)|𝐺] = 𝑓𝑆→𝑇(𝑌).         (18) 

2.2.2. Common Items Nonequivalent Groups Design 

The most commonly used equating designs include random groups design, 

counterbalanced single group design, and common-item nonequivalent groups design. 

Random groups design is two randomly selected groups (G1 and G2) assigned to finish 

from T and form S, respectively. Form T and form S are parallel forms of a test. 

Counterbalanced single group design involves two random groups, G1 and G2. G1 is 

assigned to take form T first, then form S, while G2 is assigned to take form S first, then 

form T. Common items nonequivalent groups design involves using anchor items in both 

form T and form S, usually accounting for 20% of the total items in an alternate form. Two 

groups of people, not required to be randomly selected are taking form T and form S, 

respectively. The current study is performed under the common items nonequivalent 

groups design.  

It is a design of anchoring with the same items in different groups. When 

common/anchor items are used as an external set, scores on them are not included as test 

scores. When common/anchor items are used as an internal set, scores are included as test 

scores. The common/anchor items bridge different forms. In traditional equating, 

moments of the common items are used to synthesize and then equating the scores of two 

groups. In IRT modeling, item parameter estimates from common items are used to 

calculate equating/transforming constants A and B. Adequate equating is largely 

determined by the characteristics of the common items. Therefore, common items should 

have the following qualities. First, common items are representative to the construct and 
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difficulty of the entire test. Cook and Petersen (1987) stated that the common items should 

be a miniature of the whole test. Second, the placement of common items in different 

forms should be arranged roughly the same to avoid item location effect. Sometimes, 

common items can be held out as separate testing session. Third, common items respond 

the same to the different groups of test taker, i.e., measurement invariance. If a common 

item has different response functions under different groups of test takers, item bias on 

that item might present.  

2.2.3. Traditional Equating Methods 

 Traditional equating methods include mean, linear, and equpercentile equating. 

Mean equating is obtained that each score point on form T is adjusted for the unsigned 

distance in means between form T and form S, or each score point on form S is adjusted 

for the unsigned distance in means between form T and form S. The unsigned distance is 

added to scores from the lower mean group, and subtracted from the higher mean group.  

 Using linear equating, the standardized normal scores (i.e., z scores) are set to 

equal on parallel forms. Under linear equating function, based on the known group means 

and variances, the score level on either form T or form S is specified first. Then equivalent 

score on form S or form T can be deducted. 

Equipercentile equating (e.g., finding the equivalent score of form T on form S) is 

achieved by finding scores on form T and S have the same percentile ranks. These methods 

are especially used with random groups design. 

When linear and equipercentile methods are used with nonequivalent groups, more 

assumptions are needed to be specified and all the methods require synthetizing the 
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populations, two nonequivalent groups. Linear methods under nonequivalent groups 

design have Tucker method, Levine observed score method, and Levine true score 

method. Equipercentile equating upon having two populations has the pool of frequency 

estimation, Braun-Holland linear method, and chained equating. Those methods are not 

as straightforward as the methods used in random groups design. They are not the studied 

method of current research, more detailed explanation and description of those methods 

can be found in (Kolen & Brennan, 2013).  

2.2.4. IRT Equating Methods 

 As a model based method, using item response theory for equating, a general 

model that fits the data well should be specified. Item parameters estimated using this 

fitted model will be used to develop equating functions. Equating using IRT are basically 

a procedure to put all item parameter and person parameter estimates on the same scale, 

then either true score or observed score calculated using item parameter estimates will be 

on the same scale. In addition, the item parameter estimates from IRT are population 

independent, which has given the IRT equating a lot convenience and flexibility.  

Altogether, scaling or equating is not necessary with random groups design when 

using IRT, because all the parameter estimates have already been put on the same scale 

no matter the item parameter estimates are obtained in separate steps or in concurrent 

estimation. In separate estimation, the group abilities are default as mean of 0 and standard 

deviation of 1, which is legitimate and not mixing the scale up because two groups are 

equivalent. Using concurrent estimation, the item parameter estimates are on the same 
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scale simultaneously. No extra step is required for equating. Person standing on the latent 

scale and item parameter estimates could be compared directly without further adjustment.  

 When using IRT equating with common-items nonequivalent groups design, the 

parameter estimates can be obtained at the same time, i.e., concurrent estimation. In this 

situation, all parameter estimates are on the same scale already, and linking and equating 

is not necessary. Scale transformation or linking is only necessary for the item parameters 

and person parameters are estimated separately. It is very common that form T is fitted 

and estimated at the time when form T is given, while later on form S is given, and 

parameters will be estimated on form S only. Since this the most often situation in reality, 

the current study will focus on common-item nonequivalent groups design with separate 

estimations.  

 Given an IRT three-parameter logistic model fits the data with parameter estimates 

of Ɵ𝑇𝑖 , 𝑎𝑇𝑗 , 𝑏𝑇𝑗, 𝑐𝑇𝑗, the linear transformation of the target scale T configured in estimation 

to the base scale is possible.  A linear transformation of Ɵ𝑇𝑖 , 𝑎𝑇𝑗, 𝑏𝑇𝑗 , 𝑐𝑇𝑗 on scale T to 

scale S, respectively, are 

Ɵ𝑆𝑖 = 𝐴Ɵ𝑇𝑖 + 𝐵,       (19) 

𝑎𝑆𝑗 =
𝑎𝑇𝑗

𝐴
,                     (20) 

𝑏𝑆𝑗 = 𝐴𝑏𝑇𝑗 + 𝐵,          (21) 

𝑐𝑆𝑗 = 𝑐𝑇𝑗.                     (22) 

The transformed scale fits the model exactly the same, i.e., 

𝑝(𝑥𝑖𝑗 = 1| (Ɵ𝑆𝑖, 𝑎𝑆𝑗, 𝑏𝑆𝑗 , 𝑐𝑆𝑗)) = 𝑝(𝑥𝑖𝑗 = 1| (𝐴Ɵ𝑇𝑖 + 𝐵,
𝑎𝑇𝑗

𝐴
, 𝐴𝑏𝑇𝑗 + 𝐵, 𝑐𝑇𝑗)).           (23) 
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The proof of such equal relationship is easy after replacing all the original scale T estimates 

with transformed values on scale S. 

𝑐𝑆𝑖 + (1 − 𝑐𝑆𝑖)
exp [𝑎𝑆𝑗(Ɵ𝑆𝑖 − 𝑏𝑆𝑗)]

1 + exp [𝑎𝑆𝑗(Ɵ𝑆𝑖 − 𝑏𝑆𝑗)]
 

=  

𝑐𝑇𝑗 + (1 − 𝑐𝑇𝑗)
exp {

𝑎𝑇𝑗

𝐴 [(𝐴Ɵ𝑇𝑖 + 𝐵) − (𝐴𝑏𝑇𝑗 + 𝐵)]}

1 + exp {
𝑎𝑇𝑗

𝐴 [(𝐴Ɵ𝑇𝑖 + 𝐵) − (𝐴𝑏𝑇𝑗 + 𝐵)]}
 

= 

𝑐𝑇𝑗 + (1 − 𝑐𝑇𝑗)
exp [𝑎𝑇𝑗(Ɵ𝑇𝑖 − 𝑏𝑇𝑗)]

1 + exp [𝑎𝑇𝑗(Ɵ𝑇𝑖 − 𝑏𝑇𝑗)]
 

The same relationship after linear transformation is also applicable to graded 

response model. All remain the same except for the difficult parameter. 

𝑏𝑆𝑗𝑘 = 𝐴𝑏𝑇𝑗𝑘 + 𝐵,         (23) 

Where k refers to the response category in the polytomous response pattern, e.g., the Likert 

scale. 

 After identifying the equal relationship with transforming the scale T estimates on 

to scale S using linear transformation, the focal is to find the transformation constant or 

equating coefficients, A and B. Scale S is not arbitrary but determined by the old form of 

a test in the scenario of equating the new form scale to the old scale for meaningful 

comparison. In general, there are two types of methods that can be used to obtain the 

equating coefficients, i.e., the first and second moment (mean and sigma) method, and the 
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item and test characteristic curve method. All methods introduced here are using the item 

parameter estimates or ability estimates on the common items. 

2.2.4.1. Mean/Mean Method 

 Using mean/mean method, both equating coefficients are expressed as the ratio or 

differences between the means of common parameter estimates as transforming from scale 

T to scale S (Loyd & Hoover, 1980). 

𝐴 =
𝜇(�̂�𝑇)

𝜇(�̂�𝑆)
  ,                                (24) 

𝐵 =  𝜇(�̂�𝑆) − 𝐴𝜇(�̂�𝑇),             (25) 

OR 

𝐵 =  𝜇(𝜃𝑆) − 𝐴𝜇(𝜃𝑇).               (26) 

As can be noticed from the equations, means of discriminating, difficulty, and 

ability estimates are used to calculate linking or equating coefficients. 

2.2.4.2. Mean/Sigma Method 

 Using mean/sigma method, the equating coefficient A is expressed using the 

standard deviations of the parameter estimates, while the equating coefficient B is 

expressed the same as the mean/mean method (Marco, 1977).  

𝐴 =
𝜎(�̂�𝑆)

𝜎(�̂�𝑇)
 ,                               (27) 

𝑂𝑅 

𝐴 =
𝜎(𝜃𝑆)

𝜎(𝜃𝑇)
 ,                                (28) 

𝐵 =  𝜇(�̂�𝑆) − 𝐴𝜇(�̂�𝑇),              (29) 
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OR 

 

𝐵 =  𝜇(𝜃𝑆) − 𝐴𝜇(𝜃𝑇).              (30) 

2.2.4.3. Haebara Method 

 Haebara (1980) proposed a characteristic curve method. Ideally, the item 

characteristic curve for an item j that is estimated on scale S and the item characteristic 

curve for the same item estimated on scale T but transformed to scale S with a given 𝜃𝑖, 

should be the same as displayed in equation 23. In reality, it is not the same when estimates 

instead of parameters are used in the item characteristic curve. Nevertheless, the difference 

should be small. The smaller the difference is, the more adequate the scale transformation 

is. According to Haebara (1980), the difference between item characteristic curves for an 

item j, one estimated on scale S and one estimated on scale T but transformed to scale S is 

squared and summed as  

𝐻𝑑𝑖𝑓𝑓(𝜃𝑖) = ∑[𝑝𝑖𝑗(𝜃𝑆𝑖 , �̂�𝑆𝑗 , �̂�𝑆𝑗 , �̂�𝑆𝑗) − 𝑝𝑖𝑗(𝐴𝜃𝑇𝑖 + 𝐵,
�̂�𝑇𝑗

𝐴
, 𝐴�̂�𝑇𝑗 + 𝐵, �̂�𝑇𝑗)]2

𝑗:𝑁

,       (31) 

where j:N is the space for common items. Then the difference is summed over examinees 

as 

𝐻𝑐𝑟𝑖𝑡 = ∑ 𝐻𝑑𝑖𝑓𝑓(𝜃𝑖)𝑖 .                  (32) 

The method proceeds with solution to A and B that makes the accumulated differences the 

smallest. 

2.2.4.4. Stocking-Lord Method 

 Stocking and Lord (1983) provided with another perspective using test 

characteristic curves instead of item characteristic curves. For a given 𝜃𝑖, the Stocking-
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Lord distance is the squared difference between summation of common item characteristic 

curves on scale S and the summation of common item characteristic curves on scale S that 

are transformed from scale T. The distance can be written as 

𝑆𝐿𝑑𝑖𝑓𝑓(𝜃𝑖) = [∑ 𝑝𝑖𝑗(𝜃𝑆𝑖 , �̂�𝑆𝑗 , �̂�𝑆𝑗 , �̂�𝑆𝑗)𝑗:𝑁 − ∑ 𝑝𝑖𝑗(𝐴𝜃𝑇𝑖 + 𝐵,
�̂�𝑇𝑗

𝐴
, 𝐴�̂�𝑇𝑗 + 𝐵, �̂�𝑇𝑗)𝑗:𝑁 ]2.        

(33) 

The distance is also summed over examinees as  

𝑆𝐿𝑐𝑟𝑖𝑡 = ∑ 𝑆𝐿𝑑𝑖𝑓𝑓(𝜃𝑖)𝑖 .                     (34) 

The equating coefficients, A and B, are optimized when the distance is the smallest.  

2.2.4.5. Divgi Minimum Chi-squared Method 

 Divgi (1985) developed the method of getting A and B by minimize the sum of the 

quadratic forms across common items, which is expressed as  

∑ 𝑄𝑗𝑗 = (�̂�𝑆𝑗 −
�̂�𝑇𝑗

𝐴
 , �̂�𝑆𝑗 − (𝐴�̂�𝑇𝑗 + 𝐵)) (∑ 𝑺𝒋 + ∑ 𝑻𝒋

∗)−1 (�̂�𝑆𝑗 −
�̂�𝑇𝑗

𝐴
 , �̂�𝑆𝑗 − (𝐴�̂�𝑇𝑗 +

𝐵))
𝑇

, (35) 

Where ∑ 𝑺𝒋 is 2 by 2 covariance matrix for is ( �̂�𝑆𝑗 , �̂�𝑆𝑗), 𝑎𝑛𝑑 ∑ 𝑻𝒋
∗
 is the 2 by 2 

covariance matrix for transformed (�̂�𝑇𝑗 , �̂�𝑇𝑗), i.e., (
�̂�𝑇𝑗

𝐴
, 𝐴�̂�𝑇𝑗 + 𝐵). 

2.2.5. IRT True Score Equating 

 IRT true score equating is defined as when the latent abilities on each form (form 

T and form S) are the same, the number-correct true scores on two forms are viewed as 

equivalent. The number-correct true scores on form T and S are defined as, 

𝑇𝑇(𝜃𝑖) = ∑ 𝑃𝑖𝑗 ((𝜃𝑖|𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗))

𝑀

𝑗=1

,                 (35)  
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𝐴𝑁𝐷 

𝑇𝑆(𝜃𝑖) = ∑ 𝑃𝑖𝑗 ((𝜃𝑖|𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗))

𝑁

𝑗=1

,                 (36) 

where M is the number of items on form T and N is the number of items on form S. 𝑇𝑇 or 

𝑇𝑆  is the summation of the probabilities of passing/endorsing all items on the 

corresponding form. Upon using IRT true score equating, the item parameter estimates on 

two forms have already been put on the same scale. The procedure includes finding the 

latent ability 𝜃𝑖 on form T that can have a number-correct true score of 𝑇𝑇 first. The same 

latent ability 𝜃𝑖 is used to find out the number-correct true score on form S. Since the same 

latent ability is involved in obtaining the number-correct true scores on form T and S, 

𝑇𝑆(𝜃𝑖)is taken as the form S equivalent to 𝑇𝑇(𝜃𝑖)on form T. The challenge lies in finding 

the 𝜃𝑖 on form T to have the specified 𝑇𝑇. The Newton Raphson method is usually applied 

here to find the corresponding 𝜃𝑖 .  

2.2.6. IRT Observed Score Equating 

 When the observed number-correct scores on scale T are equated to find the 

equivalents on scale S, IRT observed score equating is applied. First, distributions of 

observed scores on form T and S are estimated. Then, the two distributions are matched 

by equipercentile method to find the equivalents on one form to another. With a given 

ability and a test form with given number of items, probabilities for all possible response 

patterns are calculated as the estimated distribution of observed scores at one point on 

latent ability. For example, with certain examinee and a test form of three items, possible 

response patterns include (0,0,0) for passing none of the three items, and (1,0,0), (0,1,0), 
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and (0,0,1) for passing one item, and (1,1,0), (1,0,1), and (0,1,1) for passing two items, 

and (1,1,1) for passing three items (0=not passing, 1=passing). Then the distributions are 

summed over examinees’ ability range to get the estimated distribution of observed scores 

on a form. The example is given on binary data with only three items. As the level of data 

and items increase, a recursion formula can be applied. If the ability is continuous, the 

estimated distribution is written as 

ℎ(𝑥) = ∫ ℎ(𝑥|𝜃)𝜋(𝜃)𝑑𝜃
𝜃

,               (37) 

where 𝜋(𝜃)is the distribution of latent ability. If the ability of examinees is finite, the 

estimated distribution is written as 

ℎ(𝑥) =
1

𝑁
∑ ℎ((𝑥)|𝜃𝑖)

𝑖

,                    (38) 

where N is the number of examinees.  

The IRT observed score equating is computational intensive than IRT true score 

equating, but it is more practical than IRT true score equating because the true scores 

remain unknown all the time. The estimated distributions of observed scores on two forms 

need to be combined to yield a synthetic distribution for equation.  

2.2.7. Anchoring, Linking, Scaling, and Equating 

It is a point where the procedure of anchoring, linking, scaling, and equating can 

be compared and contrast for clear understanding of each. 

The anchoring procedure can have two alternatives. Test developer can have the 

same group of people take the different tests, or different groups of people take a common 
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set of items that are put on different test forms (Vale, 1986). Simply, one is anchoring 

using the same latent trait (𝜃𝑖), the other is using the same item characteristics (𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗).  

Linking is a more general procedure, which is an intermediate step of equating. It 

is a procedure to put the parameter estimates or observed scores on the common scale 

without restrictions on the test forms’ difficulty and content similarity. Test forms that are 

built with different difficulty and content specifications can be linked to capture the 

growth of knowledge with test takers, but do not allow to be equated. 

Equating is only used when the test forms are built to the same content and 

numerical specification. Equated test forms should be similar in test difficulty and score 

reliability. Linking is especially necessary when using IRT equating without concurrent 

estimation for the common-item nonequivalent groups design. Adequate equating is 

dependent on the adequate linking.  

Raw scores are often transformed to scaled scores for score interpretation purpose. 

The mean and standard deviation of the raw scores are manipulated to have certain values. 

For example, the mean and standard deviation of the raw scores on form S is 28.56 and 

13.24, respectively. A mean of 100 and a standard deviation of 15 are expected on scaled 

scores. Then the raw scores are transformed to scale scores by getting rid of the original 

mean and standard deviation of 28.56 and 13.24 (resulting z scores of raw scores), and 

applying the expected mean and standard deviation of 100 and 15 to the z scores. 

Therefore, scaling is the manipulation of mean and standard deviation within the same 

form or the same scale. Equating is to find the score equivalent of a specified score on two 

forms interchangeably. Form T raw scores are equated to have raw score equivalents on 
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form S. Then the score equivalents are scaled to have the expected mean and standard 

deviation. 

2.2.8. Standard Error of Equating 

The standard error of equating is the standard deviation of the sampling 

distribution of obtained equivalent scores for one score point, given an equating method 

is applied many times with different samples of examinees each time between two forms.  

Let’s define form T as the new from and form S as the old form. We want to find the 

equivalent score on form S for a score of 88 on form T. With the first 1000 sample 

examinees, 500 taking form T and 500 taking form S, and we obtain the score of 86 on 

form S that is the equivalent to the score of 88 on form T. With the second 1000 sample 

examinees, we obtain 83, and with third 1000 sample examinees, we obtain 85, and so on. 

In this example, the score of 86, 83, and 85 on form S are all equivalents of 88 on form T. 

The standard deviation of 86, 83, and 85 are the standard error of equating. As can be seen 

here, the empirical process of documenting the standard error of equating involves 

resampling and equating calculation each time. The analytic method could also be applied 

to get the standard errors of equating, which involves the using of available variance and 

covariance structure of parameter estimates and other available information of the design 

and the given method of equating to deduct the standard error. It is intuitive that the 

standard error of equating or equating error comes from the different samples of the 

examinees, given an equating method. Each sample comes with a different score 

equivalent for score 88. Thus, the standard error of equating which originates from random 

sampling of the examinees is the random error, given an equating method. It should be 
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distinguished from the systematic error of equating which usually results from using 

different equating methods, test implementations, equating designs, and DIF problems. 

2.2.9. Evaluation of Equating Results 

 Harris & Crouse (1993) had pointed out the criteria for equating was not fully 

developed and applied to the extent it should be. However, the discussions in their papers 

are holistic concerns starting with the question of when equating is appropriate, how 

equating should be performed based on the collected data, and how to evaluate the equated 

results. The evaluation discussed here are restricted to the last question, how to evaluate 

the equated results given an equating method. 

Like other statistical procedures, the standard error of equating is the most 

important evaluative criteria that can be used to check the quality of equating, given an 

equating method. However, it is not realistic to approach standard error of equating in 

empirical studies. In order to assure adequate equating is applied, the associated properties 

of equating can be used as evaluative criteria also. After an equating being done, the 

symmetry property, the equity property, or the observed score equity property could be 

evaluated according to the equating methods used. Equating functions should be 

population invariant, which could also be used as a criterion for adequate equating. When 

the properties of equating do not hold in most cases, the equating procedure might be 

problematic. In some situation, no equating is better than equating since equating could 

add systematic error into the obtained equivalent scores.  
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2.3. Overview of Differential Item functioning 

2.3.1. Differential Item Functioning 

In the context of psychological measurement, measurement invariance is defined 

as a measurement device or instrument has the following characteristics. The assignment 

of scores to represent certain latent trait of a person is only determined by the target latent 

variable while independent of all other unrelated variables, latent or observed(Millsap, 

2012). The idea is easy to understand in the context of a physical measurement situation. 

Suppose that a thermometer is used to measure the body temperature of participants from 

three age groups, 0 to 18 years old, 19 to 50 years old, and above 50 years old. Here the 

body temperature is the focal variable, and the age group is the irrelevant variable, that is 

the reading of temperature using the thermometer should not be a function of age group. 

If there is a relationship between body temperature reading and age groups, measurement 

bias appears and measure invariance does not hold in such case. 

Conditional probability is used to express the definition of measurement 

invariance, i.e., 

𝑃(𝑋|𝑊, 𝐼) = 𝑃(𝑋|𝑊),           (39) 

where 𝑋 is the measured variable, 𝑊 is the target latent variable, and 𝐼 is the irrelevant 

variable, which usually are demographic variables, like gender, ethnicity, citizenship, and 

culture background. The irrelevant variables could also be research specific grouping 

variables. If the equation does not hold, the measurement invariance is violated and 

measurement bias exists. 
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 The most commonly used method for testing measurement invariance is multi-

group confirmatory factor analysis (MGCFA). The testing of measurement invariance is 

a step by step procedure in finding out at which level the measurement invariance quality 

holds, i.e., the four steps of factorial invariance testing. The four steps are configural 

invariance, pattern invariance, strong invariance (metric invariance), and strict invariance 

(scalar invariance). Group means comparison is meaningful when measurement 

invariance holds (Millsap, 2012). 

Using IRT model, the measurement bias can be studied both at the item level and 

the test level. Item bias is referred to as differential item functioning (DIF). Differential 

item functioning is defined as the same item has the different item parameters and 

consequently yields different probability of correct response between the focal and the 

reference groups given the target latent trait or ability in two groups are matching, i.e., the 

item response function is not the same between groups for the same item with same latent 

ability (Ellis, 1989; Mellenbergh, 1989; Zumbo, 1999). Graphically, the same item will 

have two different item characteristic curves on focal and reference groups (Mellenbergh, 

1989). Like in any other situation, biased items will give rise to a lot of challenges and 

problems in item response theory modeling for parameter estimation, linking, and 

equating. After all, the measurement invariance is the prerequisite for a lot statistical 

procedure and other important issues in educational and testing context. Due to the 

indeterminacy of item parameters and person parameter estimates, the ability or latent trait 

estimates with biased items in the test are not reliable. The present of biased items also 

affect the estimation of parameters on other unbiased items. The existence of biased items 
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in the common items set will affect the configuration of linking constants and affect the 

adequate equating procedure. Wingersky, Cook, and Eignor (1987) recommended to study 

the efficiency of linking items against the whole test rather than focusing on the estimation 

of standard errors of linking items themselves.  

2.3.2. Forms of Bias 

Uniform bias is defined as no interaction effect between item parameter estimates 

and the group membership, i.e., an item is estimated as more difficult or easier in the focal 

group than in the reference group across the range of matching variable (latent ability 

scale) (Ellis, 1989; Mellenbergh, 1989; Millsap, 2012; Millsap & Everson, 1993; Zumbo, 

1999). Non-uniform bias is defined as having an interaction effect between item parameter 

estimates and the group membership. For example, an item is displayed to be more 

difficult in the focal group on the lower end of the matching variable, while the same item 

is displayed to be easier in the focal group on the higher end of the matching variable 

(Ellis, 1989; Mellenbergh, 1989; Millsap, 2012; Millsap & Everson, 1993; Zumbo, 1999).  

2.3.3. Item Bias Detection 

On the one hand the differences between the same item parameter estimates could 

be due to sampling error, on the other the differences between the same item parameter 

estimates could be the produce of item bias between focal and reference groups. How to 

quantify the difference of the same item parameter estimates in different groups and 

measure its magnitude is the discussion of the following section. Methods of detecting 

item bias include Likelihood-Ratio (LR) tests, Wald Statistic, Mantel-Haenszel Statistics 

(Dorans & Holland, 1992; Edelen, Thissen, Teresi, Kleinman, & Ocepek-Welikson, 2006; 



35 
 

Holland, Thayer, Wainer, & Braun, 1988; Steinberg & Thissen, 2006; Thissen, Steinberg, 

& Wainer, 1993; Wald, 1943), Raju area statistics, and differential functions of items and 

tests (DFIT) (Millsap & Everson, 1993; Raju, 1988, 1990; Raju, Van der Linden, & Fleer, 

1995). 

2.3.3.1. Likelihood-ratio Test 

Likelihood-ratio test is a model based method (Edelen et al., 2006; Thissen et al., 

1993). In order to use LR method, a baseline model 𝑀1 without any invariant constraints 

is specified except for constraints needed for model identification. Then a second model 

𝑀0 is specified adding constraints to item parameters (item discrimination, item location, 

step difficulties, and threshold). 𝑀0 and 𝑀1 are nested models. With model configuration, 

the likelihood values will be calculated for 𝑀0 and 𝑀1 as 𝐿0 and 𝐿1, respectively. The 

natural logarithm of difference between 𝐿0  and 𝐿1  multiplied by -2 will follow a chi-

square distribution with a degree of freedom of the number of constraints added to 𝑀1 to 

get 𝑀0, i.e., 𝑑𝑓𝐿𝑅 = 𝑑𝑓𝑀0
− 𝑑𝑓𝑀1

. The LR test statistics denoted by 𝑄𝐿 is written as, 

𝑄𝐿 = −2 log (
𝐿0

𝐿1
).                (40) 

LR test procedure can be applied to both dichotomous and polytomous IRT models. Along 

with LR test is an omnibus test of null hypothesis that all concerned (constrained) item 

parameters are group invariant. The alternative is at least one of them is not group 

invariant. A series of post hoc test is involved upon the rejection of null hypothesis.  
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2.3.3.2. Wald Test 

 Wald statistics is an item level test statistics, which allows the direct comparison 

of concerned item parameters across groups(Thissen et al., 1993; Wald, 1943). Supposing 

the item location parameter is under concern and it is defined that 𝑏𝑗𝑅 (reference group) 

and 𝑏𝑗𝐹 (focal group) are estimates of item 𝑗 difficulties in two groups. The Wald statistic 

of testing the null hypothesis of 𝐻0: 𝑏𝑗𝑅 = 𝑏𝑗𝐹  for item 𝑗 is given by  

𝑍𝑗 =
(�̂�𝑗𝑅 − �̂�𝑗𝐹)

√𝑉𝑎𝑟(�̂�𝑗𝑅) + 𝑉𝑎𝑟(�̂�𝑗𝐹)

 .                 (41) 

The Wald statistics is compared to the standard normal distribution for the significant 

difference reference. The method could be easily applied when more than items or more 

than two groups are under concern.  

2.3.3.3. Mantel-Haenszel Procedure 

 Mantel-Haenszel procedure is applied in DIF by testing the null hypothesis of the 

odds ratio of answering an item in reference group equals that in focal group (Dorans & 

Holland, 1992). The count of correct and incorrect answers to item 𝑗 for the level 𝑖 (𝑖 =

1,2,3, … 𝑚 )on matching variable is listed in the following table. The partial table of 

response to item 𝑗 across the levels of latent matching variable 𝑖 is given by Table 1. The 

null hypothesis for DIF analysis using MH procedure is, 

𝐻0 : 
𝐴𝑖𝐷𝑖

𝐶𝑖𝐵𝑖
= 1.                                               (42) 

The chi-square test statistics for MH procedure is, 
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𝑄𝑀𝐻 =
[∑ 𝐴𝑖 − ∑ 𝐸(𝐴�̂�)𝑖𝑖 ]

2

∑ 𝑉𝑎𝑟(𝐴𝑖)𝑖
,                       (43) 

where 𝑖 = 1,2,3, … , 𝑚, and 

𝐸(𝐴�̂�) = 𝐸(𝐴�̂�|𝐻0) =
𝑁𝐹𝑖𝑁𝑇𝑖

𝑁𝑖
, 

𝑉𝑎𝑟(𝐴𝑖) = 𝑉𝑎�̂�(𝐴𝑖|𝐻0) =
𝑁𝐹𝑖𝑁𝑅𝑖𝑁𝑇𝑖𝑁𝑊𝑖

𝑁𝑖
2(𝑁𝑖 − 1)

. 

The 𝑀𝐻 − 𝜒2 statistic is based on the hypergeometric distribution. For the continuity on 

𝑖, matching variable score levels, the statistics should be corrected by the ways of the table, 

which is 2 here, the grouping variable and answer type. The correction is given, 

𝑄𝑀𝐻 =
[∑ 𝐴𝑖 − ∑ 𝐸(𝐴�̂�)𝑖𝑖 ]

2

∑ 𝑉𝑎𝑟(𝐴𝑖)𝑖

(𝑛 − 1)

𝑛
,                  (44) 

where n is the number of ways. 𝑄𝑀𝐻 approximates a chi-square distribution with 𝑑𝑓 = 1. 

2.3.3.4. Raju Area Statistics 

Raju area statistics are used to quantify the area (difference or distance) between 

two item response curves (ICC) (Raju, 1988). Let’s define 𝐹𝑗𝐹  and 𝐹𝑗𝑅 are two ICCs for 

item 𝑗 on focal group and reference group. The area between two curves is given by,  

𝑆𝑖𝑔𝑛𝑒𝑑 𝐴𝑟𝑒𝑎: 𝑆𝐴 = ∫ (𝐹𝑗𝐹 − 𝐹𝑗𝑅)
∞

−∞

𝑑𝜃,                     (45)  

𝐴𝑁𝐷  

𝑈𝑛𝑠𝑖𝑔𝑛𝑒𝑑 𝐴𝑟𝑒𝑎: 𝑈𝐴 = ∫ |𝐹𝑗𝐹 − 𝐹𝑗𝑅|𝑑𝜃
∞

−∞

.                (46) 

Under Rasch model,  

𝑆𝐴 = (𝑏𝑗𝑅 − 𝑏𝑗𝐹),                    (47) 
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𝐴𝑁𝐷 

𝑈𝐴 = |𝑏𝑗𝑅 − 𝑏𝑗𝐹|.                     (48) 

Under 2PL model,  

𝑆𝐴 = (𝑏𝑗𝑅 − 𝑏𝑗𝐹),                     (49) 

𝐴𝑁𝐷 

𝑈𝐴 = |𝑏𝑗𝑅 − 𝑏𝑗𝐹|, 𝑖𝑓 𝑎𝑗𝐹 = 𝑎𝑗𝑅 ,      (50) 

𝑂𝑅 

𝑈𝐴 = |
2(𝑎𝑗𝑅 − 𝑎𝑗𝐹)

𝐷𝑎𝑗𝐹𝑎𝑗𝑅
𝑙𝑛 (1 + 𝑒𝑥𝑝 (

𝐷𝑎𝑗𝐹𝑎𝑗𝑅(𝑏𝑗𝑅 − 𝑏𝑗𝐹)

𝑎𝑗𝑅 − 𝑎𝑗𝐹
)) − (𝑏𝑗𝑅 − 𝑏𝑗𝐹)| , 𝑖𝑓 𝑎𝑗𝐹

≠ 𝑎𝑗𝑅.      (51) 

Under 3PL model, 

𝑆𝐴 = (1 − 𝑐)(𝑏𝑗𝑅 − 𝑏𝑗𝐹),           (52) 

𝐴𝑁𝐷 

𝑈𝐴 = (1 − 𝑐)|𝑏𝑗𝑅 − 𝑏𝑗𝐹|, 𝑖𝑓 𝑎𝑗𝐹 = 𝑎𝑗𝑅 ,    (53)  

𝑂𝑅 

𝑈𝐴 = (1 − 𝑐) |
2(𝑎𝑗𝑅 − 𝑎𝑗𝐹)

𝐷𝑎𝑗𝐹𝑎𝑗𝑅
𝑙𝑛 (1 + 𝑒𝑥𝑝 (

𝐷𝑎𝑗𝐹𝑎𝑗𝑅(𝑏𝑗𝑅 − 𝑏𝑗𝐹)

𝑎𝑗𝑅 − 𝑎𝑗𝐹
))

− (𝑏𝑗𝑅 − 𝑏𝑗𝑅)| , 𝑖𝑓 𝑎𝑗𝐹 ≠ 𝑎𝑗𝑅.   (54) 
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Raju (1990) had presented the mean and variance for the sampling distribution of 𝑆𝐴 and 

𝑈𝐴 statistics under different models. The statistical significance tests of 𝑆𝐴 and 𝑈𝐴 under 

different situations are possible with z test.  

2.3.3.5. Differential Functions of Items and Tests 

Not like Raju area statistics, DFIT (Raju et al., 1995) is not different in forms from 

model to model. DFIT is applied with the identification of a well fitted model. Therefore, 

either different or the similar item response functions are estimated. The item response 

functions are not expected be exactly the same due to sampling error. Therefore, for a 

person 𝑖, the difference in the probabilities of passing/endorsing items on a test level 

between two groups is captured by difference in true score, which is defined as  

𝐷𝑖
2 = (𝑇𝐹 − 𝑇𝑅)2.             (55) 

DTF is defined as the expectation of accumulated differences across examinees using 

either examinees from focal group only or reference group only, 

𝐷𝑇𝐹 = 𝐸𝐹(𝐷𝑖
2) = ∫ 𝐷𝑖

2𝑓𝐹(𝜃)𝑑𝜃
𝜃

= 𝜎𝐷
2 + 𝜇𝐷

2 ,    (56) 

where 𝐸𝐹 is the expected values across focal group and 𝑓𝐹(𝜃) is the density function of 𝜃 

in the focal group. The non-compensatory DIF (NCDIF) for an item 𝑗 across examinees 

in focal group is given as, 

𝑁𝐶𝐷𝐼𝐹𝑗 = 𝐸𝐹[𝑃𝑗𝐹 − 𝑃𝑗𝑅]
2

= 𝐸𝐹(𝑑𝑗
2) = 𝜎𝑑𝑗

2 + 𝜇𝑑𝑗

2 .     (57) 

The compensatory DIF (CDIF) for an item 𝑗 across examinees in focal group is given as, 

𝐶𝐷𝐼𝐹𝑗 = 𝐸𝐹(𝐷𝑑𝑗) = 𝐶𝑜𝑣(𝐷, 𝑑𝑗) + 𝜇𝐷𝜇𝑑𝑗
.                  (58) 

The DTF can be viewed as the summation of CDIF over test items, which is 
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𝐷𝑇𝐹 = ∑ 𝐶𝐷𝐼𝐹𝑗

𝑛

𝑗=1

.        (59) 

The chi-square statistic proposed by Raju et al (1995) for testing the null hypothesis of,  

𝐻0: 𝑁𝐶𝐷𝐼𝐹𝑗 = 0,            (60) 

is given by, 

𝜒𝑁𝐶𝐷𝐼𝐹𝑗

2 =
𝑁𝐶𝐷𝐼𝐹𝑗

̂

�̂�𝑑𝑗

2 𝑁𝑓⁄
,       (61) 

where 𝑁𝑓 is the number of test takers in focal group and the degree of freedom for the chi-

square test statistic. A lot of simulation studies have been conducted in profiling the 

performance of each method. Collins, Raju, and Edwards (2000) have investigated the 

differential functioning detection on a satisfaction scale with Lord’s chi-square method, 

Raju SA method, and differential functioning of items and tests (DFIT). DFIT has a more 

consistent performance compared to other procedures. Due to the limited test statistics 

available for the significance of DFIT indices, Oshima, Raju, and Nanda (2006) has 

proposed a bootstrapping alike method to obtain the sampling distribution of paired item 

parameter estimate difference score between focal group and reference group. The 

difference score on the 99th (𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝛼 = 0.01) percentile of the sampling distribution is 

selected cutoff value for decision making for statistical significant difference. The method 

is often referred as item parameter replication method. 

2.3.4. Test Purification 

 Upon having biased items in a test, the first and the most need is to eliminate those 

biased items. However, the identification of biased items is not as straightforward as only 
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applying one or two of the DIF detection methods aforementioned. It is a computational 

iterative procedure. Item parameter estimates from focal and reference groups must be 

placed on a common metric so that the paired item parameter estimates comparison is 

meaningful. 

An iterative procedure under three parameters logistic model is proposed in the 

literature. The procedure (Lord, 1980; Marco, 1977) is given by following steps: 

1. Use all data from two groups and run the model with item location parameters 

following a standard normal distribution  𝑁(0,1) and save the guessing parameter 

estimates. 

2. Fit the same 3PL models in separate groups with location in each group following a 

standard normal distribution 𝑁(0,1). Fix the guessing parameter estimates saved from 

step 1. 

3. Remove all biased items using any of the bias detection methods discussed previously. 

4. Fit the same 3PL model with the remaining items using data from two groups to 

estimate the latent ability. Save the latent ability estimates. 

5. Fit the same 3PL models in separate groups using all items (no dropping) and fixing 

the latent ability using estimates from step 4. 

6. Repeat step 3. 

Park and Lautenschlager (1990) modified Lord and Marco’s procedure by 

repeating step 3 through 5 until in each iteration the same items are flagged as biased 

items. The concurrent estimation of latent ability on two groups rendered linking 
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unnecessary. However, the latent ability is estimated repetitively in both procedures, 

which is time and resource expensive.  

Segall (1983) proposed another separate parameter estimation and bias detection 

procedure. This iterative procedure is given by,  

1. Use the same fitted model and estimate item parameters in focal and reference group 

separately. 

2. Use one of the available linking methods to obtain a linking function using the 

parameter estimates from step 1. 

3. Put two groups of parameter estimates on a common scale using the linking function 

identified in step 2. 

4. Examine the item parameters estimates for bias using one of the bias detection 

methods available, and remove all biased items. 

5. Generate an updated linking function using the remaining items.  

6. Put two groups of parameter estimates of all items (no dropping) on a common scale 

using the updated linking function from step 5. 

7. Evaluate item parameter estimates for bias detection and remove the biased items. 

8. Repeat step 5 through 7 until each time with the same biased items identified. 

Application researches and simulation studies have testified the usability of 

Segall’s method (Candell & Drasgow, 1988; Drasgow, 1987; Park & Lautenschlager, 

1990). Iterative linking plan has better results than single linking procedure (Kim & 

Cohen, 1992). 
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3. METHODOLOGY 

 

3.1. Study Design 

The simulation study is performed under common items nonequivalent groups 

design, i.e., two groups with different levels of ability taking alternate forms of a test with 

shared items. Group 1 is simulated with a relative low ability profile and Group 2 is with 

a relative high ability profile to distinguish as nonequivalent groups. The differences in 

abilities are assumed to have an impact on the response patterns to common items between 

two groups. Test length is 50 items through the study. Each group will take a form of a 

test of 50 items. The two forms given to group 1 (form 1) and group 2 (form 2) are parallel 

forms, which means they are constructed according to the same content and statistical 

specifications. Specifically in this study, the forms are parallel in terms of three aspects: 

1) the total number of items are the same on two forms, i.e., 50 items in total on each form; 

2) both unique and common items on two forms are of similar level of item difficulty and 

discrimination, i.e., they are random number generated from the same distribution in terms 

of each parameter and the mean and standard deviation of corresponding parameter in 

separate groups are comparable; 3) common items are placed at the same position on two 

forms, i.e., the item index are the same. For example, if item j is placed at the position 

with an index of 36 in group 1, the same item will be placed in group 2 with the same 

index of 36. Different levels and types of DIF will be assigned to some common items on 

two forms. In the current study, DIF items will be assigned to only one group at a time, 



44 
 

either group 1 or group 2, no mixed type assignment of DIF items, e.g., all designated DIF 

items will be easier and less discriminative among group 1 or group 2. 

3.2. Simulation Factors 

Six factors and their associated effects on equating coefficients and item parameter 

recovery under common items nonequivalent groups design are explored in the current 

study. The factors are common item ratio, DIF item ratio, direction of DIF, form of DIF, 

magnitude of DIF, and sample size. Table 2 displays the simulation factors in the current 

study. Following, each factor is explained in detail. 

3.2.1. Common item ratio 

Among the fifty items, two percentages of common items are assigned, i.e., 20% 

and 30%, which results in 10 common items and 15 common items out of 50, respectively. 

The two percentages are selected due to the fact that twenty percent of common items has 

been widely tested, suggested, and required in literature. Less than twenty percent of 

shared items would result in inadequate anchoring. Thirty percent of common items is also 

tested in this study as a suffice condition for common items in nonequivalent groups 

design. Against this factor, research question 1 will be what is the effect of common item 

ratio to the number of test items in each form on the equating coefficients and item 

parameters recovery with nonequivalent groups. 

3.2.2. DIF item ratio 

Within the common items, three percentages of DIF items are tested, i.e., 20%, 

40%, and 60%, which results in 2, 4, and 6 DIF items out of 10 common items, and 3, 6, 

and 9 DIF items out of 15 common items. The three levels of DIF item ratio are selected 
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to represent a small, medium, and large percentage of different item behavior between 

groups. Against this factor, research question 2 will be what is the effect of DIF item ratio 

to the number of common items on the equating coefficients and item parameters recovery 

with nonequivalent groups. 

3.2.3. Form of DIF 

Within each DIF item, two types of DIF are tested, i.e., uniform and non-uniform. 

The uniform DIF happens when there is a difference in item location parameters between 

groups even though the item is the same, i.e., 𝑏2𝑗 ≠ 𝑏1𝑗, while 𝑏1𝑗 is the item j location 

parameter from group 1 and 𝑏2𝑗 is the same item j location parameter from group 2. The 

non-uniform DIF happens when there is a difference in item discrimination and/or item 

location for the same item between different testing groups. 

With this factor, research question 3 will be what is the effect of form of DIF in 

common items on the equating coefficients and item parameters recovery with 

nonequivalent groups. Is there any difference between uniform and nonuniform DIF in 

terms of their effect on equating coefficients and item parameter recovery? 

3.2.4. Magnitude of DIF 

Within uniform DIF, three different levels of DIF magnitudes will be tested. The 

small uniform DIF is represented by 𝑏2𝑗 − 𝑏1𝑗 = 0.3 𝑜𝑟 𝑏1𝑗 − 𝑏2𝑗 = 0.3 , medium by 

𝑏2𝑗 − 𝑏1𝑗 = 0.6 𝑜𝑟 𝑏1𝑗 − 𝑏2𝑗 = 0.6, and large by 𝑏2𝑗 − 𝑏1𝑗 = 0.9 𝑜𝑟 𝑏1𝑗 − 𝑏2𝑗 = 0.9. In 

this study only one level of item discrimination is tested, which is represented by 𝑎2𝑗 −

𝑎1𝑗 = 0.3 𝑜𝑟 𝑎1𝑗 − 𝑎2𝑗 = 0.3 , representing a small level of non-uniform bias. The 

medium and large difference in discrimination parameters between groups are avoided 
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because the manipulation of discrimination parameter could easily make the changed 

values extremes or exceed the extremes, situations that will not be the focus of current 

study. For this factor, research question 4 will be what is the effect of magnitude of DIF 

in common items on the equating coefficients and item parameters recovery with 

nonequivalent groups. 

3.2.5. Direction of DIF 

Both uniform and non-uniform DIF are simulated as non-directional in terms of 

group membership. Although it is intuitive that the same item would favor toward group 

2, the group that has a relative high ability profile, it is possible that DIF items would be 

against group 2. For example, under the circumstance of encountering an easy item, the 

high ability person might get confused or simply having a hard time recalling the simple 

fact, which is very likely to give a wrong answer. DIF items are simulated to be more 

difficult and discriminative to group 2 first and then to be more difficult and discriminative 

in group 1. The non-directional DIF between groups is simulated to eliminate the 

uncertainty. Against this factor, research question 5 will be whether there is any difference 

in terms of equation coefficients and item parameter recovery when DIF direction changes 

from against to in favor of group 2 test takers. 

3.2.6. Sample size 

Sample size of the simulated participants is another factor examined in this study. 

For each condition specified above, a small sample size of 500, a medium of 1000, and a 

large of 3000 for each group will be tested for linking and equating. Against this factor, 

research question 6 will be what is the effect of sample size on equating coefficients and 
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item parameter recovery when DIF item presents in common items nonequivalent groups 

design equating. 

3.2.7. Reference condition 

All conditions aforementioned are situations when DIF items presents. In order to 

have a reference when DIF is absent, null conditions with two percentages of common 

items and three levels of sample size are simulated in the current study to see the behaviors 

of interested parameters. And research question 7 will be what equating coefficients and 

item parameters recovery look like when DIF is absent. Is there any difference under 

different common item ratios? Is there any difference under different sample sizes? 

To summarize, there are 2 (common item ratio) * 3 (DIF item ratio) * 2 (form of 

DIF) * 3 (magnitude of DIF) * 2 (direction of DIF) * 3 (level of sample size) = 216 

conditions when DIF items present. There are also 2 (common item ratio) * 3 (level of 

sample size) = 6 null condition when DIF item is absent. All conditions are run in R, a 

free open source package for statistical computation (https://cran.r-project.org). 

Specifically, the package of “irtoys”: A Collection of Functions Related to Item Response 

Theory is employed in the current study (Partchev, 2016). For each condition, 500 

replications are conducted. 

3.3. Data Generation 

Generally, there are two population distributions are associated with this study, the 

simulated participant and item parameter distributions. According to literature, the ability 

of simulated test takers is usually assumed either to be a normal, a uniform, or a 𝛽 

distribution, and the item parameters, i.e., the item difficulty, item discrimination are 



48 

chosen either from a normal, a uniform, a 𝛽, or a lognormal distribution. The decisions 

are made according to the research interests, e.g., whether a normal or a skewed 

distribution of population is of concern, and whether the realistic item parameters or 

extreme cases are focal (Han, 2007). 

The ability of simulated test takers is generated from a normal distribution. Group 

1, which has a relative low ability profile, is generated from a standard normal distribution 

𝑁 (0,1). Group 2, which has a relative high ability profile, is generated from a normal 

distribution with both mean and standard deviation equal 1, i.e., 𝑁 (1,1). For example, the 

sample size tested is 1000. Then 1000 of ability scores will be randomly generated from 

𝑁 (0,1) for group 1, and 1000 of ability scores will be randomly generated from 𝑁 (1,1) 

for group 2. For each replication, the ability scores in each group will be regenerated. 

The item location/difficulty parameter is generated from a standard normal 

distribution 𝑁 (0,1) . The item discrimination parameter is generated from a uniform 

distribution 𝑈(0.8, 1.7).  The item parameter distributions are specified reflecting the 

general acceptable ranges of item location/difficulty and item discrimination. 

In the current study, the maximum number of unique items on each test form is 40, 

and the maximum number of common items is 15. In order to add flexibility to the 

manipulation of study conditions, a unique item pool of 80 items is constructed, and a 

common item pool of 15 items is constructed. The descriptive statistics of unique item 

pool by form and common item pool are shown in Table 3. Another 12 common item 

pools of 15 items with different direction of DIF, different levels of uniform DIF and one 

level of non-uniform DIF are also constructed. There are six out of twelve with DIF items 
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generally favoring toward group 2: 1) DIF item pool with small uniform DIF only; 2) DIF 

item pool with medium uniform DIF only; 3) DIF item pool with large uniform DIF only; 

4) DIF item pool with small uniform DIF and non-uniform DIF; 5) DIF item pool with 

medium uniform DIF and non-uniform DIF; 6) DIF item pool with large uniform DIF and 

non-uniform DIF. There are another six out of twelve with DIF items generally favoring 

toward group 1. It is noted that there is only one level of non-uniform DIF examined in 

the current study. For example, the condition of 15 common items having 3 DIF items 

with small uniform and non-uniform DIF is tested. Then item 1 through item 35 in the 

unique item pool of 80 items will be taken out as the unique items on form 1. Item 1 

through item 15, i.e., all the common items in the common item pool will be taken out as 

the rest 15 items on form 1. Together there are 50 items on form 1. Let’s index them as 

item 1 through item 50.  Item 41 through item 75 in the unique item pool of 80 items will 

be taken out as the unique items on form 2. Item 1 through item 15, i.e., all the common 

items in the common item pool will be taken out as the rest 15 item on from 2. Let’s also 

index them as item 1 through item 50. However, there are 3 DIF items with small uniform 

and non-uniform DIF. We need to replace 3 out of the 15 common items using DIF items 

from the item pool that has small uniform and non-uniform DIF. If the DIF items existed 

in group 1, the DIF item 13, 14, and 15 in the corresponding DIF item pool replaces item 

48, 49, and 50 on form 1, respectively. If the DIF items existed in group 2, the DIF item 

13, 14, and 15 in the corresponding DIF item pool replaces item 48, 49, and 50 on form 2, 

respectively.  
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Given the conditions to be tested in the study, item parameter data sets generated 

include 2 sets when DIF is absent, and 2 (common item ratio) * 3 (DIF item ratio) * 2 

(form of DIF) *2 (direction of DIF) * 3 (magnitude of DIF) = 72 sets when DIF presents. 

The item parameter generated will be used to obtain the probability of answering an item 

correctly using the 2PL model. The calculated probability will be compared with a random 

number drawing from a uniform distribution 𝑈(0,1). If the calculated probability is larger 

than the random number, the observed response of 1 (correct) for that item given the 

person ability will be assigned. If the calculated probability is smaller than the random 

number, the observed response of 0 (incorrect) for that item given the person ability will 

be assigned. For example, if the sample size 500 is tested. Then the observed response 

data set within each group upon each replication will be a 100 ×  50 matrix of 0s and 1s. 

The row is participant ID and the column is item index. All the data will be generated 

using 2PL model and also fitted into 2PL model after obtaining the observed response. 

Given the 74 data sets of item parameters, 3 different sample sizes, and 100 replications, 

there are 74 × 3 × 100 times of model fittings and estimations by group of test takers in 

the current study.  

3.4. Analysis Procedure 

3.4.1. IRT linking with Stocking-Lord method 

Common item parameter estimate linking is conducted in the IRT framework with 

separate model estimation. When separate model estimation is applied to observed 

response on each group, the ability for each group during the estimation is default as 

𝑁 (0,1), i.e., designated as equivalent groups. However, two groups are nonequivalent in 
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ability and linking is required to put common item parameter estimates on the same scale 

that honors relative standing among groups.  

Among the various IRT linking methods, Stocking-Lord, also called test 

characteristic curve method is employed due to the literature endorsing Stocking-Lord as 

the reliable and robust method especially when item parameter estimates are problematic, 

i.e., large differences in results between two groups of estimation. However, it is also 

reasonable to assume that test characteristic method will more likely to be affected by DIF 

items since this method uses all the raw differences from items between groups. Given the 

popularity of and widely acknowledgement to the test characteristic method and the 

possible problem associated with test characteristic method, it is necessary to quantify the 

performance of such method under the presence of DIF items. 

3.4.2. Expected values of A and B 

When linking group 2 onto the scale of group 1, the expected value of A, which is 

the slope for scale transformation, is 1. The expected value of B, which is the intercept for 

scale transformation, is also 1. The reason traces back to the true population parameter of 

two groups. Group 1 follows 𝑁 (0,1) and group 2 follows 𝑁 (1,1). However, during the 

estimation stage both groups are fixed as  𝑁 (0,1).  The location of group 2 shifts 

downward (left) by 1, while the dispersion of group 2 remains the same. In order to honor 

the original scale, the location should shift 1 upward (right) and the dispersion remains 

unchanged. A as the slope is to hold dispersion the same and the expected value should be 

1. B as the intercept is to make the location move upward (right) by 1 and the expected 

value should be 1.  
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3.4.3. Linking and calibrating plan 

 Form 1 is set as the old form and form 2 is set as the new form. Item parameter 

estimates on new form is transformed/linked back to the scale of old form. In order to 

compare the item parameter estimates to the generating parameters, i.e., the true value. All 

item parameter estimates on from 1 and transformed item parameter estimates on form 2 

need to be put on the scale of generating parameters. As described, two steps of linking 

take place. Details involve and need clarification. 

 Step 1: Put item parameter estimates on from 2 and from 1 on the common metric 

of form 1 

 After fitting 2PL models for each group of response data, there are two groups of 

item parameter estimates for common items. These estimates are used with Stocking-Lord 

method to obtain equating constants A and B. All item parameter estimates for both unique 

and common items on form 2 taken by group 2 are transformed using A and B so that the 

transformed item parameter estimates will be on the same scale of form 1 taken by group 

1. Finally, the common item parameter estimates on two forms, i.e., the originals on form 

1 and the transformed on form 2, will be averaged and taken as the common item 

parameter estimates (Hambleton & Swaminathan, 1985). The linking constants A and B 

in this step will be retained for each condition under each replication. The retained value 

under each replication will be compared to the expected value of A and B for evaluation. 

  The model estimation is completed using the function 𝑒𝑠𝑡 ( ) in the packages of 

“irtoys”. The linking is performed using the function 𝑠𝑐𝑎( )  also in the package of 
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“irtoys”. In order to apply Stocking-Lord method, quadrature points and quadrature 

weights are supplied in the function. 

Step 2: Put item parameter estimates resulted from step 1 and generating 

parameters on the common metric of generating parameters.  

The same linking method and procedure is applied to transform a) unique item 

parameter estimates on form 1, b) unique but transformed item parameter estimates on 

form2, and c) average common item parameter estimates on to the generating scale. For 

example, if the condition being dealt with is 10 common items and 40 unique items on 

each form. Then according to the aforementioned procedure, 40 item parameter estimates 

on form 1, 40 transformed item parameter estimates on form 2, and 10 common items with 

average common item parameter estimates (90 in total) will be transformed back to the 

generating scale. Under this situation, linking constants A and B are obtained using all 90 

items as common items. After getting the constants A and B, the 90 item parameter 

estimates will be transformed to the generating scale. The transformed item parameter 

estimates of the 90 items will be compared with the 90 generating item parameters for 

item parameter recovery evaluation. Linking/equating constants A and B obtained in this 

step will not be retained.  

3.5. Evaluation Criteria 

 The current study will examine the performance or recovery of four parameters, 

i.e., the linking/equating constants A and B, item difficulty, and item discrimination. 

Generally, two indexes will be used as the evaluative criteria, i.e., bias and root mean 
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square error (RMSE) of four parameters (Harris & Crouse, 1993). Bias of A is calculated 

as 

𝐵𝑖𝑎𝑠𝐴 =
∑ (�̂�𝑙 − 1)𝑁𝑅𝐸𝑃

𝑙=1

𝑁𝑅𝐸𝑃
, 𝑎𝑛𝑑 

bias of B is calculated similarly as  

𝐵𝑖𝑎𝑠𝐵 =
∑ (�̂�𝑙 − 1)𝑁𝑅𝐸𝑃

𝑙=1

𝑁𝑅𝐸𝑃
, 

where �̂�𝑙 and �̂�𝑙 are linking constants obtained from each replication given the simulated 

condition, 1 is the expected value of linking constants 𝐴 and 𝐵, and 𝑁𝑅𝐸𝑃 is the number 

of replications, which is 100 in the current study. With the fact that both A and B had the 

expected value of 1, the relative bias would be the same to the bias itself. A rule of thumb 

for acceptable relative bias is that the value is not greater than 0.05 (Hoogland & 

Boomsma, 1998). 

RMSE of A is calculated as  

𝑅𝑀𝑆𝐸𝐴 = √∑ (�̂�𝑙 − 1)
2𝑁𝑅𝐸𝑃

𝑙=1

𝑁𝑅𝐸𝑃
, 𝑎𝑛𝑑 

RMSE of B is calculated as  

𝑅𝑀𝑆𝐸𝐵 = √∑ (�̂�𝑙 − 1)
2𝑁𝑅𝐸𝑃

𝑙=1

𝑁𝑅𝐸𝑃
. 

Bias of item discrimination a is calculated as  

𝐵𝑖𝑎𝑠𝑎 =
∑ (�̂�𝑗 − 𝑎𝑗)𝑁

𝑗=1

𝑁
, 𝑎𝑛𝑑 

bias of item location b is calculated similarly as  
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𝐵𝑖𝑎𝑠𝑏 =
∑ (�̂�𝑗 − 𝑏𝑗)𝑁

𝑗=1

𝑁
, 

where �̂�𝑗 is the estimated item discrimination and 𝑎𝑗 is the true generating value, and �̂�𝑗 is 

the estimated item location and 𝑏𝑗is the true generating value, given an item 𝑗. 𝑁 is the 

number of items on each form, which is 50 in the current study. Mean bias of a and b are 

obtained as the mean of bias of a and b over the number of replication, which is 100 in the 

current study. The relative mean bias of a and b is not as straightforward as the relative 

bias of A and B because bias of a and b is not on the individual item level but on the level 

of test form across 50 items. However, with the mean statistics of a (around 1.2) and b 

(around 0.2) shown in Table 3 in mind, the mean bias of a and b is acceptable when mean 

bias of a is no greater than 0.06, and mean bias of b is no greater than 0.01. 

RMSE of 𝑎 is calculated as  

𝑅𝑀𝑆𝐸𝑎 = √
∑ (�̂�𝑗 − 𝑎𝑗)

2𝑁
𝑗=1

𝑁
, 𝑎𝑛𝑑 

RMSE of 𝑏 is calculated as  

𝑅𝑀𝑆𝐸𝑏 = √
∑ (�̂�𝑗 − 𝑏𝑗)

2𝑁
𝑗=1

𝑁
. 

Mean RMSE of item discrimination a and item location b are then calculated as average 

of RMSE of a and average of RMSE of b over 100 replications. 
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4. RESULTS 

 

The results were reported under five sections, i.e., 1) null condition without DIF 

items, 2) uniform DIF against group 2 condition, 3) uniform DIF favoring group 2 

condition, 4) uniform and nonuniform DIF against group 2 condition, and 5) uniform and 

nonuniform DIF favoring group 2 condition. Under each section, results were presented 

on patterns of sample size, number of common items, number of DIF items, magnitude of 

DIF items, forms of DIF, and direction of DIF if applicable in terms of biases and RMSEs 

of linking constants A and B, and mean biases and mean RMSEs of item parameters a and 

b.  

4.1. Null Condition Without DIF Item 

The biases and RMSEs of linking constants A and B over 100 replications are shown for 

three sample sizes (500, 1000, and 3000) and two number of common items (10 or 15 

out of 50) in Figure 1. The biases of A and B were smaller than 0.05 in absolute value 

across conditions, which meant the relative biases were also smaller than 0.05. The 

RMSEs of A and B were smaller than 0.1 in most cases. The biases and RMSEs of 

linking intercept B were larger than those of linking slope A in general. The overall 

mean biases and mean RMSEs of item discrimination parameter a and item location 

parameter b over 100 replications are also presented in Figure 1. The mean biases of a 

and b are smaller than 0.06 and 0.01, respectively. The mean biases are positive for a, 

whereas negative for b in most cases. The mean RMSEs of a were similar under the 

same sample size across different number of common items. It was the same with the 
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mean RMSEs of b. Generally, as the sample size increased, the biases and RMSEs 

decreased, a trend more obvious for RMSEs of A and B, and mean RMSEs of a and b. 

The sample size effect leveled off at 1000 for the mean biases of a and b. In general, the 

biases and RMSEs decreased as the number of common items increased.  

Mean biases and mean RMSEs of a and b by group — group 1 unique item, 

group 2 unique item, and common item — over 100 replications were shown for three 

sample sizes and two number of common items in Figure 2. There were no significant 

differences on the magnitude of mean biases of a (<0.06 in absolute value) by group and 

mean bias of b (<0.01in absolute value) by group, and the differences between groups 

only started from the third decimal place. There were differences on the magnitudes of 

mean RMSEs of a and mean RMSE of b by group. Group 2 unique items had the highest 

level of mean RMSEs, followed by group 1 unique items and then common items. The 

differences started from the second decimal place between groups in general. The mean 

RMSEs were larger than 0.1 when the sample size was small at 500, and smaller than 0.1 

when the sample size was large at 3000. The trends of mean biases of a and b by group 

had some differences. In group 1 unique items, a and b were all positively biased. In 

group 2 unique items, a was still positively biased, whereas b was negatively biased. In 

common items, a and b were positively biased in most cases except for the case of 15 

common items and 500 students, in which b had a negative mean bias. The trends of 

mean RMSEs of a and b were similar across three groups. However, in group 2 unique 

items, the mean RMSEs of a and b were clustered together and rank highest in 

magnitude among groups 
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To summarize, the biases were negligible under null condition where all common 

items were invariant items. Under null condition, linking was adequate under 2 

parameter logistic model using Stocking-Lord method and common-item nonequivalent 

groups design with as few as 500 participants in each group and 20% of items as 

common items. 

4.2. Uniform DIF Against Group 2 Condition 

Biases and RMSEs of linking constants A and B, and overall mean biases and mean 

RMSEs of a and b over 100 replications are shown for conditions with 10 common items 

containing 2, 4, and 6 number of small uniform DIF items each time against group 2 across 

three sample sizes in Figure 3. Biases and RMSEs of linking constants A and B, and overall 

mean biases and mean RMSEs of a and b are shown for conditions with 15 common items 

containing 3, 6, and 9 numbers of small uniform DIF items each time against group 2 

across three sample sizes in Figure 4. Biases and RMSEs of linking constants A and B, 

and overall mean biases and mean RMSEs of a and b are shown for conditions with 10 

(Figure 7) and 15 (Figure 8) common items with medium uniform DIF items in Figure 7 

and 8, respectively. Biases and RMSEs of linking constants A and B, and overall mean 

biases and mean RMSEs of a and b are shown for conditions with 10 and 15 common 

items with large uniform DIF items in Figure 11 and 12, respectively. 

The biases of A were smaller than 0.05 in absolute value across conditions. The biases of 

B were larger than 0.05 in absolute value across all conditions. The RMSEs of A were 

smaller than 0.1 across cases. The RMSESs of B were larger than 0.1 in most cases. The 

mean biases of a and b were smaller than 0.06 and 0.01 in absolute values under small and 
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medium uniform DIF against group 2, respectively. The mean biases of b were larger than 

0.01 in absolute value when sample size was 500 under large uniform DIF against group 

2. Item discrimination a was positively biased in most cases, whereas item location b was 

negatively biased in most cases. The mean RMSEs of a were close to each other under the 

same sample size across different number of DIF items. The mean RMSEs of b were 

dispersed under the same sample size across different number of DIF items. Generally, as 

the sample size increased, the biases and RMSEs decreased, a trend more obvious with 

mean RMSEs of a and b. The sample size effect leveled off at 1000 across conditions for 

recovery on A and B, and a and b. As the number of common items increased, biases and 

RMSES decreased slightly. As the number of DIF items increased, biases and RMSEs 

increased quickly. As the magnitude of DIF increased, biases and RMSEs also increased 

quickly. 

Mean biases and mean RMSEs of a and b by group — group 1 unique item, group 

2 unique item, and common item — are shown for conditions with 10 and 15 common 

items with small uniform DIF items each time against group 2 across three sample sizes 

in Figure 5 and 6, respectively. Mean biases and mean RMSEs of a and b by group are 

shown for conditions with 10 and 15 common items with medium uniform DIF in Figure 

9 and 10, respectively. Mean biases and mean RMSEs of a and b by group are shown for 

conditions with 10 and 15 common items with large uniform DIF in Figure 13 and 14, 

respectively. 

There were no significant differences on the magnitude of mean biases of a by 

group and mean biases of b by group. The mean biases of a were all smaller than 0.06 in 
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absolute value. The mean biases of b were smaller than 0.01 in absolute value in most 

cases. Differences among groups appeared on the third decimal place. Common items had 

the most dispersed mean biases of a, and mean biases of b, compared to the other two 

groups. There were differences on the magnitude of mean RMSEs of a by group, and mean 

RMSEs of b by group. The differences appeared on the second place between groups in 

general. Within common item group, the mean biases and mean RMSEs of a and b were 

sensitive to condition changes, i.e., increased as the DIF magnitude increased and 

decreased as the number of common items increased. The mean RMSEs were larger than 

0.1 when the sample size 500, smaller than 0.1 when the sample size was 3000. The trends 

of mean biases of a and b by group had some differences. In group 1 unique items, a and 

b were positively biased in most cases. In group 2 unique items, a was still positively 

biased, while b was negatively biased. In common items, a became negatively biased in 

some cases, and b was mainly negatively biased. The trends of mean RMSEs of a and b 

were similar across three groups. However, in group 2 unique items, the mean RMSEs of 

a and b were more clustered together. Compared with null conditions, the biggest change 

happened within common items. Both the mean biases and mean RMSEs of a and b for 

common items increased in magnitude and became more dispersed under uniform DIF 

against group 2. 

To summarize, under uniform DIF against group 2 students, the biases of A 

remained unaffected in most cases. The biases of B were larger than acceptable value 

across conditions. The mean biases of b were large when sample size was small and the 

DIF magnitude was large. Compared with group 1 and group 2 unique items, mean biases 
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and mean RMSEs of a and b in common items were affected most when uniform DIF 

presented. 

4.3. Uniform DIF Favoring Group 2 Condition 

Biases and RMSEs of linking constants A and B, and overall mean biases and mean 

RMSEs of a and b over 100 replications are shown for conditions with 10 common items 

containing 2, 4, and 6 number of small uniform DIF items each time favoring group 2 

across three sample sizes in Figure 15. Biases and RMSEs of linking constants A and B, 

and overall mean biases and mean RMSEs of a and b are shown for conditions with 15 

common items containing 3, 6, and 9 numbers of small uniform DIF items each time 

favoring group 2 across three sample sizes in Figure 16. Biases and RMSEs of linking 

constants A and B, and overall mean biases and mean RMSEs of a and b are shown for 

conditions with 10 and 15 common items with medium uniform DIF items in Figure 19 

and 20, respectively. Biases and RMSEs of linking constants A and B, and overall mean 

biases and mean RMSEs of a and b are shown for conditions with 10 and 15 common 

items with large uniform DIF items in Figure 23 and 24, respectively. 

The biases of A were smaller than 0.05 in absolute value and clustered. The biases 

of B were larger than 0.05 in absolute value across all conditions. The RMSEs of A were 

smaller than 0.1 and clustered across cases. The RMSEs of B were larger than 0.1 and 

scattered in most cases. The mean biases of a and b were smaller than 0.06 and 0.01 in 

absolute values across uniform DIF conditions, respectively. Item discrimination a was 

positively biased in most cases, while the item location b was negatively biased in most 

cases. The mean RMSEs of a were close to each other under the same sample size across 
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different number of DIF items. The mean RMSEs of b were dispersed under the same 

sample size across different number of DIF items. Generally, as the sample size increased, 

the biases and RMSEs decreased, a pattern more obvious with mean RMSEs of a and b. 

The sample size effect leveled off at 1000 across conditions for recovery on A and B, and 

a and b. As the number of common items increased, biases and RMSES decreased slightly. 

As the number of DIF items increased, biases and RMSES increased quickly. Similarly, 

as the magnitude of DIF increased, biases and RMSES increased quickly.  Compared with 

results shown in the section of uniform DIF against group 2 conditions where B was 

negatively biased and A was positively biased, the bias of A and B among favoring group 

2 conditions had switched in bias direction, i.e., B was positively biased and A was 

negatively biased. 

Mean biases and mean RMSEs of a and b by group — group 1 unique item, group 

2 unique item, and common item — are shown for conditions with 10 and 15 common 

items with small uniform DIF items each time favoring group 2 across three sample sizes 

in Figure 17 and 18, respectively. Mean biases and mean RMSEs of a and b by group are 

shown for conditions with 10 and 15 common items with medium uniform DIF items in 

Figure 21 and 22, respectively. Mean biases and mean RMSEs of a and b by group are 

shown for conditions with 10 and 15 common items with large uniform DIF items in 

Figure 25 and 26, respectively. 

There were no significant differences on the magnitude of mean biases of a by 

group, and mean biases of b by group. The mean biases of a were all smaller than 0.06 in 

absolute value. The mean biases of b were smaller than 0.01 in most cases. Differences 



63 
 

between groups appeared on the third decimal place. Common items had the most 

dispersed mean biases of a and b, compared to the other two groups. There were some 

differences on the magnitude of mean RMSEs of a by group, and mean RMSEs of b by 

group. The differences appeared on the second decimal place between groups in general. 

Within common item group, the mean biases and mean RMSEs of a and b were sensitive 

to condition changes, i.e., increased as the DIF magnitude increased and decreased as the 

number of common items increased. Generally, the mean RMSEs of a and b were larger 

than 0.1 when the sample size was 500, smaller than 0.1 when the sample size was 3000, 

except for the mean RMSEs of b in common items, which were larger than 0.1 in most 

cases. The trends of mean biases of a by group, and mean biases of b by group had some 

differences. In group 1 unique items, both a and b were positively biased in most cases. In 

group 2 unique items, a was still positively biased, while b was negatively biased. In 

common item group, both a and b were positively biased in most cases. The trends of 

mean RMSEs of a and b were similar across three groups. However, compared with group 

1 and common item group, the mean RMSEs of a and b were clustered together in group 

2. Compared with null conditions, the biggest change happened within common items. 

Both the mean biases and mean RMSEs of a and b for common items increased in 

magnitude and became more dispersed under uniform DIF favoring group 2.  

The magnitudes and trends described under uniform DIF favoring group 2 were 

like those under uniform DIF against group 2. The biases of A remained unaffected in 

most cases. The biases of B were larger than acceptable value across conditions. The mean 

biases of b were large when sample size was small and the DIF magnitude was large. 
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Compared with group 1 and group 2 unique items, mean biases and mean RMSEs of a 

and b in common items were affected most when uniform DIF presented. 

4.4. Uniform and Nonuniform DIF Against Group 2 Condition 

Biases and RMSEs of linking constants A and B, and overall mean biases and mean 

RMSEs of a and b over 100 replications are shown for conditions with 10 common items 

containing 2, 4, and 6 number of small uniform DIF and small nonuniform DIF items each 

time against group 2 across three sample sizes in Figure 27. Biases and RMSEs of linking 

constants A and B, and overall mean biases and mean RMSEs of a and b are shown for 

conditions with 15 common items containing 3, 6, and 9 numbers of small uniform DIF 

and small nonuniform DIF items each time against group 2 across three sample sizes in 

Figure 28. Biases and RMSEs of linking constants A and B, and overall mean biases and 

mean RMSEs of a and b are shown for conditions with 10 and 15 common items with 

medium uniform DIF and small nonuniform DIF items in Figure 31 and 32, respectively. 

Biases and RMSEs of linking constants A and B, and overall mean biases and mean 

RMSEs of a and b are shown for conditions with 10 and 15 common items with large 

uniform DIF and small nonuniform DIF items in Figure 35 and 36, respectively. 

The biases of A were larger than 0.05 in absolute value in most cases. Except for 

20% (2 in 10 common items and 3 in 15 common items) DIF item conditions with small 

uniform and small nonuniform DIF, biases of B were much larger than 0.05 in absolute 

value. The RMSEs of A were around 0.1 across cases. The RMSEs of B were much larger 

than 0.1 in most cases, with some cases under small uniform and small nonuniform DIF 

around 0.1. The mean biases of b were smaller than 0.01 under small uniform and small 
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nonuniform DIF conditions, but larger than 0.01 in absolute value under medium and large 

uniform DIF and small nonuniform DIF conditions. The mean biases of a were smaller 

than 0.06 across all conditions. Item discrimination a was positively biased in most cases, 

while item location b was negatively biased in most cases. The mean RMSEs of a were 

relatively small and clustered under the same sample size across different number of DIF 

items. The mean RMSEs of b were relatively large and dispersed under the same sample 

size across different number of DIF items. Generally, as the sample size increased, the 

biases and RMSEs decreased, a pattern more obvious on mean RMSEs of a and b. The 

sample size effect leveled off at 1000 across conditions for recovery on A and B, and a 

and b. As the number of common items increased, biases and RMSES decreased slightly. 

As the number of DIF items increased, biases and RMSES increased quickly. As the 

magnitude of DIF increased, biases and RMSEs also increased quickly. Bringing 

nonuniform DIF into view, biases of A had significant increase compared with conditions 

that had uniform DIF only. 

Mean biases and mean RMSEs of a and b by group — group 1 unique item, group 

2 unique item, and common item — are shown for conditions with 10 and 15 common 

items with small uniform DIF items each time against group 2 across three sample sizes 

in Figure 29 and 30, respectively. Mean biases and mean RMSEs of a and b by group are 

shown for conditions with 10 and 15 common items with medium uniform DIF items in 

Figure 33 and 34, respectively. Mean biases and mean RMSEs of a and b by group are 

shown for conditions with 10 and 15 common items with large uniform DIF items in 

Figure 37 and 38, respectively. 
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There were no significant differences on the magnitude of mean biases of a by 

group, and mean biases of b by group. The mean biases of a were all smaller than 0.06 in 

absolute values. The mean biases of b were smaller than 0.01 in absolute values in most 

cases. Differences between groups appeared on the third decimal place. Common items 

had the most dispersed mean biases of a and b, compared with the other two groups. There 

were some differences on the magnitude of mean RMSEs of a by group, and mean RMSEs 

of b by group. The differences appeared on the first and second decimal places. Within 

common item group, the mean biases and mean RMSEs of a and b were sensitive to 

condition changes, i.e., increased as the DIF magnitude increased and decreased as the 

number of common items increased. The mean RMSEs were larger than 0.1 when the 

sample size was 500, smaller than 0.1 when the sample size was 3000, except for the mean 

RMSEs of b in common items, which were larger than 0.1 in most cases. The trends of 

mean biases of a and b by group had some differences. In group 1 unique items, a and b 

were positively biased in most cases. In group 2 unique items, a was still positively biased, 

while b was negatively biased. In common item group, a was positively biased in most 

cases, and b was negatively biased in most cases. The trends of mean RMSEs of a and b 

were similar across three groups. However, compared with group 1 and common item 

group, the mean RMSEs of a and b were clustered together in group 2. Compared with 

null conditions, the biggest change also happened within common items. Both the mean 

biases and mean RMSEs of a and b for common items increased in magnitude and became 

more dispersed under uniform and nonuniform DIF against group 2. 
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With both uniform and nonuniform DIF items presented, biases of A became larger 

than 0.05 in absolute value for most cases. Compared with group 1 and group 2 unique 

items, mean biases and mean RMSEs of a and b in common items were affected most 

when both uniform and nonuniform DIF presented. Other patterns were similar to those 

observed in previous sections.  

4.5. Uniform and Nonuniform DIF Favoring Group 2 Condition 

Biases and RMSEs of linking constants A and B, and overall mean biases and mean 

RMSEs of a and b over 100 replications are shown for conditions with 10 common items 

containing 2, 4, and 6 number of small uniform DIF and small nonuniform DIF items each 

time favoring group 2 across three sample sizes in Figure 39. Biases and RMSEs of linking 

constants A and B, and overall mean biases and mean RMSEs of a and b are shown for 

conditions with 15 common items containing 3, 6, and 9 numbers of small uniform DIF 

and small nonuniform DIF items each time favoring group 2 across three sample sizes in 

Figure 40. Biases and RMSEs of linking constants A and B, and overall mean biases and 

mean RMSEs of a and b are shown for conditions with 10 (Figure 43) and 15 (Figure 44) 

common items with medium uniform DIF and small nonuniform DIF items favoring group 

2 in Figure 43 and 44, respectively. Biases and RMSEs of linking constants A and B, and 

overall mean biases and mean RMSEs of a and b are shown for conditions with 10 and 15 

common items with large uniform DIF and small nonuniform DIF items favoring group 2 

in Figure 47 and 48, respectively. 

Biases of A were larger than 0.05 in absolute value across conditions. Biases of B 

were much larger than 0.05 in absolute value, except for 20% (2 in 10 common items and 
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3 in 15 common items) DIF item conditions with small and medium uniform DIF and 

small nonuniform DIF favoring group 2. The RMSEs of A were higher than 0.1 in most 

cases. The RMSEs of B were larger than 0.1, and much larger than 0.1 under conditions 

of medium and large uniform DIF and small nonuniform DIF situations. Both RMSEs of 

A and B became more scattered compared to results in previous sections, but still RMSEs 

of B more dispersed than RMSEs of A. The mean biases of a and b were no larger than 

0.01 and 0.06, respectively, in most cases. Item discrimination a was positively biased in 

most cases, while the item location b was negatively biased in most cases. The mean 

RMSEs of both a and b were more dispersed compared with results in uniform DIF only 

sections. Generally, as the sample size increased, the biases and RMSEs decreased, a 

pattern more obvious on mean RMSEs of a and b. The sample size effect leveled off at 

1000 across conditions for recovery on A and B, and a and b. As the number of common 

items increased, biases and RMSES decreased slightly. As the number of DIF items 

increased, biases and RMSES increased quickly. As the magnitude of DIF increased, 

biases and RMSES also increased quickly. Bringing nonuniform DIF into view, the biases 

of A had a significant increase and became larger than acceptable value, compared with 

conditions that had uniform DIF only. Compared with results shown in the section of 

uniform and nonuniform DIF against group 2, where B was negatively biased and A was 

positively biased, the biases of A and B among favoring group 2 conditions had switched 

in bias direction, i.e., A was negatively biased and B was positively biased. 

Mean biases and mean RMSEs of a and b by group — group 1 unique item, group 

2 unique item, and common item — are shown for conditions with 10 and 15 common 
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items with small uniform DIF items each time favoring group 2 across three sample sizes 

in Figure 41 and 42, respectively. Mean biases and mean RMSEs of a and b by group are 

shown for conditions with 10 and 15 common items with medium uniform DIF in Figure 

45 and 46, respectively. Mean biases and mean RMSEs of a and b by group are shown for 

conditions with 10 and 15 common items with large uniform DIF in Figure 49 and 50, 

respectively. 

There were no significant differences on the magnitude of mean biases of a by 

group, and mean biases of b by group. The mean biases of a were all smaller than 0.06 in 

absolute values. The mean biases of b were smaller than 0.01 in absolute values in most 

cases. Differences between groups appeared on the second and the third decimal places. 

Common items had the most dispersed mean biases of a and b, compared with the other 

two groups. There were differences on the magnitude of mean RMSEs of a and b between 

groups. The differences appeared on the first and the second decimal places. Within 

common item group, the mean biases and mean RMSEs of a and b were sensitive to 

condition changes, i.e., increased as the DIF magnitude increased and decreased as the 

number of common items increased. The mean RMSEs of a and b were larger than 0.1 

when the sample size was 500, smaller than 0.1 when the sample size was 3000, except 

for the mean RMSEs of a and b in common items. For example, the mean RMSEs of b in 

common items were larger than 0.1 in most cases, except for small uniform DIF and large 

sample size conditions. The trends of mean biases of a and b by group had some 

differences. In group 1 unique items, a and b were positively biased in most cases. In 

group 2 unique items, a was still positively biased, while b was negatively biased. In 
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common item group, a and b were both positively and negatively biased. The trends of 

mean RMSEs of a and b were similar across three groups. However, compared with group 

1 and common item group, the mean RMSEs of a and b were clustered together in group 

2. The mean RMSEs of a and b were most dispersed in common item group. Compared

with null conditions, the biggest change also happened within common items. Both the 

mean biases and mean RMSEs of a and b for common items increased in magnitude and 

became more dispersed under uniform and nonuniform DIF favoring group 2. 

To summarize, the trends and patterns observed under both uniform and 

nonuniform DIF favoring group 2 were close to those under uniform and nonuniform DIF 

against group 2. The biases of A became larger than 0.05 in most cases. Compared with 

group 1 and group 2 unique items, mean biases and mean RMSEs of a and b in common 

items were affected most. 
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5. DISCUSSION 

 

The purpose of this dissertation is to evaluate DIF effect on common-item 

nonequivalent groups design linking under the two parameters logistic model. Simulation 

studies were conducted taking sample size, ratio of common item, ratio of DIF item, 

magnitude of DIF item, form of DIF, and direction of DIF into consideration. Recovery 

quality of linking constants and item parameters was evaluated using biases and RMSEs. 

Relative biases were used to scale the biases term to give a concrete idea of bias 

magnitude.  

5.1. Good Recovery Under Null Condition 

Under null conditions with all common items invariant, biases of both A and B 

were small across all conditions. Small RMSEs of A and B indicated good recovery on A 

and B. Small mean RMSEs of a and b indicated good recovery on item parameter a and b 

also. The recovery of linking constant A and B, item parameter a and b were in consistency 

to existed research on related topics(Cohen & Kim, 1998; Kim & Cohen, 1992, 1998, 

2002). Null condition results informed us that under common-item nonequivalent groups 

design, linking was adequate using test characteristic method with a ratio of common item 

at 20% and a sample size as small as 500. Good recovery under null conditions with 

nonequivalent groups also corroborated the previous studies on the effect of examinee 

ability on equating constants and item parameter recovery. Test equating was generally 

independent of examinee ability under both random groups and nonequivalent groups 
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designs across traditional and IRT equating methods (Cook & Petersen, 1987; Harris & 

Kolen, 1986; Skaggs & Lissitz, 1988). 

5.2. Large Biases of B but Small Biases of A with Uniform DIF 

 With uniform DIF against or in favor of group 2 participants, biases of B were 

larger than 0.05 in absolute value across three levels of DIF magnitude, while biases of A 

were smaller than 0.05 in absolute values in most cases. Biases of A only became larger 

than 0.05 when the DIF magnitude was large and the number of DIF items was high. 

Biases of B increased quickly as the magnitude of DIF increased, changing from 0.175 

(small DIF highest number of DIF items) in absolute value to 0.375 (medium DIF and 

highest number of DIF items) in absolute value, and to 0.55 (large DIF and highest number 

of DIF items) in absolute value. Biases of A remained unaffected by the number of DIF 

items and level of DIF magnitude most of time, and changes were nuance even there were. 

The direction of DIF, i.e., against or in favor of group 2 did not affect the magnitude of 

biases but the direction of biases. For example, B was negatively biased when having DIF 

items against group 2 participants and was positively biased when having DIF items in 

favor of group 2 participants. 

 With the functionality of A and B in mind, i.e., A as slope and B as intercept for 

equating, we might be able to interpret the biases in terms of their impact on equating 

results. Little biases on A meant the standard deviation of group 2 scores after 

transformation would not be biased. However, the large negative biases of B when against 

group 2 meant the mean of group 2 scores after transformation was seriously 

underestimated. The large positive biases of B when favoring group 2 meant the mean of 
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group 2 after transformation was seriously overestimated. Both scenarios would impair 

the adequacy of equating and make meaningful comparison unachieved. One possible 

reason of B other than A being seriously biased might be the mean as the first order statistic 

was more likely to be affected by outliers, while standard deviation as the second order 

statistic was less likely to be affected by outliers. Another possible reason could be read 

from Figure 51-53. With uniform DIF against group 2, it can be spotted easily in figures 

that students with the same ability 𝜃 would be estimated with a lower possibility of passing 

an item. Using true score equating as an illustration here, sum of the probabilities across 

test items containing DIF items would be lower than sum of probabilities across all 

invariant test items. The achievement of group 2 students was underestimated upon having 

uniform DIF items against them. Linking constant B would mirror that occurrence as 

negatively biased. With uniform DIF items favoring group 2 participants, the probabilities 

would be overestimated. The whole situation was to the opposite of mechanism discussed 

for uniform DIF against group 2 participants. Therefore, B was positively biased when 

DIF was in favor of group 2 participants.  

5.3. Large Biases of A and B with Uniform and Nonuniform DIF 

When both uniform and nonuniform DIF presented on the common items, biases 

of both A and B became large than 0.05 in most cases. Under small uniform and small 

nonuniform DIF conditions, biases of B regressed toward 0 a little bit, compared with 

biases of B when having small uniform DIF only. Under medium uniform DIF and small 

nonuniform DIF, and large uniform DIF and small nonuniform DIF conditions, biases of 

B were at similar level with medium uniform DIF only and large uniform DIF only 
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conditions, respectively. The biases of A became larger than 0.05 but remained similar 

across different levels of uniform DIF magnitude. Therefore, direct reason for increased 

biases of A was the presence of small nonuniform DIF. Small nonuniform DIF also had 

certain impact on the estimation of B but the effect became negligible when the uniform 

DIF magnitude was high enough.  

The reason for large biases of B was the same as the one given under uniform DIF 

only conditions in section 5.2. One possible reason for the increase in biases of A might 

also be traced out from Figure 51-53. Given a range of ability 𝜃s, the corresponding range 

of probabilities under DIF items on y axis would be more dispersed than the corresponding 

range of probabilities under invariant items. Therefore, when having nonuniform DIF 

against group 2, the dispersion of summed probabilities across test items containing DIF 

items would be inflated. Linking constant A would mirror that occurrence as positively 

biased. The same mechanism applied to biases of A under uniform and nonuniform DIF 

items in favor of group 2. But the direction of biases of A switched.  

5.4. Small Mean Biases and Mean RMSEs of a and b  

The collapsed mean biases and mean RMSEs of item parameters a and b were 

generally low across all conditions, no matter under uniform DIF only conditions or under 

both uniform and nonuniform DIF conditions. The mean biases and mean RMSEs of a 

and b were also small and did not differ very much by group 1 unique item, group 2 unique 

item, and common item. However, the small mean biases and mean RMSEs would 

accumulate across items. Considering 50 items on each form, mean biases and mean 

RMSEs would be 50 times larger on the test level. Still using the true score equating as 
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illustration, probabilities would be slightly biased on each item, but the sum of 

probabilities across test items would be largely biased.  

5.5. Sensitive Mean Biases and Mean RMSEs of a and b Within Common Item 

Mean biases and mean RMSEs of a and b with common items were most sensitive 

to condition changes, like the number of DIF items, and the level of DIF magnitude. Since 

DIF items only presented within common items, no wonder that item parameter recovery 

on common items were most affected by changes in DIF conditions. Also, the use of the 

average of the separate estimates on common items in two groups as the final estimates of 

common item parameters (Hambleton, Swaminathan, & Rogers, 1991) might explain why 

the trends of mean biases of a and b within common item group looked different (more 

dispersed) from those of group 1 and group 2 unique items. Another possible reason for 

the pattern observed might be the linking and calibrating plan used here (Battauz, 2015). 

In this study, everything was put back to the generating scale to make evaluations. Under 

this plan, group 1 had the least transformation, group 2 had the medium, and common item 

group had the most transformation. 

5.6. Limitations and Future Research 

Though explored quite a lot conditions upon having uniform and nonuniform DIF 

against or in favor of a group, many more conditions or factors were left untreated. One 

possible extension is to study the effect under different IRT models. After understanding 

the situations and performances with dichotomous data, the next step would be 

polytomous data where graded response model is of great interest. The same common item 

DIF effect on linking could be tested under graded response model to see whether the 
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results and conclusions in 2PL model are still applicable. DIF could be expanded to have 

more years or groups of participants with varied levels of differences in ability profile. 

There are many factors affecting equating coefficients and the length of chain was one of 

them (Battauz, 2015). In this study, only one length of chain was tested. Future study could 

investigate more complex chain and observe the change in biases and RMSEs. Also, the 

current investigation only showed common item DIF effect on nonequivalent groups 

design linking. The study did not take a further step of removing the DIF items and 

quantifying the improvement in linking constants and item parameter recovery. Future 

study could be performed either removing DIF items directly or in a way that identifying 

and then removing DIF items using various DIF detection methods.  
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6. CONCLUSION

To conclude, the effects of DIF common items were substantial on nonequivalent 

groups design linking. When only having uniform DIF against or in favor of a group, the 

mean of transformed scores would be either seriously underestimated or overestimated 

due to negatively biased or positively biased linking constant B, respectively. When 

having both uniform and nonuniform DIF against or in favor of a group, the mean and 

standard deviation of transformed scores would be either seriously underestimated or 

overestimated due to nonnegligible biases of both A and B. Under both scenarios, adequate 

equating was not achievable even at a large sample size of 3000 in each group. The bias 

increased rapidly as the number of DIF items and the level of DIF magnitude increased. 

The mean bias and mean RMSE of a and b were small across conditions. However, the 

small item level mean bias and mean RMSE would augment on the test level. Therefore, 

DIF common items effects were not only on linking constant, common items, but on 

unique items in each group. The juxtaposition of good recovery under null conditions and 

seriously biased results under DIF conditions underscores the importance of measurement 

invariance of common items to nonequivalent groups. To link adequately, it is always 

recommended to check DIF between concerned groups. 
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APPENDIX A 

 

TABLES 

Table 1 Item j response pattern 

 Answer on item j 

 Right(1) Wrong (0) Total 

Focal group Ai Bi NFi 

Reference group Ci Di NRi 

Total NTi NWi Ni 
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Table 2 Study design factors 

Factor 
No. Of 

Levels 
Details 

Sample size  3 500, 1000, 3000 in each group 

Model 1 2PL 

Common item 

ratio 
2 20% or 30% of the total items on each form 

DIF item ratio 3 20%, 40%, or 60% of the common items 

Direction of DIF 2 
Harder and more discriminative on Group 1; 

Harder and more discriminative on Group 2 

Form of DIF 2 Uniform DIF or non-uniform DIF 

Magnitude of 

uniform DIF 
3 

Distance of 0.3, 0.6, or 0.9 on location parameter 

between two groups for the same item 

Magnitude of non-

uniform DIF 
1 

Distance of 0.3 on discrimination parameter 

between two groups for the same item 

Note. Null conditions are bold. 
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Table 3 Descriptive statistics of generated items 

Unique Items (Group 1)   Common Items   Unique Items (Group 2) 

Item 

No. 

a b  

Item 

No. 

a b  

Item 

No. 

a b 

1 1.002 -0.385  1 1.009 1.169  1 0.943 0.989 

2 1.238 0.613  2 0.813 1.031  2 1.177 0.545 

3 0.836 -0.016  3 1.411 0.27  3 1.576 1.173 

4 0.917 0.405  4 1.643 -1.741  4 0.926 1.55 

5 0.81 1.46  5 1.068 0.472  5 1.691 -0.907 

6 0.915 -0.903  6 1.193 0.842  6 1.383 0.33 

7 1.25 -0.865  7 1.33 1.53  7 1.319 -0.223 

8 0.829 -0.393  8 1.31 -1.172  8 1.364 1.23 

9 1.039 1.312  9 1.451 -0.284  9 1.442 1.961 

10 0.962 0.127  10 0.926 0.068  10 1.086 2.743 

… … …  11 0.997 0.379  … … … 

37 0.929 -0.685  12 1.558 0.802  37 0.918 0.146 

38 1.357 -0.143  13 0.914 0.807  38 1.131 1.321 

39 1.356 -1.129  14 1.122 -0.993  39 0.87 0.655 

40 1.383 0.241  15 1.602 -0.75  40 1.078 -0.581 

Mean 1.232 0.161   1.223 0.162   1.246 0.177 

SD 0.288 0.88     0.27 0.958     0.267 1.073 
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APPENDIX B 

 

FIGURES 

 

Figure 1 Null condition linking constants and item parameter recovery 
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Figure 2 Null condition linking constants and item parameter recovery by groups  
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Figure 3 Small Uniform DIF Against Group 2 10 Common items Linking Constants 

and Item Parameter Recovery  
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Figure 4 Small Uniform DIF Against Group 2 15 Common Items Linking Constants 

and Item Parameter Recovery 
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Figure 5 Small Uniform DIF Against Group 2 10 Common Items Item Parameter 

Recovery by Group 
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Figure 6 Small Uniform DIF Against Group 2 15 Common Items Item Parameter 

Recovery by Group 
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Figure 7 Medium Uniform DIF Against Group 2 10 Common Items Linking 

Constants and Item Parameter Recovery 
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Figure 8 Medium Uniform DIF Against Group 2 15 Common Items Linking 

Constants and Item Parameter Recovery 
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Figure 9 Medium Uniform DIF Against Group 2 10 Common Items Item Parameter 

Recovery by Group 
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Figure 10 Medium Uniform DIF Against Group 2 15 Common Items Item Parameter 

Recovery by Group 
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Figure 11 Large Uniform DIF Against Group 2 10 Common Items Linking Constant 

and Item Parameter Recovery 
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Figure 12 Large Uniform DIF Against Group 2 15 Common Items Linking Constants 

and Item Parameter Recovery 
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Figure 13 Large Uniform DIF Against Group 2 10 Common Items Item Parameter 

Recovery by Group 
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Figure 14 Large Uniform DIF Against Group 2 15 Common Items Item Parameter 

Recovery by Group 
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Figure 15 Small Uniform DIF Favoring Group 2 10 Common Items Linking 

Constants and Item Parameter Recovery 
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Figure 16 Small Uniform DIF Favoring Group 2 15 Common Items Linking 

Constants and Item Parameter Recovery 



104 
 

 

Figure 17 Small Uniform DIF Favoring Group 2 10 Common Items Item Parameter 

Recovery by Group 
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Figure 18 Small Uniform DIF Favoring Group 2 15 Common Items Item Parameter 

Recovery by Group 
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Figure 19 Medium Uniform DIF Favoring Group 2 10 Common Items Linking 

Constants and Item Parameter Recovery 
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Figure 20 Medium Uniform DIF Favoring Group 2 15 Common Items Linking 

Constants and Item Parameter Recovery 



108 
 

 

Figure 21 Medium Uniform DIF Favoring Group 2 10 Common Items Item 

Parameter Recovery by Group 



109 
 

 

Figure 22 Medium Uniform DIF Favoring Group 2 15 Common Items Item 

Parameter Recovery by Group 
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Figure 23 Large Uniform DIF Favoring Group 2 10 Common Items Linking 

Constants and Item Parameter Recovery 
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Figure 24 Large Uniform DIF Favoring Group 2 15 Common Items Linking 

Constants and Item Parameter Recovery 
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Figure 25 Large Uniform DIF Favoring Group 2 10 Common Items Item Parameter 

Recovery by Group 
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Figure 26 Large Uniform DIF Favoring Group 2 15 Common Items Item Parameter 

Recovery by Group 
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Figure 27 Small Uniform and Nonuniform DIF Against Group 2 10 Common Items 

Linking Constants and Item Parameter Recovery 



115 
 

 

Figure 28 Small Uniform and Nonuniform DIF Against Group 2 15 Common Items 

Linking Constants and Item Parameter Recovery 



116 
 

 

Figure 29 Small Uniform and Nonuniform DIF Against Group 2 10 Common Items 

Item Parameter Recovery by Group 
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Figure 30 Small Uniform and Nonuniform DIF Against Group 2 15 Common Items 

Item Parameter Recovery by Group 



118 
 

 

Figure 31 Medium Uniform and Small Nonuniform DIF Against Group 2 10 

Common Items Linking Constants and Item Parameter Recovery 
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Figure 32 Medium Uniform and Small Nonuniform DIF Against Group 2 15 

Common Items Linking Constants and Item Parameter Recovery 
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Figure 33 Medium Uniform and Small Nonuniform DIF Against Group 2 10 

Common Items Item Parameter Recovery by Group 
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Figure 34 Medium Uniform and Small Nonuniform DIF Against Group 2 15 

Common Items Item Parameter Recovery by Group 



122 
 

 

Figure 35 Large Uniform and Small Nonuniform DIF Against Group 2 10 Common 

Items Linking Constants and Item Parameter Recovery 
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Figure 36 Large Uniform and Small Nonuniform DIF Against Group 2 15 Common 

Items Linking Constants and Item Parameter Recovery 
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Figure 37 Large Uniform and Small Nonuniform DIF Against Group 2 10 Common 

Items Item Parameter Recovery by Group 
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Figure 38 Large Uniform and Small Nonuniform DIF Against Group 2 15 Common 

Items Item Parameter Recovery by Group 
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Figure 39 Small Uniform and Nonuniform DIF Favoring Group 2 10 Common Items 

Linking Constants and Item Parameter Recovery 
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Figure 40 Small Uniform and Nonuniform DIF Favoring Group 2 15 Common Items 

Linking Constants and Item Parameter Recovery 
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Figure 41 Small Uniform and Nonuniform DIF Favoring Group 2 10 Common Items 

Item Parameter Recovery by Group 
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Figure 42 Small Uniform and Nonuniform DIF Favoring Group 2 15 Common Items 

Item Parameter Recovery by Group 
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Figure 43 Medium Uniform and Small Nonuniform DIF Favoring Group 2 10 

Common Items Linking Constants and Item Parameter Recovery 
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Figure 44 Medium Uniform and Small Nonuniform DIF Favoring Group 2 15 

Common Items Linking Constants and Item Parameter Recovery 
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Figure 45 Medium Uniform and Small Nonuniform DIF Favoring Group 2 10 

Common Items Item Parameter Recovery by Group 
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Figure 46 Medium Uniform and Small Nonuniform DIF Favoring Group 2 15 

Common Items Item Parameter Recovery by Group 
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Figure 47 Large Uniform and Small Nonuniform DIF Favoring Group 2 10 Common 

Items Linking Constants and Item Parameter Recovery 
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Figure 48 Large Uniform and Small Nonuniform DIF Favoring Group 2 15 Common 

Items Linking Constants and Item Parameter Recovery 
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Figure 49 Large Uniform and Small Nonuniform DIF Favoring Group 2 10 Common 

Items Item Parameter Recovery by Group 
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Figure 50 Large Uniform and Small Nonuniform DIF Favoring Group 2 15 Common 

Items Item Parameter Recovery by Group 
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Figure 51 Invariant Item 1: a=0.63, b=-2.00; DIF Item 2: a=0.63, b=-1.70; DIF Item 

3: a=0.93, b=-1.70 
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Figure 52 Invariant Item 1: a=0.63, b=-2.00; DIF Item 2: a=0.63, b=-1.40; DIF Item 

3: a=0.93, b=-1.40 
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Figure 53 Invariant Item 1: a=0.63, b=-2.00; DIF Item 2: a=0.63, b=-1.10; DIF Item 

3: a=0.93, b=-1.10 

 

 

 




