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ABSTRACT 

 

 mRNA synthesis by RNA polymerase II (Pol II) is an essential process in 

eukaryotes. In my dissertation, I have undertaken two parallel approaches to expand our 

understanding of mechanism of Pol II, a large twelve-subunit protein complex in 

budding yeast Saccharomyces cerevisiae. First, we develop a high-throughput genetic 

platform to dissect functions of every residue in a critical Pol II active site domain: the 

trigger loop (TL). The TL multitasks in catalysis and translocation through its distinct 

conformational states, alteration of which causes wide-ranging transcription defects in 

vitro and in vivo. By establishing the correlation between a set of in vivo conditional 

growth phenotypes and in vitro biochemical defects, our genetic data allows us to predict 

biochemical defects and alteration of TL states in nearly all TL single substitution 

variants. For example, we provide evidence supporting critical contribution of an intra-

TL hydrophobic pocket in stabilizing the off-catalytic TL state, as evidenced by 

mutations disrupting the pocket confer phenotypes consistent with increased catalysis 

and infidelity. These data are also consistent with a critical role of this intra-TL pocket in 

promoting Pol II fidelity. In addition, we show diverse allele-specific genetic 

interactions among TL and TL surrounding domains, supporting possible contribution of 

the TL surrounding funnel and bridge helices to TL dynamics and function. Second, we 

characterize the mode of action of thiolutin, a well-known transcription inhibitor with 

unclear mechanism of transcription inhibition. Recent studies demonstrated that thiolutin 

inhibited multiple metalloproteins through Zn2+ chelation, but failed to observe direct 
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thiolutin inhibition of purified RNA polymerases, suggesting additional factors are 

needed for thiolutin-mediated transcription inhibition or that the inhibition is indirect. 

We have taken chemical genetics and biochemical approaches to investigate the thiolutin 

mode of action. While characterizing multiple thiolutin effects in vivo, we demonstrate 

that thiolutin, when activated by DTT and Mn2+, directly inhibits Pol II in vitro. We 

further investigate the nature of the inhibitory species and the property of the inhibited 

Pol II. We suggest that thiolutin inhibits Pol II through a novel mechanism distinct from 

most other known RNA polymerase inhibitors. Taken together, we develop a high-

throughput phenotypic system to dissect functions of Pol II TL residues and characterize 

a novel mode of action of thiolutin.  
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CHAPTER I 

INTRODUCTION AND LITERATURE REVIEW 

 

Transcription is a conserved and essential process that converts genetic information from 

DNA into RNA. In prokaryotes, a single RNA polymerase synthesizes all cellular RNAs, 

whereas in eukaryotes distinct RNA polymerases synthesize classes of RNA: RNA 

polymerase I (Pol I) synthesizes most rRNAs, RNA polymerase II (Pol II) synthesizes 

nuclear mRNAs and RNA polymerase III (Pol III) synthesizes 5S rRNAs, tRNAs. 

 

All RNA polymerases (RNAPs) transcribe RNAs in a conserved three-step process: 

initiation, elongation and termination. Each step has many common and distinct factors 

that control the RNA polymerase specificity and functional states. My main thesis work 

is divided into two parts: The first involves detailed functional dissection of the 

conserved Pol II active site and its communication with adjacent Pol II domains in 

Saccharomyces cerevisiae (Sce) (Chapter II). The second investigates the mode of action 

of thiolutin, a small molecule transcription inhibitor (Chapter III). Here, I will first 

review the highly conserved RNA polymerase substrate selection mechanisms, followed 

by discussion of evolutionary conservation and divergence within and surrounding the 

Pol II active site. Finally, I will review the modes of actions for diverse classes of 

transcription inhibitors, with the particular focus on the direct RNA polymerase 

inhibitors and their inhibitory hotspots. 
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Conserved mechanism of transcription elongation 

Pol II elongation is a fast and accurate process 

Given the essentiality of gene expression, there are minimally two stringent 

requirements for Pol II elongation. First, Pol II elongation has to be fast enough to 

satisfy the demands of cell growth and activity. Depending on different types of 

measurement in different species, the average elongation rate is in the range of 1-5 

kb/min1, with some early measurements on Drosophila Pol II on the lower end (1.1-1.5 

kb/min)2-5 and some recent measurements on human Pol II slightly faster (3.8-4.3 

kb/min)6-11. Pol II transcription rate can also vary over the template, at least in 

metazoans8-13. Second, Pol II transcription elongation has to be accurate enough to 

faithfully convey the genetic information. In fact, transcription misincorporation rate in 

vivo used to be too low to quantify by RNA-seq14-16. Recent advances in the barcoding 

strategy for mRNAs and cDNAs dramatically expanded the error detection limit, 

allowing transcription errors to be distinguishable in yeast and C. elegans15,16. The C->U 

error is consistently higher than other error types and appears to be in the range of 10-5 to 

10-4 in E.coli, yeast and C. elegans14-16, while other types of errors appear to vary 

depending on species but mostly in the range of 10-6 or lower15,16. In addition to the 

minimal requirements to be fast and accurate, accumulating evidence has supported 

control of Pol II elongation in the regulation of gene expression12,13,17. Pol II 

transcription elongation is extensively regulated by various factors to coordinate with 

multiple co-transcriptional processes, as evidenced by the fact that altered Pol II catalytic 

rate could have wide-ranging consequences on various cellular processes in vivo12,13,17. 
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Together, the efficient Pol II elongation balances the speed and fidelity, and coordinates 

with multiple other cellular processes18,19. The fine balance and coordination are 

contributed, at least in part, by a highly conserved and efficient substrate selection 

mechanism, mediated by two mobile and multifunctional active site domains: the Bridge 

Helix (BH) and the Trigger Loop (TL).  

 

Multi-subunit RNA polymerases (msRNAPs) shared a conserved “crab-claw” like 

architecture, with active site BH and TL lying in the center and connecting various 

structural motifs (clamp, cleft, NTP channel, RNA exit channel etc.) together to define 

the basic functions for efficient transcription (Figure1-1, reviewed in 20 and references 

therein). The structure and function for the different motifs have been reviewed 

elsewhere20-23, and some of them that are targeted by various inhibitors will be further 

reviewed in a later section. BH and TL are dynamic domains in the center of the 

msRNAPs (Figure1-1D), facilitating multiple critical steps during transcription 

elongation while retaining the ability to communicate with other domains and external 

factors. Below I will introduce basic mechanism of transcription elongation, along with 

the multiple conserved functions of the TL and BH.  
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Figure 1-1. RNA polymerase II architecture and active site. 
The overall crab-claw like architecture of RNA polymerase II elongation complex (PDB: 2E2H) with a 
matched substrate GTP bound in the active site. (A-C) Views from different angles to show the overall 
architecture, with the DNA (blue), RNA (red), GTP (orange) with mobile domains clamp (green), bridge 
helix (BH, cyan) and two different trigger loop states (TL, magenta for closed state and yellow for open 
state) colored. Red arrow indicates the direction for the growth of the RNA chain, blue arrow indicates the 
downstream to upstream direction of the template strand within the double stranded DNA. The open TL 
(PDB: 5C4J) is modeled to the structure by alignment of the Rpb2 domain. 
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The conserved trigger loop multitasks in nucleotide addition cycles  

RNAPs, including Pol II, transcribe through iterative nucleotide addition cycles, with the 

TL playing multiple roles through its dynamic nature (Figure1-2). Within each cycle, 

Pol II selects the matched substrate nucleoside triphosphate (NTP) using a set of well-

defined interactions among the TL, NTP, the nascent RNA, and template DNA (details 

below)24-33. Binding of the matched substrate appears to shift the TL conformational 

equilibrium from an open state to a closed state24-26,34,35. TL closing allows a substrate 

NTP to be captured in the active site. When fully closed, TL is hypothesized to promote 

catalysis of the phosphodiester bond between the NTP and 3’ end of the RNA24,27,35. The 

reaction of phosphodiester bond formation releases the by-product pyrophosphate, which 

has been proposed to promote TL opening34,36,37. An open TL is required for Pol II 

translocation to the next position on the template18,29,34,38-41, allowing the next round of 

nucleotide addition cycle. Changes of extensive TL interactions with itself or 

surrounding domains are involved and presumably promote the conformational shifts 

between the closed and open states24,25,41,42. Different TL conformations in between may 

also support off-catalytic pathway states such as pausing35,38,43, backtracking44,45 and 

intrinsic cleavage46-50. 

  



 

 6 

 
Figure 1-2. Multiple TL functions in NAC are supported by its mobile nature. 
Three steps (substrate selection, catalysis, and translocation) in each nucleotide addition cycle (NAC) are 
labeled with different states of the TL indicated. Two purple circles in the active site represent the two 
Mg2+ ions involved in catalysis. 
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The TL’s primary function in NAC is kinetic selection of the correct substrates. The TL 

mainly comprises three regions: an N-terminal nucleotide interacting region (NIR, Sce 

Rpb1 1078-1085), a loop (Sce Rpb1 1086-1090) and a C-terminal helical region (Sce 

Rpb1 1091-1106). Several residues in the TL NIR are critical in recognizing different 

components of NTPs such that only correct substrates are selected (Figure1-3). First, 

L1081 (Sce Rpb1 residue number is used unless otherwise specified) forms hydrophobic 

contacts with bases of matched substrates24, suggesting a function in indirect recognition 

of substrates positioned by correct base-pairing. Second, a group of residues, including 

the TL residues Q1078, N1082 and the non-TL residue N479, appear to form an 

interconnected network of interactions, allowing recognition of 2', 3' OH and favoring 

incorporation of NTPs vs 2'dNTPs (or 3'dNTPs). This network is observed in structures 

and supported by genetic studies24,27,31,45. Third, H1085 interacts with ß-phosphate, and 

has been proposed to act as a general acid to protonate the ß-phosphate and to facilitate 

SN2 attack on the 3’ hydroxyl group of the RNA24,51. While this proposed mechanism 

was supported by molecular dynamics modeling studies30, several lines of experimental 

data are inconsistent with this mechanism and suggested additional complexity46,47,52,53. 

In addition, the viability of non-ionizable substitution H1085Q suggests that the H1085 

mediated acid-base catalysis is not essential31. To reconcile the experimental data, a very 

recent report proposes that H1085 may act as a positional catalyst instead of an acid-base 

catalyst53. In Chapter II, I will discuss the comprehensive evaluation of the mutational 

sensitivity of H1085 and discovery of an unexpectedly viable H1085L mutant, providing 

additional evidence to argue against the acid-base model of H1085 function. In short, the 
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TL binds the substrates through a set of well-defined interactions and appears to 

specifically promote the catalysis for correct substrates. 

 

 

 
Figure 1-3. Pol II TL-NTP interactions  
The details for closed TL (magenta) interaction with a bound GTP (orange) are shown in the cartoon view, 
with the critical residues and NTP shown in sticks. PDB: 2E2H. 
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Mutations that are proposed to alter TL dynamics cause specific defects in catalysis, 

fidelity and translocation28,29,31,41,54, and can be roughly divided into two classes. First, 

mutations in the TL NIR broadly confer lethality in yeast, and the viable ones widely 

confer reduced elongation rates in vitro31. The second class of mutants confers increased 

elongation rate in vitro28,29,31, and a prototype of this class, E1103G, also has 

compromised fidelity and translocation18,28,29,54,55. Different TL states are critical for 

distinct activities: the closed state is catalytically active and the open state allows 

translocation. E1103G appears to bias the TL dynamic balance towards the closed 

state28,29, consistent with the fast elongation, compromised translocation and infidelity. 

Finally, the two mutant classes confer specific phenotypes that correlate well with 

decreased and increased activities in vivo19,31 (will be reviewed in Chapter II), and we 

termed them as loss-of-function (LOF) or gain-of-function (GOF) mutants, respectively. 

The distinct phenotypes between classes allow us to develop a genetic assay to 

distinguish mutant classes at a high-throughput scale. In Chapter II, I will discuss the 

phenotypic profiles of nearly all TL single substituted mutants, and many more TL 

mutants that we propose alter TL function by shifting or altering TL dynamics. Together, 

the TL balances transcription speed and fidelity through its dynamics, disruption of 

which leads to highly distinct classes of mutants with specific in vitro and in vivo defects. 

 

Context dependence and evolutionary divergence of the trigger loop 

Despite the extremely high TL conservation, a number of observations suggest that the 

conserved TL among RNA polymerases can have distinct functions56, likely due to 
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distinct environments surrounding the TL among different RNAPs. First, highly 

conserved TLs are not entirely interchangeable between yeast Pol I and Pol II56. 

Replacing the Pol II TL (Rpb1 1076-1106) with analogous sequences from Pol I causes 

lethality in yeast56, although the nucleotide interacting residues between them are 

absolutely conserved. The mutant with a truncated Pol I TL swapped into Pol II (Rpb1 

1076-1103) is viable but confers phenotypes consistent with LOF56. In contrast to Pol I, 

Pol III TL is more closely related to Pol II (6 mutations from Pol II) than is Pol I (11 

mutations from Pol II), and appears to be compatible in the Pol II context56. In chapter II, 

I will describe a model, based on the different conformations of the TL surrounding 

funnel helices among Pol I, II and III, to reconcile this unique TL incompatibility 

between Pol I and Pol II. 

 

Surprisingly, substitution of the hyper conserved E1103 residue with a glycine (E1103G) 

confers distinct and opposite effects in Pol I or in Pol II56. As discussed above, Pol II 

rpb1 E1103G was extensively characterized by various assays and confers increased 

elongation rate with compromised translocation in vitro18,28,29,57. In sharp contrast, the 

analogous mutation to E1103G in Pol I (E1224G) confers reduced elongation rate both 

in vitro and in vivo56. E1103G was proposed to bias the TL dynamics towards the active, 

closed state in Pol II28,56, presumably by disrupting the conserved interactions in the TL 

C-terminus required to stabilize  the open TL state. Given the conservation of both the 

E1103 position and surrounding residues in Pol I and Pol II, it would be expected that 

E1224G also destabilizes the open TL in Pol I, though this has not been directly tested. 
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The E1103G induced fast elongation in Pol II is the sum of increased catalysis and 

apparent decreased translocation, suggesting that catalysis is the rate limiting step in Pol 

II elongation. If E1224G similarly alters catalysis and translocation in Pol I, a distinct 

outcome in the overall elongation rate would suggest a different rate-limiting step on 

translocation in Pol I56.  Further experiments are in need to test this model. Together, 

distinct behavior of the same TL swapped into different RNAPs suggests critical roles of 

the TL surrounding environment in impacting TL function. 

 

Sensitive control of TL dynamics and function by extensive residue-residue 

interactions within and surrounding the TL 

Extensive observed residue-residue interactions within or surrounding the TL are critical 

for the proper TL function, as suggested by multiple observations. First, RNAP 

structures with different TL states reveal common and distinct residue-residue 

interactions, and simulation of the TL closing dynamic process further suggests changes 

of critical contacts in the intermediate states24,25,42. Second, some mutations in non-NIR 

TL residues alter TL function, and are hypothesized to bias the TL conformational cycle, 

likely through gain or loss of critical interactions28,29,41. Consistent with this hypothesis, 

several mutants in the TL surrounding domains confer similar in vitro increased 

elongation rates and in vivo phenotypes with the TL GOF mutants, suggesting that 

residues in the TL surrounding domain are also critical for maintaining a balanced 

TL19,58-60. Third, the TL function is dependent on context (discussed above), suggesting 

critical roles of environment for proper TL function. Together, this evidence collectively 
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suggests critical contributions from the residues within and without the TL for proper TL 

function, likely through extensive residue-residue interactions.  

 

Contributions of residues outside of the TL suggest possible pathways of allosteric 

control of Pol II active site functions. Evidence from different species has shown that 

many RNAP domains (BH, F-Loop, RNA exit channel, funnel helix, clamp etc.) could 

either directly or allosterically impact the TL function49,59-63. For example, deletion of 

Rpb9, a small Pol II subunit distant from the active, confers in vitro and in vivo defects 

consistent with GOF64-66, suggesting an Rpb1 helix, the funnel helix that interacts with 

both open TL and Rpb9, likely stabilizes the TL in open state66. This allosteric pathway 

from a distant subunit Rpb9 to the active site TL appears to play critical roles in 

maintaining the Pol II transcription fidelity64-66. In addition, Pol II interacting factors 

such as the elongation factor TFIIS, can directly insert into the Pol II active site, with the 

open TL state being required for this insertion and TFIIS dependent cleavage28,29,67. 

Together, given the sensitivity of TL to small changes and given the large number of 

interactions TL makes in different states, it is therefore critical to comprehensively 

evaluate many single-substituted TL mutants and the functional relationship among them. 

In Chapter II, I will describe a high-throughput phenotypic system to dissect almost all 

possible single-substituted TL mutants, and allele-specific genetic interactions among 

TL and several TL surrounding domains. 
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Diverse modes of actions for transcription inhibitors 

Different classes of transcription inhibitors 

Highly diverse transcription inhibitors exist in nature, as microbes compete against each 

other with natural products to target essential processes, such as transcription. 

Transcription inhibitors can be roughly classified into three major classes. The first class 

consists of direct RNA polymerase inhibitors. These inhibitors target small but essential 

pockets in RNA polymerases to inhibit its function, and may also be used to probe 

transcription mechanisms, as they may act on distinct conformations or steps in 

transcription. In RNA polymerases, there are four major pockets that have been shown to 

be targeted by direct inhibitors: the active site, RNA exit channel, switch regions and the 

NTP uptake channel. Inhibitors targeting these regions (here I term them inhibitory 

hotspots) will be separately discussed in a later section, with the particular focus on their 

modes of actions and the evidence supporting them. 

 

The second class of inhibitors intercalates into DNA and blocks transcription68-70. This 

class of inhibitors often has multiple effects besides transcription inhibition, because 

they generally induce DNA damage and multiple stress response pathways. For example, 

actinomycin D arrests DNA replication, transcription, causes DNA damage, and induces 

apoptosis68-73. Therefore, transcription inhibition is generally only one of the multiple 

effects for this class of inhibitors and will not be further discussed in this review. 
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The third class inhibits transcription indirectly but specifically by targeting a 

transcriptional regulatory or accessory protein, which can include kinases that function 

in eukaryotic transcription, Pol II general transcription factors, or nucleotide biosynthetic 

enzymes that produce the NTP substrates for transcription74-78. Inhibition of 

transcription-associated kinases leads to alteration of Pol II functional states79. Inhibition 

of the general transcription factor TFIIH leads to transcription initiation defects78. 

Depletion of substrate NTPs by inhibiting related biosynthetic enzymes could in theory 

affect transcription elongation, but can also induce expression of specific genes to 

counteract with its elongation effect. For example, MPA was thought to induce global 

elongation defects, but recent work has shown that alteration in transcription elongation 

in yeast is not the major determinant of MPA sensitivity31,80. In yeast, MPA specifically 

induced expression of IMD2 gene, which encodes for an enzyme substituting for the 

MPA inhibited IMD3 and IMD481,82. The ability to induce the IMD2 expression through 

change of transcription start sites plays an essential role in conferring MPA resistance in 

yeast82,83.  

 

Together, all three classes of inhibitors perturb transcription in ways that can be of great 

value for the researchers and clinicians, and the common and distinct values for each 

class are discussed below (Figure1-4). 
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Figure 1-4. Values of studying transcription inhibitors 
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Values of studying transcription inhibitors 

First, many transcription inhibitors have great potency as antibacterial antibiotics. The 

rationale of antibacterial treatment is straightforward. Despite the high conservation in 

the overall enzymatic architecture, bacterial RNA polymerase has regions that are highly 

conserved among bacteria but are distinct from eukaryotes, making them an ideal drug 

target for antibacterial treatment84-86. Given the essentiality of gene expression, 

inhibition of bacterial RNA polymerases can be extremely potent. In fact, bacterial RNA 

polymerase is a FDA proven drug target for various antimicrobial treatments (reviewed 

in 85 and references therein). For example, bacterial RNA polymerase inhibitor 

Rifampicin is the first-line drug for treating various bacterial infections, including but 

not limited to tuberculosis (reviewed in 85 and references therein).  

 

Second, transcription inhibitors are emerging therapeutics for anti-cancer treatments. 

Cancer is a collection of diseases driven by uncontrolled cell proliferation, requiring 

high levels of ribosome and protein synthesis, which together are supported by all three 

cellular RNA polymerases. Many transcription inhibitors are found to specifically induce 

programmed cell death (PCD) in cancer cells, though further characterization reveals 

multiple distinct mechanisms are involved (Figure 1-5) (reviewed in 87). Two examples 

are briefly reviewed below. 
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Figure 1-5. Multiple distinct mechanisms of cancer inhibition by transcription inhibitors. 
Transcription inhibitor inhibits cancer cell growth through a cascade of inhibition (blunt-end arrows with) 
and activation (arrows) signals. The increased or decreased activities after transcription inhibitor treatment 
are indicated with red and blue arrows, respectively. 
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Several Pol II global transcription inhibitors (DRB, roscovitine and α-amanitin) induce 

PCD in cancer cells through multiple p53 dependent and independent mechanisms 

(Figure 1-5) (reviewed in 87 and references therein). One example is through Mdm2-p53 

pathway. Global transcription inhibition specifically down-regulates the short-life 

transcripts and proteins, including the E3 ligase Mdm2 that targets p53 for degradation88-

91. Mdm2 down-regulation by Pol II inhibitors appears to be the cause for the subsequent 

p53 accumulation92-95, though one report contradicts this hypothesis96. p53 generally 

functions as a transcription factor, and how p53 accumulation leads to PCD in the 

presence of transcription inhibition remains unclear (reviewed in 87). It has been 

increasingly appreciated that p53 confers transcription independent functions in 

apoptosis (reviewed in 87 and references therein). For example, it was proposed that α-

amanitin induces p53 accumulation and translocation into the mitochondria to induce 

apoptosis97. Finally, it has been also suggested that transcription inhibitors may induce 

PCD in p53 independent pathways, but the exact mechanism remains unclear (reviewed 

in 87 and references therein).  

 

Selective Pol I inhibition preferentially induces PCD in many cancer cell types 

(reviewed in 87,98,99). Increased Pol I transcription and ribosomal biogenesis have been 

well known as hallmarks of cancer for some time, but it was not clear until recently that 

specific Pol I inhibition can be explored as a potential therapeutic for treating cancer98. 

Pol I transcription inhibition, either by genetic inactivation or small molecule inhibition 

of necessary and specific Pol I initiation factors, was effective to inhibit the growth of 
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several cancer types98-100. Although the exact mechanism remains elusive, it appears that 

selective Pol I inhibition causes cancer inhibition through multiple pathways such as 

nucleolar disruption, cell cycle arrest and p53-dependent PCD98-101. In addition, several 

FDA approved anti-cancer drugs have been also found to function at least partially 

through inhibiting Pol I transcription98,102-107, and many more selective Pol I 

transcription inhibitors are promising new drugs currently under development for cancer 

treatment (reviewed in 98,99). 

 

Third, many transcription inhibitors have been widely used as molecular tools to 

understand other biological processes in eukaryotes, including budding yeast 

Saccharomyces cerevisiae, pathogenic fungi Candida albicans and dinoflagellates108-111. 

For example, experiments monitoring downstream biological processes after perturbing 

transcription often reveal functional insights.  A prominent example is the use of 

transcription inhibitors in mRNA stability studies. The stability of gene-specific RNA 

transcripts has been monitored after shutting down mRNA synthesis using various 

transcription inhibitors or the temperature sensitive Pol II allele rpb1-1108-111. In addition, 

genetic screens for mutants sensitive or resistant to transcription inhibitors often lead to 

discovery of functionally relevant processes. As an example, MPA and 6-AU, inhibitors 

that deplete cellular NTP levels, were utilized to screen for their sensitive mutants112-116. 

Many mutants involved in transcription, chromatin remodeling and other biological 

processes have been discovered from these types of screens114,116. These studies are not 

the main focus of my thesis and will not be discussed further. 



 

 20 

 

Fourth, studies of transcription inhibitors have greatly contributed to the understanding 

of the basic mechanism of transcription. A paradigm for this is the use of rifampicin, an 

E.coli RNA polymerase inhibitor, to study transcription mechanism. Early on, rifampicin 

resistance was used as a phenotypic marker to genetically map the genes encoding RNA 

polymerase in E.coli117-120. Later, with the development of DNA sequencing, 

identification and characterization of the rifampicin resistant alleles contributed to our 

understanding of RNA polymerase structure and function prior to the full determination 

of RNA polymerase structure by X-ray crystallographic methods. For example, the mode 

of action for rifampicin, which inhibits the RNA extension after synthesis of the first 

phosphodiester bond through steric clashes, was proposed in 1978121, almost 25 years 

prior to structural observation122. Subsequently, tens of rifampicin resistant mutants were 

sequenced and mapped to a tight pocket123. The evidence, together, revealed the intimate 

connection between the resistance pocket and the enzymatic active site even though 

crystal structures were unavailable, and also provide extensive quality validations for the 

later development of the structural studies.  

 

With significant advances in crystallography, the binding sites of many transcription 

inhibitors have been explicitly mapped to small and essential pockets on various RNAPs. 

These structural observations, when coupled with biochemical studies of the inhibited 

RNAPs and genetic studies on the relevant regions, provide valuable connections 

between structure and function. For example, the observed rifampicin binding channel is 

functionally connected to RNA exiting121,122. In the following section, I will only focus 
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on the direct inhibitors that target RNA polymerases, and the structure-function 

relationship revealed from studying the modes of action for these inhibitors. 

 

Hotspots for direct RNA polymerase inhibitors 

The multi-step function and the partially conserved architecture of RNAPs make it a 

unique target for natural products. First, many RNAP functional steps can be 

hypothetically targeted by inhibitors. In fact, many steps, including promoter binding, 

open complex formation, early extension of first a few bases and elongation, are known 

targets of distinct inhibitors (discussed below). Second, while RNAPs have a conserved 

structural framework and active sites, there is structural diversity in the fine details, 

allowing for specificity/selectivity of natural product antibiotics (as discussed above). 

For example, the rifampicin binding pocket is highly conserved among bacterial RNAPs 

but not into the eukaryotic RNA polymerases, so rifampicin confers high potency against 

bacteria but low toxicity to humans. Due to clinical interest, many of the identified 

transcription inhibitors specifically target bacterial RNA polymerases, though inhibitors 

targeting eukaryotic polymerases (e.g. α-amanitin selectively inhibits eukaryotic Pol II) 

are also available.  

 

There are a few inhibitory hotspots for the known RNAP inhibitors. They are the RNA 

exit channel, active site TL/BH, switch regions, and NTP uptake channels. The 

distribution for the inhibitors with available inhibitor/RNAP complex structures is 

shown on an Tth RNAP elongation complex structure (Figure 1-6, Table 1-1). The 
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tagetitoxin binding site is still under debate and falls into a unique category by itself124-

127 (Figure 1-6).  

 

The inhibitor binding pockets are in general well correlated with their alteration of 

RNAP biochemical properties and highly informative on the function of the inhibited 

region. Here I will briefly discuss the structure, function and evolutionary conservation 

for each inhibitory hot-spot, followed by particular focuses on the known relevant 

inhibitors in the region. For each inhibitor, I will start with the current understanding of 

the mode of action. I will then discuss the structural and functional alterations induced 

by different inhibitors, and the mutations that confer resistance to inhibitors. There are 

two major rationales for discussing the resistant mutants in the context of the structural 

and functional alterations: (1) In the absence of co-crystal structures, resistance and 

cross-resistance with other inhibitors can be highly informative on the binding pocket of 

the inhibitors; (2) When co-crystal structures are present, the resistance not only tests the 

structural observation, but also reveals important insights into the functional relationship 

(allostery etc.) among the residues, because not all resistant mutants affect residues that 

directly interact with relevant inhibitors. Finally, I will discuss two inhibitors with 

unresolved modes of action, tagetitoxin and thiolutin. I will discuss the existing 

biochemical and genetic characterizations, along with complexities in studying them. 
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Figure 1-6. Distribution of the RNAP inhibitors’ binding sites  
Overall architecture of the transcription elongation complex for Tth RNAP (PDB: 2O5J) is shown in half 
transparent cartoon view (RNAP in grey, DNA in blue and RNA in red). Binding sites of different 
inhibitors are mapped to the elongation complex through simple homology alignment using ß subunit. α-
amanitin comes from a Sce Pol II structure (PDB: 3CQZ) aligned to Tth RNAP using the Rpb2 subunit 
alignment to ß. Depending on both structural distribution and functional alteration, inhibitors can be 
classified into active site inhibitors (orange), RNA exit channel inhibitors (green), switch region inhibitors 
(purple) and unresolved tagetitoxin (cyan). Whether Tagetitoxin binds to the NTP uptake channel (shown, 
PDB: 2BE5) or the active site trigger loop (model unavailable, not shown) remains controversial and will 
be discussed further. 
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Table 1-1. PDB files used in this chapter 
PDB Summary Reference 
1I6V Taq RNAP with rifampicin Campbell et al, Cell, 2001 

2O5J 
Tth RNAP elongation complex. This structure has 

RNA that can be compared to the rifampin binding 
site. 

Vassylyev et al, Nature, 2007 

4KN4 E.coli RNAP with benzoxazinorifamycins Molodtsov et al, J Med Chem, 
2013 

2A68 Tth RNAP with rifabutin Artsimovitch Cell 2005 
2A69 Tth RNAP with rifapentin Artsimovitch Cell 2005 

4KMU E.coli RNAP with rifampin Molodtsov et al, J Med Chem, 
2013 

1YNN Taq RNAP with sorangicin Campbell, EMBO J, 2005 
1ZYR Tth RNAP with Streptolydigin Tuske et al, Cell, 2005 

2A6H 
Tth RNAP with Streptolydigin published on the 

same day with 1ZYR. The binding pocket is 
consistent with 1ZYR. 

Temiakov Mol Cell 2005 

4MEX E.coli RNAP with Salinamide A Degen et al, Elife, 2014 
4XSX E.coli RNAP with CBR 703 Bae et al, PNAS, 2015 
4XSY E.coli RNAP with CBR 9379 Bae et al, PNAS, 2015 
4XSZ E.coli RNAP with CBR 9393 Bae et al, PNAS, 2015 
4ZH2 E.coli RNAP with CBR 703 Feng et al, Structure, 2015 
4ZH3 E.coli RNAP with CBRH16-Br Feng et al, Structure, 2015 
4ZH4 E.coli RNAP with CBRP18 Feng et al, Structure, 2015 
5UHE Mtb RNAP with D-AAP1 Lin et al, Mol Cell, 2017 

3CQZ Sce Pol II bound with α-amanitin, refined from an 
early dataset 1K83 Kaplan et al, Mol Cell, 2008 

2E2H 
Sce Pol II elongation complex with a closed trigger 

loop. This structure is used to show the conservation 
of different inhibitor binding sites. 

Wang et al, Cell, 2006 

4MQ9 Tth RNAP with GE23077 Zhang et al, Elife, 2014 
4OIN Tth transcription initiation complex with GE23077 Zhang et al, Elife, 2014 
3DXJ Tth RNAP with Myxopyronin Mukhopadhyay et al, Cell, 2008 
3EQL Tth RNAP with Myxopyronin Belogurov et al, Nature, 2009 

4YFK E.coli RNA with Squaramide compound 8 Molodtsov et al, J Med Chem, 
2015 

4YFN E.coli RNA with Squaramide compound 14 Molodtsov et al, J Med Chem, 
2015 

4YFX E.coli RNA with Myxopyronin B Molodtsov et al, J Med Chem, 
2015 
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a) Active site inhibitors 

Multi-subunit RNA polymerases (msRNAPs) have a highly conserved active site. As 

reviewed above, the TL/BH conformation cycling is critical for catalysis and 

translocation in nucleotide addition cycles. Therefore, interfering with the TL/BH 

motion is an extremely effective approach to inhibit catalysis and translocation. In 

addition, despite the high sequence conservation within TL and BH, evolutionary 

divergence in the TL/BH surrounding domains allows targeting of individual or a subset 

of RNAPs. The high essentiality and distinct evolutionary divergence makes the 

msRNAP active site a unique target for various natural products, as discussed below. 

 

Streptolydigin  

Streptolydigin (Stl) binds to a tight pocket near the RNAP active site, and locks the 

mobile BH and TL into inactive conformations128,129. Two Stl bound Tth RNAP crystal 

structures, published contemporaneously, showed an almost identical binding pocket and 

Stl orientation128,129. Stl binds to residues from BH, TL and two additional loops (named 

as “Stl pocket” by Tuske et al) from the ß subunit (Figure 1-7)128,129. Stl inhibits 

multiple bacterial RNAPs but not eukaryotic Pol I, II and III, likely due to the 

conservation of the two ß loops within bacteria but not in eukaryotes130-132.  
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Figure 1-7. Streptolydigin binding site on the Tth RNAP.  
DNA (blue), RNA (red), NTP (yellow) and the Stl surrounding domains (green) are shown in the cartoon 
view. Stl (orange) and the potential Stl interacting residues are shown in sticks (cyan). 
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As discussed above, biasing BH/TL to different states may have distinct effects, leading 

to either GOF or LOF in various RNAP activities19,28,29,31,57,59,60. The Stl-locked TL 

conformation is the catalytically inactive “open” state, and the Stl-locked BH is in a 

straight conformation. The Stl-bound BH was the first straight BH observed in bacterial 

RNAPs128,129, which had previously been observed to be kinked in apo-RNAP structures 

lacking nucleic acids129. These differences suggested that Stl may stabilize the straight 

BH state in Tth RNAP. Together, the Stl locks RNAP active site in a particular state 

(straight BH, open TL), where TL is trapped in a state that does not favor catalysis. 

 

Genetics and biochemical studies are consistent with the structural observations. First, 

most Stl resistant mutants universally overlap with the observed Stl binding pocket. In 

addition, two mutants (ß’ A791G and S793P) do not appear to directly interact with Stl 

but confer high Stl resistance129, and were proposed to bias the BH to the alternative 

kinked state that is not accessible to Stl129. Interestingly, the analogue to S793P in 

archaeal Methanocaldococcus jannaschii (Mja) RNAP (S824P) appears to confer 

increased catalytic or elongating activity60. In Chapter II, I will further discuss the 

analogous mutant in Sce Pol II (T834P), which indeed confers fast elongation in vitro 

and phenotypes consistent with GOF in vivo to yeast RNA polymerase. 

 

Second, the biochemical defects of Stl inhibited RNAP are consistent with loss of TL 

function. First, Stl alters nucleotide addition, pyro-phosphorolysis, translocation, 

intrinsic and factor-dependent cleavage128,132 but does not alter substrate NTP binding 

affinity128. In addition, Stl does not inhibit but induces the residual elongation activity of 
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TL deleted (TL∆) RNAP128. Whether and how Stl stimulated the activity remains unclear, 

but these data also suggest the TL-dependence for Stl inhibition. Overall, the distribution 

of the Stl resistant mutants and the Stl induced inhibitory effects are consistent with the 

structural observation that Stl inhibits RNAP by locking BH/TL in a specific state that 

causes partial loss of TL function. 

 

Interestingly, Stl appears to bias translocation dynamics by specifically stabilizing the 

post-translocation state34,128,129, consistent with critical contribution of different BH/TL 

states in translocation. As reviewed above, different TL conformations appear to 

correlate with distinct translocation states. The observed Stl stabilization of post-

translocation state is consistent with the Stl trapped open TL and straight BH 

conformations stabilizing post-translocation state. This observation is also consistent 

with multiple subsequent observations that biasing TL towards the catalytically active 

closed state inhibits translocation, likely by stabilizing pre-translocation states (reviewed 

above)18,28,29,35,41. In short, the Stl inhibitory effect is consistent with the model that open 

TL and straight BH may stabilize the post-translocation state, but further experiments are 

in need to test this model. 

 

α-amanitin 

α-amanitin is an eukaryotic-Pol II selective inhibitor and traps the active site BH and 

TL28,133,134. Similar to Stl, α-amanitin traps the TL in the inactive open state, and the BH 

appears to be locked in the straight state. However, in contrast to the Stl binding pocket, 
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α-amanitin binds to residues from TL, BH, the funnel helix and the Rpb2 link domain 

(Figure 1-8). Consistent with the structural data, most of the Pol II α-amanitin resistant 

mutants are mapped to residues near the observed α-amanitin binding site28,133,135-137. 

The α-amanitin binding pocket is universally conserved among eukaryotic Pol II but 

distinct from eukaryotic Pol I, Pol III and bacterial RNAPs, consistent with the selective 

inhibitory activity on Pol II at lower concentration.  

 

 

  

Figure 1-8. α-amanitin binding sites on the Sce Pol II.  
DNA (blue), RNA (red), NTP (yellow) and the α-amanitin surrounding domains (green) are shown in the 
cartoon view. α-amanitin (orange) and the potential α-amanitin interacting residues are shown in sticks 
(cyan). 
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The inhibitory activities conferred by α-amanitin are consistent with a partial loss of TL 

function. First, α-amanitin inhibits multiple Pol II activities, including nucleotide 

addition, pyro-phosphorolysis, translocation, pause-release and TFIIS-mediated 

cleavage138-140, but does not alter the substrate binding affinity139. Second, the α-amanitin 

inhibition is much stronger for the matched nucleotides than the unmatched ones28, 

suggesting that α-amanitin targets the TL substrate selection mechanism28. Third, α-

amanitin inhibits human Pol II translocation141, but it has not been explicitly tested 

whether α-amanitin inhibits translocation through stabilization of pre- or post-

translocated states, although one report suggested that the apparent post-translocated Pol 

II elongation complex might  be resistant to α-amanitin141. Together, α-amanitin appears 

to trap Pol II BH/TL in a way similar to the Stl effects on bacterial RNAPs, but whether 

they trap BH/TL in the exact same state and whether they alter translocation similarly 

are still open questions. 

 

Salinamides 

Salinamides (Salinamide A and Salinamide B) are structurally similar bacterial RNAP 

inhibitors142,143. Their modes of action were not well characterized until very recently143, 

possibly due to poor membrane permeability and low clinical interests. The prototype 

Salinamide A (Sal) binds to a tight pocket formed by the BH N-terminus, link domain 

and fork loop (Figure 1-9)143, and inhibits transcription elongation through modulating 

the BH conformation143. The high conservation of the Sal binding pocket among bacteria 
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but not eukaryotes is in agreement with lack of Sal inhibitory activity on eukaryotic Pol I, 

II and III.  

 

 

 
Figure 1-9. Salinamide A binding sites on the E.coli RNAP. 
DNA (blue), RNA (red), NTP (yellow) and the Sal surrounding domains (green) are shown in the cartoon 
view. Sal (orange) and the potential Sal interacting residues are shown in sticks (cyan). 
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The mode of inhibition of Sal has both similarities and differences with inhibition by Stl 

and α-amanitin. Similar to Stl and α-amanitin, Sal inhibits both transcription initiation 

and elongation,  specifically through altering catalysis but not substrate NTP binding143. 

In addition, Sal inhibits pyrophosphorolysis. These Sal inhibitory activities are 

consistent with interference with BH/TL conformation. However, in contrast to Stl and 

α-amanitin, Sal does not directly bind to the TL and does not require TL for its 

inhibition143, as evidenced by similar Sal inhibition on both WT and TL∆ RNAP. It 

should be noted that Sal may still indirectly impact TL conformation through altering 

BH conformation, although TL is not essential for Sal inhibition.  

 

Isolation of Sal resistant mutants from a drug efflux pump deficient strain leads to 

important insights into the Sal mode of action143. First, the isolated resistant mutants are 

tightly clustered in the Sal binding pocket, and all the mutants with high level resistance 

are involved in direct interaction with Sal. It is worth noting that none of the Sal resistant 

mutants were from the trigger loop, consistent with the TL independence of mode of Sal 

action, although we cannot rule out the possibility that the mutagenesis could be 

unsaturated. Second, Sal resistant mutants do not confer cross-resistance with many 

other known RNAP inhibitors, including the BH/TL trapping inhibitors Stl reviewed 

above143. In fact, some Sal resistant mutants not only do not confer resistance, but also 

confer hyper-sensitivity to Stl and another active site inhibitor CBR703 (reviewed 

below). A mutant conferring hyper-resistance to one inhibitor but hyper-sensitivity to 

another inhibitor generally indicates that the two inhibitors target two distinct but 
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functionally related steps or conformational states. This suggests that Sal binds to a 

distinct BH state from those bound by Stl and CBR703, although the difference is not 

entirely clear from the structures128,129,143-145. The connections between Sal and CBR703 

will be further discussed below. 

 

CBR compounds 

CBR compounds are a series of synthetic bacterial RNAP inhibitors originally derived 

from a large synthetic compound library146. In 2015, two groups independently reported 

a series of E.coli RNAP structures bound with several CBR compounds, and 

unambiguously revealed an identical site for various CBR derivatives (Figure 1-

10)144,145. The CBR compounds bind to a pocket that consists of residues from the ß 

region D, ß regions D/E spacer and the ß’ BH N-terminus and the nearby F loop144,145, 

and were proposed to allosterically inhibit the active site TL folding (Figure 1-

10)144,146,147. The conservation of CBR binding pocket, especially the F loop and ß 

subunit residues are consistent with the selective activity of CBR compounds on a subset 

of RNAP144,145. 
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Figure 1-10. Various CBR compounds bind to the same site on the E.coli RNAP.  
DNA (blue), RNA (red), NTP (yellow) and the CBR compound surrounding domains (green) are shown in 
the cartoon view. CBR compounds (orange) and the potential CBR compound-interacting residues (cyan) 
are shown in sticks. CBR compounds bind to the same site with slightly different interactions and 
orientations. 
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Genetic and biochemical studies not only validate the observed CBR binding sites, but 

also reveal important functional insights into the region. All isolated CBR resistant 

mutants145,146 map to residues that either directly interact with CBR compounds or are 

near to residues that do144,145. The spontaneous resistance rate in E.coli for CBR703 is 

substantially lower than other known RNAP inhibitors, consistent with the CBR703 

target region being highly essential145. Interestingly, two mutants (β′P750L and β′F773V) 

have severe growth defects that are suppressed by CBR703146, which could be partially 

explained by CBR703 suppressing their translocation defects147. However, the exact 

reasons for their growth defect and dependence on CBR703 remain unresolved and 

fascinating. Finally, extensive functional studies of residues in this pocket suggest their 

conformational changes are allosterically coupled with the active site TL49,59-63,148,149, 

and CBR indeed inhibits TL closing144 while promoting forward translocation147, a 

behavior reminiscent of Stl effect to maintain TL in open conformation. Together, these 

data are consistent with the hypothesis that CBR compounds allosterically inhibit the 

active site function from a distant site. 

 

Interestingly, CBR inhibited multiple RNAP activities in two distinct modes: one is TL 

dependent, the other is TL independent144. Structural, genetic and biochemical data 

altogether suggest that CBR binding triggers a series of conformational changes 

propagating from the binding pocket to inhibit the active site TL folding, likely through 

the BH144,147. The inhibition of TL folding or alteration of other domains could lead to 

defects for specific functions. The nonessential nature of TL for E.coli RNAP allows 
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explicit tests of the TL dependence for any CBR inhibitory activities144,145. First, CBR 

inhibition of the nucleotide addition and pyrophosphorolysis are not fully TL 

dependent144,145, as CBR compounds can still inhibit the TL∆ RNAPs. However, CBR 

inhibition of RNAP intrinsic cleavage is completely TL dependent144, as TL∆ RNAP is 

fully resistant to CBR inhibition on the intrinsic cleavage activity. The close proximity 

of CBR and Sal binding sites and their TL-independent inhibition of specific RNAP 

activities suggests similar modes of actions between them, but further experiments are 

needed to rigorously test this hypothesis. 

 

Na-aroyl-N-aryl-phenylalaninamides (AAPs) 

AAPs are a series of synthetic compounds recently discovered from a large-scale screen 

for specific Mycobacterium tuberculosis (Mtb) RNAP inhibitors that do not inhibit other 

bacterial RNAPs and human Pol I, II and III150. The prototype D-AAP1 binds to a pocket 

near the BH N-terminus of Mtb RNAP (Figure 1-11). The D-AAP1 binding pocket is 

highly similar to the CBR pocket in E.coli RNAP, suggesting similar modes of action 

between them144,145,150. The sequence divergence in the pocket residues are consistent 

with lineage-specific inhibitory effects of both D-AAP1 (for Mtb) and CBR compounds 

(for Gram-negative bacteria). Mtb RNAP can be co-treated with both rifampin and D-

AAP1, suggesting potential clinical values. However, further biochemical 

characterization is in need to validate the proposed mode of action of D-AAP1. 
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Figure 1-11. D-AAP1 binds to Mtb RNAP in a pocket similar to the CBR binding pocket in E.coli 
RNAP.  
DNA (blue), RNA (red), NTP (yellow) and the D-AAP1 surrounding domains (green) are shown in the 
cartoon view. D-AAP1 (orange) and the potential D-AAP1 interacting residues (cyan) are shown in sticks. 
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b) RNA exit channel inhibitors  

RNA has to properly exit the RNAP active site once it is synthesized. Structural studies 

reveal a primary and conserved RNA exit channel adjacent to the active site, releasing 

synthesized RNAs from a site opposite to the DNA entry groove. The RNA exit channel 

undergoes conformational changes and coordinates with various domains to maintain the 

upstream end of the transcription bubble while separating the DNA:RNA hybrid63. This 

dynamic process is critical for RNAP activity and is an inhibitory hotspot for natural 

products. The first-line anti-tuberculosis drug rifamycin family inhibits the RNA 

extension through causing steric clash with RNAs in the exit channel121,122,150. The 

modes of actions of RNA exit channel inhibitors (rifamycin and sorangicin) are 

discussed below. 

 

Rifamycin (Rif) 

Rifamycin is a family of compounds that are proven anti-bacterial drugs. Due to high 

clinical interests, rifamycin family has been extensively studied (reviewed in 85 and 

references therein). Many Rif compounds have been co-crystallized with various 

bacterial RNAPs, and showed an unambiguous binding site deep in the RNA exit 

channel just proximal to the active site (Figure 1-12). As discussed above, Rif 

compounds cause steric clashes with RNAs extending from the i-2 position, and thus 

specifically inhibiting extension of RNAs that are over 2-3 nts (Figure 1-12)122,151. The 

detailed interactions differ in various rifamycin derivatives, and the extent of the binding 

appears to correlate well with the potency (reviewed in 85,152). Finally, it is worth noting 
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that a very recent report directly crystallized the Rif bound Mtb RNAP on a series of 

nucleic acids scaffolds, and directly demonstrated the steric clashes from a clinically 

relevant species150.  

 

 

 

Figure 1-12. Rifamycin family compounds bind to various RNAP in the similar pocket in the RNA 
exit channel, causing steric clashes with the extending RNAs.  
DNA (blue), RNA (red) are shown in the cartoon view. Rifamycin compounds (orange) and the potential 
rifamycin interacting RNAP residues (cyan) are shown in sticks. 
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Extensive evolutionary and genetic data support the structural observation and also 

reveal important insights. First, high conservation of the binding pocket among bacteria 

but not eukaryotes are consistent with the high Rif antibacterial potency with low 

cytotoxicity122. Second, most of the isolated Rif resistant mutants are tightly clustered 

near the Rif binding pocket (reviewed in 153 and reference therein). Many Mtb Rif 

resistant mutations confer fitness defects and were proposed to require a secondary 

suppressor mutation to outcompete the wild-type strain154. In fact, a study sequenced the 

whole genomes for a set of clinical or laboratory evolved Rif resistant strains, and 

identified many compensatory mutations from different RNAP subunits that do not 

directly interact with Rif155. Although the exact mechanism remains unclear, the 

distribution of these suppressors could reveal important structural and functional 

connections in RNAP, in addition to the clinical values discussed therein155.  

 

Rif compounds cause highly specific biochemical defects that are in agreement with the 

structural observations. Rif does not inhibit RNAP-promoter interaction, substrate 

interaction and formation of the first phosphodiester bond121,156, and the elongating 

RNAP with already sufficiently long (>3 nts) RNA product is also resistant to Rif157.  In 

contrast, Rif specifically inhibits formation of second or third phosphodiester bond in 

RNAs121. The Rif inhibitory effect is highly specific and distinct from the active site 

inhibitors, and is in complete agreement with the structural observation that Rif causes 

steric clashes with the RNAs that are more than 2 nucleotides long. An alternative model 

was proposed that Rif may allosterically impact the active site and cause decreased Mg2+ 



 

 41 

affinity in the active site124, but other experiments contradict these conclusions158. In 

short, the current model remains that Rif causes steric clashes with the extension of RNA 

at a specific length (2-3 nts), and the available biochemical data are consistent with the 

model. 

 

Sorangicin (Sor) 

Sorangicin binds to the same site (Figure1-12)159 and causes similar biochemical defects 

with Rif159-161. Therefore, it is as expected that there is extensive cross-resistance 

between Sor and Rif compounds159,161-164. The resistance spectrum for Sor is 

significantly narrower than that for Rif (reviewed in 152 and references therein). In other 

words, all Sor resistant mutants are also resistant to Rif, whereas not all the Rif resistant 

mutants are resistant to Sor. The narrower spectrum for Sor was reconciled by the more 

flexible nature of the Sor molecule compared to Rif152, thus providing the structural 

basis to adapt to the altered binding pocket in the resistant mutants. Ho et al also pointed 

out that similar cases have been observed in other compounds165. 

 

c) Clamp and switch region inhibitors  

msRNAPs have a conserved and flexible clamp domain that can swing open or closed166-

170. The clamp motion is intimately connected to various RNAP functions, such as 

initiation166-170, elongation35,63 and regulation by other factors126,171-173. In a single-

molecule FRET assay looking at different RNAP clamp states, most E.coli RNAP 

clamps are open in the free solution, closed in an early step during initiation and are 
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proposed to remain closed most of the time during elongation170. In E.coli RNAP, 

transient clamp closure is critical for the initial promoter melting169, but the melting 

extension into the downstream DNA to form a complete transcription bubble does not 

appear to require a particular clamp conformation169. In addition, the clamp has been 

hypothesized to remain closed during elongation to maintain high processivity166,168,170. 

However, several lines of evidence suggest that the clamp may retain some extent of 

flexibility in response to special circumstances, such as pausing38 or allosteric 

communications between the RNA exit channel and the active site63. Clamp motion was 

also proposed to be linked to the active site BH/TL dynamics in E.coli RNAP35, but this 

hypothesis remains to be further tested. 

 

Five switch regions control the clamp motion. These switch regions (named switch 1-

switch 5) are located at the base of the clamp and serve as hinges to control the clamp 

motion166,168,170. Although the five switch regions are universally conserved from 

bacteria to humans, the specific residues and surrounding environment can differ153. The 

critical function, high conservation in bacteria and the distinctions from the eukaryotes 

together make the RNAP switch regions another inhibitory hotspot. Several inhibitors 

have been discovered to target the switch regions so far (reviewed in 153). Here I will 

review the binding sites, biochemical defects and the proposed mechanism linking the 

binding site to the specific functional defects.  
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Myxopyronin (Myx), Corallopyronin (Cor) and Ripostatin (Rip) 

Myxopyronin (Myx), Corallopyronin (Cor) and Ripostatin (Rip) are all highly potent 

antibacterial transcription inhibitors sharing the same mode of action174, through 

inhibition of RNAP clamp motion. Myx and Cor are structurally highly similar, but they 

are distinct from Rip (Figure 1-13A). Here I will first review the studies on Myx, the 

most extensively characterized among the three, while discussing their similarities.  

 

Myx binds to a pocket near the switch regions 1 and 2 and appears to inhibit the clamp 

motion (Figure 1-13B,C,D)170,174. First, two Tth and one E. coli RNAP/Myx complex 

structures showed almost identical binding pockets though slightly different 

orientations174-176. Despite the overall high conservation in switch regions 1 and 2, three 

non-switch residues in the Myx binding pocket are not conserved in eukaryotic RNAPs, 

consistent with the lack of Myx activity on them174,175. In agreement with the observed 

Myx pocket, all the mutants with strong Myx resistance are from residues in close 

proximity to the Myx binding site174,175. Second, the Myx binding appears to lock the 

clamp in the partially or fully closed state. A single-molecule FRET system was 

developed to monitor different clamp states, and Myx appears to shift the majority of 

RNAPs to the partially or fully closed states from open states170. 
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Figure 1-13. Myxopyronin binds to the similar sites in the Tth and E.coli RNAPs.  
(A) Structures of Myx, Cor and Rip. 
(B-D) The Myx surrounding domains (green) are shown in the cartoon view. Myx (orange) and the 
potential Myx interacting residues (cyan) are shown in sticks. 
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Myx inhibited E.coli RNAP shows highly specific biochemical defects that are distinct 

from those exhibited by other classes of inhibitors. First, Myx inhibits both abortive 

initiation and transcription of full-length transcripts, but the inhibition relies on the 

addition of Myx prior to RNAP/DNA binding174. In other words, template DNA binding 

protects the RNAP from Myx inhibition, suggesting that the Myx binding site is only 

accessible prior to RNAP binding to template DNA, or that Myx inhibits a functional 

step prior to DNA binding, or both. Second, Myx specifically inhibits RNAP binding to 

the double-stranded promoter DNA in the -11 to +15 region, but does not inhibit RNAP 

binding to the upstream region (-40 to -12)174. Promoter DNA from -11 to +15 is the 

region to be loaded to the RNAP cleft and melted to create transcription bubbles174, and 

this process was recently shown to require apparent transient closure of the clamp169. In 

addition, Myx does not inhibit RNAP binding to the various single-strand DNAs, 

including non-template single-strand DNA, a fork-junction template, an artificial 

transcription bubble, or a gapped DNA templates174. Finally, RNAP transcription on the 

artificial transcription bubble, tailed templates and rolling-circle-transcription template 

bypasses the step of promoter opening and is not inhibited by Myx. Together, the Myx 

specifically inhibits promoter opening and formation of the transcription open complex, 

a critical step prior to transcription elongation. 

 

Two lines of evidence further support the hypotheses that Myx inhibits RNAP through 

interfering clamp function. First, a MyxR mutant in the switch region suppresses all the 

Myx induced biochemical defects listed above174. Second, several mutations in the 
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switch 2 region mimic the effect of Myx on promoter open complex formation175. These 

observations are consistent with a dependence of the switch region in Myx inhibition. 

RNAP structure with Cor or Rip is not available so far, but the almost complete 

overlapping cross-resistance and the similar biochemical effects suggest that Myx, Cor 

and Rip share the same target region and similar inhibitory mechanism170,174. 

 

Squaramides 

Squaramides are a family of synthetic compounds originally identified in a high-

throughput screening for transcription or translation inhibitors177, and they were 

subsequently found to specifically inhibit E.coli RNAP in vitro177. Two squaramides 

(Squaramide 8 and Squaramide 14) are shown to bind to a pocket almost identical to the 

Myx binding site, although details differ (Figure 1-14). Several squaramide resistant 

mutants were isolated from E.coli, and all of the mutations were mapped to the switch 

regions in the pocket177, consistent with the observed pocket being critical for a wide 

range of squaramides. The same pocket also suggests that squaramides may behave 

similarly to Myx, Cor and Rip and lock the clamp in the closed state, but biochemical 

characterization of squaramide inhibited RNAPs is needed to further test this idea. 
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Figure 1-14. Squaramides bind to a similar pocket to the Myx binding sites in E.coli RNAPs.  
The Myx and Squaramides surrounding domains (green) are shown in the cartoon view. Myx (orange), 
squaramides (orange) and the potential Myx or squaramides interacting residues (cyan) are shown in sticks. 
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Lipiarmycin A3 (Lpm) 

Lipiarmycin is a mixture of antibiotics originally isolated from several Actinomycete 

species and has many variations on its naming153,178-185. The major component from two 

species183,184, named as Lipiarmycin A3 or fidaxomicin, inhibits both Gram-positive 

bacterial and Gram-negative bacterial RNAPs and was hereafter referred to as Lpm153. 

One report186 uses a Lpm derivative that has minor structural differences with Lpm, but 

the inhibition appears to be similar to Lpm. Lpm appears to bind to switch regions to 

inhibit clamp motion, in a way distinct from the closed clamp trapping inhibitors Myx, 

Cor and Rip. The mode of action of Lpm is discussed below.  

 

Lpm appears to bind to a site distinct from the Myx, Cor and Rip pocket153,169,187. 

Although an RNAP co-crystal with Lpm is not yet available, the Lpm resistance 

spectrum, assessed from a broad range of bacterial species, reveals a tight region 

encompassing the RNA exit channel and switch regions 2 and 3153. The Lpm resistance 

region only partially and minimally overlaps with Myx, Cor and Rip, and no significant 

cross-resistance was observed among them153.  

 

The Lpm inhibited RNAP has both similar and distinct biochemical defects from those 

inhibited by Myx, Cor and Rip. Similar to Myx, Cor and Rip, the Lpm specifically 

inhibits promoter binding and opening153, and the inhibition was only observed if RNAP 

was treated prior to template DNA binding180,181,188. The critical order-of-addition 

requirement is consistent with the classical behavior of the switch region inhibitors153,187, 
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as discussed above. However, in contrast to Myx, Cor and Rip, Lpm appears to trap the 

clamp in a specific open or partially open conformation187. Lpm inhibited RNAP could 

not initiate promoter melting at the -10 position169, an effect distinct from other 

inhibitors that traps the clamp closed (Myx, Cor and Rip). The different effect between 

Lpm and other closed clamp trapping inhibitors may represent distinct functional 

properties of RNAP with open or closed clamps. Together, the Lpm inhibits RNAP 

through limiting the clamp to a partially or fully open state and is highly distinct from all 

other known clamp inhibitors so far. 

 
d) NTP uptake channel  

msRNAPs have a conserved funnel-shaped NTP uptake channel (Figure1-1)166,168. 

Despite the conservation of the overall shape, residues in the NTP uptake channel differ 

from bacteria to human, thus making it a potential target to specifically inhibit bacterial 

RNAPs84,86,189. Micro-peptide Microcin J25 and natural product tagetitoxin are two best 

known inhibitors that have been proposed to inhibit the NTP uptake channel or the 

substrate entry/exit site. I will discuss Microcin J25 here below, but will discuss 

tagetitoxin later in the section on transcription inhibitors with unclear or complicated 

modes of action, since the exact binding site of tagetitoxin remains controversial125-127,190. 

 

Microcin J25 (MccJ25) 

MccJ25 is a micro-peptide consists of 21 amino acids, forming an uncommon lassoed 

tail structure191-194. MccJ25 inhibits the growth of some gram-negative bacteria through 

RNAP inhibition195,196. Although a RNAP/MccJ25 complex structure is not yet available, 
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extensive genetics, biochemical and biophysical data are consistent with a model that 

MccJ25 binds to and obstructs the RNAP NTP uptake channel197,198.   

 

First, MccJ25 inhibits both abortive initiation and elongation, and the inhibition can be 

reversed by excess of NTPs, suggesting that MccJ25 is a partial competitive inhibitor 

with the NTPs198. In other words, the binding of MccJ25 and NTPs are mutually 

inhibitory but not mutually exclusive. Second, most of the isolated MccJ25 resistant 

mutants are clustered in the NTP uptake channel, and MccJ25 was shown to directly 

bind to the NTP channel in a FRET assay198. Third, MccJ25 inhibits the GreA and GreB 

dependent cleavage activities through interference with their binding, which is partially 

through the NTP uptake channel198. Fourth, MccJ25 inhibits processive 

pyrophosphorolysis and backtracking, both of which require the reaction products to 

release or occupy from the NTP channel197,198. Finally, the single molecular optical 

trapping experiments reveal that MccJ25 increases the pausing frequency but does not 

alter the pause-free elongation velocity197. Together, these data are consistent with the 

model that MccJ25 binds to and obstructs the NTP binding channel. MccJ25 also has 

additional effects on ROS induction in vivo199-202, but these effects are unlikely to be 

related to transcriptional inhibition and will not be further discussed in this review. 

 

e) Transcription inhibitors with unclear or complicated modes of action 

Given the academic and clinical value of transcription inhibitor studies, discovering 

novel transcription inhibitors and characterizing identified compounds with unclear 
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modes of action are important goals. Many new transcription inhibitors are being 

discovered using different approaches, including but not limited to affinity based203 and 

in silico screens189. Further characterization of these primary hits is necessary and in 

progress. In addition, several known transcription inhibitors are still being investigated 

and the modes of actions appear complicated85. Tagetitoxin (TGT) and thiolutin are two 

examples of these. Many studies reveal partially contradictory results on the two 

compounds, adding confusion about their possible modes of actions. Here I will briefly 

review the existing studies on both compounds, attempt to reconcile the results and 

propose possible experiments to further test their modes of action. 

 

Tagetitoxin (TGT) 

Tagetitoxin (TGT) has been known for decades to inhibit transcription, and has a highly 

selective inhibitory spectrum for a subset of RNAPs. TGT inhibits bacterial RNAP204, 

plant chloroplast RNAP205 and eukaryotic Pol III206, but not eukaryotic Pol I, Pol II206, or 

various viral RNAPs207. 

 

The exact binding site of TGT remains controversial125-127,190. In one report, a TGT 

bound Tth RNAP crystal structure revealed TGT binding to the NTP uptake channel 

(Figure1-15)190. Based on the structural and biochemical data, the authors proposed that 

TGT may act as an uncompetitive inhibitor to stabilize a particular inactive intermediate 

state during substrate loading190. However, this model does not explain why some long 

paused RNAP complexes are resistant to TGT125,206. To reconcile the results, 

Artsimovitch et al hypothesized that a particular TL state may be required for TGT 
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inhibition, and the open TL state in a paused complex may not be accessible to TGT, 

thus conferring resistance125. Artsimovitch et al further tested in silico whether a 

compatible TGT binding site exists on a Tth RNAP elongation complex with altered TL 

conformations, given that TL is a dynamic domain in elongation125. One TL adjacent 

TGT-compatible site was identified if the TL position was moved to a partially closed 

but slightly distorted state125. Resistant mutants have been isolated from both proposed 

binding pockets and residues distant from both pockets125,190,208, suggesting that TGT 

inhibition may be sensitive to allosteric effects. Therefore, the exact TGT binding site 

remains unclear, although the recently revised TGT structure may be helpful for 

carefully revisiting the structural and modeling studies209. 

 

Despite the controversy about the TGT binding site, accumulating evidence has 

suggested TL dependence for TGT inhibition. First, TGT fails to inhibit multiple RNAP 

activities if the TL is absent34,208. Second, TGT appears to stabilize the closed or 

partially closed TL in a system where the TL can be monitored using engineered 

disulfide bond formation35. Third, TGT inhibits translocation in multiple assays34,190,208, 

consistent with the behavior of a trapped TL. Together, the properties of the TGT-

inhibited RNAP are consistent with the TL trapping model, but cannot rule out an 

allosteric effect imposed from the observed TGT binding site in the NTP channel190. It 

should be noted that the current data neither explicitly reveal the binding site of TGT nor 

rule out the possibility that TGT may bind to the free and elongating RNAP at different 

sites. More experiments are needed to further distinguish the two proposed binding sites.  



 

 53 

 

Figure 1-15. The proposed TGT binding pocket in the NTP uptake channel in Tth RNAPs.  
The TGT surrounding and the active site BH, TL domains are shown in the green cartoon view. TGT 
(orange) and the potential TGT interacting residues (cyan) are shown in sticks. The proposed TGT trapped 
Mg2+ is shown in purple sphere view. 
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Thiolutin 

Thiolutin is a well-known transcription inhibitor and belongs to the dithiolopyrrolone 

family, which consists of diverse compounds with a bicyclic structure and an intra-cyclic 

disulfide bond formed between two ene-thiols. Dithiolopyrrolones have very broad-

spectrum inhibitory activities against many Gram-positive and Gram-negative bacteria, 

yeast and human cancer cell lines (reviewed in 210 and references therein). Thiolutin and 

holomycin are the two best-characterized dithiolopyrrolones regarding possible modes of 

actions, and they are structurally highly similar, with only one methyl group difference 

(Figure1-16). The mode of transcription inhibition by thiolutin and holomycin appears 

to be complicated and controversial, and recent evidence collectively suggests that 

multiple proteins are targeted by thiolutin and holomycin through reduction of the intra-

molecular disulfide bond followed by Zn2+ chelation mechanisms (will be revisited 

later)211-214. Here I will first review the studies on the complicated mode of transcription 

inhibition, and I will discuss how Zn2+ chelation by thiolutin and holomycin is consistent 

with their multiple modes of actions but does not satisfactorily explain some early data 

on their transcription inhibition. Finally, I will attempt to reconcile the controversial 

results into a unified model. The history, chemical properties, biosynthesis and total 

synthesis for dithiolopyrrolones are comprehensively reviewed elsewhere210 and will not 

be further discussed here.  
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Figure 1-16. Thiolutin and holomycin structures 
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Thiolutin was originally revealed as a transcription inhibitor for both yeast and E.coli 

using substrate incorporation assays in vivo 215-217. In brief, the activities for DNA 

replication, transcription, and translation were quantified by assaying incorporation of 

radioactively-labeled substrates (thymidine, uridine, and leucine, respectively) into 

trichloroacetic acid-precipitable macromolecular DNA, RNA and proteins215,217. It was 

found that thiolutin inhibited all three processes, but transcription inhibition appeared to 

be immediate and faster than DNA replication and translation inhibition, suggesting that 

transcription inhibition was the direct and primary effect in vivo. Similar results were 

observed for holomycin using similar assays in E.coli, although holomycin did not 

appear to arrest yeast growth in two independent strains164 (also verified in our hands in 

Chapter III). Thiolutin has been commonly used to inhibit transcription to study mRNA 

stability in yeast, fungi, and in one report, a dinoglagellate108-110,218,219. While it appears 

that thiolutin can inhibit transcription in some eukaryotes and prokaryotes, and 

holomycin can inhibit transcription in prokaryotes, further in vitro characterization has 

revealed complexity in their possible modes of actions, as discussed below. 

 

First, thiolutin was observed to directly inhibit RNA polymerases from yeast, but not 

other species in vitro, despite the conserved in vivo transcription inhibition from multiple 

assays and species215,217. Thiolutin inhibition of all three partially purified yeast RNA 

polymerases in vitro was distinct from that of the Pol II specific inhibitor α-amanitin216. 

Thiolutin inhibition appeared to be independent of specific DNA templates, as the 

inhibition was similar when the native salmon sperm DNA and synthetic poly(dA-dT) 
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were used. In addition, thiolutin was only inhibitory when RNA polymerases were pre-

treated with thiolutin prior to template addition. In other words, DNA-bound RNA 

polymerases were resistant to thiolutin inhibition216. This critical order-of-addition is 

reminiscent of the switch region inhibitors Myx, Cor, Rip and Lpm behavior (discussed 

above). Two models were proposed based on the observed specific order-of-addition 

requirements. One, the RNA polymerases may be only accessible to thiolutin before 

template binding. The alternative model was that thiolutin may only inhibit the 

polymerase-DNA interaction, but not initiation or elongation of RNA synthesis. The two 

models are mutually non-exclusive and can now be further tested using fully purified 

RNA polymerases under experimental setups that specifically target each stage of 

transcription, as has been shown for other inhibitors (reviewed above). In my chapter III, 

I will discuss my work utilizing multiple biochemical assays to further characterize this 

mode of inhibition in detail. 

 

Despite the observed inhibition in multiple in vivo assays215,217, it was surprising that all 

the reports failed to observe thiolutin or holomycin inhibition of the E.coli RNA 

polymerase in vitro164,213,220,221. In addition, similar in vivo inhibition with lack of in vitro 

support was observed in S. typhimurium222 and five distinct Actinomycete 

strains221.  Together, this evidence collectively suggested that thiolutin may confer 

different modes of transcriptional inhibition in prokaryotes and eukaryotes. However, 

conclusions should not be made without comprehensive assessment of the experimental 
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parameters in different transcription assays. In chapter III, I will discuss my thesis work 

dissecting the necessary co-factors for thiolutin inhibition in vitro.  

 

Second, it has been controversial whether thiolutin inhibits transcription initiation or 

elongation in vivo. The kinetics for inhibiting ß-galactosidase synthesis after IPTG 

induction is a classical experiment for predicting the targeted step of inhibitors. A 

transcription initiation inhibitor, when sufficiently added at a given time, presumably 

stops transcription initiation of all RNA polymerases but allows the elongating and 

completed transcripts to be further processed to functional ß-galactosidase (residual 

activity). In contrast, a transcription elongation inhibitor only allows the already 

completed transcripts to contribute to functional ß-galactosidases, thus resulting in 

different residual activities. In one report, Khachatourians et al. compared the thiolutin 

inhibition kinetics with rifampin (transcription initiation inhibitor) and chloramphenical 

(translation initiation inhibitor), and suggested that thiolutin targeted a step exclusively 

between transcription initiation and translation initiation, likely transcription elongation 

or termination217. In contrast, Sivasubramanian et al. did a similar experiment with 

rifampicin (transcription initiation inhibitor) and streptolydigin (transcription elongation 

inhibitor), and suggested that thiolutin appeared to inhibit transcription initiation220.  

 
It should be noted that these classical experiments, although elegantly designed, have 

limitations. The inhibitors with more than one effect may complicate the output. 

Although Khachatourians et al. did careful controls to show that thiolutin does not 

inhibit translation and ß-galactosidase in vitro217, variables in other relevant biological 
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processes could not be ruled out. In fact, more recent reports have suggested that 

thiolutin inhibits multiple additional processes, including mRNA stability and 

proteasome degradation214,223. Alterations in these processes could complicate the 

readout in the classical experiments. Currently, we can directly monitor Pol II occupancy 

on genes in vivo using chromatin IP enabling assessment of initiation and elongation 

upon drug treatment1,80,224 in yeast (Chapter III). An initiation inhibitor is predicted to 

specifically decrease the Pol II occupancy at the 5’ end if elongating polymerases are 

allowed to clear the gene while initiation is blocked. In contrast, an elongation inhibitor 

should stop elongating Pol II across the gene, presumably eliciting Pol II degradation 

across the gene. 

 

Two very recent reports nicely illustrate that reduced thiolutin and holomycin alter Zn2+ 

homeostasis by directly chelating Zn2+ (Figure1-17)213,214, consistent with our results 

obtained from a different approach (Chapter III). Zn2+ caused specific redshifts for the 

reduced thiolutin/holomycin)213,214, suggesting the reduced thiolutin and holomycin 

chelate Zn2+ through the reduced thiolate groups. In addition, a high-resolution MS/MS 

experiment was done in negative ion mode to characterize an apparent holomycin/Zn2+ 

complex213. The MS/MS result was consistent with Zn2+ binding to reduced holomycin 

in a 1:2 ratio, with extremely high affinity (~10pM range). In addition, the reduced 

holomycin can be re-oxidized when exposed to the air212. This behavior is consistent 

with redox-cycling compounds225,226, which are known oxidative stressors. Thiolutin can 

be also reduced214, but the redox cycling has not been directly tested. In chapter III, I 
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will describe our work in characterizing thiolutin induced apparent oxidative stress and 

functions of the yeast thioredoxin pathways in thiolutin resistance.  

 

 

 

Figure 1-17. Two proposed models for thiolutin mediated transcription inhibition based on 
published data. 
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Tight Zn2+ binding suggested that thiolutin/holomycin could inhibit Zn2+ dependent 

enzymes through Zn2+ chelation. The inhibition of several Zn2+ dependent enzymes was 

directly validated in vitro. For example, the zinc-dependent fructose bisphosphate 

aldolase FbaA was inhibited by reduced holomycin at ~25µM, a relevant concentration 

for growth inhibition213, and FbaA inhibition is consistent with an early report that 

thiolutin altered glucose metabolism227. In addition, thiolutin inhibited proteasome 

activity through chelating Zn2+ from Rpn11, a deubiquitinating enzyme with a 

JAB1/MPN/Mov34 domain, and an essential subunit of the 19S proteasome214. Lauinger 

et al. further showed that reduced thiolutin also inhibits another JAB1/MPN/Mov34 

domain–containing metalloprotease. Interestingly, both groups failed to observe 

inhibition of RNA polymerases through Zn2+ chelation, which they interpreted as 

evidence for transcription inhibition being a secondary consequence of 

dithiolopyrrolones. The contradictory results from in vitro and in vivo transcription 

assays in E.coli and accumulating evidence on other effects have now cast doubt on 

initial proposals that thiolutin primarily and directly inhibits transcription. 

 

I propose two models to reconcile the apparent universal observation that thiolutin 

inhibits transcription in vivo but not in vitro, except for one early report216. First, 

thiolutin may inhibit a secondary protein, which is present in vivo and in the original 

partially purified RNA polymerase fractions216 but not others164,213,214,220,221. Second, 

thiolutin may act as a prodrug that requires activation in vivo. Recent work has advanced 

our understanding of the structure-activity relationship in dithiolopyrrolones and 
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revealed the possibility of reductant and metal being the co-factors213,214. Although pre-

reduced thiolutin failed to inhibit transcription, the requirement for additional co-factors 

should not be ruled out. In Chapter III, I will describe a multi-pronged approach to 

investigate the mode of action of thiolutin, leading to our discovery that both appropriate 

doses of reductant and Mn2+ are necessary co-factors for direct thiolutin-mediated 

transcription inhibition. 
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CHAPTER II 

HIGH-RESOLUTION PHENOTYPIC LANDSCAPE OF THE RNA POLYMERASE II 

TRIGGER LOOP* 

Overview 

The active sites of multisubunit RNA polymerases have a “trigger loop” (TL) that 

multitasks in substrate selection, catalysis, and translocation. To dissect the 

Saccharomyces cerevisiae RNA polymerase II TL at individual-residue resolution, we 

quantitatively phenotyped nearly all TL single variants en masse. Three mutant classes, 

revealed by phenotypes linked to transcription defects or various stresses, have distinct 

distributions among TL residues. We find that mutations disrupting an intra-TL 

hydrophobic pocket, proposed to provide a mechanism for substrate-triggered TL 

folding through destabilization of a catalytically inactive TL state, confer phenotypes 

consistent with pocket disruption and increased catalysis. Furthermore, allele-specific 

genetic interactions among TL and TL-proximal domain residues support the 

contribution of the funnel and bridge helices (BH) to TL dynamics. Our structural 

genetics approach incorporates structural and phenotypic data for high-resolution 

dissection of transcription mechanisms and their evolution, and is readily applicable to 

other essential yeast proteins. 

______________________________
*Reprinted with permission under the terms of CC by 4.0 from “High-Resolution 
Phenotypic Landscape of the RNA Polymerase II Trigger Loop” by Qiu et al, 2016. Plos 
Genetics, 12, e1006321, Copyright 2016 by Plos Genetics.
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Introduction 

RNA polymerase II (Pol II) synthesizes all eukaryotic mRNA. Structural studies of 

Saccharomyces cerevisiae (Sce) Pol II have illuminated mechanisms of 

transcription20,21,24,166,167,228, especially RNA synthesis. RNA synthesis occurs through 

iterative nucleotide addition cycles (NACs): selection of correct substrate nucleoside 

triphosphate (NTP), catalysis of phosphodiester bond formation, and enzyme 

translocation to the next template position. These critical steps in NAC appear to be 

coordinated by a critical, conserved domain within the Pol II active site: the trigger loop 

(TL). 

 

TL functions are underpinned by its mobile and flexible nature (Figure 2-1A). The 

primary function of the TL is kinetic selection of correct NTP substrates while balancing 

transcription speed and fidelity, and this function is highly conserved based on studies of 

RNAPs from Escherichia coli (Eco)41,46, Thermus aquaticus (Taq)229, the archaeons 

Pyrococcus furiosus (Pfu)230 and Methanocaldococcus jannaschii (Mja)59, and 

eukaryotic Pol II from Sce28,29 and human231. In a simplified two-step model, correct 

NTP binding appears to facilitate TL movement such that a bound, matched NTP shifts 

the TL from the “open” state to the “closed” state24-26,34,35, allowing capture of the 

matched NTP in the Pol II active site and promotion of phosphodiester bond 

formation24,27,35. The subsequent release of the byproduct, pyrophosphate, allows a 

conformational shift of the TL from the “closed” state back to the “open” state34,36,37. TL 

opening has been proposed to be critical for enzyme translocation relative to the DNA 
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template, an essential step for the next nucleotide addition cycle18,29,34,38-41. Furthermore, 

additional TL states have been implicated in transcriptional pausing from studies in 

E.coli35,38,43, backtracking from structural observations44,45, and, although controversial, 

intrinsic cleavage46-50. Thus, distinct TL conformations or interactions are linked to 

different functions in transcription, with delicate control of TL dynamics promoting 

proper transcription elongation while possibly incorporating signals from the rest of Pol 

II or Pol II bound factors35,63,67,232,233.  

 

Genetic and biochemical studies have revealed TL functions in the NAC. First, the 

nucleotide interacting region (NIR, Rpb1 1078-1085) discriminates matched rNTPs from 

2’-dNTPs and non-complementary rNTPs28,29. NIR substitutions in residues observed to 

interact with rNTPs widely conferred lethality. Where viable, substitutions reduced 

catalytic activity in vitro and were termed as partially loss-of-function 

(LOF)28,31,41,46,229,230. Second, a TL C-terminal mutant E1103G, conferred increased 

catalytic activity in vitro, which we termed gain-of-function (GOF)28,29,57. Fast kinetics 

experiments revealed that E1103G may bias TL dynamics towards the catalytically 

active “closed” state29, consistent with infidelity and compromised translocation in 

addition to increased catalysis18,28,29,54,55. Furthermore, we previously described a set of 

Pol II TL mutants with broad and distinct alterations to transcription in vivo, thus 

conferring allele-specific phenotypes (Table 2-1) that correlate with decreased or 

increased activity19,31 in vitro. Various genetic interactions (suppression, exacerbation, 

and epistasis) have also been observed among TL substitutions, suggesting a complex  
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Figure 2-1. Establishment of a high-throughput platform for phenotyping comprehensive TL single 
variant library. 
(A) Multiple TL functions are underpinned by its mobile nature. Structures of open (PDB:5C4J) and 
closed TLs (PDB:2E2H) are shown in the context of surrounding domains. Template DNA (blue), RNA 
(red), Bridge Helix (cyan), Closed TL (magenta) and Open TL (yellow) are shown in cartoon rendering. 
The open TL has been proposed to allow Pol II translocation while the closed TL has been shown to 
facilitate catalysis (right panel). 
(B) Mutational coverage of the TL variant library is shown as a heatmap illustrating the allele frequencies 
of single substitution variants (WT amino acids and positions labeled on x axis; amino acid substitutions 
on y axis). The WT amino acids for each position are noted with black boxes, and mutants excluded from 
library synthesis are noted using blue boxes. 
(C) Schematic representation of experimental approach. Stars of different colors represent distinct 
substitutions. The TL variant library PCR amplicon (encoding Rpb1 amino acids 1076-1106) flanked by 
RPB1 TL flanking sequence (orange) was co-transformed with a linearized LEU2 CEN plasmid containing 
an rpb1 gene with the TL deleted, allowing construction of full-length RPB1 (with TL variants) by in vivo 
homologous recombination. Heterozygous Leu+ transformants were replica-plated onto SC-Leu+5FOA to 
select against the WT RPB1 (URA3 CEN) plasmid and to create TL variant pools. TL variant pools were 
subsequently replica-plated to different selective conditions for either traditional individual colony 
screening or high-throughput phenotyping using deep sequencing. For the latter, replica-plated colonies 
were pooled for genomic DNA extraction, and the TL region was amplified by emulsion PCR to prepare 
templates for deep sequencing.  
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functional network within the Pol II TL31. Finally, context dependence for TL residue 

function has been observed, wherein analogous mutations in a conserved TL residue 

showed opposite effects in Sce Pol I and Pol II, suggesting different rate limiting steps 

for the two enzymes56. Together, the intricate intra-TL functional network and the 

context dependence of TL properties suggest importance of the extensive residue-residue 

interactions within and outside the TL.  

 
 
 
Table 2-1. Plate phenotypes employed for the screening Pol II alleles in vivo. 

Phenotype 
Affected Gene/Reporter 

Allele; Pol II mutant 
class affected 

WT growth Mutant growth 

Sensitivity to 
5FOA 

Detects ability of rpb1 
LEU2 plasmid to 

complement rpb1∆ 

Resistant to drug. 
RPB1 LEU2 

plasmid 
complements 

rpb1∆ 

Sensitivity to drug 
(Partial or no 

complementation 
of rpb1∆ by rpb1 

LEU2) 

Suppressor of 
Ty (Spt-) 

lys2-128∂; reports on 
chromatin defects and 

start site selection. 
Specific class of GOF Pol 

II mutants. 

Lysine auxotroph 
(Lys-) 

Lysine prototroph 
(Lys+) 

Mycophenolic 
acid sensitivity 

(MPAS) 

IMD2 expression 
required for resistance; 

reports on start site 
selection. Specific classes 
of GOF and LOF Pol II 

mutants. 

Resistance to drug 

Sensitivity to drug 
for GOF mutants, 
relative resistance 
for LOF mutants. 

Modulation of 
transcriptional 
readthrough at 

gal10∆56 
(GalR) 

gal10∆56; likely reports 
on termination, mRNA 

processing and initiation. 
It is found widely in LOF 

Pol II mutants, some 
GOF. 

Moderate 
sensitivity to 

galactose (GalS) 

Resistance to 
galactose (GalR) 
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The possible multifunctional nature of each TL residue complicates interpretations of 

functions if interpretations are based on a limited number of mutants. This is because the 

phenotype of any given mutant could result from removal of the wild type side-chain or 

additional functions of the substituted residue. Furthermore, different substitutions may 

have distinct effects on particular TL conformations31,234. In the TL, different 

substitutions in the same residue can confer distinct phenotypes, so limiting mutational 

analyses to a single substitution at a particular position may mislead about residue 

function29,31. Deep mutational scanning is an emerging technique for studying large sets 

of mutants by assessing the enrichment or depletion of variants after a strict selection 

process235. Different selection approaches have been designed such that a specific 

protein property (sensitivity to substitutions236, thermo-stability237, protein stability238 

etc.) can be studied. Notably, our established genetic phenotypes (Table 2-1) were well 

correlated with altered transcription elongation rates in vitro and specific transcription 

defects in vivo19,31, thus providing a powerful phenotypic framework for studying TL 

function. In this work, we have defined the fitness and phenotypic landscape of the 

conserved, essential Sce Pol II TL. We have found three distinct classes of 

transcriptionally defective TL mutants that are associated with differential stress 

response profiles, allowing the determination of functional contributions of each TL 

residue. We have examined the mechanisms by which proximal Pol II domains 

communicate with the TL, while identifying examples of inter-residue epistasis, which 

are the likely drivers of incompatibility of RNAP evolutionary variants when placed in 

the Pol II context.  
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Results 

Strategy for studying in vivo effects of TL variant library 

A comprehensively mutagenized TL variant library (Rpb1 1076-1106), excepting some 

previously well-characterized variants28,31, was synthesized using the Slonomics 

technology239,240 and validated by deep sequencing (Figure 2-1B). Synthesis conditions 

were such that single substitution mutants would predominate. Our TL mutant library 

showed an even distribution of substitutions across all positions and substitution types 

(Figure 2-2A,B), with generally very low frequencies for excluded mutants, as expected 

(Figure 2-1B). We first sought evidence that the measured allele frequencies reflected 

the real allele frequency distribution because PCR fidelity for highly similar amplicons 

is often compromised by template switching241,242. We spiked in five excluded single 

substitution variants (H1085Y, H1085Q, F1086S, G1097D, E1103G) as controls. 

Double mutant variants comprised of these single substitution spike-in variants would 

not be present in our library, but if observed they would presumably be the result of 

template switching between spike-ins. We prepared TL amplicons from a subset of 

conditions using both standard PCR and emulsion PCR (emPCR), which can suppress 

template switching241,242. First, double mutants derived from spike in controls were 

found at a significantly lower frequency than the relevant single substitution variants; 

Second, emPCR further suppressed the template switching frequency for all possible 

double mutants derived from spike-in single variants (Figure 2-3A, left), at about 2.5-

fold on average (Figure 2-3A, right). We conclude that template switching is likely not 
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extensive in our reactions but further reduction by emPCR led us to employ emPCR for 

our studies.  

 

 

 

Figure 2-2. TL variant library composition and screening reproducibility. 
(A) Fraction of TL substitutions at each position of the TL (Rpb1 1076-1106).  Allele frequencies were 
determined by deep sequencing of the TL variant library, and calculated by the number of reads from all 
the variants at a position divided by the total number of mapped reads. 
(B) Fraction of TL substitutions for codons encoding specific amino acids. The allele frequency for each 
substitution was determined by deep sequencing of the TL variant library, calculated by the number of 
reads for variants substituted at a particular substitution divided by the total number of mapped reads. 
(C) Distribution of allele frequencies for the detected TL single substitution variants. 
(D) The TL library is robust to PCR amplification and yeast transformation. Pearson correlation 
coefficients calculated between different libraries are shown as a heatmap. TL library (Lib), PCR 
amplified TL library (Lib_PCR) and two yeast pools independently transformed with TL library (SC-
Leu_screen1 and SC-Leu_screen2) were amplified and sequenced in triplicate (rep1, rep2 and rep3), and 
pairwise Pearson correlation analyses were performed between different sequencing libraries. 
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Figure 2-3. Quality controls for the TL high-throughput phenotyping approach. 
(A) Comparison of estimated template switching frequencies in regular and emulsion PCR conditions. 
Template switching was estimated by the ratio (FreqDouble ) / (FreqSingle1 × FreqSingle2) for all the possible 
double mutants combined from five spiked-in single mutants. 
(B) Additional growth conditions were employed to increase resolution for distinguishing similar TL 
alleles. Growth scores for 50 individually isolated TL mutants (y axis) under 12 growth conditions (x axis), 
as determined by standard serial dilution plate phenotyping (Figures 2-4 and 2-5), are shown as a 
heatmap. Positive values shown in red indicate increase in allele frequency relative to WT and negative 
values in blue indicate decrease in allele frequency relative to WT. 
(C) High-throughput quantitative phenotyping results are consistent with individual phenotyping of 
variants. Top heatmap shows qualitative growth scores (as in Figure 2-3B) of 50 individually phenotyped 
TL variants on the y axis (Figures 2-4, 2-5 and 2-6) with selective conditions on the x axis. Deep 
sequencing results for the same mutants using median of fitness defects from three independent high-
throughput screens are shown in the middle panel. Pearson r calculated to show the correlation between 
each condition from the two datasets is shown in the bottom panel. 
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Figure 2-4. Screening for allele-specific stress conditions by standard plate phenotyping of 50 
isolated TL variants. 
10-fold serial dilutions of saturated cultures of the 50 TL variants were plated on the indicated conditions, 
including 15 mM caffeine, 150 mM hydroxyurea, 5 mM Mn2+, 15 mM Mn2+ and 0.5 M NaCl. 
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Figure 2-5. Screening for additional allele-specific stress conditions for 50 isolated TL variants.  
10-fold serial dilutions of saturated cultures of the 50 TL variants were plated on the indicated conditions, 
including 3% formamide, 6% ethanol, 0.07 µg/mL cycloheximide, 10 mM HCl, 10 mM NaOH and 10 
µg/mL benomyl. 
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Figure 2-6.  Transcription-related phenotypes of 50 isolated TL variants. 
GalR, MPAS and Spt- phenotypes of the 50 TL variants were assessed as a control for the high-throughput 
phenotyping. 
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We have developed an experimental pipeline to examine mutations in an essential gene 

using a plasmid shuffling strategy, and have applied it to study the TL variant library 

(Figure 2-1C). To validate our pipeline and to isolate novel TL alleles, we performed a 

traditional genetic screening for mutants with transcriptional defects (Table 2-1). We 

have shown previously that these phenotypes correlate with Pol II biochemical activity 

in vitro19,28,31. Transcription-related phenotypes employed include, first, the Suppressor 

of Ty (Spt-) phenotype, derived from a transposon insertion into the 5′ end of the LYS2 

gene (lys2-128∂ allele)243,244. The transposable element insertion renders wild-type cells 

Lys-. A subset of Pol II TL mutants allow expression of a normally silent promoter 

within the transposable element to express a truncated but functional LYS2 transcript, 

conferring the Spt- phenotype by allowing cells to become Lys+. Spt- mutants in the TL 

correlate with biochemical GOF phenotypes and their related genetic interaction and 

gene expression signatures19,31,244. Second, we employed suppression of the galactose-

induced toxicity conferred by the gal10∆56 allele of GAL10, (GalR)245,246. gal10∆56 

contains a deletion in the major GAL10 polyadenylation signal, allowing transcription 

readthrough and interference with the downstream GAL7 gene245,246. This 

readthrough/interference alters the ratio of metabolic enzymes in the galactose-

utilization pathway, causing the buildup of a toxic intermediate, resulting in galactose 

sensitivity (GalS). Mutations in transcription elongation factors and Pol II subunits can 

alter these transcription defects and suppress gal10∆56 galactose sensitivity19,31,246. 

Third, we employed Mycophenolic acid (MPA) sensitivity. Sensitivity to MPA for 

examined Pol II TL mutants derives from altered transcription initiation at the IMD2 
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promoter31,80, whose transcription is controlled through use of multiple start sites82,83, 

and whose expression is required for cell resistance to MPA81. We have linked Pol II 

catalytic activity to the ability to induce IMD2. Increased activity Pol II alleles (GOF) 

fail to induce IMD2 in the presence of MPA due to aberrant transcription start site 

selection31,80. By screening for these three transcription-related phenotypes, we isolated 

1166 candidate mutants, which included 154 singly-substituted and 386 multiply-

substituted variants.  

 

To further distinguish mutants, we examined 50 single substitution variants under 

various stress conditions to screen for conditions that could induce allele-specific 

phenotypes (Figure 2-3B, Figure 2-4, Figure 2-5). We observed that media containing 

caffeine, hydroxyurea, MnCl2, formamide, cycloheximide, or NaOH induced allele-

specific sensitivity or resistance, while media containing ethanol, benomyl, HCl or NaCl 

showed fewer allele-specific effects (Figure 2-3B, Figure 2-4, Figure 2-5). Therefore, 

in our high-throughput approach, we phenotyped TL variant library under our 

established conditions (medium lacking lysine (Spt-), medium containing MPA (MPAS) 

or medium containing galactose (GalR)) and appropriate media for the stress conditions 

empirically determined to discriminate among our pilot alleles. Phenotypic scores were 

estimated from the change of allele frequency normalized to WT, as is standard in 

mutational scanning studies235-238. Quantitative phenotypic scores of the 50 mutants from 

the high-throughput phenotyping were consistent with semi-quantitative growth scores 
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derived from standard phenotyping (Figure 2-3C, Figure 2-4, Figure 2-5, Figure 2-6), 

validating our approach. 

 

The Pol II TL fitness landscape 

The TL is highly conserved, especially in the NIR, the loop tip residue (Rpb1 G1088) 

and for several TL C-terminal residues (Figure 2-7A). Highly-conserved residues are 

predicted to be critical for protein function, thus substitutions during evolution are 

expected to confer fitness defects and be selected against. We first sought to evaluate 

general fitness defects of observed TL singly-substituted variants (termed the “fitness 

landscape”), both in the presence of WT RPB1 (Figure 2-7B) and upon the removal of 

WT RPB1 (Figure 2-7C). Notably, TL NIR and loop tip substitutions conferred large 

fitness defects in general, while most perturbations in the similarly conserved C-terminal 

residues did not confer severe growth defects (Figure 2-7B,C). This observation 

highlights that conservation does not necessarily reflect sensitivity to perturbations, and 

that the TL fitness landscape can further distinguish extremely highly conserved TL 

residues, as discussed below: 
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Figure 2-7. The TL fitness landscape distinguishes highly conserved TL residues and reveals high 
mutational sensitivity in the nucleotide interacting region (NIR) and the Alanine-Glycine linker. 
(A) Conservation heatmap of TL residues in eukaryotic RNA polymerases. The conservation scores were 
extracted from a multiple sequence alignment, including 182 Pol II, 59 Pol I, and 111 Pol III sequences 
utilizing the conservation metric from Jalview 2.8 version 14.0247. 
(B) Fitness defects of TL variants in the heterozygous state are shown as a heatmap. Unavailable data 
points are denoted by filled grey squares. WT residues at indicated positions are denoted by black boxes. 
Surface representation (bottom panel) of the TL structure (PDB:2E2H) is shaded by the median fitness 
value for all available variants at each position, in a gradient of white (rare defects) to blue (common 
defects). The position of the matched GTP substrate is shown in orange stick representation. 
(C) General fitness defects of TL variants upon removal of WT RPB1. Fitness defects predicted to result in 
lethality shown in black. Surface representation (bottom panel) of the TL structure is shaded by the 
median fitness value of all available variants at each position, in a gradient of white (rare defects) to blue 
(common defects). 
(D) Complementation abilities of variants in the difficult-to-substitute TL positions (L1081, A1087, 
G1088) or unexpected TL variants (H1085L) assayed by plasmid shuffling of individual strains. Ability to 
grow on SC-Leu+5FOA indicates complementation of essential functions of RPB1. SC-Leu medium is the 
control state where WT RPB1 is present. 
(E) Transcription-linked phenotypes of viable substitutions in difficult-to-substitute residues (L1081M, 
A1087V) or a TL variant with unexpectedly mild fitness defects (H1085L).  
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First, substitutions in the NIR (Rpb1 1077-1085) generally conferred both fitness defects 

(Figure 2-7C) and apparent dominance (Figure 2-7B). Observed fitness defects were 

consistent with previous observations that several NIR mutants render Pol II slow in 

elongation in vitro and cause fitness defect in vivo28,31. The observed dominance for 

many NIR variants was consistent with TL variants being assembled into Pol II 

complexes that interfere with WT Pol II function, likely through clashes with WT Pol II 

on genes in vivo. Second, substitutions within the alanine-glycine linker (Rpb1 1087-

1088) almost universally conferred lethality or severe growth defects. A Pol II structure 

with a closed TL24 reveals that A1087 and G1088 are in a tight pocket between the 

funnel and bridge helices, presumably necessitating small side-chain residues (Figure 2-

8A). To determine the extent of spatial constraint, we individually assessed the fitness of 

AG swapping variants, and small hydrophobic valine substitutions (Figure 2-7D). 

Notably, all the swapping variants (A1087G, G1088A and A1087G/G1088A) were 

lethal (Figure 2-7D). While G1088V is lethal, A1087V is severely sick but viable 

(Figure 2-7D), suggesting extremely high, but differential, spatial constraint but 

differential tolerability for the two residues. This pocket/TL interaction is only observed 

in the closed TL24 but not in any of the open states42, suggesting function in stabilizing 

the active, closed TL conformation for promoting catalysis. Consistent with disruption of 

the pocket/TL interaction and the closed TL state, we observed genetically LOF 

phenotypes for A1087V (GalR, slight MPAR) (Figure 2-7E). Finally, substitutions in the 

conserved C-terminal helix, though not strongly defective in general fitness, are likely to 
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have transcription defects, based on our prior studies, and were further characterized 

(discussed below). 

 

 
Figure 2-8. Structures of different TL states allow prediction of functionally important residue-
residue interactions. 
(A) A1087-G1088 linker is highly spatially constrained. The closed TL (magenta) is shown in cartoon 
(A1087, G1088 in sticks), and TL-proximal domains are shown in surface representation. Rpb2 domains 
are colored in grey; Bridge Helix (Rpb1 800-860) in cyan; Funnel helix α-21 (Rpb1 700-750) in green.  
(B) Change of F1086-V1089 interactions in different TL states. V1089 forms a backbone-backbone 
hydrogen bond with F1086 in the open TL (orange, PDB: 5C4X), but the side chain flips towards the 
F1086 for a hydrophobic interaction when the TL is in a less open state (yellow, PDB: 5C4J).  
(C) V1094-K830 interaction in the closed TL state. The charged K830 side chain appears to be neutralized 
by D826 through a salt bridge interaction, and the neutralized K830 side chain interacts with the V1094 
side chain. 
(D) Observed hydrophobic pocket in the open TL surrounding M1079 (PDB: 5C4J). TL (yellow) and the 
proximal domains (cyan) are shown in the cartoon representation with the M1079-proximal hydrophobic 
residues shown in spheres. M1079 is highlighted in red. 
(E) Transcription-related phenotypes of G1097 variants. 



 

 81 

Novel TL NIR mutants allow mechanistic insights 

The TL fitness landscape identified residues highly sensitive to perturbations, while also 

revealing variants in NIR residues previously known to be difficult to viably substitute. 

We highlight L1081 and H1085 as two examples. L1081 directly interacts with the 

nucleobase moieties of matched NTPs24, and equivalent residues in Eco, Taq and Pfu 

RNAPs are important for substrate selection or catalysis46,229. L1081 is the most 

sensitive residue to perturbations among the hyper-conserved NIR. All previously tested 

L1081 variants were lethal31, though viable substitutions were identified for all other 

NIR residues of interest. Furthermore, the GOF allele E1103G can generally suppress 

lethal substitutions for most NIR residues, but could not for tested L1081 substitutions31. 

In our TL fitness landscape, almost all L1081 variants were indeed predicted to be lethal 

based on our fitness threshold (Figure 2-7C). L1081M conferred a severe growth defect, 

but was predicted to be just above the viable threshold (Figure 2-7C). To validate this 

prediction, we constructed L1081M for direct analysis, and found that L1081M was 

indeed viable yet severely sick (Figure 2-7D). Furthermore, L1081M conferred GalR 

and slight MPAR phenotypes, consistent with other LOF mutants (Figure 2-7E). 

Eukaryotic multi-subunit RNA Polymerases share a stringent evolutionary requirement 

for L at this TL position, while bacterial and archaeal lineages show both M and L 

variants. Consistent with evolutionary tolerance of variation within bacterial and 

archaeal lineages, the Taq RNAP M1238L variant shows near WT activity for substrate 

selection and catalysis in vitro229. The severe growth defect of L1081M highlights 
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epistasis within Sce Pol II and likely eukaryotic RNAP lineages, which imposes a 

stringent requirement for Leucine at this position. 

 

H1085 interacts with the β-phosphate of the matched NTP24, and has been implicated in 

substrate selection, catalysis, intrinsic cleavage and PPi release47,52. We previously 

constructed several H1085 variants (A/N/D/F were lethal, K/R/W/Y caused severe 

growth defects, Q caused slight growth defect19,28,31), suggesting that some polar or 

positively charged residues, but not a hydrophobic phenylalanine or alanine, could 

partially complement loss of the histidine31. Here, we found that H1085L was viable and 

healthy in the fitness landscape (Figure 2-7C), and validated it with phenotypic analyses 

of a reconstructed H1085L allele (Figure 2-7D). While H1085L conferred slight MPAR 

and GalR phenotypes, consistent with other LOF mutants (Figure 2-7E), it also 

conferred a slight Spt- defect, suggesting distinct defects from most other NIR mutants 

and all known LOF mutants31. This observation alters our understanding of the likely 

bounds of active site chemistry (see discussion). 

 

There are at least three distinguishable TL mutant classes 

The overall TL fitness landscape revealed the essentiality of almost all single 

substitution TL variants in standard growth medium, but could not indicate the nature of 

transcriptional defects, as we had previously found that both LOF and GOF alleles 

conferred growth defects. Therefore, we sought to determine the phenotypic outcome of 

the TL variants for the transcription-related GalR, MPAS and Spt- phenotypes and a 
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variety of allele-distinguishing stress conditions (investigated earlier in Figure 2-3A). 

Here, we term this response profile as the “phenotypic landscape”, as it distinguishes the 

TL mutants with presumably distinct transcription defects, in contrast to the general 

“fitness landscape” described above. 

 

Hierarchical clustering of the phenotypic landscape for 412 TL variants passing fitness 

filters revealed three major mutant classes with distinct features (Figure 2-9A, Figure 2-

9B). Class 1 mutants generally conferred a strong GalR phenotype yet were Spt+, and in 

some cases were also slightly MPAR relative to WT, consistent with previously 

characterized LOF mutants. We also identified high formamide sensitivity as a new 

signature phenotype for Class 1 mutants. Class 2 mutants showed generally weaker GalR, 

slight formamide resistance, and did not confer strong phenotypes otherwise, 

representing a novel TL mutant class yet to be biochemically characterized. Class 3 

mutants generally conferred GalR, Spt- and MPAS phenotypes, consistent with previously 

characterized GOF mutants. Mn2+ hypersensitivity (MnS) was correlated broadly with 

Spt- and MPAS phenotypes, suggesting a relationship among these phenotypes, and 

consistent with previous in vitro biochemical and in vivo phenotypic data for a subset of 

known GOF mutants248,249. Notably, our spike-in LOF (F1086S, H1085Q and H1085Y) 

and GOF mutants (E1103G and G1097D) co-clustered with Class 1 and Class 3 mutants, 

respectively.  
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Figure 2-9. Three distinct TL mutant classes, revealed from TL phenotypic landscape, have specific 
distribution on the TL structure and distinct stress response profiles. 
(A) Hierarchical clustering of 412 single TL variants’ (x axis) phenotypes (calculated as in Figure 2-1C) 
under 14 different conditions (y axis) reveals distinct mutant classes. Positive (yellow) and negative (blue) 
fitness scores are shown as a heatmap. Mutant classes (clusters) are annotated by colored lines beneath the 
heatmap. 
(B) Distribution of three major mutant classes is shown in a single substitution variant heatmap. Class 1 
(genetic GOF) mutants are shown in green; Class 2 mutants are shown in brown and Class 3 (genetic LOF) 
mutants are shown in blue.  
(C) Distribution of different mutant classes on the TL structure. TL is shown in surface and colored in the 
gradient from white to red by the number of clustered mutants at each position.  
(D) Differential stress responses in genetic GOF and LOF mutants. Genetic GOF mutants are more 
sensitive to Mn2+, caffeine and cycloheximide, whereas genetic LOF mutants are more sensitive to 
formamide. **p<0.01, ****p<0.0001 (Two-tailed unpaired t-test). 
(E) Differential Mn2+ sensitivity and its suppression by Mg2+ for selected TL variants representative of 
mutant classes.  
(F) Mn2+ effects on different mutants’ transcription start sites (TSSs) distribution at ADH1, determined by 
primer extension analysis. TSSs at ADH1 are distributed in a range of positions and were divided into six 
bins for quantitation: from upstream (left) to downstream (right). Change of TSSs (normalized to untreated 
WT) is calculated by the change in TSS fraction for each bin relative to the WT distribution. Average and 
standard deviation of three experimental replicates are shown as a bar graph with error bars. 
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Functional contribution of TL residues in different states and substrate-induced TL 

closing mechanism 

The distributions within different mutant classes predict distinct functional contributions 

of TL residues to TL dynamics. Perturbations predicted to bias the TL towards the active, 

closed TL state have been shown to result in GOF, whereas destabilization of the closed 

TL state generally leads to LOF28,29,31,35,41. Therefore, distributions of Class 1 (LOF) and 

Class 3 (GOF) mutants predict alterations to TL dynamics, as follows: 

 

Class 1 (LOF) mutants included most variants from F1086, V1089, V1094 and P1099 

(Figure 2-9C, left), suggesting important functions of these residues in stabilizing the 

closed TL. F1086 and V1089 are both proximal to multiple funnel helix residues when 

TL is closed24,25, while F1086 was proposed to orient H1085 for correct substrate 

interaction25. Therefore, alteration of these interactions may disrupt the closed TL state 

and result in LOF. Alternatively, recent Pol II structures with open TL revealed potential 

function of F1086-V1089 interaction in TL closing dynamics (Figure 2-8B)42. V1089 

forms a backbone-backbone hydrogen bond with F1086 when TL is open, while its side 

chain flips towards the F1086 to form a hydrophobic interaction when TL is partially 

closed, suggesting that this side-chain interaction may be important for particular TL 

states (Figure 2-8B), though it was not discussed in previous molecular dynamics 

studies25. Furthermore, V1094 was observed to be proximal to the BH residue K830 in 

the closed TL state24. An interaction between K830 and V1094 side-chains could be 

counter-intuitive and possibly undervalued. However, neutralization of lysine’s positive 
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charge through ionic interactions (such as D836) can promote hydrophobicity of the 

lysine side chain250, supporting the observed K830-V1094 interactions in the TL closed 

state (Figure 2-8C). Most variants in V1094 are LOF (Figure 2-9B), consistent with 

disruption of K830-V1094 interaction and concomitant destabilization of the closed, 

active TL conformation.  

 

Models for NTP substrate-induced TL closing remain largely untested24-26,34,35. A recent 

Pol II structure42 exhibiting an open TL state led to explicit implication of a hydrophobic 

pocket formed by TL residues (A1076, M1079, T1080, G1097 and L1101) and other TL 

proximal residues (I837, L841, V1352, V1355 and I1356) in substrate-induced TL-

folding (Figure 2-8D). Q1078 recognition of the 2’-OH of a matched NTP substrate was 

proposed to promote release of the adjacent residue M1079 from the hydrophobic pocket, 

triggering TL closing42,251. Consistent with disruption of this observed pocket and 

concomitant destabilization of the inactive open TL state, A1076T, a pocket variant 

previously isolated as genetically GOF, conferred increased transcription activity in vitro 

(Figure 2-10B). Notably, GOF phenotypes were observed for a large number of variants 

in pocket residues. Among them, we observed almost universal GOF phenotypes for 

G1097 variants, but not the extreme fitness defects found for the previously observed 

GOF variant G1097D. We individually phenotyped ten G1097 variants from the 

traditional screening and confirmed this observation (Figure 2-8E). Together, these 

results are consistent with the hydrophobic pocket stabilizing the inactive, open TL and 
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providing a plausible mechanism for substrate-induced TL closing. A single residue, 

M1079, can act as a linchpin for the entire TL through a network of interactions. 

 

 

 

Figure 2-10. Functional contribution of TL tip and Funnel Helix α-21 to proper TL dynamics. 
(A) Observed and predicted interactions between TL and TL-proximal domains. TL schematic is shown 
with residues identified by single-letter amino acid code and positions of interest annotated. Positions of 
GOF mutants isolated in our screen, along with the positions for a subset of previously isolated TL-
proximal GOF mutants, are color coded in green. Observed TL interactions with other Rpb1 domains from 
structures or simulation studies are shown as grey dashed lines. 
(B) Maximal in vitro elongation rates (nucleotides/second) of Pol II WT and genetic GOF mutants S713P, 
I1327V and A1076T.  
(C) Observed interactions between open TL tip and TL adjacent charged residues (PDB: 5C4X). Funnel 
Helix refers to the Rpb1 α-21 alpha-helix. 
(D) Genetic interactions between the TL tip and proximal Rpb1 domains. Schematics of the TL and 
adjacent domains are shown in lines, with positions of interest shown in single-letter amino acid code. 
Substituted residues are shown in grey, with substituting amino acids shown in white or green filled circles 
based on single substitution phenotypes (Fig 2-11). Double substitution phenotypes are shown as colored 
lines connecting the two relevant single substitutions. Some sets of similar interactions were grouped into 
nodes to reduce complexity in interaction lines. 
  



 

 88 

 
Figure 2-11. Construction and transcription-related phenotypes of the TL tip and nearby charged 
residue variants. 
(A) x-y plot showing the lack of correlation between helical propensity change and phenotypic score on 
MPA, a good indicator of altered transcription activity. 120 variants from the TL tip region (top panel) and 
104 variants from the same region but excluding V1094 mutants (bottom panel) are shown, with linear 
regression fit of the data shown in black lines. 
(B-E) Complementation abilities of TL tip (S1091, K1092, K1093) variants, tip proximal D716 (B), E712 
(C), R1281 (D), E1307 (E) variants and the corresponding double mutants were determined by plasmid 
shuffling assays. 
(F) Transcription-related phenotypes of TL tip and the TL-proximal charged residue variants. S1091C, 
K1093M and E1307K confer MPAS phenotypes, and K1093M additionally confers an Spt- phenotype, 
while others alone don’t confer any strong transcription-related phenotypes. 
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Identification of stress conditions that alter transcription in vivo�

GOF and LOF TL variant classes have distinct phenotypic profiles. In general, compared 

to LOF variants, GOF mutants are more sensitive to Mn2+, caffeine and cycloheximide 

yet generally resistant to hydroxyurea and formamide (Figure 2-9D). The allele-specific 

Mn2+ response amplified our previous observation that the GOF allele E1103G was 

highly sensitive to Mn2+ while the LOF allele H1085Y was resistant to, or even slightly 

suppressed by, Mn2+ (while the Mn2+ effects on both mutants were suppressed by Mg2+ 

supplementation)52. The TL phenotypic landscape showed that this Mn2+ response was 

general and class-specific for GOF and LOF mutants (Figure 2-9D). To validate this 

observation, we individually analyzed seven additional variants (two LOF and five GOF) 

for Mn2+ sensitivity in the presence or absence of Mg2+ supplementation. Notably, all 

tested LOF mutants conferred Mn2+ resistance while all tested GOF mutants conferred 

Mn2+ hypersensitivity (Figure 2-9E). Allele-specific Mn2+ responses could be 

suppressed by Mg2+ supplementation (Figure 2-9E). Mn2+ has been shown to stimulate 

transcriptional activity while compromising fidelity in vitro248,249. Our observations 

suggested that Mn2+ may suppress LOF mutants by stimulating transcriptional activity 

yet exacerbate GOF mutants by further decreasing their already compromised 

transcriptional fidelity in vivo28,29. Increased Pol II catalytic activity correlates strongly 

with upstream transcription start site (TSS) shifts in vivo19,31; therefore we assayed for 

TSS alterations upon Mn2+ treatment. Primer extension analysis at ADH1 revealed that 

Mn2+ treatment shifted the TSS distribution upstream, and further exacerbated the 

upstream shift conferred by E1103G (Figure 2-9F). Deletion of PMR1, the golgi Mn2+ 
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export channel, causes accumulation cytosolic Mn2+ 252,253, and can be used to alter Mn2+ 

levels apart from supplementation of the medium. Our prior high throughput genetic 

interaction analyses of Pol II mutants showed that pmr1∆ strongly interacts with Pol II 

mutants in a highly allele-specific fashion19, suggesting an intimate relationship between 

increased cellular Mn2+ levels and altered transcription activity. Here we find that pmr1∆ 

also shifted ADH1 TSSs upstream (Figure 2-9F). While Mn2+ may have other indirect 

effects on Pol II mutants, these observations support direct effects of Mn2+ on Pol II 

transcription activity in vivo, raising the possibility that other allele-specific stress 

conditions (e.g. formamide) may also directly alter transcription in vivo. 

 

Functional contributions of the TL tip region 

The TL tip region (Rpb1 1090-1096) is a random-coil region that forms an α-helical 

structure when the TL is closed, and helical formation has been proposed to assist TL 

closing25,41,234. Mejia et al. characterized two E.coli RNAP TL tip mutants I1134V and 

G1136S (Equivalent to Sce Pol II V1094 and S1096) with decreased or increased 

transcription activity, respectively234. These results were interpreted as I1134V and 

G1136S substitutions decreasing or increasing helical propensity and thus disfavoring or 

favoring TL closing234. Sce Pol II contains each of these variants as the WT residue, 

therefore individual substitutions to the E. coli variants (V1094I and S1096G) would be 

predicted to confer opposite phenotypes under the helical propensity model. However, 

V1094I and S1096G did not confer phenotypes clearly consistent with either GOF or 

LOF (Figure 2-9B), failing to support the helical propensity model. We asked if the 
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proposed correlation from E.coli RNAP studies was a general property for TL 

substitutions in this region, if extended to more than two substitutions. Our data, 

calculated from 122 variants, fail to support a general correlation between helical 

propensity and predicted catalytic activity for Pol II substitutions in this region (Figure 

2-11A). As discussed above, V1094 may be involved in interaction with BH residue 

K830, and LOF in most V1094 variants may result from disrupted BH/TL coordination. 

Therefore, we repeated the analyses excluding V1094 variants, yet still failed to observe 

a correlation (Figure 2-11A). We cannot rule out contributions of helical propensity in 

this region to TL function; however, we did not find compelling or widespread evidence 

for it. 

 

A number of recent studies have suggested potential functions of the TL tip region in 

regulating TL dynamics25,42,66. In a simulated TL closing process, positively charged 

K1092 and K1093 were predicted to interact with several TL-proximal residues, and 

some of the predicted interactions were validated by subsequent Pol II crystal structures 

with alternative open TL states (Figure 2-10A). These interactions were proposed to 

stabilize the open, inactive TL state, and thus alanine (K1092A, K1093A) or charge 

reversing substitutions (K1092D/E, K1093D/E) were predicted to disrupt the inactive TL 

open state and result in GOF25. Contrary to this prediction, none of the above 

substitutions conferred GOF (Figure 2-9B). Networks of residue-residue interactions 

near the TL tip were observed25,42, some of which may be functionally overlapping or 

redundant, adding complexity to simple models. Our previous point mutant epistatic 
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miniarray profile (p-EMAP) studies predicted two TL-proximal mutants (S713P and 

I1327V) to be GOF, which we confirm here (Figure 2-10B), suggesting that 

perturbation near the TL may interfere with native interactions, or create new ones, to 

destabilize the open TL. The tested variants here also extend the correlation between 

genetically predicted GOF and increased activity in vitro (Figure 2-10B). Additionally, 

several TL tip variants with bulky side chains (K1092W, K1093Y, K1093M) conferred 

GOF phenotypes (Figure 2-9B). Given the complexity and observation of both 

GOF/LOF phenotypes, we wished to further assess the functions of these residue-residue 

interactions.  

 

Functional interactions among residues can be explored by the similarity between single 

substitution variants and the phenotypes of double mutants. We first sought evidence 

that variants in potential TL interaction partners could confer similar GOF or LOF 

phenotypes. In the simulation, K1092 switched interaction partners between two funnel 

helix residues D716 and E71223, and other charged residues were either observed or 

simulated to interact with S1091, K1092 or K1093 (Figure 2-10A). Therefore, we 

constructed a panel of mutants in the residues D716, E712, R1281, E1307, and D1309 

for phenotypic analyses. Notably, we observed GOF phenotypes (MnS and MPAS) in 

E1307K but not E1307A, suggesting that E1307K gained an interfering interaction to 

destabilize the open TL state. In contrast, mutations in the residues E712 and D716 did 

not confer transcription-related phenotypes.   

 



 

 93 

To further dissect functional relationships, we phenotyped double mutants from potential 

interaction partners, and observed a number of genetic interactions (Figure 2-10D, 

Figure 2-12). First, mutations in D716 (D716A/K) suppressed the S1091C and K1093M 

GOF phenotypes and conferred LOF phenotype (GalR) when combined with other S1091 

alleles (D716A/S1091A, D716A/S1091E, D716K/S1091A, D716K/S1091E), although 

the D716A/K or S1091A/E single substitutions did not confer strong transcription-

related phenotypes (Figure 2-10D, Figure 2-11F, Figure 2-12A). These allele-specific 

genetic interactions suggested that D716A/K and S1091A/E lost putatively redundant 

interactions that together conferred LOF phenotypes, and loss of D716 interaction(s) 

might also suppress the putatively gain of interactions in GOF mutants S1091C and 

K1093M. Second, mutations in E712 (E712A/E712R) did not confer transcription-

related phenotypes, but suppressed the K1093M GOF phenotypes (Figure 2-11F, 

Figure 2-12B). Similarly, K1092A/D single substitutions did not confer transcription-

related phenotypes, but were able to suppress the E1307K GOF phenotypes (Figure 2-

11F, Figure 2-12E). This observed epistasis suggested that loss of potential interacting 

residues (E712 and K1092, respectively) relieved putative gain of interactions in the 

GOF mutants (K1093M and E1307K, respectively) (discussed above). Taken together, 

the observed allele-specific and epistatic interactions between TL tip and proximal 

residues suggest a highly complex genetic network of residues controlling TL dynamics, 

and illustrate how individual residues might constrain or allow diversification of the TL 

through evolution. 
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Figure 2-12. Genetic interactions of the TL tip and nearby charged residue variants on 
transcription-related phenotypes. 
Genetic interactions between tip variants and nearby charged residues D716 (A), E712 (B), R1281 (C) and 
E1307 (D, E) variants detected by alterations in transcription-related phenotypes. 
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Functional interplay of the TL and Bridge helix (BH) domains 

The BH is a strikingly conserved structural domain of multi-subunit RNA polymerases 

spanning the wide central cleft between polymerase “jaws”, adjacent to the active site 

and proximal to the TL167,168,254. Although the BH is a straight helix in most published 

structures20,21,24,166,167,228, some Thermus thermophilus RNAP structures revealed a bent 

BH conformation proposed to support translocation168. This BH bending mechanism was 

supported by a number of simulation studies but has never been directly 

tested40,59,167,168,254. In the archaeal Mja RNAP, proline substitutions at two hinge-

proximal residues M808 and S824 (equivalent to Sce Rpb1 M818 and T834) resulted in 

GOF, suggesting kinking by the proline substitution results in increased translocation or 

catalysis59,60. Furthermore, Mja GOF TL and BH mutants were not additive when 

combined, suggesting mutual dependence on BH and TL functions59.  

 

To explore the functional consequence of BH kinking in Sce Pol II, we constructed and 

phenotyped BH mutants analogous to the characterized GOF and LOF variants in Mja 

RNAP. Notably, Sce T834 and other BH C-terminal hinge substitutions conferred in vivo 

phenotypes consistent with the altered transcriptional activities in Mja RNAP (Figure 2-

13F), and we directly confirmed the altered activity of T834 variants in vitro (Figure 2-

14A). In contrast, substitutions in M818, a predicted BH N-terminal hinge, showed 

defects deviating from expected conservation of function. M818P caused lethality, and 

could not be suppressed by any tested TL variants, precluding us from classifying it 

(Figure 2-13A). Furthermore, M818S and M818Y, although viable, did not confer any 
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clear phenotypes (Figure 2-13F). Therefore, we further assessed the functional interplay 

between BH and TL by double mutant analyses, including BH variants (M818S/Y, 

T834A/P) and TL substitutions covering a range of altered transcriptional activities 

(Figure 2-14B-E). Notably, the GOF BH variant T834P, along with M818S and M818Y, 

were mutually suppressive with biochemically strong LOF TL variants (Figure 2-

14B,C,E), revealing both additive behavior between BH and TL for some combinations, 

and cryptic phenotypes for M818S/Y in others. The LOF BH variant T834A also 

suppressed GOF TL variants (Figure 2-14D). However, the additive interactions 

(exacerbation, synthetic lethality) we observed for GOF BH and TL double mutants 

were in contrast to the epistasis for Mja RNAP59. 

 

Multiple lines of evidence suggested additional, specific defects exist in BH mutants, 

beyond simple cooperation with the TL. First, M818P lethality could not be suppressed 

by any tested TL variants (Figure 2-13), which cover a wide range of transcriptional 

activities. Second, suppression between BH and TL mutants of different biochemical 

classes (GOF/LOF) was partial and not as strong as the previously observed intra-TL 

suppression. Third, GOF M818S, M818Y and T834P variants appeared to exhibit 

activity-dependent genetic interactions with TL variants. BH GOF variants suppressed 

strong LOF TL variants Q1078S and H1085Y but failed to suppress, or even 

exacerbated slightly LOF TL variants H1085Q and F1086S (Figure 2-14B, C, E), 

consistent with conditional epistasis, where GOF activity of BH variants can suppress 

either specific TL variants or otherwise exert their effects in specific contexts. Finally, 



 

 97 

recent modeling studies predicted that the BH residue Y836 assists Pol II forward 

translocation255 by interacting with the DNA:RNA hybrid. Y836A/H conferred GalR 

phenotypes, consistent with LOF and compromised translocation (Figure 2-13F). 

Notably, GOF T834P was suppressed by Y836A/H (Figure 2-14E, Figure 2-15B), 

consistent with T834P conferring a TL-independent fast translocation defect, 

suppressible by Y836A/H. 

 

 
Figure 2-13. Construction and transcription-related phenotypes of TL and BH variants. 
(A-E) Complementation ability of the indicated TL variants, BH single variants M818P (A), M818S (B), 
M818Y (C), T834A (D), T834P (E) and the corresponding double/triple mutants were determined by 
plasmid shuffling assays.  
(F) Transcription-linked phenotypes of BH single-substituted mutants. M818S and M818Y are 
substitutions in a predicted BH N-terminal hinge; others are substitutions in predicted BH C-terminal 
hinge positions or additional C-terminal substitutions.  
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Figure 2-14. Functional interplay between the TL and Bridge Helix (BH). 
(A) Maximal in vitro elongation rates (nucleotides/second) of BH variants T834A and T834P. 
(B) Genetic interactions between BH M818S and TL substitutions. M818S suppressed (yellow lines) the 
strong LOF TL variants (dark blue) but not the slight and moderate LOF TL variants (light blue), and 
showed synthetic sickness (red lines) with the GOF TL variants (green). 
(C) Genetic interactions between BH M818Y and TL substitutions. Similar to M818S genetic interactions 
with TL variants (Figure 2-14B), M818Y suppressed (yellow lines) the strong LOF TL variants (dark blue) 
but not the slight and moderate LOF TL variants (light blue), and showed synthetic sickness (red lines) 
with GOF TL variants (green). 
(D) Genetic interactions between BH T834A and TL substitutions. T834A suppressed (yellow lines) the 
GOF TL variants and was synthetic lethal with all the tested LOF TL variants (blue).  
(E) Genetic interactions between BH T834P and TL or BH. Similar to M818 variants (Figure 2-14B, C), 
T834P suppressed the strong and moderate LOF TL variants (dark blue) but was synthetic sick with weak 
LOF TL variants (light blue), while synthetically lethal with GOF TL variants (green). T834P was also 
suppressed (yellow line) by two LOF BH mutants Y836A/H. 
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Figure 2-15. Genetic interactions of BH T834 and TL mutants on transcription-related phenotypes. 
Genetic interactions between TL variants and the BH variants T834A (A), T834P (B) were assessed by 
standard plate phenotyping of transcription-related phenotypes. Additional genetic interactions between 
T834P (GOF) and two LOF BH mutants (Y836A) and Y836H are included in (B). 
  



 

 100 

 

Context dependence of TL function 

We previously observed that E1103G, a GOF allele in Sce Pol II, caused LOF in Pol I, 

highlighting divergent contributions of active site residues in different enzymatic 

contexts56. We also observed that the Pol I TL56 and L1081M (this study) were 

functionally impaired in the Pol II context. We next sought to determine the functional 

compatibility of other evolutionary TL variants in the Sce Pol II context, using our 

fitness and phenotypic landscape (Figure 2-16). Most tested evolutionary TL variants 

did not confer fitness defects, with several exceptions (Figure 2-16A). Furthermore, 

some variants, although compatible for general growth, conferred transcription-related 

phenotypes and could be further classified by our phenotypic landscape (Figure 2-16B). 

These observations further suggest that the evolution of TL function is shaped by likely 

epistasis between the TL and proximal domains. 

 

We next asked what substitutions might underlie the large difference in compatibility of 

the Sce Pol I TL (versus the Sce Pol III TL) within Pol II56. From our phenotypic 

landscape, although many individual Sce Pol I and Pol III TL substitutions appeared to 

be compatible, functionally impairing variants were identified (Figure 2-16B). The yeast 

Pol III TL contains Pol II GOF (A1076G) and LOF (N1082K) variants, both of which 

hypothetically could be mutually suppressive, resulting in close to WT activity in the Pol 

II context56. The Pol I TL contains three Pol II LOF substitutions (V1089H, A1090G and 

S1091A). The net incompatibility of Pol I TL is consistent with additive defects of the 
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three LOF variations, given that most TL LOF combinations show additive effects31. 

Since three evolutionarily observed variants with LOF phenotypes were all localized in 

the TL tip, we examined the difference between Pol I and Pol II structures for the TL tip 

proximal domains42,256. The Pol I funnel helix appears to impose less constraint than the 

Pol II funnel helix (Figure 2-16C), suggesting that Pol I controls its TL with a distinct 

network of interactions. In all, our mutational data, together with the recent Pol I crystal 

structure, reveal enzyme-specific mechanisms to control a highly conserved domain at 

the heart of eukaryotic transcription. 

 

 
Figure 2-16. Phenotypic analyses of evolutionary variants suggest context-dependent functions for 
many TL residues. 
(A) General growth fitness defects of the TL single-substituted variants observed in the TL across Pol I, II, 
III evolution including 38 Pol II, 42 Pol I and 42 Pol III amino acid variants relative to Sce Pol II. 
(B) Evolutionary TL variants in three mutant classes from the TL phenotypic landscape (Figure 2-9A, B). 
Existing variants from Sce Pol I are colored in blue, and existing variants from Sce Pol III are colored in 
red. Sce Pol I has three substitutions (V1089H, A1090G and S1091A) that cause LOF in the Pol II context; 
Sce Pol III has one substitution (A1076G) classified as GOF and one substitution (N1082K) classified as 
LOF. 
(C) Difference in positioning of funnel helices (relative to TL) in Pol I and Pol II. Cartoon representation 
of TL/funnel helices from Pol I and Pol II are shown in cyan and yellow, respectively (PDB: 5C4J and 
2VUM). 
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Discussion 

The ability of the TL to fold into multiple conformations and the dynamic conversion 

between these states are critical for its functions. Previous studies from us and others 

demonstrate that TL function is delicately balanced, such that perturbations result in 

either increased or decreased catalytic activity and altered translocation dynamics. 

Distinct consequences for transcriptional activity manifest in vivo as what we term LOF 

and GOF phenotypes. In this study, we have advanced our genetic framework with 

which to dissect Pol II mechanisms. From our phenotypic landscape, we assessed the 

functional contributions of almost all TL residues to fitness in S. cerevisiae under 

multiple conditions. Our data indicate that both intra-TL interactions and TL interactions 

with nearby domains (e.g. BH and funnel helices) are critical for TL function. This 

conclusion is also supported by recent work on Rpb9 organizing the TL indirectly 

through an Rpb1 TL-adjacent α-helix 21 (one of the funnel helices, discussed below)66, 

interactions between the TL and F-loop regions in bacteria49, and predictions of TL-

proximal variants as GOF from our previous pEMAP analysis19 (validated in this study). 

Our system allows efficient analysis of a large number of variants to evaluate 

accumulating computational25,30,39,40 and structural21,24,42,44 predictions for interactions 

within the TL and from without.  

 

The major function of the TL is to link substrate recognition to catalysis, while it is also 

proposed to gate translocation such that translocation probability is linked to 

phosphodiester bond formation. Critical to this recognition is that a substrate be 
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positioned correctly by base-pairing to the DNA template, and that the 2’-OH allows 

NTPs to be selected over 2’-dNTPs by the TL residue Q107824,45,229. We have proposed 

that the Q1078-substrate interaction releases the adjacent M1079 from its intra-TL 

hydrophobic pocket to trigger TL closing42. In this study, we find a great number 

of variants within the pocket residues A1076, M1079, G1097, L1101 to cause GOF 

phenotypes, providing evidence that disruption of the hydrophobic pocket destabilizes 

the open, inactive TL state. Additionally, while the TL shows incredibly high 

evolutionary conservation for a number of residues, prior work indicated alteration of 

ultra-conserved residues (e.g. E1103 in Pol II, E1224 in Pol I) in different RNA 

polymerases could have distinct effects, suggesting the importance of the evolved 

context within each enzyme28,31,56. Here, we evaluate many evolutionarily observed 

eukaryotic TL variants in the Sce Pol II system, and discover a number of functionally 

impaired TL variants. Our results highlight that TL proximal domains may impose 

constraint and also allow functional diversification in the molecular evolution of the 

highly conserved TL by epistatic interactions. 

 

One example of a proximal region, the so-called “funnel helices” (Rpb1 α-20 and α-21) 

or “rim helices” in the bacterial RNAP literature, shows both evolutionary conservation 

and functional diversification. Funnel helices are both surface exposed and proximal to 

the TL42,257. Multiple pieces of evidence from three mutations in α-21 suggest roles for 

funnel helices in controlling TL function. One, the C4 allele of Drosophila melanogaster, 

corresponding to R726H in Sce Rpb1, confers a slow elongation rate in both Drosophila 
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(in vitro) and human Pol II enzymes (in cells)258,259. The molecular mechanism of this 

allele is not currently known, but based on another α-21 substitution (G730D) identified 

in yeast, we would speculate C4 enzymes have altered TL dynamics. G730D was 

identified in yeast twice, in independent genetic screens260-262. rpb1-G730D is 

catalytically slow263, confers a severe growth defect but can be suppressed by a GOF 

mutant, rpb9∆66,260. In fact, rpb1-G730D behaves as if it is incompatible with Rpb966. 

Recent work from the Peterson lab strongly supports a model where Rpb9 normally 

coordinates a loop of Rpb1 – the “anchor loop” – to appropriately interact with the TL66. 

When Rpb9 is removed, anchor loop-TL interactions are disrupted, and the open 

conformation of the TL is destabilized. In rpb1-G730D, structural perturbations are 

proposed to alter Rpb9-Rpb1 interactions such that they interfere with the TL, therefore 

rpb1-G730D is incompatible with Rpb9. Removal of Rpb9 or alteration of specific Rpb9 

residues that organize the Rpb1 anchor loop relieve the incompatibility between rpb1-

G730D and the TL. Third, we previously identified rpb1-S713P, a substitution just 

proximal to the anchor loop (between α-20 and α-21), as conferring gene expression, 

genetic interaction, and initiation phenotypes indistinguishable from GOF TL mutants19. 

Here we show that rpb1-S713P also confers increased biochemical activity, similar to 

both TL GOF alleles and anchor loop GOF alleles. We propose that rpb1-S713P, 

through constraints of the proline on structure, alters the anchor loop and therefore TL 

dynamics. It is conceivable, given that the secondary channel and funnel helices are 

accessible to factors, factor binding might also be communicated to the TL from distal 

sites. In addition to the three previously identified mutants, we utilized a new set of TL 
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mutants to assess genetic interactions between the TL and the funnel helix α-21, and 

discover epistasis between K1093M (TL) and phenotypically inert E712A/R (funnel 

helix), along with multiple allele specific genetic interactions (Figure 2-10D). We have 

suggested a more relaxed control mechanism in the Pol I compared to Pol II (Figure 2-

16C). Taken together, funnel helices may serve as a regulatory hotspot for direct or 

allosteric control of the Pol II active site through the TL. While structurally conserved, 

evolutionary diversification of sequence may allow distinct interactions with the TL in 

different msRNAPs. 

  

The characterization of the unexpectedly healthy H1085L variant clouds the issue of 

how H1085 functions in substrate selection and catalysis. H1085 interacts with the 

substrate NTP through salt bridge and hydrogen bond24, and previous simulations with 

limiting H1085 variants predicted the hydrogen bonding to be critical for maintaining 

substrate interaction30. The discovery of H1085L argues that productive substrate 

interactions may be supported by entirely different chemistry, although we cannot rule 

out the possibility that H1085L redirects substrate interactions to an alternative residue. 

Furthermore, H1085 variants may have multiple defects in NAC, such as substrate 

selection28, catalysis28,52, intrinsic cleavage52 and PPi release36,37, and whether or not 

H1085 or analogous residues act as a general acid remains controversial in different 

RNAPs24,46,51,52,229. Function of H1085L in all of these steps remains to be determined, 

but the H1085L phenotype suggests that function of H1085 as a general acid may be 

entirely bypassed.�
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The established TL phenotypic landscape can be further explored to study intra- and 

inter-TL epistasis. First, whether individual TL residues work collaboratively or 

independently to ensure balanced TL dynamics and proper function is an open question. 

Some TL residues can be functionally overlapping and act at similar steps, or 

functionally discrete, acting at distinct steps. For example, combination of LOF 

mutations in Q1078, N1082 and a TL-proximal residue N479 resulted in non-additive 

genetic interaction, suggesting functionally overlapping roles for these residues. In 

contrast, combination of variants from Q1078 (or N1082) and H1085 resulted in 

exacerbation or synthetic lethality, suggesting independent functions31. Coupled with 

structures of partially folded TL states, these genetic studies support the functional 

distinction between NIR residues and a multi-step TL folding model for the promotion 

of catalysis31. Here, we have identified many more predicted GOF and LOF TL variants 

(Figure 2-9B), some of which are predicted to confer epistatic interactions (e.g. F1086 

and V1089). We expect the phenotypic landscape of a multiply-substituted TL library to 

be extremely informative for understanding functional relationship between TL residues. 

 

Second, the TL phenotypic landscape is an extremely sensitive readout for assessing 

active site re-arrangement. Transcription is under control by many factors, some of 

which may alter the Pol II active site conformations, though few studies directly address 

these possibilities. Initiation factors and Pol II TL mutants confer similar alterations in 

transcription start site selection, consistent with initiation factors functioning through the 
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Pol II active site and altering the efficiency of Pol II catalysis during initiation19,52,264. 

Furthermore, TL may communicate with other Pol II sites, such as the RNA exit channel 

or clamp domain63, or in direct competition with external factors, such as TFIIS67. 

Perturbations of this communication may alter TL dynamics and cause allele-specific 

genetic interactions (Figure 2-10 and 2-14). Specifically, an external perturbation by a 

relevant factor or Pol II TL distant domain may show epistasis or synergy only with 

specific TL alleles of a class (either LOF or GOF), whereas a non-interacting factor may 

not. Finally, similar perturbation of the TL phenotypic landscape by different factors 

would suggest functional similarity between them, thus clustering of phenotypic 

landscape changes upon different perturbations is expected to provide valuable insight. 

 

The TL phenotypic landscape, along with our previous work31, illustrates a strategy of 

utilizing in vivo genetic reporters or stress response profiles to distinguish a large 

number of mutants with distinct in vivo defects. As discussed above, the phenotypic 

landscape sheds light on functional contribution of TL residues to its dynamics, to the 

mechanism of catalysis and to the evolutionary constraints of the TL sequence and 

function. The phenotypic landscape strategy expands the current scope of existing deep 

mutational scanning studies235-238, and can be generalized to study most, if not all, of the 

yeast proteins. 
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Materials and methods 

Yeast strains, media and plasmids 

All yeast strains are derived from a GAL2+ derivative of S288C265. Genotypes and 

phenotypes of the yeast strains are listed in Table 2-2 and as reported266. Standard yeast 

media and the media for assessing established transcription-related phenotypes are as 

described previously31. For studies with 15 mM caffeine (Sigma), 150 mM hydroxyurea 

(Sigma), 5 mM and 15 mM MnCl2 (Sigma), 0.5 M NaCl (EMD), 3% formamide (JT 

Baker), 6% ethanol (KOPTEC), 0.07 µg/mL cycloheximide (Sigma), 10 mM HCl 

(EMD), 10 mM NaOH (EMD), 10 µg/mL benomyl (Sigma), each compound was added 

to the minimal SC-Leucine (SC-Leu) medium at the indicated concentration from 

concentrated stock solutions. 

 
 
 
Table 2-2. Yeast strains used in chapter II 

Strain 
Number Genotype Mating 

Type 

CKY283 

MATa ura3-52 his3∆200 leu2∆1 or ∆0 trp1∆63 
met15∆0 lys2-128∂ gal10∆56 

rpb1∆::CLONATMX RPB3::TAP::KlacTRP1 
[pRP112 RPB1 URA3 CEN] 

a 

CKY1343 

ura3-52 his3∆200 leu2∆1 or ∆0 trp1∆63 
met15∆0 lys2-128∂ gal10∆56 

rpb1∆::CLONATMX RPB3::TAP::KlacTRP1 
pmr1∆::hphmx [pRP112 RPB1 CEN URA3] 

a 
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Detailed description of plasmids is in Table 2-3, and complete sequences of plasmids 

are available upon request. For studies involving individual analyses of Pol II mutants, 

site-directed mutagenesis was performed via the Quickchange strategy from Stratagene. 

All mutagenized regions have been verified by sequencing before sub-cloning into 

pRS315-derived plasmids, as previously described31.  

 

Genetic and biochemical analyses of individual Pol II mutants 

Phenotypic analyses of individual Pol II mutants were performed by plasmid shuffling 

assays, with viable mutants further subjected to standard plate phenotyping. Each mutant 

in a pRS315-derived plasmid (CEN LEU2) was transformed into CKY283 

(rpb1∆::CLONATMX, pRP112 RPB1 CEN URA3). Transformants (Leu+) were patched 

on SC-Leu plates and subsequently replica plated to SC-Leu+5FOA (1mg/mL) to assay 

complementation ability upon loss of the RPB1 CEN URA3 plasmid. Experimental 

details are as previously described28,31. Saturated cultures from single colonies of viable 

and shuffled Pol II mutants were subject to 10-fold serial dilution and spotting on 

indicated phenotyping media, as described in various previous reports28,31.  
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Table 2-3. Plasmids used in chapter II  

Mutant Plasmid 
number 

Substituting 
Domain Viability Derivation of the mutants 

WT (URA3) pCK250 
(pRP112) N.A. Viable N.A. 

WT pCK859 N.A. Viable N.A. 

TL∆ Rpb1 pCK892 TL Inviable N.A. 

A1076T pCK968 TL Viable Sub-cloned from 
previous screening 

Q1078A pCK935 TL Inviable Site-directed mutagenesis 

Q1078S pCK863 TL Viable Site-directed mutagenesis 

M1079R pCK872 TL Viable Site-directed mutagenesis 

N1082A pCK885 TL Inviable Site-directed mutagenesis 

N1082S pCK886 TL Viable Site-directed mutagenesis 

F1084I pCK955 TL Viable Sub-cloned from 
previous screening 

H1085A pCK861 TL Inviable Site-directed mutagenesis 

H1085Q pCK887 TL Viable Site-directed mutagenesis 

H1085Y pCK870 TL Viable Site-directed mutagenesis 

F1086S pCK871 TL Viable Sub-cloned from 
previous screening 

G1097D (with silent 
mutation) pCK867 TL Viable Sub-cloned from 

previous screening 

L1101S pCK864 TL Viable Sub-cloned from 
previous screening 

E1103G pCK960 TL Viable Sub-cloned from 
previous screening 

Q1078A/E1103G pCK947 TL Viable Site-directed mutagenesis 

N1082A/E1103G pCK897 TL Viable Site-directed mutagenesis 

F1084I/E1103G pCK952 TL Inviable Site-directed mutagenesis 

H1085A/E1103G pCK899 TL Viable Site-directed mutagenesis 
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Table 2-3. Continued 

Mutant Plasmid 
number 

Substituting 
Domain Viability Derivation of the mutants 

S713P pCK866 Funnel helix Viable Sub-cloned from 
previous screening 

I1327V pCK610 Other Rpb1 
domains Viable Sub-cloned from 

previous screening 

A1087G pCK1730 TL Inviable Site-directed mutagenesis 

G1088A pCK1731 TL Inviable Site-directed mutagenesis 

A1087G/G1088A pCK1732 TL Inviable Site-directed mutagenesis 

A1087V pCK1733 TL Viable Site-directed mutagenesis 

G1088V pCK1734 TL Inviable Site-directed mutagenesis 

L1081M pCK1735 TL Viable Site-directed mutagenesis 

L1081P pCK1736 TL Inviable Site-directed mutagenesis 

H1085L pCK1748 TL Viable Site-directed mutagenesis 

M818P pCK1089 BH Inviable Site-directed mutagenesis 

M818S pCK1165 BH Viable Site-directed mutagenesis 

M818Y pCK1164 BH Viable Site-directed mutagenesis 

T834A pCK910 BH Viable Site-directed mutagenesis 

T834P pCK1087 BH Viable Site-directed mutagenesis 

Y836A pCK1899 BH Viable Site-directed mutagenesis 

Y836H pCK1901 BH Viable Site-directed mutagenesis 

Y836F pCK1903 BH Viable Site-directed mutagenesis 

R839A pCK1904 BH Viable Site-directed mutagenesis 

R840A pCK1905 BH Viable Site-directed mutagenesis 

V842A pCK1906 BH Viable Site-directed mutagenesis 
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Table 2-3. Continued 

Mutant Plasmid 
number 

Substituting 
Domain Viability Derivation of the mutants 

K843A pCK1907 BH Viable Site-directed mutagenesis 

K843N pCK1908 BH Viable Site-directed mutagenesis 

M818P/H1085Y pCK1117 BH/TL Inviable Site-directed mutagenesis 

M818P/F1086S pCK1118 BH/TL Inviable Site-directed mutagenesis 

M818P/F1084I pCK1119 BH/TL Inviable Site-directed mutagenesis 

M818P/E1103G pCK1120 BH/TL Inviable Site-directed mutagenesis 

M818S/Q1078A pCK1868 BH/TL Inviable Site-directed mutagenesis 

M818S/H1085A pCK1869 BH/TL Viable Site-directed mutagenesis 

M818S/N1082A pCK1870 BH/TL Viable Site-directed mutagenesis 

M818S/H1085Y pCK1871 BH/TL Viable Site-directed mutagenesis 

M818S/Q1078S pCK1872 BH/TL Viable Site-directed mutagenesis 

M818S/N1082S pCK1873 BH/TL Viable Site-directed mutagenesis 

M818S/H1085Q pCK1874 BH/TL Viable Site-directed mutagenesis 

M818S/Q1078A/E1103G pCK1875 BH/TL Viable Site-directed mutagenesis 

M818S/H1085A/E1103G pCK1876 BH/TL Viable Site-directed mutagenesis 

M818S/F1086S pCK1877 BH/TL Viable Site-directed mutagenesis 

M818S/N1082A/E1103G pCK1878 BH/TL Inviable Site-directed mutagenesis 

M818S/F1084I pCK1879 BH/TL Viable Site-directed mutagenesis 

M818S/E1103G pCK1880 BH/TL Viable Site-directed mutagenesis 

M818Y/Q1078A pCK1881 BH/TL Inviable Site-directed mutagenesis 

M818Y/H1085A pCK1882 BH/TL Viable Site-directed mutagenesis 
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Table 2-3. Continued 

Mutant Plasmid 
number 

Substituting 
Domain Viability Derivation of the mutants 

M818Y/N1082A pCK1883 BH/TL Viable Site-directed mutagenesis 

M818Y/H1085Y pCK1166 BH/TL Viable Site-directed mutagenesis 

M818Y/Q1078S pCK1884 BH/TL Viable Site-directed mutagenesis 

M818Y/N1082S pCK1885 BH/TL Viable Site-directed mutagenesis 

M818Y/H1085Q pCK1886 BH/TL Viable Site-directed mutagenesis 

M818Y/Q1078A/E1103G pCK1887 BH/TL Viable Site-directed mutagenesis 

M818Y/H1085A/E1103G pCK1888 BH/TL Viable Site-directed mutagenesis 

M818Y/F1086S pCK1167 BH/TL Viable Site-directed mutagenesis 

M818Y/N1082A/E1103G pCK1889 BH/TL Viable Site-directed mutagenesis 

M818Y/F1084I pCK1169 BH/TL Viable Site-directed mutagenesis 

M818Y/E1103G pCK1168 BH/TL Viable Site-directed mutagenesis 

T834A/Q1078A pCK1403 BH/TL Inviable Site-directed mutagenesis 

T834A/H1085A pCK1399 BH/TL Inviable Site-directed mutagenesis 

T834A/N1082A pCK1411 BH/TL Inviable Site-directed mutagenesis 

T834A/H1085Y pCK1408 BH/TL Inviable Site-directed mutagenesis 

T834A/Q1078S pCK1400 BH/TL Inviable Site-directed mutagenesis 

T834A/N1082S pCK1401 BH/TL Inviable Site-directed mutagenesis 

T834A/H1085Q pCK1402 BH/TL Inviable Site-directed mutagenesis 

T834A/Q1078A/E1103G pCK1406 BH/TL Inviable Site-directed mutagenesis 

T834A/H1085A/E1103G pCK1405 BH/TL Inviable Site-directed mutagenesis 

T834A/F1086S pCK1407 BH/TL Inviable Site-directed mutagenesis 
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Table 2-3. Continued 

Mutant Plasmid 
number 

Substituting 
Domain Viability Derivation of the mutants 

T834A/N1082A/E1103G pCK1404 BH/TL Viable Site-directed mutagenesis 

T834A/F1084I pCK1409 BH/TL Viable Site-directed mutagenesis 

T834A/E1103G pCK1410 BH/TL Viable Site-directed mutagenesis 

T834A/F1084I/E1103G pCK1112 BH/TL Inviable Site-directed mutagenesis 

T834P/Q1078A pCK1890 BH/TL Inviable Site-directed mutagenesis 

T834P/H1085A pCK1891 BH/TL Inviable Site-directed mutagenesis 

T834P/N1082A pCK1892 BH/TL Inviable Site-directed mutagenesis 

T834P/H1085Y pCK1113 BH/TL Viable Site-directed mutagenesis 

T834P/Q1078S pCK1893 BH/TL Viable Site-directed mutagenesis 

T834P/N1082S pCK1894 BH/TL Viable Site-directed mutagenesis 

T834P/H1085Q pCK1895 BH/TL Viable Site-directed mutagenesis 

T834P/Q1078A/E1103G pCK1896 BH/TL Viable Site-directed mutagenesis 

T834P/H1085A/E1103G pCK1897 BH/TL Inviable Site-directed mutagenesis 

T834P/F1086S pCK1114 BH/TL Viable Site-directed mutagenesis 

T834P/N1082A/E1103G pCK1898 BH/TL Inviable Site-directed mutagenesis 

T834P/F1084I pCK1115 BH/TL Inviable Site-directed mutagenesis 

T834P/E1103G pCK1116 BH/TL Inviable Site-directed mutagenesis 

T834P/Y836A pCK1900 BH Viable Site-directed mutagenesis 

T834P/Y836H pCK1902 BH Viable Site-directed mutagenesis 

G1097E pCK1737 TL Viable Site-directed mutagenesis 

G1097D pCK1738 TL Viable Site-directed mutagenesis 
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Table 2-3. Continued 

Mutant Plasmid 
number 

Substituting 
Domain Viability Derivation of the mutants 

S1091A pCK1749 TL Viable Site-directed mutagenesis 

S1091E pCK1756 TL Viable Site-directed mutagenesis 

S1091C pCK1750 TL Viable Site-directed mutagenesis 

K1092A pCK1751 TL Viable Site-directed mutagenesis 

K1092D pCK1752 TL Viable Site-directed mutagenesis 

K1093M pCK1755 TL Viable Site-directed mutagenesis 

D716A pCK1747 Funnel helix Viable Site-directed mutagenesis 

D716K pCK2221 Funnel helix Viable Site-directed mutagenesis 

E712A pCK1740 Funnel helix Viable Site-directed mutagenesis 

E712R pCK1741 Funnel helix Viable Site-directed mutagenesis 

E1307A pCK1742 TL tip proximal Viable Site-directed mutagenesis 

E1307S pCK1743 TL tip proximal Viable Site-directed mutagenesis 

E1307K pCK1744 TL tip proximal Viable Site-directed mutagenesis 

R1281A pCK1745 TL tip proximal Viable Site-directed mutagenesis 

R1281E pCK1746 TL tip proximal Viable Site-directed mutagenesis 

D716A/S1091A pCK1757 Funnel helix/TL Viable Site-directed mutagenesis 

D716A/S1091E pCK1759 Funnel helix/TL Viable Site-directed mutagenesis 

D716A/S1091C pCK1761 Funnel helix/TL Viable Site-directed mutagenesis 

D716A/K1092A pCK1769 Funnel helix/TL Viable Site-directed mutagenesis 

D716A/K1092D pCK1777 Funnel helix/TL Viable Site-directed mutagenesis 

D716A/K1093M pCK1785 Funnel helix/TL Viable Site-directed mutagenesis 
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Table 2-3. Continued 

Mutant Plasmid 
number 

Substituting 
Domain Viability Derivation of the mutants 

D716K/S1091A pCK2224 Funnel helix/TL Viable Site-directed mutagenesis 

D716K/S1091E pCK2239 Funnel helix/TL Viable Site-directed mutagenesis 

D716K/S1091C pCK2225 Funnel helix/TL Viable Site-directed mutagenesis 

D716K/K1092A pCK2226 Funnel helix/TL Viable Site-directed mutagenesis 

D716K/K1092D pCK2227 Funnel helix/TL Viable Site-directed mutagenesis 

D716K/K1093M pCK2228 Funnel helix/TL Viable Site-directed mutagenesis 

E712A/K1092A pCK1771 Funnel helix/TL Viable Site-directed mutagenesis 

E712A/K1092D pCK1779 Funnel helix/TL Viable Site-directed mutagenesis 

E712A/K1093M pCK1787 Funnel helix/TL Viable Site-directed mutagenesis 

E712R/K1092A pCK1772 Funnel helix/TL Viable Site-directed mutagenesis 

E712R/K1092D pCK1780 Funnel helix/TL Viable Site-directed mutagenesis 

E712R/K1093M pCK1788 Funnel helix/TL Viable Site-directed mutagenesis 

E1307A/K1092A pCK1775 TL tip 
proximal/TL Viable Site-directed mutagenesis 

E1307A/K1092D pCK1783 TL tip 
proximal/TL Viable Site-directed mutagenesis 

E1307A/K1093M pCK1791 TL tip 
proximal/TL Viable Site-directed mutagenesis 

E1307K/K1092A pCK1776 TL tip 
proximal/TL Viable Site-directed mutagenesis 

E1307K/K1092D pCK1784 TL tip 
proximal/TL Viable Site-directed mutagenesis 

E1307K/K1093M pCK1792 TL tip 
proximal/TL Inviable Site-directed mutagenesis 

R1281A/K1092A pCK1773 TL tip 
proximal/TL Viable Site-directed mutagenesis 

R1281A/K1092D pCK1781 TL tip 
proximal/TL Viable Site-directed mutagenesis 
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Table 2-3. Continued 

Mutant Plasmid 
number 

Substituting 
Domain Viability Derivation of the mutants 

R1281A/K1093M pCK1789 TL tip 
proximal/TL Viable Site-directed mutagenesis 

R1281E/K1092A pCK1774 TL tip 
proximal/TL Viable Site-directed mutagenesis 

R1281E/K1092D pCK1782 TL tip 
proximal/TL Viable Site-directed mutagenesis 

R1281E/K1093M pCK1790 TL tip 
proximal/TL Viable Site-directed mutagenesis 
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Pol II enzymes were purified via a tandem-affinity tag (TAP) protocol derived from 267 

with modifications described in 28. Transcription elongation reactions were performed 

with Pol II elongation complexes assembled on a nucleic acid scaffold, in a procedure 

described in 28 with slight modifications in the amount of Pol II and nucleic acids as 

described in 42. For each enzyme, elongation assays were performed with 25 µM, 125 

µM, 500 µM and 750 µM NTPs (each of ATP, GTP, CTP, UTP), and maximal 

elongation rates were extracted exactly as previously described28.  

 

ADH1 transcription start site selection was analyzed by primer extension. In brief, 

indicated strains were grown in YPD until mid-log phase (~1×107 cells/mL), and diluted 

with YPD with 10mM MnCl2 or equal volume of H2O. Total RNA was extracted as 

described268, and 30 µg of total RNA was subject to primer extension analysis, following 

a protocol derived from 269 with modifications described in 31. 

 

High-throughput phenotypic analyses of the TL variants library 

The TL variant library was synthesized by Sloning Biotechnology (now MorphoSys) 

with well-characterized TL variants excluded (specified in Figure 2-1B) using a 

building block approach239,240. The TL variant library was transformed into CKY283 via 

a gap-repair strategy as previously described19. In brief, the amplified TL variant library 

with flanking sequence was transformed into CKY283 together with a linearized 

pRS315-derived plasmid (CEN LEU2) containing rpb1 deleted for the TL (TL∆) and 

linearized at the deletion junction, allowing in vivo homologous recombination. 
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Homologous recombination produces a library of complete rpb1 genes containing TL 

variants. The gap-repaired TL variants (Leu+) were titered and plated at 200-300 

colonies per plate to reduce inter-colony growth competition, and Leu+ colonies were 

first replica-plated to SC-Leu+5FOA (1mg/mL), and subsequently to additional selective 

and control media. Three independent biological replicate screens were performed. In 

each replicate, we pooled 6000 to 12000 colonies. Each cell pool was subjected to 

genomic DNA extraction and TL amplification by emulsion PCR. Amplification of the 

TL region was performed using Micellula DNA Emulsion & Purification (ePCR) Kit 

(Chimerx) per manufacturer’s instructions. To minimize amplification bias, each sample 

was amplified in a 15-cycle ePCR reaction, purified and subject to additional 13-15 

cycle scale-up ePCR reactions. The two-step ePCR amplification protocol ensured 

sufficient yield of DNA for NGS sequencing while minimizing perturbation of the allele 

distribution in the DNA pool. The amplified samples were subject to Illumina HiSeq 

2500 sequencing, and on average over 2 million reads were obtained from each replicate 

of a sample, with high reproducibility and minimal perturbation of the mutant 

distribution within the TL variant library (Figure 2-2D). 

 

Allele frequency was subsequently measured by deep sequencing of the TL amplicons. 

All the sequencing data (FASTQ format) for the reported analyses are deposited and 

available under the NCBI bioproject PRJNA340979. To identify the mutations that were 

present for each set of paired-end reads, a codon-based alignment algorithm was 

developed to align each paired-end read set in which the overlapping substrings from 
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both flanking regions agreed perfectly to the WT sequence. The purpose of our approach 

was to identify real variants using an expected set of mutant codons used in the 

programmed library synthesis from sequencing errors. A dynamic programming 

algorithm was applied so that an exact match of three letters was assigned a positive 

score, a mismatch of at least one letter in a codon was assigned a negative score, and the 

insertion or deletion of either one, two or three letters was assigned a constant negative 

score. The allele frequency was subsequently calculated from the mapped reads, and the 

phenotypic score of each TL variant was calculated by allele frequency change 

(normalized to WT) under each condition, as below: 

 

" = log "'(),+,-,
"'(),(.+,-, − log	 "1),+,-,

"1),(.+,-,  

 

Mutants with less than 200 reads in the transformed pool (SC-Leu) and allele frequency 

changes assessed from less than 50 reads from both conditions were excluded from 

further analyses. Median values from three independent biological replicates were used 

for fitness and phenotype scoring. Fitness score cutoff for lethality was estimated based 

on fitness scores (on SC-Leu and 5FOA) of 163 known viable TL and 16 known lethal 

mutants. Hierarchical clustering for generating phenotypic landscape was performed by 

Gene Cluster 3.0 using centered correlation270. Figures displaying structural information 

were generated using Pymol (https://www.pymol.org/). 
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Evolutionary analyses 

Eukaryotic RNA polymerase large subunit sequences were obtained from BLAST using 

Sce Rpb1 (Pol II), Sce Rpa190 (Pol I), and Sce Rpo31 (Pol III) sequences as queries. 

Sequences were assigned to Pol I, II, or III based on highest similarity when compared to 

each of the three query sequences, with prokaryotic sequences further filtered out. 

Multiple sequence alignments (MSAs) were generated by first applying CD-HIT271 to 

cluster sequences so that the identity between sequences in different clusters was less 

than 90%, then applying MUSCLE272 to obtain an alignment that contains one 

representative sequence from each cluster. The TL conservation score was generated 

using Jalview 2.8 version 14.0247 and plotted as a heatmap using Gene-E 

(http://www.broadinstitute.org/cancer/software/GENE-E/index.html).�
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CHAPTER III  

MODE OF ACTION OF THIOLUTIN 

 

Overview 

Thiolutin is a well-known and routinely used transcription inhibitor with an unresolved 

mode of action. Recent studies have identified Zn2+-chelation activity for both thiolutin 

and the related dithiolopyrrolone holomycin, and have appeared to rule out direct 

inhibition of RNA polymerases as a mode of action. However, negative results for direct 

transcription inhibition of RNA polymerases in this recent work contradicts previously 

observed thiolutin inhibition of yeast RNA polymerases I, II, and III in vitro. Here, we 

present chemical genetic and biochemical approaches to investigate the mode of action 

of thiolutin. We identify diverse classes of mutants that are resistant or sensitive to 

thiolutin. We functionally dissect the multidrug resistance and thioredoxin pathways 

controlling thiolutin sensitivity. We provide evidence that thiolutin causes oxidation of 

thioredoxins in vivo, and suggest that thiolutin induces oxidative stress and alters Zn2+ 

and Cu2+ homeostasis in vivo, recapitulating thiolutin interactions with Zn2+. Finally, our 

results resolve contradictory biochemical results for thiolutin inhibition of transcription 

by direct demonstration of thiolutin inhibition of RNA polymerase II (Pol II) in vitro. 

Inhibitory activity requires both appropriate reduction of thiolutin and the presence of 

Mn2+. Thio/Mn2+ inhibition is abrogated when template DNA is pre-bound to Pol II or 

when excess DTT is present, and renders Pol II pause prone in elongation if initiation is 

bypassed using a pre-melted template and RNA primer. Together, we propose that 
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thiolutin directly inhibits Pol II transcription through a novel mechanism distinct from 

known transcription inhibitors. 

 

Introduction 

Thiolutin is a commonly used transcription inhibitor with possibly multiple modes of 

action. Thiolutin and holomycin are structurally highly similar dithiolopyrrolone 

compounds, which feature an intra-molecular and redox-sensitive disulfide bond210,212. 

Thiolutin has been shown to inhibit bacterial and yeast transcription in vivo, and has 

been used to study mRNA stability in multiple species108-111. However, the mode of 

action of thiolutin for transcription inhibition remains unclear and complicated 

(discussed below). In addition, thiolutin appears to affect multiple cellular pathways, 

including glucose metabolism, mRNA degradation, oxidative stress response, and 

proteasome activity214,223,227,273.  

 

Recent progress has suggested that thiolutin and holomycin appear to be a redox 

sensitive Zn2+ chelator, thus explaining diverse cellular effects212-214. It has been 

demonstrated in vitro that thiolutin and holomycin can be reduced by strong reductants 

DTT or TCEP212,214, and reduced thiolutin and holomycin can chelate Zn2+ 213,214. The 

Zn2+ chelating activity explains multiple thiolutin induced phenotypes, including 

alteration of glucose metabolism and proteasome inhibition through Zn2+ specific 

metalloproteins214,227. In addition, two observations suggest a possible mechanism for 

thiolutin-induced expression of oxidative stress response genes273. First, thiolutin and 
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holomycin appear to be only active when they are reduced, and reduction of thiolutin 

could in turn oxidize the cellular thiolutin reductant or reducing proteins212,213. Second, 

reduced holomycin can be spontaneously oxidized by molecular oxygen, suggesting that 

holomycin may be a redox cycling compound225,226 and cause accumulation of ROS. 

Whether thiolutin can act as a redox cycler has not yet been tested, and the cellular 

reductant for thiolutin or holomycin remain unclear, because glutathione does not reduce 

holomycin in vitro212. Together, the Zn2+ chelating and redox activities are consistent 

with the previously observed diverse thiolutin-induced phenotypes. However, both 

thiolutin and holomycin are inert against RNAPs under conditions where either should 

be able to chelate Zn2+. In light of these negative results, transcription inhibition by 

dithiolopyrrolones was concluded to be a secondary outcome of a distinct target, such as 

the proteasome, which was inhibited by thiolutin through removal of zinc from Rpn11, 

an essential deubiquitinase213,214. 

 

It seems clear that thiolutin inhibits transcription in vivo in multiple species217,221,222, 

though from in vitro studies it has been concluded that it inhibits prokaryotic and 

eukaryotic RNAPs differently. Thiolutin inhibited all three partially purified yeast 

RNAPs in vitro216, but failed to inhibit all tested prokaryotic RNAPs220-222. Similar 

RNAP inhibition in vivo with lack of inhibition in vitro was also observed for 

holomycin164,213. In addition, the recently reported lack of thiolutin inhibition for all 

three fully purified yeast RNAPs adds further confusion214. Together, thiolutin and 

holomycin do not appear to inhibit prokaryotic or fully purified eukaryotic RNAPs, 
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suggesting the in vivo transcription inhibition could be indirect result of other thiolutin or 

holomycin activities. However, without comprehensive assessment of the experimental 

parameters for different transcription assays, it seems difficult to rule out direct 

mechanisms of action for thiolutin on eukaryotic RNAPs, as recent work does not 

satisfactorily explain why thiolutin inhibited all three partially purified yeast RNA 

polymerases in vitro216. 

 

The thiolutin inhibition of partially purified yeast RNA polymerases in vitro appears to 

be specific and is not satisfactorily explained by Zn2+ chelation216. Thiolutin inhibited 

RNAPs prior to template addition, but did not inhibit the template DNA bound 

RNAPs216. This critical order-of-addition requirement for treatment prior to DNA 

addition is reminiscent of RNAP switch region inhibitors’ behavior (reviewed in Chapter 

I)174,187 and is consistent with inhibition of a specific and early step in transcription.  

 

We imagine a number of possibilities to reconcile the existing data. First, thiolutin may 

target a secondary protein, which is present in vivo and in partially purified RNA 

polymerase fractions216 but not others214,220,221. Second, thiolutin may act as a prodrug 

that is activated in vivo and in the early report216 but not in assays used by others214,220,221. 

To further investigate the mode of action of thiolutin, we have undertaken multiple 

chemical genetics and genomics approaches to screen for thiolutin resistant and sensitive 

mutants, as similar studies have contributed to understanding of modes of actions of 

many compounds274-276, including holomycin213. We identify drug efflux pumps 
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functioning in thiolutin resistance, and demonstrate that thiolutin treatment induces 

oxidative stress. We propose that thiolutin likely induces the oxidative stress via 

oxidizing thioredoxins and possibly also redox-cycling. In addition, we confirm that 

reduced thiolutin directly interacts with Zn2+ in vitro, consistent with two very recent 

reports on holomycin and thiolutin using different approaches213,214. We also suggest that 

thiolutin alters cellular Zn2+ homeostasis in yeast, similar to holomycin’s effects in 

E.coli213. 

 

Finally, we have also revisited in vitro biochemical studies with thiolutin and Pol II. We 

find that thiolutin indeed inhibits Pol II but critically requires the presence of small 

amounts of Mn2+, providing an immediate explanation for disparate results across 

studies. First, DNA bound Pol II is resistant to thiolutin inhibition, recapitulating Tipper 

et al.’s early studies216. Second, though thiolutin appears to inhibit a very early step in 

Pol II transcription, when initiation is bypassed by use of specific nucleic acid templates, 

thiolutin-treated Pol II exhibits pause-prone, slow elongation. Third, high DTT reverses 

the thiolutin inhibition, suggesting involvement of disulfide bond or redox chemistry in 

inhibition. We find that thiolutin appears to block initiation in vivo immediately after 

treatment, consistent with Pol II inhibition in vivo being direct. We propose that thiolutin 

inhibits Pol II transcription through a novel mechanism distinct from most of known 

transcription inhibitors.  
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Material and methods 

Yeast strains and reagents 

Yeast strains used are listed in Table 3-1. YAP1 C-terminal tagging with EGFP and gene 

deletion strains were constructed as described277,278. Phenotyping of mutants using plate 

assays were performed as previously described31,266. Chemicals were commercially 

obtained from the following: Cayman Chemical (Thiolutin), Gold Biotechnology (DTT, 

TCEP, 5FOA), Sigma (MnCl2), JT Baker(ZnCl2), BDH Chemicals (MgCl2). 

 

Variomics screens 

Two separate pools of diploid Variomics libraries were gifts from Dr. Xuewen Pan: one 

for non-essential and the other for essential genes279. The pooled diploid Variomics 

libraries were grown, sporulated and selected for haploid Variomics libraries as 

described279. Haploid Variomics libraries were subsequently used for the genetic screens. 

To convert the Variomics libraries into plasmid-free deletion libraries, pooled Variomics 

libraries (diploid for essential genes and haploid for non-essential genes) were grown in 

liquid SC media and plated on SC+5FOA plates to select against the mutants with the 

URA3 plasmids containing the Variomics mutations. The diversity of the libraries were 

confirmed by deep sequencing of barcodes (“uptags” and “downtags”) flanking the 

deletion cassettes. 
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Table 3-1. Yeast strains used in chapter III 
Strain 

number Genotype Mating 
Type Comments 

CKY457 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ a Wild type strain 

CKY767 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 a BY4741 

CKY769 
his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 
LYS2/lys2Δ0 met15Δ0/MET15 

ura3Δ0/ura3Δ0 
a/alpha BY4743 

CKY1132 

ura3-52 his3∆200 leu2∆1 or ∆0 
trp1∆63 met15∆0 lys2-128∂ 

rpb1∆::CLONATMX 
RPB3::3XFLAG::kanMX 
kanMX::TEFp::YLR454w 

alpha 

YLR454W promoter was 
replaced with TEF1 
promoter. RPB3 was 

3XFLAG tagged. For in 
vivo transcription shutoff 
and Pol II chromatin IP 

CKY1327 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ yap1Δ::hphNT1 a CKY457 with yap1Δ, for 

testing thiolutin sensitivity. 

CKY1328 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ yap1Δ::hphNT1 a CKY457 with yap1Δ, for 

testing thiolutin sensitivity. 

CKY1329 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ yrr1Δ::kanMX a CKY457 with yrr1Δ, for 

testing thiolutin sensitivity. 

CKY1330 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ yrr1Δ::kanMX a CKY457 with yrr1Δ, for 

testing thiolutin sensitivity. 

CKY1342 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ alpha 

CKY457 with mating type 
switched to alpha via GAL-

HO plasmid (plasmid 
removed). For bulk-
segregant analysis. 

CKY1419 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ pdr1Δ::natNT2 a CKY457 with pdr1Δ, for 

testing thiolutin sensitivity. 

CKY1420 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ pdr1Δ::natNT2 a CKY457 with pdr1Δ, for 

testing thiolutin sensitivity. 

CKY1604 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ snq2∆::KlacTRP1 a CKY457 with snq2∆, for 

testing thiolutin sensitivity. 

CKY1605 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ snq2∆::KlacTRP1 a CKY457 with snq2∆, for 

testing thiolutin sensitivity. 

CKY1608 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ trr2∆::kanMX a CKY457 with trr2∆, for 

testing thiolutin sensitivity. 

CKY1609 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ trr2∆::kanMX a CKY457 with trr2∆, for 

testing thiolutin sensitivity. 
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Table 3-1. Continued 
Strain 

number Genotype Mating 
Type Comments 

CKY1610 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ trx1∆::natNT2 a CKY457 with trx1∆, for 

testing thiolutin sensitivity. 

CKY1611 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ trx1∆::natNT2 a CKY457 with trx1∆, for 

testing thiolutin sensitivity. 

CKY1612 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ trx2∆::kanMX a CKY457 with trx2∆, for 

testing thiolutin sensitivity. 

CKY1613 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ trx2∆::kanMX a CKY457 with trx2∆, for 

testing thiolutin sensitivity. 

CKY1650 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ trr1∆::hphNT1 a CKY457 with trr1∆, for 

testing thiolutin sensitivity. 

CKY1651 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ trr1∆::hphNT1 a CKY457 with trr1∆, for 

testing thiolutin sensitivity. 

CKY1932 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ tsa1∆::kanMX a CKY457 with tsa1∆, for 

testing thiolutin sensitivity. 

CKY1933 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ tsa1∆::kanMX a CKY457 with tsa1∆, for 

testing thiolutin sensitivity. 

CKY1934 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ zap1∆::natNT2 a CKY457 with zap1∆, for 

testing thiolutin sensitivity. 

CKY1935 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ zap1∆::natNT2 a CKY457 with zap1∆, for 

testing thiolutin sensitivity. 

CKY1984 
leu2∆1 ura3-52 trp1∆63 his3∆200 

lys2-128∂ trx2∆::kanMX 
trx1∆::natNT2 

a 
CKY457 with trx1∆trx2∆, 

for testing thiolutin 
sensitivity. 

CKY1985 
leu2∆1 ura3-52 trp1∆63 his3∆200 

lys2-128∂ trx2∆::kanMX 
trx1∆::natNT2 

a 
CKY457 with trx1∆trx2∆, 

for testing thiolutin 
sensitivity. 

CKY1986 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ sod1∆::hphNT1 a CKY457 with sod1∆, for 

testing thiolutin sensitivity. 

CKY1987 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ sod1∆::hphNT1 a CKY457 with sod1∆, for 

testing thiolutin sensitivity. 

CKY2038 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ yap1::EGFP::kanMX a 

CKY457 with Yap1 tagged 
with EGFP, for visualizing 
Yap1 cellular localization. 

CKY2040 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ pdr5∆::natNT2 a CKY457 with pdr5∆, for 

testing thiolutin sensitivity. 

CKY2041 leu2∆1 ura3-52 trp1∆63 his3∆200 
lys2-128∂ pdr5∆::natNT2 a CKY457 with pdr5∆, for 

testing thiolutin sensitivity. 
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Table 3-1. Continued 
Strain 

number Genotype Mating 
Type Comments 

CKY2046 
leu2∆1 ura3-52 trp1∆63 his3∆200 

lys2-128∂ trx2∆::kanMX 
trx1∆::natNT2 trr1∆::hphNT1 

a 
CKY457 with 

trr1∆trx1∆trx2∆, for testing 
thiolutin sensitivity. 

CKY2047 
leu2∆1 ura3-52 trp1∆63 his3∆200 

lys2-128∂ trx2∆::kanMX 
trx1∆::natNT2 trr1∆::hphNT1 

a 
CKY457 with 

trr1∆trx1∆trx2∆, for testing 
thiolutin sensitivity. 

CKY2132 

his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 
LYS2/lys2Δ0 met15Δ0/MET15 

ura3Δ0/ura3Δ0 
erv1∆::hphNT1/ERV1 

a/alpha BY4743 with erv1∆, for 
validating bar-seq results 

CKY2133 

his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 
LYS2/lys2Δ0 met15Δ0/MET15 

ura3Δ0/ura3Δ0 
erv1∆::hphNT1/ERV1 

a/alpha BY4743 with erv1∆, for 
validating bar-seq results 

CKY2134 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
gcn5∆::hphNT1 a BY4741 with gcn5∆, for 

validating bar-seq results 

CKY2135 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
gcn5∆::hphNT1 a BY4741 with gcn5∆, for 

validating bar-seq results 

CKY2136 

his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 
LYS2/lys2Δ0 met15Δ0/MET15 

ura3Δ0/ura3Δ0 
mia40∆::hphNT1/MIA40 

a/alpha BY4743 with mia40∆, for 
validating bar-seq results 

CKY2137 

his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 
LYS2/lys2Δ0 met15Δ0/MET15 

ura3Δ0/ura3Δ0 
mia40∆::hphNT1/MIA40 

a/alpha BY4743 with mia40∆, for 
validating bar-seq results 

CKY2138 

his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 
LYS2/lys2Δ0 met15Δ0/MET15 

ura3Δ0/ura3Δ0 
pre10∆::hphNT1/PRE10 

a/alpha BY4743 with pre10∆, for 
validating bar-seq results 

CKY2139 

his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 
LYS2/lys2Δ0 met15Δ0/MET15 

ura3Δ0/ura3Δ0 
pre10∆::hphNT1/PRE10 

a/alpha BY4743 with pre10∆, for 
validating bar-seq results 

CKY2140 

his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 
LYS2/lys2Δ0 met15Δ0/MET15 

ura3Δ0/ura3Δ0 
pup1∆::hphNT1/PUP1 

a/alpha BY4743 with pup1∆, for 
validating bar-seq results 
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Table 3-1. Continued 
Strain 

number Genotype Mating 
Type Comments 

CKY2141 

his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 
LYS2/lys2Δ0 met15Δ0/MET15 

ura3Δ0/ura3Δ0 
pup1∆::hphNT1/PUP1 

a/alpha BY4743 with pup1∆, for 
validating bar-seq results 

CKY2142 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
ssn3∆::natNT2 a BY4741 with ssn3∆, for 

validating bar-seq results 

CKY2143 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 
ssn3∆::natNT2 a BY4741 with ssn3∆, for 

validating bar-seq results 

CKY2144 

his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 
LYS2/lys2Δ0 met15Δ0/MET15 

ura3Δ0/ura3Δ0 
rpn5∆::hphNT1/RPN5 

a/alpha BY4743 with rpn5∆, for 
validating bar-seq results 

CKY2145 

his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 
LYS2/lys2Δ0 met15Δ0/MET15 

ura3Δ0/ura3Δ0 
rpn5∆::hphNT1/RPN5 

a/alpha BY4743 with rpn5∆, for 
validating bar-seq results 

CKY2146 

his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 
LYS2/lys2Δ0 met15Δ0/MET15 

ura3Δ0/ura3Δ0 
rrp4∆::hphNT1/RRP4 

a/alpha BY4743 with rrp4∆, for 
validating bar-seq results 

CKY2147 

his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 
LYS2/lys2Δ0 met15Δ0/MET15 

ura3Δ0/ura3Δ0 
rrp4∆::hphNT1/RRP4 

a/alpha BY4743 with rrp4∆, for 
validating bar-seq results 

CKY2148 

his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 
LYS2/lys2Δ0 met15Δ0/MET15 

ura3Δ0/ura3Δ0 
rrp46∆::hphNT1/RRP46 

a/alpha BY4743 with rrp46∆, for 
validating bar-seq results 

CKY2149 

his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 
LYS2/lys2Δ0 met15Δ0/MET15 

ura3Δ0/ura3Δ0 
rrp46∆::hphNT1/RRP46 

a/alpha BY4743 with rrp46∆, for 
validating bar-seq results 
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For manual screening of variomics libraries, about 1-3×107 cells were plated on 

SC+10µg/mL thiolutin plates, and the potential thiolutin resistant candidates were 

restruck out on SC+10µg/mL thiolutin plates to validate the resistance. The plasmids 

from the validated resistant candidates were subsequently recovered for Sanger 

sequencing to identify putative resistance-conferring variants. We subsequently tested 

dominance for the repeatedly isolated candidates. The recovered plasmids from all 

reproducibly isolated candidates were transformed into the wild-type (CKY457) strain, 

and thiolutin sensitivity for transformants was phenotyped and compared to the empty 

vector control. 

 

For high-throughput screens, Variomics libraries were screened on plates, while deletion 

libraries were screened in liquid, as previously described274,275,279, and three independent 

screens (biological replicates) were performed. For Variomics screens, each library was 

screened on SC-URA+DMSO, SC-URA+8µg/mL thiolutin or SC-URA+10µg/mL plates. 

Each biological replicate was screened on 9 plates (6×107 cells/plate) for 3 days, and 

cells were scraped to screen for an additional set of 9 plates for 3 days (6×107 cells/plate). 

Deletion libraries were grown in liquid SC media to 3×107 cells/mL and diluted in 

SC+3µg/mL thiolutin (for haploid non-essential gene deletion library) or SC+4µg/mL 

thiolutin (for diploid essential gene deletion library) to grow for 20 generations. During 

the selection, the cells were diluted to 1×106 cells/mL every five generations to maintain 

cultures in log phase. For both screens, yeast cells were pooled, and genomic DNA was 

prepared using a YeaStar Genomic DNA kit (Zymo Research) for subsequent PCR 
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amplification of barcode regions. Amplicons were sequenced by illumina Hiseq2500 in 

rapid mode. 

 

Bar-seq data processing 

Sequencing reads are mapped to the re-annotated barcode sequences274 using Bowtie2 

(version 2.2.4) with the -N flag set to 0 and the --no-unal flag to suppress unaligned 

reads for further analyses. Bowtie2 outputs were written into SAM format and further 

extracted using Samtools (version 1.3.1). Barcode sequences shorter than 15nts or were 

mapped to multiple reference barcodes were discarded. On average, 98% of sequencing 

reads were uniquely mapped. 

 

As with Robinson et al.280, we filtered out barcodes with lower than 100 total reads 

across all samples, since low count barcodes across all conditions were likely from 

sequencing errors and did not exist. In addition, mutants with less than 20 reads in both 

treated and the corresponding untreated controls are further filtered out, to exclude large 

changes from a small amount of reads with low confidence. 

 

Following Robinson et al.280, we added 1 pseudo-count to each barcode count to avoid 

division by 0, and performed TMM normalization using the edgeR package (version 

3.12.1). For differential abundance analyses, we used the edgeR to compute mutant 

specific dispersions, p-value and log transformed abundance changes using exactTest 

function (default setting). The transformed data were subsequently subjected to 



 

 134 

differential abundance analyses and clustering analyses. Differential abundance analyses 

were performed independently for the uptag and downtag sequences, and reproducibility 

between uptag and downtag data was assessed with Pearson correlation in R. 

Hierarchical clustering of the thiolutin phenotypic profile to an existing drug response 

profile for yeast mutants, consisting of 3356 compounds275 was performed in Cluster 

(3.0), using centered correlation and complete linkage.  

 

Mutants with significantly altered abundance (p<0.01) were subjected to gene-ontology 

(GO) analyses as previously reported275. In brief, all three GO terms, including 

biological processes (BP), Molecular Function (MF) and Cellular components (CC), 

were included in our analyses. Following the previous report275, BP and MF GO terms 

that are too specific (present in less than 5 genes) or too generic (present in greater than 

300 genes) were excluded, although smaller GO term groups were allowed for protein 

complexes (more than 2 genes) and larger groups (greater than 300 genes) were allowed 

for cellular components. We computed the GO term enrichment analyses for the 

significantly resistant or sensitive mutants (p<0.01) using hypergeometric test in R 

(version 3.2.2, physer function, default setting). Raw counts and p-value for each GO 

term were reported. 

 

Visualization of Yap1 localization under fluorescence microscopy 

Microscopy experiments were performed as previously described80. In brief, CKY2038 

was grown to mid-log (1-2×107 cells/mL) in SC liquid media and added to the ConA 
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treated perfusion chamber gasket (ThermoFisher, 4 chamber: 19 × 6mm) for treatment at 

indicated conditions (SC+1% DMSO, SC+10µg/mL Thiolutin, SC+10µg/mL 

Holomycin or SC+0.4mM H2O2) under the fluorescence microscope. The procedure to 

prepare the chamber and the microscope setting were the same as previously described. 

 

Glutathione quantitation assays 

WT yeast (CKY457) cultures were grown (in YPD at 30˚C) until mid-log phase (~2×107 

cells/mL), washed and resuspended in the indicated conditions (YPD+1% DMSO, 

YPD+10µg/mL Thiolutin or YPD+10µg/mL Holomycin). The suspended culture were 

grown at 30˚C for one hour, and 5×107 cells were subject to glutathione (GSH) 

quantitation. The active and total GSH levels were quantified using the GSH detection 

kit from Arbor Assays (K006-F5) following the manual. The glutathione disulfide 

(GSSG) level was calculated by (Total GSH - Active GSH)/2. 

 

UV-Vis assays 

Thiolutin reduction and Zn2+ chelation reactions were performed in 250µL reaction with 

50µM Thiolutin, 50µM ZnCl2 and 100mM potassium phosphate buffer (pH=6.5), as 

previously described212. Mn2+ chelation reaction and relevant controls were performed 

under almost identical conditions except for the 100mM Tris buffer (pH=8) to keep 

consistent pH with the in vitro transcription assays. Each reaction had 250µL final 

volume and was quantified in Nanodrop 2000c spectrophotometer using UV-transparent 

cuvettes. 
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Growth curve, viability and canavanine resistance assays 

Yeast growth curve assays with Tecan Infinite F200 plate readers were performed as 

previously described80. For viability assays and canavanine resistance assays, WT yeast 

strain CKY457 was grown in YPD until mid-log (1-2×107 cells/mL), washed and treated 

with the indicated conditions (YPD, YPD+3µg/mL thiolutin, YPD+5µg/mL thiolutin 

and YPD+10µg/mL thiolutin) for an hour. The viability was quantified by staining the 

yeast cells in 0.1% Trypan blue staining (GE Healthcare Life Sciences, Catalog Number 

SV30084.01) for 3 mins, and the viability was quantified by counting the fraction of 

unstained yeast cells under the microscope. At least 300 yeast cells were counted in each 

repeat. Canavanine resistance frequency was quantified by plating the culture onto YPD 

and SC-Arg+60µg/mL canavanine plates and dividing the number of canavanine 

resistant colonies by the number of viable colonies on YPD plates. Three experimental 

replicates were performed. 

 

Pol II transcription activity assays 

Pol II was purified using a strain expressing Rpb3 tagged with tandem-affinity tag (TAP), 

following a procedure as previously described28. The DTT was removed from the Pol II 

buffer using Zeba spin desalting column (Thermo Scientific).  

 

Standard ssDNA transcription assays were performed in the in vitro transcription buffer 

(20mM Tris-HCl pH8, 40mM KCl, 5mM MgCl2). Each reaction had 2µM Pol II, 2µg 
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denatured sheared salmon sperm DNA as the template and 200µM ATP, CTP, GTP, 

9µM UTP, 1µM radioactive α-32P UTP as the substrates. The concentration of thiolutin, 

reductants (DTT or TCEP) and MnCl2 varies among the experiments and were indicated 

within each experimental schematic. The addition of order prior to the start of the 

transcription reaction was also shown in the schematic. Transcription reactions were 

incubated at room temperature for 30 minutes and stopped with stop buffer (10M Urea, 

5mM EDTA in TBE). Synthesized transcripts were separated from unincorporated α-32P 

UTPs in 10% acrylamide/7M urea gels, and visualized with a Bio-Rad Pharos 

Phosphorimager. Transcription elongation assays were performed as previously 

described28. 

 

Results 

Thiolutin or reduced thiolutin alone failed to inhibit fully purified Pol II in vitro 

Recent publications suggest that thiolutin does not directly inhibit Pol II, in contrast to 

classic in vitro transcription experiments demonstrating thiolutin inhibition of partially 

purified yeast extract fractions containing Pol I, II, or III216. We set out to understand 

this discrepancy by first examining thiolutin inhibition of purified Pol II. Given that 

thiolutin and holomycin activities could be sensitive to reduction of the disulfide bond 

by DTT212-214 (Figure 3-1A), we removed DTT from the Pol II storage buffer by buffer 

exchange and performed the thiolutin treatment with or without equivalent molar DTT 

(Figure 3-1B). Under buffer conditions employed here we failed to observe thiolutin 

inhibition of Pol II, with DTT having no effect (Figure 3-1B). While these results are 
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consistent with assertions that thiolutin does not directly target Pol II, they might 

similarly be explained by the absence of a cofactor or subtleties in experimental 

conditions between in vitro assays. These biochemical assays are revisited later. 

 

 

 

Figure 3-1. Thiolutin or reduced thiolutin alone fail to inhibit purified yeast Pol II in vitro 
(A) Thiolutin and holomycin structure 
(B) Thiolutin, or thiolutin treated with equimolar DTT, show no inhibition of Pol II transcription in vitro. 
Transcription activity assay was performed with ssDNA as the template and NTPs, including 32P labeled 
UTP. The transcribed 32P containing RNA was separated from free 32P UTPs on 10% polyacrylamide gels 
for visualization. Experiments were performed for at least three times, and a representative replicate is 
shown. 
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Three independent genetic screens for thiolutin resistant and sensitive mutants 

To gain insights into factors controlling the cellular response to thiolutin, we performed 

three independent genetic screens for modifiers of thiolutin sensitivity (Figure 3-2A). 

First, we performed a conventional forward genetic screen for thiolutin resistant mutants 

through UV mutagenesis followed by thiolutin resistance selection. The causal mutations 

for thiolutin resistance were identified by bulk segregant analyses and whole genome 

sequencing (Figure 3-2A)281. Second, we screened a recently constructed yeast 

Variomics library for individual thiolutin resistant candidates279. Variomics library has 

possibly Gain-of-function (GOF) and Loss-of-function (LOF) mutants cloned in a CEN 

based plasmid and expressed in strains with the same endogenous gene deleted. The 

CEN based plasmid is known to replicate 1-2 copies in cells and could result in increased 

dosage of the gene. Mutants from the forward genetics screen or reproducibly isolated 

from the manual Variomics screens were re-tested for resistance (Figure 3-2B, Table 3-

2).  

 

Third, we performed a set of high-throughput screens using both pooled Variomics and 

deletion libraries (Figure 3-2A, material and methods). The thiolutin resistant and 

sensitive mutants were identified by quantifying changes of mutant-linked DNA barcode 

frequency under the thiolutin treated versus control conditions, using a well-established 

barcode sequencing (Bar-seq) approach274,275. A series of quality controls were 

performed on the reproducibility among biological replicates, consistency between the 

two barcodes on each gene deletion (uptag and downtag) for the same strain, common 
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and distinct properties between Variomics and deletion libraries following a well-

established statistical analysis pipeline (Figures 3-3)275,280. A subset of the statistically 

significant resistant or sensitive mutants were further validated by re-constructing the 

deletion strain for individual phenotyping (Figure 3-4). Overall, our data exhibited 

excellent reproducibility, and revealed valuable common and distinct features between 

Variomics (GOF and LOF mutants) and deletion (LOF mutants) libraries. Different 

classes of genes controlling thiolutin sensitivity emerging from these studies are 

discussed below. 

 

Functional dissection of the multidrug resistance (MDR) and oxidative stress 

response (OSR) pathways in response to thiolutin 

We first identified a series of thiolutin resistant mutants that harbored mutations in MDR 

and OSR genes from all three genetic screens. These results are perhaps not surprising 

given that yeast has well characterized MDR pathways that sense and pump out the toxic 

small molecule compounds as a self-protection mechanism, or given the recent reports 

that thiolutin and holomycin activities require reduction in vitro213,214. Reduction of 

thiolutin may itself oxidize cellular proteins and cause oxidative stress. In addition, it is 

also reported that reduced holomycin may act as a redox cycler, which could possibly 

generate reactive oxygen species (ROS) in the cell. In fact, it was suggested in one report 

that thiolutin appeared to induce expression of several OSR genes273. However, whether 

thiolutin indeed caused oxidative stress and the specific MDR factors for thiolutin 

resistance have not been rigorously tested. In light of our isolated thiolutin resistant  
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Figure 3-2. Mutants in multiple drug resistance (MDR) and oxidative stress responses (OSR) pathways confer distinct resistance or sensitivity 
to thiolutin 
(A) Schematic diagram of the three independent genetic screens for thiolutin resistant mutants. Top left: For the forward genetic screening, WT yeast 
strain (CKY457) was UV mutagenized and screened for thiolutin resistant mutants, and mutations were identified by whole-genome sequencing. 
Causative mutations were enriched by bulk segregant analyses. Top right: The recently constructed gene-specific Variomics libraries consists of many 
mutants for a given gene in a yeast cells pool, and Variomics libraries > 4000 genes are further pooled together for thiolutin resistance screening. 
Plasmids from the validated thiolutin resistant mutants are recovered for Sanger sequencing to identify both the gene and the mutations. Bottom left: 
Four libraries (Variomics libraries for non-essential or essential genes, Deletion libraries for non-essential or essential genes) are used for screening 
thiolutin resistant or sensitive mutants. Changes in abundance in the library was detected by deep sequencing of the PCR amplicon of the barcode 
region. Variomics libraries consist of point mutation variants and can be used to screen for both Gain-of-Function (GOF) and Loss-of-Function (LOF) 
alleles, whereas “Deletion” libraries consist of single-gene-deleted mutants that can be used to screen for complete LOF mutants. 
B: Reproducibly isolated thiolutin resistant mutants from the forward genetics and manual Variomics screening. 
C: Schematic diagram summarizing a partial regulatory network of multiple drug resistance, with isolated resistant mutants indicated. The reported or 
hypothesized functional interactions are indicated by pointed (activation) or blunt-end (inhibition) arrows. 
D: Distinct thiolutin sensitivity of MDR deficient mutants. pdr1∆ and snq2∆ are sensitive to thiolutin, whereas other tested MDR deficient strains 
retain resistance. 
E: Schematic diagram summarizing the regulatory network of thioredoxin system in yeast, with isolated resistant mutants indicated. 
F: Distinct thiolutin sensitivity of some OSR deficient mutants. 
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Table 3-2. Reproducibly isolated resistant candidates from the manual Variomics 
screens 
Candidate 
Number Class Plasmid 

dependence Dominance Gene Mutation 

15 Essential N.A. No PRO3 H75Q, I268T 
16 Essential N.A. No PRO3 WT 
42 Essential N.A. No PRO3 WT 

220 Non-
essential Yes Yes SNQ2 

R307 silent (AGA-
>AGG), P1358 silent 

(CCT->CCC) 

221 Non-
essential Yes Yes SNQ2 

R307 silent (AGA-
>AGG), P1358 silent 

(CCT->CCC) 
7 Essential N.A. No TRR1 T76A 
9 Essential N.A. No TRR1 S242G 

186 Non-
essential Yes Yes YAP1 D382G, E516G, S567G, 

N581D 

211 Non-
essential Yes Yes YAP1 V260I, T312A, S528P 

24 Non-
essential Yes No YAP6 H93Y, C-terminal 

truncation yap6∆368-383 

27 Non-
essential Yes No YAP6 

L6 silent mutation 
(TTG->CTG), Q152R, 
C-terminal truncation 

yap6∆368-383 

28 Non-
essential Yes No YAP6 

G80 silent mutation 
(GGT->GGC), S218 

silent mutation (TCA-
>TCG), C-terminal 

truncation yap6∆368-383 

31 Non-
essential Yes No YAP6 

Upstream mutation (T-
>C), A179T,  C-terminal 
truncation yap6∆380-383 

33 Non-
essential Yes No YAP6 WT 
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Table 3-2. Continued 
Candidate 
Number Class Plasmid 

dependence Dominance Gene Mutation 

44 Non-
essential Yes Yes YRR1 

V499 silent mutation 
(GTA->GTG), T610 

silent mutation (ACA-
>ACG), N703D 

46 Non-
essential Yes Yes YRR1 

Y134C, Y165C, K493E, 
T696 silent mutation 

(ACC->ACA), N703D, 
T802 silent mutation 

(ACT->ACC) 
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Figure 3-3. Correlation between uptag and downtags results 
Xyplots showing the fitness score (log2 of the fold change in relative abundance) computed from both 
uptag and downtags. Mutants are declared significantly resistant or sensitive in both tags are colored in red, 
whereas others are colored in light grey. y=x is shown as a dashed line. 
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Figure 3-4. Validation of several statistically significantly resistant or sensitive mutants.  
Mutants were reconstructed in haploid BY4741 or diploid BY4743 backgrounds originally used to 
construct the deletion libraries, and mid-log growth at 30˚C was assessed using a Tecan plate reader. Three 
independent repeats were performed and the error bars represent standard deviation of the mean. We failed 
to validate the observed slight sensitivity in ERV1/erv1∆ and MIA40/mia40∆, two strains that were 
statistically significantly sensitive but the sensitivity was very slight.  
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mutants, we functionally dissected several MDR and OSR pathways for thiolutin 

sensitivity, as discussed below. 

 

From both manual Variomics and forward genetic screens, we isolated multiple mutants 

for Yap1 and Yrr1, two transcription factors that have been implicated in MDR 

pathways (Figure 3-2B). Though implicated in MDR, Yap1 is also known as a master 

regulator for oxidative stress responses and will be discussed again in a later section. In 

addition, we also isolated mutants in a well-known MDR efflux pump Snq2 from the 

manual Variomics screen. Finally, from high-throughput Bar-seq screens, we have 

observed distinct thiolutin resistance and sensitivity in many more barcodes (Figure 3-

6A) linked to MDR transcription factors or efflux pumps.  

 

Several lines of evidence suggested that the isolated thiolutin resistant MDR mutants 

were GOF mutations. First, isolated yap1 mutants showed clustering of mutations in 

regions encoding the C-terminus, where a variety of mutants are known to cause GOF282-

286. Second, isolated MDR mutants from the manual Variomics screen were dominant or 

possibly functioned through increased dosage (Figure 3-5). Third, in high-throughput 

Bar-seq screens, we found Variomics mutants in several MDR genes (YAP1, YRR1, 

SNQ2) conferred thiolutin resistance whereas deletion of the same genes either conferred 

sensitivity or had no strong effect (Figure 3-6A), suggesting that these MDR Variomics 

mutants behave differently from the gene deletion mutants (complete LOF).  
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Figure 3-5. Isolated thiolutin resistant MDR Variomics candidates are dominant or dosage 
dependent 
Plasmids recovered from the Variomics candidates are transformed into WT yeast strain along with an 
empty vector (pRS416) control, thiolutin resistance are assessed for at least two independent transformants, 
and the dominant mutants are shown in this figure. 
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Figure 3-6. Mutations in multiple distinct cellular pathways confer resistance/sensitivity to thiolutin 
(A) Different thiolutin resistant or sensitive mutant classes are revealed in the Bar-seq based screenings of 
pooled Variomics and Deletion libraries. 
(B) Thiolutin induced phenotypic profile in the pooled deletion libraries is co-clustered with 
bathophenanthroline. The heatmap shows 4683 deletion mutants’ responses (in columns) to different 
compounds (in rows). Resistant strains are colored in yellow, and sensitive strains are colored in blue. All 
3356 compounds were used for hierarchical clustering, but only the thiolutin closely correlated compounds 
are shown in this figure for clarity. 
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In order the better understand the nature of identified MDR mutants from variomics and 

forward genetics, we constructed a series of MDR gene deletion mutants and tested their 

sensitivity to thiolutin (Figure 3-2D). We found that none of the tested deletion mutants 

was thiolutin resistant (Figure 3-2D). The lack of resistance for all the tested MDR 

deletion strains is consistent with the isolated thiolutin resistant MDR Variomics and 

forward genetics mutants increasing MDR activity. In addition, pdr1∆ and snq2∆ 

conferred hypersensitivity to thiolutin (Figure 3-2D), consistent with the Pdr1 and Snq2 

functions in promoting thiolutin resistance for WT strains. Together, we conclude that 

the MDR transcription factor Pdr1 is the dominant factor promoting expression of efflux 

pumps to reduce thiolutin concentration in the cell, whereas neither Yrr1 nor Yap1 

appear to promote baseline resistance, given that yap1∆ and yrr1∆ are not hypersensitive 

to thiolutin. However, increased Yap1 or Yrr1 activities through mutations or dosage 

may increase efflux pump expression to promote thiolutin resistance, due to the known 

linkages to many multidrug efflux pumps287-289. We also suggest that Snq2 is a thiolutin 

efflux pump whereas Pdr5 is not. 

 

Holomycin did not inhibit yeast cell growth at low concentration164, and we recapitulated 

these observations (Figure 3-7A). Given that structurally similar compounds may have 

different cell permeability and efflux efficiency, we asked whether the same set of MDR 

deletion strains conferred sensitivity to holomycin, but failed to observe any (Figure 3-

7A), although we cannot rule out the possibility that thiolutin and holomycin may be 

transported by different efflux pumps.  
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Figure 3-7. Tested MDR and OSR deficient mutants do not confer same hypersensitivity to 
holomycin as to thiolutin. 
(A) Tested MDR mutants do not confer hypersensitivity to holomycin  
(B) Most tested OSR mutants do not confer same hypersensitivity to holomycin as to thiolutin. trr1∆ and 
sod1∆ are slightly sensitive to holomycin, while others are not.  
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In addition to MDR pathways, we also identified thiolutin modulating mutations in 

OSR-related genes, including YAP1 (discussed above) and genes in the thioredoxin 

pathway. Thioredoxins are a series of small anti-oxidant proteins that primarily function 

in reducing specific cysteines in client proteins (reviewed in 290 and references therein), 

and in turn are themselves reduced by thioredoxin reductases (Figure 3-2E). In yeast, 

there are two thioredoxin reductases (cytoplasmic Trr1 and mitochondrial Trr2) and 

three thioredoxins (cytoplasmic Trx1, Trx2; mitochondrial Trx3) (Figure 3-2E). 

Mutants in TRR1 were reproducibly isolated from our manual Variomics screen (Figure 

3-2B,E; Table 3-2). In addition, trr1 and trx1 related barcodes were linked to thiolutin 

resistance in high-throughput screening of Variomics but not deletion libraries (Figures 

3-2E, 3-6A), suggesting that the isolated trr1 mutants could be GOF due to specific 

alleles or increased dosage of the plasmid.  

 

TRR1 was found to be essential in large scale gene deletion analysis291 but nonessential 

in classical genetic experiments292-296. To understand the nature of TRR1 function in 

thiolutin resistance/sensitivity, we constructed a trr1∆ strain to directly test its thiolutin 

sensitivity (Figure 3-2F). Interestingly, trr1∆ conferred hypersensitivity to thiolutin 

(Figure 3-2F), consistent with Trr1 activity antagonizing thiolutin and specific trr1 

mutants or increased Trr1 dosage enhancing this antagonism. The Trr1 function in 

antagonizing thiolutin also suggests that our isolated yap1 alleles may confer thiolutin 

resistance through promoting TRR1 expression. In fact, several YAP1 GOF alleles have 
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been shown to increase expression of both MDR and OSR pathways through Yap1 

nuclear accumulation282-286. 

 

We conceive of trr1∆ hypersensitivity to thiolutin in two ways. It could be due to loss of 

Trr1 function in directly counteracting thiolutin activity or the accumulation of the 

oxidized thioredoxins, or both. The observed trx1-linked thiolutin resistance in high-

throughput Variomics screens suggested critical functions of thioredoxin(s) in thiolutin 

resistance downstream of TRR1. Therefore, we examined thioredoxin deletions directly 

for thiolutin resistance. We found that the trx1∆, trx2∆ or trx1∆trx2∆ mutants did not 

confer thiolutin sensitivity (Figure 3-2F). In contrast, trx1∆trx2∆ conferred thiolutin 

resistance, and further, suppressed thiolutin hypersensitivity in trr1∆ (Figure 3-2F), 

consistent with the hypothesis that trr1∆ hypersensitivity to thiolutin is due to 

accumulation of oxidized thioredoxins. The observed trx1∆trx2∆ thiolutin resistance 

reveals critical requirement of Trx1 and Trx2 for thiolutin activity, and suggests that 

Trx1 and Trx2 may function either directly or indirectly in thiolutin reduction. However, 

further experiments are needed to demonstrate the direct thiolutin reduction by Trx1 and 

Trx2. 

 

The distinct thiolutin resistance conferred by yap1 alleles and thioredoxin mutants 

suggests possible connections to OSR. Therefore, we set to test the roles of two 

additional OSR genes, TSA1, encoding a thioredoxin peroxidase, and SOD1, encoding a 

cytosolic copper-zinc superoxide dismutase, in thiolutin resistance. Interestingly, sod1∆, 
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but not tsa1∆, conferred hypersensitivity to thiolutin (Figure 3-2F). Given that 

holomycin is a known redox cycler, we asked if simple addition of H2O2 could mimic 

the thiolutin effect in tested thioredoxin and OSR gene deletion mutants (Figure 3-2F). 

Thiolutin sensitivities in tested strains were distinct from H2O2 sensitivities, suggesting 

distinct effects on cellular function. Finally, we tested if yeast could be sensitized to 

holomycin by the same set of mutants (Figure 3-7B). Interestingly, trr1∆ and sod1∆ 

were slightly sensitive to 10µg/mL holomycin (Figure 3-7B), suggesting that the 

induction of oxidative stress is a general property of dithiolopyrrolone compounds and 

that yeast are at least somewhat permeable to holomycin.  

 

Thiolutin induces apparent oxidative stress 

Multiple lines of evidence presented above indicated that thiolutin may induce oxidative 

stress and increased Yap1 function may promote thiolutin resistance. Yap1 functions by 

sensing the cellular oxidants through its C-terminal cysteines, causing it to translocate 

into the nucleus and up-regulating a series of OSR genes to counteract the cellular 

oxidants upon oxidative stress282-286. Therefore, nuclear localization of Yap1 is in 

general a sign of increased Yap1 function and OSR282,285,286. To test whether thiolutin 

treatment caused nuclear translocation of Yap1, we fused YAP1 gene DNA to sequence 

encoding EGFP on the Yap1 C-terminus, and monitored Yap1::EGFP localization after 

thiolutin treatment. Thiolutin indeed induced Yap1::EGFP nuclear localization, 

consistent with induction of oxidative stress, although the thiolutin induced Yap1::EGFP 

nuclear translocation appeared to be slower and weaker than that induced by H2O2 
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(Figure 3-8A). In addition, thiolutin depleted total glutathione within an hour of 

treatment (Figure 3-8B). However, thiolutin depleted both active GSH and GSSG, a 

behavior similar to glutathione synthesis defective mutants but distinct from several 

well-known oxidants such as H2O2 and menadione297-299. In contrast, holomycin did not 

have a clear effect on Yap1 localization or cellular glutathione level (Figure 3-8A,B), 

consistent with the lack of growth inhibition by holomycin and the distinct activities 

between the two structurally similar analogs.  

 

Previous studies suggested that the reduced holomycin was spontaneously re-oxidized 

when exposed to air212, consistent with the behavior of redox-cycling compounds225,226. 

To test if thiolutin exhibited similar behavior, we monitored thiolutin reduction and re-

oxidation by its unique UV absorbance due to the conjugated ene-dithiol groups (Figure 

3-8C), as with the recent reports212-214. Thiolutin could be reduced by DTT or TCEP, but 

not glutathione (Figure 3-8C), consistent with the behavior of holomycin212. Reduced 

thiolutin could be also re-oxidized (Figure 3-8D), suggesting that thiolutin can act as a 

redox-cycler, similar to holomycin. Together, thiolutin induced the Yap1 nuclear 

accumulation and hypersensitivity of sod1∆ and trr1∆ mutant in vivo and appeared to be 

a redox cycler in vitro, consistent with the induction of oxidative stress. However, we 

did not find direct evidence of glutathione oxidation, suggesting that additional 

experiments are necessary to validate the thiolutin-mediated apparent OSR. 
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Figure 3-8. Thiolutin appears to induce oxidative stress partially through redox cycling 
(A) Thiolutin induces nuclear localization of the redox-sensitive Yap1 transcription activator. EGFP-
tagged Yap1 strain treated with 1% DMSO (control), 10µg/mL thiolutin or 0.4mM H2O2. GFP 
fluorescence was monitored after treatment at the indicated time points. 
(B) Thiolutin depletes total glutathione in vivo. Growing WT yeast cultures are washed and treated with 
indicated conditions at 30˚C for an hour. Reduced glutathione (GSH) and total glutathione are measured in 
three independent replicates, and the oxidized glutathione (GSSG) are calculated. The error bars represent 
standard deviation of the mean. *p=0.01 (Two-tailed paired t-test). 
(C) Thiolutin can be reduced by DTT and TCEP, but not glutathione and cysteine in vitro. The reactions 
were performed in 100mM phosphate buffer (pH=6.5) with equivalent molar reductant with thiolutin. UV 
spectra were measured 1min after the reactions. Three independent replicates were performed and the error 
bars represent standard deviation of the mean. 
(D) Reduced thiolutin is spontaneously re-oxidized when exposed to air. The reactions were performed as 
described in Figure 3-9C, and UV absorbance at 340nm plotted over a time course. Three independent 
replicates were performed and the error bars represent standard deviation of the mean. 
(E) Thiolutin does not affect yeast viability.  
(F) Thiolutin does not cause DNA damage, as measured by mutation frequency at CAN1 gene.  
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DNA damage can be a consequence of redox-cycling and can lead to transcription 

inhibition and cytotoxicity300,301. We asked if thiolutin treatment could cause DNA 

damage or decrease viability. We did not observe increase in mutation rate as measured 

by resistance to canavanine, consistent with little or no effect on DNA damage rates, nor 

did we observe a viability defect (Figure 3-8E, F). The lack of viability defect is 

consistent with an early report showing that thiolutin inhibition was reversible after 

several hours’ treatment215. Together, we suggest that thiolutin is a redox cycler in vitro 

and possibly also in vivo, but does not appear to inhibit transcription through widespread 

DNA damage. 

 

Thiolutin alters Zn2+ homeostasis 

The recent detection of direct Zn2+ chelation activity of reduced thiolutin and holomycin 

explains multiple thiolutin-induced phenotypes, such as inhibition of proteasome and 

glucose utilization213,214,227. From the high-throughput screens, we observed distinct 

thiolutin resistance or sensitivity linked to diverse Zn2+ trafficking genes, including the 

master transcription regulator Zap1 and various Zn2+ transporters Zrt1, Zrt2, Zrc1 and 

Cot1 (Figure 3-6A). Variomics strains linked to ZAP1, ZRT1, ZRT2, ZRC1 and COT1 

conferred thiolutin resistance whereas deletion mutants were either not resistant (zrt1∆, 

zrc1∆, cot1∆) or hypersensitive (zap1∆ and zrt2∆) (Figure 3-6A), suggesting that these 

Variomics mutants could be allele-specific or dosage modifiers of thiolutin. We further 

tested Zap1 function in thiolutin resistance by constructing a zap1∆ strain and testing its 

sensitivity to thiolutin (Figure 3-9). zap1∆ confers hypersensitivity to thiolutin, 
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consistent with Zap1 functions in cellular resistance to thiolutin and thiolutin alteration 

of Zn2+ homeostasis in vivo.  

 

Surprisingly, zap1∆ also conferred hypersensitivity to holomycin (Figure 3-9). This 

observation suggests that altering zinc homeostasis is a conserved mechanism among 

dithiolopyrrolones and indicates yeast cells are permeable to holomycin. This result also 

argues that holomycin can access essential targets in yeast under the right conditions. 

zap1∆ is known to be sensitive to oxidative stress302-305, meaning it is possible that 

zap1∆ hypersensitivity to thiolutin and holomycin could be due to zinc deficiency-

induced oxidative stress. However, zap1∆ hyper-sensitivity to thiolutin and holomycin 

was much stronger than that to H2O2, suggesting Zn2+ homeostasis defects in addition to 

the oxidative stress exacerbation.  

 

Given our observation that a Cu2+ transporting gene CTR1 may be also linked to 

thiolutin resistance (Figure 3-6A), we tested whether reduced thiolutin chelates Cu2+ and 

also confirmed Zn2+ chelation. Consistent with the two recent reports, Zn2+ caused a 

distinct UV shift of reduced thiolutin from ~340nm to ~370nm but did not change the 

UV spectra of non-reduced thiolutin (Figure 3-9B). In addition, we found that Cu2+ can 

also bind to reduced but not non-reduced thiolutin, in a manner likely similar to Zn2+ 

binding (Figure 3-9B). In contrast, Mg2+ does not bind to either reduced or non-reduced 

thiolutin, distinct from the other two tested metals (Figure 3-9B). Finally, Zn2+ 

supplementation partially suppressed the thiolutin inhibition (Figure 3-9C). The lack of   
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Figure 3-9. Reduced thiolutin chelates Zn2+ and Cu2+ in vitro and alters Zn2+ homeostasis in vivo 
(A) zap1∆ is hypersensitive to thiolutin and holomycin. 
(B) Zn2+ and Cu2+, but not Mg2+, alter the UV spectra of reduced thiolutin. The reactions are performed as 
described in 4C. Three independent repeats were performed and the error bars represent standard deviation 
of the mean. 
(C) Zn2+ supplementation does not fully suppress thiolutin sensitivity. Doubling time were derived from 
growth curve measured by Tecan plate reader. Three independent repeats were performed and the error 
bars represent standard deviation of the mean. 
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full suppression may suggest that there are other thiolutin-mediated defects in addition to 

Zn2+ chelation, although we cannot rule out that inefficient Zn2+ trafficking limits 

effective Zn2+ supplementation in the cell. 

 

Additional cellular pathways are involved in thiolutin resistance 

The high-throughput screens of pooled yeast Variomics and Deletion libraries, compared 

to conventional forward genetics and manual Variomics screens, revealed several 

additional pathways in thiolutin resistance (Figure 3-6A). We isolated mutants involved 

in the proteasome, ribosomal RNA biogenesis, and small ribosomal subunits (Figure 3-

6A). Many observations from the Variomics screens were confirmed from two 

conventional screens and direct deletion analyses (Figure 3-2, Table 3-2). We further 

constructed 9 homozygous (for non-essential genes) or heterozygous (for essential genes) 

deletion mutants to validate the observation from the bar-seq screens of the deletion 

libraries. We validated the observations in 7 (out of 9) mutants, including one resistant 

and one sensitive mutants from the non-essential pool, and 5 resistant mutants from 

essential pool.  Among them, we validated the observed thiolutin resistance conferred by 

three heterozygous deletion strains in proteasome subunits (PRE10/pre10∆, 

PUP1/pup1∆, RPN5/rpn5∆) (Figure 3-4).  

 

The reconstructed strains validated the surprising but clear observation that heterozygous 

deletion mutants in proteasome subunits universally conferred thiolutin resistance 

(Figure 3-6A). This is surprising because thiolutin was recently demonstrated to be a 
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proteasome inhibitor through Zn2+ chelation214, and heterozygous proteasome subunit 

deletion mutants presumably may lead to reduced proteasome activity and would be 

expected to confer sensitivity to proteasome inhibitors. Interestingly, two recent reports 

observed similar paradoxical resistance to proteasome inhibitors in yeast strains and 

human cell lines with decreased level of the regulatory 19S proteasome subunits306,307. In 

yeast and human, the fully assembled 26S proteasome consists of a 20S catalytic core 

and a 19S regulatory complex. It was demonstrated that decrease or transient inhibition 

of 19S proteasome subunits may in turn induce the level and activity of partially 

assembled 20S proteasome instead of the fully assembled 26S proteasome307, resulting 

in a net increase of proteasome function. It was also recently suggested that specific 

reduced expression of 19S proteasome subunits induced an altered cellular state and 

altered the global transcriptome in response to proteasome inhibitors308. However, our 

observation is distinct, because we observed decreases in both 19S and 20S proteasome 

subunits conferred thiolutin resistance. Whether the proteasome has increased level and 

activity in these strains has yet to be further tested. 

 

Thiolutin, when activated by DTT and Mn2+, directly inhibits Pol II in vitro 

Despite the progress in understanding thiolutin induced diverse cellular responses, 

whether and how thiolutin directly inhibits yeast Pol II in vitro remained unresolved. 

Multiple lines of evidence suggest possible involvement of divalent metals in this 

process. First, the co-clustering of thiolutin and bathophenanthroline (Figure 3-10) 

induced phenotypic profiles suggests similar modes of action (Figure 3-6B). 
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Bathophenanthroline is highly similar to a well-known transcription inhibitor 1,10-

phenanthroline (Figure 3-10), which appears to require Cu2+ for direct transcription 

inhibition in vitro309,310, though these compounds may have similar activities because 

they are also well-known Zn chelators311. Second, the direct interaction between reduced 

thiolutin and Zn2+ (or Cu2+) suggests the possibility that thiolutin may function with 

metal co-factors.  

 

 

 
Figure 3-10. Structures of 1,10-phenanthroline and bathophenanthroline 
(A) 1,10-phenanthroline  
(B) bathophenanthroline 
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Many divalent metals inhibit RNAP activity (e.g. Pb2+, Zn2+, Cu2+, Be2+, Cd2+, Ca2+)248, 

and additionally are tightly controlled in cells due to toxicity (e.g. Fe2+, Co2+), so are 

unlikely to participate in possible Pol II inhibition by thiolutin. Mn2+ does not inhibit but 

instead increases the activity of multiple RNA polymerases (including Pol II)248. In 

addition, Mn2+ is readily available in yeast cells (0.04-2mM depending on the types of 

measurement)312-316 at a relevant range to the reported thiolutin inhibitory concentration 

(~20µM in 216). We note that in the original Tipper observations, their transcription 

buffer contained 1.6mM Mn2+, whereas most other reports did not report Mn2+ in 

buffers164,213,220,222 (One report appears to have an unusually high concentration of 

10mM Mn2+ and possibly also reductant221). Therefore, we set out to test whether Mn2+ 

might participate in thiolutin-mediated inhibition of Pol II. Remarkably, Mn2+ addition 

to reduced thiolutin potently inhibited purified Pol II activity (Figure 3-11A), in sharp 

contrast to the activation of Pol II activity caused by Mn2+ by itself in the absence of 

reduced thiolutin. Our observation is consistent with the known activation of RNAPs by 

Mn2+ 65,248, but also suggests a highly potent Pol II inhibition by Mn2+ activated reduced 

thiolutin (hereafter termed as Thio/Mn2+) (Figure 3-11A).  
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Figure 3-11. Thiolutin/Mn2+ complex inhibits Pol II transcription in vitro and in vivo 
(A) Thiolutin requires both DTT (reductant) and Mn2+ to inhibit Pol II transcription in vitro. At least three 
experimental replicates were performed, and a representative replicate is shown. 
(B) Pre-binding to DNA renders Pol II resistant to Thiolutin/Mn2+ complex. Three experimental replicates 
were performed, and a representative replicate is shown. 
(C) Thio/Mn2+ inhibited Pol II can be manually assembled into a distinct and slow elongating complex. 
Two experimental replicates were performed, and a representative replicate is shown. 
(D) Thio/DTT/Mn2+ inhibits Pol II transcription in vivo. Three experimental replicates were performed, 
and the error bars represent standard deviation of the mean. 
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We next designed a series of experiments to investigate properties of the inhibited Pol II 

and nature of the inhibitory species. We first tested if order-of-addition among Pol II, 

DNA and Thio/Mn2+ is critical for the inhibition, since order-of-addition is often 

informative on the mode of transcription inhibition (reviewed in chapter I), especially 

given the observation of Tipper et al. that order-of-addition was critical for thiolutin 

inhibition. Consistent with the early observation, we found that the template ssDNA 

binding protects Pol II from the Thio/Mn2+ inhibition (Figure 3-11B). Template ssDNA 

protection of Pol II generally suggests Thio/Mn2+ inhibits Pol II DNA interaction or 

similarly early step in transcription, consistent with the behavior of transcription 

initiation inhibitor. Therefore, we tested if Thio/Mn2+ affected Pol II elongation on a 

transcription bubble template with RNA primer, where transcription initiation is 

bypassed. Surprisingly, Thio/Mn2+ altered, but did not block Pol II transcription 

elongation, inducing a highly specific pause prone Pol II elongation mode (Figure 3-

11C, right panel). This is unexpected because most specific initiation inhibitors do not 

cause elongation defects, and DNA binding does not protect RNAPs from elongation 

inhibitors. In addition, pre-assembled transcription elongation complexes were also 

resistant to Thio/Mn2+ (Figure 3-11C, middle panel), validating the critical order-of-

addition from another assay (Figure 3-11B). Thio/Mn2+ inhibited Pol II was pause-prone 

and appeared to irreversibly arrest at specific template positions (Figure 3-11C).  These 

results together suggested that thiolutin entirely blocks initiation, yet if initiation is 

bypassed, elongation is allowed though pause-prone. 
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Whether thiolutin inhibits transcription initiation or elongation in vivo is unclear217,220. In 

light of our in vitro results, we next tested thiolutin mediated Pol II transcription 

inhibition in vivo, by monitoring Pol II occupancy on a long gene YLR454w. We 

observed a specific decrease of Pol II occupancy on the 5’ end of the gene within the 

first 2 mins, consistent with immediate transcription initiation inhibition after thiolutin 

treatment (Figure 3-11D). After 2 mins, we also observed a relatively slower loss of Pol 

II from the template compared to previous experiments where transcription was inhibited 

by other means80. Additionally, this decrease in Pol II occupancy at later time points 

does not appear polar as it would if elongation were proceeding normally. These results 

suggest that thiolutin may have additional non-immediate inhibitory effects on Pol II 

elongation in vivo (Figure 3-11D). Together, we conclude that thiolutin can inhibit Pol 

II initiation both in vitro and in vivo (Figure 3-11). 

 

To investigate the nature of the inhibitory species, we first asked if reduced thiolutin 

interacts with Mn2+. Interestingly, we observed continuous and reproducible changes of 

the UV spectra after Mn2+ is added to the reduced thiolutin (Figure 3-12A), suggesting 

changing chemical species in the reaction. The UV peak was shifted from the 340nm 

(reduced thiolutin) to around 380nm in the first two minutes, and the 380nm peak 

gradually decreased as a third species at 300nm started to accumulate (Figure 3-12A). 

The reaction reached a relative stable equilibrium after 20 minutes. Our data revealed the 

dynamic change and two major species after Mn2+ addition to the reduced thiolutin, but 

could not distinguish if either of the two was the inhibitory species. To test this question, 
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we prepared Thio/Mn2+ and either freshly treated Pol II or incubated at room 

temperature for 20 minutes before treating Pol II (Figure 3-12B). Remarkably, we 

observed strong Pol II inhibition by freshly prepared Thio/Mn2+ but complete loss of 

Thio/Mn2+ inhibitory activity after 20 minutes (Figure 3-12B). This result is consistent 

with the 380nm species possibly contributing to Pol II inhibition yet unstable in solution. 

In contrast to the window for inhibitory activity of Thio/Mn2+, immediately treated Pol II 

was inhibited for up to 50 minutes (20-minute incubation and 30-minute reaction time), 

suggesting that the Pol II inhibition is stable (Figure 3-12B).  

 

We propose two models to reconcile the observation that Pol II stabilized the unstable 

380nm inhibitory species. First, Pol II might stabilize the inhibitory species in a tight 

pocket that prevented further reaction into other inactive species. Second, Mn2+ might 

coordinate with reduced thiolutin to form a disulfide bond within Pol II or possibly a 

thiolutin adduct, as Cu2+ does to facilitate disulfide formation through cysteine 

sulfenylation in other proteins317-319. If sulfenylation and disulfide bond formation were 

involved, the Thio/Mn2+ inhibition is expected to be suppressible by a high concentration 

of DTT. Indeed, we found that 50X excess of DTT fully abolished the inhibition, 

consistent with the involvement reductant sensitive inhibition (Figure 3-12C).  
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Figure 3-12. The apparent Thiolutin/Mn2+ complex is unstable in solution but stable in Pol II 
(A) Time course of changing UV spectra of reduced thiolutin treated with Mn2+. Reduced thiolutin (blue, 0 
min) was treated with equivalent molar Mn2+, and the UV spectra was acquired at different time points. 
Spectra over time was colored in a series of gradient from blue to red. Three experimental replicates were 
performed, and a representative replicate is shown. 
(B) Thio/Mn2+ lost the inhibitory activity after 20 mins in solution but keeps Pol II inhibited. Two 
experimental replicates were performed and consistent. One replicate is shown. 
(C) Thio/Mn2+ can be reversed by excess DTT. Excess of DTT was added after 20 minutes of Pol II 
inhibition by Thio/Mn2+. Final DTT excess (relative to thiolutin) was indicated on the figure. At least three 
experimental replicates were performed, and a representative replicate is shown. 
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Discussion 

Thiolutin is a routinely used transcription inhibitor for studying mRNA stability, but the 

exact mode of inhibition remained complicated and unresolved. It has been 

demonstrated that reduced thiolutin and holomycin chelated Zn2+ in vitro, and the 

thiolutin chelation of Zn2+ could specifically inhibit diverse classes of 

metalloproteins213,214. However, both reports failed to observe direct thiolutin inhibition 

of RNAPs, under conditions where Zn2+ chelation was permissible. It was interpreted as 

thiolutin and holomycin inhibiting transcription through secondary effects. Here we 

present three independent genetic screens for thiolutin resistant or sensitive mutants, 

providing a genetic basis for understanding thiolutin altered cellular responses and direct 

mode of action against Pol II in vivo. We show that alterations in diverse cellular 

pathways can modulate cellular sensitivity to thiolutin. In light of our genetic results, we 

discovered that both reductant DTT and Mn2+ together activate thiolutin direct inhibition 

of Pol II function, countering the recent narrative while upholding classic 

observations214,216. 

 

Thiolutin inhibits Pol II through a novel mode of action 

We propose that Thio/Mn2+ inhibits Pol II through a novel mode of action. The critical 

order of treating Pol II with thiolutin prior to template DNA binding is a classical 

behavior for RNAP clamp inhibitors, which are distinct from inhibitors targeting the 

active site, NTP uptake or RNA exit channels (see Chapter I). In addition, we show that 

thiolutin inhibits Pol II elongation on an initiation-bypassing transcription bubble 
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template, distinct from all the three characterized inhibitors that lock the clamp in the 

closed state (Myx, Cor and Rip) and do not inhibit RNAP elongation170,174. It should be 

noted that Lpm, an inhibitor that appears to lock the clamp in the partially or fully open 

state187, has never been tested on a bubble template. Therefore, thiolutin behaves 

differently from Myx, Cor and Rip, but further experiments are in need to test whether 

thiolutin behaves similarly to Lpm. Finally, the exact thiolutin binding site on Pol II 

remains unclear, and our data cannot rule out the possibility that thiolutin may inhibit 

Pol II regions other than clamp controlling switch regions. 

 

Diverse cellular pathways modulate thiolutin multiple modes of action 

Our genetic screens reveal contribution of diverse cellular pathways in thiolutin 

sensitivity. Many of these pathways can be reconciled in a unified model based on 

current understanding of thiolutin mode of action. In the cell, the thiolutin intra-

molecular disulfide bond appears to be reduced, and we propose thioredoxins Trx1 and 

Trx2 directly or indirectly contribute to thiolutin reduction in vivo, while in turn being 

oxidized by this process. Reduced thiolutin may subsequently chelate Zn2+ to inhibit 

multiple metalloproteins (e.g. proteasome), affects Zn2+ homeostasis, interacts with Mn2+ 

to inhibit RNAP transcription, or get re-oxidized by molecular oxygen. The reduction or 

redox cycling of thiolutin may induce the observed Yap1 nuclear localization and 

oxidative stresses. In addition, evidence from us and others have shown that reduced 

thiolutin may also chelate other divalent metals such as Cu2+ or Ca2+ (but not Mg2+), but 
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whether other thiolutin-metal complexes have additional activities remain to be further 

tested.  

 

Thiolutin should not be used as a tool without caution 

Our work underpins the caveats for using thiolutin to investigate other cellular process, 

as suggested by previous studies213,214,223. As a routinely used transcription inhibitor to 

study mRNA stability, it was shown that thiolutin itself inhibits mRNA degradation and 

complicates the quantitation of mRNA half-life at slightly higher dose223. In addition, 

studies from us and others reveal that thiolutin induces multiple cellular stress through 

inhibiting various targets, suggesting the lack of thiolutin specificity even at low dose. 

Unfortunately, there is currently no available specific and permeable Pol II inhibitors for 

yeast cells, and other approaches of Pol II inhibition appear to be complicated by other 

factors. For example, inhibiting Pol II transcription through Pol II temperature sensitive 

allele rpb1-1 requires a temperature shift and a heat-shock response, and gene-specific 

transcription inhibition through glucose shutoff of a galactose inducible promoter 

appears to be complicated by the glucose repressing kinetics80. Before development of 

specific and permeable Pol II inhibitors, we suggest that multiple strategies for Pol II 

inhibition have to be taken to validate the observations in relevant studies. 

 

Thiolutin mode of action may reveal insights into Pol II pausing 

The thiolutin induced pause (and arrest) pattern appears to be highly specific and 

position-dependent, and it will be interesting to further investigate the pause sequence 
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preference and its possible connection to specific inhibited Pol II conformation. As 

discussed above, although remaining to be further tested, biochemical properties of 

thiolutin inhibited Pol II most closely resembles the clamp inhibition into a non-closed 

state, likely a partially or fully open state. It is tempting to hypothesize that the thiolutin 

induced pause prone Pol II is linked to a specific Pol II conformation, such as a clamp-

opening state. This hypothesis is also consistent with the observations in E.coli RNAP 

that paused elongation complexes appear to correlate with open clamp and TL states, 

which can be reversed and possibly regulated by elongation factor RfaH35,63. It has been 

proposed that this RfaH (Spt5 in yeast) pause suppression through clamp may be a 

conserved regulatory mechanism for RNAP elongation in all domains of life173. Further 

characterization of thiolutin inhibited Pol II may reveal additional insights into this 

process in eukaryotes.  
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CHAPTER IV 

SUMMARY AND FUTURE DIRECTIONS 

 

Summary 

The work described in this dissertation utilizes two entirely different approaches to 

investigate Pol II function. First, we developed a high-throughput phenotypic system to 

functionally dissect almost all TL single substitution mutants, providing a 

comprehensive view for the in vivo consequences of different Pol II TL perturbations 

(Chapter II). Some phenotypic consequences have already been connected to specific 

functional defects by our lab31,52,80,244,266, and more are under investigation. These 

phenotypes allowed us to greatly expanded the membership of two previously identified 

mutant classes: the LOF mutants with decreased elongation rate and the GOF mutants 

with increased elongation rate. We have also identified a minor class of mutants with 

distinct phenotypes to be further investigated. In addition, we investigated the functional 

relationship between TL and several surrounding domains, and provide evidence 

consistent with complex functional interplay among these domains. Finally, our data 

suggest possible determinants for the incompatibility of Pol I TL in the Pol II context, 

likely through evolutionary divergence of the funnel helix surrounding TL.  

 

Second, we took a chemical genetic and biochemical approach to investigate the mode 

of action of thiolutin, a natural product transcription inhibitor with unclear mode of 

transcription inhibition (Chapter III). Based on the observation that thiolutin inhibited 
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partially purified but not fully purified Pol II, we hypothesized that thiolutin inhibition of 

RNAPs required additional co-factors, and performed three independent genetic screens 

for yeast mutants that are resistant or sensitive to thiolutin. We characterized functional 

contribution of several cellular response pathways to thiolutin resistance. In addition, in 

light of our genetic data, we discovered surprising and stringent requirements for 

activation of thiolutin inhibition of Pol II: Mn2+ and appropriate levels of reductant DTT 

to reduce thiolutin while not antagonizing inhibition. We studied the nature of this Mn2+ 

and reductant-activated inhibitory species, and characterized the properties of the 

thiolutin inhibited Pol II. We showed that thiolutin mainly inhibited Pol II transcription 

initiation, and only inhibited free Pol II prior to template DNA binding. We further 

showed that thiolutin inhibited Pol II could elongate on an initiation bypassed 

transcription bubble template, but was prone to pausing and arrests. We suggest that 

thiolutin inhibits Pol II through a novel mechanism that is distinct from most other 

characterized transcription inhibitors (reviewed in Chapter I). 

 

Each project advances our understanding of the Pol II function, and allows us to answer 

many critical open questions. The open questions and proposed future experiments are 

discussed below. 
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Future directions 

Address functional relationship and evolutionary questions using the high-

resolution phenotypic system  

Our phenotypic system distinguishes TL mutants with similar general fitness defects on 

a large scale19,31,266, thus providing the basis for studying several exciting and previously 

challenging questions.  

 

First, the functional relationship among the residues within and surrounding the TL 

remains an open question. The TL residues can work collaboratively or independently to 

ensure proper TL function, as evidenced by TL mutations conferring diverse types of 

genetic interactions31. In addition, many TL interactions with the surrounding domains 

appear to be critical but largely untested24,25,42,266. Our phenotypic system is in place to 

explore these intra- and inter-TL genetic interactions.  

 

To comprehensively evaluate the intra-TL genetic interactions, we propose to phenotype 

a carefully selected subset of double mutants. Based on the single mutant phenotypes, 

we will choose at least two substitutions for every residue and perform pairwise 

combinations for these substitutions. We expect most of the combinations to confer 

independent and activity-based additive effects, as suggested by previous studies31,266. 

We would also expect a subset of the combinations to confer intra-TL epistasis that 

suggest inter-dependent and non-additive functions for the residues. The non-additive 

intra-TL epistasis, as discussed above, has already contributed and will continue to 
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contribute to insights of collaborative TL residue functions31. Finally, we will also 

combine several well characterized single mutants (e.g. E1103G) with all possible single 

substitutions to specifically screen for intra-TL epistasis for these well-known mutants.  

 

To study TL genetic interactions with the surrounding domains, we propose to 

phenotype the existing single substituted TL variants in the context of mutations in the 

surrounding domain. We expect the TL external mutations to alter the TL phenotypic 

landscape in a highly specific way, where both activity-based additive interactions and 

specific inter-domain epistasis can also be revealed. Together, our phenotypic system 

allows us to draw a semi-comprehensive epistasis map within and surrounding TL, and 

is expected to expand our current understanding of this complex functional network of 

residue-residue interactions. 

 

Second, we propose to evaluate the complementation compatibilities of different 

evolutionary TLs in our Pol II system. The incompatibility of Pol I TL in the Pol II 

context revealed a critical and stringent requirement for the environments surrounding 

TL56,266. To understand the evolutionary divergence surrounding TL, we propose to 

comprehensively phenotype many more evolutionary TL variants in the Pol II context, 

and we propose to further dissect all the intermediate mutations for several compatible 

and incompatible evolutionary variants (we term as “evolutionary paths”). For 

incompatible evolutionary variants, this evolutionary path experiment allows us to 

pinpoint the causal mutations for incompatibility. For some compatible evolutionary 
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variants with potential detrimental mutations (e.g. Pol III TL discussed in chapter II), we 

expect to identify intra-TL epistasis within the evolutionary path that tolerate possible 

detrimental mutations. Together, we expect such experiments to be informative for our 

understanding of molecular evolution of the extremely highly conserved TL. 

 

Third, we propose to test the potential roles of inter-residue co-evolution and functional 

coupling within the TL. Functional constraints among residues appear to drive co-

evolution, which can be detected by an approach termed as statistical coupling analysis 

(SCA)320-322. Extensive work from Ranganathan lab have shown that the co-evolving 

residues form a physically continuous cluster of residues (termed as “sectors”) and 

confer multiple functions in protein folding, stability, catalysis, substrate specificity, 

allostery and evolvability236,320-326. Despite the multiple functions, whether functional 

coupling contributes to the function of highly conserved domains remain difficult to test, 

partially due to the technical challenges to detect co-evolution within highly conserved 

domains and lack of sensitive functional assays to test them in a large scale.  

 

With the accumulating sequences and our phenotypic system, we propose to test this 

previously difficult question using Pol II TL as a model system. The massive number of 

available sequences now allows us to assemble a diverse set of evolutionary TL variants 

(371 non-redundant TL sequences with 40-80% identity) and to detect co-evolution 

within the TL (Figure 4-1, left panel)320,321. We next performed two different previously 

reported scrambling approach to (1) specifically disrupt the co-evolution but preserve the 
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conservation (Figure 4-1, middle panel) or (2) preserve both conservation and 

coevolution (Figure 4-1, right panel) (See 323 for details). Each scrambling approach 

creates more than 350 artificial TL sequences for experimental validation. Our 

established phenotypic system distinguishes mutants with similar general growth defects 

and allows us to phenotype hundreds of mutants all at once. We propose to phenotype 

the natural TL sequences (as proposed above) along with the randomly scrambled 

(conservation preserved, co-evolution disrupted) and the Monte-Carlo-based scrambled 

(conservation and co-evolution preserved) libraries. We expect the phenotypic difference 

among these three libraries to reveal the potential role of co-evolution on the TL 

function. 

 

Further explore the novel mode of action of thiolutin 

Our observations in Chapter III suggest a novel mode of action for thiolutin dependent 

Pol II inhibition. However, several critical questions remain to be further clarified: 1. 

What is the structural basis of the thiolutin inhibition? 2. What is the nature of this 

inhibitory species when thiolutin is activated by DTT and Mn2+? 3. Are there additional 

untested properties of the thiolutin inhibited Pol II? Each of these questions can be 

further divided into more specific questions, and we propose several critical experiments 

to address these questions. 
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Figure 4-1. Intra-TL co-evolution detected by statistical coupling analysis (SCA). 
A matrix showing the co-evolution scores between all 31 TL positions (rows) and 11 moderately 
conserved TL positions (columns). The co-evolution scores are computed by quantifying the changes of 
amino acid frequency at all TL position (rows) after sampling (perturbing) the moderately conserved TL 
positions (columns) for a specific amino acid, as previously reported320. The colors are coded as no co-
evolution (blue), medium co-evolution (white) and maximal co-evolution (red). The self-correlation of 
positions to its own perturbation is crossed out from the matrix. 
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We propose to crystallize the thiolutin inhibited Pol II complex, which is expected to 

answer several major questions above, including the nature and the Pol II binding site of 

the inhibitory species. We also expect a thiolutin bound Pol II structure to reveal insights 

into the inhibition and the Pol II function. However, it should be noted that there are 

technical challenges in this experiment. First, the high sensitivity of thiolutin inhibition 

to excess reductants (DTT or TCEP) can pose a significant challenge for crystallography. 

Pol II crystallization is generally performed under conditions with high DTT 

concentration (5mM), which reverses thiolutin inhibition at relevant concentrations 

(Chapter III). In addition, the redox-cycling nature of thiolutin and presence of Mn2+ are 

known to facilitate DTT oxidation in the presence of molecular oxygen. Anaerobic 

crystallization conditions are likely needed for this experiment. In addition, the low 

solubility of thiolutin can be a limiting factor for crystallization. Thiolutin is only 

moderately soluble in DMSO (up to 4.4mM) but not in water or transcription buffer, 

thus limiting the concentration of thiolutin employed in the crystallization conditions, 

because high DMSO concentration is known to be detrimental to the Pol II crystal 

formation.  

 

Given the potential challenges in crystallography, we proposed several parallel 

approaches to investigate the structural basis of thiolutin inhibition. First, as discussed in 

Chapter III, thiolutin may inhibit Pol II through forming covalent disulfide bond with the 

Pol II cysteines. A covalent inhibitor binding can be potentially detected with Pol II 

fragmentation followed by high resolution mass spectrometry. We are currently 
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collaborating with Amber Mosley’s lab (at IUSM) to investigate this possibility. Second, 

as reviewed in Chapter III, thiolutin inhibition appears to most closely resemble the 

RNAP clamp inhibitors. The RNAP clamp is a highly mobile domain that can possibly 

move up to 20 angstroms170, which is within the detection limit of cryo-EM experiments. 

We propose to test this potential inhibition of clamp motion using cryo-EM. Third, we 

propose to investigate the thiolutin inhibitory activity on RNA polymerases from other 

species, especially E.coli. Cross-species inhibitory activity is expected to reveal 

additional information on the conservation of thiolutin targeted region. Finally, if 

thiolutin similarly inhibits E.coli RNAP (to be tested), we could perform a genetic screen 

for E.coli RNAP mutants that confers resistance to thiolutin, as resistance pocket has 

been shown to be highly informative on the potential binding site of RNAP inhibitors 

(reviewed in Chapter I). 

 
 



 

 181 

REFERENCES 

1. Mason, P.B. & Struhl, K. Distinction and relationship between elongation rate 
and processivity of RNA polymerase II in vivo. Molecular Cell 17, 831-840 
(2005). 

 
2. Thummel, C.S., Burtis, K.C. & Hogness, D.S. Spatial and temporal patterns of 

E74 transcription during Drosophila development. Cell 61, 101-11 (1990). 
 
3. Shermoen, A.W. & O'Farrell, P.H. Progression of the cell cycle through mitosis 

leads to abortion of nascent transcripts. Cell 67, 303-310 (1991). 
 
4. O'Brien, T. & Lis, J.T. Rapid changes in Drosophila transcription after an 

instantaneous heat shock. Mol Cell Biol 13, 3456-63 (1993). 
 
5. Yao, J., Ardehali, M.B., Fecko, C.J., Webb, W.W. & Lis, J.T. Intranuclear 

distribution and local dynamics of RNA polymerase II during transcription 
activation. Mol Cell 28, 978-90 (2007). 

 
6. Singh, J. & Padgett, R.A. Rates of in situ transcription and splicing in large 

human genes. Nat Struct Mol Biol 16, 1128-33 (2009). 
 
7. Darzacq, X. et al. In vivo dynamics of RNA polymerase II transcription. Nat 

Struct Mol Biol 14, 796-806 (2007). 
 
8. Danko, C.G. et al. Signaling pathways differentially affect RNA polymerase II 

initiation, pausing, and elongation rate in cells. Mol Cell 50, 212-22 (2013). 
 
9. Fuchs, G. et al. 4sUDRB-seq: measuring genomewide transcriptional elongation 

rates and initiation frequencies within cells. Genome Biology 15, R69 (2014). 
 
10. Jonkers, I., Kwak, H. & Lis, J.T. Genome-wide dynamics of Pol II elongation 

and its interplay with promoter proximal pausing, chromatin, and exons. Elife 3, 
e02407 (2014). 

 
11. Veloso, A. et al. Rate of elongation by RNA polymerase II is associated with 

specific gene features and epigenetic modifications. Genome Research 24, 896-
905 (2014). 

 
12. Kwak, H. & Lis, J.T. Control of transcriptional elongation. Annu Rev Genet 47, 

483-508 (2013). 
 
13. Jonkers, I. & Lis, J.T. Getting up to speed with transcription elongation by RNA 

polymerase II. Nat Rev Mol Cell Biol 16, 167-77 (2015). 



 

 182 

 
14. Imashimizu, M., Oshima, T., Lubkowska, L. & Kashlev, M. Direct assessment of 

transcription fidelity by high-resolution RNA sequencing. Nucleic Acids 
Research 41, 9090-104 (2013). 

 
15. Gout, J.F., Thomas, W.K., Smith, Z., Okamoto, K. & Lynch, M. Large-scale 

detection of in vivo transcription errors. Proc Natl Acad Sci U S A 110, 18584-9 
(2013). 

 
16. Reid-Bayliss, K.S. & Loeb, L.A. Accurate RNA consensus sequencing for high-

fidelity detection of transcriptional mutagenesis-induced epimutations. Proc Natl 
Acad Sci U S A 114, 9415-9420 (2017). 

 
17. Bentley, D.L. Coupling mRNA processing with transcription in time and space. 

Nat Rev Genet 15, 163-75 (2014). 
 
18. Larson, M.H. et al. Trigger loop dynamics mediate the balance between the 

transcriptional fidelity and speed of RNA polymerase II. Proc Natl Acad Sci U S 
A 109, 6555-60 (2012). 

 
19. Braberg, H. et al. From structure to systems: high-resolution, quantitative genetic 

analysis of RNA polymerase II. Cell 154, 775-88 (2013). 
 
20. Kaplan, C.D. Basic mechanisms of RNA polymerase II activity and alteration of 

gene expression in Saccharomyces cerevisiae. Biochim Biophys Acta 1829, 39-54 
(2013). 

 
21. Liu, X., Bushnell, D.A. & Kornberg, R.D. RNA polymerase II transcription: 

structure and mechanism. Biochim Biophys Acta 1829, 2-8 (2013). 
 
22. Martinez-Rucobo, F.W. & Cramer, P. Structural basis of transcription elongation. 

Biochim Biophys Acta 1829, 9-19 (2013). 
 
23. Svetlov, V. & Nudler, E. Basic mechanism of transcription by RNA polymerase 

II. Biochim Biophys Acta 1829, 20-8 (2013). 
 
24. Wang, D., Bushnell, D.A., Westover, K.D., Kaplan, C.D. & Kornberg, R.D. 

Structural basis of transcription: role of the trigger loop in substrate specificity 
and catalysis. Cell 127, 941-54 (2006). 

 
25. Wang, B., Predeus, A.V., Burton, Z.F. & Feig, M. Energetic and structural 

details of the trigger-loop closing transition in RNA polymerase II. Biophys J 105, 
767-75 (2013). 

 



 

 183 

26. Xu, L. et al. Dissecting the chemical interactions and substrate structural 
signatures governing RNA polymerase II trigger loop closure by synthetic 
nucleic acid analogues. Nucleic Acids Research 42, 5863-70 (2014). 

 
27. Vassylyev, D.G. et al. Structural basis for substrate loading in bacterial RNA 

polymerase. Nature 448, 163-8 (2007). 
 
28. Kaplan, C.D., Larsson, K.M. & Kornberg, R.D. The RNA polymerase II trigger 

loop functions in substrate selection and is directly targeted by alpha-amanitin. 
Mol Cell 30, 547-56 (2008). 

 
29. Kireeva, M.L. et al. Transient reversal of RNA polymerase II active site closing 

controls fidelity of transcription elongation. Mol Cell 30, 557-66 (2008). 
 
30. Huang, X. et al. RNA polymerase II trigger loop residues stabilize and position 

the incoming nucleotide triphosphate in transcription. Proc Natl Acad Sci U S A 
107, 15745-50 (2010). 

 
31. Kaplan, C.D., Jin, H., Zhang, I.L. & Belyanin, A. Dissection of Pol II trigger 

loop function and Pol II activity-dependent control of start site selection in vivo. 
PLoS Genet 8, e1002627 (2012). 

 
32. Xu, L. et al. Strand-specific (asymmetric) contribution of phosphodiester 

linkages on RNA polymerase II transcriptional efficiency and fidelity. Proc Natl 
Acad Sci U S A 111, E3269-76 (2014). 

 
33. Hwang, C.S. et al. Functional interplay between NTP leaving group and base pair 

recognition during RNA polymerase II nucleotide incorporation revealed by 
methylene substitution. Nucleic Acids Research 44, 3820-3828 (2016). 

 
34. Malinen, A.M. et al. Active site opening and closure control translocation of 

multisubunit RNA polymerase. Nucleic Acids Research 40, 7442-51 (2012). 
 
35. Nayak, D., Voss, M., Windgassen, T., Mooney, R.A. & Landick, R. Cys-pair 

reporters detect a constrained trigger loop in a paused RNA polymerase. Mol Cell 
50, 882-93 (2013). 

 
36. Da, L.T., Wang, D. & Huang, X. Dynamics of pyrophosphate ion release and its 

coupled trigger loop motion from closed to open state in RNA polymerase II. J 
Am Chem Soc 134, 2399-406 (2012). 

 
37. Liu, B., Zuo, Y. & Steitz, T.A. Structures of E. coli sigmaS-transcription 

initiation complexes provide new insights into polymerase mechanism. Proc Natl 
Acad Sci U S A 113, 4051-6 (2016). 



 

 184 

 
38. Toulokhonov, I., Zhang, J., Palangat, M. & Landick, R. A central role of the 

RNA polymerase trigger loop in active-site rearrangement during transcriptional 
pausing. Mol Cell 27, 406-19 (2007). 

 
39. Seibold, S.A. et al. Conformational coupling, bridge helix dynamics and active 

site dehydration in catalysis by RNA polymerase. Biochim Biophys Acta 1799, 
575-87 (2010). 

 
40. Silva, D.A. et al. Millisecond dynamics of RNA polymerase II translocation at 

atomic resolution. Proc Natl Acad Sci U S A 111, 7665-70 (2014). 
 
41. Windgassen, T.A. et al. Trigger-helix folding pathway and SI3 mediate catalysis 

and hairpin-stabilized pausing by Escherichia coli RNA polymerase. Nucleic 
Acids Research 42, 12707-21 (2014). 

 
42. Barnes, C.O. et al. Crystal Structure of a Transcribing RNA Polymerase II 

Complex Reveals a Complete Transcription Bubble. Mol Cell 59, 258-69 (2015). 
 
43. Weixlbaumer, A., Leon, K., Landick, R. & Darst, S.A. Structural basis of 

transcriptional pausing in bacteria. Cell 152, 431-41 (2013). 
 
44. Wang, D. et al. Structural basis of transcription: backtracked RNA polymerase II 

at 3.4 angstrom resolution. Science 324, 1203-6 (2009). 
 
45. Cheung, A.C. & Cramer, P. Structural basis of RNA polymerase II backtracking, 

arrest and reactivation. Nature 471, 249-53 (2011). 
 
46. Zhang, J., Palangat, M. & Landick, R. Role of the RNA polymerase trigger loop 

in catalysis and pausing. Nat Struct Mol Biol 17, 99-104 (2010). 
 
47. Yuzenkova, Y. & Zenkin, N. Central role of the RNA polymerase trigger loop in 

intrinsic RNA hydrolysis. Proc Natl Acad Sci U S A 107, 10878-83 (2010). 
 
48. Sosunova, E., Sosunov, V., Epshtein, V., Nikiforov, V. & Mustaev, A. Control of 

transcriptional fidelity by active center tuning as derived from RNA polymerase 
endonuclease reaction. J Biol Chem 288, 6688-703 (2013). 

 
49. Miropolskaya, N. et al. Interplay between the trigger loop and the F loop during 

RNA polymerase catalysis. Nucleic Acids Research 42, 544-52 (2014). 
 
50. Esyunina, D. et al. Lineage-specific variations in the trigger loop modulate RNA 

proofreading by bacterial RNA polymerases. Nucleic Acids Research 44, 1298-
308 (2016). 



 

 185 

51. Castro, C. et al. Nucleic acid polymerases use a general acid for nucleotidyl 
transfer. Nat Struct Mol Biol 16, 212-8 (2009). 

 
52. Cabart, P., Jin, H., Li, L. & Kaplan, C.D. Activation and reactivation of the RNA 

polymerase II trigger loop for intrinsic RNA cleavage and catalysis. 
Transcription 5, e28869 (2014). 

 
53. Mishanina, T.V., Palo, M.Z., Nayak, D., Mooney, R.A. & Landick, R. Trigger 

loop of RNA polymerase is a positional, not acid–base, catalyst for both 
transcription and proofreading. Proc Natl Acad Sci U S A, 201702383 (2017). 

 
54. Irvin, J.D. et al. A genetic assay for transcription errors reveals multilayer control 

of RNA polymerase II fidelity. PLoS Genet 10, e1004532 (2014). 
 
55. Dangkulwanich, M. et al. Complete dissection of transcription elongation reveals 

slow translocation of RNA polymerase II in a linear ratchet mechanism. Elife 2, 
e00971 (2013). 

 
56. Viktorovskaya, O.V. et al. Divergent contributions of conserved active site 

residues to transcription by eukaryotic RNA polymerases I and II. Cell Rep 4, 
974-84 (2013). 

 
57. Malagon, F. et al. Mutations in the Saccharomyces cerevisiae RPB1 gene 

conferring hypersensitivity to 6-azauracil. Genetics 172, 2201-9 (2006). 
 
58. Trinh, V., Langelier, M.F., Archambault, J. & Coulombe, B. Structural 

perspective on mutations affecting the function of multisubunit RNA 
polymerases. Microbiol Mol Biol Rev 70, 12-36 (2006). 

 
59. Tan, L., Wiesler, S., Trzaska, D., Carney, H.C. & Weinzierl, R.O. Bridge helix 

and trigger loop perturbations generate superactive RNA polymerases. J Biol 7, 
40 (2008). 

 
60. Weinzierl, R.O. The nucleotide addition cycle of RNA polymerase is controlled 

by two molecular hinges in the Bridge Helix domain. BMC Biol 8, 134 (2010). 
 
61. Miropolskaya, N., Artsimovitch, I., Klimasauskas, S., Nikiforov, V. & 

Kulbachinskiy, A. Allosteric control of catalysis by the F loop of RNA 
polymerase. Proc Natl Acad Sci U S A 106, 18942-7 (2009). 

 
62. Miropolskaya, N., Nikiforov, V., Klimasauskas, S., Artsimovitch, I. & 

Kulbachinskiy, A. Modulation of RNA polymerase activity through the trigger 
loop folding. Transcription 1, 89-94 (2010). 

 



 

 186 

63. Hein, P.P. et al. RNA polymerase pausing and nascent-RNA structure formation 
are linked through clamp-domain movement. Nat Struct Mol Biol 21, 794-802 
(2014). 

 
64. Nesser, N.K., Peterson, D.O. & Hawley, D.K. RNA polymerase II subunit Rpb9 

is important for transcriptional fidelity in vivo. Proc Natl Acad Sci U S A 103, 
3268-3273 (2006). 

 
65. Walmacq, C. et al. Rpb9 subunit controls transcription fidelity by delaying NTP 

sequestration in RNA polymerase II. J Biol Chem 284, 19601-12 (2009). 
 
66. Kaster, B.C., Knippa, K.C., Kaplan, C.D. & Peterson, D.O. RNA Polymerase II 

Trigger Loop Mobility: Indirect effects of Rpb9. J Biol Chem 291, 14883-95 
(2016). 

 
67. Kettenberger, H., Armache, K.J. & Cramer, P. Complete RNA polymerase II 

elongation complex structure and its interactions with NTP and TFIIS. Mol Cell 
16, 955-65 (2004). 

 
68. Sobell, H.M., Jain, S.C., Sakore, T.D. & Nordman, C.E. Stereochemistry of 

actinomycin--DNA binding. Nat New Biol 231, 200-5 (1971). 
 
69. Kamitori, S. & Takusagawa, F. Crystal structure of the 2: 1 complex between d 

(GAAGCTTC) and the anticancer drug actinomycin D. J Mol Biol 225, 445-456 
(1992). 

 
70. Chen, H., Liu, X. & Patel, D.J. DNA bending and unwinding associated with 

actinomycin D antibiotics bound to partially overlapping sites on DNA. J Mol 
Biol 258, 457-79 (1996). 

 
71. Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R.W. 

Participation of p53 protein in the cellular response to DNA damage. Cancer Res 
51, 6304-11 (1991). 

 
72. Wadkins, R.M. & Jovin, T.M. Actinomycin D and 7-aminoactinomycin D 

binding to single-stranded DNA. Biochemistry 30, 9469-78 (1991). 
 
73. Nelson, W.G. & Kastan, M.B. DNA strand breaks: the DNA template alterations 

that trigger p53-dependent DNA damage response pathways. Molecular and 
Cellular Biology 14, 1815-1823 (1994). 

 
74. Zandomeni, R. & Weinmann, R. Inhibitory effect of 5,6-dichloro-1-beta-D-

ribofuranosylbenzimidazole on a protein kinase. J Biol Chem 259, 14804-11 
(1984). 



 

 187 

 
75. Zandomeni, R., Zandomeni, M.C., Shugar, D. & Weinmann, R. Casein kinase 

type II is involved in the inhibition by 5, 6-dichloro-1-beta-D-
ribofuranosylbenzimidazole of specific RNA polymerase II transcription. J Biol 
Chem 261, 3414-3419 (1986). 

 
76. Exinger, F. & Lacroute, F. 6-Azauracil inhibition of GTP biosynthesis in 

Saccharomyces cerevisiae. Curr Genet 22, 9-11 (1992). 
 
77. Sintchak, M.D. et al. Structure and mechanism of inosine monophosphate 

dehydrogenase in complex with the immunosuppressant mycophenolic acid. Cell 
85, 921-30 (1996). 

 
78. Titov, D.V. et al. XPB, a subunit of TFIIH, is a target of the natural product 

triptolide. Nature Chemical Biology 7, 182-188 (2011). 
 
79. Peterlin, B.M. & Price, D.H. Controlling the elongation phase of transcription 

with P-TEFb. Mol Cell 23, 297-305 (2006). 
 
80. Malik, I., Qiu, C., Snavely, T. & Kaplan, C.D. Wide-ranging and unexpected 

consequences of altered Pol II catalytic activity in vivo. Nucleic Acids Research 
45, 4431-4451 (2017). 

 
81. Hyle, J.W., Shaw, R.J. & Reines, D. Functional distinctions between IMP 

dehydrogenase genes in providing mycophenolate resistance and guanine 
prototrophy to yeast. J Biol Chem 278, 28470-8 (2003). 

 
82. Jenks, M.H., O'Rourke, T.W. & Reines, D. Properties of an intergenic terminator 

and start site switch that regulate IMD2 transcription in yeast. Mol Cell Biol 28, 
3883-93 (2008). 

 
83. Kuehner, J.N. & Brow, D.A. Regulation of a eukaryotic gene by GTP-dependent 

start site selection and transcription attenuation. Mol Cell 31, 201-11 (2008). 
 
84. Darst, S.A. New inhibitors targeting bacterial RNA polymerase. Trends Biochem 

Sci 29, 159-60 (2004). 
 
85. Ma, C., Yang, X. & Lewis, P.J. Bacterial transcription as a target for antibacterial 

drug development. Microbiology and Molecular Biology Reviews 80, 139-160 
(2016). 

 
86. Villain-Guillot, P., Bastide, L., Gualtieri, M. & Leonetti, J.P. Progress in 

targeting bacterial transcription. Drug Discov Today 12, 200-8 (2007). 
 



 

 188 

87. Gartel, A.L. Transcriptional inhibitors, p53 and apoptosis. Biochimica et 
Biophysica Acta (BBA)-Reviews on Cancer 1786, 83-86 (2008). 

 
88. Momand, J., Zambetti, G.P., Olson, D.C., George, D. & Levine, A.J. The mdm-2 

oncogene product forms a complex with the p53 protein and inhibits p53-
mediated transactivation. Cell 69, 1237-45 (1992). 

 
89. Juven-Gershon, T. & Oren, M. Mdm2: the ups and downs. Mol Med 5, 71-83 

(1999). 
 
90. Momand, J., Wu, H.-H. & Dasgupta, G. MDM2—master regulator of the p53 

tumor suppressor protein. Gene 242, 15-29 (2000). 
 
91. Michael, D. & Oren, M. The p53–Mdm2 module and the ubiquitin system. 

Seminars in cancer biology Vol. 13 49-58 (Elsevier, 2003). 
 
92. Blagosklonny, M.V. Flavopiridol, an inhibitor of transcription: implications, 

problems and solutions. Cell Cycle 3, 1537-42 (2004). 
 
93. Demidenko, Z.N. & Blagosklonny, M.V. Flavopiridol induces p53 via initial 

inhibition of Mdm2 and p21 and, independently of p53, sensitizes apoptosis-
reluctant cells to tumor necrosis factor. Cancer Res 64, 3653-60 (2004). 

 
94. Radhakrishnan, S.K. & Gartel, A.L. A novel transcriptional inhibitor induces 

apoptosis in tumor cells and exhibits antiangiogenic activity. Cancer Res 66, 
3264-70 (2006). 

 
95. Lu, W., Chen, L., Peng, Y. & Chen, J. Activation of p53 by roscovitine-mediated 

suppression of MDM2 expression. Oncogene 20, 3206-16 (2001). 
 
96. O'hagan, H.M. & Ljungman, M. Nuclear accumulation of p53 following 

inhibition of transcription is not due to diminished levels of MDM2. Oncogene 
23, 5505 (2004). 

 
97. Arima, Y. et al. Transcriptional blockade induces p53-dependent apoptosis 

associated with translocation of p53 to mitochondria. J Biol Chem 280, 19166-76 
(2005). 

 
98. Drygin, D., Rice, W.G. & Grummt, I. The RNA polymerase I transcription 

machinery: an emerging target for the treatment of cancer. Annu Rev Pharmacol 
Toxicol 50, 131-56 (2010). 

 



 

 189 

99. Bywater, M.J., Pearson, R.B., McArthur, G.A. & Hannan, R.D. Dysregulation of 
the basal RNA polymerase transcription apparatus in cancer. Nat Rev Cancer 13, 
299-314 (2013). 

 
100. Bywater, M.J. et al. Inhibition of RNA Polymerase I as a Therapeutic Strategy to 

Promote Cancer-Specific Activation of p53. Cancer Cell 22, 51-65 (2012). 
 
101. Andrews, W.J. et al. Old drug, new target: ellipticines selectively inhibit RNA 

polymerase I transcription. J Biol Chem 288, 4567-82 (2013). 
 
102. Fetherston, J., Werner, E. & Patterson, R. Processing of the external transcribed 

spacer of murine rRNA and site of action of actinomydn D. Nucleic Acids 
Research 12, 7187-7198 (1984). 

 
103. Rey, J.P., Scott, R. & Muller, H. Induction and removal of interstrand crosslinks 

in the ribosomal RNA genes of lymphoblastoid cell lines from patients with 
Fanconi anemia. Mutat Res 289, 171-80 (1993). 

 
104. Pondarre, C., Strumberg, D., Fujimori, A., Torres-Leon, R. & Pommier, Y. In 

vivo sequencing of camptothecin-induced topoisomerase I cleavage sites in 
human colon carcinoma cells. Nucleic Acids Research 25, 4111-6 (1997). 

 
105. Mahajan, P.B. Modulation of transcription of rRNA genes by rapamycin. Int J 

Immunopharmacol 16, 711-21 (1994). 
 
106. Ghoshal, K. & Jacob, S.T. An alternative molecular mechanism of action of 5-

fluorouracil, a potent anticancer drug. Biochem Pharmacol 53, 1569-75 (1997). 
 
107. Jordan, P. & Carmo-Fonseca, M. Cisplatin inhibits synthesis of ribosomal RNA 

in vivo. Nucleic Acids Research 26, 2831-6 (1998). 
 
108. Rossini, C., Taylor, W., Fagan, T. & Hastings, J.W. Lifetimes of mRNAs for 

clock-regulated proteins in a dinoflagellate. Chronobiol Int 20, 963-76 (2003). 
 
109. Grigull, J., Mnaimneh, S., Pootoolal, J., Robinson, M.D. & Hughes, T.R. 

Genome-wide analysis of mRNA stability using transcription inhibitors and 
microarrays reveals posttranscriptional control of ribosome biogenesis factors. 
Molecular and Cellular Biology 24, 5534-5547 (2004). 

 
110. Kebaara, B.W., Nielsen, L.E., Nickerson, K.W. & Atkin, A.L. Determination of 

mRNA half-lives in Candida albicans using thiolutin as a transcription inhibitor. 
Genome 49, 894-899 (2006). 

 



 

 190 

111. Morey, J.S. & Van Dolah, F.M. Global analysis of mRNA half-lives and de novo 
transcription in a dinoflagellate, Karenia brevis. PLoS One 8, e66347 (2013). 

 
112. Archambault, J., Lacroute, F., Ruet, A. & Friesen, J. Genetic interaction between 

transcription elongation factor TFIIS and RNA polymerase II. Molecular and 
Cellular Biology 12, 4142-4152 (1992). 

 
113. Powell, W. & Reines, D. Mutations in the second largest subunit of RNA 

polymerase II cause 6-azauracil sensitivity in yeast and increased transcriptional 
arrest in vitro. J Biol Chem 271, 6866-73 (1996). 

 
114. Desmoucelles, C., Pinson, B., Saint-Marc, C. & Daignan-Fornier, B. Screening 

the yeast "disruptome" for mutants affecting resistance to the immunosuppressive 
drug, mycophenolic acid. J Biol Chem 277, 27036-44 (2002). 

 
115. Reines, D. Use of RNA yeast polymerase II mutants in studying transcription 

elongation. Methods in Enzymology 371, 284-292 (2003). 
 
116. Riles, L., Shaw, R.J., Johnston, M. & Reines, D. Large-scale screening of yeast 

mutants for sensitivity to the IMP dehydrogenase inhibitor 6-azauracil. Yeast 21, 
241-8 (2004). 

 
117. Ezekiel, D.H. & Hutchins, J.E. Mutations affecting RNA polymerase associated 

with rifampicin resistance in Escherichia coli. Nature 220, 276-7 (1968). 
 
118. Khesin, R., Shemyakin, M., Gorlenko, Z.M., Mindlin, S. & Ilyina, T. Studies on 

the RNA polymerase in Escherichia coli K12 using the mutation affecting its 
activity. J Mol Biol 42, 401-411 (1969). 

 
119. Rabussay, D. & Zillig, W. A rifampicin resistent RNA-polymerase from E. coli 

altered in the beta-subunit. FEBS Lett 5, 104-106 (1969). 
 
120. Austin, S. & Scaife, J. A new method for selecting RNA polymerase mutants. J 

Mol Biol 49, 263-7 (1970). 
 
121. McClure, W.R. & Cech, C.L. On the mechanism of rifampicin inhibition of RNA 

synthesis. J Biol Chem 253, 8949-56 (1978). 
 
122. Campbell, E.A. et al. Structural mechanism for rifampicin inhibition of bacterial 

RNA polymerase. Cell 104, 901-12 (2001). 
 
123. Jin, D.J. & Gross, C.A. Mapping and sequencing of mutations in the Escherichia 

coli rpoB gene that lead to rifampicin resistance. J Mol Biol 202, 45-58 (1988). 



 

 191 

124. Artsimovitch, I. et al. Allosteric modulation of the RNA polymerase catalytic 
reaction is an essential component of transcription control by rifamycins. Cell 
122, 351-363 (2005). 

 
125. Artsimovitch, I. et al. Tagetitoxin inhibits RNA polymerase through trapping of 

the trigger loop. J Biol Chem 286, 40395-40400 (2011). 
 
126. Sevostyanova, A., Belogurov, G.A., Mooney, R.A., Landick, R. & Artsimovitch, 

I. The β subunit gate loop is required for RNA polymerase modification by RfaH 
and NusG. Molecular cell 43, 253-262 (2011). 

 
127. Klyuyev, S. & Vassylyev, D.G. The binding site and mechanism of the RNA 

polymerase inhibitor tagetitoxin: an issue open to debate. Transcription 3, 46-50 
(2012). 

 
128. Temiakov, D. et al. Structural basis of transcription inhibition by antibiotic 

streptolydigin. Mol Cell 19, 655-66 (2005). 
 
129. Tuske, S. et al. Inhibition of bacterial RNA polymerase by streptolydigin: 

stabilization of a straight-bridge-helix active-center conformation. Cell 122, 541-
52 (2005). 

 
130. Siddhikol, C., Erbstoeszer, J.W. & Weisblum, B. Mode of action of 

streptolydigin. J Bacteriol 99, 151-5 (1969). 
 
131. Cassani, G., Burgess, R.R., Goodman, H.M. & Gold, L. Inhibition of RNA 

polymerase by streptolydigin. Nat New Biol 230, 197-200 (1971). 
 
132. McClure, W.R. On the mechanism of streptolydigin inhibition of Escherichia 

coli RNA polymerase. J Biol Chem 255, 1610-6 (1980). 
 
133. Bushnell, D.A., Cramer, P. & Kornberg, R.D. Structural basis of transcription: α-

Amanitin–RNA polymerase II cocrystal at 2.8 Å resolution. Proc Natl Acad Sci 
U S A 99, 1218-1222 (2002). 

 
134. Brueckner, F. & Cramer, P. Structural basis of transcription inhibition by alpha-

amanitin and implications for RNA polymerase II translocation. Nat Struct Mol 
Biol 15, 811-8 (2008). 

 
135. Bartolomei, M.S. & Corden, J.L. Localization of an alpha-amanitin resistance 

mutation in the gene encoding the largest subunit of mouse RNA polymerase II. 
Mol Cell Biol 7, 586-94 (1987). 

 



 

 192 

136. Chen, Y., Weeks, J., Mortin, M.A. & Greenleaf, A.L. Mapping mutations in 
genes encoding the two large subunits of Drosophila RNA polymerase II defines 
domains essential for basic transcription functions and for proper expression of 
developmental genes. Mol Cell Biol 13, 4214-22 (1993). 

 
137. Bartolomei, M.S. & Corden, J.L. Clustered alpha-amanitin resistance mutations 

in mouse. Mol Gen Genet 246, 778-82 (1995). 
 
138. Izban, M.G. & Luse, D.S. The RNA polymerase II ternary complex cleaves the 

nascent transcript in a 3'----5'direction in the presence of elongation factor SII. 
Genes Dev 6, 1342-1356 (1992). 

 
139. Chafin, D.R., Guo, H. & Price, D.H. Action of alpha-amanitin during 

pyrophosphorolysis and elongation by RNA polymerase II. J Biol Chem 270, 
19114-9 (1995). 

 
140. Rudd, M.D. & Luse, D.S. Amanitin greatly reduces the rate of transcription by 

RNA polymerase II ternary complexes but fails to inhibit some transcript 
cleavage modes. J Biol Chem 271, 21549-21558 (1996). 

 
141. Gong, X.Q., Nedialkov, Y.A. & Burton, Z.F. Alpha-amanitin blocks 

translocation by human RNA polymerase II. J Biol Chem 279, 27422-7 (2004). 
 
142. Miao, S. et al. Inhibition of bacterial RNA polymerases. Peptide metabolites 

from the cultures of Streptomyces sp. Journal of Natural Products 60, 858-861 
(1997). 

 
143. Degen, D. et al. Transcription inhibition by the depsipeptide antibiotic salinamide 

A. Elife 3, e02451 (2014). 
 
144. Bae, B. et al. CBR antimicrobials inhibit RNA polymerase via at least two 

bridge-helix cap-mediated effects on nucleotide addition. Proc Natl Acad Sci U S 
A 112, E4178-E4187 (2015). 

 
145. Feng, Y. et al. Structural basis of transcription inhibition by CBR 

hydroxamidines and CBR pyrazoles. Structure 23, 1470-1481 (2015). 
 
146. Artsimovitch, I., Chu, C., Lynch, A.S. & Landick, R. A new class of bacterial 

RNA polymerase inhibitor affects nucleotide addition. Science 302, 650-4 (2003). 
 
147. Malinen, A.M. et al. CBR antimicrobials alter coupling between the bridge helix 

and the β subunit in RNA polymerase. Nature Communications 5(2014). 
 



 

 193 

148. Jovanovic, M. et al. Activity map of the Escherichia coli RNA polymerase 
bridge helix. J Biol Chem 286, 14469-79 (2011). 

 
149. Naji, S., Bertero, M.G., Spitalny, P., Cramer, P. & Thomm, M. Structure-

function analysis of the RNA polymerase cleft loops elucidates initial 
transcription, DNA unwinding and RNA displacement. Nucleic Acids Research 
36, 676-87 (2008). 

 
150. Lin, W. et al. Structural Basis of Mycobacterium tuberculosis transcription and 

transcription Inhibition. Mol Cell 66, 169-179 e8 (2017). 
 
151. Vassylyev, D.G., Vassylyeva, M.N., Perederina, A., Tahirov, T.H. & 

Artsimovitch, I. Structural basis for transcription elongation by bacterial RNA 
polymerase. Nature 448, 157-62 (2007). 

 
152. Ho, M.X., Hudson, B.P., Das, K., Arnold, E. & Ebright, R.H. Structures of RNA 

polymerase-antibiotic complexes. Curr Opin Struct Biol 19, 715-23 (2009). 
 
153. Srivastava, A. et al. New target for inhibition of bacterial RNA 

polymerase:‘switch region’. Current Opinion in Microbiology 14, 532-543 
(2011). 

 
154. Gagneux, S. et al. The competitive cost of antibiotic resistance in Mycobacterium 

tuberculosis. Science 312, 1944-6 (2006). 
 
155. Comas, I. et al. Whole-genome sequencing of rifampicin-resistant 

Mycobacterium tuberculosis strains identifies compensatory mutations in RNA 
polymerase genes. Nature Genetics 44, 106-110 (2012). 

 
156. Hinkle, D.C. & Chamberlin, M.J. Studies of the binding of Escherichia coli RNA 

polymerase to DNA. II. The kinetics of the binding reaction. J Mol Biol 70, 187-
95 (1972). 

 
157. Sippel, A.E. & Hartmann, G.R. Rifampicin resistance of RNA polymerase in the 

binary complex with DNA. Eur J Biochem 16, 152-7 (1970). 
 
158. Feklistov, A. et al. Rifamycins do not function by allosteric modulation of 

binding of Mg2+ to the RNA polymerase active center. Proc Natl Acad Sci U S A 
105, 14820-14825 (2008). 

 
159. Campbell, E.A. et al. Structural, functional, and genetic analysis of sorangicin 

inhibition of bacterial RNA polymerase. EMBO J 24, 674-82 (2005). 
 



 

 194 

160. Irschik, H., Jansen, R., Gerth, K., Hofle, G. & Reichenbach, H. The sorangicins, 
novel and powerful inhibitors of eubacterial RNA polymerase isolated from 
myxobacteria. J Antibiot (Tokyo) 40, 7-13 (1987). 

 
161. Xu, M., Zhou, Y.N., Goldstein, B.P. & Jin, D.J. Cross-resistance of Escherichia 

coli RNA polymerases conferring rifampin resistance to different antibiotics. J 
Bacteriol 187, 2783-92 (2005). 

 
162. Ramaswamy, S. & Musser, J.M. Molecular genetic basis of antimicrobial agent 

resistance inMycobacterium tuberculosis: 1998 update. Tubercle and Lung 
Disease 79, 3-29 (1998). 

 
163. Rommele, G. et al. Resistance of Escherichia coli to rifampicin and sorangicin 

A--a comparison. J Antibiot (Tokyo) 43, 88-91 (1990). 
 
164. Oliva, B., O'Neill, A., Wilson, J.M., O'Hanlon, P.J. & Chopra, I. Antimicrobial 

properties and mode of action of the pyrrothine holomycin. Antimicrob Agents 
Chemother 45, 532-9 (2001). 

 
165. Das, K. et al. Roles of conformational and positional adaptability in structure-

based design of TMC125-R165335 (etravirine) and related non-nucleoside 
reverse transcriptase inhibitors that are highly potent and effective against wild-
type and drug-resistant HIV-1 variants. Journal of Medicinal Chemistry 47, 
2550-2560 (2004). 

 
166. Cramer, P., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: 

RNA polymerase II at 2.8 angstrom resolution. Science 292, 1863-76 (2001). 
 
167. Gnatt, A.L., Cramer, P., Fu, J., Bushnell, D.A. & Kornberg, R.D. Structural basis 

of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. 
Science 292, 1876-82 (2001). 

 
168. Vassylyev, D.G. et al. Crystal structure of a bacterial RNA polymerase 

holoenzyme at 2.6 A resolution. Nature 417, 712-9 (2002). 
 
169. Feklistov, A. et al. RNA polymerase motions during promoter melting. Science 

356, 863-866 (2017). 
 
170. Chakraborty, A. et al. Opening and closing of the bacterial RNA polymerase 

clamp. Science 337, 591-5 (2012). 
 
171. Klein, B.J. et al. RNA polymerase and transcription elongation factor Spt4/5 

complex structure. Proc Natl Acad Sci U S A 108, 546-50 (2011). 
 



 

 195 

172. Martinez-Rucobo, F.W., Sainsbury, S., Cheung, A.C. & Cramer, P. Architecture 
of the RNA polymerase-Spt4/5 complex and basis of universal transcription 
processivity. EMBO J 30, 1302-10 (2011). 

 
173. Werner, F. A nexus for gene expression-molecular mechanisms of Spt5 and 

NusG in the three domains of life. J Mol Biol 417, 13-27 (2012). 
 
174. Mukhopadhyay, J. et al. The RNA polymerase “switch region” is a target for 

inhibitors. Cell 135, 295-307 (2008). 
 
175. Belogurov, G.A. et al. Transcription inactivation through local refolding of the 

RNA polymerase structure. Nature 457, 332 (2009). 
 
176. Molodtsov, V. et al. X-ray crystal structures of Escherichia coli RNA polymerase 

with switch region binding inhibitors enable rational design of squaramides with 
an improved fraction unbound to human plasma protein. J Med Chem 58, 3156-
71 (2015). 

 
177. Buurman, E.T. et al. Novel rapidly diversifiable antimicrobial RNA polymerase 

switch region inhibitors with confirmed mode of action in Haemophilus 
influenzae. J Bacteriol 194, 5504-12 (2012). 

 
178. Coronelli, C., White, R.J., Lancini, G.C. & Parenti, F. Lipiarmycin, a new 

antibiotic from Actinoplanes. II. Isolation, chemical, biological and biochemical 
characterization. J Antibiot (Tokyo) 28, 253-9 (1975). 

 
179. Parenti, F., Pagani, H. & Beretta, G. Lipiarmycin, a new antibiotic from 

Actinoplanes. I. Description of the producer strain and fermentation studies. J 
Antibiot (Tokyo) 28, 247-52 (1975). 

 
180. Sergio, S., Pirali, G., White, R. & Parenti, F. Lipiarmycin, a new antibiotic from 

Actinoplanes III. Mechanism of action. J Antibiot (Tokyo) 28, 543-9 (1975). 
 
181. Talpaert, M., Campagnari, F. & Clerici, L. Lipiarmycin: an antibiotic inhibiting 

nucleic acid polymerases. Biochem Biophys Res Commun 63, 328-34 (1975). 
 
182. Omura, S. et al. Clostomicins, new antibiotics produced by Micromonospora 

echinospora subsp. armeniaca subsp. nov. I. Production, isolation, and physico-
chemical and biological properties. J Antibiot (Tokyo) 39, 1407-12 (1986). 

 
183. Arnone, A., Nasini, G. & Cavalleri, B. Structure elucidation of the macrocyclic 

antibiotic lipiarmycin. Journal of the Chemical Society, Perkin Transactions 1, 
1353-1359 (1987). 

 



 

 196 

184. Hochlowski, J.E. et al. Tiacumicins, a novel complex of 18-membered 
macrolides. II. Isolation and structure determination. J Antibiot (Tokyo) 40, 575-
88 (1987). 

 
185. Theriault, R.J. et al. Tiacumicins, a novel complex of 18-membered macrolide 

antibiotics. I. Taxonomy, fermentation and antibacterial activity. J Antibiot 
(Tokyo) 40, 567-74 (1987). 

 
186. Tupin, A., Gualtieri, M., Leonetti, J.P. & Brodolin, K. The transcription inhibitor 

lipiarmycin blocks DNA fitting into the RNA polymerase catalytic site. EMBO J 
29, 2527-2537 (2010). 

 
187. Wang, D. Ensemble fluorescence resonance energy transfer analysis of RNA 

polymerase clamp conformation, (Rutgers The State University of New Jersey-
New Brunswick, 2008). 

 
188. Sonenshein, A.L. & Alexander, H.B. Initiation of transcription in vitro is 

inhibited by lipiarmycin. J Mol Biol 127, 55-72 (1979). 
 
189. Ma, C., Yang, X. & Lewis, P.J. Bacterial Transcription Inhibitor of RNA 

Polymerase Holoenzyme Formation by Structure-Based Drug Design: From in 
Silico Screening to Validation. ACS Infect Dis 2, 39-46 (2016). 

 
190. Vassylyev, D.G. et al. Structural basis for transcription inhibition by tagetitoxin. 

Nat Struct Mol Biol 12, 1086-93 (2005). 
 
191. Blond, A. et al. The cyclic structure of microcin J25, a 21-residue peptide 

antibiotic from Escherichia coli. Eur J Biochem 259, 747-55 (1999). 
 
192. Bayro, M.J. et al. Structure of antibacterial peptide microcin J25: a 21-residue 

lariat protoknot. J Am Chem Soc 125, 12382-3 (2003). 
 
193. Rosengren, K.J. et al. Microcin J25 has a threaded sidechain-to-backbone ring 

structure and not a head-to-tail cyclized backbone. Journal of the American 
Chemical Society 125, 12464-12474 (2003). 

 
194. Wilson, K.-A. et al. Structure of microcin J25, a peptide inhibitor of bacterial 

RNA polymerase, is a lassoed tail. Journal of the American Chemical Society 
125, 12475-12483 (2003). 

 
195. Delgado, M.A., Rintoul, M.a.R., Farı́as, R.N. & Salomón, R.A. Escherichia coli 

RNA polymerase is the target of the cyclopeptide antibiotic microcin J25. J 
Bacteriol 183, 4543-4550 (2001). 

 



 

 197 

196. Yuzenkova, J. et al. Mutations of bacterial RNA polymerase leading to resistance 
to microcin j25. J Biol Chem 277, 50867-75 (2002). 

 
197. Adelman, K. et al. Molecular mechanism of transcription inhibition by peptide 

antibiotic Microcin J25. Mol Cell 14, 753-62 (2004). 
 
198. Mukhopadhyay, J., Sineva, E., Knight, J., Levy, R.M. & Ebright, R.H. 

Antibacterial peptide microcin J25 inhibits transcription by binding within and 
obstructing the RNA polymerase secondary channel. Molecular Cell 14, 739-751 
(2004). 

 
199. Rintoul, M.R., de Arcuri, B.F., Salomon, R.A., Farias, R.N. & Morero, R.D. The 

antibacterial action of microcin J25: evidence for disruption of cytoplasmic 
membrane energization in Salmonella newport. FEMS Microbiol Lett 204, 265-
70 (2001). 

 
200. Bellomio, A., Vincent, P.A., de Arcuri, B.F., Farías, R.N. & Morero, R.D. 

Microcin J25 has dual and independent mechanisms of action in Escherichia coli: 
RNA polymerase inhibition and increased superoxide production. J Bacteriol 
189, 4180-4186 (2007). 

 
201. Niklison Chirou, M. et al. Microcin J25 induces the opening of the mitochondrial 

transition pore and cytochrome c release through superoxide generation. The 
FEBS Journal 275, 4088-4096 (2008). 

 
202. Niklison-Chirou, M.V. et al. Microcin J25 triggers cytochrome c release through 

irreversible damage of mitochondrial proteins and lipids. The International 
Journal of Biochemistry & Cell Biology 42, 273-281 (2010). 

 
203. Walker, S.S. et al. Affinity Selection-Mass Spectrometry Identifies a Novel 

Antibacterial RNA Polymerase Inhibitor. ACS Chem Biol 12, 1346-1352 (2017). 
 
204. Mathews, D.E. & Durbin, R.D. Mechanistic aspects of tagetitoxin inhibition of 

RNA polymerase from Escherichia coli. Biochemistry 33, 11987-92 (1994). 
 
205. Sakai, A., Saito, C., Inada, N. & Kuroiwa, T. Transcriptional activities of the 

chloroplast-nuclei and proplastid-nuclei isolated from tobacco exhibit different 
sensitivities to tagetitoxin: implication of the presence of distinct RNA 
polymerases. Plant Cell Physiol 39, 928-34 (1998). 

 
206. Steinberg, T.H., Mathews, D.E., Durbin, R.D. & Burgess, R.R. Tagetitoxin: a 

new inhibitor of eukaryotic transcription by RNA polymerase III. J Biol Chem 
265, 499-505 (1990). 

 



 

 198 

207. Mathews, D.E. & Durbin, R.D. Tagetitoxin inhibits RNA synthesis directed by 
RNA polymerases from chloroplasts and Escherichia coli. J Biol Chem 265, 493-
8 (1990). 

 
208. Yuzenkova, Y., Roghanian, M., Bochkareva, A. & Zenkin, N. Tagetitoxin 

inhibits transcription by stabilizing pre-translocated state of the elongation 
complex. Nucleic Acids Research 41, 9257-9265 (2013). 

 
209. Aliev, A.E., Karu, K., Mitchell, R.E. & Porter, M.J. The structure of tagetitoxin. 

Org Biomol Chem 14, 238-45 (2016). 
 
210. Li, B., Wever, W.J., Walsh, C.T. & Bowers, A.A. Dithiolopyrrolones: 

biosynthesis, synthesis, and activity of a unique class of disulfide-containing 
antibiotics. Nat Prod Rep 31, 905-23 (2014). 

 
211. Li, B. & Walsh, C.T. Identification of the gene cluster for the dithiolopyrrolone 

antibiotic holomycin in Streptomyces clavuligerus. Proc Natl Acad Sci U S A 107, 
19731-5 (2010). 

 
212. Li, B. & Walsh, C.T. Streptomyces clavuligerus HlmI is an intramolecular 

disulfide-forming dithiol oxidase in holomycin biosynthesis. Biochemistry 50, 
4615-4622 (2011). 

 
213. Chan, A.N. et al. Role for dithiolopyrrolones in disrupting bacterial metal 

homeostasis. Proc Natl Acad Sci U S A 114, 2717-2722 (2017). 
 
214. Lauinger, L. et al. Thiolutin is a zinc chelator that inhibits the Rpn11 and other 

JAMM metalloproteases. Nature Chemical Biology 13, 709-714 (2017). 
 
215. Jimenez, A., Tipper, D.J. & Davies, J. Mode of action of thiolutin, an inhibitor of 

macromolecular synthesis in Saccharomyces cerevisiae. Antimicrob Agents 
Chemother 3, 729-38 (1973). 

 
216. Tipper, D.J. Inhibition of yeast ribonucleic acid polymerases by thiolutin. J 

Bacteriol 116, 245-56 (1973). 
 
217. Khachatourians, G.G. & Tipper, D.J. In vivo effect of thiolutin on cell growth 

and macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 
6, 304-10 (1974). 

 
218. Das, B., Butler, J.S. & Sherman, F. Degradation of normal mRNA in the nucleus 

of Saccharomyces cerevisiae. Mol Cell Biol 23, 5502-15 (2003). 
 



 

 199 

219. Guan, Q. et al. Impact of nonsense-mediated mRNA decay on the global 
expression profile of budding yeast. PLoS Genet 2, e203 (2006). 

 
220. Sivasubramanian, N. & Jayaraman, R. Thiolutin resistant mutants of Escherichia 

coli are they RNA chain initiation mutants? Molecular and General Genetics 
MGG 145, 89-96 (1976). 

 
221. Roza, J., Blanco, M.G., Hardisson, C. & Salas, J.A. Self-resistance in 

actinomycetes producing inhibitors of RNA polymerase. J Antibiot (Tokyo) 39, 
609-12 (1986). 

 
222. Joshi, A., Verma, M. & Chakravorty, M. Thiolutin-resistant mutants of 

Salmonella typhimurium. Antimicrob Agents Chemother 22, 541-7 (1982). 
 
223. Pelechano, V. & Perez-Ortin, J.E. The transcriptional inhibitor thiolutin blocks 

mRNA degradation in yeast. Yeast 25, 85-92 (2008). 
 
224. Hazelbaker, D.Z., Marquardt, S., Wlotzka, W. & Buratowski, S. Kinetic 

competition between RNA Polymerase II and Sen1-dependent transcription 
termination. Molecular Cell 49, 55-66 (2013). 

 
225. Baell, J.B. Redox-active nuisance screening compounds and their classification. 

Drug Discovery Today 16, 840-841 (2011). 
 
226. Johnston, P.A. Redox cycling compounds generate H2O2 in HTS buffers 

containing strong reducing reagents—real hits or promiscuous artifacts? Current 
Opinion in Chemical Biology 15, 174-182 (2011). 

 
227. Bergmann, R. Thiolutin inhibits utilization of glucose and other carbon sources 

in cells of Escherichia coli. Antonie Van Leeuwenhoek 55, 143-52 (1989). 
 
228. Westover, K.D., Bushnell, D.A. & Kornberg, R.D. Structural basis of 

transcription: nucleotide selection by rotation in the RNA polymerase II active 
center. Cell 119, 481-9 (2004). 

 
229. Yuzenkova, Y. et al. Stepwise mechanism for transcription fidelity. BMC Biol 8, 

54 (2010). 
 
230. Fouqueau, T., Zeller, M.E., Cheung, A.C., Cramer, P. & Thomm, M. The RNA 

polymerase trigger loop functions in all three phases of the transcription cycle. 
Nucleic Acids Research 41, 7048-59 (2013). 

 
231. Fong, N. et al. Pre-mRNA splicing is facilitated by an optimal RNA polymerase 

II elongation rate. Genes Dev 28, 2663-76 (2014). 



 

 200 

 
232. Lennon, C.W. et al. Direct interactions between the coiled-coil tip of DksA and 

the trigger loop of RNA polymerase mediate transcriptional regulation. Genes 
Dev 26, 2634-46 (2012). 

 
233. Sekine, S., Murayama, Y., Svetlov, V., Nudler, E. & Yokoyama, S. The ratcheted 

and ratchetable structural states of RNA polymerase underlie multiple 
transcriptional functions. Mol Cell 57, 408-21 (2015). 

 
234. Mejia, Y.X., Nudler, E. & Bustamante, C. Trigger loop folding determines 

transcription rate of Escherichia coli's RNA polymerase. Proc Natl Acad Sci U S 
A 112, 743-8 (2015). 

 
235. Fowler, D.M. & Fields, S. Deep mutational scanning: a new style of protein 

science. Nat Methods 11, 801-7 (2014). 
 
236. McLaughlin, R.N., Jr., Poelwijk, F.J., Raman, A., Gosal, W.S. & Ranganathan, R. 

The spatial architecture of protein function and adaptation. Nature 491, 138-42 
(2012). 

 
237. Araya, C.L. et al. A fundamental protein property, thermodynamic stability, 

revealed solely from large-scale measurements of protein function. Proc Natl 
Acad Sci U S A 109, 16858-63 (2012). 

 
238. Kim, I., Miller, C.R., Young, D.L. & Fields, S. High-throughput analysis of in 

vivo protein stability. Mol Cell Proteomics 12, 3370-8 (2013). 
 
239. Zhai, W. et al. Synthetic antibodies designed on natural sequence landscapes. J 

Mol Biol 412, 55-71 (2011). 
 
240. Van den Brulle, J. et al. A novel solid phase technology for high-throughput gene 

synthesis. Biotechniques 45, 340-3 (2008). 
 
241. Tewhey, R. et al. Microdroplet-based PCR enrichment for large-scale targeted 

sequencing. Nat Biotechnol 27, 1025-31 (2009). 
 
242. Williams, R. et al. Amplification of complex gene libraries by emulsion PCR. 

Nat Methods 3, 545-50 (2006). 
 
243. Simchen, G., Winston, F., Styles, C.A. & Fink, G.R. Ty-mediated gene 

expression of the LYS2 and HIS4 genes of Saccharomyces cerevisiae is 
controlled by the same SPT genes. Proc Natl Acad Sci U S A 81, 2431-4 (1984). 

 



 

 201 

244. Cui, P., Jin, H., Vutukuru, M.R. & Kaplan, C.D. Relationships between RNA 
polymerase II activity and Spt elongation factors to Spt- phenotype and growth in 
Saccharomyces cerevisiae. G3 (Bethesda) 6, 2489-504 (2016). 

 
245. Greger, I.H. & Proudfoot, N.J. Poly(A) signals control both transcriptional 

termination and initiation between the tandem GAL10 and GAL7 genes of 
Saccharomyces cerevisiae. EMBO J 17, 4771-9 (1998). 

 
246. Kaplan, C.D., Holland, M.J. & Winston, F. Interaction between transcription 

elongation factors and mRNA 3'-end formation at the Saccharomyces cerevisiae 
GAL10-GAL7 locus. J Biol Chem 280, 913-22 (2005). 

 
247. Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M. & Barton, G.J. 

Jalview Version 2--a multiple sequence alignment editor and analysis workbench. 
Bioinformatics 25, 1189-91 (2009). 

 
248. Niyogi, S.K., Feldman, R.P. & Hoffman, D.J. Selective effects of metal ions on 

RNA synthesis rates. Toxicology 22, 9-21 (1981). 
 
249. Niyogi, S.K. & Feldman, R.P. Effect of several metal ions on misincorporation 

during transcription. Nucleic Acids Research 9, 2615-27 (1981). 
 
250. Dyson, H.J., Wright, P.E. & Scheraga, H.A. The role of hydrophobic interactions 

in initiation and propagation of protein folding. Proc Natl Acad Sci U S A 103, 
13057-61 (2006). 

 
251. Cheung, A.C., Sainsbury, S. & Cramer, P. Structural basis of initial RNA 

polymerase II transcription. EMBO J 30, 4755-63 (2011). 
 
252. Rudolph, H.K. et al. The yeast secretory pathway is perturbed by mutations in 

PMR1, a member of a Ca2+ ATPase family. Cell 58, 133-45 (1989). 
 
253. Mandal, D., Woolf, T.B. & Rao, R. Manganese selectivity of pmr1, the yeast 

secretory pathway ion pump, is defined by residue gln783 in transmembrane 
segment 6. Residue Asp778 is essential for cation transport. J Biol Chem 275, 
23933-8 (2000). 

 
254. Hirata, A., Klein, B.J. & Murakami, K.S. The X-ray crystal structure of RNA 

polymerase from Archaea. Nature 451, 851-4 (2008). 
 
255. Da, L.T. et al. Bridge helix bending promotes RNA polymerase II backtracking 

through a critical and conserved threonine residue. Nat Commun 7, 11244 (2016). 
 



 

 202 

256. Engel, C., Sainsbury, S., Cheung, A.C., Kostrewa, D. & Cramer, P. RNA 
polymerase I structure and transcription regulation. Nature 502, 650-5 (2013). 

 
257. Opalka, N. et al. Structure and function of the transcription elongation factor 

GreB bound to bacterial RNA polymerase. Cell 114, 335-45 (2003). 
 
258. de la Mata, M. et al. A slow RNA polymerase II affects alternative splicing in 

vivo. Mol Cell 12, 525-32 (2003). 
 
259. Coulter, D.E. & Greenleaf, A.L. A mutation in the largest subunit of RNA 

polymerase II alters RNA chain elongation in vitro. J Biol Chem 260, 13190-8 
(1985). 

 
260. Koyama, H., Ueda, T., Ito, T. & Sekimizu, K. Novel RNA polymerase II 

mutation suppresses transcriptional fidelity and oxidative stress sensitivity in 
rpb9Delta yeast. Genes Cells 15, 151-9 (2010). 

 
261. Archambault, J. et al. Stimulation of transcription by mutations affecting 

conserved regions of RNA polymerase II. J Bacteriol 180, 2590-8 (1998). 
 
262. Arndt, K.T., Styles, C.A. & Fink, G.R. A suppressor of a HIS4 transcriptional 

defect encodes a protein with homology to the catalytic subunit of protein 
phosphatases. Cell 56, 527-37 (1989). 

 
263. Walmacq, C. et al. Mechanism of translesion transcription by RNA polymerase 

II and its role in cellular resistance to DNA damage. Mol Cell 46, 18-29 (2012). 
 
264. Jin, H. & Kaplan, C.D. Relationships of RNA polymerase II genetic interactors 

to transcription start site usage defects and growth in Saccharomyces cerevisiae. 
G3 (Bethesda) 5, 21-33 (2014). 

 
265. Winston, F., Dollard, C. & Ricupero-Hovasse, S.L. Construction of a set of 

convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 
11, 53-5 (1995). 

 
266. Qiu, C. et al. High-Resolution Phenotypic landscape of the RNA Polymerase II 

trigger loop. PLoS Genet 12, e1006321 (2016). 
 
267. Puig, O. et al. The tandem affinity purification (TAP) method: a general 

procedure of protein complex purification. Methods 24, 218-29 (2001). 
 
268. Schmitt, M.E., Brown, T.A. & Trumpower, B.L. A rapid and simple method for 

preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Research 18, 
3091-2 (1990). 



 

 203 

 
269. Ranish, J.A. & Hahn, S. The yeast general transcription factor TFIIA is 

composed of two polypeptide subunits. J Biol Chem 266, 19320-7 (1991). 
 
270. de Hoon, M.J., Imoto, S., Nolan, J. & Miyano, S. Open source clustering 

software. Bioinformatics 20, 1453-4 (2004). 
 
271. Li, W., Jaroszewski, L. & Godzik, A. Tolerating some redundancy significantly 

speeds up clustering of large protein databases. Bioinformatics 18, 77-82 (2002). 
 
272. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high 

throughput. Nucleic Acids Research 32, 1792-7 (2004). 
 
273. Monje-Casas, F., MICHáN, C. & Pueyo, C. Absolute transcript levels of 

thioredoxin-and glutathione-dependent redox systems in Saccharomyces 
cerevisiae: response to stress and modulation with growth. Biochemical Journal 
383, 139-147 (2004). 

 
274. Smith, A.M. et al. Quantitative phenotyping via deep barcode sequencing. 

Genome Res 19, 1836-42 (2009). 
 
275. Lee, A.Y. et al. Mapping the cellular response to small molecules using 

chemogenomic fitness signatures. Science 344, 208-211 (2014). 
 
276. Parsons, A.B. et al. Exploring the mode-of-action of bioactive compounds by 

chemical-genetic profiling in yeast. Cell 126, 611-25 (2006). 
 
277. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new 

fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 
947-62 (2004). 

 
278. Chee, M.K. & Haase, S.B. New and redesigned pRS plasmid shuttle vectors for 

genetic manipulation of Saccharomyces cerevisiae. G3: Genes, Genomes, 
Genetics 2, 515-526 (2012). 

 
279. Huang, Z. et al. A functional variomics tool for discovering drug-resistance 

genes and drug targets. Cell Rep 3, 577-85 (2013). 
 
280. Robinson, D.G., Chen, W., Storey, J.D. & Gresham, D. Design and analysis of 

Bar-seq experiments. G3 (Bethesda) 4, 11-8 (2014). 
 
281. Birkeland, S.R. et al. Discovery of mutations in Saccharomyces cerevisiae by 

pooled linkage analysis and whole-genome sequencing. Genetics 186, 1127-37 
(2010). 



 

 204 

 
282. Kuge, S., Jones, N. & Nomoto, A. Regulation of yAP-1 nuclear localization in 

response to oxidative stress. EMBO J 16, 1710-20 (1997). 
 
283. Wemmie, J.A., Steggerda, S.M. & Moye-Rowley, W.S. The Saccharomyces 

cerevisiae AP-1 protein discriminates between oxidative stress elicited by the 
oxidants H2O2 and diamide. J Biol Chem 272, 7908-7914 (1997). 

 
284. Coleman, S.T., Epping, E.A., Steggerda, S.M. & Moye-Rowley, W.S. Yap1p 

activates gene transcription in an oxidant-specific fashion. Mol Cell Biol 19, 
8302-13 (1999). 

 
285. Kuge, S. et al. Regulation of the yeast Yap1p nuclear export signal is mediated 

by redox signal-induced reversible disulfide bond formation. Molecular and 
Cellular Biology 21, 6139-6150 (2001). 

 
286. Gulshan, K., Rovinsky, S.A., Coleman, S.T. & Moye-Rowley, W.S. Oxidant-

specific folding of Yap1p regulates both transcriptional activation and nuclear 
localization. J Biol Chem 280, 40524-40533 (2005). 

 
287. Alarco, A.M., Balan, I., Talibi, D., Mainville, N. & Raymond, M. AP1-mediated 

multidrug resistance in Saccharomyces cerevisiae requires FLR1 encoding a 
transporter of the major facilitator superfamily. J Biol Chem 272, 19304-13 
(1997). 

 
288. Coleman, S.T., Tseng, E. & Moye-Rowley, W.S. Saccharomyces cerevisiae 

basic region-leucine zipper protein regulatory networks converge at the ATR1 
structural gene. J Biol Chem 272, 23224-23230 (1997). 

 
289. Gulshan, K. & Moye-Rowley, W.S. Multidrug resistance in fungi. Eukaryot Cell 

6, 1933-42 (2007). 
 
290. Meyer, Y., Buchanan, B.B., Vignols, F. & Reichheld, J.P. Thioredoxins and 

glutaredoxins: unifying elements in redox biology. Annu Rev Genet 43, 335-67 
(2009). 

 
291. Winzeler, E.A. et al. Functional characterization of the S. cerevisiae genome by 

gene deletion and parallel analysis. Science 285, 901-6 (1999). 
 
292. Machado, A.K., Morgan, B.A. & Merrill, G.F. Thioredoxin reductase-dependent 

inhibition of MCB cell cycle box activity in Saccharomyces cerevisiae. J Biol 
Chem 272, 17045-54 (1997). 

 



 

 205 

293. Carmel-Harel, O. et al. Role of thioredoxin reductase in the Yap1p-dependent 
response to oxidative stress in Saccharomyces cerevisiae. Mol Microbiol 39, 
595-605 (2001). 

 
294. Trotter, E.W. & Grant, C.M. Thioredoxins are required for protection against a 

reductive stress in the yeast Saccharomyces cerevisiae. Mol Microbiol 46, 869-
78 (2002). 

 
295. Hacioglu, E., Esmer, I., Fomenko, D.E., Gladyshev, V.N. & Koc, A. The roles of 

thiol oxidoreductases in yeast replicative aging. Mech Ageing Dev 131, 692-9 
(2010). 

 
296. Ragu, S. et al. Loss of the thioredoxin reductase Trr1 suppresses the genomic 

instability of peroxiredoxin tsa1 mutants. PLoS One 9, e108123 (2014). 
 
297. Grant, C.M., Perrone, G. & Dawes, I.W. Glutathione and catalase provide 

overlapping defenses for protection against hydrogen peroxide in the yeast 
Saccharomyces cerevisiae. Biochemical and Biophysical Research 
Communications 253, 893-898 (1998). 

 
298. Castro, F.A., Mariani, D., Panek, A.D., Eleutherio, E.C. & Pereira, M.D. 

Cytotoxicity mechanism of two naphthoquinones (menadione and plumbagin) in 
Saccharomyces cerevisiae. PLoS One 3, e3999 (2008). 

 
299. Toledano, M.B., Delaunay-Moisan, A., Outten, C.E. & Igbaria, A. Functions and 

cellular compartmentation of the thioredoxin and glutathione pathways in yeast. 
Antioxid Redox Signal 18, 1699-711 (2013). 

 
300. Jung, U., Zheng, X., Yoon, S.O. & Chung, A.S. Se-methylselenocysteine induces 

apoptosis mediated by reactive oxygen species in HL-60 cells. Free Radic Biol 
Med 31, 479-89 (2001). 

 
301. Ravi, D. & Das, K.C. Redox-cycling of anthracyclines by thioredoxin system: 

increased superoxide generation and DNA damage. Cancer Chemother 
Pharmacol 54, 449-58 (2004). 

 
302. Bandara, P.D., Flattery-O'Brien, J.A., Grant, C.M. & Dawes, I.W. Involvement 

of the Saccharomyces cerevisiae UTH1 gene in the oxidative-stress response. 
Curr Genet 34, 259-68 (1998). 

 
303. Wu, C.-Y., Bird, A.J., Winge, D.R. & Eide, D.J. Regulation of the yeast TSA1 

peroxiredoxin by ZAP1 is an adaptive response to the oxidative stress of zinc 
deficiency. J Biol Chem 282, 2184-2195 (2007). 

 



 

 206 

304. Wu, C.-Y. et al. Repression of sulfate assimilation is an adaptive response of 
yeast to the oxidative stress of zinc deficiency. J Biol Chem 284, 27544-27556 
(2009). 

 
305. Wu, C.-Y., Steffen, J. & Eide, D.J. Cytosolic superoxide dismutase (SOD1) is 

critical for tolerating the oxidative stress of zinc deficiency in yeast. PloS one 4, 
e7061 (2009). 

 
306. Acosta-Alvear, D. et al. Paradoxical resistance of multiple myeloma to 

proteasome inhibitors by decreased levels of 19S proteasomal subunits. Elife 4, 
e08153 (2015). 

 
307. Tsvetkov, P. et al. Compromising the 19S proteasome complex protects cells 

from reduced flux through the proteasome. Elife 4, e08467 (2015). 
 
308. Tsvetkov, P. et al. Suppression of 19S proteasome subunits marks emergence of 

an altered cell state in diverse cancers. Proc Natl Acad Sci U S A 114, 382-387 
(2017). 

 
309. D'Aurora, V., Stern, A.M. & Sigman, D.S. 1,10-Phenanthroline-cuprous ion 

complex, a potent inhibitor of DNA and RNA polymerases. Biochem Biophys 
Res Commun 80, 1025-32 (1978). 

 
310. Perrin, D.M., Pearson, L., Mazumder, A. & Sigman, D.S. Inhibition of 

prokaryotic and eukaryotic transcription by the 2:1 2,9-dimethyl-1,10-
phenanthroline-cuprous complex, a ligand specific for open complexes. Gene 
149, 173-8 (1994). 

 
311. Reimann, C.W., Block, S. & Perloff, A. The Crystal and molecular structure of 

Dichloro (1, 10-phenanthroline) zinc. Inorganic Chemistry 5, 1185-1189 (1966). 
 
312. Lin, S.-J. & Culotta, V.C. Suppression of oxidative damage by Saccharomyces 

cerevisiae ATX2, which encodes a manganese-trafficking protein that localizes to 
Golgi-like vesicles. Molecular and Cellular Biology 16, 6303-6312 (1996). 

 
313. Portnoy, M.E., Liu, X.F. & Culotta, V.C. Saccharomyces cerevisiae expresses 

three functionally distinct homologues of the nramp family of metal transporters. 
Mol Cell Biol 20, 7893-902 (2000). 

 
314. Jensen, L.T., Ajua-Alemanji, M. & Culotta, V.C. The Saccharomyces cerevisiae 

high affinity phosphate transporter encoded by PHO84 also functions in 
manganese homeostasis. J Biol Chem 278, 42036-42040 (2003). 

 



 

 207 

315. Mei, Y., Jensen, L.T., Gardner, A.J. & Culotta, V.C. Manganese toxicity and 
Saccharomyces cerevisiae Mam3p, a member of the ACDP (ancient conserved 
domain protein) family. Biochemical Journal 386, 479-487 (2005). 

 
316. Reddi, A.R. et al. The overlapping roles of manganese and Cu/Zn SOD in 

oxidative stress protection. Free Radic Biol Med 46, 154-62 (2009). 
 
317. Pecci, L., Montefoschi, G., Musci, G. & Cavallini, D. Novel findings on the 

copper catalysed oxidation of cysteine. Amino Acids 13, 355-367 (1997). 
 
318. Prudent, M. & Girault, H.H. The role of copper in cysteine oxidation: study of 

intra- and inter-molecular reactions in mass spectrometry. Metallomics 1, 157-65 
(2009). 

 
319. Fetherolf, M.M. et al. Copper-zinc superoxide dismutase is activated through a 

sulfenic acid intermediate at a copper ion entry site. J Biol Chem 292, 12025-
12040 (2017). 

 
320. Lockless, S.W. & Ranganathan, R. Evolutionarily conserved pathways of 

energetic connectivity in protein families. Science 286, 295-9 (1999). 
 
321. Suel, G.M., Lockless, S.W., Wall, M.A. & Ranganathan, R. Evolutionarily 

conserved networks of residues mediate allosteric communication in proteins. 
Nat Struct Biol 10, 59-69 (2003). 

 
322. Halabi, N., Rivoire, O., Leibler, S. & Ranganathan, R. Protein sectors: 

evolutionary units of three-dimensional structure. Cell 138, 774-86 (2009). 
 
323. Russ, W.P., Lowery, D.M., Mishra, P., Yaffe, M.B. & Ranganathan, R. Natural-

like function in artificial WW domains. Nature 437, 579-83 (2005). 
 
324. Reynolds, K.A., McLaughlin, R.N. & Ranganathan, R. Hot spots for allosteric 

regulation on protein surfaces. Cell 147, 1564-75 (2011). 
 
325. Stiffler, M.A., Hekstra, D.R. & Ranganathan, R. Evolvability as a function of 

purifying selection in TEM-1 β-lactamase. Cell 160, 882-892 (2015). 
 
326. Raman, A.S., White, K.I. & Ranganathan, R. Origins of allostery and 

evolvability in proteins: A Case Study. Cell 166, 468-480 (2016). 
 




