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ABSTRACT

We identify graphene layer on a disordered substrate as a system where Anderson

localization of phonons can be observed. Generally, observation of localization for scat-

tering waves is not simple, because the Rayleigh scattering is inversely proportional to

a high power of wavelength. The situation is radically different for the out of plane vi-

brations, so-called flexural phonons, scattered by pinning centers induced by a substrate.

In this case, the scattering time for vanishing wave vector tends to a finite limit. One

may, therefore, expect that physics of the flexural phonons exhibits features characteristic

for electron localization in two dimensions, albeit without complications caused by the

electron-electron interactions. We confirm this idea by calculating statistical properties of

the Anderson localization of flexural phonons for a model of elastic sheet in the presence

of the pinning centers. Finally, we discuss possible manifestations of the flexural phonons,

including the localized ones, and contribution to the electron dephasing rate.

ii



DEDICATION

To my mother, my father, and my grandmother.

iii



ACKNOWLEDGMENTS

First and foremost, I would express my special thanks to Prof. Alexander Finkel’stein,

my graduate advisor, who really taught me how to think and act like a theoretical physicist,

for his continuous support over the years, for all the encouragement on me and the patience

and enlightenment that allowed me to grow as a theoretical physics researcher. Sasha gave

me the opportunity to travel to places like the Weizmann Institute of Science in Israel and

Karlsruhe Institute of Technology in Germany where I spent extended time doing research

and study. The trips really opened my eyes and gave me a lot of precious chances to

interact with the top condensed matter physicists and students. I still could remember the

time I spent with Sasha for hours, either in front of the blackboard or by his desk, studying

the interesting problems in condensed matter physics.

I will also extend my thanks to Prof. Pokrovsky, who has taught me several important

topics in condensed matter physics, including the Quantum Mechanics and condensed

matter field theory. The lessons prepared me well for my Ph.D. research and dissertation

work, and throughout the interaction with Dr. Pokrovsky, I also learned tremendously

about how to be a lifetime learner and researcher. Many thanks should also be given to

my other committee members, Prof. Naugle and Prof. Kuchment who gave me precious

opinions for this dissertation work.

Also, I would like to thank the Texas A&M University High Performance Research

Computing to allow me to use the supercomputing nodes on the Ada and Terra cluster

there. Portions of this research, especially the intensive computation task were conducted

with the advanced computing resources provided by Texas A&M High Performance Re-

search Computing.

There is another organization that I should give some credit: J.P. Morgan, with whom

iv



I did two internships in the field of quantitative finance. I learned a lot of the numerical

skills and also learned how to operate with supercomputers there, which really became the

key to my dissertation work.

Ph.D. study is the longest and hardest commitment I have ever promised in my lifetime.

Without the support of my family, mentors, and friends, it will never be possible. Prof.

Chin and Prof. Hu have been my mentors and teachers throughout the year, I would like to

thank them for all the precious advice that they have given to me. Dr. Konstantin Tikhonov

is also a very important figure in my Ph.D. life, who joined Sasha’s group roughly the

same time as me. We are not only collaborators but also close friends. Dr. Tikhonov really

taught me how to think theoretical physics problems like a professional physicist. I would

like to thank all my friends in the Physics & Astronomy Department and also around the

world for your company, especially Feng Li, Xiwen Zhang, Zhaokai Meng, Xiaoyun Ma,

Shuoshuo Wang, Chen Sun and Mingjie Lu, etc,... The name lists are really endless, please

forgive me if I omitted some of my most important friends.

Last but not least, I would thank my family in China for the continuous support, es-

pecially my mother and grandmother. It is their lasting encouragement, especially in the

later stage that gave me the power to finish the last steps of my Ph.D. work. Of course, I

have to give Dr. Ting Li, my fiancee, a big hug, for her continuous support throughout my

graduate study.

v



CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professor Finkel’stein

[advisor], Professors Pokrovsky and Naugle of the Department of Physics & Astronomy

and Professor Kuchment of the Department of Mathematics.

All other work conducted for the dissertation was completed by the student indepen-

dently.

Funding Sources

Graduate study was supported by the U.S. Department of Energy, Office of Basic

Energy Sciences, Division of Materials Sciences and Engineering under Award DE -

SC0014154.

vi



NOMENCLATURE

AKL Altshuler, Kravtsov, and Lerner
ALS anomalously localized state
B-S Bethe-Salpeter
DMPK Dorokhov-Mello-Pereira-Kumar (equations)
DOS density of states
FDM finite difference method
F-E Fal’ko-Efetov
F-M Fyodorov-Mirlin
FP flexrual phonon
GOE Gaussian orthogonal ensemble
GUE Gaussian unitary ensemble
IPR inverse participation ratio
K-L Kravstov-Lerner
LDOS local density of states
LN logarithmically-normal
MBL many body localization
NLSM nonlinear sigma model
PDE partial differential equation
PRBM power-law random banded matrix
P-T Porter-Thomas
RBM random banded matrix
RG renormalization group
RMT random matrix theory
RPFP randomly pinned flexrual phonon
SUSY supersymmetry
TAMU Texas A&M University
TLCF two level correlation function
WD Wigner-Dyson (level statistics)
WL weak localization
1D, 2D, 3D one-dimensional, two-dimensional, three-dimensional

vii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

CONTRIBUTORS AND FUNDING SOURCES . . . . . . . . . . . . . . . . . . vi

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1. INTRODUCTION AND LITERATURE REVIEW . . . . . . . . . . . . . . . 1

1.1 Transport Properties and Flexural Phonons in Graphene . . . . . . . . . . 1
1.2 From Pinning to Localization . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Statistical Properties for Disordered System . . . . . . . . . . . . . . . . 4
1.4 Randomly Pinned Flexural Phonon . . . . . . . . . . . . . . . . . . . . . 6
1.5 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. FLEXURAL PHONON IN GRAPHENE . . . . . . . . . . . . . . . . . . . . 8

2.1 Flexural Phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Scattering of Flexural Phonons in Graphene . . . . . . . . . . . . . . . . 9

2.2.1 Interaction of FPs with the Pinning Centers . . . . . . . . . . . . 9
2.2.2 About the Anharmonic and Rippling Effects . . . . . . . . . . . 11

2.3 Toward Anderson Localization of the Flexural Phonons . . . . . . . . . . 13
2.3.1 Important Energy Scales . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Anderson Localization for FPs in Graphene . . . . . . . . . . . . 14

3. NUMERICAL SCHEME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Randomly Pinned FP Model . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Matrix Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

viii



3.2.1 Random Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Dirichlet Boundary Conditions . . . . . . . . . . . . . . . . . . . 21
3.3.2 Periodic Boundary Conditions . . . . . . . . . . . . . . . . . . . 21

3.4 Numerical Solving the Sparse Matrix . . . . . . . . . . . . . . . . . . . . 23
3.5 Density of States (DOS) . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.5.1 Numerical Results of DOS . . . . . . . . . . . . . . . . . . . . . 27
3.6 Road Map and Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4. ENERGY LEVEL STATISTICS . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Important Quantities in Energy Level Statistics . . . . . . . . . . . . . . 29
4.2 Energy Level Statistic and Random Matrix Theory (RMT) . . . . . . . . 31

4.2.1 Level Spacing Distribution . . . . . . . . . . . . . . . . . . . . . 31
4.2.2 Two-Level Correlation Function (TLCF) . . . . . . . . . . . . . . 33
4.2.3 Level Number Variance . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Energy Level Statistics beyond RMT . . . . . . . . . . . . . . . . . . . . 36
4.3.1 Qualitative Argument for the Deviation . . . . . . . . . . . . . . 37
4.3.2 Quantitative Derivation . . . . . . . . . . . . . . . . . . . . . . . 37

4.4 Level Correlations Driven by Weak Localization in 2D System . . . . . . 39
4.5 Numerical Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5. STATISTICAL PROPERTIES OF THE WAVE FUNCTION . . . . . . . . . . 44

5.1 Eigenfunction Statistics in the Ergodic Regime . . . . . . . . . . . . . . . 45
5.1.1 Numerical Calculation of the Wave Function Intensity . . . . . . 46

5.2 Wave Function Statistics in terms of the Supersymmetric σ-model . . . . 46
5.2.1 The Metallic (To Weak Localization) Regime . . . . . . . . . . . 51

5.2.1.1 Distribution of the Eigenfunction Amplitude . . . . . . 51
5.2.1.2 Numerical Results . . . . . . . . . . . . . . . . . . . . 52

5.2.2 The Localized Regime . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2.1 Numerical Results for Localized Regime . . . . . . . . 56

6. ASYMPTOTIC TAILS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.1 Anomalously Localized States and Distribution of Large Eigenfunction
Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Saddle Point Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3 Saddle Point Solution in 2D geometry . . . . . . . . . . . . . . . . . . . 61

6.3.1 Exact Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.2 Asymptotic Tail of the Intensity Distribution P(u) . . . . . . . . 62
6.3.3 Summary of the Result for Wave Function Amplitude . . . . . . . 64

6.4 Numerical Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ix



7. INVERSE PARTICIPATION RATIO AND MULTIFRACTALITY OF THE WAVE
FUNCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7.1 Weak Multifractality of Eigenfunctions . . . . . . . . . . . . . . . . . . . 66
7.1.1 Multifractality: Basic Definition . . . . . . . . . . . . . . . . . . 67

7.2 Inverse Participation Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.2.1 IPR and Multifractality in 2D . . . . . . . . . . . . . . . . . . . . 69
7.2.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.3 Distribution and Fluctuation of IPR . . . . . . . . . . . . . . . . . . . . . 74
7.3.1 Tail Distribution in 2D Geometry. . . . . . . . . . . . . . . . . . 75
7.3.2 Numerical Result . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.4 Extract gph from IPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8. IMPACT ON THE DEPHASING RATE IN GRAPHENE . . . . . . . . . . . . 82

8.1 The Dephasing Rate due to FPs . . . . . . . . . . . . . . . . . . . . . . . 82
8.1.1 Diffuson Contribution . . . . . . . . . . . . . . . . . . . . . . . . 84
8.1.2 Crossover to Ballistic Regime . . . . . . . . . . . . . . . . . . . 85

9. SUMMARY AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . 87

9.1 Summary of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9.2 Potential Impact of Research . . . . . . . . . . . . . . . . . . . . . . . . 90

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

APPENDIX A. PYTHON CODE USED IN THE NUMERICAL STUDY . . . . . 116

x



LIST OF FIGURES

FIGURE Page

1.1 Illustration of graphene sample with out-of-plane vibrations. . . . . . . . 2

3.1 An elastic flexible 2D sheet on a substrate. Pinning centers are indicated
as red cylinders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Function f(z) determining the scattering cross-section, σfl = 4
k
f(ka). . . 18

3.3 A sample sparse matrix representing a 6 × 6 square lattice with Dirichlet
boundary conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 The intensity of the phonon wavefunctions h2 for 5% of the pinned sites at
E = 0.5. Pinned sites are indicated as black dots. . . . . . . . . . . . . . 23

3.5 The intensity of the phonon wavefunctions for 5% of the pinned sites at
E ≈ 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Phonon wavefunctions for three different energies. . . . . . . . . . . . . 25

3.7 The theoretical density of states of clean flexural phonon. It exhibits a Van
Hove singularity in the middle of the energy spectrum. . . . . . . . . . . 26

3.8 Normalized DOS for randomly pinned FPs after disorder averaging. . . . 27

4.1 Crossover from Poisson (red dashed line) to Wigner-Dyson (GOE, black
dashed line) level statistics at different energies for 20% of pinned sites. . 32

4.2 Nearest-neighbor level spacing distribution P (s) for 20% pinned disorder
on L = 140 lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 R(s) for 40×40 lattice with 10% pinned sites average over 20,000 times. 34

4.4 Diagrammatic representation for the level correlation function. . . . . . . 39

4.5 Hikami box contribution for the level correlation function. . . . . . . . . 40

4.6 Level number variance from an 80×80 lattice with 20% disorder, averaged
over 1000 realization. We use energy slice E ∈ [3.5, 3.6]. Estimated
∆ ' 0.00095 (in lattice unit), and gph ' 1.63. . . . . . . . . . . . . . . . 41

xi



4.7 Level number variance for 90×90 lattice with 10% disorder, averaged over
1000 realizations. E ∈ [3.5, 3.6], ∆ ' 0.00070 (in lattice unit), and gph '
5.53. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.8 Level number variance for 200×200 lattice with 20% disorder, averaged
over 50 realization. E ∈ [3.5, 3.6], ∆ ' 0.00015 (in lattice unit), and
gph ' 1.38. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 The wave function intensity distribution of 80×80 lattice with 10% pinned
sites, after 2000 disorder averaging. The energy is sliced at 3.5 < E < 3.6. 47

5.2 The log-log plot of the wave function intensity distribution. . . . . . . . . 53

5.3 The wave function intensity distribution of 80×80 lattice with 20% pinned
sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Log-log plot of the wave function intensity distribution for 20% of pinned
sites. Sample specification is the same as Figure 5.3. . . . . . . . . . . . 54

5.5 The intensity distribution calibrated with respect to the RMT result for
10% of the pinned sites at E ∼ 3.5. . . . . . . . . . . . . . . . . . . . . . 55

5.6 Wave function intensity distribution for localized regime. The sample has
20% of pinned sites, and 80×80 lattice with 2000 disorder averaging. . . 57

6.1 The log-log plot of the wave function intensity distribution for 20% of
pinned sites, with 80×80 lattice and averaged over 2000 times. . . . . . . 65

7.1 IPR for lattices of different sizes averaged over many realizations (at least
50) as a function of E (in lattice units). . . . . . . . . . . . . . . . . . . . 70

7.2 IPR scales with sample area L2, L being the lattice size. . . . . . . . . . . 71

7.3 IPR scales with L1.6 for different energies. Here all IPR lines for different
sizes intersect at E ∼ 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.4 Scaling of the IPR with the system size for 20% of the pinned sites at
several values of energy E. . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.5 The probability distribution function of log IPR for 10% of pinning sites.
Energy slice is taken around E = 2.9. . . . . . . . . . . . . . . . . . . . 77

7.6 Distribution functions of log IPR for 5% of pinned sites. . . . . . . . . . . 77

xii



7.7 Distribution functions of log IPR for 20% of pinned sites. Energy is taken
the same as in the previous plot (E ∼ 3.6). . . . . . . . . . . . . . . . . 78

7.8 The semi-log plot of the IPR distribution. The sample has 40×40 lattice,
with 20% of pinned sites and 20,000 disorder averaging. . . . . . . . . . 79

7.9 Log-log plot of the IPR distribution. The sample feature and parameter
estimations coincide with the previous Figure 7.8. . . . . . . . . . . . . 79

7.10 The dimensional "conductance" as a function of energy in the metallic
region ξ > L. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.11 The dimensional "conductance" as a function of energy in the metallic
region for lattices with 10% pinned sites. . . . . . . . . . . . . . . . . . 81

7.12 The dimensional "conductance" as a function of energy in the metallic
region for lattices with 20% pinned sites. . . . . . . . . . . . . . . . . . 81

xiii



LIST OF TABLES

TABLE Page

9.1 Comparison of different methods of estimating gph for lattice with 20% of
pinned sites at E ∼ 3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xiv



1. INTRODUCTION AND LITERATURE REVIEW

1.1 Transport Properties and Flexural Phonons in Graphene

The transport properties of graphene have attracted much attention [1] since the first

discovery of this fascinating material [2]. It is promising for various applications due to its

high charge mobility and unique heat conductivity. Theoretically, it was realized long ago,

[3, 4, 5] that these transport properties of free-standing (suspended) graphene are strongly

influenced by flexural (out-of-plane) vibrational modes which deform the graphene sheet.

From the experimental point of view, the effect of flexural phonons (FPs) was clearly

observed in heat transport [6, 7]. However, it is a more challenging task to identify the

effect of flexural phonons in electronic transport [8, 9]. This is because the contribu-

tion of electron-phonon interactions to momentum relaxation remains small even at high

temperatures, with the main source of the relaxation being elastic impurities [10]. The

dephasing rate τ−1
φ , on the other hand, is a more suitable quantity for studying FPs, since

static impurities do not cause dephasing. Usually, electron-electron (el-el) interactions,

[11, 12, 13, 14, 15, 16] are considered the primary mechanism for dephasing. Because of

the quadratic spectrum of FPs, ωk = αk2 [17], they are much more populated as compared

with in-plane phonons. In addition, the coupling to two FPs considerably increases the

phase space available for inelastic processes as compared to the interaction with a single

phonon. Thus, in a previous paper [18], we considered the influence due to the interaction

of electrons with FPs to the dephasing rate. Though as expected, FPs indeed contribute to

the dephasing rate substantially (to the same order of magnitude of what is given by el-el

interactions), it still remains unclear why experimental data indicate even higher rate. This

is the basic motivation of my PhD research which is presented in this dissertation.
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Figure 1.1: Illustration of graphene sample with out-of-plane vibrations.

1.2 From Pinning to Localization

Flexural phonons (FP) have the largest density of states in graphene owing to the

softness of these modes. In particular, at low temperatures they store most of the heat.

Therefore, it is of principal importance to understand their physics in order to understand

thermal properties of graphene. In the dissertation work, we have in mind a graphene

sheet on a non-ideal substrate like SiO2. Here is a quotation from a (randomly chosen)

paper by Dean et al., [19]: “Graphene devices on standard SiO2 substrates are highly

disordered, exhibiting characteristics far inferior to the expected intrinsic properties of

graphene.” A histogram of the height distribution (surface roughness) measured by AFM

for SiO2 presented in this article indicates a Gaussian like distribution with the half-width

about 0.4 nm. On the other hand, the distance between graphene and the SiO2 surface is

only about 3Å [20]. Next, the AFM images show that the correlation length of the profile

of the corrugated graphene exceeds 10nm. One has also to take into consideration that

the interaction of the graphene with a substrate is due to the van der Waals forces. In

2



the Lennard-Jones potential which is used to describe the van der Waals force, the attrac-

tive long-range term decays with distance very rapidly as r−6. We, therefore, come to a

model of randomly pinned-suspended graphene in which the graphene sheet is pinned at

the vicinity of the maximal heights of the substrate where the interaction with the substrate

is the strongest, and there are extended areas that float (almost) freely in between. To un-

derstand the properties of the pinned-suspended graphene, we have studied the scattering

of flexural phonons at the centers of pinning. An essential ingredient of physics of the

scattering of flexural phonons is that for a mode with a wave vector k, the scattering cross-

section on a rigid obstacle of size a is σ(k) = 4/k in the limit of ka→ 0 [21, 22]. Taking

into consideration that the spectrum of the flexural phonons is quadratic, i.e., velocity is

linear in k, one could reach the conclusion that the scattering time in the low-energy limit

is constant. This indicates that the mean free path l is constant at small k. According to the

Ioffe-Regel criterion for Anderson localization, the physics described above suggests that,

kl � 1, which leads to the localized phase, for k sufficiently small. All the physics de-

scribed here is in stark contrast to the usual physics of propagation of phonons in random

media, where the phonon scattering is usually controlled by the Rayleigh-like scattering.

In the latter case, τ →∞ when k → 0.

Anderson localization is a key milestone for condensed matter physics. Since An-

derson [23] started the topic, there are numerous reviews [24, 25, 26, 27] devoted to the

topic. In fact, Anderson localization in phonon systems is not a new idea, for acoustic

waves it was extensively studied in 80s [28, 29, 30, 31, 32], where localization was pre-

dicted to happen at high energies due to Rayleigh physics. Numerical studies of phonon

localization in disordered systems were soon performed [33], whose result supported the

theory. The potential well analogy method was also employed to study the phonon lo-

calization in disordered systems [34]. The theory was further validated by examining the

low temperature thermal conductivity for a variety of glasses [35], where it suggests that

3



localization of the vibration modes appears. An interesting example for comparison is the

localization of the third sound in a 4He-film by a disordered substrate[36]. It has been ob-

served that propagating (i.e., delocalized) third sound modes with high frequency are not

present on two-dimensional disordered substrate, in direct contrast to what was observed

on the ordered substrate. Also, phonon localization has been studied in free standing films

[37, 38]. There have been some claims about experimental observation of phonon local-

ization in boron nitride nanotubes [39], but no clear consensus is reached on the issue yet

[40]. Phonon localization is difficult to detect compared to the electron localization. The

reason is simply in the bosonic character of phonons. However, the focus of study is on

the in-plane phonons instead of out-of-plane ones, and the phenomenon of localization

will depend critically on inelastic phonon processes, which are the main differences with

the scope of this work. In recent years, numerical studies [41] for in-plane phonons for d

= 1,2,3 also confirms the theoretical results. More recently, researchers start to apply the

idea to the thermal phonons [40] and predicted a thermal conductivity maximum.[42] The

idea of phonon localization was further extrapolated to the field of optics [43], where the

concept of localization was useful for the creation photonic crystals [44].

In contrast to usual phonons, for flexural phonons, one may expect localization of the

low-energy phonons for ω(k) < 1/τ . Moreover, since it is a two-dimensional system, one

may expect that there is a gradual crossover from a strong localization to a regime of weak

localization with an exponentially long localization length ξ. In the latter case, one has to

compare the localization length with the size of a sample L.

1.3 Statistical Properties for Disordered System

Since the work of Wigner [45], statistical properties of the energy levels and wave

functions of complex quantum systems has become a mainstream research direction in

condensed matter physics. Wigner treated nuclear spectra based on a statistical point of

4



view. In order to describe excitation spectra of complex nuclei, he introduced the concept

of random matrix theory (RMT), which was further developed by Dyson and Mehta in the

early 1960’s [46, 47, 48, 49]. A universal form of the spectral correlation functions was

predicted, which is dictated entirely by the symmetry class of the system.

In fact, random matrix theory was first brought to mathematical statistics by Wishart

[50] in 1928. Later it was realized that the RMT is not restricted to quantum systems, but

has a much broader range of applicability, including social science [51] and quantitative

finance [52, 53]. In particular, Bohigas, Giannoni, and Schmit [54] made a conjecture that

the RMT describes adequately statistical properties of spectra of quantum systems whose

classical analogs are chaotic, which is strongly supported by accumulated numerical evi-

dence.

RMT also applies to disordered systems, where a quantum particle (electron, phonon

or photon, etc.) moves in a random potential created by some kind of disorder. Gor’kov

and Eliashberg [55] conjectured that statistical properties of the energy levels in such a

disordered granule can be described by the random matrix theory, which was later proved

by Efetov [56]. Efetov developed a very powerful tool for study of the disordered systems

— the supersymmetry (SUSY) method (see the review [56] and the book [57]). The main

idea is to map the problem under consideration onto a certain deterministic field-theoretical

model (supermatrix σ-model), which generates the disorder-averaged correlation functions

of the original problem. As was shown, one can use the zero-mode approximation of the

σ-model supermatrix field to reproduce precisely Dyson’s RMT results.

As has been already mentioned, σ-model formalism is not restricted to quantum sys-

tems, but is equally applicable to classical waves. Especially, it was applied in the op-

tics to deal with a problem of intensity distribution of disordered media. By placing the

source and detector in disordered media, the distribution of the detected intensity could

be described in the leading approximation by the Rayleigh law [58]. Within the diagram-
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matic technique, the result can also be reproduced [59]. To study the deviations from the

Rayleigh distribution one has to go beyond RMT and consider the diffusive dynamics [60].

1.4 Randomly Pinned Flexural Phonon

It is reasonable to conjecture that σ-model approach will also work for our model of

randomly pinned flexural phonons. Unlike in the cold atom or optical experiments, our

system is intrinsically 2D, which is more close to the critical dimension of the σ-model,

and in principle, could give a better chance for studying 2D localization physics. For

disordered electrons, theory connects the behavior of various physical quantities in 2D

with the value of the conductance, see the Ref. [61] for a review.

It turned out that the model of pinned sites is very convenient for studying the phe-

nomenon of localization in two dimensions. We considered “samples” of the size up to

200×200 sites, with random realization of 5%, 10% and 20% of pinned sites. We first cal-

culated numerically the same quantities for pinned flexural phonons, connected them with

gph, and found a reasonable agreement with the theoretical predictions for the disordered

electrons in the case of the orthogonal class of universality. We believe that the reason for

the observed universal behavior is that the flexural phonons in the lattice with pinned sites

are eventually described the same Non-Linear σ-Model (NLSM) as disordered electrons.

We then studied Inverse Participation Ratio (IPR) depending on the energy. From

our simulations, it is absolutely obvious that low energy modes are localized: the IPR

does not depend on the lattice length. For higher energies, the behavior changes, because

localization length ξ � L. We were interested in studying the flexural phonons in this

region. Questions that will be addressed: “Is there a transition at certain energy (the

metal-insulator transition), or there is a crossover from strong to weak localization? If we

compare with the electrons propagating in a disordered lattice, will the observed behavior,

generally speaking, be the same or different?” These questions make sense because for
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pinned phonons there is no analogue of the on-site disordered potential in the Anderson

model [23]. Instead, there is the concentration of pinned sites. Furthermore, the flexural

phonons are described by the square of the Laplacian (∇4), rather than by the Laplacian

in the case of electrons. Refs. [62, 63] also show that, a priori, one could not tell for sure

which symmetry class will be responsible for the physics.

1.5 Outline of the Dissertation

This dissertation is thus organized as follows. In Chapter 1, we briefly introduce the

related concepts and make a literature review. In Chapter 2 we derive the basic properties

of flexural phonons and their scattering with pinning centers, and make qualitative analysis

why Anderson localization is possible there. In Chapter 3, we layout the numerical scheme

of our study and explain the strategy of the dissertation work. Starting from Chapter 4, we

describe the various statistical properties of our model and compare the numerical results

with the existing theory. In particular, we study the energy level statistics in Chapter 4,

followed by the wave function statistics in Chapter 5. In Chapter 6, we show the results

for the asymptotic tails of the wave function distribution, followed by the statistical prop-

erties of IPR in Chapter 7. Also, we demonstrate there clearly the multifractal property

of the system and use it as a means to extract phonon conductance gph. In Chapter 8, we

come back to the problem of dephasing and explain the contribution of pinned FPs to the

dephasing rate. Finally, in Chapter 9 we summarize the dissertation work and assess the

impact of research.

7



2. FLEXURAL PHONON IN GRAPHENE

2.1 Flexural Phonons

We define the displacement vector in Monge gauge u = (ux, uy, h) and the full non-

linear strain tensor as: uij = 1
2

(∂iuj + ∂jui + ∂ih∂jh). The free energy of the graphene

membrane in the harmonic approximation can be expressed as

Hph =
1

2

∫
d2x

(
λu2

ii + 2µu2
ij

)
+
κ

2

∫
d2x

(
∇2h

)2
,

where the first term describes the elastic energy and, the second term, the bending energy

[64]. The Flexural Phonon mode refers to the out-of-plane displacement h here, and it is

well described by the Hamiltonian:

HFP =
κ

2

∫
d2x

(
∇2h

)2
. (2.1)

Here κ ∼ 1eV is the bending energy of graphene. One can write the out-of-plane dis-

placement as h (r, t) = −i∑k φk (t) eik·r, where φk is the phonon operator. Thus, the

bare retarded phonon green’s function can be written as

D
R(A)
0 =

1

2ρωq

(
1

ω − ωq ± iδ
− 1

ω + ωq ± iδ

)
. (2.2)

Here ρ is the density of the graphene and ωq = αq2 is the flexural phonon dispersion [17].
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2.2 Scattering of Flexural Phonons in Graphene

2.2.1 Interaction of FPs with the Pinning Centers

As has been discussed in the introduction, we are interested in the scattering of flexural

phonons from the attached area of substrate. Let us comment upon the graphene layer

deposited on the top of the corrugated substrate. Naively, the membrane-like layer either

follows the substrate or hovers over the surface at some distance. Measurements of the Ref.

[65] with the use of cantilevers indicate, however, towards a possibility of the detaching

a graphene sheet from a substrate to relieve its strain by slipping. (This is manifest by

straightening of the cantilever.) In the case of the SiO2 substrate, both experiment and

theory agree that for the typical magnitude for corrugations, the graphene layer is partially

detached from the substrate. Moreover, the theoretical considerations [66, 67] justify the

use of a contact force that is finite when graphene is conforming to the substrate and

zero otherwise. Factors that may be particular for the SiO2 substrate are charge-donating

impurities below the graphene layer [68, 69, 70], and water molecules which may lie

between graphene and the substrate [71, 72]. The basic experimental facts which lead

to the conclusion that graphene layer deposited on SiO2 is partly freely suspended are as

follows [73]. The long-range corrugation of the substrate with the correlation length of

about 25nm is also visible on the graphene sheet, but with a smaller amplitude than on the

substrate. Mesoscopic corrugations with a smaller length of about 15nm not induced by

the substrate were also identified. These short range corrugations are similar in height and

wavelength to the ones observed on suspended graphene [74, 75].

We thus conclude that the scattering is similar to the scattering from a rigid obstacle.

We will model the effect of pinning centers as a kind of phonon-impurity scattering, with

the potential in a similar form to the electron-impurity scattering. Thus, the phonon green’s

function acquires an imaginary part due to self-consistent Born approximation, which we
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denote as ΣR (ω, q) ≡ −i/2τ , where τ (ω, q)−1 = niv (k)σfl is the FP’s scattering rate

with pinning center. According to Ref. [21, 22] (see details in Section 3.1), the scattering

cross section of the interaction is

σfl (k) = 4/k. (2.3)

Thus, our relaxation rate above can be written as

τ−1 = 4niα, (2.4)

where ni is the concentration of the impurity (pinning centers) and v (k) = 2αk is the

group velocity of the FPs.

One can try to write a Bethe-Salpeter (B-S) equation for this kind of impurity scatter-

ing in a similar manner as for the electron-impurity problem [76]. Thus, we denote the

diffuson as Pd, and the B-S equation can be expressed as

Pd (Ω, q) = 8αρ2ω2τ−1

+
8αρ2ω2τ−1

V

∑

k

DR (ω + Ω/2, k + q/2)DA (ω − Ω/2, k − q/2)Pd (Ω, q) .

Let us denote here U2 ≡ 8αρ2ω2τ−1. To perform analytical calculation we will restrict

ourselves in the regime of ω � τ−1 ∼ Ω and q � k (which is equivalent to ωq � ω).

Thus, one can follow similar procedure as in the Ref. [77] and get

1

V

∑

k

DR (ω1, k + q/2)DA (ω2, k − q/2) =
νp
4ρ2

2π

ω2

1

S
,

where

S ≡
√

(vq)2 + (τ−1 + iΩ)2. (2.5)
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Here we have introduced the flexural phonon density of states (DOS) νp = 1
4πα

. So, the

equation for the diffusion pole (diffuson) is

Pd (Ω, q) = U2 +
1

Sτ
Pd (Ω, q) .

Solving for Pd, we get Pd (Ω, q) = U2

1−(Sτ)−1 . In the dirty limit where τ−1 � Ω, Dq2, one

can restore the familiar form of the diffusion pole:

Pd (Ω, q) =
U2τ−1

Dq2 + iΩ
. (2.6)

Here D = D (ω,Ω) = 1
2
v2τ = 2αωτ is the diffusion constant for FPs. Similarly, in the

regime of k � q, the vertex correction can also be written as:

ΛΩ,ω,qk
2 = k2 +

ω

α
× ΛΩ,ω,q (Sτ)−1 ,

where ΛΩ,ω,q is the vertex correction factor. The above equation leads to ΛΩ,ω,q = 1
1−(Sτ)−1 .

Again in the dirty limit, one can recover a more familiar form for the vertex correction

ΛΩ,ω,q =
τ−1

Dq2 + iΩ
. (2.7)

2.2.2 About the Anharmonic and Rippling Effects

Here we examine the situation when there is some finite rippling of the membrane.

Rippling and anharmonic effects mixes in-plane and out-of-plane flexural phonons and it

is known to be a major source of phonon scattering. Rippling takes place whenever there

is some finite interaction with the substrate. It is well known that due to this mixing the

phonon spectrum is renormalized [78, 79, 17, 80]. Therefore one may concern that a pure

quadratic FP picture of phonon propagation is incomplete. However, this is not necessarily
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true in our case, and the reasons are two fold as explained below.

(i). According to the analysis of Ref. [81], the momenta at which the anharmonicity

becomes relevant for FPs are about 5 times smaller than the thermal momentum. There-

fore, at any temperature only a small fraction of the phase space is occupied by the FPs for

which effects of anharmonicity are relevant.

(ii). In the work of Ref. [82], the modeling of the surface gave ripples of the size

7nm at T = 300K (see also Refs. [83, 80]). This means that at temperatures about 1K,

the size of the ripples will be very large, about 100nm, and correspondingly they will be

too smooth to influence motion of the FPs which we are interested in. On the other hand,

small-size built in ripples, which themselves originate as a result of pinning the graphene

sheet, are not different for the FPs from the regions attached to the substrate. They will

not allow the low-energy FPs to enter the area they occupy. As a result, such ripples will

participate in the localization of the FPs along with attached regions. Thus, small size

ripples do not interfere much in propagation of the long wavelength FPs which we are

interested in, but may favor localization of the FPs. The large-size ripples are too smooth

to influence the FPs. Furthermore, some of the ripples can be considered as a condensate

of the localized FPs.

Therefore, we can safely treat our flexural phonons to be decoupled from other modes.

Finally, let us comment upon the origin of the barrier which at low temperatures does not

let the low-energy FP enter a region of attachment. The reason is simple: FPs oscillate

against the surface of the substrate. In the areas of attachments where the distance of the

sheet from the substrate is smallest and the interaction with the substrate strongest, they

become similar to the optical phonons. The enhancement of the phonon’s energy acts as

a barrier which does not let the low energy phonons to enter the area of attachment. (The

rigid obstacle acts in a similar way.) Of course, for high enough temperatures, the FPs

may have enough energy to overcome the barrier. Moreover, we believe that the observed
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rapid vanishing of the thermal conductivity below 80K [7] may indicate that FPs of the

corresponding energy become ineffective as means of thermal contact with the substrate.

2.3 Toward Anderson Localization of the Flexural Phonons

2.3.1 Important Energy Scales

We have noticed from the above calculation that all the ω integral sit at the lower limit,

which is τ−1. This is a manual cut-off, below which the Born approximation is not valid

for the retarded green’s function. Thus, our field theoretical approach could not be invoked

at this regime. However, the result of the calculations indicate that the regime of ω < τ−1

is of critical importance. Thus, similar as the electron-impurity problem, we propose that

investigating the localization regime for FPs will be necessary. Before we introduce any

quantitative and qualitative argument, it is a convenient place here to introduce several

important energy scales that will be used throughout the rest of the dissertation. We list

them here in the increasing order of values (and we use ~ = 1 throughout the dissertation):

1. Mean level spacing ∆, which is obviously defined via its name: the simple un-

weighted average of the level spacing. This is the smallest energy scale we will deal

with, below which full quantum theory is needed.

2. Thouless energy Ec ≡ D/L2. This energy is the inverse of the characteristic time

τD = L2/D for a particle to diffuse through the sample, where D is the diffusion

coefficient. For energies ∆ ≤ ω ≤ Ec, this regime is called ergodic regime, see

Section 4.2 for details.

3. The scattering time of FPs due to the pinning centerτ−1, which is defined above in

details. For energies Ec ≤ ω ≤ τ−1, the regime is called the diffusive regime, see

Section 4.3 for details. If the energy is larger than τ−1, one goes to the so called

ballistic regime, which is beyond our discussion here.
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Similar to the electronic system, one can also introduce the dimensionless conductance for

phonon systems:

gph ≡
1

2
kF l =

1

2
Eτ = 2πEc/∆. (2.8)

To figure out the criteria for the localization of FPs to happen, we compare the Thouless

energy with the mean level spacing:

gph
2π

=
Ec
∆

=
D/L2

1/νphL2
=

2αωτ

4πα
∼ ωτ

2π
(2.9)

So, for ωτ � 1, the flexural phonon should be in the localization regime. Also, from here

on, we will not write the subscript ph, and just call gph as g.

2.3.2 Anderson Localization for FPs in Graphene

We argue that the graphene layer placed on the top of the corrugated SiO2 substrate

may indeed provide a unique opportunity to observe Anderson localization for the flexural

phonons (the FPs). To get an idea, let us recall the known facts about a long-wave acoustic

wave scattering on a cylinder. The output depends drastically on the boundary conditions

for the velocity potential Φ on the surface of the cylinder.[84] If the velocity component

normal to the surface of the cylinder vanishes, i.e., ∂rΦ|r=a = 0, the scattering cross-

section σR is proportional to a(ka)3, where a is the radius of the cylinder and k is the

wave vector. This is the conventional Rayleigh scattering result [85] for two dimensional

(2d) geometry. However, when pressure is constant, the boundary condition reads Φ(a) =

0, and this influences forcefully the scattering. Unlike the Rayleigh scattering, the zero

angular harmonic is involved, and as a result, the cross section diverges at small k as ∝

(k ln2 1
ka

)−1. (The same takes place for an electro-magnetic wave scattering on a metallic

cylinder.)

In graphene, the substrate cannot scatter effectively the usual acoustic waves, longi-
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tudinal and transverse, because graphene itself is one of the most rigid substances. The

other things are the out of plane phonons. From the analysis of intrinsic and extrinsic

corrugation of monolayer graphene deposited on the SiO2 substrate, it has been concluded

that in this system, the layer is suspended between hills of the substrate [20, 86, 73, 69].

We have checked that scattering of the FPs from areas attached to the substrate is similar

to the scattering from a rigid obstacle [21]. The zero harmonic is also involved, and the

scattering cross-section diverges as σfl = 4/k. As a result, the elastic scattering rate 1/τ

for low-energy FPs exceeds their energy. One may, therefore, expect localization for low-

energy FP modes. This is in strike contrast with localization of acoustic modes which is

known to happen only at high enough frequency [87, 28, 88, 29, 30, 89, 41].
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3. NUMERICAL SCHEME

3.1 Randomly Pinned FP Model

In this work we study the statistical properties of the out of plane excitation in a model

of a randomly pinned-suspended flexible sheet, see figure 3.1. Whether pinning centers are

located in the vicinity of the maximal heights of the substrate where the interaction with

the layer is the strongest, or there are charges on the substrate which interact strongly with

their images, will be not important for our purposes. For simplicity, it will be assumed that

centers of pinning are located randomly. First of all, we are interested in the scattering rate

τ−1 = vσflni, where ni is concentration of pinning centers. As we have already discussed,

the scattering cross-section on a rigid obstacle is 4/k. Taking into consideration that the

spectrum of the flexural phonons ω(k) = αk2 is quadratic, i.e., velocity is linear in k,

one obtains a scattering time τ that is finite in the low-energy limit. Thus, in contrast

to acoustic phonons, for flexural phonons, one may expect localization of the low-energy

modes with ω(k) < τ−1.

Notice that the point here is not in flexural phonons as such, but it is their softness

that allows to realize the scattering by effectively rigid obstacles which leads to a non-

vanishing scattering rate in the limit of small energy ω(k). Let us touch upon this point

in more detail. Usually by a rigid obstacle one understands an inclusion with Young’s

modulus much higher than that in the surrounding area. For graphene, which itself is very

rigid, this is not an issue. However, the pinning potential introduces a barrier with a finite

height for the flexural modes:

κ∇4h(r, t) + ρ
∂2h(r, t)

∂t2
= −ρω2

0(r)h(r, t), (3.1)
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Figure 3.1: An elastic flexible 2D sheet on a substrate. Pinning centers are indicated as
red cylinders.

Here h(r, t) is displacement in the out of plane direction; the term describing the barrier is

on the right-hand side of the above equation. As a result, a flexural phonon with an energy

smaller than ω0 cannot enter the area of pinning. We have checked that such an inclusion

is equivalent to a rigid obstacle. According to Ref. [21, 22], the scattering cross-section of

the FP by a rigid obstacle of the radius a equals σfl = 4
k
f(ka) for not small ka, where k is

the characteristic momentum of the phonon and f(z) is given by the following expression:

f(z) = Re
∞∑

n=0

εn
Jn(z)K ′n(z)− J ′n(z)Kn(z)

H
(1)
n (z)K ′n(z)−H(1)′

n (z)Kn(z)
, (3.2)

where ε0 = 1, εn>0 = 2 and Jn;Kn;Hn are Bessel function of the first kind, modified

Bessel function and Hankel function respectively. The function f(z) with asymptotes

f(0) = 1 and f(z � 1) ≈ z is shown in the Fig. 3.2. Interestingly enough, for ka � 1,

f(ka) ≈ ka. The limiting cross-section is ≈ 4a, i.e., twice larger than the width of the

obstacle [84]. (This is, of course, valid only when the energy of the phonon is much less
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Figure 3.2: Function f(z) determining the scattering cross-section, σfl = 4
k
f(ka).

than the pinning potential, i.e., ω(k)� ω0.)

3.2 Matrix Construction

To understand the general properties of flexural phonons in the presence of random

scatters, we study a model of random pinning centers. Relying on the existing experi-

mental data [90], we assume that the pinning potential ω0 is about few meV. Hence, at

the pinning centers the graphene sheet can be considered as completely attached. More

studies on membrane pinning due to disordered substrate can be found in Ref. [91]. Here

we will differentiate our research with the one in Ref. [92]. In that paper, the graphene

was also considered to be attached to the substrate randomly, but the author only consid-

ered the stretching effect and completely ignore the bending waves, i.e., FPs. We solve

for eigenmodes of discretized LHS of Eq. (3.1) with condition h = 0 at randomly chosen

pinned sites, that is

κ∇4h (x, y)− ρω2h (x, y) = 0. (3.3)
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We solve for our FP eigenmodes on a 2D square lattice using the finite difference

method for partial differential equation (PDE) (3.3). As is well know, the finite difference

method (FDM) [93] is just to discretize the domain of the PDE and then set a large sparse

matrix to be solved by computer. Using the 12 point stencil formula in Ref. [94], we can

represent the PDE in our problem as

−ρa
4ω2

κ
h(x, y) + 20h(x, y)+

h(x− 2, y) + h(x+ 2, y) + h(x, y − 2) + h(x, y + 2)+

2h(x− 1, y − 1) + 2h(x+ 1, y + 1) + 2h(x− 1, y + 1) + 2h(x+ 1, y − 1)+

[−8h(x− 1, y)− 8h(x+ 1, y)− 8h(x, y − 1)− 8h(x, y + 1)] = 0, (3.4)

where a is the distance for which the continuous media description is valid (detail es-

timation is given below), and ω is the energy of the flexural phonon. Using a pictorial

representation, one can write the laplacian square as:

∇4h =
1

a4





1

2 −8 2

1 −8 20 −8 1

2 −8 2

1





h. (3.5)

In order to match what could be represented in computer programs, we will use a row
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major notation to set up a matrix for FDM:

−ρa
4ω2

κ
h(j) + 20h(j)+

h(j − 2) + h(j + 2) + h(j − 2n) + h(j + 2n)+

2h(j − 1− n) + 2h(j + 1 + n) + 2h(j − 1 + n) + 2h(j + 1− n)+

[−8h(j − 1)− 8h(j + 1)− 8h(j − n)− 8h(j + n)] = 0, (3.6)

In what follows, we write energy in the lattice unit, that is E = ω/ωa, where

ωa = a−2
√
κ/ρ = αa−2

is close to the Debye frequency for the FPs.

3.2.1 Random Pinning

The random pinning is realized very conveniently in this model through setting

h(j) |pinned= 0. (3.7)

The pinned sites are chosen independently with uniform probability distribution P(j) =

1/N , where N is the number of sites in the calculation. As is well known, Anderson

localization is confirmed for the Laplacian operator for the random onsite potentials. It

is less known about the localization properties of the ∇4 operators, with the boundary

equation shown above.

Note that one pinned site represents an attached area of the size ≈ a. According to

discussed experiments in Section 2.3.2, we estimate the size of an attached area to be a '

7nm. The typical distance between the pinning centers ai is around 20nm; we will assume

that ni = a−2
i . The representative fraction of the pinned sites is (a/ai)

2 ' (7/20)2 ≈
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12.5%. Correspondingly, we studied "samples" with 5% − 20% of the pinned sites to

determine the statistical properties of the eigenmodes and eigenvalues. In what follows,

we measure the energy eigenvalues E in units of α/a2 which approximately equals 0.08K

for the parameters mentioned above. We found out that typical energy scale for strong

localization for concentration of pinned sites in the range 5% − 20% is a fraction of 1K.

Eigenmodes at three representative energies are shown in the figure 3.6 for a 200 × 200

sample.

3.3 Boundary Conditions

We still need to fix the boundary conditions for the PDE, which is done in the following

two ways.

3.3.1 Dirichlet Boundary Conditions

To implement the Dirichlet boundary condition, one can set the boundary points of a

square lattice as h(:, 0) = h(0, :) = h(:, N) = h(N, :) = 0. Here “:” represent an arbitrary

integer number n ∈ [0, N ]. For all other points on the lattice, we keep their relationship as

is in Eq. (3.6). Thus, one can obtain a set of linear equations, which combines to the form

of

Ah = 0,

where h is the column vector satisfying hj = h (j). A is the matrix representation of

the discretized differential operator governing Eq. (3.3), and below is an example of the

resulting sparse matrix A for a 6× 6 square lattice.

3.3.2 Periodic Boundary Conditions

We fix the boundary condition by setting end points of a square lattice as h(:, 0) = h(:

, N) and h(0, :) = h(N, :), which leads to the following equation:
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Figure 3.3: A sample sparse matrix representing a 6×6 square lattice with Dirichlet bound-
ary conditions. For any reasonable sized problem, the kind of sparse matrix is typically
solved numerically.

−a4ω2h(j) + 20h(j)+

h(j − 2|n) + h(j + 2|n) + h(j − 2n|N2) + h(j + 2n|N2)+

2h(j − 1− n|n, n2) + 2h(j + 1 + n|n,N)+

2h(j − 1 + n|n,N) + 2h(j + 1− n|n,N)+

[
−8h(j − 1|n)− 8h(j + 1|n)− 8h(j − n|N2)− 8h(j + n|N2)

]
= 0. (3.8)

Here the symbol h(i|n) represents taking the mod n on i. One can obtain a similar sparse

matrix A as in Fig. 3.3. Due to the sensitivity of the correlation functions to the boundary

condition (see Ref. [27] and references there in), we will be using the periodic boundary

conditions throughout the dissertation.
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Figure 3.4: The intensity of the phonon wavefunctions h2 for 5% of the pinned sites at
E = 0.5. Pinned sites are indicated as black dots.

3.4 Numerical Solving the Sparse Matrix

We will solve this matrix equation (3.8) numerically with a Python program (attached

in the appendix). For the consideration of speed, reliability, and implementation conve-

nience [95], we choose to use the modern implicitly restarted Arnoldi method for diag-

onalizing matrices. With the help of TAMU High Performance Computing facility, we

were able to solve “samples” of the sizes from 30×30 up to 200×200 sites, with random

realizations of 5%, 10% and 20% of the pinned sites and up to 20000 sample averaging.

We show here a 2D sample configuration of the pinned disorder (in black), for a 100×100

lattice along with the density plot for wavefunctions. The Figure 3.4 shows a localized be-

havior of the wavefunctions at very low energy, while the Figure 3.5’s energy is higher and

it shows a much more extended behavior for the wavefunctions. From our simulations, it
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Figure 3.5: The intensity of the phonon wavefunctions for 5% of the pinned sites at E ≈
3.1.

is clear that low-energy modes are localized: the wavefunction is isolated and the inverse

participation ration (IPR) scales with the sample size to a finite value, see figure 7.2 for

details. For higher energies, the behavior of the wave functions changes, see Fig. 3.6,

because the localization length ξ starts to exceed the sample size. Here is a sample 3D plot

for the wave functions of a 200×200 lattice for three different energies, and the height is

an indication of wavefunction intensity.

3.5 Density of States (DOS)

According to the numerical recipe of Eq. (3.6), and by translating it to equivalent tight

binding language in momentum space (denoted by k), the equation (3.6) actually describe

the following Hamiltonian on a square lattice
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Figure 3.6: Phonon wavefunctions for three different energies. In the upper panel a
strongly localized state with an energy E < 1/τ is shown. In two lower panels the density
profiles of two "metallic" states with E > 1/τ are presented. A multifractal character of
the eigenstates with the length of localization ξ � L is clearly seen.

ρa2

κ
H2(k) = 20− 16 cos (kxa)− 16 cos (kya) + 2 cos (2kya) + 2 cos (2kxa)

+ 4 cos (kxa− kya) + 4 cos (kxa+ kya) ,

whose expansion at low energies k → 0 is (Setting a = ρ = κ = 1, which defines the

lattice unit.):

H2
0 (k) = (k2

x + k2
y)

2.
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Figure 3.7: The theoretical density of states of clean flexural phonon. It exhibits a Van
Hove singularity in the middle of the energy spectrum.

The analytic DOS ν is defined as

ν(E) = V −1
∑

n

δ(E − εn),

whose result is shown in Figure 3.7. One can see that the Van Hove singularity occurs

at kx = ky = π, and the corresponding energy is H2(π, π) = 16. Thus, the Van Hove

singularity occurs at E = 4 (in lattice unit). As one can see from the figure, the Van Hove

singularity occurs in the middle of the energy spectrum. Moreover, the DOS distribution

function was studied in Ref. [96].
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Figure 3.8: Normalized DOS for randomly pinned FPs after disorder averaging. Obtained
from a sample of 140×140 lattice with 20% disorder concentration, after 100 disorder
averaging.

3.5.1 Numerical Results of DOS

In Figure 3.8, we show the numerical result for the DOS of our randomly pinned FP

system. Similar behavior could also be found in the 2D Anderson model with random

hopping [97]. The singularity in the band center is not as much quickly suppressed with

increasing disorder strength compared to the situation in the Anderson model. However,

the behavior for the band edges are similar, with slightly more asymmetric edges in our

case. A relation between DOS and localization range in 1D system could be found in Ref.

[98].

27



3.6 Road Map and Strategy

Following questions will be addressed now for disordered flexural phonons: Is there a

transition to delocalized states at a certain energy (i.e., the "metal-insulator" transition with

the mobility edge), or there is a crossover from strong to weak localization? If to compare

with the electrons propagating in a disordered lattice (Anderson model), will the observed

behavior statistically the same or different? To figure this out, we will numerically study

the dependence of the various statistical properties of the above model on the sample size

L for various phonon energies. Using the conclusions of existing theory for electronic

systems as an anchor point, such as the scaling analysis, diagramatics, and supersymmetry

nonlinear σ-models [99], we will compare the output of numerical simulations with those

conclusions. The idea is that the universal feature of the system would not change under

details such as symmetry groups and localization properties. We are using well-established

theory for electron systems to check how our phononic model behaves under the presence

of pinning centers.

We are particularly interested in studying the flexural phonons in the region when

localization length ξ � L. For comparison, note that although the 2D Anderson model

does not constitute a truly critical system, thanks to exponentially large localization length

at g � 1, the criticality takes place in a very broad range of the system sizes, L � ξ.

Therefore, 2D samples with large g share many common properties with systems at the

critical point of the metal-insulator transition. As we shall see, similar physics holds also

for our system of FPs.
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4. ENERGY LEVEL STATISTICS

4.1 Important Quantities in Energy Level Statistics

Several quantities are able to measure the fluctuations of energy levels εn. In order to

characterize the distribution of eigen-energies, we first layout all the definition of relevant

quantities that we will encounter in the following calculation:

1. The distribution function of the nearest neighbor level spacing P (s).

2. The probability distribution function of P (n, s): The probability of two levels sepa-

rated by n other levels is equal to s.

3. The two-level correlation function of the Density of States (DOS), which is defined

as:

R(ω) =
〈ν(E − ω/2)ν(E + ω/2)〉

〈ν〉2
− 1, (4.1)

where ν(E) = V −1
∑

n δ(E − εn) is the density of states. Here εn is the eigen-

eneriges of our Hamiltonian. The average 〈...〉 is taken either over a given spectrum

by considering different energy intervals or over different realizations of disorder

(ergodic hypothesis [54, 100]). In the numerical simulation, we take the latter defi-

nition. 〈ν〉 is the average density of states, it is related to ∆, the mean level-spacing

as 〈ν〉 = 1
∆V

. An important relation between R(s ≡ ω/∆) and P (n, s) is:

R(s) = δ(s) +
∑

n

P (n, s)− 1.

4. The number variance Σ2(ω) :

Σ2(〈n(E)〉, ω) = 〈δn2(E)〉 = 〈n2(E)〉 − 〈n(E)〉2. (4.2)
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It measures the fluctuation of the number of levels n(E) in a strip of width ω. In 2d it

becomes especially interesting to study the level number variance, Σ2(ω,Ω), which

is a two-level correlation function characterizing the fluctuations of the number of

levels n in a strip of width Ω around the energy ω. The reason why it is of particular

interest is that, in contrast to d = 1 and 3, in two dimensions this quantity is directly

related to the weak localization (WL) corrections [101].

5. The form factor K (t), which is the Fourier transform of R (ω):

K (t) =
1

2π

∫ ∞

−∞
R (ω) e−iωtdω.

This form factor is closely related to the integrated return probability Z(t) that ap-

pears in the dephasing problem by the following relation [102]:

K (t) =
∆2

4π2
tZ (t) . (4.3)

In fact, this relationship is quite similar to what appeared in the dephasing problem

[18].

6. Level compressibility: The level compressibility χ is closely related to the level

number variance, and has value between 0 (for random matrix ensemble) and 1 (for

Poission statistics) [103]. Although here we do not perform numerical analysis in

this quantity, in principle, one can do a finite size scaling simulation around the

Anderson transition point, similar to situations in the electronic system [104, 105].

7. Level Curvature: Introduced in Ref. [106], and further connected with topological

universality of level dynamics [107], the quantity describes the sensitivity of the

energy levels to the boundary conditions, which is also beyond the scope of my

30



work.

4.2 Energy Level Statistic and Random Matrix Theory (RMT)

It was in the 1960s that researchers proved Random Matrix Theory (RMT) [49] could

be used to describe the ergodic systems (e.g., electrons in metallic granules). In the RMT,

the energy level statistics is universal and depend only on the symmetry of the Hamiltonian

[49, 108]. If it is invariant under time reversal symmetry, the fluctuations are described by

the Gaussian Orthogonal Ensemble (GOE) of random matrices ( β = 1). When time

reversal symmetry is broken, the spectrum becomes more rigid (Gaussian Unitary Ensem-

ble, GUE, β = 2). And there is a third class called Gaussian Sympletic Ensemble (GSE,

β = 4). Since our model is now restricted to real symmetric systems, we will mainly focus

on the GOE ensemble for now.

4.2.1 Level Spacing Distribution

In the RMT, the distribution function is well described by the Wigner–surmise: P (s) ∝

sβ exp(−cβs2), for GOE:

Po(s) =
π

2
s exp(−π

4
s2),

On the other hand, in the localized regime, the correlations between levels are weaker

and in the limit of an infinite system the statistics of energy levels becomes Poisson:

P (s) = exp(−s). In Fig. 4.1, the distribution function of the level spacing P (s) is shown

for localized states, which has almost Poissonian statistics, while for metallic states, it is

of the Wigner-Dyson form (GOE class, due to the real symmetric nature of our model

Hamiltonian). This is rather standard.

Figure 4.1 here shows both a GOE universality class behavior at high energies and

a Poisson behavior at low energy, indicating a delocalized/localized phase at high/low

energies respectively. Here we represent energy in terms of ∆, the mean level spacing.
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Figure 4.1: Crossover from Poisson (red dashed line) to Wigner-Dyson (GOE, black
dashed line) level statistics at different energies for 20% of pinned sites. Lattice size
L = 140, with E ∼ 3.5, and ∆ ' 0.0032 (all in lattice unit).

Comparing the level spacing distribution for the localized states and in the metallic re-

gion, one may see the Poisson distribution for the localized states at low energies, and the

Wigner-Dyson distribution for the orthogonal class for the states in the metallic region at

higher energies. We then make more careful slices of energies, and investigate the distribu-

tion function of the level spacing at those energies, see Fig. 4.2. One finds really intricate

behavior: The system is migrating from Poisson to GOE distribution gradually with in-

creasing energy. Moreover, the distributions seem to cross at the same point, which is one

of the characteristic feature for the a third universal distributions PT that was studied in

Ref. [109]. Similar behavior could also be found in the numerical study of the Anderson

transition in disordered metals by tuning the parameter W of the band width of on-site

potential. [110, 111, 112]
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Figure 4.2: Nearest-neighbor level spacing distribution P (s) for 20% pinned disorder on
L = 140 lattice. Each histogram represents an energy slice, and the dashed lines are the
theoretical distributions.

4.2.2 Two-Level Correlation Function (TLCF)

For GOE, the two level correlation function of Wigner-Dyson distribution can be writ-

ten as [61]

RO
WD(s) = 1− sin2(πs)

(πs)2
−
[π

2
sign(s)− Si(πs)

] [cosπs

πs
− sin πs

(πs)2

]
.

Thus, one could obtain its asymptotic behavior with s small. For ω � ∆,

RWD (s) ' π2

6
s.

For large ω, RWD → 1. Detailed theoretical and numerical studies of TLCF can be found

in Ref. [113]. In Figure , we have plotted the behavior of TLCF for our pinned FP system.

The numerical results are well matched with the asymptotics listed above. In particular,

33



Figure 4.3: R(s) for 40×40 lattice with 10% pinned sites average over 20,000 times. Hori-
zontal axis represents s = ω/∆, while vertical axes represents R (s) . Red line: numerical
results. Blue lines: Theoretical predictions. The numerical curve is calculated via the
formula R(s) = δ(s) +

∑
n P (n, s)− 1.

one can see that the beginning of the R (s) curve is linear with the slope matches the

prediction of WD statistics in an excellent way.

4.2.3 Level Number Variance

For small enough E � ∆, one gets the Poisson behavior, meaning that variance is

equal to mean:

Σ2 (E) ' 〈n〉 = E/∆.

In the RMT, Σ2(E) increases logarithmically with E. For E � ∆, it varies as [108]

Σ2(E) =
2

βπ2
ln(2π〈n〉) + cβ +O(〈n〉), (4.4)

where cβ = 1 + γ− π2

8
and〈n〉 = E/∆. Here γ = 0.577 is the Euler constant and ∆ being

the average inter-level spacing. It was shown that in 2D quantum chaotic billiard systems

[114], the level number variance exhibits the typical GOE RMT behavior Eq. (4.4) in the
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diffusive regime. The number variance can obviously be written in terms of this two-point

correlation function:

Σ2(E) =

∫ 〈n〉

0

∫ 〈n〉

0

R(s− s′)dsds′ (4.5)

= 2

∫ 〈n〉

0

(〈n〉 − s)R(s)ds. (4.6)

Or equivalently,

R(ω) =
∆2

2

∂2Σ2(ω)

∂ω2
.

And finally, an important relation between K (t) and Σ2(E) is found to be [108]:

Σ2(E) =
8

∆2

∫ ∞

0

dt
K (t)

t2
sin2

(
Et

2

)
. (4.7)

For time scales larger than τD = ~/Ec, the diffusion is homogeneous so that Z(t) is

independent of the starting point and thus depends only on the zero mode contribution,

which gives a constant. This gives a linear behavior for K(t) = 2/β . It is easy to

understand how β enters here: in the absence of the magnetic field (GOE), the return

probability is doubled due to the presence of the Cooperon zero mode. And this leads to

K (t) =
∆2

2π2β
t,

which gives the expression for level number variance [108]:

Σ2(E) =
1

βπ2
ln

(
1 +

E2

∆2

)
.

The level number variance is studied not only in the diffusive regime presented above, but

in the ballistic regime as well [115, 116, 117], which is considered to be a future research
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object for our random pinned FP model. Numerical studies of the level number variance

could be found in Refs. [118, 119, 111, 120, 121, 122]. More recently level number

variance was also observed and measured in the atomic matter wave [123].

4.3 Energy Level Statistics beyond RMT

At low energy scales, or the ergodic regime, the energy level correlation functions are

well described by the RMT [49]. From the 1980s, the research focus has been shifted to

the study of system-specific energy level deviations from RMT behavior. In the seminal

paper of Altshuler and Shklovskii [124], the authors used diffuson-cooperon diagrammatic

perturbation theory and showed that the behavior of the level correlation deviates from the

RMT one in the high energy (frequency) regime due to the diffusive motion. This is the

diffusive regime, i.e. l � L, where l is the mean free path and L the typical size of the

system. If the energy scales become larger than the Thouless energy Ec, deviations from

RMT occur. The method is perturbative and therefore, is restricted to E � ∆. Moreover,

it could not reproduce the oscillatory contribution to the level correlation function.[99]

In Ref. [125], nonlinear σ-model (NLSM) treatment of the level correlation function

was introduced. The method developed there was later used for calculation of deviations

from the RMT of various statistical characteristics of a disordered system. Here we will

concentrate on the perturbation method and will not go into the details of the σ-model

treatment (Introduction to the NLSM will be given in the Chapter 5). Instead of giving full

details, here we just bring up the point that in the case of the level correlation function,

the zero-mode approximation to the σ-model reproduces the RMT results above. It is

the inclusion of the non-zero spatial modes that gives the analytical form of the deviation

from universal RMT behavior. For level statistics, the calculation of [125] is valid for not

too large energies (E < Ec) was complemented by Andreev and Altshuler [126] whose

saddle-point treatment was, in contrast, applicable for larger energies. For a complete
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review, see Ref. [99].

4.3.1 Qualitative Argument for the Deviation

In the 2D diffusive regime, the dimensionless (measured in units of e2/h) conductance

g = 2πEc/∆ = 2πνDLd−2 � 1. Consider in a metal the time evolution of a wave packet

in the small time limit (or equivalently at large energies). In this limit, a diffusing electron

cannot explore the entire volume of the system. In other words, for time t smaller than τD,

spatial correlations do not extend over the entire sample, but only on a scale ∼
√
Dt. This

corresponds to energies E larger than the Thouless energy, E � Ec. Spatial correlations

extend up to scale LE =
√
D/E � L. At this energy scale, the system of dimension d

can be vied as being composed of (L/LE)d independent subsystem. Therefore, variance

Σ2(E) ∼ (L/LE)d ∼ (E/Ec)
d/2 . This heuristic argument indicates that spectral correla-

tions in disordered conductors result from the diffusive motion of electrons [124, 127]. As

we can see from the numerical simulation below, the variance Σ2(E) only follow RMT’s

logarithmic behavior to the energy scale of Ec, beyond which more careful consideration

is needed.

4.3.2 Quantitative Derivation

Here we start with the DOS expression in terms of retarded (advanced) Green’s func-

tion GR(A):

ν(E) =
i

2πV

∫
ddr[GR(r, r, E)−GA(r, r, E)],

The correlation function (4.1) can thus be expressed via R (r, r′, ω):

R (ω) =
∆2

2π2

∫
drdr′<R (r, r′, ω) .
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The function R (r, r′, ω) is long range, consists of a sum of two terms: Diffuson and

Cooperon contributions. One can obtain [108]

R (r, r′, ω) = Pd (r, r′, ω)Pd (r′, r, ω) + Pc (r, r′, ω)Pc (r′, r, ω) ,

where Pd,c (r, r′, ω) is the Diffuson (Cooperon) and satisfy the equation

(−iω −D∆r′)Pd (r, r′, ω) = δ (r − r′) .

Its solution takes the form of

Pd (r, r′, ω) =
∑

n

ψ∗n (r)ψn (r′)

−iω + En

And thus leads to

R (ω) =
∆2

2π2
<
∑

n


 1
(
−iω + E

(d)
n

)2 +
1

(
−iω + E

(c)
n

)2


 (4.8)

Thus, one can use Eqs. (4.3) and (4.7) to obtain

Σ2(E) =
2

π2

∫ ∞

0

dt
Z (t)

t
sin2

(
Et

2

)
,

where Z(t) =
∫
V
P (r, r, t) dr, and

P (r, r, t) = Pd (r, r, t) + Pc (r, r, t) ,

is the total return probability from Diffuson and Cooperon. In practice, one may substitute

the summation of Eq. (4.8) by integration and could celebrate the success of such formula
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Figure 4.4: Diagrammatic representation for the level correlation function.

for calculating Σ2(E) in 1D and 3D. The result can be expressed as (cd ∼ 1, is some

numerical constant)

R (ω) = cd
d

4
(d/2− 1)

∆2

ω2

(
ω

Ec

)d/2
.

However, in 2D the situation is more subtle because the coefficient after such integration

gives zero, and one needs to more careful calculation in this case.

4.4 Level Correlations Driven by Weak Localization in 2D System

In a seminal paper by Kravstov and Lerner [101] (K-L), where they identified that in

2D the level correlation R (ω) is totally governed by the weak localization (WL) effects

[128] which corrects the diffusion constant. And for level number variance, WL effects

could also result in some corrections. Here we give a brief derivation about this effect.

The Eq.4.8, R(ω) = ∆
π2

∑
q Re 1

(Dq2−iω)2
, for level correlation can be expressed diagram-

matically as Figure 4.4. Furthermore, if one take into account the Hikami box contribution

[129, 108] for Diffuson/Cooperon as in Figure 4.5, we can write diffusion constant as

D′ = D + δD where

δD = −D∆
π

∑
Q

1
DQ2−iω .

After some algebra, one can write the correlation function as
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Figure 4.5: Hikami box contribution for the level correlation function.

R(ω) =
∆

π2
<
∑

q

1
[
Dq2

(
1− ∆

π

∑
Q

DQ2

(DQ2)2+ω2

)
− iω

(
1 + ∆

π

∑
Q

Dq2

(DQ2)2+ω2

)]2

∼ ∆

π2
<
∑

q

1
[
Dq2 − iω

(
1 + ∆

π

∑
Q

Dq2

(DQ2)2+ω2

)]2 .

The last step is because the main contribution always come from the imaginary part cor-

rection of the diffusion constant [101]. It turns out that if one imposes the condition

Dq2 ∼ ω � DQ2, which is equivalent to the situation s ∼ g, one can essentially get

a compact formula from the summation above, without the need to break the expression

into two parts as in Ref. [101]. Here we are using the formula (4.6) to calculate the level

number variance. The result after integrating in Q and s is:

Σ2(〈n〉) = Σ2
RMT (〈n〉) +

1

π2

∑

m6=0

[
log

(
1 +

π〈n〉
g2
∗m

2
+
〈n〉2
g2
∗m

4

)
− π〈n〉
g2
∗m

2

]
, (4.9)

where g∗ = 2πg + π2

4
and Σ2

RMT (〈n〉) is the RMT result given by Eq.(4.4). Here m =

(mx,my), mx,my ∈ Z. One can do this summation numerically and it converges very fast.

4.5 Numerical Result

Here, we demonstrate the numerical simulation result for the flexural phonon level

number variance as a function of the ratio ω/∆ in Figure 4.6, where ∆ is the average level

spacing. The numeric result starts with Poisson behavior for ω � ∆. Soon, the ergodic
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Figure 4.6: Level number variance from an 80×80 lattice with 20% disorder, averaged
over 1000 realization. We use energy slice E ∈ [3.5, 3.6]. Estimated ∆ ' 0.00095 (in
lattice unit), and gph ' 1.63.

behavior described by Random Matrix Theory (blue dashed line) kicks in. The ergodic

regime holds up to ω that is about the Thouless energy. For larger ω there is a noticeable

deviation: the variance starts to increase more rapidly than could be described by Eq. (16)

in Ref. [101] (red dashed line). Nevertheless, as Fig. 4.6 shows, it is in full accord with the

expression (4.9) obtained by us for d = 2, including a cross over regime (red line). (To the

best of our knowledge, this is the first demonstration of the mesoscopic fluctuations of the

number of levels in d = 2. For 3d Anderson model, the function Σ2(ω) and the cross over

regime was studied in Ref. [119], see Fig. 3 and surrounded text there.) To see the cross

over regime more clearly, see Fig. 4.7 here. The deviation from the theory of Kravtsov

and Lerner [101] could be seen more clearly in the 200×200 sample, as shown in Fig. 4.8.

Since there are fewer numbers of disorder averaging (~50) due to limited computation

resources, the numerical results showed more noise. However, the energy span of the plot

is much larger, and still, one can clearly see the excellent match of numerical results with
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Figure 4.7: Level number variance for 90×90 lattice with 10% disorder, averaged over
1000 realizations. E ∈ [3.5, 3.6], ∆ ' 0.00070 (in lattice unit), and gph ' 5.53.

our theory (4.9). Also, the abrupt downturn of the red dashed line in larger energy clearly

demonstrate that the theory of Kravtsov and Lerner could not be applicable in this case.

Some comments are in place here. Here we have demonstrated that the properties of

our 2D FP system are governed by weak-localization corrections. Weak localization in

2D is basically diffusion. In particular, the inverse participation ratio (which is related to

the return probability of a random walk) in Figure 7.4 with an energy-dependent exponent

means that we are in the diffusive regime. This is not surprising, since the condition of

localization length ξ � L enforces diffusive behavior.
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Figure 4.8: Level number variance for 200×200 lattice with 20% disorder, averaged over
50 realization. E ∈ [3.5, 3.6], ∆ ' 0.00015 (in lattice unit), and gph ' 1.38.
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5. STATISTICAL PROPERTIES OF THE WAVE FUNCTION

Like all coins that have two sides, after a detailed study of energy level statistics, we

come to the other side of the coin – statistical properties of wave functions, which are

also of great interest with a long history. This interest first started in nuclear physics.

In the case of nuclear spectra, the statistics determine fluctuations of widths and heights

of the resonance [130, 131]. In the case of disordered (or chaotic) electronic systems,

eigenfunction fluctuations govern, in particular, the statistics of the tunnel conductance in

the Coulomb blockade regime [132]. In optics, the eigenfunction amplitude can be directly

measured in microwave cavity experiments [133, 134, 135, 136]. In this case one considers

the intensity of a classical wave rather than of a quantum particle, all the results are equally

applicable. In fact, this is more similar to the situation we have here than the electronic

ones. Let us also turn from the energy level statistics to the statistical properties of the

eigenvectors in the discussed pinned FP model. As indicated in the previous sections,

the important property is the distribution of the amplitude of the eigenmodes, which is

called the wave function intensity distribution P(y), where in our case, y is ∝ h2. Within

the random matrix theory, the distribution of eigenvector amplitude is simply Gaussian,

leading to the χ2 distribution of the “intensities” |ψi|2 (Porter-Thomas distribution) [130].

Supersymmetry (SUSY) method was invoked to the study for the theoretical prop-

erties of eigenfunction statistics in a disordered system. The corresponding formalism,

which was developed in Refs. [137, 138], allows one to express various distribution

functions characterizing the eigenfunction statistics through the correlation function of

the SUSY nonlinear σ-field. Similar to the case of the level statistics, Porter-Thomas

distribution of eigenfunction amplitude could be reproduced by just using the zero-mode

approximation to the σ-model. However, one can go beyond this approximation. In fact,
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for quasi-one-dimensional system, the σ-model can be solved exactly using the transfer-

matrix method. Thus, one can get the exact analytical solutions with for the eigenfunction

statistics for arbitrary length of the system, from weak to a strong localization regime

[139, 138, 137, 140]. Since for d = 2, 3 no exact solution of the problem cannot be

found, one has to use some approximate methods which will be introduced below. In

Refs. [138, 141] by generalizing the scheme of [125] to eigenfunction statistics, the au-

thors calculate the distribution of eigenfunction intensities and its deviation from the uni-

versal RMT form. The theory is further supported by numerical [142] and experimental

[136] studies in various systems. Here we will apply the same methodology to the FP

system and show excellent agreement with the existing theory [138, 141, 99].

5.1 Eigenfunction Statistics in the Ergodic Regime

The distribution function of the eigenfunction intensity u = |ψ2(r0)| in a point r0 at

energy E is defined as,

PE(y) =
1

ν

〈∑

α

δ(V |ψα(r0)|2 − y)δ(E − Eα)

〉
. (5.1)

Note that here y is dimensionless, ν is the DOS and V = L2 is the area (volume) of

the 2D system. For convenience in notation we will suppress the energy E and instead

always write P(y) instead of PE(y) for the understanding that (at least in theory) the

intensity distribution behave uniformly in energy space. It was Porter and Thomas [130]

who first studied the distribution of eigenfunction amplitudes within the RMT framework.

It was recognized that in the ergodic regime, where ∆ � E � Ec, the distribution of

eigenfunction amplitudes is simply Gaussian. Their results thus show the following χ2

distribution of the intensities y:
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PU(y) = e−y, (5.2)

PO(y) = e−y/2√
2πy

. (5.3)

The upper script here labels the symmetry class of the system here. Eq.(5.3) is known

as the Porter-Thomas distribution; it was originally introduced to describe fluctuations of

widths and heights of resonances in nuclear spectra [131].

5.1.1 Numerical Calculation of the Wave Function Intensity

In the pinned disordered FP model we have described in the previous sections. We

randomly pick a node r0 in our square mesh and record the wave function intensities of

that point which is h (r0)2 of the node. We calculate the intensity distribution according to

Eq. (5.1). After proper normalization, we come up with the intensity distribution profile

as in Fig. 5.1. As one can see, for y to up the order of unity, the intensity (the blue line)

matches the behavior of that was predicted by Porter and Thomas Eq. (5.3), indicated by

the green dashed line.

5.2 Wave Function Statistics in terms of the Supersymmetric σ-model

Properties of eigenfunctions in disordered and chaotic systems has been a growing

interest in academic research since the eighties. On the experimental side, the tunneling

conductance fluctuations of quantum dot was measured in 1990s [143], and the results

were related to statistical properties of wave function amplitude [132]. Moreover, the

microwave cavity technique allows one to observe experimentally spatial fluctuations of

the wave amplitude in chaotic and disordered cavities [133, 134, 135].

Theoretical studies of the eigenfunction statistics in a d-dimensional disordered system

are possible with the use of the SUSY field theoretical methods [137, 140, 144]. Here we

46



0.0 0.2 0.4 0.6 0.8 1.0
y

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
(y
)

Numerics

Porter-Thomas (RMT)

Figure 5.1: The wave function intensity distribution of 80×80 lattice with 10% pinned
sites, after 2000 disorder averaging. The energy is sliced at 3.5 < E < 3.6.

sketch a derivation given by Mirlin [61]. The distribution function of the eigenfunction

intensity u = |ψ2(r0)| in a point r0 is defined as

P(u) =
1

νV

〈∑

α

δ(|ψα(r0)|2 − u)δ(E − Eα)

〉
. (5.4)

One can always rewrite above P(u) in terms of P(y) in the form of Eq. (5.1). The

key point is that the moments of P(u) can be written through the retarded and advanced

Green’s functions GR(A) in the following way

〈|ψ(r0)|2q〉 =
iq−2

2πνV
lim
η→0

(2η)q−1〈Gq−1
R (r0, r0)GA(r0, r0)〉. (5.5)

The product of Green’s functions can be expressed in terms of the integral over a super-
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vector field Φ = (S1, χ1, S2, χ2),

Gq−1
R (r0, r0)GA(r0, r0) = i2−q

(q−1)!

∫
DΦDΦ†(S1(r0)S∗1(r0))q−1S2(r0)S∗2(r0)

× exp
{
i
∫
drΦ†(r)Λ1/2(E + iηΛ− Ĥ)Λ1/2Φ(r)

}
(5.6)

To proceed, we represent the right hand side of Eq. (5.6) in terms of σ-model correlation

function. One then apply the supersymmetric field theoretical approach to express the

above quantity as a path integral of the Q matrices [61]. As a result, one finds

〈|ψ(r0)|2q〉 = − q

2V
lim
η→0

(2πνη)q−1

∫
DQQq−1

11,bb(r0)Q22,bb(r0)e−S[Q], (5.7)

where S[Q] is the σ-model action,

S[Q] = −β
2

∫
ddrStr

[
πνD

4
(∇Q)2 − πνηΛQ

]
(5.8)

(β = 1 for the considered case of orthogonal symmetry). Here Λ = diag{1,1,-1,-1} and

η → 0+. Q = T−1ΛT is the 4×4 supermatrix satisfy the condition ofQ2 = 1 (nonlinear),

with T being some group transformation in the SUSY coset space. We remark here again

that to reach σ-model action S[Q] above, one uses electronic Green’s function. However,

as we stated in the section 3.6, and in addition, for the universal applicability of the σ-

model, we are applying the well-established theory for statistical properties of electron

wave function to our FP wave function. The applicability will be checked and confirmed

by the numerical results shown below. Let us now define the function Y (Q0) as

Y (Q0) =

∫

Q(r0)=Q0

DQ(r) exp{−S[Q]}. (5.9)

Here r0 is the spatial observation point. For invariance reasons, the function Y (Q0) turns
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out to be dependent in the unitary symmetry case on two scalar variables 1 ≤ λ1 < ∞

and −1 ≤ λ2 ≤ 1 only, which are the eigenvalues of the “retarded-retarded” block of the

matrix Q0. Moreover, in the limit η → 0 (at a fixed value of the system volume) only the

dependence on λ1 persists and we denote the asymptotic behavior of Y (Q0) as Ya:

Y (Q0) ≡ Y (λ1, λ2)→ Ya(2πνηλ1) (5.10)

With this definition, Eq. (5.7) takes the form of an integral over the single matrix Q0,

〈|ψ(r0)|2q〉 = − q

2V
lim
η→0

(2πνη)q−1

∫
DQ0Q

q−1
0;11,bbQ0;22,bbY (Q0) (5.11)

Evaluating this integral, we find

〈|ψ(r0)|2q〉 =
1

V
q(q − 1)

∫
du uq−2Ya(u). (5.12)

Consequently, the distribution function of eigenfunction intensity is given by [137]

P(u) =
1

V

d2

du2
Ya(u) (U) , (5.13)

where V is the sample volume.

In the case of orthogonal symmetry, Y (Q0) ≡ Y (λ1, λ2, λ), where 1 ≤ λ1, λ2 < ∞

and −1 ≤ λ ≤ 1. In the limit η → 0, the relevant region of values is λ1 � λ2, λ, where

Y (Q0)→ Ya(πνηλ1) (5.14)

The distribution of eigenfunction intensities is expressed in this case through the function
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Ya as follows [137]:

P(u) =
1

πV u1/2

∫ ∞

u/2

dz(2z − u)−1/2 d
2

dz2
Ya(z)

=
2
√

2

πV u1/2

d2

du2

∫ ∞

0

dz

z1/2
Ya(z + u/2). (O) (5.15)

In the diffusive sample, typical configurations of the Q–field are nearly constant in space,

so that one can approximate the functional integral (5.9) by an integral over a single su-

permatrix Q. This procedure, which makes the problem effectively zero-dimensional and

is known as zero-mode approximation, gives

Ya(z) ≈ e−V z (O,U) , (5.16)

and consequently,

P(u) ≈ V e−uV (U) , (5.17)

P(u) ≈
√

V
2πu

e−uV/2 (O) , (5.18)

which are just the RMT results for the Gaussian Unitary Ensemble (GUE) and Gaussian

Orthogonal Ensemble (GOE) respectively, Eqs. (5.2), (5.3).

Therefore, using the zero mode approximation we have reproduced the RMT results

for the distribution of the eigenfunction amplitude. To calculate deviations from RMT,

one has to go beyond the zero-mode approximation and to evaluate the function Ya(z)

determined by Eqs. (5.9), (5.10) for a d-dimensional diffusive system. In the case of

a quasi-1D geometry, this can be done exactly via the transfer-matrix method. [99] For

higher d, in particular the 2D case, the exact solution is not possible, and one should rely on

approximate methods. Corrections to the “main body” of the distribution can be found by
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treating the non-zero modes perturbatively (see Sec. 5.2.1.1 below), while the asymptotic

“tail” can be found via a saddle-point method (see Chap. 6.1).

5.2.1 The Metallic (To Weak Localization) Regime

5.2.1.1 Distribution of the Eigenfunction Amplitude

For metallic granules, in the ergodic regime described by the RMT, the intensity dis-

tribution is given by the Porter-Thomas distribution denoted as PRMT (y). Owing to the

fluctuations in diffusive motion, there appear deviations from ergodic behavior. In the case

of d = 2, deviations from the RMT distribution P(y) for not too large y can be calculated

via the perturbation method. Applying this method to the moments (5.7), one gets [141]

〈|ψ(r)|2q〉 =
q!

V q

[
1 +

1

2
κq(q − 1) + . . .

]
(U) (5.19)

〈|ψ(r)|2q〉 =
(2q − 1)!!

V q
[1 + κq(q − 1) + . . .] (O), (5.20)

where, in the case of 2D geometry,

κ = Π(r, r) =
1

πg
ln
L

l
, (5.21)

with g = 2πνD. Correspondingly, the correction to the distribution function reads

P(y) = e−y
[
1 +

κ

2
(2− 4y + y2) + . . .

]
(U) (5.22)

P(y) =
e−y/2√

2πy

[
1 +

κ

2

(
3

2
− 3y +

y2

2

)
+ . . .

]
(O). (5.23)

In classical disorder and chaotic system, numerical studies of the wave function ampli-

tudes have been performed in Ref. [145] for the 2D and in Ref. [146] for the 3D case. In

the weak localization regime, the deviations from PRMT (y) are found to be well described
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by the above theoretical results. Statistical properties of the eigenfunction intensity have

also been studied for microwaves in a disordered cavity [134, 136]. For a weak disor-

der, the experimentally found deviations are also in good agreement with Eq. (5.23) as

well. Deviations of the eigenfunction distribution function P(y) from its RMT form in

our randomly pinned FP model will be illustrated and studied in the section below.

The formulas (5.22), (5.23) are valid in the region of not too large amplitude, where

the perturbative correction is smaller than the RMT contribution, i.e. at y � κ−1/2. In the

region of large amplitude, y > κ−1/2 the distribution function was found by Fal’ko and

Efetov [147, 148], who applied to Eqs. (5.13), (5.15) the saddle-point method suggested

by Muzykantskii and Khmelnitskii [149]. Behavior of the large amplitudes asymptotics

will be introduced in the Chapter 6.

5.2.1.2 Numerical Results

If we plot the intensity distribution function of the eigenfunction with a wider range

than that of Fig. 5.1, as shown in Fig. 5.2, one sees that the numerical results (the blue

line) deviates from the Porter-Thomas formula (green dashed line) at y > 1. However,

there is an excellent match between the theory of Fydorov & Mirlin (Eq. 5.23, red line)

and the numerical results. For 20% of the pinned sites, we can see similar behavior, with

a more distinct deviation from RMT behavior, as shown in Figs. 5.3 and 5.4. Unlike 10%

sample, at small y, the difference of our numerical results with Porter-Thomas formula

is quite obvious, owing to the smaller conductivity, see the inset in Fig. 5.4. When

calibrated with respect to PRMT (y) ≡ e−y/2√
2πy

(Eq. 5.3), the function P(y) yields a curve

with a very specific non-monotonous shape. As Fig. 5.5 shows, an excellent agreement

with the theory developed in Ref. [141] is found. From Eq. (5.23),

P(y)/PRMT (y) = 1 +
κ

2

(
3

2
− 3y +

y2

2

)
, (5.24)
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Figure 5.2: The log-log plot of the wave function intensity distribution. Data comes from
80×80 lattice with 10% pinned sites, after 2000 disorder averaging. The energy is E ∼
3.5; Estimated gph = 1.63 and κ = 0.35.
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Figure 5.3: The wave function intensity distribution of 80×80 lattice with 20% pinned
sites. Data obtained after 2000 disorder averaging. The energy is again E ∼ 3.5; Esti-
mated gph = 5.63 and κ = 0.09.
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Figure 5.4: Log-log plot of the wave function intensity distribution for 20% of pinned
sites. Sample specification is the same as Figure 5.3.

with κ = 1
πg
logL

l
, one can obtain the conductivity g from fitting. Similar agreement

between numerical study and theory could also be found in the 2D quantum kicked rotors

[150], exact diagonalization studies of the Anderson model [151, 152] and random banded

matrices [153].

Intensity distribution is controlled by the parameter κ, which is related to the two-

particle correlation function at the coinciding points and describes the probability of re-

turn. The theoretical formulas compare intensity y with κ−1 (a large number for weak

disorder). We demonstrate an excellent agreement with the theoretical formulas for inten-

sity y < κ−1. However, κ−1 decreases with growing L/l, and one has to deal with the

part of the distribution corresponding to y > κ−1. These intensities are controlled by rare

events, rather than by regular fluctuations. These rare events can be universal (i.e., non-

dependent on the character of disorder), or can be controlled by non-universal realizations

of disorder centers (in our case centers of pining). Although for not too large intensities y
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we always observe the distributions described by the universal curve presented in Figure

5.5, it follows from the data that in our system the rare events are non-universal and they

are controlled by certain realizations of the pinning centers. Therefore, for very large L/l,

when the eigenfunctions in our 2D system approach localization, the plot is controlled by

another non-universal asymptotic, see the next Chapter for detail discussions. One could

further study whether there is pure diffusion effect or mixed with ballistic effect via detail

analysis of κ [152], which is beyond our scope here.

5.2.2 The Localized Regime

In the localized regime, one can parameterize the wave function in an exponential

decay form:

ψ (r) = c exp (−r/ξ)
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where ξ/L is the ratio of localization length to the system size and

c2 =
2L2

πξ2
[1− (1 + L/ξ) exp (−L/ξ)]−1 .

Thus, the wave function intensity distribution has the following form [145]

P(y) =
πξ2

2L2

ln (c2/y)

y
. (5.25)

An estimation of the the localization length is in place here. The localization length ξ

is determined by the logarithmic corrections to the parameter g:

g(L) = g0 −
1

π
ln
L

l
(5.26)

here l is the mean-free path of FPs at a given energy, and g0 = g(l). Correspondingly, ξ is

the length scale when the correction become comparable with g0, that is ξ/l ' exp (πg0).

5.2.2.1 Numerical Results for Localized Regime

We first come across in the localized regime at energy E ∼ 0.6, where most of the

states are localized. In contrast with the higher energy states, the wave function intensity

is described by Eq. (5.25). One can see in the log-log plot of Figure 5.6, the theory

matches with the numerical results over a range of 9 orders of magnitude, which should

be considered an excellent manifestation of the localized wave function assumption. The

parameter estimated in the plot is ξ/L = 0.022. Similar plots also could be found in the

numerical study of 2D tight-binding Anderson model in the Ref. [145].

56



10−7 10−6 10−5 10−4 10−3 10−2 10−1 100 101 102

y

10−5

10−4

10−3

10−2

10−1

100

101

102

103

104

105

P
(y
)

Numerics, E ∼ 0.6

Muller et.al.

Numerics, E ∼ 3.5

Porter-Thomas

Figure 5.6: Wave function intensity distribution for localized regime. The sample has 20%
of pinned sites, and 80×80 lattice with 2000 disorder averaging.
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6. ASYMPTOTIC TAILS

This chapter is devoted to the asymptotic “tails” of the distribution functions of wave-

function amplitude. The definition of the quantity was introduced in Eq. (5.1). Using

renormalization group (RG) approach, it was conjectured by Altshuler, Kravtsov, and

Lerner (AKL) [154, 155] that the rare realization of disorder will determine the tail be-

havior of the amplitude distribution function. The states thus formed would show some

kind of localization while all “normal” states are ergodic; in the quasi-1D case they have an

effective localization length much shorter than the “normal” one. Thus, those states were

named “anomalously localized states” (ALS). Through searching a non-trivial saddle-

point configuration of the supersymmetric σ-model, Muzykantskii and Khmelnitskii [149]

established a novel way to study the asymptotic tails of the distribution functions. Further

development and generalization of the method allowed one to calculate various distribu-

tion function’s asymptotic behavior including relaxation times [149, 156], eigenfunction

intensities [147, 148], local density of states [157], inverse participation ratio [158] and

level curvatures [159], etc.

6.1 Anomalously Localized States and Distribution of Large Eigenfunction Ampli-

tudes

Altshuler, Kravtsov and Lerner [155] found that the distribution functions of conduc-

tance, density of states, local density of states (LDOS), and relaxation times all have slowly

decaying logarithmically–normal (LN) asymptotics at large values of the arguments. Us-

ing the renormalization group treatment of the σ–model, those results are valid in 2D and

2 + ε–dimensional systems, with ε � 1. At the same time, those quantities in 1D disor-

dered chains were studied using the Berezinski and Abrikosov–Ryzhkin techniques [160].

In 1D, where all states are strongly localized, the corresponding distributions were also
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found to be of the LN form. Based on this similarity, it was conjectured [154, 155] that

there is a finite probability to find “almost localized” eigenstates even in a metallic sam-

ple, and that these states govern the slow asymptotic decay of the distribution functions. In

Ref. [141] the exact results for the statistics of the wave function amplitude in the quasi-

one-dimensional case were obtained and similar conclusion was drawn. The study showed

that the identical asymptotic behavior exists both in the localized and metallic regimes.

Muzykantskii and Khmelnitskii [149] gives a new boost to the theoretical study along

this direction. In order to calculate the long-time dispersion of the average conductance

G(t), they proposed to use the saddle-point method for the supersymmetric σ-model. The

idea was to reproduce the AKL result by means of more direct calculation. However, in

the intermediate range of time t, a power-law decay behavior of G(t) in 2D was found.

As was shown in Ref. [161], the far asymptotic behavior is indeed of log-normal form,

in agreement with AKL. The conclusion is then reproduced by Ref. [156] within the

ballistic σ-model approach. Moreover, the saddle-point method could be applied beyond

the average conductance and also allowed us to study the asymptotics of various quantity’s

distribution functions. The form of the saddle-point solution describes directly the spatial

shape of the corresponding anomalously localized state [149, 158].

6.2 Saddle Point Method

Fal’ko and Efetov [147, 148] applied the saddle-point method to the study the statistics

of eigenfunction amplitudes. Here, one looks for the saddle-point of the functional integral

(5.9) determining the function Ya(u) (which in turn determines the eigenfunction statis-

tics, see Eqs. (5.13), (5.15)). One could follow the standard derivation of the saddle point

equation in Ref. [148, 99], which is omitted here. The saddle-point thus derived is param-

eterized by the bosonic non-compact angle θ(r) only, and the corresponding saddle-point

59



equation has the form [147, 148]

πνD∇2θ − ueθ = 0. (6.1)

The boundary condition now has the form

θ(0) = 0, (6.2)

and

∇nQ|bdy = 0

at the boundary. The action determining the distribution function P(u) is given by

− lnP(u) = S =

∫
ddr

[
πνD

2
(∇θ)2 + ueθ

]
. (6.3)

The formula (6.3) acquires a very transparent meaning if we take into account the two

factors contributing to the large amplitude |ψ2(0)| = u. Firstly, this is the non-uniform

smooth envelope ∝ eθ(r) yielding

|ψ2(0)|smooth =
eθ(0)

∫
ddreθ(r)

=
1∫

ddreθ(r)
,

the corresponding weight is represented by the first term in the action (6.3). Secondly,

these are the local Gaussian fluctuations of the wavefunction amplitude, which should

provide the remaining factor

J =
u

|ψ2(0)|smooth
= u

∫
ddreθ(r),

the corresponding probability P(J) = e−J reproduces the second term in the action (6.3).
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6.3 Saddle Point Solution in 2D geometry

6.3.1 Exact Solution

We will follow Refs. [147, 148] to derive the saddle point solution for weakly disor-

dered 2D conductors. We consider a disk-shaped sample of a radius Lwith the observation

point r = 0 in the center of the disk, the saddle-point of Eqs. (6.1), (6.2) could be rewritten

in the polar coordinates as

(
r−1∂rr∂r

)
θu = − u

πνD
exp(−θu)

θu (r0) = 0,

where r0 ∼ l is the lower cut-off scale (roughly, the scale of the mean free path). It

appears because of the restriction of the diffusion approximation put on the momenta q of

σ-model field: q < l−1. This equation can be solved exactly and it yields the solution of

the following form [147]

exp (−θu) =




2 (l/r)1−A
[√

(Aρ)−2 + 1 + 1
]

[√
(Aρ)−2 + 1 + 1

]2

− (Aρ)−2 (r/l)2A




2

,

where ρ =
√

2πνD
ul2

= L
l

√
g
y
. Here A is found from the boundary condition at the edge L,

and satisfy
√
A2 + ρ2 + A =

(L/l)A

ρ

√
1 + A

1− A. (6.4)

Thus, the action (for GOE systems) can be expressed as

S = 2π2νD

{
ln

(
(L/l)(1+A2)

ρ2(1− A2)

)
+ 2

(
1−

√
A2 + ρ−2

)}
,
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and at the same time, the distribution of the wave function intensity can be expressed as

P = e−S = exp

[
−2π2νD

{
ln

(
(L/l)(1+A2)

ρ2(1− A2)

)
+ 2

(
1−

√
A2 + ρ−2

)}]
. (6.5)

6.3.2 Asymptotic Tail of the Intensity Distribution P(u)

We are interested in the asymptotic region ρ > ln (L/l) � 1, where the equation 6.4

has positive root and an ALS is formed. The condition is equivalent to

y < g
(L/l)2

ln2 (L/l)
.

Taking the square of Eq. (6.4), we assume ρ−1 � 1, then the roots of Eq. (6.4) can be

approximated by

A = 1− µ.

Here we define µ ≡ 1−A, where 0 < µ < 1 depends on u. The resulting squared equation

can be written as

(2A)2 = 4 (1− µ)2 =
(L/l)2−2µ

ρ2

2− µ
µ

. (6.6)

Thus, the above equation could be rewritten to the following form

(L/l)2−2µ

ρ2
=

4µ (1− µ)2

2− µ .

For µ� 1, one can approximate

(L/l)2−2µ

ρ2(1− 3
2
µ)
∼ 2µ. (6.7)
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Note that the left-hand side is different from what was above Eq. (70) in Ref. [147]. We

remark here that it crucial for the higher order asymptotics to be correct. Under the same

condition, the exact solution is found to have the approximate form of

eθ(r) ≈
(r
l

)−2µ

for l ≤ r � L, (6.8)

Then substituting the definition of ρ in the Eq. (6.7), the exponent µ can be approximated

as by

µ '
ln
(

L2u
2πνD

ln L
l

)

2 ln(L/l)
. (6.9)

Plugging the approximation Eq. (6.7) back into the expression for S in Eq. (6.3), one gets

to the lowest order in µ

S = 2π2νD

{
ln

(
(L/l)2−2µ+µ2

ρ2(2µ− µ2)

)
+ 2µ

}

∼ 2π2νD

{
ln

(
2µ(1− 3

2
µ)

2µ(1− µ/2)

)
+ 2µ

}

= 2π2νD {ln (1− µ) + 2µ}

∼ 2π2νDµ (6.10)

The corresponding asymptotic behavior of intensity distribution function P(u) is

P(u) ∼ exp

{
−π2νD

ln2
(

V u
2π2νD

ln L
l

)

ln(L/l)

}
. (6.11)

By definition κ = 1
πg
logL

l
and g = 2πνD, the above distribution can be rewritten in terms

of the argument y = V u as

P(y) ∼ exp

(
− 1

2κ
ln2 κy

)
.
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6.3.3 Summary of the Result for Wave Function Amplitude

We thus summarize the results for wave function amplitude in 2D GOE class here [99]:

P(y) '





e−y/2√
2πy

[
1 + κ

2

(
3
2
− 3y + y2

2

)
+ . . .

]
, y < κ−

1
2

e−y/2√
2πy

exp
(
κ
4
y2 + . . .

)
, κ−

1
2 ≤ y < κ−1

∝ exp
{
− 1

2κ
ln2(κy)

}
, κ−1 ≤ y ≤ κ−1

(
L
l

)2
/ log L

l
.

(6.12)

Here the last restriction of y happens because the framework of the σ-model could not

apply to sizes smaller than mean free path l. Note that there is an intermediate range

where a correction in the exponent is large compared to unity, but small compared to the

leading RMT term (Eq. 5.3) and a far asymptotic region (Eq. 6.11), where the decay of

P(y) is much slower than in RMT.

6.4 Numerical Result

One may have already noticed that in the part of blue curve in figure 5.6 could not

be explained by the Porter-Thomas theory curve (dashed green), especially in the larger y

regime. Let us examine now closely the behavior of the tail behavior of the wave function

intensity. Let us comment first that apart from the asymptotic distributions listed in Eq.

(6.12), one can further use Eq. (6.5) along with Eq. (6.4) to solve numerically an exact

solution for the intensity distribution. We now put all these pieces together in the figure 6.1.

One can see that the asymptotics of Fyodorov-Mirlin works great for y < κ−
1
2 , after

which one enters a short intermediate asymptotic region. One the other hand, the exact

solution of Fal’ko-Efetov [147, 148] fails to match the numerical results well, nor could

the RMT (Porter-Thomas) theory. In addition, at y & κ−1
(
L
l

)2
/ log L

l
, the root for the

exact solution stops to exist. The intermediate region which is between κ−
1
2 and κ−1, is too

small a region for us to get enough data for decent analysis. Finally one can see that the far
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Figure 6.1: The log-log plot of the wave function intensity distribution for 20% of pinned
sites, with 80×80 lattice and averaged over 2000 times. Estimated κ ∼ 0.35. The exact
solution labeled as Fal’ko-Efetov was obtained by solving numerically Eq. (6.4) using the
estimated parameter as follows: g ∼ 1.6 and L/l ∼ 4.3. The cusp in the solution (black
dashed line) is due to the fact that for y larger than y∗ ≡ g (L/l)2

ln2(L/l)
∼ 15, there is no root

available for Eq. (6.4).

asymptotics can match the very large y (tail) region reasonably well. However, due to the

uncertainty of the pre-factor and limitation in the data quality of the tail region, we were

not certain if the numerical result has indeed reached the asymptotic region. Moreover,

there are also different opinions about how the rare events will affect the statistics of the

disordered system [162, 163, 164]. We expect that our randomly pinned FP model will

serve a good candidate to test different theories in addition to the usual Anderson models.
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7. INVERSE PARTICIPATION RATIO AND MULTIFRACTALITY OF THE WAVE

FUNCTION

In the electronic system, multifractality, in a rough term, could be understood as the

eigenfunctions is neither extended, nor localized, but effectively located in a vanishingly

small portion of the system volume. It could be used to characterize strong fluctuations

of the wave function amplitude at the mobility edge. Wegner’s renormalization group

calculation[165] first discovered the phenomena, however, he did not propose the term

“multifractality”. Later the multifractality of the critical wave functions was discussed

in [166] and confirmed by numerical simulations of the disordered tight-binding model

in Refs. [167, 168, 169]. Here we ask the question: could the theory of wavefunction

multifractality be applied to phonon systems? If so, is there any numerical evidences? One

can thus continue to ask a deeper question about the behavior of fluctuations in the wave

functions, which are usually determined by the diffusive dynamics in classical systems

[141, 170, 171]. The inverse participation ratio (IPR) was first studied in the context of

the Anderson model, and then was applied to study the localization length in quantum hall

effect. [172] IPR was widely used to investigate the localization properties of systems

including Dirac semimetals [173]. Thus, fluctuations of the inverse participation ratio in

the FP system are also considered here.

7.1 Weak Multifractality of Eigenfunctions

As is well known, localization is a quantum critical phenomenon. The peculiarity of

2d is that the critical point is at 1/g� = 0, where g� is electrical conductance per square

measured in units e2/(2π~). At a finite g�, statistical properties are determined by the

localization length ξ, which is the analogue of a correlation length at a quantum phase

transition. A sample of size L < ξ(g�) is in the regime of criticality which may take place
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in a very broad range of sample sizes, because for small g� the localization length is expo-

nentially large [128]. A consequence of strong fluctuations of the wave function amplitude

in the critical region is the multifractality (that is, while an eigenstate may be extended, the

occupied volume is noticeably smaller than the volume of the sample). Since d = 2 is the

lower critical dimension for the Anderson localization problem, many common properties

with systems at the critical point of the metal-insulator transition are shared with metallic

2D samples (with g� � 1) share . Although the localization length ξ in 2D is not infinite

(as for truly critical systems), it is exponentially large, and the criticality takes place in the

very broad range of the system size L� ξ.

7.1.1 Multifractality: Basic Definition

Multifractality is a way to demonstrate the criticality of eigenfunctions. First intro-

duced by Mandelbrot [174], multifractal structures are characterized by an infinite set of

critical exponents describing the scaling of the moments of a distribution in terms of some

quantity such as size. Since the discovery of multifractality, the feature has been observed

in various objects, such as the energy dissipation in turbulence [175, 176], strange attrac-

tors in chaotic dynamical systems [177, 178], and the growth probability distribution in

diffusion-limited aggregation [179, 180]; see Ref. [181] for a review. It was also noticed

fractal characters exist in the eigenstates of weakly disordered systems through investigat-

ing inverse participation ratios [182].

The fact that an eigenfunction at the mobility edge has the multifractal structure was

noticed for the first time in [166], though the underlying renormalization group calcula-

tions were done by Wegner several years earlier [165].
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7.2 Inverse Participation Ratio

The spatial distribution of wave functions is conveniently characterized by inverse par-

ticipation ratios:

Pq =

∫
ddr|ψ(r)|2q.

After sample averaging 〈Pq〉 shows the following scaling behavior with the system size L:

〈Pq〉 = Ld〈|ψ(r)|2q〉 ∼ L−τq , (7.1)

where τq is some exponent that can be expressed via τq = Dq(q − 1). Obviously, in

the insulating state Dq = 0, while in a normal metal Dq = d. At a critical point, Dq is

fractional, which leads to anomalous scaling behavior in 〈Pq〉. This is a manifestation of

the wave function multifractality. Next, one can introduce anomalous dimensions ∆q via:

τq ≡ d(q − 1) + ∆q,

in order to describe the deviation of the scale dependencies at the critical point from the

one in the metallic phase. In fact, ∆q determines the spatial correlations of the wave

function. In particular, ∆2 governs the spatial correlations of the intensity |ψ(r)|2,

L2d〈|ψ2(r)ψ2(r′)|〉 ∼ (|r − r′|/L)∆2 .

In the field-theoretical language (Section 5.2), ∆q are the leading anomalous dimensions

of the operators Tr(QΛ)q [165]. The strong multifractal fluctuations of wave functions at

criticality are related to the fact that ∆q < 0 for q > 1, so that the corresponding operators

increase under RG. In this formalism, the scaling of correlation functions results from an

operator product expansion.
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7.2.1 IPR and Multifractality in 2D

In 2D GOE systems, the IPRs scale as (Again, here we denote g ≡ gph)

〈Pq〉 ' (2q − 1)!!L−2(q−1)

(
L

l

) 1
πg
q(q−1)

. (7.2)

In fact, the above Eq. (7.2) can be derived using the field theoretical method. We note first

that the formulas (5.19), (5.20) for the IPR’s with q ≤ κ−1/2 can be rewritten in the 2D

case (with Eq. (5.21) taken into account) as

〈Pq〉
PRMT
q

'
(
L

l

) 1
βπg

q(q−1)

, (7.3)

where PRMT
q is the RMT value of Pq which equals to q!L−2(q−1) for GUE and (2q −

1)!!L−2(q−1) for GOE. We see that (7.3) has precisely the form (7.1) with

Dq = 2− q

βπg
. (7.4)

As was found in [147, 148], the eigenfunction amplitude distribution (6.12) leads to the

same result (7.4) for all q � 2βπg. Here the deviation of Dq from the normal dimension 2

is determined by a small parameter 1/πg, in analogous to weak localization, the phenom-

ena is coined "weak multifractality". The result (7.4) was first obtained by Wegner [165]

via RG calculations. One of the questions will be investigated in the future is the boundary

multifractality brought up by authors in Ref. [183]. We will not discuss the problem here,

but reserve it as a topic for future study.

Note that, because of the absence of the genuine critical point in 2D, g becomes size-

dependent, i.e. Eq. (5.26). This implies that for each scale L one can use the standard for-

mula given above, but with slowly varying g(L) in the exponent. This is possible because
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Figure 7.1: IPR for lattices of different sizes averaged over many realizations (at least 50)
as a function of E (in lattice units).

corrections to g are not large in a finite size sample, and owing to the slow dependence of g

on spatial scale L. With this procedure, we have obtained an excellent agreement between

the theory of the logarithmic corrections to the conductivity and our numerical results as

illustrated below.

7.2.2 Numerical Results

For disordered electrons in 2d, the well-developed theory connects the behavior of

various physical quantities with the value of the conductance.[99] We have calculated

numerically the same quantities for flexural phonons, using the values of gph extracted

from IPR, and found a very good agreement with the theoretical predictions existing for

the disordered electrons in the case of the GOE. We present the findings in the remaining

part of the chapter.

We see that for energies E < 1, IPR does not change with lattice size, indicating

a localized phase. On the other hand, for energies E > 1, IPRs clearly change with
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Figure 7.2: IPR scales with sample area L2, L being the lattice size. Note that none of the
lines cross at any energy. The cusp at E ' 4.0 is due to the Van Hove singularity.

increasing sizes. The middle bump represents the Van Hove singularity in momentum

space. Thus, one thing we want to see is that if the IPR scales with the area of the sample,

which is a signature of the metallic phase. For that matter, we will make further analysis.

We are particularly interested in studying the flexural phonons in this region when ξ � L.

As Figure 7.2 indicated, we see that there is no normal metallic phase for all energies in

the sense that if one scales the IPR with the sample area, no line collapses on each other.

However, if one scales the IPR with a power less than 2 (but larger than 0), the lines

will always cross at certain point. For example, in Figure 7.3 we have used the power 1.6,

and the IPR lines cross at E ∼ 3.2. The point of intersection (“critical point”) allows to

find the energy which corresponds to a given value of power-law exponent; By extracting

from the IPR(L) the exponent of a power law for different energies, one may get the

dependence of the dimensionless "conductance" g(ε) on energy.

The phenomena above are closely related with the multifractality properties of the
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Figure 7.3: IPR scales with L1.6 for different energies. Here all IPR lines for different
sizes intersect at E ∼ 3.2.

wave-functions in the diffusive regime. The scaling law L1.6 rather than L2, manifests

the multifractality of the wave functions. Here we show a plot that illustrates the feature

more explicitly. The fractal dimension mentioned above will be extracted directly through

Eq. 7.1. From the size dependence of the IPR at a given energy, as is shown in the Fig.

7.4, we can extract an energy-dependent fractal dimension. Here we are in the diffusive

regime. At a given concentration of the pinning centers the effective level of disorder is

different for different energies, hence energy dependent effective diffusion coefficient. As

a result, the IPR exponent now depends on the energy of the eigenstate. Like in the case

of the disordered electronic system of a given symmetry class, the fractal dimension is

determined by the conductance gph. For example, in the case of the Gaussian Orthogonal

Ensemble (GOE), the size dependence of the IPR is described by the fractal dimension

equal to D2(L) = 2 − 2/πg(L), where dependence of g(L) on L is due to the weak-

localization (WL) correction. [128] Thus, for each concentration of the pinned sites we can
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Figure 7.4: Scaling of the IPR with the system size for 20% of the pinned sites at several
values of energyE. For example, the fitted slope forE = 3.2 is−1.59. The slope was used
to find gph(ε) presented in the blue line of figure 7.12. For the smallest energy (E = 1.9)
the effect of the weak localization correction is clearly seen.

prescribe for different energies E the corresponding value of the phonon "conductance"

g(%, E), using the expression for fractal dimension D2 in Eq. (7.4).

Furthermore, since our “samples” are of limited size due to restrictions of numerics,

in order to get a noticeable fractal dimension (in the example above, it is deviation of 1.6

from 2), we have used relatively large concentrations of the pinning centers (20%), in order

for the parameter gph extracted from the IPR to be not too large. For a finite value of gph, it

acquires logarithmic corrections∼ lnL/l, which modify gph and hence the IPR exponents

rendering them slowly dependent on the system size. The values of gph, including the

corrections to gph, extracted from the IPR exponents are shown in Figure 7.4. The observed

corrections are in excellent agreement with the theoretical corrections to the conductance

previously evaluated for electrons. This was one of the checks of the connection between

the parameter gph describing FPs and the conductance g of non-interacting electrons in
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disordered conductors.

Although the localization length ξ in 2D is not infinite (as for truly critical systems at

the Metal Insulator transition), it is exponentially large when g � 1, and the criticality

takes place in a very broad range of the system sizes, L � ξ. Therefore, 2D samples

with g � 1 share many common properties with systems at the critical point of the metal-

insulator transition. Similar physics is valid for our system of FPs. In both cases it is

crucial that due to absence of the genuine critical point, g is size-dependent. In our case,

this dependence is logarithmic. This implies that for each scale L, one can use the standard

formula with the scale-dependent g(L) in the exponent, even when g is not too large. This

is possible because (i) corrections to g are still not large, and (ii) due to the logarithmic

dependence, they are “slow”. With this procedure, we have obtained an excellent agree-

ment between the theory of the logarithmic corrections to the conductivity and numerical

results as it is shown in Figure 7.4.

7.3 Distribution and Fluctuation of IPR

Using the supersymmetry method, one can calculate also higher order correlation func-

tions of the eigenfunction amplitude. In particular, the correlation function

〈|ψ4
k(r1)||ψ4

k(r2)|〉E

determines fluctuations of the inverse participation ratio P2. We do not cover the details of

calculation using the field theoretical method, which can be found in the Ref. [141]. For

the relative variance of IPR, δ(P2) ≡ var(P2)/〈P2〉2 the result for GOE systems reads

δ(P2) =
32ad
g2

, (7.5)
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with a numerical coefficient ad depends on dimensionality and boundary conditions. For

periodic BC in 2D, a2 = 0.00387 [61]. The fluctuations (7.5) have the same relative

magnitude (∼ 1/g) as the famous universal conductance fluctuations. Note also that ex-

trapolating Eq. (7.5) to the Anderson transition point, where g ∼ 1, one finds δ(P2) ∼ 1,

so that the magnitude of IPR fluctuations is of the order of its mean value (which is, in turn,

much larger than in the metallic regime). At 1/g � P2/〈P2〉 − 1 � 1, the distribution

function is of the exponential form,

P(P2) ∼ exp

{
−π

4

ε1
∆

(
P2

〈P2〉
− 1

)}
, (7.6)

where ε1 is the lowest non-zero eigenvalue of the diffusion operator. According to Ref.

[184], g = ε1
2∆

, thus it means that the IPR distribution could also provide some way to

measure the phonon conductivity g. For our particular system,

P(P2) ∼ exp

{
−πg

2

(
P2

〈P2〉
− 1

)}
. (7.7)

Note that for negative deviations P2/〈P2〉 − 1 with |P2/〈P2〉 − 1| � 1/g, the distribution

function decays much faster, so that the distribution is strongly asymmetric [184].

7.3.1 Tail Distribution in 2D Geometry.

As stated in Ref. [61], to the leading order in 1/g, the “body” of the distribution

P(P2) is described properly by the Liouville theory. This is also true for the asymptotic

“tail” of P(P2). Nevertheless, a more rigorous and relevant way to derive the asymptotic

distributions of the IPR is to use the same saddle point method described in the above

Chapter 6. Our consideration of asymptotics of the IPR distribution is based on Ref. [61].

Using the field theoretical description, the saddle point configuration can again be written

as a function of the bosonic angle θ. And the equation resulting from the saddle point
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method allow one to calculate the far asymptotics of P(P2) at P2 � PRMT
2 :

P(P2) ∼ 1
P2

(
P2

〈P2〉

)−βπg/2
for 1� P2/P

RMT
2 � (L/l)2 . (7.8)

Thus, for the tail behavior of the IPR distribution, it has a transition from exponential

decaying function to a power law one, with the exact same argument. This is a rather

convenient way of checking the consistency of the data.

Conductance distribution is closely related to the distribution of IPR. We do not in-

vestigate in details of how the phonon conductance is distributed, however, it could be-

come another gateway to the further study of our randomly pinned FP model. Theoretical

[185, 186] and numerical [187, 188, 189, 190] methods of study the conductance distribu-

tion is listed here for reference.

7.3.2 Numerical Result

Let us first show the result where disorder concentration equals 10%. From the Fig.

7.5, one can see that the log IPR distributions have a scale-invariant shape[191], with an

approximate normal distribution (there is a small skew to the right), while as expected,

the centers of the distribution that represents the mean of IPR move toward lower values

with increasing lattice size. The width of the individual bell shaped distribution is an

indication of IPR variance. Next, we show a similar plot for lower concentration (5%)

for a comparison. From Fig. 7.6, one can see that the distributions are more concentrated

around the mean, which means they have less variances. This is consistent with Eq.. 7.5

where one can assume for the 5% concentration of disorder the fractal dimension D2 is

closer to normal dimension 2. In fact, the distribution of fractal dimension was directly

studied numerically at the Anderson transition regime. [192] A log IPR distribution for

20% concentration of pinned disorder is also shown in figure 7.7 for completeness.

One sees similar behavior for IPR distributions in the numerical study of both 3D An-
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Figure 7.5: The probability distribution function of log IPR for 10% of pinning sites. En-
ergy slice is taken around E = 2.9. For each lattice size, there are at least 50 disorder
averaging performed.

Figure 7.6: Distribution functions of log IPR for 5% of pinned sites. Energy is again
E ∼ 2.9. The variance of the bell-shaped curves are used to find gph(ε) presented in the
green line of figure 7.10.
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Figure 7.7: Distribution functions of log IPR for 20% of pinned sites. Energy is taken the
same as in the previous plot (E ∼ 3.6).

derson transition [193] and PRBM model [194, 195] for various system sizes. The ques-

tions of whether there is a finite size effect for the variance σ in the numerical calculation

shown above is still to be investigated in future study.

Equally, we can obtain the statistical information of the IPR through its distribution.

Figure 7.8 is a plot of the probability distribution of the rescaled IPR P̃2 = P2

〈P2〉 − 1.

One can see a similar plot of IPR distribution for the PRBM model at Fig.3 of the Ref.

[191]. Here, we have shown two ways of rescaling, by the mean and median of the IPR

respectively. The difference between the two ways of scaling is minimal. First, one can

clearly see the exponential decay, then the curve starts to deviate the Eq. (7.6) at around

P̃2 ∼ 0.5, which is an indication of entering the power law decay region Eq. (7.8). Note

that we plot the Fig. in a log-log plot, in order to show clearly the power law decay of the

IPR distribution (Eq. 7.8) in the regime P̃2 ≥ 1. The fitted g = 3.5, in excellent agreement

with the previous fittings.
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Figure 7.8: The semi-log plot of the IPR distribution. The sample has 40×40 lattice, with
20% of pinned sites and 20,000 disorder averaging. The energy is taken around E ∼ 3.6.
The estimated g = 3.5 according to Eq. (7.7).
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Figure 7.9: Log-log plot of the IPR distribution. The sample feature and parameter esti-
mations coincide with the previous Figure 7.8.

79



7.4 Extract gph from IPR

A reasonable agreement for gph(ε) found in two ways (reasonable because g is not

large enough) can be seen in Fig. 7.10. g1 was found by applying Eq. (7.1) to the fraction

dimensions for different energies, where E ∈ [1.0, 3.5] of the sample. Also, in Figures
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Figure 7.10: The dimensional "conductance" as a function of energy in the metallic region
ξ > L. Data come from lattices with 5% of pinning sites. The conductance is found from
scaling behavior of the IPR as described in Figure 7.3’s caption, and also from the variance
of the IPR at different energies.

7.11 and 7.12, we show the result of calculating g in two ways using 10% and 20% con-

centration respectively.
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Figure 7.11: The dimensional "conductance" as a function of energy in the metallic region
for lattices with 10% pinned sites.
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Figure 7.12: The dimensional "conductance" as a function of energy in the metallic region
for lattices with 20% pinned sites.
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8. IMPACT ON THE DEPHASING RATE IN GRAPHENE

In this chapter we come back to evaluate the effect on the dephasing rate due to the

interaction of FP with pinning centers. In the quantum hall transition, multifractality of the

wave function is closely related to the dephasing properties [196]. Here we concentrate

more on theoretical approach and analysis, which to some extent will give the necessary

support for the numerical result we have discussed in the earlier chapters.

8.1 The Dephasing Rate due to FPs

One can express the dephasing problem with the time decay functional as

F (t) = t

∫
(dΩ) (dQ) 〈φφ〉Ω,QB (Q)C (Ω, t) ,

where the functions

B (Q) =
2

vFQ

(
1−

(
Q

2kF

)2
)
θ (2kF −Q)

C (Ω, t) = 1− sin (Ωt) / (Ωt) ,

and

〈φφ〉 =
1

2
g (Q)2 Σk (Ω, Q) .

The formulas follow the definitions and calculations in our previous publication [18]. Here

g (Q) = g Q
Q+4gekF

is the screened coupling constant of electron-FP interaction, and g ∼

30eV is the unscreened coupling constant. For the self-energy operator, it can be expressed
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as

Σk (Ω, Q) = − (2π)3

∫
(dp) (dq) (dε1) (dε2) [coth (ε1/2T ) coth (ε2/2T ) + 1]

×<
[
DR (ε1,p)DA (ε2,q)

] (pq)2

4
δ (ε1 + ε2 − Ω) δ (p + q−Q) .

We will proceed the calculation with ε1 = ω + Ω/2 and ε2 = ω − Ω/2 , p = k + Q/2

,q = k − Q/2. After plugging in the definition of FP Green’s function is defined in Eq.

(2.2), one arrives at the expression for the self-energy

Σk (Ω,Q) =
νpτ

−1T 2

2ρ2α2

∫ ∞

τ−1

(dω)

ω2

1

τ−2 + (Ω− v (ω) ·Q)2 .

In the rest of the chapter, we are concentrated with time t � τ , where τ is the elastic

scattering time defined in Eq. (2.4). For t < τ , the calculation will come back to the

clean case [18]. Furthermore, we consider energy scales satisfy ω � τ−1 � Ω. The

integral is complicated and has several regimes to be discussed in detail. Also we assume

that TBGτ � 1, with TBG = 54
√
n/1012cm2 for the Bloch-Gruneisen temperature of FP.

Then, it follows τ−1 � τ−1

TBGτ
� T . After carefully evaluating the different asymptotics,

we arrive the conclusion that

F =
t

2
g2νpτ

−1T 2

2ρ2α2
2

∫ T

τ−1

(dω)

ω2

τµ

(2π)2 v2
F

∼ t
T 2

µ
TBGτ. (8.1)

Here, µ is the chemical potential of the Graphene and g (in this chapter) denotes the elec-

tron phonon coupling constant. Therefore due to the cut off τ−1, τ−1
φ is a factor TBGτ

larger than the ’golden rule’ rate [80, 18].
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8.1.1 Diffuson Contribution

Taking the contribution of the diffuson propagator into account, we will perform the

calculation in the following limit: ω � τ−1 � Ω, Ω2 � 2Dτ−1Q2 = 4ωωQ, and k� Q,

DQ2τ � 1 (the limit is set in the similar sense for electron-impurity diffuson calculation).

Thus, the self-energy can now be written as

Σk (Ω, Q) = − πνp
4ρ2α2

∫
(dω)

(
2T

ω

)2

< 1

DQ2 + iΩ
.

In the Eq. (8.1), we performed energy integral first, while here, we first integrate out the

momentum, which is similar to the way done in field theoretical approach to solve the

electron transport problem [197]. Here, we define

ωD (ω) ≡ 4Dk2
F = ω (ω2kF τ) ,
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which is the energy of diffuson of momentum 2kF . After introducing the bending energy

scale κ ∼ 1eV , one gets for ω � τ−1 � Ω� ωD,

F (t) =
Ntg2T 2

(128πκ)2TBGτ
TBGt

µ

∫ T

τ−1

dω

ω

∫ t/τ

ωDt

ds
1

s2

(
1− sin (s)

s

)

=
( g

128πκ

)2

NTBGτ
TBG
µ
t2T 2

∫ T

τ−1

dω

ω





1
ωDt

for ωDt� 1

π/4 for ωDt� 1 & t/τ � 1

t/τ
6

for t/τ � 1

=
( g

128πκ

)2

NTBGτ
TBG
µ
t2T 2





t−1

TBGτ
τ for t� T−1

BG

1− π/4 log TBGt for T−1 (TBGτ)−1 � t� T−1
BG

π/4 log Tτ for τ � t� T−1 (TBGτ)−1

t/τ
6

log Tτ for T−1 � t� τ

.

(8.2)

Here N ∼ 1.05 is a numerical factor.

8.1.2 Crossover to Ballistic Regime

One can use the factor S (defined in Eq. (2.5)) to substitute the diffusion pole, and get

Σk (Ω, Q) =
πνp

4ρ2α2

∫
(dω)

(
2T

ω

)2

<
[

τ 2

τ − S−1

]
.

Introduce ω̂ = ωτ, Ω̂ = Ωτ and Q̂ = Q/2kF , then

Ŝ ≡ Sτ =

√
1 + 4TBGτ ω̂Q̂2 − Ω̂2 + 2iΩ̂.

In principle, one can perform some numerical calculation based on this more general form

and gain some insights about the ballistic regime, which is again beyond our scope in my
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dissertation work.
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9. SUMMARY AND DISCUSSION

9.1 Summary of the Results

In the dissertation work we studied an effective model for flexural phonon localization.

In our discretization of Eq. (3.3), one pinned site represents an attached area of the size of

the order of 10nm. We have neglected the effects of anharmonicity and ripples. According

to the analysis of Ref. [81], at any temperature only a small fraction of the phase space

of FPs is modified by anharmonicity. Concerning the ripples, according to Ref. [82]

at the interested temperatures range (∼ 1K) ripples are expected to be too large and too

smooth to influence motion of the FPs. Our analysis is thus built on the following three

assumptions: (I) flexural phonons were decoupled from other modes, (II) scattering from

the attached areas is similar to the scattering from a rigid obstacle, and (III) we are talking

only about low energies/low temperatures, and physics on large scales about 10nm and

more. We summarize the findings of the dissertation work here:

1. Anderson Localization of FPs at low energy seems confirmed. The Randomly

Pinned Flexural Phonon model (RPFP) reveals the physics of Anderson localiza-

tion for flexural phonons in 2D material.

2. Dimensionless conductance extracted using various quantities are highly consistent.

Here, we list in the Table 9.1 the estimated gph from various properties of our system

ranging from level statistics to IPR distributions. Except for some minor difference,

one sees an excellent match between different ways of calculating gph.

3. Physics in the diffusive (to the ergodic) regime reveals quite universal features that

are consistent with the Non-linear σ-model in Gaussian Orthogonal Ensemble sys-

tems.
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A general question which we raised in the beginning has been answered in the numerical

study discussed in this dissertation: If we compare with the electrons propagating in a

disordered lattice, will the statistical properties of the randomly pinned FPs be the same or

different? We have calculated numerically a number of quantities characterizing statistical

properties of FPs. Using the values for gph extracted from the data via various quantities,

we found a very good agreement with the theoretical predictions existing for the disordered

Anderson model in the case of the Orthogonal Class of Universality. This, of course, is not

surprising because there is no reason to expect anything different from the 2d Anderson

model. (The squared Laplacian should not be so different from a simple Laplacian since

the shortest scale is the mean-free path. Also pinning instead of other random potential do

not change symmetry properties.) Furthermore, the theoretical expressions for the number

of variance Σ2(ω,Ω) and the wave function intensity distribution P(y), both are intimately

connected with the effects of the WL originating from the Cooperons [61, 108]. The ex-

cellent agreement demonstrated in Figs. 4.7, 4.8 and 5.5 justifies that in the discussed

model, the regime of WL is the same as in the Anderson model in 2d. We believe that the

reason for the observed universal behavior is that the FPs in the lattice with pinned sites

are eventually described with the same Non-Linear σ-model as disordered electrons in the

orthogonal class of universality. Thus, from the results of the numerical study we assert

that the answer to the question is positive: the pinned FPs share the same statistical prop-

erties with those electrons in the orthogonal class of universality. Moreover, the numerical

results shows that our model is very suitable for studying other universal features in 2D

disordered system. I have mentioned the potential future study object in various places

of the dissertation. In one sentence, we could say that the randomly pinned FP model

will open a new avenue for localization physics in 2D phononic system, in particular, the

transport properties that are associated with FPs need to be carefully reconsidered.

Let us finally come back to physical situations in Graphene and have an estimation of
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Methods of Calculation Estimated gph
Level number variance Eq. (4.9) with 80×80 lattice 1.6
Level number variance Eq. (4.9) with 200×200 lattice 1.4
Wave function intensity (not too large) Eq. (5.23) with 80×80 lattice 1.6
Fal’ko-Efetov exact solution Eq. (6.5) with 80×80 lattice 1.6
IPR tail distribution Eq. (7.7) with 40×40 lattice 3.5
Fractal dimension Dq from Eq. (7.4) 1.9
Variance of log IPR distribution from Eq. (7.5) 1.5

Table 9.1: Comparison of different methods of estimating gph for lattice with 20% of
pinned sites at E ∼ 3.5.

at what conditions one can achieve the physics discussed above. To be more specific, let

us estimate energy of FPs at which a crossover from strong to weak localization occurs.

Strong localization, where ω . 1/τ , holds for momenta k2 . 8ni that for our choice of

ai yields k < 0.14nm−1. The corresponding energy is about 0.1K. So far, we didn’t

consider the effect of strain. The strain ū, ignoring anisotropy, is known to add the term

ρūv2
Lk

2 into the equation of motion, Eq. (3.1), where vL is the velocity of the longitudinal

phonons. In the isotropic approximation this yields ω(k) =
√

(αk2)2 + ū(vLk)2. One has

to keep in mind that the scattering of an FP from a high enough barrier doesn’t depend on

details, and the cross-section remains 4/k, if k < a−1. Then, for the linear spectrum the

condition for strong localization is k2 . 4ni, which is similar to what we have got above.

Typically, ū is v 10−4, and the effects of bending and strain are of comparable strength

for the discussed scales. Note that our estimate for the scale of strong localization is con-

servative. In reality, the size of the attached areas can be comparable with the distances

between them. Then, owing to the factor f ≈ ka > 1, the energy of the localized FPs

can be few times larger, which is very prominent for the experimental realization. Further-

more, effects of the weak localization noticeably expand localization of the FPs. One may

easily show that, as compared to the strong localization, the weak localization increases
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momenta of the FPs which undergo localization by a factor of ln(L/l). (In this estimate, it

is necessary to take into consideration the factor f in the scattering cross-section.) Corre-

spondingly, weak localization boosts the energy of the localized FPs by a factor ln2(L/l).

For a standard micron size sample, ln L
10nm ' 5. As a result, the energy of localized FPs

increases up to few K.

9.2 Potential Impact of Research

In the community of localization physics, there exists a “power-law random banded

matrix ensemble” (PRBM) which describes a kind of one-dimensional system with a long-

range hopping whose amplitude decreases as r−α with distance [137, 198]. In various con-

texts such as quantum chaos [199, 200] and disordered systems [201, 202], PRBM appears

as a natural model. Again, the model can be mapped onto a SUSY σ-model. Statistics of

levels and eigenfunctions in the PRBM model are then studied, which gives great insight

on the problem of Anderson localization. Part of reasons why PRBM is popular for study-

ing localization physics is due to its ease for numerical computation. In the rest of the

dissertation, we have seen that our model of randomly pinned FP (RPFP) is also a great

tool for reproducing various established results in the disordered system. Moreover, from

my experience with working on the RPFP model, one will expect that potentially the com-

munity could also embrace the model due to its simplicity. In conclusion, we demonstrate

that elastic system with randomly pinned centers is an excellent polygon for numerical

study of the physics of random systems. Localization of the FPs is much more similar to

the localization of electrons in well studied models rather than to the problematic localiza-

tion of chiral electrons in disordered graphene.

For systems in the strongly localized phase, until recently, it still only exists very lim-

ited theoretical methods to study the statistical properties of the system. One of them

is the generalized Dorokhov-Mello-Pereyra-Kuma (DMPK) equation, which has been
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used in numerical simulation of electron transport problems [185, 203, 186, 204, 205].

Another way to study the localized regime is through the finite size scaling properties

[206, 207, 208, 209] of the conductance which is also connected to the multifractal prop-

erties of the wave function [210, 211]. Our model of pinned flexural phonons to some

extent also serves as an ideal model to mimic the Anderson model. Recently, localization

to ergodic phase transition in become a hot research topic.[212, 213] The many-body lo-

calization (MBL) concept emerged as an extension to the idea of Anderson localization.

It would not be a wild conjecture that our model could be a good testing ground for MBL

physics. [214, 215] Furthermore, apart from its theoretical and numerical convenience

which we have shown in the dissertation, one can even think of experimental realization,

which will shed light on the Anderson localization and related problems 60 years after its

birth.
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APPENDIX A

PYTHON CODE USED IN THE NUMERICAL STUDY

Here we attach our program coded in Python for calculating the eigenvalue and eigen-

functions of randomly pinned flexural phonons, see Chapter 3 for details.

from mpi4py import MPI

import s y s

import random

import numpy as np

from s c i p y import s p a r s e

from s c i p y . s p a r s e . l i n a l g import e i g s , e i g s h

from d a t e t i m e import d a t e t i m e

import t ime

comm = MPI .COMM_WORLD

s i z e = comm . G e t _ s i z e ( )

r ank = comm . Get_ rank ( )

random . seed ( r ank + t ime . t ime ( ) )

def Crea teFreeMat r ixPBC (N) :

# our m a t r i x w i l l be banded , w i t h t h e f o l l o w i n g o f f s e t s

o f t h e d i a g o n a l s

u p o f f = np . a r r a y ( [ 1 , 2 , N−2, N−1, N, N+1 , 2∗N−1, 2∗N,
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N∗ (N−2) , N∗ (N−2) +1 , N∗ (N−1)−1, N∗ (N

−1) , N∗ (N−1) +1 , N∗∗2−1])

d n o f f = −u p o f f

o f f s e t s = np . append ( 0 , np . append ( upof f , d n o f f ) )

# we s o l v e f o r t h e (N) ^2 i n t e r i o r p o i n t s

# d i a g o n a l

d i = 20 ∗ np . ones (N ∗∗ 2)

# upper p a r t

u1 = np . t i l e ( np . append ( 2 , −8∗np . ones (N−1) ) , N)

u2 = np . t i l e ( np . append ( [ 0 , 0 ] , np . ones (N−2) ) , N)

u3 = np . t i l e ( np . append (0 ∗ np . ones (N−2) , [ 1 , 1 ] ) ,N)

u4 = np . t i l e ( np . append (2 ∗ np . ones (N−1) , −8) , N)

u5 = −8 ∗ np . ones (N ∗∗ 2)

u6 = np . t i l e ( np . append ( 0 , 2∗np . ones (N−1) ) , N)

u7 = np . t i l e ( np . append (0∗ np . ones (N−1) , 2 ) , N)

u8 = 1 ∗ np . ones (N ∗∗ 2)

u9 = 1 ∗ np . ones (N ∗∗ 2)

u10= np . t i l e ( np . append ( 2 , 0 ∗ np . ones (N−1) ) , N)

u11= np . t i l e ( np . append (2∗ np . ones (N−1) , 0 ) , N)

u12= −8 ∗ np . ones (N ∗∗ 2)

u13= 2 ∗ np . ones (N∗∗2)

u14= 2 ∗ np . ones (N∗∗2)
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# lower p a r t

l 1 = np . t i l e ( np . append (−8∗np . ones (N−1) , 2 ) , N)

l 2 = np . t i l e ( np . append ( np . ones (N−2) , [ 0 , 0 ] ) , N)

l 3 = np . t i l e ( np . append ( [ 1 , 1 ] , 0 ∗ np . ones (N−2) ) ,N)

l 4 = np . t i l e ( np . append (−8 , 2 ∗ np . ones (N−1) ) , N)

l 5 = −8 ∗ np . ones (N ∗∗ 2)

l 6 = np . t i l e ( np . append (2∗ np . ones (N−1) , 0 ) , N)

l 7 = np . t i l e ( np . append ( 2 , 0∗np . ones (N−1) ) , N)

l 8 = 1 ∗ np . ones (N ∗∗ 2)

l 9 = 1 ∗ np . ones (N ∗∗ 2)

l 1 0 = np . t i l e ( np . append (0 ∗ np . ones (N−1) , 2 ) , N)

l 1 1 = np . t i l e ( np . append ( 0 , 2∗np . ones (N−1) ) , N)

l 1 2 = −8 ∗ np . ones (N ∗∗ 2)

l 1 3 = 2 ∗ np . ones (N∗∗2)

l 1 4 = 2 ∗ np . ones (N∗∗2)

# d a t a f i l l i n g

d a t a = np . a r r a y ( [ di , u1 , u2 , u3 , u4 , u5 , u6 , u7 , u8 , u9

, u10 , u11 , u12 , u13 , u14 ,

l1 , l2 , l3 , l4 , l5 , l6 , l7 , l8 , l9

, l10 , l11 , l12 , l13 , l 1 4 ] )

A = s p a r s e . d i a _ m a t r i x ( ( da t a , o f f s e t s ) , shape = (N∗∗2 , N

∗∗2) )
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re turn A

def CreateRandMat (N, NumImp ) :

FreeMatPBC = Crea teFreeMat r ixPBC (N)

r e m o v e l i s t = random . sample ( range (N∗∗2) , NumImp )

r e m o v e l i s t . s o r t ( )

c o l r o w _ l i s t = np . d e l e t e ( np . a r a n g e ( 0 ,N∗∗2) , r e m o v e l i s t )

RandmatPBC = s p a r s e . l i l _ m a t r i x ( FreeMatPBC ) [ c o l r o w _ l i s t

, : ] [ : , c o l r o w _ l i s t ]

re turn RandmatPBC , r e m o v e l i s t

def c a l c u l a t e R a n d E i g (N, NumImp ) :

matPBC , r e m o v e l i s t = CreateRandMat (N, NumImp )

k = matPBC . shape [0]−1

eig2PBC , eigvPBC = e i g s h ( matPBC , k , which = ’SM’ )

a d d l i s t = np . a r r a y ( r e m o v e l i s t ) − np . a r a n g e ( l e n (

r e m o v e l i s t ) )

wavefuncPBC = np . i n s e r t ( eigvPBC . T , a d d l i s t , 0 , a x i s =

1)

re turn np . s q r t ( eig2PBC ) , wavefuncPBC

N = i n t ( s y s . a rgv [ 1 ] )

#N = 20

# i m p u r i t y c o n c e n t r a t i o n
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ImpCon = f l o a t ( s y s . a rgv [ 2 ] )

#ImpCon = . 2

imp = np . i n t ( (N∗∗2 ∗ ImpCon ) )

MPIeigenPBCs = np . a r r a y ( [ ] )

MPIwavr1s = np . a r r a y ( [ ] )

MPIwavr2s = np . a r r a y ( [ ] )

MPIipr2PBCs = np . a r r a y ( [ ] )

MPIipr3PBCs = np . a r r a y ( [ ] )

MPIipr4PBCs = np . a r r a y ( [ ] )

eigPBC = [ ]

wavPBC = [ ]

wavr1 = [ ]

wavr2 = [ ]

ipr2PBC = [ ]

ipr3PBC = [ ]

ipr4PBC = [ ]

#Avg over d i f f e r e n t r e a l i z a t i o n o f imp

loopnum = i n t ( s y s . a rgv [ 3 ] )

# loopnum = 3

r1 = i n t (N/ 4 ) ∗ (N+1)

r2 = i n t (3∗N/ 4 ) ∗ (N+1)
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f o r i in range ( 0 , loopnum ) :

eigPBC0 , wavPBC0 = c a l c u l a t e R a n d E i g (N, imp )

eigPBC . append ( eigPBC0 )

#wavPBC . append ( wavPBC0 )

wavr1 . append ( wavPBC0 [ : , r1 ] )

wavr2 . append ( wavPBC0 [ : , r2 ] )

ipr2PBC . append ( np . sum ( np . power ( wavPBC0 , 4 ) , a x i s =1) )

ipr3PBC . append ( np . sum ( np . power ( wavPBC0 , 6 ) , a x i s =1) )

ipr4PBC . append ( np . sum ( np . power ( wavPBC0 , 8 ) , a x i s =1) )

eigPBC = np . a r r a y ( eigPBC )

#wavPBC = np . a r r a y ( wavPBC )

wavr1 = np . a r r a y ( wavr1 )

wavr2 = np . a r r a y ( wavr2 )

ipr2PBC = np . a r r a y ( ipr2PBC )

ipr3PBC = np . a r r a y ( ipr3PBC )

ipr4PBC = np . a r r a y ( ipr4PBC )

l e n = eigPBC . shape [ 1 ]

i f r ank == 0 :

MPIeigenPBCs = np . empty ( [ s i z e , loopnum , l e n ] ,

d t y p e =np . f l o a t 6 4 )

MPIwavr1s = np . empty ( [ s i z e , loopnum , l e n ] ,

d t y p e =np . f l o a t 6 4 )
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MPIwavr2s = np . empty ( [ s i z e , loopnum , l e n ] ,

d t y p e =np . f l o a t 6 4 )

MPIipr2PBCs = np . empty ( [ s i z e , loopnum , l e n ] ,

d t y p e =np . f l o a t 6 4 )

MPIipr3PBCs = np . empty ( [ s i z e , loopnum , l e n ] ,

d t y p e =np . f l o a t 6 4 )

MPIipr4PBCs = np . empty ( [ s i z e , loopnum , l e n ] ,

d t y p e =np . f l o a t 6 4 )

comm . Ga th e r ( eigPBC , MPIeigenPBCs , r o o t = 0)

comm . Ga th e r ( wavr1 , MPIwavr1s , r o o t = 0)

comm . Ga th e r ( wavr2 , MPIwavr2s , r o o t = 0)

comm . Ga th e r ( ipr2PBC , MPIipr2PBCs , r o o t = 0)

comm . Ga th e r ( ipr3PBC , MPIipr3PBCs , r o o t = 0)

comm . Ga th e r ( ipr4PBC , MPIipr4PBCs , r o o t = 0)

i f r ank == 0 :

f i l e n a m e = ’ . / d a t a / wave_imp ’+ s t r ( i n t ( ImpCon ∗100) ) + ’

_ l a t ’+ s t r (N) + ’ _avg ’ + s y s . a rgv [ 4 ] + ’ . npy ’

np . s ave ( f i l e n a m e , ( MPIeigenPBCs , MPIipr2PBCs ,

MPIipr3PBCs , MPIipr4PBCs , MPIwavr1s , MPIwavr2s ) )
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