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ABSTRACT 

 

Mosquitoes can transfer a lot of dangerous infections which place a massive 

burden on human health. Scientists have achieved significant progress in the last decades 

in the detection and management of mosquito-borne diseases; however, these diseases 

continue to threaten human life.  

In the last decades, gene drive systems have been considered as a biological 

conversion method to prevent transmission of vector-borne disease. Through this 

approach, scientists have been trying to spread a trait in mosquitoes’ population by altering 

their genetics so that mosquitoes become resistant to the disease. In this case, mosquitoes 

cannot get infected and hence, we do not need to worry about the disease transmission by 

mosquitoes. However, genetic alteration has risks and scientists do not know how the new 

genetic will influence the ecosystem; what will be the potential mutation and if the new 

genetic does not work as expected, how it is reversible? Hence, none of the gene drive 

methods has been conducted in nature yet.  

In this thesis, we studied the biodegradability of an engineered gene that can get 

spread through the population by a gene drive method and then eliminate itself returning 

the genotype into the wild-type genetic structure. A mathematical model was constructed 

to study this feature for five different gene drive systems. Based on simulation results, 

three of them succeeded while one succeeded after modification in mechanism and one 

failed to achieve the biodegradability goal. 
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To validate our model, we put two parameters equal to zero that provided the 

results equivalent to present studies and got the results matched. Future laboratory-based 

experiments will be conducted to test the validity of our results. 
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CHAPTER I  

INTRODUCTION  

The first chapter of this thesis provides information about the mosquito-borne 

disease, related complications, and gene drive methods. In the last two sections of this 

chapter, the motivation, goal, and selected methodology are discussed. 

I.1 Mosquito-borne disease  

Mosquitoes are dangerous creatures. They transmit serious diseases that cause 

more than one million human deaths per year [1]. The most prevalent mosquito-borne 

protozoan diseases and viruses are malaria, zika, dengue, chikungunya, and yellow fever 

[1,2]. The disease can be transmitted by the bite of an infected female mosquito. While 

the majority of them occurs in underdeveloped countries, however, they are on the move 

across the world due to factors like traveling and global change. 

I.1.1 Protozoan disease 

Malaria is a famous mosquito-borne vector disease. Parasitic protozoans, 

Plasmodium, which cause malaria, can be transmitted by infected female Anopheles 

mosquitoes. 

In 2015, about 85% of malaria incidents were reported from sub-Saharan Africa [3], and 

currently about half of the world population is at the risk of infection of this disease [4,5]. 

While there is a treatment for malaria, however, it can be lethal if it causes severe side 

effects such as cerebral malaria, pulmonary edema, liver, kidney or spleen failure, severe 

anemia, and low blood sugar [6]. Another reason for a high mortality rate of malaria is 
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that the majority of incidents occur in underdevelopment countries with lack of doctors 

and medical resources [3]. 

I.1.2 Virus disease 

The bite of an infected female Aedes mosquito can transfer zika, dengue, 

chikungunya and yellow fever depending on the type of virus in the mosquito's body. for 

which there is no treatment or vaccine except for yellow fever. 

Zika infection usually has mild symptoms which last for 2-7 days, but if the infection 

occurs during pregnancy, it causes microcephaly or other fetal brain abnormalities in the 

newborn baby. It also is a cause of Guillain-Barré syndrome, a movement disorder that 

leads to paralysis or death [7]. 

The symptoms of mild dengue are very similar to flu, however, if it does not get 

controlled, it develops into severe dengue with the symptoms such as hemorrhage, shock, 

vomiting blood and difficult breathing. At this state, the conditions are life-threatening in 

children and require critical medical care [7]. 

Like dengue, chikungunya has flu-like symptoms, but it can be misdiagnosed where 

dengue occurs. While most patients can recover, however, serious cases such as eye, 

neurological and heart complications can occur and may cause death in old people [7]. 

Yellow fever causes same symptoms as mentioned above. It can be difficult to 

diagnose and can be confused with dengue, chikungunya, and malaria. About 15% of 

yellow fever patients enter to the toxic phase of this illness at which severe symptoms such 

as hemorrhage and kidney failure occur and cause death in half of those patients at toxic 

phase. 
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Mosquito-borne diseases have spread in new areas due to traveling and changes in 

climate and micro-organisms. They have potential to cause significant mortality and 

morbidity as well as enormous economic damage. Even if they do not lead to death, they 

may affect the life quality of patients for the rest of their lives. Most people think that this 

type of disease is a matter for individuals and specialists in tropical areas, but in fact, they 

are an issue for doctors, veterinarians, economists and policy makers globally.  

In the last decades, significant progress has been achieved in detection and 

management of vector-borne diseases. In this regard, gene drive methods can play a major 

role in preventing disease transmission. The next section of this chapter explains the gene 

drive mechanism and different corresponding methods. 

I.2 Gene drive system 

The mechanism of this approach is to spread a selfish gene which is inherited at 

the super-Mendelian rate. It is a revolutionary technique of altering the odds that gives 

scientists the power of changing or eliminating organisms and promoting the 

inheritance of a specific trait. The first gene drive system was proposed at 1968 in 

London School of Hygiene and Tropical medicine. It used translocations mechanism 

to drive anti-pathogen gene into wild-type populations [8]. Nowadays, gene drive 

techniques have progressed in their goal to drive anti-pathogen gene traits into wild-

type populations to combat the vector-borne disease. Hence, a gene drive system can 

help an anti-pathogen gene linked gene spread through a vector population and become 

fixed, thus preventing parasite transmission. The anti-pathogen gene can be spread 

through vector population by just releasing some transgenic mosquitoes which is called 
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inundative release to achieve population replacement, or by a gene drive method such 

as (1) engineered Under-dominance system, (2) the Maternal Effect of Dominant 

Embryonic Arrests (MEDEA), (3) driving-Y method, and (4) Clustered Regularly 

Interspaced Short Palindromic Repeats (CRISPR). In next sub-sections, we provide 

definition and explanation for each method. 

I.2.1 Inundative release 

In this approach, transgene mosquitoes are used as a tool to control and extinguish 

the mosquito-borne disease. Male, parasite-resistant transgene mosquitoes are introduced 

into wild-type population [9]. The offspring will inherit the new gene based on the 

Mendelian rate which helps to spread the anti-pathogen gene into the wild population. 

However, inheritance of at least one allele of the new genotype will place fitness cost on 

the reproduction of those individuals. 

I.2.2 Engineered under-dominance system 

This mechanism was proposed the first time by Davis et al. [10]. It is classically 

identified as a genetic condition at which heterozygotes has a high fitness cost compared 

to homozygous individuals [11]. This system can drive the desired gene into the wild 

population by releasing transgenic individuals.  

I.2.3 The Maternal Effect of Dominant Embryonic Arrests (MEDEA) 

This mechanism is the product of maternally expressed toxin gene and 

zygotically expressed antidote gene. Hence, non-Medea bearing offsprings will be 

vulnerable and will be killed by the toxin gene, but Medea- bearing eggs will rescue 

themselves and will survive due to the antidote gene [12]. It means that if the mother 
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has at least one allele of transgenic genotype, its offspring will survive if they inherit 

at least one allele of the transgenic genotype, otherwise they will die. 

I.2.4 Driving-Y 

This method spreads the anti-pathogen gene which is linked to the Y-

chromosome of an engineered male mosquito. The Y-chromosome shreds the X 

chromosome of the germline so that it distorts sex ratio, and as a result, the gamete 

will predominantly carry the Y chromosome [13]. Hence, if the father is transgenic 

mosquito, its offsprings will predominantly be male. This mechanism helps prevention 

of the spread of disease by the extinction of the vector population. 

I.2.5 Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) 

The concept of CRISPR/Cas9 gene drive was first proposed by Burt et al. [14]. 

This system works based on two key molecules: an enzyme which is called Cas9 and 

a piece of RNA which is called guide RNA (gRNA). gRNA finds the spot on the DNA 

which needs to be cut and repair. Then the enzyme cuts that specific spot. At this point, 

gRNA can copy the new gene in the target place [15,16]. Hence, an anti-pathogen gene 

linked gene spreads through a vector population, thus preventing parasite transmission. 

While the success of these mechanisms has been validated in simulation and 

laboratory-based studies [10,11-12,14-17], none have been tried in nature due to the risks. 

There are uncertainties about the potential risks which pose several questions for 

scientists. Will there be any genetic mutation of the converted population? If this is the 

case, how will it affect the environment? How will they become resistant to pesticides? If 

the wild population is converted or suppressed, how will the balance of the ecosystem be 
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affected? Moreover, what if the gene drive does not work as expected? In that case, will 

the scientists be able to reverse the drive? If so, how will the economic burden be handled? 

One of the recent ideas to minimize potential risks is to engineer a genotype, which first 

spreads an anti-pathogen gene throughout the population and then removes itself from the 

nature. 

I.3 Research motivations and goals 

As mentioned in previous sections, mosquito-borne vector diseases continue 

threatening global health. It is vital to prevent them rather than managing the symptoms 

and side effects after the incident. Significant progress has been achieved in this regard. 

However, there are risks and concerns about the implementation of those methods in 

nature preventing scientists from conducting them in the real world. It would be much 

safer to conduct a method that spreads a trait which can remove itself when the desired 

effect is achieved in the population. At present, there is no clear understanding of how 

these seemingly counterintuitive goals are achievable: spreading a gene into a population 

to fixation and then completely removing the gene from the wild. 

Thus the primary purpose of this study is to show that these goals are not mutually 

exclusive and can be controlled based on the desired results. We simulated and studied 

different gene drive methods with the property of self-elimination to see whether they 

succeed to spread a bio-degradable anti-pathogen gene in wild-type mosquito’s 

population. Furthermore, we provided an estimation of parameters which are required to 

run the experiments in the laboratory. 
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I.4 Mathematical modeling approach for this study 

Nowadays, system science is considered an essential interdisciplinary tool to deal 

better with a complex system. The challenges and systems we face in the 21st century are 

highly interlinked and multidisciplinary. Hence, we need to formulate and consider 

general principals and different representations of a system to answer the questions [18]. 

System science is highly efficient in this regard. Methods such as agent-based modeling 

and mathematical modeling have been used in a variety of domains. 

In this study, we have used mathematical modeling to simulate different gene drive 

methods to see whether they can succeed in  spreading a bio-degradable anti-pathogen 

gene. Several studies have developed simulations to check how a gene drive can spread 

an anti-pathogen gene, but none has studied the self-elimination property of the anti-

pathogen gene. 
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CHAPTER II 

LITERATURE REVIEW 

Engineering a biodegradable anti-pathogen gene is a novel idea that to the best of 

our knowledge is not studied in any published research. Hence, the literature review 

contains the result of previous studies regarding the success of gene drive systems in 

conversion or suppression of vector population. 

Okamoto et al. have studied introgression of anti-pathogen gene in very large 

number into wild-type population [19]. They have used Skeeter Buster which is a 

stochastic spatially explicit model for Aedes mosquitoes to investigate whether releasing 

mosquitoes with only one anti-pathogen gene will cause population replacement. This 

method models the population dynamics of Aedes mosquitoes in an urban area. They 

found that releasing transgenic mosquitoes into wild-type population will result in 

population replacement which means that the anti-pathogen gene will spread through 

population and mosquitoes will become resistant to the disease, but their genotype will no 

longer be wild type. 

Edgington et al. [20] have considered two-locus engineered under-dominance 

method and have conducted population genetics model which basically is the study of 

genetic variation among the population. They have assumed an infinite, closed, randomly 

mating population with non-overlapping generation. Furthermore, mutation and migration 

have been neglected in this study. They found that single release of transgenic mosquitoes 

will cause them to stay in population and found that this method does not need a high 
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initial number of transgenic mosquitoes to spread the anti-pathogen gene and hence, the 

release number of about 1/3 of the wild-type population will cause the trait to get fixed in 

the population.  

Wade et al. [21] have also conducted population genetics to describe the expected 

population dynamics after conducting MEDEA mechanism. They found that in the 

absence of any fecundity fitness cost, MEDEA spreads the new genetic structure to 

fixation through the population. They also, have studied the properties and natural 

occurrence of MEDEA in Tribolium. Based on their study, this mechanism happens 

naturally in Tribolium population in Aisa, North and South America, Africa and Europe 

but it is almost absent in Indian and Australian population of Tribolium. In their laboratory 

experiments, they detected four genetic loci which could exhibit the mortality pattern of 

MEDEA. Chen et al. [22] have developed a synthetic MEDEA elements to explore the 

population replacement in Drosophila. In this approach, MEDEA encodes both maternally 

expressed toxin and zygotically expressed antidote. The toxin kills non-MEDEA bearing 

progeny and antidote rescue MEDEA bearing offspring. 

Galizi et al. [23] have studied the distortion system for the control of malaria which 

is called driving-Y. They ran a laboratory-based experiment at which the goal was to 

suppress the population by releasing transgenic male mosquitoes. In this mechanism, Y-

chromosome plays the selfish gene role which its inheritance rate is above mendelian 

inheritance rate, and the anti-pathogen gene is linked into it. Hence their progeny will 

dominantly be male. They found this mechanism to be two orders of magnitude more 

efficient than releasing sterile males for causing population extinction. 



 

10 

 

CRISPR was proposed by Esvelt et al. [15]. In that study, they have explained the 

way CRISPR method spreads the trait along with the role of the enzyme in cutting the 

chromosome and copying the trait. While the professional biological methods have been 

discussed in that study, Nobel et al. [24] have constructed and analyzed a mathematical 

model CRISPR gene drive mechanism. They have assumed an infinitely large population 

and random mating. In their study, they have included the effect of multiple cutting by 

multiple gRNA. Their results have shown that this mechanism can invade wild-type 

populations spreading the trait through it, but it could have limited utility due to the 

reproduction of resistance alleles.  

As explained earlier, none of the current studies have considered self-elimination 

of the anti-pathogen gene. In this research, we have included bio-degradability of the anti-

pathogen gene through gene drive methods. 
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CHAPTER III 

GENOTYPES, PARAMETERS, AND MODEL STRUCTURE 

This chapter explains the method and parameters we have used in our 

mathematical modeling. Our model simulates the spread of bio-degradable anti-pathogen 

gene into wild-type mosquito population through different gene drive methods.  

III.1 Genotypes, alleles, fitness cost, and parameters 

Genotype is the genetic structure of an organism which has two alleles for each 

gene. If cells of an organism contain two different alleles of a gene, it is called 

heterozygotes; otherwise, it is called homozygous. In this study, we use ww as the 

genotype of initial wild-type population, and gg and wg as the homozygous (e.g. gg) and 

heterozygotes (e.g. wg) genotypes of initial transgenic mosquitoes. 

There may be a fitness cost for reproduction ability of a specific allele or genotype. 

It is basically considered as less reproductivity and higher mortality. 

Number and types of genotypes, parameters, and initial population scenarios may 

differ from one mechanism to another, but there are three probabilities that are held in 

common by all mechanisms.  

For all gene drive methods we have applied three probabilities for g allele 

transmission: (1) self-elimination, (2) self-generation, and (3) resistance, which are 

denoted by , β and  respectively such that: α + β +  = 1.  

Self-elimination causes g allele to eliminate itself and turn to wild-type allele 

which depends on the mechanism of gene drive, thus g will be turned into w or w*.  
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Self-generation causes g allele to be inherited as g allele in next generation, and 

resistance probability, , will cause g allele to turn into g*, a crashed allele which cannot 

eliminate itself. In the process of self-elimination, g allele first gets crashed and then gets 

repaired into wild-type allele. If the repair process cannot succeed, g allele stays as its 

crashed form at which it cannot turn into wild-type anymore. Figure 1 shows the 

transmission of g allele based on the gene drive mechanism.  

 

Transmission of g allele 

 

 

 

 

Related gene drive mechanism 

Inundative release 

Under-dominance 

MEDEA 1 

Driving-Y 

MEDEA 2 

CRISPR 

Figure 1. Transmission of g allele based on different gene drive mechanisms 

 

In addition to those common probabilities, there are three other probabilities 

related to w allele transmission of wg and wg* genotypes in CRISPR method: (1) 

successful repair probability that turns w allele into g allele, (2) unsuccessful repair 

probability that transforms w into w’, and (3) unsuccessful cleavage probability that makes 

w allele to be inherited as w allele by offspring, which are denoted by ,  and  

respectively. Figure 2 depicts the transmission of w allele of wg or wg* genotypes in 

w* 

g 

g* 

β 

 
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CRISPR mechanism and we will explain the nature of w’ and w* in the corresponding 

section. 

Transmission of w allele in wg & wg* genotypes 

 

Related gene drive mechanism 

CRISPR 

Figure 2. Transmission of w allele of wg & wg* genotypes in CRISPR mechanisms 

  

Parameters we have included in our models are: (1) average daily reproduction 

rate, denoted by , is the average number of eggs laid by a female mosquito per day, (2) 

average mortality rate, 
𝐴

, is the average number of mosquitoes that die per day, (3) fitness 

cost per g/g* allele, f, which is applied in all models except under-dominance system (4) 

fitness cost for heterozygotes in under-dominance method, 𝑓𝑈, (5) fitness cost for 

vulnerable wild-type mosquitoes in MEDEA mechanism, 𝑓𝑀, and, (6) fitness cost for 

female mosquitoes in driving-Y system, 𝑓𝐻.  The average mortality rate has been applied 

for total population of each genotype. Total population of each genotype is sum of juvenile 

and adult mosquitoes. By juvenile, we mean the combination of eggs, larvae and pupae 

stages. At each stage, some mosquitos may die daily, hence we have considered an average 

mortality rate for total population. Table 1 summarizes the probabilities and parameters. 

 

 

 

w 

w 

1- 

 

Successfully 
cleaved w 

w’ 

g 

 

 



 

14 

 

Parameter/Probability Description Value Method 

λ Average daily reproduction rate 7 All methods 

µ𝐴 Average daily mortality rate 0.3 All methods 

𝑓 Fitness cost per g/g* allele 5% All methods except under-dominance 

𝑓𝑈 Fitness cost for heterozygotes 100%- 

90%- 80% 

Under-dominance 

𝑓𝑀 Fitness cost for vulnerable wild-type 100%- 

90%- 80% 

MEDEA 

𝑓𝐻 Fitness cost for female mosquitoes 99.9%- 

95%- 90% 

Driving-Y 

 Probability of self-elimination for g allele 0 – 0.8 All methods 

β Probability of self-generation for g allele 1-α- All methods 

 Probability of becoming resistant for g allele 0.05 All methods 

 Unsuccessful cleavage probability for w allele 0.005 CRISPR 

 Successful repair probability for w allele 0.99 CRISPR 

 Unsuccessful repair probability for w allele 0.01 CRISPR 

Table 1. List of parameters used in the study along with the corresponding method 

 

In the next subsections, we explain the different possible outcome of genotypes 

and initial scenarios we have conducted in our mathematical modeling along with more 

details about different fitness cost and other parameters we have applied for each gene 

drive methods. 

III.1.1 Inundative release 

For this method, we have considered three different initial population scenarios: 

(1) 66% ww + 33% male gg, (2) 100% wg, and, (3) 100% gg. For each initial scenario, 

we have run three different simulations: (a)  = 0 without any application of fitness cost 

into g/g* (g or g*) allele, (b)  = 0 with application of 5% fitness cost into g/g* allele, and, 

(c)  = 5% with application of 5% fitness cost into g/g* allele; in total, we have run 9 
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simulations, for each of nine levels of . In this mechanism, self-elimination probability, 

, turns g allele into w allele that is a wild-type allele resistant to the pathogen 

transmission. 

Modeling by   = 0 is an idealistic approach at which g allele may have only two 

states, w or g. However, in reality, there is a chance that g allele gets crashed. 

The possible outcome of genotypes in this system is ww, wg and gg for  = 0, 

however, when we include  = 5%, we will have other three genotypes as wg*, gg*, and 

g*g*. When the initial population is 66% ww + 33% male gg, the first generation will 

consist of ww, wg, and wg* (in the case of =0) and other three genotypes will appear 

from the second generation.  

In contrast to the first scenario of the initial population, all six genotypes will 

appear from the first generation. 

III.1.2 Under-dominance method 

Likewise inundative release, we have studied three different initial population 

scenarios for under-dominance method as (1) 100% gg, (2) 25% ww + 75% gg, and, (3) 

40% ww + 60% gg. For each scenario, we have studied six different combinations of  

and fitness cost as (a)  = 0 and heterozygotes fitness cost = 100%, (b)  = 0 and 

heterozygotes fitness cost = 90%, (c)  = 0 and heterozygotes fitness cost = 80%, (d)  = 

5% and heterozygotes fitness cost = 100%, (e)  = 5% and heterozygotes fitness cost = 

90%, and, (f)  = 5% and heterozygotes fitness cost = 80% which in total requires 18 

simulation runs for each of nine levels of . Similar to the inundative release,  turns g 
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allele into pathogen-resistant wild-type allele, w. If the  = 0, the possible genotypes are 

ww, wg and gg but for non-zero  we have wg*, gg* and g*g* as well and since in this 

system, the initial population includes female gg mosquitoes, all genotypes appears from 

first generation. 

III.1.3 MEDEA 

For this mechanism, we have studied two approaches: (1) self-elimination 

probability, , turns g allele into wild-type, pathogen-resistant allele, w, which still makes 

ww vulnerable in MEDEA mechanism, (2) , turns g allele into wild-type, pathogen-

resistant allele, w* which can survive in MEDEA method. Hence, any wild-type genotype 

that includes w* is not vulnerable in this mechanism anymore. The only remaining 

vulnerable genotype is ww. 

In the “result” part, we have explained the reason we have studied two approaches 

for MEDEA. 

For both approaches, we have considered three initial population scenarios: (1) 

100% gg, (2) 25% ww + 75% male gg, and, (3) 50% ww + 50% male gg. Likewise to the 

under-dominance method, for each scenario, we have studied six different combination of 

 and fitness cost as (a)  = 0 and vulnerable wild-type fitness cost = 100%, (b)  = 0 and 

vulnerable wild-type fitness cost = 90%, (c)  = 0 and vulnerable wild-type fitness cost = 

80%, (d)  = 5% and vulnerable wild-type fitness cost = 100%, (e)  = 5% and vulnerable 

wild-type fitness cost = 90%, and, (f)  = 5% and vulnerable wild-type fitness cost = 80% 

which in total it required 36 simulation runs for each level of . In addition to fitness cost 

for vulnerable wild-type genotypes, we have applied 5% fitness cost into each g/g* allele. 
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The difference in the type of self-elimination between two MEDEA approaches,  

has caused different outcomes for genotypes. In the first one, the possible genotypes are 

ww, wg, wg*, gg, gg* and g*g*, that ww, wg, and wg* appear from the first generation 

and the others appear from the second generation (for non-zero ) when the initial 

population is a combination of ww and gg, but all appear from the first generation if the 

initial population is 100% gg. However, In the second approach, there are ten possible 

outcomes: ww, wg, ww*, wg*, w*w*, w*g, w*g*, gg, gg*, g*g* such that the first four 

genotypes appear from the first generation, and the rest of them can be seen from the 

second generation (for non-zero ) except when the initial population in 100% gg in the 

second approach of MEDEA. In that case, there are six possible genotypes as w*w*, w*g, 

w*g*, gg, gg* and g*g* which all of them appears from the first generation and are not 

vulnerable to the toxin in MEDEA mechanism. 

III.1.4 Driving-Y 

Nature of the driving-Y is to spreads Y-chromosome as the selfish element. To 

spread the anti-pathogen gene by this gene drive system, the g allele must be linked to the 

Y-chromosome denoted by 𝑔𝑌. Since the g allele cannot be attached to X-chromosome, it 

implies that we cannot introduce 𝑔𝑋𝑔𝑌genotype male mosquitoes into the wild-type 

population. The released male mosquitoes have 𝑤𝑋𝑔𝑌genotypes at which g is attached to 

Y-chromosome. Wild-type mosquitoes genotype is denoted by 𝑤𝑋𝑤𝑌 as male mosquitoes 

and 𝑤𝑋𝑤𝑋 as female mosquitoes. Furthermore, during the reproduction process, g allele 

cannot transfer from Y-chromosome to X-chromosome.  
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In this mechanism, we have studied one initial population scenario which is 66% 

ww + 33% 𝑤𝑋𝑔𝑌 in six different states: (1)  = 0 and 99.9% fitness cost for vulnerable 

female mosquitoes, (2)  = 0 and 95% fitness cost for vulnerable female mosquitoes, (3)  

= 0 and 90% fitness cost for vulnerable female mosquitoes, (4)  = 5% and 99.9% fitness 

cost for vulnerable female mosquitoes, (5)  = 5% and 95% fitness cost for vulnerable 

female mosquitoes, and (6)  = 5% and 90% fitness cost for vulnerable female mosquitoes 

that in total it required six simulation runs for each level of  at which  turns the g allele 

into pathogen-resistant wild-type allele, 𝑤𝑌. 

The possible outcome of genotypes are 𝑤𝑋𝑤𝑌, 𝑤𝑋𝑤𝑋, 𝑤𝑋𝑔𝑌 and 𝑤𝑋𝑔 ∗𝑌 (for 

non-zero ) and all of them appear from first generation. 

III.1.5 CRISPR 

For this method, we have studied only one initial population scenario which is 90% 

ww + 10% male gg mosquitoes, in two states (1)  = 0, and (2)  = 5% . In each state, we 

have considered only 5% fitness cost per g/g* allele which means two simulation runs for 

each level of  at which  turns g allele into pathogen-resistant wild-type allele, w*. 

However, the modeling of this system is more complicated compared to previous gene 

drive methods because of the presence of extra parameters and alleles. In this system, in 

addition to , β and , there are three more probabilities that we define them here. 

We explained earlier that in CRISPR mechanism, the enzyme Cas9, cuts the target 

point on chromosome and gRNA repairs the cut point by copying the g allele. The goal of 

this engineered system is a successful cleavage and a successful repair in w allele. 
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However, it may not be the case always. There is a chance that the enzyme cannot succeed 

to cleave the chromosome. In this case, w allele gets inherited by new offspring as w allele. 

We have denoted this probability by . If the cleavage succeeds, the gRNA tries to repair 

the cleaved point by copying the g allele. If the gRNA succeed in its goal, w allele turns 

into g allele. We denote the corresponding probability by . However, there is a chance 

that gRNA cannot repair the cleaved point. In this case, we have a crashed w allele, 

denoted by w’ which is cleaved by Cas9 enzyme but could not get repaired by gRNA. We 

denote this probability by . These occurrences all happen in wg and wg* alleles. 

The possible alleles in this mechanism are w, w’, w*, g, g* which cause fifteen 

different genotypes as ww, ww’, ww*, w’w’, w’w*, w*w*, wg, wg*, w’g, w’g*, w*g, 

w*g*, gg, gg*, g*g*. The first six genotypes are considered as wild-type genotypes.  For 

non-zero , ww, ww*, wg, and wg* appear from the first generation while the others 

appear from the second generation.   

Table 2 summarizes each gene drive system as well as studied initial population 

scenarios and possible outcomes of genotypes. 
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Table 2. Gene drive methods, initial population scenarios, and genotype outcomes 

 

Method Initial population Fitness cost 

 

Genotypes ( = 0.05) 

Inundative release 

66% ww + 33% gg (male) 

100% wg 

100% gg 

 

5% per g/g* 

 

ww 

wg 

wg* 

gg 

gg* 

g*g* 

Under-dominance 

100% gg 

25% ww + 75% gg 

40% ww + 60% gg 

100% cost (wg/wg*) 

90% cost (wg/wg*) 

80% cost (wg/wg*) 

 

ww 

wg 

wg* 

gg 

gg* 

g*g* 

Medea-1 

100% gg 

25% ww + 75% gg (male) 

50% ww + 50% gg (male) 

100% cost (vulnerable wild-type) 

90% cost (vulnerable wild-type) 

80% cost (vulnerable wild-type) 

 

ww 

wg 

wg* 

gg 

gg* 

g*g* 

Medea-2 

100% gg 

100% cost (vulnerable wild-type) 

90% cost (vulnerable wild-type) 

80% cost (vulnerable wild-type) 

w*w* 

w*g 

w*g* 

gg 

gg* 

g*g* 

25% ww + 75% gg (male) 

50% ww + 50% gg (male) 

100% cost (vulnerable wild-type) 

90% cost (vulnerable wild-type) 

80% cost (vulnerable wild-type) 

 

ww 

ww* 

w*w* 

wg 

wg* 

w*g 

w*g* 

gg 

gg* 

g*g* 

Driving-Y 66% ww + 33% wg (male) 

99.9% (vulnerable female) 

95% (vulnerable female) 

90% (vulnerable female) 

𝑤𝑋𝑤𝑌 

𝑤𝑋𝑤𝑋 

𝑤𝑋𝑔𝑌 

𝑤𝑋𝑔 ∗𝑌 

 90% ww + 10% gg (male) 5% per g/g* 

ww 

ww’ 

ww* 

w’w’ 

w’w* 

w*w* 

wg 

w’g 

w*g 

wg* 

w’g* 

w*g* 

gg 

gg* 

g*g* 
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III.2 Model description 

We have used Malthusian population model as a growth model, and reaction model 

has been used to calculate the reproduction size for each genotype population which 

considers all possible interactions between genotypes that cause reproduction of a specific 

genotype.  

 

[𝐺𝐾]𝑡+1 = [𝐺𝐾]𝑡 +  
𝑑[𝐺𝐾]𝑡

𝑑𝑡
 

s.t                                                           

𝑑[𝐺𝑘
𝑀]𝑡

𝑑𝑡
= ( ∑ 0.5 ×   ×  [𝐺𝑖

𝐹]𝑡  ×  
∑ 𝑝𝑖𝑗

𝑘  [𝐺𝑗
𝑀]𝑡𝑗

[𝐺𝑡
𝑀]𝑖  ) – ( 

𝐴
 ×  [𝐺𝑘

𝑀]𝑡 ) 

𝑑[𝐺𝑘
𝐹]𝑡

𝑑𝑡
= ( ∑ 0.5 ×   ×  [𝐺𝑖

𝐹]𝑡  ×  
∑ 𝑝𝑖𝑗

𝑘  [𝐺𝑗
𝑀]𝑡𝑗

[𝐺𝑡
𝑀]𝑖  ) – ( 

𝐴
 ×  [𝐺𝑘

𝐹]𝑡 ) 

{𝑖, 𝑗, 𝑘 = 𝑤𝑤, 𝑤𝑔, 𝑤𝑔 ∗, 𝑔𝑔, 𝑔𝑔 ∗, 𝑔 ∗ 𝑔 ∗, 𝑤𝑤 ∗, 𝑤𝑤′, 𝑤 ∗ 𝑤 ∗, 𝑤′𝑤′, 𝑤′𝑤 ∗, 𝑤′𝑔, 𝑤′𝑔 ∗, 𝑤 ∗ 𝑔, 𝑤 ∗ 𝑔 ∗ 

 

[𝐺𝐹] and [𝐺𝑀] denotes the number of unmated female and male mosquitoes with 

a specific genotype,  [𝐺𝑡
𝑀] is the total number of male mosquitoes at time t, 𝑝𝑖𝑗

𝑘  is the 

probability that female mosquito i mates male mosquito j and reproduces mosquito k and, 

equations (1.2) and (1.3) are change of population of male and female mosquitoes with 

genotype k at time t, respectively. 

We have assumed a homogeneous constant environment which means climatic 

conditions such as rainfall patterns, temperature, humidity, and seasonality are assumed 

to be constant.  The interaction between humans and mosquitoes and other animals and 

mosquitoes are not included in our models.  

(1.1) 

(1.2) 

(1.3) 
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We have studied self-elimination ability of anti-pathogen gene within two years in 

(1) inundative release of transgenic mosquitoes, (2) under-dominance method, (3) 

MEDEA, (4) driving-Y and, (5) CRISPR. In all models, we assume that initial population 

consists of unmated adult mosquitoes. At each generation, the model considers the number 

of unmated mosquitoes involved in the reproduction process. As we states we called egg, 

larvae and pupae stages as a juvenile stage and allocated 12 days to this juncture after 

which mosquitoes will emerge to the adult stage and get involved in the reproduction 

process. The total population of each genotype is considered as the summation of juvenile 

and adult mosquitoes. An average fixed daily mortality rate has been allocated for the total 

population. The next chapter provides results and finding from simulation of different 

gene drive systems. 
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CHAPTER IV 

RESULTS 

As stated earlier, we have studied self-elimination ability of an anti-pathogen gene 

within two years in five different gene drive systems. Self-elimination is successful when 

the total population can recover to the wild-type population within the studied time 

window.  

For each mechanism, we have run the corresponding model and have provided the 

results in this chapter. In total, seventy-one simulations have been run for each level of  

to provide the answers for the following question: (1) Can the engineered genotype be 

biodegradable? (2) What is the proper threshold for parameters to make a gene 

biodegradable? 

All results have been explained based on plots. In each plot, X-axis shows the time 

in unit of days, and Y-axis indicates the proportion of wild-type population within two 

years. The “dotted” line in some plots indicates the state at which  =  = 0 which indicates 

there is no self-elimination, that is, the g allele is permanent. 

IV.1 Results for inundative release 

We start the results section with inundative release mechanism. Combination of 

33% ww and 66% male gg mosquitoes has been considered as the first scenario of the 

initial population. Then we have tested two other scenarios as 100% wg and 100% gg for 

initial population, and for each scenario, we have provided the results considering a 
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combination of  and fitness cost. The following subsections provide the results for this 

method. 

IV.1.1 Initial population scenario: 67% ww + 33% gg (male) 

For this initial population, first, we have considered  = 0 which means that there 

is not any reproduction of g* allele. Also, we have not included fitness cost for g allele. 

We found that for α < 0.16, the total population cannot recover to the wild-type which 

means that bio-degradability of the anti-pathogen gene is not achievable at these levels of 

. However, for genes engineered for α  0.16, total population can recover to the wild 

type. Plot (a) in Figure 3 shows the results. 

In the next step, we included 5% fitness cost in our model but still keeping  = 0. 

The goal was to test the effect of fitness cost in the biodegradability of the anti-pathogen 

gene. It helped the total population to recover to the wild-type even in the absence of self-

elimination probability. The result shows the importance of fitness cost. The reproduction 

and mortality rate of transgenic population has changed by only 5%, but it provides the 

confidence that even for  = 0, the anti-pathogen gene can eliminate itself from the 

population within two years. The result is shown in plot (b) in Figure 3. 

In the first two steps, we kept  = 0. However, it is not realistic. In the real world  

is not zero and it is presumed to be between 1% and 5%. In this step, we have included  

= 5% and considered 5% fitness cost per g/g* allele. Plot (c) in Figure 3 shows the results. 

The “dotted” curve in the plot, belongs to  =  = 0. When  is nonzero,  cannot be zero. 

Non-zero  implies that there must have been self-elimination attempt which was not 
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successful and has caused a crashed form of g allele. Hence, for  = 0 we have considered 

data corresponding to  = 0. 

 

Figure 3. Inundative release, dynamic of wild-type population; Initial population = 67% ww + 33% gg (male) 

 

IV.1.2 Initial population scenario: 100% wg 

When we start with 100% wg as the original population, we expect to see all 

possible genotypes from the first generation. Likewise the first initial population scenario, 

we started the simulation of this population by keeping  and fitness cost equal to zero. 

We found that total population can recover to the wild-type for all levels of  except  < 

0.07. Plot (a) in Figure 4 shows the results. 

In the next step, we included the fitness cost. Likewise the first initial population, 

anti-pathogen gene can eliminate itself within two years even in the absence of self-

elimination probability. The result is shown in plot (b) in Figure 4. 
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Increasing  to 5%, makes delay in population recovery, however, likewise 

previous state, 5% fitness cost per g/g* allele helps the anti-pathogen gene remove itself 

from the population within two years. Plot (c) Figure 4 shows the results. 

 

Figure 4. Inundative release, dynamic of wild-type population; Initial population = 100%wg 

 

IV.1.3 Initial population scenario: 100% gg 

We repeated the same processes when the initial population is 100%  gg 

mosquitoes. For  = 0 and f = 0, total population can recover to the wild-type for α  0.08 

and it fails when  < 0.08. When the self-elimination probability is zero, g allele cannot 

turn into w allele. Furthermore, the initial population does not include any wild-type 

mosquitoes. Hence, the proportion of wild-type is zero. 

Including 5% fitness cost for g/g* does not make any difference for  = 0 but if 

we compare the curves in the plot (a) with the equivalent curves in the plot (b) of Figure 

5, we can see the improvement in the lower amount of . The fitness cost helped the total 
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population to recover to the wild-type fast compared to state at which fitness cost is not 

included.  

Then, we continued with a realistic form of this system. Beside f=5%, we included 

 = 5%. We found that anti-pathogen gene still can eliminate itself for α  0.08 but there 

is a delay in recovery time.  

 

Figure 5. Inundative release, dynamic of wild-type population; Initial population = 100% gg 

 

IV.2 Results for under-dominance method 

This section provides the results for under-dominance method. We started with the 

initial population as 100% gg mosquitoes and tested three different fitness costs for 

heterozygotes genotypes considering  = 0 and  = 5%. Then we tested two various 

combinations of ww and gg genotypes as initial population and studied the effect of 

corresponding fitness cost and  in the recovery of the total population. The following sub-

sections provide the results for this method. 
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IV.2.1 Initial population scenario: 100% gg 

Starting with 100% gg mosquitoes causes all possible genotypes to appear from 

the first generation. Keeping  = 0 prevents reproduction of g* allele, hence 100% 

heterozygotes fitness cost has been applied only for wg genotypes. We found that, self-

elimination fails for 0 ≤ α < 0.18 but for higher values of , total population can recover 

to the wild-type within two years.  

We simulated the same initial population scenario, changing heterozygotes fitness 

cost to 90% and 80% keeping  = 0 and we got α  0.16 and α  0.13 respectively for 

population recovery. Plots (b) and (c) in Figure 6 show the results for 𝑓𝑈 = 90% and 80% 

respectively.  

 

Figure 6. Under-dominance method, dynamic of wild-type population; Initial population=100% gg,  = 0 

 

In the next step, we increased  to 5% and ran the same simulations. Plots (a), (b) 

and (c) in Figure 7, shows the results for 𝑓𝑈 = 100%, 90% and 80% respectively when the 
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initial population is 100% gg mosquitoes. Since the  is non-zero, the heterozygotes fitness 

cost applies for wg* as well. The results show that total population recover to the wild-

type for α  0.27, α  0.24, and α  0.22 for 100%, 90% and 80% fitness costs respectively  

at which the lower limit of  has increased compared to state that  was zero. It was 

expected, because  introduce g* allele and it causes reproduction of three different non-

wild-type genotypes and hence, the system needs higher  to eliminate anti-pathogen gene 

and return to the wild-type. Figure 7 summerizes the results. 

 

 

Figure 7. Under-dominance method, dynamic of wild-type population; Initial population= 100% gg,  = 5% 
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We modified the intial population and set it as 25% ww + 75% gg. Since the initial 

gg mosquitoes have been considered as male and female, hence, all possible genotypes 

appear from first generation. We tested the same fitness costs considering  equal to zero 

and 5%. Plots (a), (b) and (c) in Figure 8 show the results for 𝑓𝑈 = 100%, 90% and 80% 
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respectively considering  = 0. We found that, self-elimination is achievable for α  0.17 

, α  0.15 and α  0.14 for 100%, 90% and 90% fitness costs respectively. 

 
 

Figure 8. Under-dominance method, dynamic of wild-type population; Initial population= 25% ww + 75% gg,  = 0 

 

Plots (a), (b) and (c) in Figure 9 show the wild-type proportion for 100%, 90% and 

80% heterozygotes fitness cost, respectively considering  = 5% and same initial 

population. As result showed, anti-pathogen gene can eliminate itself when α  0.2, α  

0.18, α  0.16 when fitness cost is 100%, 90% and 80% respectively within two years. 

Plots in Figure 9 show a time delay in recovery of total population to the wild-type.  
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Figure 9. Under-dominance method, dynamic of wild-type population; Initial population= 25% ww + 75% gg,  = 5% 

 

IV.2.3 Initial population scenario: 40% ww + 60% gg 

We repeated all simulation changing the initial population into 40% ww + 60% gg. 
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female and male gg mosquitoes in initial population scenario. First, we ran the model 

considering  = 0 for three different heterozygotes fitness cost and the results are 

summarized in plots (a), (b) and (c) in Figure 10. We found that, total population can 

recover to the wild-type for α  0.1, α  0.09 and α  0.08  when fitness cost is 100%, 90% 

and 80% respectively. 
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Figure 10. Under-dominance method, dynamic of wild-type population; Initial population= 40% ww + 60% gg,  = 0 

 

Including  = 5% in model, does not change the level of  significantly at which 

anti-pathogen gene can eliminate itself from the population. It just made a delay in this 

process. Plots (a), (b) and (c) in Figure 11 show the wild-type proportion for 100%, 90% 

and 80% heterozygotes fitness cost respectively. 

 

Figure 11. Under-dominance method, dynamic of wild-type population; Initial population= 40% ww + 60% gg,  = 5% 

 

0 200 400 600 

Time (day) 

0
 

2
0
 

4
0
 

6
0
 

8
0
 

1
0
0
 

0 200 400 600 

Time (day) 

0
 

2
0
 

4
0
 

6
0
 

8
0
 

1
0
0
 

0 200 400 600 

Time (day) 

0
 

2
0
 

4
0
 

6
0
 

8
0
 

1
0
0
 

 

 = 0 

 = 0.2 

 = 0.3 

 = 0.5 

 = 0.8 

 = 0.1 

 = 0 

Cost = 90% 

 = 0 

Cost = 80% 

 = 0 

Cost = 100% 

W
il

d
-t

y
p

e 
P

ro
p
o

rt
io

n
 (

%
) 

0 200 400 600 

Time (day) 

0
 

2
0
 

4
0
 

6
0
 

8
0
 

1
0
0
 

0 200 400 600 

Time (day) 

0
 

2
0
 

4
0
 

6
0
 

8
0
 

1
0
0
 

0 200 400 600 

Time (day) 

0
 

2
0
 

4
0
 

6
0
 

8
0
 

1
0
0
 

 

 

 = 0.2 
 = 0.3 
 = 0.5 
 = 0.8 

 = 0.1 

 = 5% 

Cost = 90% 

 = 5% 

Cost = 80% 
 = 5% 

Cost = 100% 

W
il

d
-t

y
p

e 
P

ro
p
o

rt
io

n
 (

%
) 

 = 0 &  = 0  

(a) (b) (c) 

(a) (b) (c) 



 

33 

 

Combination of 40% ww + 60% gg mosquitoes seems an ideal initial population 

scenario because it allows anti-pathogen gene to spread into the population and eventually 

eliminate itself within two years when α  0.1  for 100% and 90% fitness costs and α  

0.09 for 80% fitness cost.  

IV.3 Results for MEDEA (First approach) 

This section provides the results for MEDEA method. As mentioned earlier, wild-

type genotype offspring is vulnerable in this mechanism. It means that if the mother’s 

genotype has at least one selfish allele, only the offspring which inherit at least one selfish 

allele survive and wild-type offspring may have 𝑓𝑀= 100%, 90% and 80% fitness cost.  

In this system, we considered three different initial population as 100% gg, 25% 

ww + 75% gg and 50% ww + 50% gg mosquitoes. Unlike under-dominance method, the 

gg mosquitoes are only male in the second and third scenarios. For each initial population 

scenario, we tested three different fitness cost for vulnerable wild-type mosquitoes 

considering  = 0 and 5%. In this system, in addition to wild-type fitness cost, additional 

5% fitness cost has been applied for g/g* alleles.The following subsections provide the 

simulation results for each state. 

IV.3.1 Initial population scenario: 100% gg 

For this state, we modeled the MEDEA method with the initial population of 100% 

gg mosquitoes. Plots (a) and (b) in Figure 12 show the wild-type proportion when the 

wild-type fitness cost is 90% and 80% respectively. When the initial population is 100% 

gg, the only chance that we get wild-type genotype is when  > 0, but on the other hand, 

we apply 100% to the wild-type mosquitoes which means that we do not have any ww 
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mosquitoes within two years. However, decreasing fitness cost to 90% and 80% gives 

10% and 20% reproduction chance to the wild-type mosquitoes. This is the reason that for 

this state we have only two plots correspond to 90% and 80% fitness cost. 

 

Figure 12. MEDEA-1 method, dynamic of wild-type population; Initial population= 100 % gg,  = 0 

 

The results showed that, when the fitness cost is 90%, total population can recover 

to the wild-type when α  0.21. The lower level of  decreases to the 0.16 when the fitness 

cost is 80%. 

In the next step, we included  = 5% and ran the model with same initial population 

and same fitness costs. The results are summarized in plots (a) and (b) in Figure 13. As 

soon as we increased the amount of , total population could not return to the wild-type 

even for the highest value of . It was expected because there is a significantly high fitness 

cost applied to wild-type population. The mechanism kills the significant portion of wild-

type. On the other hand, by introducing  = 5%, g* allele was introduced into a system 

that caused reproduction of wg*, gg* and gg* that not only increase the number of none-

 = 0.5 

 = 0.2 
 = 0.1 

 

 = 0 

 = 0.3 
 = 0.4 

 = 0.8 

 = 0 

Cost = 90% 

 = 0 

Cost = 80% 

0 200 400 600 

Time (day) 

0
 

2
0
 

4
0
 

6
0
 

8
0
 

1
0
0
 

0 200 400 600 

Time (day) 
0
 

2
0
 

4
0
 

6
0
 

8
0
 

1
0
0
 

W
il

d
-t

y
p

e 
P

ro
p
o

rt
io

n
 (

%
) 

(a) (b) 



 

35 

 

wild-type mosquitoes in the population but kills more ww offspring. As a result, MEDEA 

mechanism with 100% gg mosquitoes as initial population, could not achieve 

biodegradability goal of anti-pathogen gene when  = 5%. 

 

Figure 13. MEDEA-1 method, dynamic of wild-type population; Initial population = 100 % gg,  = 5% 
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Figure 14. MEDEA-1 method, dynamic of wild-type population; Initial population = 25% ww + 75% gg,  = 0 
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Figure 15. MEDEA-1 method, dynamic of wild-type population; Initial population = 25% ww + 75% gg,  = 5% 
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Figure 16. MEDEA-1 method, dynamic of wild-type population; Initial population = 50% ww + 50%gg,  = 0 
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Figure 17. MEDEA-1 method, dynamic of wild-type population; Initial population = 50% ww + 50%gg,  = 5% 
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IV.4 Results for MEDEA (Second approach) 

In this section, we have provided the results for the second method of MEDEA. 

Likewise the first approach we considered three different initial population scenario, and 

for each one, we tested three different wild-type fitness cost for  = 0 and 5%. Additional 

5% fitness cost per g/g* allele has been applied in the model.  

IV.4.1 Initial population scenario: 100% gg  

Here, we started with 100% gg as initial population scenario and keeping  = 0, 

tried 100%, 90% and 80% wild-type fitness cost which is applied only for ww. Other wild-

type genotypes, w*w* and ww* are not vulnerable since they have at least one w* allele. 

Plots (a), (b) and (c) in Figure 18 provides the results. 

  

Figure 18. MEDEA-2 method, dynamic of wild-type population; Initial population = 100 % gg,  = 0 
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Moving to the next step, we increased  to 5% and repeated the simulations. As we 

see in plots in Figure 19, we got the results similar to the state at which  = 0. The only 

difference is a time delay in population recovery. This is the advantage of the second 

approach of MEDEA. 

 

 

 

Figure 19. MEDEA-2 method, dynamic of wild-type population; Initial population = 100 % gg,  = 5% 

 

In the first approach of MEDEA, when  was zero and initial population was only 
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 to 5%, the result got worst and total population could not revert to wild-type for any 

value of α. Hence, in comparison to the first approach of MEDEA, the result of second 

approach of MEDEA for 100% gg initial population has significantly improved and total 

population can recover to the wild-type for α  0.04. 
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IV.4.2 Initial population scenario: 25% ww + 75% gg (male) 

We changed the initial population to 25% ww + 75% gg, but only male mosquitoes 

are considered as gg initial population. By keeping  = 0, we ran the model for different 

fitness costs. Plots (a), (b) and (c) in Figure 20 show the simulation results for 𝑓𝑀 =100%, 

90% and 80% respectively. We found the same values for α as the first initial population 

scenario. We found that for α  0.02, anti-pathogen gene can eliminate itself from 

population for all values of fitness costs.  

 

Figure 20. MEDEA-2 method, dynamic of wild-type population; Initial population = 25% ww + 75% gg,  = 0 
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Moving to the realistic simulation, we increased  to 5% and repeated the model 

with three different fitness costs. The results are summarized in Figure 21. 

 

Figure 21. MEDEA-2 method, dynamic of wild-type population; Initial population = 25% ww + 75% gg,  = 5% 
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Figure 22. MEDEA-2 method, dynamic of wild-type population; Initial population = 50% ww + 50% gg,  = 0 

 

Increasing  to 5% made a delay in recovery time of total population, but it did not 

change the values of α for different fitness costs. We found that anti-pathogen gene could 

eliminate itself from the population for α  0.03. Plots (a), (b) and (c) in Figure 23 show 

the results for 𝑓𝑀 = 100%, 90% and 80% respectively. Likewise second scenario of initial 

population, there is not a significant difference between three plots that implies that fitness 

cost does not have a significant effect in portion of ww in wild-type population. 

 

Figure 23. MEDEA-2 method, dynamic of wild-type population; Initial population = 50% ww + 50% gg,  = 5% 
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IV.5 Results for driving-Y 

In this section, we provided the results for driving-Y method. As we mentioned 

earlier, in this mechanism, anti-pathogen gene must be linked to the Y-chromosome. It 

means that we have 𝑔𝑌 allele but not 𝑔𝑋 hence the initial population can not be 𝑔𝑋𝑔𝑌. 

Furthermore g allele can not transfer to X-chromosome during the reproduction process. 

In addition, this mechanism causes sex-bias in population which means that if the father 

carries at least one selfish allele, which is 𝑔𝑌 allele is our study, his offspring will inherit 

it with a significant high probability and hence, will be male mosquitoes which is 

equivalent to high fitness cost for female offspring.  

For this mechanism, we considered 67% ww + 33% wg (male) as initial population 

scenario. The genotype constructs of wild-type can be 𝑤𝑋𝑤𝑌 and 𝑤𝑋𝑤𝑋 but for 

transgenic mosquitoes it must, be 𝑤𝑋𝑔𝑌. For this scenario we included 𝑓𝐻 = 99.9%, 95% 

and 90% as female fitness cost. In addition to 𝑓𝐻, we included 5% fitness cost per g/g* 

allele. We ran the simulation with  = 0 and  = 5%. Plots (a), (b) and (c) in Figure 24 

show the results for 99.9%, 95% and 90% fitness cost respectively when  = 0. 
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Figure 24. Driving-Y method, dynamic of wild-type population; Initial population = 67% ww + 33% wg,  = 0 

 

Total population can return to the wild-type when α  0.47, α  0.45 and α  0.42  

for 99.9%, 95% and 90% fitness cost respectively. Another difference between plots is the 

time of recovery. Reducing the fitness cost, decrease the time of recovery. While the goal 

of biodegradability is achieved, however, it does not happen at lower levels of α. Hence 

we expected the worst results by increasing . 

In next step, we increased  to 5% to test our expectation. In this case, total 

population cannot recover to the wild-type and hence, the selfish gene spread through 

population for all three fitness costs. This mechanism not only causes the spread of anti-

pathogen gene but spreads the Y-chromosome which increases the reproduction of male 

offspring. This process will reduce the overall replication in the system due to a decrease 

in the number of females. Hence, this gene drive method causes eradication of total 

population. Figure 25 shows dynamic of wild-type population in this system. 
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Figure 25. Driving-Y method, dynamic of wild-type population; Initial population = 67% ww + 33% wg,  = 5% 

 

IV.6 Results for CRISPR 

This section provides the results for CRISPR method. We explained earlier that 

the goal of CRISPR mechanism is a successful cleavage of w allele by enzyme Cas9 and 
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population, and self-elimination probability eliminates it gradually within two years. The 

only applied fitness is 5% per g/g* allele. For this mechanism we set the initial population 

to 90% ww + 10% gg (male) and ran the model for  = 0 and 5%. Figure 26 shows the 

results for  = 0. 

 

Figure 26. CRISPR method, dynamic of wild-type population; Initial population = 90% ww + 10% gg,  = 0 

 

As plot shows, this mechanism spreads the anti-pathogen gene through the 
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the results, and it verifies our expectations. We found that, total population could revert to 

wild-type for α  0.02. 

 

Figure 27. CRISPR method, dynamic of wild-type population; Initial population = 90% ww + 10% gg,  = 5% 

 

IV.7 Validation of models 

As mentioned earlier, modeling an engineered biodegradable anti-pathogen gene 

is a novel idea that to the best of our knowledge, there is not any valid published study 

about that. Future laboratory-based experiments will be developed to verify the validity of 

the result of the current study. However, there are previous studies related to the 

application of gene drive methods to spread an anti-pathogen gene in the wild-type 

population that was explained in chapter II.  Those studies are equivalent to the state of 
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is no biodegradability and when  is equal to zero it means that there is not crashed form 
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mechanism, the equivalent state belongs to the status at which in addition to α and , fitness 

cost per g/g* is also zero. 

The study of Okamoto et al.[21] showed that releasing transgenic mosquitoes into 

wild-type population reduces the wild-type population so that after a while the number of 

wild-type population reaches the equilibrium state and stays on that at which the 

significant portion of total population contains transgenic mosquitoes and our modeling 

results based on three different initial population matched with this result. 

For under-dominance mechanism, the study of Edgington et al. [21] showed that 

single release of transgenic mosquitoes would cause them to stay in population and only 

small portion of the population will contain wild-type mosquitoes. The results of our 

modeling based on three different initial population scenarios and three different 

heterozygotes fitness costs showed that when α and  are zero, anti-pathogen gene spreads 

through the population and causes a significant reduction in wild-type proportion.  

Wade et al. [24] studied the mechanism of MEDEA and found that in the absence 

of any fecundity fitness cost, MEDEA spreads the new genetic structure to fixation 

through the population. We studied two approaches of MEDEA, and for each one, we 

tested three different initial population scenarios. We got our results matched with the 

referenced study, and we showed that in the case of zero α and , anti-pathogen gene 

spread through the population and an only negligible portion of the total population 

belongs to wild-type mosquitoes. 

For driving-Y mechanism, Galizi et al. [23] ran a laboratory-based experiment to 

show that driving-Y mechanism causes population suppression by releasing male 
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transgenic mosquitoes at with Y-chromosome plays selfish-gene role and their study 

verified population eradication. We simulated a population at which the initial population 

was the combination of 67% ww + 33% wg (male) and assumed that g allele in wg 

genotype is linked to Y-chromosome and we showed that not only driving-Y causes the 

spread of anti-pathogen gene in population but within two years causes population 

suppression. 

For CRISPR mechanism, the proposed method by Esvelt et al. [15] was not 

modeled or conducted in the laboratory [24]. However, our simulation results matched 

with the expected outcome by the explained mechanism is the study by Esvelt et al. [15]. 

Future laboratory-based experiments will test the validity of our simulations. 
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CHAPTER V 

DISCUSSION AND CONCLUSION 

This chapter provides a summary of the development of the model, and the results 

obtained from the simulation. In the last part, potential areas of future work are presented. 

V.1 Discussion 

Gene drive systems are great methods of altering the odds; promising tools that 

give scientists the power to spread a new genetic construct in a target population or 

eliminate a harmful species. In last few decades, gene drive systems have been considered 

as a method to prevent the spread of mosquito-borne vector disease. However, due to 

uncertainties and unpredictable risks, none has been conducted in nature.  

In this study, we introduced the engineered biodegradable anti-pathogen gene. The 

aim was to simulate mechanisms of different gene drive systems by which the anti-

pathogen gene can spread through the population and then eliminate itself within two 

years. The success of this idea in simulation and laboratory-based experiments can help to 

pave the way of implementing the gene drive methods in the real world. 

For this purpose, we build a mathematical model for different gene drive 

mechanisms. We started with inundative release of mosquitoes and forwarded to under-

dominance, MEDEA, driving-Y and CRISPR methods. Modeling results showed the 

success of inundative release, under-dominance, and CRISPR mechanisms. However, we 

found that driving-Y mechanism suppresses the total population even at the high value of 

self-elimination probability due to the high female fitness cost. Furthermore, model results 
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showed that as long as we allocate MEDEA-related fitness cost to non-MEDEA bearing 

offspring, this mechanism will fail to achieve the goal of biodegradability. Only for a 

specific initial population scenario and at a relatively high value of self-elimination 

probability, total population can recover to the wild-type. However, we modify the 

mechanism of MEDEA so that wild-type allele, w*, which is transformed form for g allele, 

survives and makes a genotype with at least one w* allele survive. In this case, modeling 

results showed the success of this method regarding biodegradability of anti-pathogen 

gene based on different initial population scenarios and different MEDEA-related fitness 

costs.  

V.2 Future works 

Utilizing gene drive methods to combat vector-borne disease is a new domain that 

still requires experiments and studies to answer to several questions. Our study is not an 

exception, and we identified two ideas to expand the current study. The identified ideas 

are related to CRISPR method. First one is related to resistant alleles in CRISPR system 

that we indicated as w’. As we explained, resistant allele, w’, is crashed form of w allele 

at which Cas9 enzyme has tried to cleave it to copy the g allele, but it could not succeed. 

Hence, w is cleaved, but cannot get repaired. In this case w’ is still a wild-type allele. 

However, it cannot be utilized to spread g allele anymore. Presence of resistance allele 

impacts the effectiveness of CRISPR mechanism regarding the spread of anti-pathogen 

gene. Hence, a fitness cost can be allocated to resistance alleles. However, it needs to be 

well-studied to identify a desired fitness cost for heterozygotes and homozygous resistant 

genotypes. The second idea is an answer to this question: How far mosquitoes can forward 
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in CRISPR mechanism before completely being removed from the population? This idea 

requires a spatial modeling which is a combination of continues and discrete spatial model 

and can provide an answer to that question. 
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CHAPTER VI 

CONTRIBUTIONS 

The thesis research made a significant contribution to the application of gene drive 

systems modeling to remove the vector-borne disease. 

Previous research has sought to understand the mechanism of gene drive systems 

to replace the vulnerable wild-type population with the transgenic pathogen-resistance 

population. Our study offers an application of biodegradable anti-pathogen gene to replace 

a vulnerable wild-type population with wild-type pathogen-resistance population by 

modeling the spread of an engineered biodegradable anti-pathogen gene through different 

gene drive methods. Our research reported that biodegradability goal is achievable and 

can be utilized through gene drive systems such as inundative release mechanism, under-

dominance, a modified form of MEDEA, and CRISPR methods. However, it is not 

applicable through driving-Y since it completely collapses total population, and CRISPR 

method needs more study and improvement regarding the presence of resistance alleles. 

To the best of our knowledge, there are no other studies on the self-elimination property 

of anti-pathogen gene. Thus, the implications of our model results provide valuable and 

insightful information for the development of engineered biodegradable anti-pathogen 

gene. 
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