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ABSTRACT

The study of the interaction between particles and fluid-fluid interfaces is essential to

a variety of applications. A systematic way to understand those phenomena is to consider

them in two different limits: single particle versus multiple particles. One particular exam-

ple of a single particle problem is the particle’s interaction with an acoustic bubble. Many

bubble-based systems use oscillating microbubbles to trap particles, which further leads

to applications including live animal trapping and cell manipulation. On the other hand,

when multiple particles are involved, the study of the suspension injection and drainage

has drawn much attention, which has the implication in biotechnology and food process-

ing.

The objective of this research is to study and gain a fundamental understanding of

the coupled dynamics between particles and fluid-fluid interfaces via experimental and

theoretical approaches. First, we work on a project with a single-particle trapping via

acoustic bubble. In this work, we quantify the magnitudes of secondary radiation force

exerted by the oscillating bubble inside a microchannel for varying actuation frequencies

and voltages. By combining well-developed theories that connect bubble oscillation yield-

ing secondary radiation force to the acoustic actuation, we derive the expression to predict

the critical input voltage that leads to particle release into the flow, which agrees with the

experimental results.

The next phase of the research emphasizes the dynamics of the collection of particles.

We experimentally investigate the effect of particle concentration on the viscous finger-

ing behavior when the suspension is withdrawn from a Hele-Shaw cell. In particular,

we quantify the fingering growth rate with varying initial particle concentrations. Our re-

sults reveal that the fingering growth rate increases with increasing particle concentrations,
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while the total drainage time also appears to be increasing. This successfully proves that

the drainage efficiency is enhanced due to the presence of the particles. In addition, we

observe the particles entrained into the thin film on the plate after drainage, which also

varies with the particle concentration and the ratio between gap thickness and particle di-

ameter. Using a simplified model, we also find an entrainment criterion in agreement with

the experimental results.
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1. INTRODUCTION∗

1.1 Background

The interaction between particles and fluid-fluid interfaces is observed in many sit-

uations, such as the balls bouncing on water, surface coating process, food production,

mineral flotation and 3D printing. In the case of a single particle impacting the fluid-fluid

interface, Lee et al.[1] experimentally show a superhydrophobic ball bounces off a free

surface when it impacts with water, just as it impacts with an elastic membrane. They

construct scaling laws to find conditions under which the particle sinks, bounces off or

oscillates, which is relevant to water-walking insects and self-assembly using capillary

forces. Another problem by Poulain et al. [2] is to experimentally characterize the dy-

namics of a spherical particle due to a cavitation bubble. Theoretically, they show that

the particle velocity strongly depends on the distance from the bubble as an inverse-fourth

power law. Also, Zhang et al.[3] experimentally study the collision of a single bubble

with a fixed particle inside a Hele-Shaw cell for different initial transverse distances be-

tween the bubble and the particle. They develop a theoretical model to predict the rate

of bubble volume shift from the smaller to the larger side. This topic is of importance in

some industrial applications such as the mineral floatation which is related to the collision,

attachment, and detachment of particles with bubbles in a suspension.

For multiple particles cases, Lubbers et al. [4] experimentally and numerically inves-

tigate the rapidly expanding monolayer by the impact of dense suspension drop on a solid

surface. The results show that the expansion and the development of the spatial inho-

mogeneity are dominated by particle inertia, which is insensitive to the surface wetting,

∗Part of this chapter is reprinted with permission from “Manipulation of Biological Objects Using Acous-
tic Bubbles: A Review” by Yun Chen, Sungyon Lee, 2014, Integrative and Comparative Biology, vol. 54,
pp. 959-968, Copyright[2017] by Oxford University Press.
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capillarity, and viscous drag. This result is a desired outcome in various coating processes

such as thermal spray coating of sintered powders and additive manufacturing using inkjet

printing. In a different context, Trojer et al.[5] experimentally study the effect of wettabil-

ity on the fluid-fluid-displacement patterns in granular media. Their results demonstrate

that increasing contact angle stabilizes the fluid invasion into the granular pack, and they

also observe a stable radial displacement at low capillary numbers. Understanding and

controlling the fluid-fluid displacement is essential in many applications, such as enhanced

oil recovery, shale gas production, geological CO2 storage and water infiltration in the soil.

There are many interesting research topics regarding the interaction between particles

and fluid-fluid interfaces, and most of them are significant in various industrial applications

and manufacture processes. The objective of this Ph.D. is to gain fundamental understand-

ing of coupled dynamics between particles and fluid-fluid interfaces, via experiments and

reduced mathematical modeling. In order to achieve this goal, two research projects have

been studied. First, for a single particle case, we study the quantification of oscillation bub-

ble for particle trapping. For multiple particles, we experimentally investigate the viscous

fingering in a draining suspension.

1.2 Literature Review

1.2.1 Studies on Manipulation of Biological Objects Using Acoustic Bubble

In recent years, researchers have developed various applications in biology and medicine

that utilize oscillating bubbles. The applications can be divided into three major categories:

manipulation of microorganisms, deformation and rupture of cells/vesicles, and the deliv-

ery of drugs and genes.

1.2.1.1 Manipulation of Microorganisms

The first primary areas of development in lab-on-a-chip devices using acoustic bubble

is the efficient manipulation of biological objects [6]. Researchers focus specifically on
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microfluidic devices that utilize acoustic bubbles for manipulation. For instance, Xu et

al. (2013) [7] perform experiments to capture and manipulate C. elegans using arrays of

acoustic-driven oscillating microbubbles in a microfluidic device. As C. elegans have a

simple, yet fully mapped, neuronal system, they are useful in studying various diseases.

The size of bubbles are around 250µm. The input voltage is adjusted to accommodate

different sizes of C. elegans . The selective capture and release of C. elegans depending

on the acoustic input allow for sorting of worms by size as well as for controlling their

swimming path by the timed actuation of the acoustic source [8, 9].

Acoustic bubbles are also employed to control other types of microorganisms, such as

fish eggs and water fleas. Bubbles are first held stationary on hydrophobic plates and un-

dergo oscillations upon acoustic actuation inside the microchip. The resultant secondary

radiation force of the oscillating bubble leads to the capture of fish eggs and water fleas

on the bubble’s surface. Once the acoustic actuation is shut off, the microorganisms are

released from the bubble. In the case of mobile water flea, they simply swim away upon

release. For fish eggs, bubbles are placed on modular plates of which hydrophobicity is

controlled by electrodes. The electro-wetting electrodes are connected to an independent

voltage source and change the plate’s property from hydrophobic to hydrophilic upon ac-

tuation. Subsequently, the bubble moves in the gradient of hydrophobicity, transporting

the attached fish egg in the process.

Another application in the manipulation of micro-organism is to fragment E.Coli of

4 − 6µm in length by using acoustic bubbles [10]. Escherichia Coli is widely used

in screening cDNA genomic libraries for micro-scale analysis in biology [11]. Thus, the

fragmentation of the E.Coli will result in the release of intracellular protein and genomic

DNA which can subsequently be harvested for biological research. Using the method of

oscillating bubbles, the acoustic energy can be applied to a small sample volume without

any chemical reagents or direct contact between the transducer and sample, which prevents
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cross-contamination. In the work by Tandiono et. al, E.Coli are injected into the micro-

channel at a given volume fraction, and bubbles are generated from instability of the gas-

liquid interface inside the channel. With the acoustic actuation at a frequency of 128.7

kHz and a voltage of 200 V, E.Coli are fragmented due to shear stresses generated by the

streaming flow around an oscillating bubble.

1.2.1.2 Deformation or Rupture of Cells/Vesicles

The second application of acoustic bubble is deformation or rupture of cells and vesi-

cles. Cells are basic units of living organisms and hold extreme significance in biomedical

research [12], whereas a vesicle enclosed by a lipid bilayer is useful in cell biology [13] and

may be formed naturally or artificially. In some cases, the study of cell structure requires

the given cell to be sheared and ruptured, also known as cell lysis. One method of lysing

cells is to utilize shear stresses generated by microstreaming of an oscillating bubble, anal-

ogous to the fragmentation of E.Coli. This concept is first demonstrated by Hughes and

Nyborg [14] who state that the shearing action of bubble-induced micro-streaming causes

the breakage of cells. More recently, a single bubble (10-100 µm in radius) is attached and

stabilized by capillary forces inside an indentation [15]. With the actuation of ultrasonic

energy, a vesicle with a radius of 10 µm is alternately pulled toward and away from an

oscillating bubble due to the streaming flow. The speed of the vesicle increases with the

increasing acoustic amplitude. In particular, large vesicles remain in the stagnation line

of the oscillating bubble and are deformed by shear stresses of the streaming flow. With

an increase in the fluid’s viscosity and driving amplitudes, the shear stresses become large

enough to rupture the vesicles. Marmottant et al. [16] also conduct further experiments

and develop theoretical models of the deformation of vesicles due to microstreaming.

Another example of cell lysis is the rupture of Pichia Pastoris for harvesting and

analyzing its intracellular contents [10]. Pichia Pastoris is a species of yeast cell with
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rigid extracellular cell wall, which provides structural strength to the cell and renders lysis

of the cell difficult. In this work, the yeast cells (4µm in diameter) are injected into the

microchannel, and the bubbles are generated from the gas liquid interface in the channel.

Upon acoustic actuation, cells near bubbles are shown to initially undergo large deforma-

tions and eventually split into two fragments. The physical mechanism of this rupture of

the cell is the presence of shear inside a streaming flow.

Other studies also successfully demonstrate deformation and rupture of cells by an

oscillating bubble. Following the work of Hughes and Nyborg [14], Rooney [17] experi-

mentally shows that the release of hemoglobin occurrs when the oscillation of the bubble’s

amplitude exceeds a critical value. He attribute the observed hemolysis to microstreaming

generated by an acoustic bubble. Miller et al. [18] also experimentally demonstrate that

the bubble’s oscillation may induce the cell’s lysis. Furthermore, van Wamel et al. [19]

conduct experiments to find the critical shear stress generated by the oscillating bubble

needed to rupture the bovine endothelial cell membrane.

More recently, several groups have improved and applied the acoustic bubble tech-

niques for the rupture or sonoporation of cell membranes in more biological applications

[20, 21, 22, 23, 24]. These studies build the theoretical and experimental basis for the

effectiveness of acoustic bubbles in medical treatment. For instance, the study of vesicle

rupture [15] may be extended to opening pores in cell membranes for delivering drugs [25].

However, although the theoretical framework for both cases remains the same, the direct

application of results from microfluidic experiments to highly complex clinical studies re-

mains a challenge, since the acoustic parameters uniquely depend on each experimental

setup. Therefore, more experimental and theoretical studies of the acoustic bubble are

needed to bridge the gap between "lab-on-a-chip“ level studies and in vitro experiments.
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1.2.1.3 Delivery of Drugs and Genes

As previously mentioned, acoustic bubbles can be applied to delivering drugs or genes

for medical treatment [26, 27, 28]. In particular, employing acoustic bubbles has been

shown to enhance the efficiency of delivering drugs in three distinct ways [29, 30]. First,

streaming flows generated by the oscillating bubble may rupture drug-loaded carriers and

release the drugs in a controlled way, without damaging the loaded drugs [25]. Second,

shear stresses generated by the acoustic bubble can perforate blood vessels or cell mem-

branes and render them permeable. During oscillations, the streaming flow will open

pores or large holes in cells or blood vessels, facilitating the delivery of drugs to target

locations [21]. This enhances the efficiency of delivering drugs in practical medical treat-

ment [31, 25]. Finally, bubbles themselves are used as drug carriers and are delivered into

blood vessels [32, 33, 34]. When the microbubbles are injected into blood vessels, the

bubbles will oscillate and migrate under the acoustic excitation [35]. Therefore, if acous-

tic bubbles are used as drug or gene carriers themselves, they can be delivered to a target

location more precisely by modifying the acoustic input parameters.

Alternatively, the bubbles can exert secondary radiation forces to capture the nearby

drug carriers and transport them to a target location by another acoustic excitation [36].

Several groups have worked on the methods to load drugs on a bubble [37, 38, 39, 40,

41]. The advantage of using bubbles to carry drugs is that the contents can be released

locally in the targeted area, while minimizing the effects in untreated body parts [42]. In

addition, some biological drugs such as nucleic acids and proteins degrade rapidly after

being injected into the blood vessel; therefore, binding of drugs onto the bubble prevents

degradation. For instance, Negishi et al. [43] develop the method of delivering genes using

acoustically actuated bubble-liposomes in vitro. The results show a more efficient gene

expression in the tissue where the acoustic source is applied, after the bubble-liposomes
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are injected into the knee joints of mice. Mullin et al. [29] also report similarly successful

delivery of drugs by way of acoustic bubbles.

1.2.2 Studies on Fingering Phenomena during Drainage in Hele-Shaw Cell

1.2.2.1 Viscous Fingering in Pure Oil

Paterson[44] perform experiments to show that the fingering occurs when a more vis-

cous fluid that is surrounded by a less viscous fluid in Hele-Shaw cell is withdrawn through

a sink. In the experiment, more viscous liquid is first injected into the Hele-Shaw cell oth-

erwise filled with less viscous liquid to achieve a circular interface and then is sucked out

at constant flow rate. Two conditions are performed here: glycerine as the more viscous

fluid while air or oil as the less viscous fluid. The result shows that fingers occur at the

interface when liquid contracts, and eventually one finger dominates and accelerates into

the sink. When air is used as the less viscous fluid, the withdrawal ceases soon after the

air reaches the sink. However, if oil is used as less viscous fluid, the withdrawal continues

after the finger reaches the sink so that more fingers will converge into the sink. A similar

study is reported by Thomé et al. [45], in which they first perform the experiments using an

angled cell and inject the air into the periphery of the cell filled with oil so that the finger-

ing occurs as a convergent case. Due to the geometry of the cell, the finger become narrow

as they grow. The interface can be empirically fitted with the solution from Saffman and

Taylor [46]. Then they perform the experiment using a circular cell and inject oil into the

air first. With hydrostatic pressure the oil is siphoned out of the cell, and several fingers

are observed. The siphoning stops and all other fingers are motionless when the fastest

finger reaches the center.

Viscous fingering also occurs when the top plate of Hele-Shaw cell is lifted at a con-

stant speed. Lindner et al.[47] study both experimentally and numerically on silicone oil

that is confined in the Hele-Shaw cell. The top plate of the cell is then lifted at a constant
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speed, during which air fingers enter into the oil from the outside. When the fingers grow

their number decreases, eventually retracting to a nearly circular shape. They compare the

results from the experiment with simulation and show that the number of fingers is solely

dependent on the surface tension, while the extent of finger growth depends not only on

the surface tension but also on initial condition. Lindner et al.[48] extend their work to per-

form a linear instability analysis and predict the number of growing fingers which matches

with the experiment. They also show the dependance of the lift force on the finger patterns.

Amar et al.[49] perform a linear theory analysis of instability in the lifting Hele-Shaw cell.

However, their results show significant difference between the theory and experiment; the

number of fingers that is theoretically predicted is roughly an order of magnitude larger

than the experimental results, which is due to the limited 2D model. Hence they take the

3D effects into account, which is found to improve the prediction and agreement with the

experiment. More recently Pedro et al. [50] propose an analytical model in which the lift

force is not only affected by fingering but also dependent on the viscous normal stresses

and the action of the wetting film left behind on the plates of the lifting apparatus. They

compare the results of their model to the experimental results by Lindner et al.[48] and

show the improved prediction for the lift force.

Chen et al.[51, 52] perform the numerical simulations of both inward and outward ra-

dial flows in Hele-Shaw cell. The model for a suction driven flow in a Hele-Shaw cell uses

constant gap width and viscosity ratio (more viscous for inner fluid and less viscous for

outer fluid). In one recent numerical study[52], they start from Boussinesq Hele-Shaw-

Cahn-Hilliard model[53, 54] and fix the Péclet (dissipation) and Cahn (dispersion) num-

ber to be Pe = 103 and C = 10−5 while varying the capillary number to the order of

Ca ∼ 103. The solution shows that for an initially circular interface a larger number of

fingers develops and more fingers are detected by increasing the capillary number. Fin-

gers compete with each other when they grow and move toward the sink, and eventually
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a longer finger reaches the core accompanied by other competing fingers. The numeri-

cal solution shows very similar phenomena as the experimental observation by Paterson

and Thomé et al. However, due to the lack a of detailed quantification of the experiment

results, the numerical solution cannot have a quantitatively comparison with the experi-

ments. In addition, Chen et al. also perform simulation at a higher capillary number in the

order of Ca ∼ 104. The results show that the number of fingers increases, and nonlinear

phenomena such as finger merging, shielding, and pinch-off are observed. However, no

experiments have been performed at such high values of capillary numbers, hence there is

no validation of these numerical results.

A hydrodynamic stability analysis has been studied by Daripa et al.[55, 56, 57, 58] on

multilayer Hele-Shaw flows. In the set up, the Hele-Shaw flow consists of three layers of

immiscible fluids with different viscosities in which the middle layer has a smooth viscous

profile. Their work establishes the connection of the variable viscosity results to viscous

fingering in a complex fluid. Following these work, Gin and Daripa [59, 60] perform a

linear stability analysis of the thin film flows in a radial geometry with multiple layers of

immiscible fluids. They are able to provide a stabilization criteria and design an almost

stable multi-layer system. Some other numerical research[61] has been performed to study

a circular drop or blob viscous fluid surrounded by less viscous fluid and is drawn into an

eccentric point sink. Nie et al.[62] analytically and numerically study singularities in a

Hele-Shaw cell driven by surface tension and suction from a sink. They construct various

exact solutions for zero surface tension. In the numerical solution for nonzero surface ten-

sion case with different initial interfaces, long fingers are observed and move faster and

faster before reaching the sink. They also extend their work for the flow driven by multi-

pole for a 2D Hele-Shaw cell with surface tension[63]. In this work, they can predict the

direction from which the interface travels toward the multipole and estimate the distance

between the fingertip and multipole as a function of time. Kelly et al. [64] use a numerical
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algorithm based on a boundary integral equation assuming inviscid surrounding fluid and

a small, finite surface tension to solve for the behavior of narrow finger propagating to-

wards the sink. Results show that the finger narrows when the surface tension coefficient

decreases, but the shape of the finger does not depend on the offset of the sink. A similar

numerical study is performed by Hector et al.[65] who show that with small or negligi-

ble viscosity of the surrounding fluid, the interface develops a finger that bulges and later

evolves into a wedge when approaching the sink. A neck is formed at the top of the finger.

However, using a surrounding fluid with larger viscosity can prevent the formation of the

neck and leads to thinner fingers.

1.2.2.2 Viscous Fingering in Particulate System

Drainage problems can also be performed in porous media with particles. Maløy et

al.[66] conduct the experiments where 1 mm beads are sandwiched between plastic sheets

and water is withdrawn from one end of the channel. They find that the extraction of water

at a constant rate does not lead to air replacing water from pores. Instead, the interface

tends to move to narrow parts of throats between the pores. The pressure fluctuations they

measure are in good agreement with the simulation results. This work is followed by their

study [67] on the shape and structure of drained areas, which is caused by the competition

between buoyancy and capillary effects. Løvoll et al.[68] extend this work both experi-

mentally and numerically considering the effects of gravity, capillary, and viscous forces.

Transition from a capillary fingering to a viscous fingering behavior is observed. They

experimentally determine the threshold for the instability and use percolation theory to

predict the scaling of the front width and the stabilization criterion. Their experimental

results and theoretical prediction are all consistent with the numerical results. Toussaint et

al. [69] study how the viscous fingering is affected by the pore-scale with a random porous

medium. They find that when averaged over the quenched disorder in capillary thresholds,
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the interface growth rate is proportional to the local pressure gradient with a power of two.

Aursjø et al.[70] perform a quasi-two-dimensional drainage experiments and compare the

results with a 2D Lattice Boltzmann simulation. The experiments and simulation consist

of approximately 10 × 10 (2 mm in diameter) pores, and glycerol-water is withdrawn at

a constant rate. They find that the only difference for the comparison between 2D LB

simulation and the experiment is the small effect related to the three-dimensional topology

of the experiments, which the 2D simulation could not predict. Otherwise, the simulation

results have a good agreement with the experiments. Sandnes et al. [71] study patterns of

the flow in a Hele-Shaw cell with varying grain concentration and amount of air injected.

From their phase diagrams, they observe transition between various patterns depending on

different parameters. They also define two regions: frictional regime and viscous regime,

according to different injection flow rate, where they observe stick-slip bubbles and vis-

cous fingers, respectively. More recently, Amina et al.[72] perform the experiments using

a vertical placed Hele-Shaw cell filled with glass beads from 0.1 mm∼0.7 mm in diameter

saturated with water. They inject air from the bottom and observe the transition from cap-

illary invasion to viscous fingering to fracturing. The fractal dimension numbers for these

three different invasion patterns are also obtained from the experiments.
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2. QUANTIFICATION OF PARTICLE TRAPPING VIA ACOUSTIC BUBBLE∗

2.1 Introduction

In the past two decades, microfluidics technology has become an emerging field that

allows for precise control of fluids behavior at microscale[73, 74]. Based on microfluidic

technology, functional units, such as pumps, valves, sensors, and actuators, can be minia-

turized and integrated onto a small microfluidic chip to form a lab on a chip system[75,

76], which is now finding numerous applications in chemistry[77], biology[78, 79, 80],

medicine[81, 82], biotechnology[83], food science[84] and environmental engineering[85].

One of the most important functions in lab on a chip applications is the manipulation

of micro-sized objects, including reagents, particles, cells, and microorganisms. Vari-

ous methods have been developed for manipulation in a microfluidic environment. These

methods often harness interactions between fluids and multi-physics, such as electric

field[86, 87, 88, 89, 90, 91], magnetic field[92, 93, 94, 95], electromagnetic field[96,

97, 98], temperature field[99, 100] and centrifugal force field[101, 102]. In recent years,

acoustics has also started to attract attention as an alternative source that can be utilized

for manipulation of micro-objects in microfluidics, and a new term acoustofluidics has

gained popularity in the research community[103, 104]. Compared with other actuation

techniques, acoustic methods offer many advantages, such as versatility, compactness,

non-contact feature and relatively simple operation. However, the interactions between

fluids and an acoustic field can be quite complex; Fig. 2.1 briefly summarizes possible

acoustic effects that may arise when acoustics and fluids encounter at microscale.

Two types of interactions have been explored in the past. One is to directly use the

∗Reprinted with permission from “Onset of particle trapping and release via acoustic bubbles” by Yun
Chen, Zecong Fang, Brett Merritt, Dillon Strack, Jie Xu and Sungyon Lee, 2016, Lab on a Chip, vol. 16,
pp. 3024-3032, Copyright[2017] by Royal Society of Chemistry.
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Figure 2.1: Diagram showing different interactions between acoustic actuation and fluid
flows. The microbubble oscillation caused by acoustic field is in the secondary interaction
category. The oscillating bubble can impact the objects in the nearby field generating
microstreaming flows and secondary radiation forces, FSR. In this study, we focus on the
effect of FSR.

interactions between objects and acoustic waves, which include surface waves[105, 106]

or bulk standing waves[107, 108]. The other is to harness secondary acoustic effects in

the vicinity of solid structures including microchambers[109] and sharp edges[110], or

most often, microbubbles[111, 112]. In particular, microbubbles oscillating in an acous-

tic field can be categorized into inertial or non-inertial types depending on the oscillation

magnitude. Inertial bubble oscillation, or inertial cavitation, is very violent, unstable, and

transient, resulting in liquid jetting in the case of the asymmetrical bubble collapse, or en-

ergy emitting via shock waves or light[113]. This particular mode of acoustic bubbles has

13



been widely used in medical ultrasonics[114, 115, 116, 117]. Non-inertial microbubble os-

cillation is much gentler with various stable oscillation modes that may be observed in the

form of interfacial waves[118, 119]. Non-inertial microbubbles may influence surround-

ing objects by generating microstreaming flows[120, 121, 122], or by exerting a secondary

radiation force, FSR[123, 124].

Most bubble-based lab on a chip systems to date utilize non-inertial microbubbles, due

to the fact that non-inertial microbubbles are more stable and can be easily controlled both

spatially and temporally in a microfluidic environment. For example, the secondary radia-

tion force from an oscillating bubble can be used to trap micro-objects, while the position

of the bubble itself can be controlled by using electrowetting technique[9] or simply attach-

ing the bubble to a traverse rod[125]. If an array of bubbles is fixed inside a microchannel

and acoustically actuated, a trapping zone will form near the oscillating bubbles, which

can be used to enrich, sort and manipulate C. elegans in a flow[7]. Moreover, if excited

with maximized microstreaming flows, spatially arranged bubbles in a microchannel can

be used as fixated transporters[126, 127, 128, 129]. Other notable applications involving

acoustic bubbles include enhanced mixing[130], pumping flow in a microchannel[131,

132], switching particle pathlines[133], switching flow optical properties[134], assem-

bling and driving microrotors[135], generating chemical gradients[136] and propelling

objects[137, 138].

Although applications of acoustic bubbles in lab on a chip systems have witnessed

tremendous progress recently, the operating conditions of the experiments are largely de-

termined empirically in most applications mentioned above, and there exists a lack of

theoretical guidance for designing devices. Indeed, it has been shown that even for a sim-

ple straight 1D channel, the actual outcome of the acoustic actuation is difficult to predict

using theoretical or numerical methods[139]. Therefore, for any given device, initial ex-

perimental validation is important for any further theoretical or modeling efforts. One
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particular area of acoustofluidics with the latest theoretical development is microstream-

ing flows [140, 141, 142, 127, 143, 16, 144], as both the microstreaming flow field and

its effect on micro-sized objects have been resolved analytically in two-dimensional and

quasi-three dimensional geometries. By contrast, while the theoretical expression of FSR

has been developed by Nyborg [14] and Doinikov [145], it has not been experimentally

verified or implemented to directly quantify the bubble’s ability to trap a given micro-

object in microfluidic devices. For instance, Xu et al [7] and Neild et al [146] demon-

strated trapping of microworms and microspheres, respectively, via acoustically actuated

bubbles that exert secondary radiation forces. However, no measurement of bubble oscil-

lations has been made to connect the amplitude of bubble oscillations to FSR, then to the

ability of bubbles to trap particles. The authors also reported the critical voltages at a given

frequency that lead to particle trapping but offered no quantitative analysis that connects

the critical acoustic parameters to FSR.

In order to address this current lack of quantitative analysis of FSR, I hereby present

the combined experimental and theoretical studies on particle trapping and release via an

acoustic bubble in a simple 1D microfluidic channel. This will serve as an important first

step towards more comprehensive future studies. Experimentally, I quantify the bubble’s

ability to stabilize a particle in two ways: first, by measuring the critical acoustic input at

which a pre-loaded particle is released into the flow (Exp A); secondly, by measuring the

critical acoustic voltage and frequency at which a particle is directed towards the bubble

and is stabilized (Exp B). The corresponding amplitudes of bubble oscillations that give

rise to FSR are also measured. Furthermore, to isolate the effects of FSR from all other

forces acting on the particle, we keep the flow rate inside the channel constant to ensure

that the relative effects of microstreaming flows may be neglected in our study. In addition,

we combine the well-developed theories that connect bubble oscillations yielding FSR to

the acoustic actuation to theoretically derive the critical voltage.
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Following the experimental method and image processing in Section 2.2, experimental

results are reported in Section 2.3.1, consisting of the bubble oscillation magnitudes and

the corresponding behavior of the microsphere at given voltages and frequencies. Sections

2.3.2 and 2.3.3 include the theoretical analysis to calculate the critical input voltage that

leads to the particle release into the mean flow, in reasonable agreement with the experi-

ments. The summary and future directions are given in Section 2.4.

2.2 Methods and Materials

2.2.1 Experimental Setup

outlet

inlet

piezoelectric

transducer

aluminum

block

PMMA

chip

PDMS cover

Microchannel

2h

10 mm

2 mm

screw

0.25 mm

bubble

Figure 2.2: (a) The piezoelectric transducer is sandwiched between the microfluidics chip
and aluminum block. (b) The microchannel is milled on top of the chip. (c) The size of
the bubble is controlled by a screw.

The experiment is performed by our collaborator Fang from WSU. The experimental

apparatus used in this study includes a transparent microfluidic chip, a piezoelectric trans-

ducer, and an aluminum block base, as shown in Fig. 2.2(a). The microfluidic channel

(depth 2.79 mm × height 1.35 mm × length 14.01 mm) has been micro-milled out of
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PMMA (Fig. 2.2(b)) and is sealed with PDMS and plastic sheets, with two flat needles

(Lab Express Management) used as an inlet and an outlet. The channel also consists of a

cylindrical cavity with diameter of 254 µm which is treated with superhydrophobic coat-

ing (Rain-X) to serve as a pre-defined site of bubble formation and stabilization[147]. An

additional cylindrical cavity is drilled from the side to incorporate a miniature screw to

actively control the bubble volume and is sealed by ultrasound gel (Aquasonic 100, Parker

Laboratories), as shown in Fig. 2.2(c).

Figure 2.3: A particle is trapped by the oscillating bubble once the piezoelectric transducer
is excited.

In our experiment setup, an air bubble forms automatically inside the cavity and re-

mains stable when the solution with polystyrene microspheres (25-30 µm radius, Thermo

Fisher Scientific) is introduced into the main channel through a syringe pump at a constant
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flow rate of 4 mL/min (NE-1000, New Era Pump Systems) as shown in Fig. 2.3. Following

the bubble formation, the screw is actively adjusted to achieve the desired bubble radius,

typically in the range of 140 -160 µm. We use a piezoelectric transducer (20 mm × 2

mm) sandwiched between the PMMA chip and an aluminum block to excite the channel

periodically using a function generator (DG1022, RIGOL Technologies) and an amplifier

(7602M, Krohn-Hite). The driving frequency, f , ranges from 20 kHz to 36 kHz with an

increment of 1 kHz, while the driving voltage, V , is varied from 10 V to 190 V at each

frequency.

Figure 2.4: (a) In Exp A, the particle is first trapped on the surface of the bubble and then
released. (b) In Exp B, the critical voltage, Vc, is recorded at which an acoustic bubble is
able to trap the particle originally in motion for varying f .

An example of particle trapped by an oscillating bubble recorded by the camera is

shown in Fig. 2.3. The particle suspension is flowing from the right to the left in the

micro channel due to the external flow. Once the piezoelectric transducer is excited, the

bubble starts oscillating. Those particles flowing near the bubble are trapped, usually at

the stagnation point of the bubble.

Two sets of experiments are conducted to quantify threshold acoustic parameters for

particle trapping and release, as depicted in Fig. 2.4 (a) and (b). In the first set (Exp A),
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Figure 2.5: Rb and Rp are the radii of the bubble and particle, respectively. d is the center-
to-center distance between the particle and bubble.

Figure 2.6: The edge of the bubble is detected by MATLAB.

we observe particles that have been stabilized onto the bubble surface at a high voltage

being released into the external flow as the voltage is decreased. The critical voltage, Vc,

at which the particles are released is recorded for a given frequency, f . In the second set

(Exp B), we measure the critical voltage, Vc, at which an acoustic bubble is able to trap

particles originally in motion for varying f . We define Rb and Rp to be the radii of the

bubble and particle (see Fig. 2.5), respectively. d is the center-to-center distance between

the particle and bubble . The experiments are recorded with a high-speed camera (Phantom

Miro M310, Vision Research) from the side of the microchannel. For each experiment at
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Figure 2.7: The edge of the bubble is fitted by least square error method to find a circle.

given V and f , the interaction between the bubble and particle is captured at 1000 fps (240

× 320 pixels), while the bubble oscillations are recorded at 120171 fps (128× 128 pixels)

with resultant images shown in Fig. 2.6 and Fig. 2.7.

2.2.2 Data Analysis

To measure the bubble oscillation amplitude, we use a MATLAB Canny function to

detect the edge of the oscillating bubble. The edge of the bubble is expressed in terms of

the coordinate of the pixel points (Fig. 2.6). We develop MATLAB algorithm to process all

the images automatically to collect the data of all the videos with various frequencies and

voltages. Once the coordinate of the bubble edge of all the videos has been determined, the

least square error method is used to find a circle that best fits the edge (Fig. 2.7). Figure. 2.8

shows one example of the oscillation displacement at 21 kHz and 190 V as a function

of the frame number calculated using the instantaneous bubble radius, R(t), minus the

equilibrium bubble radius Rb = 152.5µm over 100 frames. The bubble amplitude is

subsequently calculated by averaging over local maxima of |R(t)−Rb|. The consistency

and periodicity of the displacement in Fig. 2.8 demonstrate the effectiveness of our data

analysis method.
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Figure 2.8: The plot shows the displacement of an oscillation bubble versus frame number
at 21kHz and 190V calculated using fitted circle.

2.3 Results

2.3.1 Experimental Data

The dimensionless amplitude, ξ, of the bubble oscillation (scaled by the bubble ra-

dius, Rb) is extracted from single bubble oscillation videos of Exp B and is plotted as a

function of f for given V in Fig. 2.9. The plot shows that the oscillation amplitude gen-

erally increases with V but varies nonlinearly with f . In particular, the acoustic bubble

exhibits resonant behavior around f = 21 kHz and 35 kHz. In order to find the reason

that causes the resonant behavior of the bubble, we also measure the amplitude of the

whole device at 3 V. We find that the amplitude of the oscillation bubble as a function of

the frequency matches the device resonance shown in Fig. 2.10, which indicates that the

resonance behavior of the bubble is strongly affected by the whole device. The bubble

resonant behavior appears to intensify with V at f = 35 kHz, as the bubble switches from

volumetric to shape oscillations for V greater than 30 V (see Fig. 2.11). For a bubble un-
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Figure 2.9: Dimensionless bubble amplitude, ξ, increases with V but varies nonlinearly
with f .

Figure 2.10: Device vibration amplitude lref exhibits resonant behavior at 21kHz and
35kHz for 3 V.
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Figure 2.11: Snapshot of the oscillating bubble excited at 35kHz indicates that bubble
switches from volumetric to shape oscillations for V greater than 30V.

der shape oscillation, the amplitude is no longer the same on the surface of the bubble at

different direction. In this study, we will only focus on the effect of volumetric oscillations

on particles and neglect the data range for V >30 V at 35 kHz.

The results of particle and bubble interaction data are summarized in a f -V phase dia-

gram of Fig. 2.12: The triangular markers indicate the critical voltages for given f at which

the particles are released from the bubble (Exp A), while the dots mark the frequencies and

voltages at which the particles are trapped and remain on the bubble surface (Exp B). The

phase diagram is overlaid with the gray scale map of ξ from Exp B, to show the correlation

between the oscillation amplitudes and bubble’s ability to trap particles. The dots overlap

with the gray scale map, especially when the color of the map is geting darker. This indi-

cates that the trapping of the particles is strongly related to the oscillation amplitude of the

bubble. The critical bubble amplitudes, ξc, at the onset of particle releasing or trapping are

plotted as a function of f in Fig. 2.13. Except for f = 35 kHz, most values of ξc fall in the
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Figure 2.12: Phase diagram of experimental results from Exp A and Exp B.

Figure 2.13: Critical oscillation amplitude, ξc, plotted as a function of f , with the emprical
fit to Exp A as a dashed line.
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range between 0.2%-0.8%.
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Figure 2.14: Flow chart of the working mechanism and corresponding theory for particle
trapping. Upon the piezoelectric actuation, the bubble oscillates in response to acoustic
pressure waves, and, in turn, generates a secondary radiation force, FSR. The bottom row
includes mathematical models that inform each physical process.

In order to derive the critical input voltage, Vc, that leads to particle trapping for given

f , this work will use the following steps (see Fig. 2.14): first, perform force balance

between the attractive secondary radiation force and the net hydrodynamic force on the

particle to derive the critical bubble oscillation, ξc; second, linearize the Rayleigh-Plesset

equation to solve for the critical pressure, p′c, needed to generate ξc; finally, simplify the

Helmholtz equation to relate p′c to the critical applied voltage, Vc.

2.3.2 Critical Secondary Radiation Force

The secondary radiation force, FSR, refers to the near-field attractive or repulsive force

between the bubble and an object due to the pressure waves generated by the oscillating

bubble [112]. The initial theoretical development of the secondary radiation force was

made by Nyborg [14] who derived the following expression for FSR,

FSR = 4πρl

(
ρp − ρl

ρl + 2ρp

)
R6

bR
3
p

d5
ω2ξ2, (2.1)
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Figure 2.15: (a) Snapshots of particle locations at the onset of release (Exp A) and trapping
(Exp B)

where ρl and ρp are the liquid and particle densities, respectively; Rp corresponds to the

particle radius, and d is the center-to-center distance between the bubble and particle;

ω = 2πf is the radian frequency.

Image sequences of the particle release and trapping locations in Exp A and Exp B

are shown in Fig. 2.15. As shown in the images, the release location of the particle is

observed to match the stagnation point of the bubble for all frequencies, ensuring that the

net hydrodynamic force on the particle, FD, must be constant for Exp A, while the particle

trapping location in Exp B varies between experimental runs. Therefore, for the sake of

simplicity, all the theoretical consideration from hereon will be limited to Exp A.

Based on a simple force balance depicted in Fig. 2.16, in the critical moment of parti-

cle release from the stagnation point, FD must balance the threshold secondary radiation

force, FSRc, needed to hold the particle on the bubble (i.e., if FSR < FSRc, the particle is

released from the bubble). By plugging in the experimental values of ξc in Eq. (1), FSRc is

calculated and plotted in Fig. 2.17 to reveal that FSRc is indeed constant for Exp A (trian-
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Figure 2.16: Schematic view of a particle located at the bubble stagnation point.

gle), as FSRc = FD = constant. On the other hand, FD can be estimated by considering a

modified Stokes drag on a sphere (i.e., micro-particle) experiencing a local straining flow

near the stagnation point of another spherical obstacle (i.e., bubble). Valid in the limit of

Rp/Rb � 1, Goren and O’Neill[148] derived the expression for this modified drag as

FD = 6πf0µU∞

(
Rp

Rb

)2

Rp, (2.2)

where U∞ is the external flow velocity at infinity, and µ is the liquid viscosity; f0 is

the correction factor that varies with the particle distance from the obstacle. While this

expression has been derived for a solid obstacle that satisfies no slip boundary condition

on the surface, it is reasonable to assume that the same functional relationship will hold

for a bubble as an obstacle but with a different value of f0.

Finally, by balancing FSRc (Eq. (2.1)) with FD (Eq. (2.2)), we can derive an expression

for ξc upon particle release,

ξc =

√
3µU∞f0(ρl + 2ρp)d5

2R8
bρl(ρp − ρl)ω2

, (2.3)
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Figure 2.17: Critical secondary radiation force, FSRc plotted as a function of f . The zoom-
in plot shows the values from 20kHz to 30kHz.

where the value of correction factor, f0, is found by empirically fitting Eq. (2.3) to data in

Fig. 2.13. This allows us to quantify how the threshold bubble oscillation must depend on

different physical parameters of the system, in particular, the driving frequency, f .

2.3.3 Threshold Acoustic Parameter

For isotropic, volumetric bubble oscillations, the relationship between the resultant

oscillation amplitude and driving pressure is given by the Rayleigh-Plesset equation[149,

150],

RR̈ +
3

2

(
Ṙ
)2

=
1

ρl

(
pg − p− 4µ

Ṙ

R
− 2σ

R

)
(2.4)

where R is the instantaneous bubble radius as a function of time and the overhead dot

refers to differentiation with respect to time. Here, pg and p correspond to the internal

and external driving pressures of the bubble, respectively, while σ is the surface tension of

the water/air interface. Since the bubble oscillation amplitude in our experiments is less
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than 1%, we may linearize the Rayleigh-Plesset equation by assuming R = R0 + R′ and

p = p0 + p′, where R′ and p′ are the small perturbations of the bubble radius and driving

pressure (i.e., R′/R0 � 1 and p′/p0 � 1). The solution to the linearized Rayleigh-Plesset

equation yields a linear relationship between p′ and R′:

p′ = R′/G, (2.5)

where

G =
R2

b

σ

[
Reb

Cab

]2

 Web −H

16(4− Reb
Cab

H)−
[
Reb
Cab

(H −Web)− 8
]2

 , (2.6)

and

H =
3γp0Rb

σ
− 2 + 6γ, (2.7)

with γ = 1.4 as the gas constant. Here we define Reynolds number, Reb = ρlRb(Rbω)/µ,

capillary number, Cab = µ(Rbω)/σ, and Weber number, Web = ρl(ωRb)2Rb/σ, specific

to the acoustic bubble, respectively. Since R′c = ξcRb, Eq. (2.5) allows us to solve for the

critical driving pressure, p′c = R′c/G.

The pressure field generated by the acoustic actuation of the device can be solved based

on the Helmholtz equation,[151],

∇2p′ + k2p′ = 0, (2.8)

where the wave number k is given by k ∼ ω/ca, and ca is the speed of sound in water.

In order to find the expression for the pressure inside the micro-channel in terms of the

channel vibrating amplitude, we use a simplified one-dimensional model to simulate our

experiment as shown in Fig. 2.18. The micro-channel vibrates in x-direction, and we let

2h be the height of the channel. In the case of one-dimensional propagation of pressure
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Figure 2.18: A schematic of one-dimensional model for the micro-channel. The channel
is vibrating in x-direction, and L is the height of the channel.

waves, the solution to the Helmholtz equation is given by

p′ = ica
2ρlkl

sin(kx)

cos(kh)
e−iωt, (2.9)

where l is the device vibration amplitude. For simplicity, the device amplitude is assumed

to increase linearly with V , or l = KlrefV/Vref , where lref is the reference device amplitude

at 3 V shown in Fig. 2.10, and K is the fitting parameter whose value depends on the

voltage regime. Since kx � 1 and kh � 1, we use the Taylor expansion to further

simplify p′ to

p′ = K4π2ρlf
2hlref

(
V

Vref

)
, (2.10)

where h is the channel half-height.

Finally, combining Eq. (2.3), (2.5), (2.10) leads to the expression for the critical voltage

that leads to particle release at given frequency:

Vc

Vref

=
1

J(f)

√
6

4π

√
f0U∞

√
1

Reh

√
2ρp + ρl

ρp − ρl

[
Rp

Rb

+ 1

] 5
2

√
Rb

h
, (2.11)
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where

J(f) = KGlrefWebf. (2.12)

Each term in J(f) is a function of the excitation frequency, f ; here we define alternate

Reynolds number with respect to the micro-channel as Reh = ρlU∞h/µ. This theoretical

function of critical voltage must depend on the experimental parameters (i.e., the particle

and bubble radii). For instance, Vc is shown to decrease with increasing channel height,

h. The quantification of Vc for particle release and trapping via an acoustic bubble will

allow for the optimization of lab on a chip operating conditions to trap or sort micro-sized

objects.

The value of the fitting parameter, K, that relates the device amplitude to the bubble

amplitude, or the driving pressure, can be extracted by calculating the pressure, p′, based

on Eq. (2.5) for varying V. The corresponding dimensionless plot is shown in Fig. 2.19,

which clearly exhibits four different voltage regimes for varying f . In regimes I, II, and

IV, the pressure increases in an approximately linear fashion with the voltage at different

rates, or K, while the pressure varies nonlinearly with the voltage in regime III. By plug-

ging in the empirical values of K into Eq.(2.11), we plot the critical voltage Vc for varying

f (dashed line) on the experimental phase diagram in Fig. 2.20, in particularly good agree-

ment with Exp A. Notably, our current theoretical result can be easily extended to other

acoustic devices by simply updating the reference device vibration amplitude lref and K

in Eq. (2.12) to match the particular experimental setup.

2.4 Conclusions

In summary, we have hereby quantified the secondary radiation force, FSR, of an acous-

tic bubble used to trap micro-objects in lab on a chip systems, by combining experiments

and reduced modeling. Experimentally, we measure the minimum input voltage at given

f needed for a single acoustic bubble to generate sufficient FSR to trap and stabilize a
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Figure 2.19: Dimensionless pressure, p′/(ρlf
2hlref), increases in an approximately linear

fashion in regime I, II and IV as a function of voltage V/Vref , while it increases nonlinearly
in regime III.

Figure 2.20: The dashed curve corresponds to the theoretical result, Vc ,based on the em-
pirical values of K.
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microsphere entrained in flow. This critical voltage is experimentally tested in two ways:

by recording the maximum voltage at which an already attached particle is released from

the bubble (Exp A) and the minimum voltage at which a particle entrained in flow is first

trapped by the oscillating bubble (Exp B), as summarized in a phase diagram. For all

experiments, the flow rate of water containing particle suspensions is kept constant and

sufficiently high so that the effects of microstreaming flows can be neglected in our cur-

rent study. In addition to measuring the onset behavior, the amplitude of bubble oscillation

is also measured at the corresponding voltages and frequencies to verify the relationship

between the oscillation amplitude and FSR, as given by Nyborg [14].

In parallel to experiments, we combine well-developed theories to derive an expression

for the critical input voltage that leads to the particle release into the external flow. By bal-

ancing the hydrodynamic force on a sphere near a stagnation point [148] with FSR, a func-

tional relationship between the threshold bubble oscillation and experimental parameters,

such as particle size and driving frequency, is derived. Then, linearized Rayleigh-Plesset

and Helmholtz equations are employed to connect this threshold bubble amplitude to the

driving pressure, then to the applied voltage. Aided by empirical parameters to determine

the vibration amplitude of the channel, the resultant expression for the critical voltage, Vc,

is an explicit function of the driving frequency, f , and is in good quantitative agreement

with the data from Exp A. While the final result, Vc(f), has been tested for our particular

experimental setup, its theoretical approach and result should be valid for a wide range

of acoustic devices and can easily accommodate them by adjusting the device vibration

amplitude.

Overall, our work here takes an initial step to quantitatively analyze the secondary

radiation force of an acoustic bubble for particle trapping and release in a flow. Therefore,

this work paves the way towards future design of next-generation acoustic-based lab on

a chip devices for more versatile applications. Future work includes developing a better
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mathematical model for the hydrodynamic forces on the particle near the oscillating bubble

surface. On the experimental side, performing the analogous experiments with a wide

range of particle and bubble sizes and measuring the pressure field based on PIV (Particle

Image Velocimetry)[152] will help validate our current model. Furthermore, extending

this work to include multiple bubbles, microstreaming effects, or non-spherical objects is

also of great practical interest for lab on a chip applications.
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3. VISCOUS FINGERING OF A DRAINING SUSPENSION

3.1 Introduction

Viscous fingering at fluid-fluid interfaces is ubiquitous in all processes that involve

more than one fluid [46, 153, 154, 155] and has direct implications in oil recovery. For

instance, when water and polymers are injected into oil reservoirs to stimulate production

- known as polymer flooding [156], viscous fingering is known to reduce sweep efficiency

and lead to an early breakthrough of the injected fluid. In hydraulic fracturing that extracts

natural gases and oil from impermeable reservoirs [157, 158], viscous fingering enables

the deeper penetration of the fracturing fluid into fractures and results in the enhanced

transport of sand-like particles, or proppant [159, 160]. Therefore, fundamental under-

standing of viscous fingering may lead to the control of various oil recovery processes.

A flow configuration that is particularly relevant for oil and hydrocarbon recovery is

the fluid drainage from a large reservoir into a smaller region (i.e. well). Motivated by this

physical picture, Paterson [44] experimentally observed that when the oil withdraws from

air in a radial sink flow, the oil-air interface becomes unstable, and the oil drainage stops

once the fastest growing finger reaches the well. The analogous fingering behavior was

also investigated theoretically by calculating the interfacial shapes of a 2D circular drop

subject to suction [64, 161]. More recently, Chen and colleagues [51, 54, 52] numerically

investigated the nonlinear interfacial patterns in the suction-driven Hele-Shaw problem,

based on a diffuse interface method. Compared to extensive works on viscous fingering

both in rectilinear and radial source flows [46, 153, 154, 44, 155], the study of “inward”

viscous fingering remains limited even for pure liquids and non-existent for more complex

fluids, such as suspensions. Suspensions are particularly commonplace in oil recovery

applications that include hydrocarbon recovery through proppant packs [162, 163].
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Interestingly, the interfacial dynamics of suspensions deviate from their pure liquid

counterparts in diverse flow types. For instance, the addition of particles to the fluid ac-

celerates the onset of the droplet pinch-off, as the thread thins down to a particle length-

scale [164, 165, 166, 167, 168, 169]. Excess particles can also suppress viscous fingering

in particle-laden flows down an incline [170, 171, 172, 173, 174, 175, 176, 177, 178],

while the injection of a suspension into a Hele-Shaw cell leads to fingering due to the

particle accumulation on the fluid-fluid interface [179, 180, 181, 182]. In addition, var-

ious interfacial patterns are observed when air is injected into a fluid-particle mixture

[183, 184, 185, 186, 187]; specifically, Sandnes and co-authors [186] observed complex

transitions in suspension-air morphologies (i.e., from solid-like, “frictional” to liquid-like,

“viscous” regimes) with an increasing injection rate of air.

Given the prevalence of particles in oil recovery processes and their significance in

interfacial dynamics, we will presently build on the work of Paterson [44] and consider

the viscous fingering of a draining suspension. Specifically, we experimentally test the

effects of neutrally buoyant particles on the dynamics of the fastest growing finger that

directly controls the total oil recovered, as suspensions withdraw into a well from a Hele-

Shaw cell. The experimental results in Sec. 3.3 reveal that the finger grows faster with

particle concentrations, φ0, while the total drainage time and the amount of recovered oil

also increase with φ0. These contradictory results allude to the dual effects of suspended

particles to delay and to accelerate fingering. In addition, particles of select sizes are

observed to coat the channel surfaces and do not drain, reminiscent of colloidal assembly

in dip coating [188].

Following the experimental setup and data analysis in Section 3.2, experimental results

are reported in Section 3.3, consisting of the finger growth speed in Section 3.3.1 and

total time of drainage in Sections 3.3.2. Section 3.3.3 studies the experimental results

and simplified models of particle drainage versus entrainment. The summary and future
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directions are given in Section 3.4.

3.2 Methods

d

h

Hele-Shaw Cell

Camera

Figure 3.1: Schematic of the experimental setup.

3.2.1 Experimental Setup

We conduct the suspension drainage experiments in a Hele-Shaw cell that consists

of two parallel plexiglass plates (30.5 × 30.5 × 3.8 cm). The plates are separated by

a gap thickness h = 1.39 mm; the bottom plate has a small hole drilled in the center

through which the suspension is drained (Fig. 3.1). The suspension of the particle volume

fraction, φ0, is prepared by mixing neutrally buoyant polyethylene particles (density ρp =

1.00 g/cm3, diameter d = 130µm; Cospheric) with a PMMS silicone oil (density ρl =

0.96 g/cm3 and dynamic viscosity ηl = 0.096 Pa · s) in a syringe. The value of φ0 is varied
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Figure 3.2: (a) Initial circular shape of the suspension with φ0 = 0.1 and radius R0 ≈
10cm. (b) R(t, θ) is defined as the distance from the center to each point of the interface
at given time, t, while s(t) = |R0 −Rmin(t)|.

between 0.05 and 0.2 with an increment of 0.01.

We first inject the suspension into the Hele-Shaw cell to the radius of R0 ≈ 10 cm

(Fig. 3.2(a)). Notably, the maximum value of φ0 is set at 0.2 to prevent the inhomoge-

neous distribution of particles and miscible fingering upon initial injection, as previously

observed by Xu and colleagues [181]. The suspension is then withdrawn from the center

at a fixed flow rate, Q (i.e., Q = 5, 6, 6.5, 7.5 and 10 ml/min). A high resolution camera

(1920 × 1080 pixel images, FOV 60◦) records the suspension drainage experiments from

directly above the Hele-Shaw cell. The instantaneous radius R(t, θ) corresponds to the

distance from the center to each point on the interface at an angle, θ, and is obtained using

MATLAB image processing tools. We also extract the instantaneous area of the draining

suspension A(t) and its time-rate of change Ȧ(t), based on A(t) = (1/2)
∫ 2π

0
R2(t, θ)dθ

(Fig. 3.2(b)). In particular, we focus on the average value of Ȧ(t) over the total drainage

time, tc.
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Figure 3.3: The edge of the center hole is first detected and diameter is measured.

3.2.2 Image Processing and Data Analysis

The total number of the images extracted from each video is over 1000. In order to

reduce the processing time of each video, we take out 1 frame for every 50 frames and

assign those frames with new numbers starting from 1. Since the camera has a 30 FPS

(1/30 sec between each frame), therefore the time between each frame after re-ordering is

5/3 sec, which is used to calculate the time between any frames.

We use Canny function in MATLAB to detect the edge in the images. The Canny

function detects the edge according to the pixel gradient, and the detected edges are rep-

resented in terms of pixel points. Before we start detecting the edge of the interface, we

first measure the diameter of the center hole in the first frame in terms of number of pixels
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(Fig. 3.3 ). Since we know the actual diameter of the hole from the experimental setup,

which is 3.955 mm, we can calculate the ratio between the number of pixels to millimeter.

This ratio is used to translate the measured number of pixels into actual distance from the

images. We then process the all the images automatically to detect the edges of the inter-

face for every videos. Examples of detected edges for two different frames are shown in

Fig. 3.4 and Fig. 3.5. Initially, the shape of the suspension is close to a circle, therefore

we can use best fit circle to find the initial radius of the suspension, R0 in the first frame.

Once the finger occurs as shown in Fig. 3.5, the distance between the finger tip is shortest

among all the points on the edge. Hence the finger tip is then found by taking the minimum

value of the distance from the edge to the center. We then calculate the deviation s(t) as

the absolute difference between R0 and the finger tip. Once we collect all the values of

deviation s for each experiment and plot it as a function of time, we use curve fitting in

MATLAB using the exponential function to find the growth rate b. Finally, we can use the

integration function to calculate the whole area of the suspension enclosed by the detected

edge for each frame, A(t).

In order to show the uncertainty of the measured values from the experimental setup,

we add error bars to each of our figures. The errors are calculated according to [189]

∆y =

√(
∂y

∂G1

∆G1

)2

+

(
∂y

∂G2

∆G2

)2

+ · · ·+
(
∂y

∂GN

∆GN

)2

(3.1)

where y = y (G1, G2, . . . , GN). Here y is the value we would like to calculate and show

in the plot, and G1, G2, . . . , GN are the data directly collected from the experiments. ∆G

is the error from the experimental setup. For instance, there are errors from the pump

flow rate, shim thickness and image processing, which all needs to be considered when

calculating the error, ∆y.
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Figure 3.4: An example of detected edge for frame #5 at φ0 = 0.2, Q = 5 ml/min.

Figure 3.5: An example of detected edge for frame #150 at φ0 = 0.2, Q = 5 ml/min.
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Figure 3.6: (a) An example of viscous fingering in a pure oil with viscosity ηl = 0.096 Pa·s
at Q = 10 ml/min. (b) An example of viscous fingering in a suspension with φ0 = 20 and
Q = 7.5 ml/min. Various phenomena are observed during the drainage.

3.3 Results

Before we add particles into the oil, we first perform the experiment with pure oil at

Q = 10 ml/min as a reference result (Fig. 3.6 (a)). Once the draining starts, the initial

circular shape of the oil shrinks isotropically. At a certain time, one side of the edge

becomes flat followed by the onset of fingering. Eventually, the draining stops once the

finger reaches the center of the Hele-Shaw cell. The shape of the oil during drainage from

our experiment qualitatively matches the numerical results from Kelly and Hinch [190].

Various physical phenomena emerge when a suspension as shown in Fig. 3.6 (b), instead of

pure oil, drains from the air in a radial sink flow. First of all, we observe finger occurring

at some time spot, similar to the pure oil case; then we find that some particles are left

behind on the plates and provide pinning sites for the retracting air-suspension interface,

leading to complex interfacial morphologies; thirdly, we also observe a different layer

of suspension inside the bulk, which is the miscible fingering due to the inhomogeneous
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distribution of the particle volume fraction. However, despite such added complexities,

the most critical aspect of inward fingering experiments [44, 45] appears intact: the oil

recovery stops when the dominant finger reaches the center hole, which will be the focus

of our present work.

In particular, only one finger is observed after the drainage ceases in all our experi-

ments. This is in contrast to what Paterson [44] and Thome et.al [45] had observed, in

which there were multiple fingers. This is because the number of fingers increases at

higher effective capillary number, Ca = ηeffU/γ [52]. Here, ηeff = ηl is the viscosity of

the liquid for a pure fluid, while for a suspension ηeff is expressed as [191]

ηeff = η(φ0)/ηl = 1 + 2.5φ2
m(φm − φ0)−1 + 0.1φ2

0 (φm − φ0)−2 (3.2)

where φm ≈ 0.62 is the maximum packing fraction. ηeff is increasing when adding more

particles into the oil as shown in Fig. 3.7. In our experimental setup, the effective viscosity

of the suspension is typically around three times of the pure silicone oil. U and γ are the

characteristic velocity of the interface and the surface tension coefficient. The highest cap-

illary number in our experiment is Ca ≈ 3 × 10−3, while for Paterson’s experiment[44]

Ca ≈ 5 × 10−3, which is greater than ours. In the simulation work from Chen et.al[52],

they use capillary Ca > 10−1 and observe more vigorous fingers than in Paterson’s exper-

iment. The purpose of our current work is to focus on the growth speed of the dominant

finger, therefore we keep our capillary number small so that only one finger occurs after

the drainage stops.

In Fig. 3.8, the time-evolution images of the suspension of φ0 = 0.1 illustrate the

typical suspension drainage experiment set at Q = 7.5 ml/min. From the start of drainage

(i.e. t = 0 s), the suspension-air interface starts retracting towards the center; the interface

moves non-axisymmetrically as the displacement of a viscous liquid by air is inherently
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Figure 3.7: The effective viscosity, ηeff , is increasing with the particle volume fraction, φ0

Figure 3.8: Time-evolution images of a φ0 = 0.1 suspension that is drained at Q =
7.5 ml/min. A finger initiates after t = 150 s and grows until it reaches the center. A(t) is
defined as the instantaneous area of the draining suspension.
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Figure 3.9: The plot of the time evolution of s∗ = s/R0 for varying φ0 at Q = 5 ml/min.

unstable [46, 44, 155]. The interface becomes flat on one side at t = 150 s and starts to

finger inwardly. Accordingly, the onset of a viscous finger is defined as the moment of

transition in interfacial shape from convex to concave at t = 185 s. We define the time it

takes from t = 0 s to the onset of finger as tf . Upon its formation, the finger continues to

grow towards the center, and the drainage ceases once the fingertip reaches the center at

tc = 195 s. Hence, the dynamics of the finger must directly determine the total amount

of recovered oil. In particular, after the drainage stops, we observe clearly a thin film of

particles left on the surface as the zoom-in at t = 195 s (Fig. 3.8).

3.3.1 Finger Growth Speed

The evolution of the growing finger is quantified by extracting the deviation of the

minimum distance to the interface, Rmin(t), from the initial radius, R0, such that s(t) =

|R0 − Rmin(t)|. The dimensionless deviation, s∗ = s/R0, is plotted in Fig. 3.9 as a

function of dimensionless time, t∗ = t/tc, for φ0 = 0.06, 0.12 and 0.2, respectively, at
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Figure 3.10: The plots show zoom-in of s∗ for t∗ = 0− 0.1 and t∗ = 0.9− 1, respectively.

Figure 3.11: Time-evolution images of suspension from t∗ = 0.85− 0.95 at φ0 = 0.2 and
Q = 5 ml/min show that the fingering onset occurs at t∗ = 0.9.
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Figure 3.12: The dimensionless growth rate, b, is extracted by fitting the s∗− t∗ curve with
the exponential function, s∗ ∝ exp (bt∗), for t∗ = 0.9 − 1; the value of b is plotted as a
function of the effective capillary number, Ca.

Q = 5 ml/min. The two plots in Fig. 3.10 of s∗ versus t∗ reveal different short-time

and long-time behaviors for varying φ0. Between t∗ = 0 and 0.1, s∗(t∗) increases more

slowly for greater φ0 (i.e. smaller ṡ∗(t∗) for increasing φ0), while the trend is reversed for

t∗ = 0.9−1. When we investigate the image sequences from t∗ = 0.85−0.95 in Fig. 3.11,

we find that this transition in ṡ∗(t∗) at t∗ = 0.9 corresponds to the initiation of a finger, as

corroborated by the right figure in Fig. 3.10 for φ0 = 0.2. Hence, the slope of s∗(t∗) for

t∗ > 0.9 must reflect the growth rate of the dominant finger that reaches the injection hole.

Then, the dimensionless growth rate, b, is obtained by empirically fitting the experimental

data to the exponential function, s∗ ∝ exp (bt∗), for t∗ > 0.9.

At given Q, b clearly increases with φ0, which can be rationalized by considering the

effect of suspended particles on the overall viscosity, η(φ0), as defined previously. An

increase in φ0 corresponds to a higher viscosity difference between the suspension and
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Figure 3.13: The dimensionless time of completion of drainage, t∗c = tc|Ȧ|/(πR2
0), in-

creases with the effective capillary number, Ca. Notably, t∗c is analogous to the dimen-
sionless volume of the drained suspension. The inset figure shows that dimensional tc
increases with φ0 for Q = 5 ml/min.

air, or η(φ0) − ηair, and must lead to a faster growing finger. For a wide range of φ0 and

Q values, b collapses onto a single curve as a function of the effective capillary number,

Ca = η(φ0)|Ȧ|/(γ2πR0). Here, |Ȧ|/(2πR0) represents the characteristic velocity of the

retracting interface. The resultant plot in Fig. 3.12 shows the monotonic increase in b with

Ca. This qualitatively agrees with the numerical simulations of Kelly and Hinch [190]

who found the finger tip velocity to increase with the capillary number in the case of a

draining liquid.

3.3.2 Total Time of Drainage Completion

From the oil recovery standpoint, the most important result to consider is the total

time of drainage, tc, which directly corresponds to the total volume of the recovered sus-

pension, or Vt = Qtc. Surprisingly, despite the increase in the fingertip speed, b, with

48



Figure 3.14: Dimensional tc increases with φ0 for Q = 5 ml/min.

Ca (see Fig. 3.12), the dimensionless completion time, t∗c = tc|Ȧ|/(πR2
0), also increases

with the effective capillary number in Fig. 3.13. Similarly, the value of dimensional tf

also increases with φ0 as shown in Fig. 3.14. The counterintuitive correlation between

the fingertip speed and the drainage time demonstrates that the onset of finger formation

must be delayed with increasing φ0. We extract the time of fingering onset, tf , from the

experiments and plot it as a function of Ca in Fig. 3.15. Obviously, the dimensionless

time of fingering onset, t∗f = tf |Ȧ|/(πR2
0), increases with the effective capillary number.

Similarly, the value of dimensional tf also increases with φ0 as shown in Fig. 3.16. This

unexpected result suggests that the inclusion of particles may effectively increase the total

drainage time and improve the production of oil.

The delay in the fingering onset cannot be explained by simply considering the effect of

particles on the effective viscosity alone. In the pure liquid counterpart, fingering occurs

sooner when the viscosity ratio between the invading and defending fluids is increased
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Figure 3.15: The dimensionless time of fingering onset, t∗f = tf |Ȧ|/(πR2
0), increases with

the effective capillary number, Ca.

Figure 3.16: Dimensional tf increases with φ0 for Q = 5 ml/min.
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Figure 3.17: The plot shows the dimensionless rate of change of total suspension volume,
|hȦ/Q|, increases with φ0

[192, 193]. This is in direct contrast with the behavior of a draining suspension, in which

the increase in η(φ0) increases the viscosity ratio between the suspension and invading

air but clearly delays the onset of fingering. Further studies are required to elucidate the

complex role of suspended particles to delay the start but to accelerate the inward fingering

once it is formed.

3.3.3 Particle Drainage Versus Entrainment

Interestingly, the dimensionless time-rate of change of the suspension area, |hȦ/Q|,

increases with φ0 as shown in the inset of Fig. 3.17. To explain this, we must consider

how the suspension area relates to the amount of suspension that is left behind on the plate

surfaces Vp, or A(t) = A(t = 0) − [Qt+ Vp(t)] /h. Hence, at given Q, the increase in

|Ȧ| with φ0 must result in the greater final volume of suspension left on the surface Vp(tc),

as confirmed by the plot of V ∗p (tc) = Vp(tc)/(tcQ) as a function of φ0 in Fig. 3.18. This
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Figure 3.18: The normalized total volume of suspension left on the plate, V ∗p , increases
with φ0 at h = 1.39 mm.

observation can be verified from the images took from the experiments shown in Fig. 3.19.

When φ0 is increasing, the particles left on the surface becomes more obvious and denser.

In particular, at φ0 = 0.2, the final bulk suspension is surrounded by the layer of thin film

of suspension on the plate.

Then, what causes some particles to be left behind on the plates, instead of draining

into the well? As the air-suspension interface retracts towards the well, particles that

become entrained into thin films of oil coating the plates will remain on the plate surfaces.

Particle entrainment into thin films of viscous liquid has been previously studied in the

context of dip coating of colloidal suspensions [194, 195, 196, 197, 188]. In particular,

Colosqui and colleagues found that, as the plate is pulled from the bath of suspensions,

particles entrain into the thin film only when they are small enough to fit inside the shear

flow region near the plate, or d < hs, where hs is the stagnation point on the meniscus

relative to the plate. Here hs separates the local shear flow from the bulk flow [188].
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Figure 3.19: The amount of particles left on the surface is increasing when φ0 increases
from 0.05 to 0.2 observed from the experiments.

Figure 3.20: A schematic of the flow near the interface, where z∗ = z/h is normalized
coordinate in the vertical direction and r∗ is the normalized distance from the interface.

53



In the present experiments, there exists an analogous secondary flow (i.e. “fountain

flow” [198]) downstream of the retracting interface, that can be described by the following

stream function ψ [199]:

ψ = −Qz
∗

4π

(
1− 4z∗2

) (
1− exp

(
r∗
√

6
))

, (3.3)

where z∗ = z/h is the dimensionless vertical coordinate, while r∗ corresponds to the

dimensionless radial coordinate defined from the interface (see the schematic in Fig. 3.20).

According to Bhattacherji et al. [199], when the interface in between two parallel plates is

receding , the flow in the center region is in the same direction with the moving interface.

However, the flow near the wall is flowing at an opposite direction to the flow in the center.

Note that ψ neglects the effects of particles on the flow itself but qualitatively captures

key flow characteristics near the interface. The corresponding streamlines in Fig. 3.21(a)

reveal the flow reversal near the wall that may redirect particles towards the meniscus.

To quantify the characteristic size of this reverse flow region, the dimensionless radial

component of velocity, ur/ū, is computed based on ur = −(1/r)(∂ψ/∂r),

ur/ū =
1

2

(
1− 12z∗2

) (
1− exp

(√
6r∗
))

(3.4)

where ū is the mean velocity of the interface.

As shown in Fig. 3.21(b), the distance from the wall, hs, at which ur = 0 corresponds to

h/4.7 and separates the back flow towards the meniscus (i.e. ur/ū < 0) from the draining

flow (i.e. ur/ū > 0). Hence, particles whose diameter d is less than hs are likely to be

trapped in the meniscus and entrained into thin wetting films on the plates.

Consistent with the entrainment criterion of d < hs ≈ h/4.7, the resultant amount

of particles that remains on the plates must strongly depend on the value of h/d. This
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Figure 3.21: (a) The plot of streamlines of the fountain flow near the interface based on the
simplified analytic solution. (b) Normalized radial velocity, ur/ū, is plotted as a function
of z∗ = z/h at various values of r∗ from the interface. The distance from the wall at which
ur = 0 is computed to be hs ≈ h/4.7.

dependency of V ∗p on h/d at φ0 = 0.05, 0.1, and 0.2 is shown in Fig. 3.22 . Notably, V ∗p

exhibits a steep drop and approaches zero when h/d is lowered from 6 to 4, independent

of φ0; V ∗p -dependency on φ0 is observed only at large h/d, as the value of V ∗p diverges

with varying φ0. This transition in V ∗p is further corroborated by the experimental images

at tc for h/d = 3.8, 6.1 and 11.2 in Fig. 3.23. For h/d = 6.1 and 11.2 (i.e. h/d > 4.7)

with d = 125µm, the final suspension is surrounded by a clear region of particles left on

the plate surfaces, but the amount of entrained particles is substantially reduced at h/d =

6.1. When h/d = 3.8 (i.e. h/d < 4.7) with larger particles where d = 300µm, almost no

particles are observed on the plates, except close to the sink, which agrees well with the

entrainment criterion.

3.4 Conclusions

In summary, we experimentally investigate the effect of neutrally buoyant particles

on the interfacial dynamics of a draining suspension and its influence on the oil recovery
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Figure 3.22: The plot of V ∗p versus h/d for φ0 = 0.05, 0.1, and 0.2 shows that V ∗p
strongly depends on the channel gap thickness, h, relative to the particle diameter, d, at
Q = 7.5 ml/min.

Figure 3.23: Images of the suspension withdrawn at Q = 7.5 ml/min, for h/d = 3.8, 6.1
and 11.2, upon completion. The reduction in the amount of particles left on the plates with
decreasing h/d is clearly demonstrated in the images.
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efficiency. Our results show that the dominant finger grows and reaches the well faster

with higher φ0 that corresponds to an increase in the effective capillary number, Ca. This

result qualitatively agrees with the numerical simulations by Kelly and Hinch [190] who

predicted faster finger growth with Ca for a draining fluid. Despite the increase in the

fingertip speed, we find that the total time of drainage and the total volume of suspension

recovered also increase when more particles are added. Hence, the addition of particles

can enhance the recovery efficiency of the suspension. In addition, particle entrainment

into the thin film of oil causes some particles not to drain but to remain on the plates,

giving rise to non-zero V ∗p , or the volume of suspension left on the plates. Based on an

analytic solution of “fountain flow" downstream of the retracting interface [199, 198], we

derive the particle entrainment criterion to be d < hs ≈ h/4.7, which closely matches

the experimental results. In turn, the amount of V ∗p directly influences the speed of the

retracting interface, as |hȦ/Q| is found to increase with V ∗p and, thereby, φ0.

Overall, understanding the effects of suspended particles on fluid-fluid interfaces ap-

plies to diverse engineering processes that go beyond oil recovery. In particular, aspects of

the current research (i.e. particle entrainment) are directly relevant to the dip coating with

suspensions [194, 195, 196, 197, 188], evaporation of complex drops, such as blood [200],

that yield coffee-ring effects [201], and even nanoparticle printing [202, 203]. However,

despite the growing interest in the interfacial dynamics of suspensions, many unanswered

questions persist, and the continuum level description of suspensions appears to fall short.

For instance, only one finger is observed in our experiment while Paterson observed mul-

tiple fingers [44] as the capillary number in his experiment is greater than ours. However,

the critical capillary number below which there is only one finger is still unclear. Also,

the equations derived by Paterson to predict the number of fingers and critical wavelength

of the finger do not match our experimental results, which may be caused by the pres-

ence of particles. More experimental work and quantitative study may be required to solve
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these issues. Another question is that the counterintuitive correlation between the drainage

time and fingertip speed in the present study indicates that the onset of fingering must be

delayed with increasing φ0. The delay in fingering onset cannot be explained with the in-

creasing effective viscosity ratio between the suspension and air alone (i.e. η(φ0)/ηair),

as fingering initiates sooner with the increasing viscosity ratio in the pure liquid case

[192, 193]. The effect of particles to delay the onset of fingering yet to accelerate it upon

formation may require considering the “discrete” nature of particle-laden flows that sepa-

rates them from their liquid counterpart and remains the topic of future investigation.
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4. CONCLUSIONS AND FUTURE WORKS

4.1 Conclusions

In summary, the main objective of this Ph.D. work is to gain fundamental understand-

ing of the coupled dynamics between particles and fluid-fluid interfaces, via experiments

and reduced mathematical modeling. To achieve this goal, two different projects are in-

volved, which consist of the single particle and multiple particles cases.

In the case of a single particle, we quantitatively study the oscillation bubble for par-

ticle trapping. The purpose of this research is to quantify the ability of bubbles to trap

the particles depending on the bubble oscillation amplitude and acoustic parameters. Our

collaborator from WSU perform the experiments and take the videos using a high-speed

camera for particle trapping and single bubble oscillation. We use MATLAB to perform

the image processing and data analysis. Once we collect the results from the experiments,

we combine different theories to obtain a reduced mathematical model and find the criti-

cal acoustic parameters for particle trapping. We first apply the force balance on a single

particle captured at the stagnation point of the bubble to calculate the critical secondary

radiation force. Using Nyborg’s equation, we compute the oscillation amplitude of the

bubble to provide the critical radiation force. Then a linearized Rayleigh-Plesset equation

is obtained to solve for the critical pressure in the microchannel. Finally, we solve the

reduced Helmholtz equation with appropriate boundary conditions to find the threshold

voltage. The prediction from our model agrees well with the experimental results. The

quantitative results and reduced model in this research may potentially help the design of

next-generation acoustic-based lab-on-a-chip devices for biological and medical applica-

tions.

The second research project involves multiple particles, where we study the viscous
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fingering in a draining suspension. The objective of this project is to find how particle

volume fraction in the suspension affects the growth rate of the viscous fingering and total

drainage time. We perform experiments by draining the suspension from the Hele-Shaw

cell with initial concentration from 0.05 − 0.2 at various pump flow rate. The motion of

the suspension is recorded and processed to find the fingering growth rate, the total time

of drainage, and time of fingering onset. Our results show that the finger grows faster

when adding more particles into the suspension. Surprisingly, the total time of drainage

also increases with the particle volume fraction. The only reason that causes increasing of

drainage time is the delayed onset of fingering at higher particle volume fraction, which

is verified by our experimental results. Since the total volume of suspension recovered is

strongly dependent on the total time of drainage, therefore adding more particles will in-

crease the efficiency of the drainage. This result can, therefore, be helpful in many industry

environmental applications such as the surface cleaning, 3D printing, and food process-

ing. Another unexpected result is the observation of particles that are left on the surface

of the plate during the drainage process. The amount of those particles increases when the

gap thickness between the plates decreases. Inspired by the research from Colosqui et al.

[188] and Karnis et al. [198], we can find an entrainment criteria for the suspension. If the

particle size is smaller than a critical distance away from the plate, they are entrained into

the thin film on the plate. We apply the stream function from Bhattacharji et al. [199] into

our setup and derive the velocity profile. Finally, we calculate a critical distance in our sys-

tem, which agrees well with the experiment results. The result of this research is essential

to some manufacture or microfabrication processes such as dip coating or microstructure

pattern formation.
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4.2 Future Works

Since our models are derived based on various assumptions, there are still limitations

and challenges in our current work. In the project of acoustic bubble, the external flow

rate in the microchannel is limited over a certain value. When the bubble oscillates, it

generates microstreaming in the nearby field. The microstreaming will induce a drag

force on the particles, which can also affect the critical voltage for particle trapping. Our

current model assumes that the external flow rate in the microchannel is strong enough so

that we can neglect the microstreaming effect. However, in some practical situations, the

external flow rate might be so small that the microstreaming drag force is dominant over

the secondary radiation force. Also, when we consider the force balance for a captured

particle at the stagnation point, there exists another possible force, such as the Saffman lift

force, which may also affect the trapping of the particle. Future work for our current model

will consider the effect of drag force from the microstreaming as well as the effect of lift

force, and find the threshold external flow rate for the transition between the secondary

radiation force and microstreaming drag force. For the experimental part, we can use a

wider range of sizes for particles and bubbles to help the verification of our model. Another

extension of our work is to include multiple particles or consider non-spherical, elastic

objects, which is more relevant to biological applications such as manipulating blood cells

or other microorganisms. Also, we currently extract the pressure inside the channel from

the mathematical equations instead of direct measurement, which is lacking accuracy. To

get a more precise value of pressure, we can use PIV (Particle Image Velocimetry) or a

hydrophone for direct measurement in the future work.

In the draining suspension project, our current results indicate that the fingering onset

is delayed by increasing the particle volume fraction, but the mechanism behind this ob-

servation is still unclear. The increase of effective viscosity cannot explain the delay of
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fingering onset. Future work requires understanding the behavior of the particles inside the

suspension. For instance, we need to study the theoretical equations which govern the par-

ticle migration. Second, our current pump suction flow rate is limited below 10 ml/min.

In fact, at a higher flow rate, which results in a higher capillary number, more fingers can

be observed [190, 44]. However, the relation between the number of fingers and the value

of capillary number still remains unknown, especially when particles are involved. One

future work can include increasing the pump flow rate and change the gap thickness until

multiple fingers can be observed, and quantitatively study how the increase of capillary

number can affect the number of fingers. A mathematical model may also be obtained to

predict the number of fingers with various parameters. Next, the current stream function of

the fountain flow near the interface assumes flow without particles; therefore the velocity

profile may not be so accurate to describe the actual motion of the particles near the inter-

face. An extension of this work could include the effect of the particles into the fountain

flow equation near the interface to derive a more sophisticated mathematical model for

predicting the entrainment criteria. Lastly, from our experimental results, due to miscible

fingering, we also observe a different layer of suspension inside the bulk suspension during

drainage. Miscible fingering occurs due to the inhomogeneous distribution and gradient of

particle volume fraction in the suspension. It is still unclear how miscible fingering will af-

fect the drainage process, and how they are related to the capillary number. Hence, we can

perform more experiments to quantitatively study the behavior of the miscible fingering

and perform stability analysis to find the criteria of the finger growth.
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