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ABSTRACT 

 

 

The rapid emergence of drug-resistant Mycobacterium tuberculosis (Mtb) coupled 

to the high incidence of HIV-Mtb coinfection is of global concern. Consequently, there is 

a worldwide necessity to develop new drugs with novel mechanisms of action and new 

molecular targets. In this dissertation, we describe a crystallographic and high-throughput 

screening (HTS) approach towards the identification and structural characterization of 

inhibitors against Mycobacterium tuberculosis adenosine kinase (MtbAdoK) and biotin 

protein ligase (MtbBpL). Parallel studies were also performed to evaluate the in vitro 

potency and antimycobacterial profile of the compounds. Finally, X-ray crystallography 

was employed to investigate the structural basis of inhibition and to perform structure-

guided drug design. 

In the first study, we focused on the biochemical, chemical synthesis and structural 

characterization of adenosine analogs as inhibitors of MtbAdoK. Here, we adopted a 

bottom-up structural approach towards the discovery, design, and synthesis of a series of 

compounds that displayed inhibitory constants ranging from 4.3-121.0 nM against the 

enzyme. Two of these compounds exhibited low micromolar activity against Mtb with 

50.0 % minimum inhibitory concentrations of 1.7 and 4.0 µM. Our selectivity studies 

showed that the compounds display a higher degree of specificity of MtbAdoK when 

compared to the human enzyme (hAdoK). Finally, our crystallographic studies revealed 
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the presence of a potentially therapeutically relevant cavity that is unique to the MtbAdoK 

homodimer. 

Next, we describe the discovery, biochemical and structural characterization of 

novel dihydro spiro compounds as inhibitors of MtbAdoK. Here, we utilized an HTS 

approach for the identification of the aforementioned compounds. Our enzymatic assays 

showed that the compounds are selective inhibitors of MtbAdoK when compared hAdoK. 

In addition, our antimycobacterial studies revealed that the compounds possess nanomolar 

potency against Mtb (500.0-810.0 nM). Finally, the crystallographic studies revealed that 

the inhibitors bind in a previously unknown pocket within the enzyme. 

Lastly, we explore the potential of MtbBpL as a drug target. Following 

identification of the compounds via HTS screening, we demonstrate that the inhibitors 

lacked any activity against human dermal fibroblast but possess antimycobacterial 

properties. Finally, steady-state kinetic experiments revealed that the compounds are 

noncompetitive inhibitors of the enzyme suggesting the presence of a previously 

uncharacterized allosteric site. 
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1. INTRODUCTION  

 

 

1.1 History of tuberculosis 

It has been hypothesized that the Mycobacterium genus itself is over 150 million 

years old. This is based on the fact that the current distribution and specific habitat 

requirements of Mycobacterium ulcerans were last contiguous when they formed part of 

the supercontinent of Gondwana.1 Tuberculosis (TB) is also an ancient disease that has 

survived throughout millennia. Genetic evidence suggests that an early ancestor of 

Mycobacterium tuberculosis (Mtb) inflicted early hominids of East Africa and around 

20,000-15,000 years ago a common ancestor of Mtb appeared.2-3 The first written 

description of tb dates back to 3,300 and 2,300 years ago from Indian and Chinese 

documents.4-5 Although there is no written evidence of tb in ancient Egyptian papyri, 

evidence for Pott’s disease, also known as tb of the bone; has been observed in Egyptian 

mummies dating back to 2,400 BC.6 Other ancient references to tb are found in Ancient 

Greece where pulmonary tb was known as “phthisis” (Greek for wasting away). During 

this time, Hippocrates described the disease accurately by defining its symptoms and 

characteristic lung lesions, Isocrates made early observations proposing that tb was an 

infectious disease while Aristotle suggested the contagious nature of it.7  

 In the Middle Ages, a new form of tb referred as “scrofula” which affected the 

cervical lymph nodes was described.8 Along the same time, French surgeon Guy de 

Chauliac (1363), proposed a healing surgical intervention for scrofula which involved 
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removal of the affected lymph nodes.9 In the 12th century, England and France referred to 

the disease as “Kings Evil,” thought to be only cured by newly crowned kings who were 

believed to have special healing powers.8 This practice of healing by the “King’s Touch” 

continued in England until 1714 and in France until 1826.8 In 1679, Franciscus Sylvius 

gave the exact anatomical and pathological description of the disease in his work “Opera 

Medica”.10 He describes the characteristic lung nodules as “tubercula” that progress into 

abscesses, cavities (ulcers) and empyema in lungs and other sites of tb inflicted patients.10 

The first observations describing the infectious nature of tb were made by Benjamin 

Marten in 1722 in his work “A new theory of Consumption.” He proposed that tb was 

“animaliculae or their seed…inimicable to our nature” and that can be transmitted by “a 

breath emits from his lungs…that may be caught by a sound person”. 11 During the 18th 

and 19th century, tb had become an epidemic with an annual mortality rate of 800 to 1,000 

people per 100,000 individuals.12 For this reason, tb was associated with many names 

including, “the robber of youth” due to the high mortality rate amongst young adults, 

“white plague” or “white death” given the characteristic extreme anemic pallor observed 

in afflicted individuals and the “Captain of All These Men of Death” because of its 

epidemic dispersion in North America and Europe.12-15 In 1834 the German naturalist and 

physician Johann Lukas Schönlein used the term “tuberculosis” in relation to the 

characteristic tubercles while in 1853 Hermann Brehmer used the word “tuberculosis” in 

his doctoral dissertation to describe pulmonary tb.16 The first formal demonstration that tb 

was contagious was made by Jean-Antoine Villemin in 1865 in his work “Cause et nature 

de la tuberculose: son inoculation de l’homme au lapin”.17-18 Here, he describes the 
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successful transfer of pus and fluid from human and bovine lesions to rabbits that later 

developed tb. Almost twenty years later in 1882, Robert Koch astonished the world by 

successfully isolating and culturing the tubercle bacillus. Cultured bacteria, from cases of 

pulmonary, extrapulmonary and meningeal tubercular disease were utilized to inoculate 

and infect animals. The findings from these studies coupled with his previous work with 

anthrax lead to the formation of a general set of postulates referred as Koch’s Postulates. 

These postulates state that I) the microorganism must be present in all organisms inflicted 

by the disease and not in healthy subject, II)  the microorganism must be isolated from a 

host and grown in pure culture, III) the cultured microorganism must cause the disease 

when inoculated into a healthy organism and IV) the microorganism must be isolated from 

the inoculated host and identified as the original causative agent when compared to the 

original diseased host. Koch utilized his technique to unequivocally prove that all forms 

of human and animal tuberculosis were many manifestations of the same bacterial entity. 

Koch delivered his findings on March 24th
, 1882 during a lecture at the Charité Hospital 

in Berlin under the title “Die Ätiologie der Tuberkulose, “The Etiology of Tuberculosis.” 

For his seminal work, he was awarded the Nobel Prize in Physiology or Medicine in 

1905.12, 17, 19-21 

Mtb is an obligate human pathogen. The Mtb complex, comprised of a genetically 

related group of Mycobacterium species are known to cause tb in humans. These include 

Mycobacterium tuberculosis, Mycobacterium africanum, Mycobacterium orygis, 

Mycobacterium bovis, Mycobacterium canetti, Mycobacterium microti, Mycobacterium 

caprae, Mycobacterium suricattae, Mycobacterium pinnipedii and Mycobacterium 
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mungi.22-23 The physiology of Mtb is aerobic, propagating vigorously in highly 

oxygenated tissues such as the lungs. Once Mtb-bearing particles are inhaled, the bacilli 

invade the pulmonary alveoli where its phagocytized by alveolar macrophages. Through 

the action of the initial immune response, Mtb is encapsulated in pulmonary granulomas 

(tubercula). Granulomas are predominantly composed of a mass of dead and live immune 

cells that prevent Mtb from spreading. Here, the dormant Mtb can survive for many years 

(latent tb). In immunocompromised individuals, and through mechanisms not clearly 

understood, a necrotic expansion and liquefaction of the granuloma can occur allowing a 

large number of bacteria to proliferate vigorously. The pathophysiological processes 

aforementioned, lead to the characteristic symptoms of fever, weakness, cough, chest pain, 

and bloody sputum (Figure 1.1).24-29 
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Figure 1.1: Tuberculosis transmission cycle. Reprinted with permission.29 

 

 

1.2 Global burden of tuberculosis 

 Tuberculosis is the leading cause of death worldwide due to a single infectious 

agent (Figure 1.2-1.3).29 As of 2015, 10.4 million people, including an estimate of 1 

million children; fell ill to the disease and approximately 1.4 million of these infected 

individuals died from it. Worldwide, around 2 billion people are living with latent 

tuberculosis. If untreated, around 5-10 % of these infected people will develop active tb 

sometime during their lifetime. This problem is only exacerbated by the rapid emergence 
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of multidrug-resistant (MDR), extensively drug-resistant (XDR) and totally drug-resistant 

(TDR) Mtb coupled to the high incidence of HIV-Mtb coinfection.30  

 

 

 

Figure 1.2: Tuberculosis is the leading cause of death due to a single infectious agent in 

recorded history. Tb is responsible for over one billion deaths in the past 200 years. 

Reprinted with permission.29 
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Figure 1.3: Estimated TB incidence rates, 2015. Reprinted with permission.30 

 

 

1.2.1 Rise of drug-resistant Mtb  

The increase in Mtb drug resistance can be traced back to the 1940s, right after the 

discovery of streptomycin in 1943.11 Although many patients benefited from a 

streptomycin-based anti-tb treatment, in 1948 streptomycin resistant strains were isolated 

from patients afflicted by pulmonary tb.31 Fortunately, in 1948 as well, two newly 

discovered anti-tb agents, thioacetazone, and para-aminosalicylic acid, were launched. 

When either of these drugs was co-administered with streptomycin, the acquired resistance 

of Mtb went down with a concomitant rise in patient healing rates.32 The 1950s and 1960s 

was a golden era for anti-tb drugs. In 1951 isoniazid was added to the regimen, this was 

followed by the addition of pyrazinamide (1952), ethionamide (1956), ethambutol (1961) 
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and rifampin (1966).33 In addition to isoniazid, rifampin was another drug that 

revolutionized tb treatment due to its ease of administration and high level of efficacy.34 

However, as in the case of the drugs above, resistance to rifampin came shortly after its 

discovery.35 Just like streptomycin, when isoniazid was utilized to treat tb as a standalone 

drug; rapid onset of resistance to isoniazid occurred. However, if it was coadministered 

with streptomycin or para-aminosalicylic acid, suppression of resistance was observed.36 

These early observational experiments laid the foundation to the multidrug treatment 

regimen utilized for tb and other complex diseases such as cancer and HIV.  

Unlike other bacteria which could acquire resistance through horizontal gene 

transfer, Mtb drug resistance is almost entirely due to chromosomal mutations; many of 

which are single-nucleotide polymorphisms (SNPs), gene insertions and rarely gene 

deletions.37 Another key feature of Mtb is the low mutation and replication rates when 

compared to other bacteria. However, several critical experiments have suggested that in 

vivo, Mtb enters a hypermutable state leading to a rapid rise in drug resistance. For 

example, a study that employed highly sensitive whole-genome sequencing in sputum 

samples from three patients undergoing anti-tb treatment; identified that there was a high 

degree of mutation diversity in the samples. The group identified between 8 and 41 SNPs 

that occurred during active treatment and as many as 34 unique SNPs from a single 

sample.38  

One of the possible reasons behind the observed hypermutability might be due to 

transient mutagenesis. This refers to a temporary rise in mutation rate which can be 

attributed to several factors including mistranslation of proteins like those involved in 
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DNA replication and repair, transcriptional mutagenesis and upregulation of error-prone 

DNA polymerases.39-40 Transcriptional mutagenesis arises when RNA polymerases 

bypass DNA lesions leading to the incorrect insertions of nucleotides into the mRNA. If 

the resultant mutant is viable, then this could select for the fixation of the mutation and 

give rise to a drug-resistant Mtb population. Alternatively, the mRNA that contains the 

error might code for a protein involved in DNA replication or repair, leading to a mutator 

phenotype.41 Mistranslation occurs when there is an error that affects the translation of 

mRNA into protein. One possible mechanism that might yield such an event could be the 

mischarging of tRNAs, which can occur if the tRNA gene itself is mutated. Although there 

is little to no data regarding mistranslation-led hypermutation in Mtb, this phenomenon 

has been noted to be a mechanism of elevated mutation rates in E. coli, C. albicans, and 

A. baylyi.42-43 Recently, a non-homologous end joining system was identified in 

Mycobacterium smegmatis. This system plays a key role in DNA repair, thus being a 

potential transient mutator system if up-regulated under certain conditions.43 

Antibiotics can also act as mutagens. It has been shown that at sub-inhibitory 

concentrations, antibiotics can serve as the driving force behind the rise of resistance for 

many bacteria.44 Mtb might encounter such a scenario when the patient has a poor 

compliance with the regimen or when Mtb is deep within pulmonary cavities, solid 

caseous material, and empyema pus.45 Another source of suboptimal concentrations is 

when the patient who might have tb is being treated for another infection. For example, it 

has been noted that sub-lethal concentrations of the fluoroquinolone ciprofloxacin, which 

invokes the mycobacterial SOS response, lead to elevated mutation rates in several 
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mycobacterial species in vitro.46 Indeed, genome-wide studies have shown that 

fluoroquinolones upregulate the SOS response in Mtb, whereas inhibitors of translation 

(i.e., ribosome inhibitors) do not.47 Another general mechanism that has been noted to 

induce the SOS response and the non-homologous end joining system is the generation of 

reactive oxygen species (ROS). Evidence suggests that the production of ROS is a 

common denominator amongst many antibiotic classes such as fluoroquinolones, 

aminoglycosides, and β-lactams.43 Moreover, isoniazid has also been implicated in the 

generation of ROS and studies have observed that following its administration there is a 

direct upregulation of the SOS response and the non-homologous end joining system. It 

should be noted that a complete systematic and empirical approach has not been 

adequately performed to establish the possible link between sub-lethal concentrations of 

antimycobacterial drugs and Mtb mutation rate.  

1.2.2 Multidrug-resistant and extensively drug-resistant Mtb 

Retrospectively, one of the earliest documented cases of polydrug-resistant Mtb 

(i.e., multidrug-resistant) can be traced back to a school outbreak caused by an isoniazid, 

streptomycin and para-aminosalicylic acid resistant strain during the 1960s and 1970s.48 

The World Health Organization defines MDR-Mtb as bacilli that are resistant to isoniazid 

and rifampicin, the most powerful anti-tuberculosis drugs.30, 49 Historically, data on drug-

resistant Mtb have been scarce, mainly limited by the lack of reliable sources from the 

countries of high tb incidence and prevalence. In 1994, the WHO and the International 

Union Against Tuberculosis and Lung Disease (IUATLD) pioneered a global surveillance 

program to standardize data collection methods.30 In fact, this is still to date the world’s 
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oldest and largest initiative regarding the monitoring of antimicrobial resistance. 

Worldwide in 2015, an estimated 480,000 individuals were diagnosed with MDR-Mtb, 

and around 190,000 of them died from the disease.30 The percentage of MDR cases is 

higher in Central Asian and Eastern European countries. In 2015, China, Russia, and India 

showed the largest amount of MDR-Mtb cases, accounting for over 50.0 % of all the 

reported cases worldwide (Figure 1.4). The burden of MDR-Mtb has been relatively 

constant from 2008 to 2013. However, from 2009-2015, there has been a rapid increase in 

rifampicin-resistant (RR-Mtb) in several countries including India, Pakistan, China, 

Bangladesh, South Africa, Nigeria, Indonesia, and the Democratic Republic of Congo.30  

 

 

 
Figure 1.4: Percentage of new TB cases with MDR-Mtb, 2015. Reprinted with 

permission.30 
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The first time the “XDR-tb” term was utilized was in March 2006 in a joint report 

by the CDC and the WHO.50 Recently in 2015, a pre-XDR strain of Mtb was identified to 

be the causative agent of an outbreak that occurred in Argentina around 1979. Thereby 

representing the first documented transmission of XDR-Mtb.51 XDR-Mtb is a form of 

MDR-Mtb with additional resistance to other drugs including fluoroquinolones and at 

least one of the three injectable second-line drugs namely kanamycin, capreomycin, and 

amikacin. By the end of 2015, XDR-Mtb was reported in 117 countries worldwide 

(Figure-1.5).30 In addition, 36.0 % of the reported MDR/RR-Mtb patients in 2015 had a 

positive drug susceptibility (DST) testing results to fluoroquinolones and second-line 

injectable agents. Thus indicating that these MDR/RR-Mtb cases were misclassified cases 

of XDR-Mtb.30 

 

 

 

Figure 1.5: Number of patients with laboratory-confirmed XDR-Mtb, 2015. Reprinted 

with permission.30 



 

13 

 

1.2.3 Totally drug-resistant Mtb 

 Totally drug-resistant Mtb (TDR-Mtb), refers to Mtb strains that display in vitro 

resistance to all known anti-tb drugs.52 TDR-Mtb was first reported in 2007, detailing two 

cases that occurred in Italy in 2003. The cases were both related to two young Italian 

women that were treated by several-first line, second-line and “add-on” drugs (see section 

1.3) over the course of 2 years.53 Following their death, DST was performed on the Mtb 

strains isolated from the patients and yielded positive results to all the drugs tested.53 Since 

then, TDR-Mtb cases have also been reported in Iran, India and South Africa.53-57 

Officially, TDR-Mtb has not been recognized by the WHO. Only the MDR and 

XDR Mtb strains have been thoroughly studied and a consensus regarding data gathering, 

quantification and reproducibility have been well established. Data concerning the 

reliability and reproducibility of DST for second-line drugs are either non-existent or 

extremely limited. Therefore, the WHO treats the reported “TDR-Mtb” cases as XDR-

Mtb.58 

1.3 Tuberculosis control and treatment: first-line, second-line, and add-on drugs 

Based on historical data as well as scientific literature, the single most effective 

way to treat drug-resistant bacteria is through drug-combination approaches.59-61 Drug 

combination strategies are almost entirely utilized for the treatment of drug-resistant 

bacteria. Even in the case of drug-susceptible Mtb, the bacilli are treated with a 

combination of at least four drugs (see section 1.3.1). The ongoing rise of drug-resistant 

bacteria, especially Gram-negative bacteria, is shifting the paradigm of monotherapy to 

an entirely drug-combination approach.59 Regardless of the drug combination cocktail, the 
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strategies behind the therapy can be divided into three categories based on the drug 

target(s), I) inhibition of targets in different pathways, II) inhibition of various targets in 

the same pathway and III) inhibition of the same target via different mechanisms.62 Drugs 

that act on several unique targets, exemplified by the treatment of all forms of Mtb, has 

been the most productive and fruitful therapeutic approach for the treatment of drug-

resistant bacteria.  

 Often a combination of drugs with other molecules (adjuvants) that by themselves 

do not have bactericidal properties have resulted in favorable outcomes for the treatment 

of drug-resistant bacteria. The classical example of an antibiotic-adjuvant combination is 

Augmentin, which combines a β-lactam inhibitor (amoxicillin) with a β-lactamase 

inhibitor (clavulanic acid). Alternatively, molecules that act upon drug-efflux pumps can 

maintain the therapeutic concentration of the drug(s) optimal for the desired effect. Such 

is the case of reserpine which is utilized concomitantly with ciprofloxacin and serves to 

suppress resistance in S. aureus and S. pneumoniae.62 Another example is the co-

administration of the non-steroidal anti-inflammatory (NSAID) celecoxib which has been 

noted to enhance the bactericidal activity of several antibiotics including chloramphenicol, 

ampicillin, ciprofloxacin, and kanamycin.63 Targeting different macromolecules in the 

same pathway has also been utilized as an approach in the treatment against drug-resistant 

bacteria. Although this represents a less diversified approach, if a carefully selected 

druggable pathway is chosen then it can prove to be a highly effective strategy. An 

essential aspect of a potential pathway is that it must be required for the pathogen’s 

survival. In addition, said pathway must be non-redundant the reason being that pathway 
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redundancy will potentially lead to the rise of resistance.64 An example of this strategy is 

the targeting of cell wall biosynthetic pathways by isoniazid, ethambutol, thioacetazone, 

and cycloserine. Finally, drug combinations that target the same macromolecule have also 

been utilized. This is typically employed on multidomain or large biological machinery 

such as the proteasome and ribosome. An example of this is the utilization of Synercid, a 

semi-synthetic dual-drug combination that binds in distinct but adjacent sites of the 50S 

ribosome.64 Ultimately the primary advantage drug a combination approach is that it can 

extend the lifetime of a drug. That is, the likelihood of an organism to develop resistant to 

a cocktail of drugs is several orders of magnitude less than that of a single drug treatment.43 

1.3.1 Drug-susceptible Mtb treatment: first-line drugs 

The recommended treatment for drug-susceptible Mtb requires a combination of 

several drugs administered over a period of 6 months. In 2015, the total cost regarding the 

treatment for drug-susceptible Mtb was around $18,000.65-66 According to the latest 

guidelines by the WHO and the CDC, the regimen consists of an intensive phase of 2 

months of rifampicin, isoniazid, pyrazinamide, and ethambutol. This is then followed by 

another period lasting four months of isoniazid and rifampicin. In previous regimens, 

streptomycin and thioacetazone were also included as part of the first-line course. 

However, the WHO recommends replacement by ethambutol due to the severe 

cytotoxicity of the drugs (Table 1.1).49, 67-69 
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Table 1.1: Current first-line antimycobacterial drugs.49 
 

Compound 

 

Structure 

Gene(s) 

commonly 

associated with 

rise of resistance 

 

Role of gene product 

 

 

 

isoniazid 

 

 

katG 

 

inhA 

 

 

 

catalase/peroxidase 

 

enoyl reductase 

 

 

 

 

 

rifampicin 

 

 

 

 

rpoB 

 

 

 

 

 

 

β-subunit of RNA 

polymerase 

 

 

 

pyrazinamide 

 

 

 

pncA 

 

 

pyrazinamidase 

 

 

ethambutol 

 

 

 

embB 

 

 

arabinosyl transferase 

 

 

 

 

streptomycin 

 
 

 

rpsL 

 

 

 

rrs 

 

 

gidB 

 

 

 

S12 ribosomal 

protein 

 

 

16S RNA 

 

 

7-methylguanosin 

methyltransferase 
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1.3.1.1 Isoniazid 

Isoniazid (INH) was originally synthesized in 1912 but introduced as an 

antimycobaterial in 1951. Isoniazid’s structure is simple, containing a pyridine ring with 

a hydrazide group; both moieties being essential for its bactericidal activity.70 Despite 

INH’s simple structure, the mode of action of the molecule is highly complex and to some 

extent, not completely understood.70 When administered, the drug passively diffuses 

through the cell wall and selectively kills actively growing Mtb. Once inside the cell, INH 

is activated by the catalase/peroxidase encoded by the katG gene (Figure 1.6). In Mtb, the 

role of KatG is to protect the bacterium against the reactive oxygen species and reactive 

nitrogen species that are utilized by the human phagosome as a way to control infection.71 

 

 

 

Figure 1.6: Activation of isoniazid by KatG. 
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Resistance to INH is complex and several genes have been associated with its 

resistance including inhA, ahpC, ndh, kasA and katG. However, the most common and 

prevalent mutations are those that occur in the katG and inhA genes. There are over one 

hundred katG-associated mutations that have been reported to be related to isoniazid 

resistance.72 Nonetheless, the most common mutation is the S315T mutation in the katG 

gene. This results in a highly deficient INH product that lacks the formation of the INH-

NAD adduct which is directly related to the activity of the compound (Figure 1.7).73 

 

 

 

Figure 1.7: Isoniazid-NAD adduct. 

 

 

 In vitro studies have shown that the S315T mutant had a 6-fold reduction in INH 

metabolizing activity.74 In addition, crystallographic and molecular models have 

suggested that the S315T, a residue located at the entrance of the substrate’s access 

channel, might change the binding site of the hydrazide moiety or that it might alter the 

electron transfer to the heme moiety of KatG (Figure 1.8).75  
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Figure 1.8: Mycobacterium tuberculosis KatG active site. Serine 315 is located at the 

entrance of the substrate’s access channel. Active site heme group and serine 315 

(magenta) shown as sticks (PDB ID 2CCA).  

 

 

The enoyl reductase (InhA) encoded by the gene inhA is a member of the type 2 

fatty acid biosynthesis (FASII) pathway in Mtb. The enzyme catalyzes the NADH-

dependent reduction of the trans-2-enoyl-acyl carrier protein which is an essential step in 

mycolic acid biosynthesis.73 Mutations in the inhA gene not only confers resistance to 

isoniazid but also to the structurally similar second-line drug ethionamide.70 INH inhibits 

InhA via the activated isonicotinyl radical and through the formation of a covalent adduct 

which results in the ternary complex InhA-isonicotinyl-NADH (Figure 1.9). Genetic, 

crystallographic and biochemical studies have shown that a mutation in the 94th codon of 

the inhA gene results in a single point mutation from serine to alanine (S94A). In addition, 
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it has been shown that this single mutation was sufficient to confer clinically relevant 

resistance to INH bactericidal activity; suggesting that InhA might be isoniazid’s true 

target. Biochemical experiments have shown that the S94A substitution was 17X more 

resistant to inhibition by the INH-NAD adduct (IC50 ~ 323 nM) when compared to WT 

(IC50 ~ 19 nM). Further crystallographic studies showed that the resistance was primarily 

due to the decrease in binding of the isoniazid-NAD adduct which was attributed to the 

displacement of several ordered water molecules that disrupted H-bonding interactions 

between the protein and the adduct.76 

 

 

 

Figure 1.9: Crystal structure of Mycobacterium tuberculosis InhA bound to the isoniazid-

NAD adduct (PDB ID 2NV6). 
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1.3.1.2 Rifampicin 

 Rifampicin (RIF) is a semisynthetic lipophilic ansamycin derived from the natural 

compound rifamycin and was introduced as an antimycobacterial drug in 1972.77 The drug 

displays early bactericidal activity against actively growing Mtb as well as late sterilizing 

activity on semi-dormant bacilli. The recognition of the late semi-dormant activity and the 

addition of pyrazinamide (see section 1.3.1.3) has allowed the treatment of drug-

susceptible Mtb to decrease from one year to six months.78 Rifampicin inhibits 

mycobacterial transcription by targeting the DNA-dependent RNA polymerase (RNAP).79 

Here, the drug binds near the DNA/RNA channel thereby physically blocking the 

elongation of the growing mRNA chain after 2-3 bases have been polymerized.80  

 Resistance to rifampicin has been mapped to three distinct loci namely RIF-cluster 

I (codons 512-534), RIF-cluster II (codons 563-574) and RIF-cluster III (codons 563-574) 

of the RNA polymerase.77 Over 96.0 % of Mtb clinical isolates that display resistance to 

rifampicin have mutations in the so-called “hot-spot region” spanning 81 base pairs. This 

region is also known as the rifampicin resistance-determining region (RRDR) and is 

located in RIF-cluster I.81 Most commonly associated mutations are those that yield single 

amino acid substitutions and rarely deletions or insertions. Most predominant mutations 

within the Mtb genome occurs at codons 440, 445, 450 and 452 corresponding to codons 

521, 526, 531 and 533 in E.coli, respectively. Most notably are substitutions at codons 526 

and 531 (445 and 450 in Mtb) which are generally associated with a high degree of 

resistance to rifampicin. In contrast, substitutions at positions 514 or 533 (433 or 452 in 

Mtb) results in a lower-degree of resistance (Figure 1.10).77 In general, it has been 
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observed that there is an unequivocal correlation between the amino acid substitutions and 

the bactericidal activity of rifampicin which are thought to result in conformational 

changes of the enzyme leading to unfavorable interactions with the drug. 

 

 

 

Figure 1.10: Frequently associated aminoacid substitutions at the RRDR region of RpoB 

that confer rifampicin resistance. AA = aminoacid, CP = codon position. Reprinted with 

permission.77 

 

 

The crystal structure of Mycobacterium tuberculosis RNA polymerase in complex 

with rifampicin and several short-length nucleotides was crystallized recently to 

resolutions ranging from 3.8-4.4 Å.82 The crystal structure showed that rifampicin makes 

direct interactions with the residues that are most frequently associated with clinically 

relevant rifampicin resistance. Indeed, the crystal structure also confirmed that rifampicin 

main mechanism of inhibition is mediated via direct steric occlusion by physically 

blocking further chain extension (Figure 1.11).82 
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Figure 1.11: Rifampicin bound to the active site of Mycobacterium tuberculosis RNA 

polymerase. Template strand shown in red, 3-nucelotide RNA shown in blue, rifampicin 

shown in magenta and clinically relevant residues that when mutated confer rifampicin 

resistance are colored orange (PDB ID 5UHC).  

 

 

1.3.1.3 Pyrazinamide 

 Pyrazinamide (PZA) is nicotinamide analog that was initially synthesized in 1936 

but utilized as an antimycobacterial drug in 1952.83 The discovery of PZA was 

serendipitous, and it was based on the observation that nicotinamide analogs displayed 
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activity against mycobacteria in animal models. In 1956, it was shown that PZA had a 

high degree of sterilizing activity when it was utilized alongside isoniazid in infected 

mouse models.84 Moreover, it was later found that PZA was almost as effective as 

rifampicin in sterilizing semi-dormant Mtb isolates. It was also observed that the tb 

treatment could be shortened from one year to 9 months if rifampicin or pyrazinamide 

were used, and from one year to six months if both drugs were added to the regimen 

alongside isoniazid and ethambutol.36, 83 Pyrazinamide’s mechanism of action has puzzled 

scientists ever since its clinical use. One of the most unusual characteristics of 

pyrazinamide is that it has little to no activity against actively growing bacteria, but it is 

highly efficient at clearing dormant bacilli.85 Although this drug has been used for the last 

70 years, the therapeutic mode of action of PZA is the least understood of all anti-tb 

drugs.86 

 Like isoniazid, pyrazinamide is a prodrug, and it enters the bacilli through passive 

diffusion.87 The current working model of PZA’s mechanism of action is that once the 

drug enters Mtb, it is enzymatically converted to pyrazinoic acid (POA) by the 

pyrazinamidase/nicotinamidase (PncA) encoded by the pncA gene (Figure 1.12).  
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Figure 1.12: Reaction catalyzed by PncA. 

 

 

POA is then expelled out of the cell through passive diffusion or via an inefficient 

efflux pump. Once outside the cell, and under acidic conditions, pyrazinoic acid becomes 

protonated (HPOA) and reabsorbed. Reabsorption of protonated pyrazinoic acid is thought 

to be more efficient than the excretion of POA which in turn leads to a time-dependent 

accumulation of HPOA under acidic conditions. The accumulation of protons inside the 

cell, brought by HPOA, causes cytoplasmic acidification which can act as a general and 

non-specific mechanism of inhibition of many enzymes. In addition, the accumulation of 

intracellular POA is thought to de-energize the membrane potential causing a collapse of 

the proton motive force.88-89 

Mutations in the pncA gene are frequently associated with the main mechanism of 

pyrazinamide resistance. In addition, it has been shown that pyrazinamide-resistant 

clinical isolates are deficient in PncA activity.90 The mutations in PncA are diverse and 

spread along the entirety of the gene. These are commonly missense mutations leading to 

residue substitutions or nonsense mutations in the promoter region of the pncA gene.91 

Despite the high degree of variation, it has been noted that there is a high-level clustering 



 

26 

 

of mutations in three regions namely residues 3-17, 61-85 and 132-142. These have been 

observed to correlate with regions that contain the catalytic sites and metal binding sites 

of the MtbPncA enzyme (Figure 1.13).91 

 

 

 

Figure 1.13: Mycobacterium tuberculosis PncA. a) Region corresponding to residues 3-

17 is colored orange, region corresponding to residues 61-85 is colored red and region 

corresponding to residues 132-142 is colored purple (PDB ID 3PL1).  
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1.3.1.4 Ethambutol 

 Ethambutol (EMB) was introduced as an antimycobacterial drug in 1966, and 

alongside rifampicin, isoniazid, and pyrazinamide complete the current first-line anti-tb 

drug regimen.67 EMB acts as a bacteriostatic agent that inhibits the machinery involved in 

the biosynthesis of the arabinogalactan component of the Mtb cell wall.92 Within Mtb, the 

10 kbp operon containing the genes embCAB code for an arabinosyl transferase. Inhibition 

of the enzyme leads to the accumulation of the intermediate D-arabiofuranosyl-P-

decaprenol.93  

 Laboratory and epidemiological evidence suggest that mutations in the embCAB 

operon are the leading cause of ethambutol resistance in Mtb.94 Specifically, the most 

recognized mechanism of ethambutol-resistance are mutations that occur in codon 306 of 

the embB gene. A German study utilizing 34 ethambutol-resistant strains identified that 

greater than 10.0 % of the Mtb resistant strains contained mutations in the embB306 

codon.95 In addition, an Indian study utilizing 37 isolates from different parts of India, 

identified that 30 isolates were EMB resistant with the most common mutation occurring 

at codon 306.96 Besides the embB306 codon mutation, it has been shown that mutations in 

codons 406 and 497 of embB also confer ethambutol resistance, collectively accounting 

for ~ 60 % of clinically relevant ethambutol resistance. However, studies have shown that 

the mutations in the codons mentioned above confer low-level EMB resistance with MIC 

ranges between 6 and 14 µg/mL, inconsistent with the high-level resistance observed in 

other clinically relevant isolates.97 Follow up resistant mutant isolation experiments by the 

same group identified that mutations in the decaprenylphosphoryl-B-D-arabinose (DPA) 
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biosynthetic and utilization pathway genes including Rv3806c, Rv3792, embB and embC 

where accumulative and produced a wide range of EMB MIC’s. For example, the authors 

observed that mutations in Rv3806c increased the production of DPA which resulted in a 

MIC increase of 2-4 µg/mL in WT Mtb and 16-32 µg/mL in an embB306 mutant. In 

addition, they observed that mutations in the Rv3792 increased the downstream expression 

of embC which also resulted in an increase of MIC. Taken together the studies suggest 

that Mtb might accumulate a pre-resistant state characterized by EMB MIC’s below the 

threshold of drug resistance and that the high-level EMB resistance might occur in a 

stepwise manner.98 

1.3.1.5 Streptomycin 

Although streptomycin is not part of the current first-line anti-tb regimen, it was 

the first drug to be successfully used to treat tb. Streptomycin is an aminocyclitol glycoside 

originally isolated in 1943 from the soil microorganism Streptomyces griseus. By 1948, 

streptomycin resistant isolates were identified due to the monotherapeutic administration 

of the drug.81 

Its mode of action is attributed to the inhibition of the initiation step in protein 

translation. Specifically, by acting on the 30S subunit of the ribosome with the ribosomal 

S12 protein and the 16S rRNA which are encoded by the rpsL and rrs genes, 

respectively.99 In about 60-70 % of clinically relevant isolates, the aforementioned 

mutations are observed. The most common mutation that produces a high-level of 

streptomycin resistance is the K43R mutation located in the S12 ribosomal protein. On the 

other hand, the most common mutation that occurs in the rrs gene is located around 
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nucleotides 530 and 915.99 Another mutation that has been associated with low-level 

streptomycin resistance, that accounts for ~ 27 % streptomycin resistant isolates, occurs 

in the gidB gene. The gene encodes a putative 7-methylguanosine methyltransferase that 

is specific to the 16S rRNA.100 

1.3.2 MDR, XDR and TDR Mtb treatment: second-line and add-on drugs 

MDR-Mtb and XDR-Mtb have an estimated mortality rate of 40.0 and 60.0 %, 

respectively.30 Treatment of these drug-resistant strains can be very time-consuming and 

expensive. In the USA, the average costs for inpatient treatment can be as high as $81,000 

for MDR-Mtb and $285,000 for XDR-Mtb.65-66 Many factors influence the selection and 

formulation of therapy regarding drug-resistant Mtb. These include the presence of 

extrapulmonary-Mtb, HIV-Mtb coinfection, age, disease severity, history of usage of first-

line and second-line drugs and availability and accessibility to reliable DST.49, 101 As of 

2016, the updated recommendations by the WHO regarding the treatment of MDR-Mtb 

should consist of at least five drugs. The regimen must include at least four standard 

second-line drugs including one fluoroquinolone, one injectable agent and at least two of 

the following drugs: ethionamide or prothionamide, cycloserine or terizidone, linezolid, 

and clofazimine. Additional drugs (add-on drugs) that are not currently part of the core 

MDR-Mtb treatment may be employed when appropriate. These include pyrazinamide, 

ethambutol, high-dose isoniazid, bedaquiline, delamanid, para-aminosalicylic acid and 

thioacetazone (Table 1.2).49, 67-69 Although multidrug combination approaches have 

increased favorable outcomes, they have serious drawbacks. Mainly stemming from the 

high toxicity of the drugs, heavy pill uptake, lack of adherence by patients and at least 6-
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8 months of painful injections. In 2016, a shorter course of treatment for MDR-Mtb was 

standardized for patients with primary resistance.49 The short course consists of a 9-12 

month long regimen that is successful in ~ 90.0 % of cases. During the short course, 

prothionamide, kanamycin, and high-dose isoniazid are administered for 4-6 months. This 

is followed by the addition of moxifloxacin, clofazimine, pyrazinamide, and ethambutol 

given throughout the rest of the regimen. Eligibility to the short course mainly depends if 

the patient has or suspected to have resistance to any of the short course drugs (except 

isoniazid). Also, the patient must not have any prior exposure to the second-line drugs 

used during the short-course for more than one month. Otherwise, patients not eligible for 

the short course will have to adhere to the 20-month 5-drug standard regimen for MDR-

Mtb treatment.49, 102-103  

XDR-Mtb treatment regimens are constructed with similar guidelines when 

compared to the MDR-Mtb treatment principles and can last up to 30 months. Here, 

administration of four or more drugs is likely to be effective. A backbone of bedaquiline 

or delamanid are recommended in addition to linezolid, new generation fluoroquinolones 

and inclusion of add-on drugs such as para-aminosalicylic acid, high-dose isoniazid, 

pyrazinamide are also recommended (Table-1.2).68 
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Table 1.2: Current second-line antimycobacterial drugs.49 
Compound  Gene(s) commonly associated 

with rise of resistance 

Role of gene product 

moxifloxacin, levofloxacin gyrA, gyrB topoisomerase II (DNA gyrase) 

kanamycin, amikacin 

 

capreomycin 

rrs, eis 

 

 

tlyA 

16S RNA, promoter region of 

aminoglycoside 

acetyltransferase 

rRNA methyltransferase 

prothionamide, ethionamide ethA, inhA monooxygenase, enoyl-ACP-

reductase 

cycloserine, terizidone ddlA, alrA, cycA D-alanine:D-alanine ligase, 

alanine racemase, alanine 

permease 

linezolid rrl, rplC 23S rRNA, 50S L3 protein 

clofazimine Rv0678 transcriptional repressor of 

MmpL5 

bedaquiline atpE subunit of ATP synthase 

delamanid ddn deazaflavin-dependent 

nitroreductase 

 

 

para-aminosalycilic-acid 

thyA,  

folC,  

dfrA, 

ribD 

thymidylate synthase, 

folylpolyglutamate synthase, 

dihydrofolate reductase, 

probable riboflavin-specific 

deaminase 

thiacetazone hadAB, 

 

mmA4 

subunits of hydroxyacyl-ACP 

dehydratase, 

methyltransferase 

high-dose isoniazid see table 1.1 see table 1.1 

pyrazinamide see table 1.1 see table 1.1 

ethambutol see table 1.1 see table 1.1 

 

 

1.3.2.1 Moxifloxacin, levofloxacin 

Moxifloxacin and levofloxacin are third-generation fluoroquinolones currently 

utilized for the treatment of drug-resistant Mtb. (Figure 1.14).104 Third generation 

fluoroquinolones have a higher degree of activity against gram-positive organisms 

including penicillin-resistant S. pneumoniae, and other atypical pathogens such 

Chlamydia pneumoniae, Mycoplasma pneumoniae and Mtb.105 
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Figure 1.14: Chemical structures of third-generation fluoroquinolones moxifloxacin and 

levofloxacin. 

 

 

The mode of action of fluoroquinolones is to inhibit the type II topoisomerase and 

type IV topoisomerase. Both enzymes being involved in the control of DNA supercoiling 

and entanglement.106 Mtb only possess a type II topoisomerase (DNA gyrase) thereby 

being the only target of the fluoroquinolone antibiotics.107 DNA gyrase is a tetramer 

composed of two α-subunits and two β-subunits encoded by the gyrA and gyrB genes. 

Studies performed in M. smegmatis and Mtb showed that resistance to fluoroquinolones 

was mainly due to chromosomal mutations in the putative fluoroquinolone binding regions 

of gyrA or gyrB. The most prevalent mutations occurred at codons 90 (Ala90) and 94 

(Asp94) of the gyrA gene and to a lesser extent codon 74 (Ala74), 88 (Gly88) and 91 

(Ser91).108 

Cross-resistance to fluoroquinolones were thought to be expected since they are 

believed to bind in the same general region. Despite this, a group reported a Mtb strain 

with a mutation that confers resistance to moxifloxacin and gatifloxacin but retained 

activity to ofloxacin.109 Suggesting that fluoroquinolone resistance in Mtb might be much 
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more complex than initially thought. On the other hand, several bacterial species have 

shown that the main mechanism of fluoroquinolone resistance is mediated by efflux 

pumps .110 Several studies with Mtb suggest that efflux pumps might also play a role in 

fluoroquinolone resistance as well as other antimycobacterial drugs.110 

1.3.2.2 Kanamycin, capreomycin, amikacin 

Kanamycin, capreomycin, and amikacin are the injectable agents currently utilized 

as a second-line of defense against drug-resistant Mtb (Figure 1.15).  

 

 

           

Figure 1.15: Chemical structures of the second-line injectable drugs kanamycin, amikacin 

and capreomycin. 
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Figure 1.15: Continued 

 

 

Although kanamycin and amikacin are aminoglycosides and capreomycin is a 

cyclic peptide; they have the same mode of action. That is, they exert their inhibitory 

activity at the protein translation level. Kanamycin and amikacin inhibit protein translation 

by interacting with the 16S rRNA. The most prevalent mutation that confers resistance to 

the aforementioned aminoglycosides is located at codons 1400 and 1401 of the rrs gene. 

Mutations at these positions have been associated with high-level kanamycin and 

amikacin resistance.111 Cross-resistance between the two aminoglycosides is not absolute. 

That is, studies have shown that there are variable levels of resistance with each of the 

antibiotics suggesting the possibility of an alternative mode of resistance for different 

aminoglycosides.112 Along this line, a study that utilized 42 Mtb clinical isolates with 

kanamycin resistance, identified that up to 79.0 % of the isolates have mutations in the 

promoter region of the eis gene. Mutations in this gene caused overexpression of the 
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encoded aminoglycoside acetyltransferase conferring resistance to kanamycin but not 

amikacin.113 

Cyclic peptides such as capreomycin have been implicated to bind at the interface 

of the small and large subunits of the ribosome.114 The most common mutation related to 

cyclic peptide resistance occurs in the tlyA gene which encodes a rRNA methyltransferase 

that specifically methylates the 2’-oxygen of ribose in rRNA. Mutations in the TlyA 

enzyme lack methylation activity, suggesting that methylation of the drug might be 

necessary for its inhibitory activity.115 

1.3.2.3 Ethionamide, prothionamide 

 Just like isoniazid and pyrazinamide, ethionamide and prothionamide are 

prodrugs. Ethionamide and prothionamide are structurally similar derivatives of 

isonicotinic acid; the only difference is that the latter has an ethyl group and the former 

has a propyl group at the same position (Figure 1.16). 

 

 

                                           

Figure 1.16: Chemical structures of prodrugs ethionamide and prothionamide. 
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The critical role of these drugs is that they are active against KatG isoniazid-

resistant mutants. Activation of the drugs occurs through the action of the ethA encoded 

monooxygenase.116 Following activation and subsequent reaction with NADH yields an 

ethionamide or prothionamide-NAD adduct. The adduct then inhibits the NADH-

dependent InhA enzyme which in turn inhibit mycolic acid biosynthesis leading to 

mycobacterial cell death (Figure 1.17).117 The most common mutations that confer 

monoresistance to prothionamide or ethionamide occur in the ethA and inhA genes. 

Although variations in the genes mentioned above account for greater than 75.0 % of 

clinically relevant isolates, other mutations have been reported to occur in the regulatory 

region of EthA (ethR). To date, around 85 ethA mutations have been identified scattered 

along the entirety of the gene.118 Around 60.0 % of the mutations are missense resulting 

in single amino acid substitutions, other mutations are due to insertions, deletions or 

nonsense mutations. Unlike the canonical S315T mutation in KatG, which is present in 

over 94.0 % of clinically isolated resistance mutants, there is no prevalent mutation in the 

ethA gene. This might be due to the presence of other monooxygenase’s in Mtb that could 

take over when EthA activity is lost.119 
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Figure 1.17: Crystal structure of InhA bound to the ethionamide-NAD adduct (PDB ID 

2HI9).  

 

 

1.3.2.4 Cycloserine, terizidone 

 Cycloserine is a structural analog of D-alanine which is a component of the 

bacterial cell wall. Terizidone is a derivative of cycloserine and consists of two 

cycloserines flanking a central benzene core (Figure 1.18).120 
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Figure 1.18: Chemical structures of cycloserine and terizidone. 

 

 

The mechanism of inhibition of cycloserine and terizidone is mainly attributed to 

the inhibition of several enzymes. These include the D-alanine:D-alanine ligase (DdlA), 

the D-alanine racemase (Alr) enzyme which is involved in the interconversion of L-

alanine to D-alanine and the alanine permease CycA. The pharmacologically relevant 

target(s) and mechanism of resistance within Mtb are currently unknown. Despite this, 

preliminary studies with M. smegmatis have shown that overexpression of the AlrA 

racemase leads to resistance of cycloserine. In addition, studies in M. bovis revealed that 

the CycA permease confers a low-level resistance to cycloserine.121 

1.3.2.5 Linezolid 

 Linezolid is a synthetic oxazolidinone antibacterial originally utilized for the 

treatment of skin and respiratory tract infections.122 In addition, in vitro and in vivo studies 

have shown that the drug possesses antimycobacterial properties (Figure 1.19).123 
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Figure 1.19: Chemical structure of linezolid. 

 

 

Linezolid acts by inhibiting the early steps of protein synthesis through interactions 

with the 50S subunit of the ribosome.122 Resistance to the drug in Mtb is rare; however, a 

study performed with 210 MDR-Mtb isolates identified that around 2.0 % were resistant 

to linezolid. Indicating that resistance against the drug is already on the rise. In vitro 

resistant mutant isolation experiments with linezolid identified that mutations in the 

G2061T and G2576T of the 23S rRNA lead to an increase in resistance.47 Another study 

utilizing next-generation whole-genome sequencing of in vitro selected mutants identified 

the T460C in the rplC gene which encodes the 50S L3 protein of the ribosome.124  
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1.3.2.6 Clofazimine 

Clofazimine is a riminophenazine compound whose antimycobacterial properties 

were known since 1957. However, like many of the second-line drugs; clofazimine has 

serious side effects including skin discoloration and QT prolongation (Figure 1.20).66 

Clofazimine is a slow-acting bactericidal agent that might exert its primary inhibitory 

action as a prodrug. 

 

 

 

Figure 1.20: Chemical structure of clofazimine. 

 

 

Studies in M. smegmatis showed that clofazimine is reduced by the Type II NADH 

dehydrogenase-quinone oxidoreductase and after reoxidation liberates reactive oxygen 

species causing the observed bactericidal effects.125 Clofazimine is thought to compete 

with menaquinone (vitamin K2), the only quinone present in mycobacteria and key 

electron transport chain acceptor.125 Although the exact resistance mechanism and true 
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drug target is not known, studies have found that spontaneous mutations that cause 

upregulation of the Mycobacterial Membrane Protein Large 5 (MmpL5) lead to resistance 

of clofazimine and other drugs.126 MmpL5 has been recently classified as a secondary 

multidrug transporter from the Resistance-Nodulation-Division (RND) superfamily 

indicating that one of its functions might be acting as a drug efflux pump.126 

1.3.2.7 Bedaquiline 

Bedaquiline was FDA approved in 2012, representing the first FDA-approved drug 

in over 40 years for the treatment of tuberculosis (Figure 1.21).66 The drug belongs to the 

diarylquinoline class of drugs and was discovered through a phenotypical screen on M. 

smegmatis.127 

 

 

 

Figure 1.21: Chemical structure of bedaquiline. 
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The drug carries a “black-box” warning due to the unexplained deaths that 

occurred during clinical trials. Bedaquiline’s undesirable effects are mainly attributed to 

the drug’s interference with the heart’s electrical activity which causes prolongation of the 

QT interval.128 Consequently, the FDA granted accelerated approval for patients afflicted 

with drug-resistant Mtb when no other alternatives are available. 

Bedaquiline possesses a novel mode of action and acts by inhibiting the proton 

pump of the mycobacterial ATP synthase. The mode of action was identified by resistant 

mutant isolation experiments coupled to whole-genome sequencing. The studies identified 

that a mutation occurring in the atpE gene which encodes the proteolipid subunit-c part of 

the Fo subunit of the ATP synthase.129 The most common mutations that confer 

bedaquiline monoresistance is the A63P and I66M amino acid substitution. However, a 

study in 53 bedaquiline-resistant Mtb strains showed that 15 out of 53 mutants had 

mutations in the atpE gene. The rest of the isolates lacked mutation in the aforementioned 

gene nor the F0 or F1 operons suggesting alternative mechanisms for bedaquiline 

resistance within Mtb.130 

1.3.2.8 Delamanid 

Delamanid is a derivative of nitroimidazo-oxazole that has been shown to possess 

bactericidal activity against drug-susceptible and drug-resistant Mtb (Figure 1.22).131 

Delamanid’s mode of action was elucidated by tracing radiolabeled fatty acids and 

subsequent incorporation into the mycobacterial cell wall.  The authors showed that unlike 

isoniazid, which inhibits α-mycolic acids, delamanid specifically inhibits methoxy- and 

keto- mycolic acids.131 In vitro generated resistant mutants have identified that mutations 
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in the Rv3547 gene confer delamanid resistance.131 The gene encodes a deazaflavin-

dependent nitroreductase thereby suggesting that just like many Mtb drugs, delamanid is 

a prodrug and may act through the generation of reactive nitrogen species. 

 

 

 

Figure 1.22: Chemical structure of delamanid. 

 

 

1.3.2.9 Para-aminosalicylic acid 

 Para-aminosalicylic-acid (PAS) is a prodrug whose antimycobacterial properties 

have been known since the early 1950s. In fact, it was the second drug to have been utilized 

for the treatment of tb, right after streptomycin.132 However, given the relative lack of 

potency and higher cost, when compared with the INH, PZA, RIF, and ETH, it is currently 

used as a second-line anti-tb drug.66 Although the drug has been used for over 50 years, 

the mechanism of inhibition is still not completely understood. Transposon directed 

mutagenesis studies have identified mutations in the thyA gene, and thyA gene mutations 

have been identified in clinically relevant PAS-resistant isolates.133 However, since PAS 
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is a structural analog of para-amino-benzoic-acid (PABA) it is thought that one of its 

targets might also be the dihydrofolate reductase (DHFR) (Figure 1.23).  

 

 

                      

Figure 1.23: Chemical structure of the prodrug PAS and the natural DHFR substrate 

PABA. 

 

 

In order to inhibit DHFR, PAS is first activated by dihydropteroate synthase 

(DHPS) which then leads to the incorporation into the folate pathway, via the generation 

of a hydroxyl-dihydrofolate antimetabolite; which then inhibits DHFR.134 In addition, the 

same authors show that overexpression of the dfrA gene, which encodes for DFHR, leads 

to a resistant phenotype of Mtb.134 On the other hand, it has also been shown that mutations 

in the ribD gene which encodes a putative riboflavin-specific deaminase, lead to a PAS-

resistant Mtb phenotype. Other studies in PAS-resistant Mtb isolates have identified 

missense mutations in the folC gene which encodes a dihydrofolate synthase.135 Taken 

together, PAS mechanism of inhibition and resistance is still poorly understood, and the 

studies suggest that PAS metabolism within Mtb is very complex. 
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1.3.2.10 Thiacetazone 

 Thiacetazone is a prodrug that previously formed part of the first-line anti-tb drugs 

for the treatment of drug-susceptible bacilli (Figure 1.24). Thiacetazone is an inexpensive 

antimycobacterial that is always used in conjunction with other drugs.136 In addition, the 

drug possesses a relatively weak bactericidal activity; its main purpose is to control the 

rise of resistance to the other more powerful drugs.49 The current first-line regimen now 

utilizes ethambutol as a replacement mainly due to thiacetazone’s high toxicity such as 

accumulation of serum in the brain.136 The mechanism of inhibition and resistance has 

remained elusive throughout the years; although it is generally accepted that its primary 

bactericidal activity is through the inhibition of mycolic acid biosynthesis.95 Recent 

resistant mutant isolation studies utilizing 10 thiacetazone-resistant Mtb strains found that 

one strain had mutations in the mmA4 gene which encodes a methyltransferase that is 

involved in mycolic acid modifications.137 The remaining 9 strains were found to have 

missense mutations in several genes including hadA and hadC; both of which are 

components of the hydroxyacyl-ACP dehydratase and participate in mycolic acid 

elongation. Taken together the studies strongly suggest that thioacetazone’s intracellular 

target might indeed be involved in mycolic acid biosynthesis.137 
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Figure 1.24: Chemical structure of thiacetazone. 

 

 

1.4 Strategies for drug discovery against drug-resistant bacteria 

 The tremendous growth of drug-resistant bacteria imposes a significant global 

health and economic burden. Presently, the WHO recognizes the rise of drug-resistant 

bacteria as one of the top three most pressing threats to public health. The CDC estimates 

that in the United States, up to 2 million Americans suffer from infections related to 

antibiotic-resistant bacteria. Causing the death of up to 23,000 individuals annually; with 

a cost of up to $20 billion.138 The hope of overcoming this problem is diminished by the 

decline in identification and development of novel antibiotics and new drug targets. 

Therefore, there is an urgent need for novel drugs and drug targets for the treatment and 

eradication of drug-resistant bacteria.138 

1.4.1 The ideal Mtb drug target 

One aspect key aspect of the ideal drug target is vulnerability. Vulnerability refers 

to the phenotypical response of death of a pathogen once a drug target is minimally 

inhibited. Here one must consider the target’s essentiality and vulnerability for growth and 

survival under different conditions. Pathophysiologically, tuberculosis is a very complex 
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disease as it involves critical interactions between the bacteria and the host’s immune 

system.25 Mtb can diminish the bactericidal properties of macrophages and utilize them as 

a niche for growth and persistence.139 Although many experimental settings including 

animal models and in vitro assays can replicate these conditions to some extent; the details 

and critical interactions that allow Mtb to persist are still poorly understood.140-141 

 Secondly, the mutability of the gene coding for the drug target must be considered. 

As explained in section 1.2, with the advent of any new drug a new mutation conferring 

resistance followed. Therefore, drug targets that possess a low tolerance for mutation 

would be ideal drug targets. Mutability will largely depend on the number of genes and 

gene structure that can produce a resistance phenotype. For example, if on a given gene 

all positions have equal possibilities, then long genes might have a greater chance of 

mutation than shorter ones. However, it should be noted that gene size is not always a 

determinant of the likelihood of mutation given that not all mutations will result in drug 

resistance. Resistance will most likely occur if the mutations are permissive, that is if the 

phenotype produced is non-lethal.142 On the other hand, drugs that target the machinery 

that is responsible for the mutation itself would be ideal as it would ensure the fidelity of 

the target being targeted by current drugs first and second-line drugs. Along with this line, 

the pathways and the proteins involved in spontaneous or DNA-damage induced 

mutations are currently being characterized in Mtb leading to the identification of potential 

new drug targets such as C-family DNA polymerase, DnaE2, ImuB, and ImuA. C-Family 

DNA polymerase and DnaE2 have been implicated in the rise of drug resistance in vivo 
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and in vitro whereas ImuB and ImuA are known to form a complex of macromolecules 

that are required for DNA-damage induced mutagenesis.143-144 

 Another desirable characteristic for a potential drug target is that if the target itself 

participates in a metabolic “crossroad”. Inhibiting such targets might lead to an increase 

in metabolites that might prove to be toxic and detrimental to the organism. Such potential 

choke-point pathways in Mtb could be amino acid biosynthesis, cofactor biosynthetic 

pathways, cell wall biosynthesis and nucleotide biosynthetic pathways including de novo 

and salvage.145  

In addition to the characteristics described above, drug target essentiality either 

during latency and active growth must be considered. Presently, most of the potent drugs 

that are available; target actively growing bacilli. Consequently, there is a paramount need 

for drugs that target the machinery required by Mtb that confers its ability to persist during 

its latent phase of infection. Although, the pathophysiological details behind the latent 

phase of infection are not understood; it has been hypothesized that Mtb has little to no 

growth and that the bacillus utilizes a unique set of pathways that are distinct from those 

under active growth. A drug target essential for Mtb survival during the latent phase of 

infection is extremely desirable as it could potentially cure the disease before its clinical 

and pathophysiological presentation.146 

Finally, the location of the drug target must be considered. Here the cellular niche 

where the potential drug target is located is critical to the effect of any given drug. In 

principle, the more barriers a drug candidate has to go through to reach the target, the less 

concentration of the drug will reach the target. This can be attributed to enzymatic 



 

49 

 

inactivation, drug pumping mechanisms and sequestration by other non-essential proteins 

among others. One significant barrier every drug must face is the highly sophisticated and 

lipid-rich mycobacterial cell wall. Ideal drug candidates must have a way to cross the 

membrane without losing its activity. The machinery involved in mycobacterial cell wall 

biosynthesis has always represented an attractive drug target. Indeed, many currently 

available drugs target this essential step (see Tables 1.1 and 1.2). Consistent with this idea, 

the location of the drug target (intracellular or extracellular) will significantly influence 

the potency of the compound.145  

1.4.2 Target-based drug discovery approaches to identify new drugs 

 Target-based drug discovery is the product of the advancements in medicinal 

chemistry, pharmacology, molecular genetics, and biochemistry. This is coupled with the 

extensive knowledge and research throughout the 1950s and 1960s in enzymes and 

enzyme kinetics which provided the methods utilized nowadays to determine potency and 

efficacy of drugs against specific targets. Throughout this time, hundreds of proteins were 

purified and characterized, later becoming the specific drug targets themselves.147 During 

the 1970s, protein receptors became the most frequent targets for drug discovery, and 

during the 1980s, target-based drug discovery became more popular due to the advances 

in genomic science and molecular biology.148 Also, recombinant DNA technology led to 

the cloning and purification of many enzymes that in turn favored screening of proteins 

against libraries of compounds.149-151 Finally, during the 1990s target-based drug design 

became the status quo due to the advent and development of miniaturization and 
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automation of assays which in turn led to high-throughput screening of vast libraries of 

small molecules against specific proteins or enzymes.152-153 

 Target-based drug discovery typically starts with a known protein target that is 

relevant or known to play a fundamental role in a particular disease. Historically, in Mtb, 

the principal criteria utilized for target selection are essentiality under active growth or 

latent phase and a lack of homology or sufficient differences with any human protein.  

These molecular targets are often identified by gene knockout studies in animals or 

pathogenic bacterial studies, identification of abnormal phenotype or function of specific 

proteins and identification of mutations or specific proteins within an essential 

pathway.154-155 Once a suitable drug target is identified, assay development is pursued with 

the goal of performing high-throughput screening of compound libraries to identify 

inhibitors or molecules that bind the target of interest. Lead compounds are then validated 

for inhibition or binding using a robust secondary technique, e.g., enzyme kinetics for 

inhibition and isothermal titration calorimetry for binding and affinity studies. The most 

potent compounds are then optimized against the target either through chemistry based 

activity relationship studies or structure-guided drug design. In addition, optimized 

compounds are assessed in vivo to understand and further characterized their ADME 

properties. Finally, if a compound displays favorable potency and efficacy against relevant 

disease models, then toxicological and preclinical studies are carried out that might 

eventually lead to clinical trials. This process can take anywhere from 12-15 years and 

cost over $ 1 billion.156  Target-based drug discovery resulted in the identification of the 
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most common and fruitful drug targets, namely ion channels, G-protein coupled receptors 

and enzymes.157 

 Although target-based drug discovery has many advantages from a scientific and 

practical point of view, the high attrition rates in clinical trials for compounds identified 

through target-based methods have been associated with a lack of efficacy and lack of 

whole-cell activity of the compounds. Additionally, our current level of knowledge and 

understating of the complex biological processes upon which drugs act is not sufficient to 

feasibly predict the therapeutic value of a new drug target.  

Analysis of first-in-class FDA approved drugs between 1999 and 2008 showed 

that 28 of the novel drugs were discovered through classical pharmacology (e.g., 

phenotypic drug discovery). In contrast, 17 of the drugs were found through target-based 

drug discovery efforts (Figure 1.6).158 This observation has renewed the interest of 

pharmaceutical companies and academic centers towards the application of the classical 

technique of phenotypic drug discovery (Figure 1.7).159  

 

 

 

Figure 1.25: Evolution of drug screening and discovery. Reprinted with permission.160 
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Figure 1.26: Phenotypic vs. target-based drug discovery. In phenotypic drug discovery, 

active molecules are obtained early during the drug development process. Target-based 

drug discovery starts with a macromolecule of interest. This is then followed by assay 

development to find any active compound. Reprinted with permission.159 

 

 

1.4.3 Phenotypic-based drug discovery approaches to identify new drug targets 

 Phenotypic drug discovery and development seeks to identify desirable effects 

(phenotypes) in disease-relevant biological models (live animals or cell lines).161 

Typically, large libraries of compounds (0.2-2 million compounds) are screened in a high-

throughput fashion to identify any phenotypic response. Phenotypic drug discovery for 

Mtb typically requires vast and chemically diverse compound libraries, whole-cell based 

screening assays that would ideally mimic conditions encountered by Mtb within a host 

and finally and orthogonal methods to deconvolute the hits.162 Historically, the golden age 

of drug discovery was carried out through phenotypic-based drug discovery either by 

accident or through careful observational studies.163 Unlike target-based drug discovery, 

the particular target, and mode of action can remain unknown even after the compound’s 

activity, and efficacy has been determined. Another advantage of this methodology is that 

phenotypic screening offers a more physiologically and pharmacologically relevant 

response given that the screen itself is carried out in a more native cellular environment. 
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Lead compounds identified can subsequently be chemically optimized to induce a 

specific/targeted phenotype. One of the major advantages of phenotypic drug discovery is 

that this technique enables the identification of active compounds that might prove to be 

useful for rare diseases or development of compounds that are active against diseases with 

no known molecular targets.160 

 Many of the FDA approved drugs in the 1970s have no known molecular 

target/mode of action.164 Indeed, many of these drugs were initially identified through 

phenotypic drug discovery. One key example is acetylsalicylic acid (aspirin) for which 

almost a century went by before the mechanism of inhibition was determined.165 Other 

examples of phenotypically identified drugs include the antihypertensives nicardipine, 

nifedipine, verapamil and diltiazem.166-167 Another notable example is the drug Zetia 

(Ezetimibe), which was discovered by Merck through the screening of compounds in 

animal models with a high cholesterol diet.168-169 Presently, drugs that prove to be 

efficacious and safe for the patient might obtain FDA clearance even if the mode of action 

is unknown. However, the mode of action and molecular drug target are desirable pieces 

of information to have given that structure-guided and chemistry efforts can significantly 

improve potency, selectivity and decrease undesirable side effects.160 Finally, target 

identification of the drug producing a desirable phenotype is a daunting and more 

complicated task than starting with a known target (e.g., target-based). However, it can be 

performed through a systematic approach and utilizing many techniques such as affinity 

chromatography, yeast-three hybrid system, phage-display, protein microarrays and 

resistant mutant isolation.159 
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1.4.4 Repurposing and screening of previously approved drugs 

 Another strategy in the arsenal that is being utilized to combat the rise in drug-

resistant bacteria is the screening of previously approved drugs. This technique is mostly 

applied for the identification of adjuvants to enhance or facilitate the activity of antibiotics. 

This approach has already identified several non-antibiotic compounds from several drug 

classes including tranquilizers, antispasmodics, antihistamines, anti-inflammatories and 

antihypertensive drugs.170 For example, a screen of 1,057 previously approved drugs, led 

to the identification of a total of 69 compounds that enhanced the activity of the 

tetracycline minocycline against S. aureus and E. coli. The screen identified disulfiram 

(Antabuse) as having a high bactericidal synergistic effect, whereas loperamide and 

benserazide (Imodium) showed an increase in the susceptibility of several multidrug 

resistant strains of P. aeruginosa. Also, co-administration of minocycline with loperamide 

displayed a synergistic effect against E. coli and other pathogenic bacteria including S. 

enterica, K. pneumoniae and A. baumannii.171 

Another example of drug repurposing is the non-steroidal anti-inflammatory drug 

(NSAID) diclofenac. This drug has been identified as having bactericidal enhancement of 

streptomycin against E. coli and Mycobacterium spp. and gentamicin activity against L. 

monocytogens. In addition, diclofenac sodium also displayed a synergistic effect in mouse 

models when co-administered with streptomycin against Mtb and S. thyphimurium.172 

Another NSAID that demonstrated a synergistic effect when co-administered with several 

antibiotics is celecoxib for the treatment of S. aureus.  
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Several phenothiazine derivatives have been shown to possess synergistic and 

antibacterial activity against several bacteria including mycobacteria. For example, the 

antipsychotic thioridazine has been noted to have bactericidal activity against Mtb 

including MDR-Mtb strains. Further investigation has shown that the compound also 

enhances the effect of rifampicin and streptomycin against several clinical Mtb isolates. 

Moreover, mouse studies revealed that thioridazine can decrease the number of colony-

forming units when it is administered alone and a synergistic effect when co-administered 

with isoniazid, rifampicin, and pyrazinamide.173 In short, repurposing and screening of 

previously approved drugs offer a fast-track route for the discovery of potential new drugs 

or molecules that can act as adjuvants. The major advantage of this strategy is that the 

overall cost of utilizing the potential newly repurposed drug can be up to 40.0 % less than 

de novo identification as well as facilitating a rapid approval for immediate use. 

1.4.5 Tuberculosis structural genomics consortium: a worldwide collaboration towards 

the identification and characterization of new drug targets for Mtb drug development 

 Structural genomics has played a fundamental role in elucidating, identifying and 

structurally characterizing potential drug targets for many infectious diseases including 

Mtb.174 Structural genomics was conceived through the advancements in high-throughput 

crystallography, high-throughput molecular cloning and high-throughput protein 

expression and purification.175 The consortium seeks to perform large-scale efforts to 

determine the unique set of protein structures for a given organism; primarily through X-

ray crystallography. Presently, high-throughput structural genomics primarily focuses on 

solving the structures of biologically essential or medically relevant targets for neglected 
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and recalcitrant to treat infectious diseases. Central to the consortiums ideology is the 

structural elucidation and characterization of proteins that belong to pathways that are 

critical to a particular pathogen’s survival or virulence.176 Between 1999 and 2001, several 

structural genomics consortiums were formed by various agencies worldwide. Including 

the National Institute of Health (NIH) sponsored Structural Genomics Centers (SGCs), the 

Northwest Structural Genomics consortium in the United Kingdom, the Protein Structure 

Factory in Berlin and the RIKEN Structural Genomics and Proteomics Initiative.177 

The Tuberculosis Structural Genomics Consortium (TBSGC) was established in 

2000, through the ongoing collaboration of over 100 research laboratories around the 

world.178 The TBSGC applies many techniques within the high-throughput pipeline to 

elucidate, characterize, improve and facilitate the drug discovery progress against the 

pathogen. As of 2011, the last time the TBSGC reported an update, approximately 250 

Mtb protein structures had been deposited in the PDB, accounting for over 33.0 % of the 

Mtb structures deposited.179 Most of the 3,989 open reading frames within Mtb have been 

cloned into the Gateway system (Invitrogen), accelerating the process of recombination 

into protein expression systems.177, 180 Protein expression and purification is achieved in a 

high-throughput fashion via the Consortium’s protein production facility located in Los 

Alamos National Lab which utilizes robotics, cell-free expression systems, and high-

throughput solubility determination assays.181 Protein purification is typically performed 

through affinity chromatography via the attachment of an N-terminal hexa-histidine tag 

for subsequent separation and enrichment in a Nickel column. This is in turn followed by 

crystallization trials which entail the screening of commercially available and proprietary 
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protein crystallization conditions. Once crystals are obtained, the TBSCG utilizes several 

high-intensity synchrotron beamlines such as the Advanced Light Source in Stanford or 

the Advanced Photon Source in Chicago to obtain atomic resolution protein structures.177 

The TBSCG also employs a bioinformatics platform to gather and combine as 

much relevant data as possible to prioritize targets. Another powerful complementary 

technique that the TBSCG employs for the elucidation of essential genes is whole-genome 

sequencing. Whole-genome sequencing can provide valuable insight into gene 

duplication/loss, gene structure, and conservation amongst species and evolutionary 

relationships.181 Moreover, when the technique above is coupled to data gathered from 

Mtb knockout studies (e.g., transposon site hybridization and CRISPR); whole-genome 

sequencing can potentially accelerate the elucidation of essential genes for Mtb survival 

in vivo and in vitro.182-183 Although structural elucidation of Mtb proteins still represents 

a challenging task, structural data is critical to understand the molecular basis of Mtb drug 

resistance to a particular drug. The information learned from such structures can then be 

utilized to perform structure-guided design of compensatory modifications in the drug 

scaffold to stay ahead of the evolutionary race.176 
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2. STRUCTURE-GUIDED DESIGN OF 6-SUBSTITUTED ADENOSINE 

ANALOGS AS POTENT INHIBITORS OF MYCOBACTERIUM TUBERCULOSIS 

ADENOSINE KINASE 

 

 

2.1 Background and significance 

Mycobacterium tuberculosis (Mtb), the bacterium that causes pulmonary 

tuberculosis (TB); represents one of the major leading causes of death worldwide by a 

single infectious agent. One-third of the world’s population is thought to harbor latent tb, 

and around 5-10 % of these infected individuals are expected to develop the active disease 

sometime during their lifetime.30 The rapid emergence of multi-drug resistant (MDR) and 

extensively drug-resistant (XDR) tb demands the development of novel chemotherapeutic 

agents with novel molecular targets. 

The purine salvage pathway is an emerging druggable pathway within 

mycobacteria. In this pathway, preformed nucleobases from the product of nucleic acid 

breakdown, are converted to their corresponding purine nucleotides by the purine salvage 

enzymes. Although the de novo and purine salvage pathways have not been extensively 

studied in Mtb, it is known that Mtb possesses all the enzymes required for both pathways. 

It is currently unknown if there is restrictive regulation of the two pathways. However, by 

switching to the salvage pathway Mtb can bypass several chemically demanding steps.2 

This has led to the hypothesis that the salvage pathway might be the most likely source of 
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nucleotides within the hostile and nutrient-deprived microenvironment encountered by 

Mtb during its latent phase of infection.184-185 

Mycobacterium tuberculosis adenosine kinase (MtbAdoK) performs a critical step 

in the purine salvage pathway within mycobacteria. The enzyme catalyzes the conversion 

of adenosine to adenosine monophosphate in a Mg+2 and ATP-dependent manner.186 The 

crystal structure of MtbAdoK has been previously solved at high-resolution with the 

substrate (adenosine), the substrate analog 2-fluoroadenosine, an ATP analog AMP-PCP 

and without substrate (apo) at resolutions of 1.90 Å, 1.93 Å, 1.90 Å and 1.50 Å, 

respectively.187  

The crystallographic data showed that the apo and the AMP-PCP structures 

adopted the opened conformation of the protein. In contrast, the substrate or substrate 

analog complexes revealed that lid domain of MtbAdoK undergoes a 30° movement upon 

substrate binding.188 This conformational change effectively brings lid domain resides 

Asp12, Phe116, and Phe102 in close contacts with adenosine thereby completing the 

active site (Figure 2.1a).187, 189-191 As previously described, the binding of the ribose and 

adenine rings are primarily mediated by π-stacking interactions with residues Phe102 and 

Phe116, respectively (Figure 2.1b). Hydrogen bonding networks with the adenine moiety 

were described to occur with residues Gln172 (backbone O-N6 distance of 3.26 Å), 

Gln173 (NE2-N1 distance of 2.99 Å, OE1-N6 distance of 2.96 Å), Ser8 (OG-N3 distance 

of 2.62 Å) and Ser36’ (OG-N7 distance of 2.65 Å, OG-N6 distance of 3.43 Å). The ribose 

forms extensive hydrogen bonding interactions with residues Gln172 (NE2-O4’ distance 

of 3.26 Å, NE2-O5’ distance of 2.62 Å), Asp12 (OD2-O3’ distance of 2.70 Å, OD1-O2’ 
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distance of 2.75 Å), Gly48 (backbone N-O3’ distance of N 2.99 Å, backbone N-O2’ 

distance of 2.82 Å) Asn52 (ND2-O3’ distance of 3.01 Å), and catalytic base Asp257 

(OD2-O5’ distance of 2.69 Å) (Figure 2.1b).187  

 

 

 

               

Figure 2.1: MtbAdoK closed and open conformations. (a) Superimposition of the closed 

(blue, PDB ID 2PKM) and open conformation (gray, PDB ID 2PKF) of MtbAdoK. Only 

chain A of the dimer is shown. (b) Adenosine bound to the active site of MtbAdoK. 

Adenosine and residues involved in binding are shown as sticks and labeled with one-

letter code and chain identifier. Chain B residues are colored magenta. 

 

 

  MtbAdoK is significantly different when compared to eukaryotic adenosine 

kinases.190 Although hAdoK and MtbAdoK are composed of a small-lid like domain and 

a large domain, hAdoK shares less than 20.0 % sequence identity with MtbAdoK. The 

human adenosine kinase (hAdoK) structure has been previously solved at 1.4 Å with 

90° 

a b 
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substrate bound. The structure was initially solved with two molecules of adenosine 

embedded within the enzyme, one in the active site and another in cofactor (ATP) site. 190 

A critical difference between MtbAdoK and its eukaryotic counterparts is that MtbAdoK 

is a functional homodimer.190 In addition, prior to its discovery and characterization by 

Long et al. in 2003, the adoK gene was thought to be unique to eukaryotic organisms and 

was annotated as a general carbohydrate kinase (cbhK) in Mtb.186 Based on its amino acid 

sequence, MtbAdoK is more closely related to members of the kinase B family of sugars 

kinases, which includes ribokinase; a homodimer and the prototypical member of this 

family.188  

MtbAdoK is essential for the survival of the bacilli when utilizing cholesterol as a 

carbon source and in infected mouse models.182-183 Even though the precise role of the 

purine salvage pathway under these conditions is currently unknown, biochemical and 

structural characterization suggests that MtbAdoK might represent a new class of bacterial 

adenosine kinases that differs from its eukaryotic counterparts by its unique quaternary 

structure and regulatory mechanisms. The essentiality and differences with the human 

adenosine kinase make MtbAdoK an attractive drug target. 

To date, most reported inhibitors of MtbAdoK have been designed as substrate 

surrogates to elicit the production of toxic metabolites.192-195 For example, Parker et al. 

showed that the H37Ra Mtb strain was able to uptake the adenosine analog 2-methyl-

adenosine and that MtbAdoK was responsible for its activation into the toxic metabolite 

2-methyl-AMP.194 Despite having some advantages, AMP or ATP toxic metabolites could 
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inadvertently lead to undesirable and cross-species off-target effects exacerbating the 

identification and diminishing the value of a potential drug target.  

In this work, we adopted a structure-guided approach to the design of very potent 

and safe adenosine analogs. To gain insight into the chemical space surrounding the active 

site, we have solved the crystal structures of MtbAdoK complexed to several adenosine 

analogs at resolutions between 1.75-2.36 Å. This initial approach laid the foundation for 

the structure-guided design and synthesis of several very potent N6-substituted adenosine 

analogs as selective inhibitors of MtbAdoK. Several of the synthesized compounds 

displayed low micromolar anti-Mtb activity in a whole-cell assay; which supports the 

concept that inhibition of MtbAdoK can be used as an approach to treat TB. Finally, the 

compounds exhibited a higher degree of specificity against MtbAdoK when compared to 

the human counterpart.   

2.2 Materials and methods 

2.2.1 Cloning, expression and purification of recombinant MtbAdoK and hAdoK 

The WT MtbAdoK gene (Rv2202c) was amplified by polymerase chain reaction 

(PCR) from total genomic DNA of Mycobacterium tuberculosis H37Rv. The following 

oligonucleotides were used: 5’-GGAATTCCATATGGTGACGATCGCGGTAACC-3’ 

and 5’-CTTAAGCTTCTAGGCCAGCAC-3’, respectively. The amplified DNA fragment 

was digested with NdeI and HindIII restriction enzymes (New England BioLabs) and sub-

cloned into the corresponding restriction sites of the pET28b vector containing an N-

terminal TEV cleavable His-tag.187 The human adenosine kinase gene was PCR amplified 

from clone HsCD00042641 (DNASU plasmid repository) using the following 
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oligonucleotides: 5’-GGAATTCCATATGATGACGTCAGTCAGAGAAAATATTC-3’ 

and 5’-CCCAAGCTTCTAGTGGAAGTCTGGC-3’ and was cloned into the same 

pET28b using the same procedures above. In all cases, gene fidelity was confirmed by 

DNA sequencing, and sequenced plasmids were used to transform E.coli BL21 (DE3) 

cells for protein expression. For protein expression, cell cultures were grown in LB media 

at 37.0 °C. Cells were induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside 

(IPTG) when the cell density reached A600 ~ 0.6–1.0. Cell cultures were incubated for 18 

h at 18.0 °C before harvesting. 

Harvested cells were lysed using a French press, and the lysate was centrifuged at 

17,000 rpm for 1 h. Recombinant MtbAdoK and hAdoK were purified by using a HisTrap 

HP Nickel column (GE Healthcare). Purification buffers A and B contained, 50.0 mM 

HEPES, pH 7.5, 500.0 mM NaCl, 500.0 mM imidazole (buffer B only), and 5.0 % 

glycerol. For crystallization studies, MtbAdoK was dialyzed in 20.0 mM HEPES, pH 7.5, 

50.0 mM NaCl, 2.0 mM DTT and 5 % glycerol. For enzymatic assays, the proteins were 

dialyzed in 50.0 mM HEPES, 50.0 mM NaCl, 100.0 mM KCL, 4.0 mM DTT and 20.0 % 

glycerol. Finally, the proteins were aliquoted and stored in -80.0 ˚C for subsequent 

crystallization and enzymatic assays. 

2.2.2 Enzymatic assay, IC50 determination, steady-state kinetics and Ki determination 

Compounds were tested against MtbAdoK using the pyruvate kinase-lactate 

dehydrogenase coupled assay system in a Cary100 UV-Vis spectrophotometer.196 The 

reaction was started by the addition of 60.0 nM of enzyme into a final volume of 200.0 

µL master mix containing 50.0 mM HEPES pH 7.5, 50.0 mM KCl, 6.0 mM MgCl2 (4.0 
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mM MgCl2 for hAdoK), 3.0 mM ATP (2.0 mM ATP for hAdoK), 200.0 µM NADH, 1.0 

mM phosphoenolpyruvate, 1.0 mM DTT, 12.0 U/mL pyruvate kinase, 12.0 U/mL lactate 

dehydrogenase and 15.0 µM adenosine. IC50 values for each compound were determined 

by varying the concentration of inhibitor at fixed concentrations of enzyme and by fitting 

the dose-response data into the four-parameter logistic curve (Equation 2.1) model of 

GraphPad prism 7.02, as follows: 

                       𝑌 = 𝑌𝑚𝑖𝑛 +
(𝑌𝑚𝑎𝑥 −  𝑌𝑚𝑖𝑛 )

(1 + 10(𝑙𝑜𝑔𝐼𝐶50−𝐼)𝐻) 
⁄                  (2.1) 

Where I is the logarithm of inhibitor concentration, H is the Hill slope and Y, Ymax and 

Ymin are the specific activity, maximum specific activity, and minimum specific activity, 

respectively. Kinetic assays for MtbAdoK were performed as described above with the 

following exceptions: the master mix contained 60.0 nM MtbAdoK and the reaction was 

started by the addition of varying concentrations of adenosine in the presence of constant 

concentrations of compound (0.0 nM, 20.0 nM, 40.0 nM). Kinetic data were obtained by 

fitting the initial velocity data into GraphPad Prism 7.02 nonlinear regression function of 

Michaelis-Menten model (Equation 2.2), as follows: 

                                                 𝑉𝑜 =
(𝑌𝑚𝑎𝑥)[𝑆] 

(𝐾𝑚 + [𝑆])⁄         (2.2) 

Where Vo is the initial velocity, Ymax is the maximum specific activity, S is the substrate 

concentration, and Km is the Michaelis-Menten constant. 

Specific activity values for kinetics and IC50 measurements were determined using 

(Equation 2.3): 

                                  𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
(

𝑎

𝜀𝑁𝐴𝐷𝐻∗𝑏
𝑑)

𝑐
⁄

                   (2.3) 
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Where a is the change in absorbance over time, εNADH is the millimolar extinction 

coefficient of NADH, b is the pathlength, d is the dilution factor of the enzyme in the assay 

and c is the concentration of enzyme stock used for the assay.  

Finally, the inhibition constant (Ki) was determined by using the Cheng-Prusoff 

relationship for competitive inhibition (Equation 2.4).197-198 

                              𝐾𝑖 =  
𝐼𝐶50

(
[𝑆]

𝐾𝑚+1
)

⁄                                         (2.4) 

In all cases, the compounds were serially diluted in 100.0 % DMSO and added to the 

respective enzymatic reaction to a final concentration of 2.5 % DMSO.  

2.2.3 Crystallization, data collection, and crystal structure determination 

Purified MtbAdoK was concentrated to 18.0 mg/mL before crystallization trials. 

All cocrystals were obtained by vapor diffusion method. MtbAdoK-2, 3, 4 and NZ637 

cocrystals were achieved by mixing 2.0 µL of protein solution, preincubated with 5.0 mM 

of the compound for 1 h at 25.0 °C, with 1.0 µL of 100.0 mM HEPES pH 7.5, 2.0 M 

ammonium sulfate and 2.0 % PEG 400. MtbAdoK-5 co-crystals were obtained by mixing 

2.0 µL of protein solution, preincubated with 4.0 mM of 5 for 1 h at 25.0 °C, with 1.0 µL 

of 100.0 mM HEPES pH 7.5 and 1.2 M sodium citrate tribasic dihydrate. MtbAdoK-6 

cocrystals were obtained by mixing 2.0 µL of protein solution, preincubated with 4.0 mM 

of the compound for 1 h at 25.0 °C, with 1.0 µL of 5.0 M sodium formate. Finally, 

MtbAdoK-17 cocrystals were obtained by mixing 2.0 µL of protein solution, preincubated 

with 2.0 mM 17 for 1 h at 25.0 °C, with 1.0 µL of 100.0 mM Bis-Tris pH 6.5, 2.0 M 

ammonium sulfate and 2.0 % PEG 400. In all cases, crystals were grown at 20.0 °C. Before 
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data collection; crystals were cryoprotected with Paratone (Hampton Research) and flash 

frozen in liquid nitrogen. X-ray diffraction data was collected at Argonne’s National Lab 

Advanced Photon Source beamlines 19ID and 23ID. Diffraction data was indexed, scaled 

and integrated using HKL2000.199 Initial phases were obtained by molecular replacement 

in MOLREP using the high-resolution structure of the MtbAdoK-1 complex with PDB 

accession code 2PKM.200 Refinement was performed in PHENIX followed by iterative 

runs of inspection and manual modification using coot.201-202 Ligand model and restraint 

files were created in ELBOW form the PHENIX suite and fitted into the electron density 

using COOT. Images and figures were rendered using Molsoft ICM, Chimera and 

PyMOL.203-205 

2.2.4 Antimycobacterial assay 

Antitubercular testing and MIC50 determination was performed using the MABA 

assay in a 96-well format as previously described.206-207 Starter culture of Mtb mc27000 

was grown in 7H9 media supplemented with OADC (Middlebrook), 0.5 % dextrose, 0.085 

% NaCl, 0.05 % Tyloxapol (Sigma), 0.25 µg/mL malachite green (Sigma) and 25.0 µg/mL 

pantothenate. Once cells reached an optical density of OD600 ~1.5, cells were diluted to an 

OD600 of 0.01 in the same media composition without OADC. Compounds were serially 

diluted in 100.0 % DMSO and added to the cells to a final concentration of DMSO of 2.5 

%. Plates were incubated for ten days before staining with resazurin (Sigma). After 

staining, plates were incubated for two additional days for developing. Finally, developed 

plates were read using a POLARstar Omega spectrophotometer (BMG Labtech) and by 



 

67 

 

monitoring the fluorescence emission of resazurin (excitation = 570 nm, emission = 585 

nm). In all cases, rifampicin was used as a negative control. 

2.2.5 Human dermal fibroblast cytotoxicity assay 

Human dermal fibroblasts (HDF) were purchased from ATCC (Manassas, VA). 

HDF cells were cultured in DMEM (Lonza) media supplemented with 10.0 % fetal bovine 

serum albumin (Lonza) and penicillin/streptomycin (Lonza). For the cytotoxicity assay, 

compound stocks were serially diluted in phosphate buffered saline (PBS) plus 10.0 % 

DMSO. On the day of assay, HDF cells were trypsinized, counted and resuspended at a 

concentration of 64,000 cells/ml in media. Cells were plated, overlaid with the compound 

serial dilutions and incubated at 37.0 °C. After 48 h, resazurin dye was added and the assay 

plates cultured for another 24 h. The next day the absorbance of the resazurin was 

measured on a microplate reader to assess cell death. Cytotoxicity was determined as a 

percent of dead cells versus living. 

2.3 Results and discussion 

Structural analysis of the MtbAdoK-adenosine (1) complex showed a high 

potential for structure-guided drug design (Figure 2.2).187 Of particular interest are 

positions N6 and N7 of the adenine ring and position O5’of the ribose moiety; all of which 

have been the focal point of several chemistry-based structural activity relationship (SAR) 

studies.192, 208-209 These studies have highlighted that substitutions at the aforementioned 

positions confer inhibitory activity against MtbAdoK and hAdoK. The chemistry-based 

efforts have also suggested that there is a higher degree of selectivity against MtbAdoK 

when substitutions are located at the N6-position when compared to the N7-analogs. 
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However, the structural and molecular basis for the reported selectivity has remained 

unexplored. The 5’-position offers a more practical approach towards inhibition given that 

the critical hydroxyl group is required for catalysis.  

To guide our drug discovery efforts and to investigate the molecular basis of 

selectivity and inhibition we solved the crystal structure complexes of several known 

AdoK inhibitors. Iodotubercidin (2) and sangivamycin (3) were selected to investigate the 

conformational flexibility and the chemical properties surrounding the binding pocket near 

the N7-position of the adenosine scaffold. Additionally, 6-methylmercaptopurine riboside 

(4) and 5’-aminoadenosine (5) cocrystal structures were solved to explore the 6- and 5’- 

positions of the adenosine scaffold, respectively (Figures 2.2-2.3).  

 

 

 

Figure 2.2: Active site pocket of MtbAdoK. Positions of interest for structure-based drug 

design are highlighted. 

ATP channel 

N6 

N7 

O5’ 
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Figure 2.3: Tool compounds for crystallography studies. 

 

 

Our structural studies commenced with the cocrystallization of the N7-substituted 

analogs. Iodotubercidin, possesses an iodine group at position 7 and is a semi-synthetic 

derivative of the natural compound tubercidin whereas sangivamycin is a natural 

compound derived from Streptomyces rimosus and contains an amino group at position 

7.192, 210-211 Compound 2 has been noted to be a general kinase inhibitor, displaying 

inhibitory activity against MtbAdoK, hAdoK, MAP kinases, and Ser/Thr kinases while 

compound 3 has been previously observed to be an inhibitor of protein kinase C, 

MtbAdoK, and hAdoK.192, 212  

Cocrystallization of MtbAdoK with compounds 2 and 3 was produced via vapor 

diffusion, and the structures were solved using the molecular replacement method (MR) 

utilizing the previously reported adenosine-bound structure.187 The crystals of both 

complexes were determined to be in the P41 crystal space group with two molecules in the 

asymmetric unit (ASU). The MtbAdoK-2 complex was refined to 1.95 Å resolution and 
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displayed a closed conformation of the enzyme with a backbone rmsd of 1.49 Å amongst 

all Cα atoms when superimposed to the MtbAdoK-adenosine structure (Figure 2.4). The 

MtbAdoK-3 complex refined to 1.95 Å resolution displayed a closed conformation of the 

enzyme with a backbone rmsd of 1.46 Å amongst all Cα atoms when superimposed to the 

MtbAdoK-adenosine structure (Figure 2.5). As in the case of the hAdoK-adenosine 

structure, both crystal structures showed positive density for the inhibitor bound to the 

active site in a similar position to adenosine and density in the cofactor (ATP) binding site. 

However, only compound 2 displayed full electron density in the ATP binding site while 

compound 3 displayed partial density for the adenine ring only.  

 

 

 

Figure 2.4: Compound 2 bound to the active site of MtbAdoK.  
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Figure 2.5: Compound 3 bound to the active site of MtbAdoK.  

 

 

Overall the crystal structures of compounds 2 and 3 displayed many similarities 

with the previously reported MtbAdoK-adenosine complex. The inhibitors were bound in 

the same conformation and locations as we observed in the adenosine-bound structure. 

Residues Phe116 and Phe102 were involved in π-stacking interactions with the adenine 

and ribose rings, respectively. The ribose moiety was found to be stabilized by hydrogen 

bonding with several residues. Asp12 oxygen OD1 H-bonds with the O2’ and O3’ of 

ribose, OD2 of catalytic base Asp257 H-bonds with O5’, ND2 of Asn52 H-bonds with 

O3’, and backbone N of Gly48 H-bonds O2’; all of which are likely to contribute 

significantly to the binding affinity.  

The most notable differences between the cocrystal structures of adenosine, 2 and 

3 were observed in the interactions formed by residues Gln172, Gln173, and Ser36’. In 
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the adenosine bound structure, Gln172 NE2 H-bonds with O5’ (2.62 Å) and O4’ (3.26 Å) 

while backbone O of Gln172 H-bonds with N6 (3.26 Å). In contrast, in the MtbAdoK-3 

complex, NE2 of Gln172 formed longer H-bonds with O5’ (3.03 Å) and O4’ (3.10 Å). 

Unexpectedly, interactions formed by residue Gln172 were not observed in the MtbAdoK-

2 complex. A similar scenario was seen for Gln173. In the MtbAdoK-1 structure, NE2 of 

Gln173 H-bonds with N1 (2.99 Å) while OE1 of Gln173 H-bonds with N6 (2.97 Å) of the 

adenine scaffold. On the other hand, as observed in the MtbAdoK-3 and MtbAdoK-2 

binary complexes, Gln173 only formed H-bonds with N6 with distances of 3.26 Å (OE1-

N6) and 2.98 Å (OE1-N6), respectively.  

The crystal structures of compounds 2 and 3 showed that the iodine group of 2 and 

the amide group of 3 was oriented towards Ser36’. One critical aspect of MtbAdoK, being 

a homodimer, is that residues from one chain complete the active of the other. It has been 

previously shown that Ser36 from chain B completes the active site of chain A and vice 

versa by hydrogen bonding with positions N6 (OG-N6 distance of 3.43 Å) and N7 (OG-

N7 distance of 2.65 Å) of the adenine ring.187 Ser36 residue forms part of the lid-domain 

of MtbAdoK, and as reported before, the dimerization interface of MtbAdoK occurs via 

extensive van der Waal (VDW) contacts formed by the lid-domain of each chain.187 The 

observed orientation of both N7-substituted adenosine analogs (2-3) suggests that the N7-

position is obstructed by chain B. That is, chain B represents an imposing physical barrier 

at this position thereby limiting drug discovery efforts to the active site of the enzyme 

(Figures 2.6-2.7).  
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Figure 2.6: The iodine of 2 is physically occluded by chain B (magenta). 

 

 

 

Figure 2.7: The amide of 3 is physically occluded by chain B (magenta). 
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The MtbAdoK-3 structure showed that the -NH2 of the amide group of 3 formed 

a H-bond with OG of Ser36’ (2.82 Å). In contrast, H-bond interactions mediated by Ser36’ 

with compound 2 were not observed in the MtbAdoK-2 complex. Instead, the interaction 

is of VDW nature with OG-I distance of 3.00 Å. Finally, the N7-substituents of 2 and 3 

were observed to be buried in a pocket formed by several conserved active site residues 

of MtbAdoK including Phe102 (Cys123 hAdoK) and Phe116 (Phe170 hAdoK).  

Overall, structural analysis of the N7-analogs (compounds 2-3) suggested that 

bulky substitutions at the N7-position are likely to be favorably accommodated in the 

active site (Figures 2.6-2.7). Our structural findings go well in accordance with previously 

reported chemistry-based SAR efforts focused on N7-substituted adenosine analogs; 

where Snášel et al. reported that several N7-anthracene or N7-phenanthrene derivatives 

displayed high potency against the enzyme.209 The same group synthesized several N7-

chain-extended bulky groups that displayed low potency against the enzyme more than 

likely due to occlusion by chain B; further validating our structural assessment.209 The 

bulky iodine group of 2 is observed to be completely buried in a pocket formed by residues 

Phe116, Phe102, Gln172, Gln173, Ala114, Ser115, Leu38’ and Ser36’ leading to several 

polar and VDW interactions (Figure 2.6). In contrast, the amide group of 3 occupies a 

smaller portion of the pocket (Figure 2.7). We also observed that the amide group of 3 

participates in many of the conserved H-bond interactions (Gln172 with O5’ and O4’, 

Gln173 with N6 and Ser36’ with N6) when compared to the MtbAdoK-adenosine complex 

. In contrast, the bulky iodine group of 2 sterically hinders many of the conserved 

interactions described in the MtbAdoK-adenosine complex. Including all the H-bonds 
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formed by Gln172 and Ser36’ (Gln172 with O5’, O4’ and N6 and Ser36’ with N6 and N7) 

and the H-bond between Gln173 and N1. Our enzymatic assay showed that compound 2 

is more potent than compound 3 displaying a 50 % inhibitory concentrations (IC50) of 1.2 

µM and 16.5 µM, respectively; further validating our structural assessment. Finally, the 

crystal structure complexes of the N7 analogs revealed the presence of a “chimney-like” 

cavity above the N6-position that extends towards chain B and that is formed by residues 

from both chains of the MtbAdoK homodimer thereby representing a unique structural 

feature of MtbAdoK for structure-guided drug design (Figure 2.8). 

 

 

 

Figure 2.8: “Chimney-like” cavity observed above position N6- of the adenine ring. Chain 

B is colored magenta. 
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Next, we decided to explore the chemical space surrounding the binding pocket 

near the N6-position by cocrystallizing MtbAdoK with 6-methylmercaptopurine riboside. 

Compound 4 is a derivative of mercaptopurine, a drug used to treat acute lymphatic 

leukemia and possess a methylmercapto group at the N6-position of the adenosine 

scaffold. The binary complex of MtbAdoK-4 was refined to 1.99 Å resolution with two 

molecules in the ASU in the P41 crystal space group (Figure 2.9). Like the cocrystals 

structures of 2 and 3, the MtbAdoK-4 binary complex displayed a closed conformation of 

the enzyme with a backbone rmsd of 1.65 Å amongst all Cα atoms when compared to the 

MtbAdoK-1 complex. Positive density was observed as well for a molecule of 4 bound to 

the ATP site. As in the case of the MtbAdoK-3 structure, we were only able to model the 

adenine moiety due to the absence of density of the ribose. 

 

 

 

Figure 2.9: Compound 4 bound to the active site of MtbAdoK. 
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The MtbAdoK-4 structure was very similar to the structures of compounds 2 and 

3 and the MtbAdoK-adenosine structure. The aforementioned binding interactions formed 

by residues Phe102, Phe116, Asp12, Asp257, Ser8, Asn52, Gly48, and Val49 were 

maintained. The most notable differences were found with residues Gln173 and Ser36’. 

Foremost, the critical H-bonds formed by NE2 and OE1 of Gln173 with N1 and N6 of 

compound 4 were not observed. Also, the H-bonds formed by OG of Ser36’ with N6 and 

N7 of compound 4 were not observed in the cocrystal structure. The lack of interactions 

with residues Ser36’ and Gln173 can be attributed to steric shielding by the 

methylmercapto group of 4. Detailed inspection of the binary complex revealed that the 

thiomethyl group of 4 was oriented towards a pocket formed by residues Gln173, Gln172, 

Met121, Phe116, Arg176, Leu38’ and Ser36’ (Figure 2.10). 

 

 

 

Figure 2.10: The methylmercapto group of 4 is accommodated in a new compound-

induced pocket formed by Arg176 (red). 
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Arg176 was observed to be oriented towards the solvent in the MtbAdoK-

adenosine and the crystals structures of compounds 2  and 3 (Figures 2.6-2.7). However, 

the MtbAdoK-4 structure revealed that Arg176 had clear electron density for the side 

chain oriented towards the methylmercapto of 4. The reorientation of Arg176 led to the 

formation of a new compound-induced pocket between residues Phe116, Gln172, Gln173, 

Arg176, Leu38’ and Ser36’. Consequently leading to extensive VDW and polar 

interactions between the aforementioned residues and the methylmercapto group (Figure 

2.10). Moreover, the compound-induced movement of Arg176 closed the “chimney-like” 

cavity we saw in the cocrystal structures of compounds 2 and 3 indicating that residues 

surrounding the N6-position are flexible (Figure 2.11). 

 

 

 

Figure 2.11: The “chimney-like” cavity we observed in the crystal structure of 2 is 

observed to be closed in the MtbAdoK-4 complex due to the conformational movement 

of Arg176. 
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The orientation and proximity (4.2 Å) of the cationic CZ of Arg176 with respect 

to the sulfur atom of the methylmercapto group suggests the possibility of cation-polar 

interactions. Finally, it should be noted that the methylmercapto group seemed to occupy 

a small portion of the pocket, indicating that bulky groups might be good candidates to 

further improve contacts at the N6-position. 

Just like compound 2, compound 4 displayed good potency (IC50 of 2.3 µM) in our 

enzymatic assay. The similar potencies can be attributed to the similar VDW and polar 

contacts formed by the substituents within their respective pockets. Although these two 

inhibitors have substitutions at different positions within the adenine ring, their mode of 

interaction with the protein is similar. That is to say, both substitutions prevented H-bonds 

with positions N1, N6, and N7 of the adenine moiety. Our structure-guided SAR studies 

revealed that the iodine group of 2 sterically hinders the interactions with the adenine 

atoms mentioned above and that are formed by residues Ser36’, Gln172, and Gln173. In 

contrast, the methylmercapto group of 4 not only sterically blocked the aforementioned 

interactions but also was accommodated in a new compound-induced pocket that 

comprised in part by residues from both chains of the MtbAdoK homodimer (Gln173, 

Gln172, Met121, Phe116, Arg176, Leu38’ and Ser36’). It should be noted that compound 

2 has been reported to be a very potent inhibitor of hAdoK (KihAdoK ~ 30 nM and KiMtbAdoK 

~ 210 nM).186 The different degrees of potencies can be attributed to the way the 2 interacts 

with the enzymes. In our MtbAdoK-2 complex, the compound is shown to be partially 

solvent exposed due to the presence the “chimney-like” cavity. In contrast, the previously 

solved hAdoK-2 structure shows that the compound is completely buried within the 
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hAdoK monomer due to a unique latch-like region of hAdoK comprised by residues 23-

57 of the enzyme’s lid-domain (Figure 2.12).213 In addition, the lack of selectivity of 

compound 2 can be attributed to the fact that the compound is buried within several 

conserved residues located in the active site. Overall the N7 vs. N6 substituents, 

exemplified by compounds 2-3 and 4, seemed to be accommodated in mutually exclusive 

pockets. The N7 pocket is formed by several conserved active site residues while the N6 

pocket is compound-induced and formed by unique MtbAdoK residues Gln172, Gln173, 

Ser36’ Leu38’ and flexible Arg176.  

 

 

 

Figure 2.12: hAdoK in complex with compound 2 (PDB ID 2i6a). 2 (purple) is completely 

buried within hAdoK due to the latch-like region (blue) of the lid domain. 
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Finally, to explore the potential for modifying the 5’-position and to evaluate if the 

ATP channel can be utilized as a viable route for drug design, we solved the crystal 

structure of 5’-aminoadenosine bound to MtbAdoK (Figure 2.13). As in the case of the 

compounds described above, compound 5 has been previously shown to possess inhibitory 

activity against AdoKs.208 The MtbAdoK-5 cocrystal was obtained in the same condition 

as the reported adenosine-bound structure and was refined to 1.75 Å resolution in the P3121 

crystal space group with one molecule in the ASU. The binary complex displayed a closed 

conformation of the enzyme with a backbone rmsd of 0.27 Å amongst all Cα backbone 

atoms when compared to the MtbAdoK-adenosine complex, and the inhibitor was bound 

in a very similar fashion as adenosine (Figure 2.14). Unlike, the cocrystal structures of 2, 

3 and 4; the MtbAdoK-5 structure had no density for a molecule of 5 bound to the ATP 

site. The interactions observed between 5 and MtbAdoK were remarkably similar to those 

previously described in the adenosine-bound complex.187 Indeed, the main difference was 

the interaction formed by the 5’-NH2; displaying a H-bond with OD2 of Asp257 (2.69 Å). 

Here, the enzymatic inhibition (IC50 of 8.0 µM) is attributed to the absence of the hydroxyl 

group that is required for catalysis.  
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Figure 2.13: MtbAdoK-2 structure showing the relative position of the iodotubercidin 

bound to the active site (orange) to that bound to the ATP site (magenta). The orientation 

and proximity of the molecules suggest that bisubstrate-like inhibitors might take 

advantage of both binding sites. 

 

 

 

Figure 2.14: Compound 5 bound to the active site of MtbAdoK.  
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Based on the preliminary structure-guided SAR efforts with compounds 2-5, we 

screened Merck’s focused library of ~ 140 nucleoside analogs with substitutions at N6, 

N7 and/or 5’ positions. The very potent compound identified in this screen (compound 6, 

IC50 of 196.5 ± 20.3 nM) had bulky thiophene group at position N6; validating the 

pharmacological relevance of N6-substituted analogs (Figure 2.15a). To investigate the 

structural basis of the ~ 10 X increase in potency when compared to compounds 2 and 4 

and to advance our structure-guided drug discovery efforts we crystallized the MtbAdoK-

6 binary complex. The cocrystal structure of compound 6 was solved by MR and refined 

to a resolution of 2.10 Å in the P212121 crystal space group with 2 molecules in the ASU 

(Figure 2.15b). As observed in the structures described above, the MtbAdoK-6 complex 

displayed a closed conformation with a backbone of 2.18 Å amongst all Cα atoms when 

compared to the MtbAdoK-1 structure with the compound. Unlike the structures of 

compounds 2-5, the MtbAdoK-6 complex revealed that the compound binds in a different 

orientation with respect to adenosine (Figure 2.15c). As in the case of the crystal structure 

complexes of compounds 2, 3, and 4; the MtbAdoK-6 structure showed electron density 

in the active site and the ATP site. 
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Figure 2.15: (a) Chemical structure of 6, (b) compound 6 bound to the active site of 

MtbAdoK and (c) superimposition of the crystal structures of 4 and 6. 

 

a b 
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The cocrystal structure of compound 6 showed that the interactions formed by 

residues Phe116, Phe102, Ser8, Asp12, Asn52, Asp257, Gly48 are maintained. The 

significant differences were found once more with residues Gln172, Gln173 and Ser36’. 

In fact, none of the H-bond interactions formed between Gln172 (with O4’, O5’ and N6), 

Gln173 (with N1 and N6) and Ser36’ (with N6 and N7) were observed. Instead, these 

residues were involved in weaker VDW interactions with the adenine ring and ribose 

rings. Unique contacts were formed by the thiophene moiety. This group was observed to 

be completely buried within the newly identified and compound-induced pocket that is 

formed by residues Phe102, Phe116, Gln172, Gln173, Arg176, Ser36’, Leu38’ and Phe37’ 

(Figure 2.16). Closer inspection of the pocket showed that Arg176 reorients once more to 

accommodate the bulkier thiophene group validating the plasticity of this residue. 

Furthermore, the orientation of the aromatic thiophene ring with respect to Phe116 

suggests the possibility of parallel-displaced π-staking interactions while the orientation 

of cationic CZ of Arg176 with respect to the sulfur atom of the thiophene group (CZ-S 

distance of 4.03 Å) suggests the possibility of T-shaped stacking interactions. In general, 

the extensive VDW interactions within the pocket coupled to the stacking interactions are 

the most likely molecular source behind the significant increase in potency of 6 when 

compared to compounds 2 and 4. Finally, the orientation of Arg176, when compared the 

MtbAdoK-4 structure, suggested that the “chimney-like” cavity we observed in the crystal 

structure complexes might be accessible if larger substitutions are utilized to persuade 

Arg176 to give access into cavity (Figure 2.17). 
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Figure 2.16: The thiophene of 6 is buried in the compound-induced cavity formed by 

Arg176 and residues from chain B (magenta). 

 

 

 

Figure 2.17: Superimposition of the cocrystal structures of 4 (blue) and 6 (gray) showed 

that Arg176 moves to accommodate the larger thiophene group of 6. 
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To further characterize compound 6, we determined the antimycobacterial and 

cytotoxic profile of the compound. The antimycobacterial assay with compound 6 showed 

a 50 % minimum inhibitory concentration (MIC50) of 25.6 ± 2.4 µM with a 50 % cytotoxic 

concentration (CC50) > 100 µM against HDF cells. Indicating that, in general, N6-

substituted adenosine analogs might show selectivity against MtbAdoK over the human 

counterpart.  

Overall, the structure-based SAR efforts showed that the N6, N7, and 5’ positions 

are indeed conducive to inhibition of the MtbAdoK enzyme through different molecular 

and structural means. The 5’-position provides a mechanistic approach to inhibition by 

taking advantage of the critical hydroxyl group required for catalysis and provides a 

platform to design inhibitors that might take advantage of the ATP channel. The crystal 

structures of the N7 and N6 substituted adenosine analogs showed that the substitutions 

sterically hindered conserved H-bonds formed by residues Gln172, Gln173 and Ser36’ 

with key positions N1, N6 and N7 of the adenine ring; all of which have been noted to be 

critical for substrate binding and recognition for human, rabbit and T. gondii adenosine 

kinase.188 The crystal structures of the N7-substituted analogs (2-3) revealed the presence 

of a “chimney-like” cavity that extends above the N6-position and that is formed by the 

MtbAdoK homodimer. However, the MtbAdoK-4 complex showed that the cavity is 

closed by a conformational movement of Arg176 to interact with the N6-substituent of 

compound 4 thereby forming a new and compound-induced pocket. Identification of the 

very potent compound 6 revealed that the bulky aromatic thiophene group is not only 
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completely buried within the newly identified pocket but also suggested that bulkier 

substitutions could open back up the “chimney-like” cavity.   

Despite offering inhibitory activity against MtbAdoK, the N7-substituents were 

observed to be buried in a pocket that is formed by several conserved active site residues 

and that the substituent itself is physically blocked by the dimerization event of MtbAdoK. 

Consequently, limiting medicinal chemistry efforts to the conserved active site. In 

contrast, the N6-position offers a better route for structure-guided drug design by 

providing the possibility of exploiting many contacts formed by the unique 

oligomerization state of MtbAdoK. In addition, it is possible that the presence of this 

cavity is the structural basis behind the reported higher degree of specificity conferred by 

N6-substituted analogs when compared to hAdoK.192 Taken together, we hypothesized 

that chain extension via bulky substitutions at the N6-position might trigger a 

conformational change of Arg176 thereby opening the “chimney-like” thus providing a 

unique route to increase potency and selectivity. 

We next set out to synthesize a series of N6-substituted adenosine analogs. 

Synthesis of the novel N6-adenosine analogs (7–18) are shown in Figure 2.18. Starting 

from the known 6-chloro-9H-purine A1 and TBS protected A2, 4-biphenyl and 4-Br-

phenylpiperazinyl moieties were introduced by substitution in EtOH to afford B1 and B2 

that was converted to variety of 4-arylphenyl (R) piperazine by using different arylboronic 

acids followed by removal of acetonide with/without TBS group gave the triol adenosines, 

7, 9, 10, 12, 13, 14, 16 and 18 respectively.214-215  
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The cyclopentane 15 was directly synthesized from (1R,2S,3R,5R)-3-(6-chloro-

9H-purin-9-yl)-5-(hydroxymethyl)cyclopentane-1,2-diol A3 without alcohol 

protection.216 C-C bond at 6-position of purine was formed by Suzuki-Miyaura or 

Sonogashira cross-coupling to lead to alkyne analogs 11 and 17. To the tri-acetyl protected 

7-Cl-imidazopyridine A4, C-N coupling in the presence of 2nd generation RuPhos 

precatalyst proceeded smoothly and global deprotection of acetyl groups by ammonium 

hydroxide gave the triol 8 (Figure 2.18).217 
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Figure 2.18: Reagents and conditions for chemical synthesis. (a) TBSCl, imidazole, 

DCM, 15 °C, 17 h, 99% (b) 1-([1,1'-biphenyl]-4-yl)piperazine or 1-(4-

bromophenyl)piperazine, DIEA, EtOH, 70–80 °C, 17 h, 13–90% (c) ArB(OH)2, K3PO4, 

2nd generation XPhos precatalyst, THF/H2O, 70 °C, 17 h, 49–87% (d) TFA, THF/H2O, 

15–25 °C, 2–17 h, 13–67% (e) 4,4,5,5-tetramethyl-2-(4-(phenylethynyl)phenyl)-1,3,2-

dioxaborolane, K3PO4, XPhos Pd G2, THF, 70 °C, 12 h, 95% or 4-ethynyl-1,1'-biphenyl, 

Cs2CO3, CuI, 2nd generation XPhos precatalyst, CH3CN, 90 °C, 17 h, 27% (f) 1-([1,1'-

biphenyl]-4-yl)piperazine, Cs2CO3, 1-([1,1'-biphenyl]-4-yl)piperazine, 2nd generation 

RuPhos precatalyst, tert-Amyl-OH, 100 °C, 17 h, 50% (g) NH4OH, MeOH, 15 °C, 24 h, 

21%. 
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All of the synthesized adenosine analogs were characterized enzymatically against 

MtbAdoK and hAdoK. The compounds were also tested against Mtb and HDF cells to 

profile their antimycobacterial and cytotoxic properties, respectively (Figures 2.19, 2.20 

and Table 2.1). 

 

 

 

Figure 2.19: Adenosine scaffold showing the positions where medicinal chemistry was 

performed (R, R6, Y, Z). 
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Figure 2.20: R and R6 groups of synthesized adenosine analogs. 

 

 

Table 2.1: SAR data for synthesized adenosine analogs with substitutions at position 6. 
ID R or R6 Y Z MtbAdoK 

Ki (nM) 

hAdoK 

Ki (µM) 

MtbMIC50 

(µM) 

HDF CC50 

(µM) 

7 R O N 120.2 ± 0.98 n/a n/a n/a 

8 R O CH 16.3 ± 0.1 n/a n/a n/a 

9 R O N 18.5 ± 0.06 n/a n/a n/a 

10 R O N 18.9 ± 0.5 n/a ≥ 30.0 n/a 

11 R6  O N 19.9 ± 0.03 n/a ≥ 50.0 n/a 

12 R O N 21.3 ± 0.2 n/a n/a n/a 

13 R O N 23.0 ± 1.1 ≥ 15.1 n/a n/a 

14 R O N 25.5 ± 2.8 0.41 ± 0.07 ≥ 25.0 n/a 

15 R CH2 N 27.5 ± 3.5 n/a n/a n/a 

16 R O N 32.6 ± 0.3 1.6 ± 0.1 n/a n/a 

17 R6  O N 48.0 ± 0.6 n/a 1.7 ± 0.02 3.5 ± 0.4 

18 R O N 5.3 ± 0.07 an/a 4.0 ± 0.2 n/a 

 a Not applicable; no inhibition observed.  
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We began these efforts with compound 7. This compound showed excellent 

potency and selectivity against MtbAdoK when compared to hAdoK. We hypothesized 

that the piperazine group might lead to favorable contacts with flexible residue Arg176 

while the benzene ring could extend to the unique cavity thereby conferring selectivity. 

To investigate the structural basis of inhibition and selectivity of 7, we cocrystallized the 

compound with MtbAdoK. The crystal structure of the MtbAdoK-7 binary complex was 

solved by MR in the P41 crystal space group with two molecules in the ASU and refined 

to a resolution of 1.65 Å (Figure 2.21a-c). Like the structures described above, the 

MtbAdoK-7 complex displayed a closed conformation of the enzyme with a backbone 

rmsd of 1.68 Å amongst all Cα atoms when compared to the MtbAdoK-adenosine 

structure. Unlike the structures described above, the MtbAdoK-7 structure had no electron 

density for a compound bound to the ATP site. Overall, the interactions seen between the 

adenine ring and the ribose scaffold were very similar to those observed in the MtbAdoK-

adenosine complex. Interestingly, the most significant differences were found once more 

with residues Gln172, Gln173 and Ser36. Here, Gln173 and Ser36 were not observed to 

make any of the critical H-bonds with positions N1, N6, and N7 while Gln172 retains the 

H-bonds with O4’ of ribose (NE2-O4’ distance of 2.97 Å) and O5’ (NE2-O5’ distance of 

3.36 Å) but lacks the H-bond with N6. As in the case of the MtbAdoK-6 structure, 

superimposition of the crystal structure complexes of MtbAdoK-adenosine and 

MtbAdoK-7 showed that the bulky substitution of 7 causes the compound to bind in a 

different orientation with respect to adenosine with notable differences in crucial lid 

domain residues Asp12, Phe102 and Phe116 (Figure 2.21b). Here, the lid domain gap of 
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with respect to the MtbAdoK-adenosine complex was an average of 4.13 Å. We also 

observed that the phenylpiperazine forces Arg176 to open the “chimney-like” cavity by 

reorienting the residue back to the solvent. The crystal structure also showed that the 

piperazine group redirects the distal benzene group within the enzyme’s active site groove 

and that there was sufficient space to incorporate additional groups at the distal benzene 

ring to fully occupy the cavity (Figure 2.21c). 

 

 

 

       

Figure 2.21: Crystal structure complex of 7 bound to the active site of MtbAdoK. (a) 

Residues involved in close contacts with 7. Chain A is colored wheat, and chain B is 

colored blue. (b) The bulky substitution of 7 (blue) forces the compound to bind in a 

different orientation with respect to adenosine (gray; PDB ID 2PKM). (c) The bulky 

substituent forces Arg176 open the cavity and the distal benzene ring is reoriented back 

into the active site groove that is formed by residues of chain A (heteroatom) and chain B 

(magenta). 

 

a b 
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Figure 2.21: Continued 

 

 

As noted above, another position of interest was the 5’-position of the ribose 

scaffold. The preliminary structure-based SAR with compound 5 suggested that 

bisubstrate-like inhibitors might be able to take advantage of the ATP channel. To 

investigate if the ATP channel is a viable route for drug design, we synthesized several 

5’-substituted adenosine analogs (Figure 2.22 and Table 2.2). Despite having sufficient 

space to accommodate large groups, bulky phenyl substituents the 5’-position resulted in 

inhibitors with negligible inhibitory activity. Indeed, only one of the synthesized 

compounds displayed some measurable inhibitory activity against the enzyme with 53.0 

% inhibition at 12.5 µM of the compound (Figure 2.22 and Table 2.2). The lack of 

c 
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inhibitory activity of these analogs may be due to suboptimal angles adopted by the 5’ 

substituent. 

 

 

 

Figure 2.22: Chemical structures of synthesized adenosine analogs with substitutions at 

the 5’-position. 
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Table 2.2: SAR data for synthesized adenosine analogs with substitutions at the 5’-

position. 

ID MtbAdoK 

IC50 

(µM) 

mc27000 

MIC50 

(µM) 

19 ≥ 12.5 an/a 

20 n/a ≥ 50.0 

21 n/a n/a 

22 n/a n/a 

23 n/a n/a 

24 n/a n/a 
a Not applicable; no inhibition observed.  

 

 

The MtbAdoK-7 complex suggested that further extension at the distal benzene 

group could be accommodated in the cavity and that rigid substituents at the N6-position 

might orient the substituent within the cavity. Based on these observations, we synthesized 

compounds 8-17. As shown in Table 2.1, all compounds displayed high potency against 

MtbAdoK with Ki values ranging from ~ 16-48 nM. Overall, the SAR results are in 

accordance previous observations where it was noted that N6-substituted adenosine 

analogs displayed a higher degree of specificity to MtbAdoK when compared to hAdoK 

(Figure 2.23).192, 218 It is currently unknown how Mtb uptakes and discriminate between 

these series of compounds. 
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Figure 2.23: Summary of SAR results for compounds 8-17. Compound 7 bound to the 

active site of MtbAdoK. Based on the MtbAdoK-7 complex, compounds 8-17 where 

synthesized. Chain A is colored white, and chain B is colored magenta. 

 

 

Compounds 11 and 17 were designed to test different orientations of the N6-

substituent within the cavity. These compounds possess a rigid triple bond instead of the 

flexible piperazine group. Since compound 17 displayed antimycobacterial activity, we 

decided to determine the cocrystal structure of the MtbAdoK with compound 17. The 

crystal structure of the MtbAdoK-17 complex was solved by MR in the P41 crystal space 

group with two molecules in the ASU and refined to a resolution of 2.35 Å (Figures 2.24a-

c). The binary complex displayed a closed conformation of the enzyme with a backbone 

rmsd of 1.63 Å amongst all Cα atoms when compared to the MtbAdoK-adenosine 

structure. Just like the MtbAdoK-7 structure, the MtbAdoK-17 binary complex had no 

electron density for another molecule of 17 bound to the ATP site. Superimposition of the 

IMPROVE 

CONTACTS 

Substitution of 

O4’ with CH2 led 

to a decrease in 

potency when 

compared to 

susbtitution of 

endocyclic 

N1with CH (8 vs. 

15). 

OPTIMIZE 

ORIENTATION TO THE 

CAVITY 

11 and 17 lacked the 

piperazine group. The 

compounds contain a rigid 

triple bond at different 

positions. Higher enzymatic 

activity was observed with 

compound 11, while 

compound 17 showed 

antimycobacterial activity. 

INCREASE SELECTIVITY 

AND POTENCY 

Addition of substituent to 

distal phenyl group exhibited 

greater inhibitory activity 

against MtbAdoK (8-10, 12-

16). Hydrophobicity also 

preferred at this position   (8-

10, 18 vs. 12-14, 16). 
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crystal structure complexes of compounds 17 and adenosine also showed that the bulky 

N6-substitution of 17 causes the compound to bind in a different orientation with respect 

to adenosine; leaving lid domain gap of 2.29 Å when compared to the MtbAdoK-

adenosine complex (Figure 2.24c). 

 

 

    

Figure 2.24: Crystal structure complex of compound 17 bound to the active site of 

MtbAdoK. (a) Residues involved in close contacts with 17. (b) The large bulky 

substitution gets accommodated in the “chimney-like” cavity. (c) Compound 17 (blue) 

binds in a different orientation with respect to adenosine (gray). (d) Superimposition of 

crystal structure complexes of 17 (blue) and 7 (gray). Chain B residues forming the distal 

part of the “chimney-like” cavity colored magenta while chain A residues are colored by 

heteroatom. 
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Figure 2.24: Continued 

 

 

The MtbAdoK-17 binary complex showed that the compound binds to the active 

site of the enzyme forming similar contacts with the protein as observed with the 

adenosine-bound complex (Figure 2.24a). Structural differences were found again with 

residues Gln172, Gln173 and Ser36’. Gln172 was seen to form a weak H-bond with O4’ 

(NE2-O4’ distance of 3.44 Å) while Gln173 formed a weak H-bond with endocyclic N1 

of the adenine ring (NE2-N1 distance of 3.11 Å). Key residue Ser36’ was not found to 

make any interactions with compound 17. The major difference between the MtbAdoK-7 

and the MtbAdoK-17 structures is the orientation that the N6-substituent adopts as it goes 

into the “chimney-like” cavity. The cocrystal structure of the MtbAdoK-7 complex 

c 
d 
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suggests that the piperazine containing adenosine analogs might reorient to the active site 

groove that is composed of hydrophobic residues from both chains including Ala175.A, 

Leu38.B, Leu35.B, Phe37.B and polar residues Ser36.B and Arg176.A. In contrast, the 

rigidity imparted by the triple bond of compound 17 limits the substitution to adopt a bond 

angle of 180° with respect to the N6-position. Consequently, one side of the distal benzene 

ring of 17 was seen to be oriented towards backbone and main chain atoms of Phe37.B 

while the other side was observed to partially solvent (Figure 2.24d).  

Finally, based on the chemistry and structure-guided SAR efforts with compounds 

7-17 we synthesized compound 18. This compound is an analog of compounds 8 and 15. 

The major difference is that 18 contains endocyclic atoms N1 and O4’ which we observed 

in the structures described above that they were involved in key H-bond interactions with 

residues Gln172 and Gln173, and the SAR suggested to be relevant in potency. Indeed, 

compound 18 was our most potent derivative, exhibiting a Ki of ~ 5 nM against MtbAdoK, 

no cytotoxicity, no activity against hAdoK and a MIC50 of ~ 4.0 µM against Mtb. To 

further characterize this very potent compound, and as a representative of the group, we 

performed steady-state kinetic experiments on compound 18 to determine the mode of 

inhibition. As expected, we found that increasing the concentration of adenosine in the 

presence of a fixed inhibitor concentration, led to an increase of the Km; consistent with a 

competitive mode of inhibition. The Km value for adenosine determined with our 

enzymatic assay was 1.71 ± 0.02 µM, well in agreement with previously reported values 

of 0.8-3.4 µM.186, 219  
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Taken together, the observed differences in binding modalities of reorientation 

within the enzyme vs. solvent exposed might explain the overall higher potency of the 

piperazine substituted analogs (Table 2.1). Furthermore, the predominantly hydrophobic 

character of the “chimney-like” cavity goes in accordance with the SAR studies were 

hydrophobic substitutions displayed a higher degree of potency when compared to the 

polar substituted analogs (Table 2.1). 

2.4 Conclusions and future work 

These studies represent a structure-guided approach to the rational design of very 

potent MtbAdoK inhibitors with low micromolar activity against MtbAdoK. Furthermore, 

our studies offer a structural explanation behind the specificity of previously reported N6-

substituted adenosine analogs.192, 208-209, 218 That is, substitutions at the N6-position of the 

adenine scaffold might be accommodated in a compound-induced pocket that is formed 

within the unique oligomerization state of MtbAdoK when compared to hAdoK and other 

eukaryotic adenosine kinases. Unlike the crystal structures of compounds 2-6, the crystal 

structures of 7 and 17 did not display any electron density for a compound bound to the 

ATP site suggesting that there might be a size threshold conferring specificity to the active 

site vs. ATP site. Therefore, future strategies to design bisubstrate-like inhibitors should 

focus on small substituents at the N6-position with bulkier groups at the 5’-position.  

The crystal structures of the bulky N6-adenosine analogs suggested that the 

reorientation conferred by the piperazine group might lead to more favorable contacts with 

the enzyme thereby leading to a higher degree of potency. The predominantly hydrophobic 

character the cavity goes in accordance with the SAR studies demonstrating that 
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hydrophobic substitutions were preferred at the N6-position. Moreover, the lid domain 

gaps and different orientation of compounds 6, 7 and 17 with respect to the MtbAdoK-

adenosine structure suggest that bulky substitutions at position N6 might exert its 

inhibitory effects by sterically preventing full lid domain closure. Overall, we showed that 

the unique “chimney-like” cavity formed by the unique oligomerization state of MtbAdoK 

could be utilized as a canvas for future medicinal chemistry efforts to further improve 

potency and selectivity. 
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3. DISCOVERY, BIOCHEMICAL AND STRUCTURAL CHARACTERIZATION 

OF NOVEL UNCOMPETITIVE INHIBITORS AGAINST MYCOBACTERIUM 

TUBERCULOSIS ADENOSINE KINASE 

 

 

3.1 Background and significance 

 Mycobacterium tuberculosis, the etiological agent of tuberculosis, continues to 

represent a significant global burden to human health. As of 2015, 10.4 million people, 

including an estimated of 1 million children; fell ill to the disease and approximately 2 

million of these infected persons died from it. Worldwide, around 2 billion people are 

living with latent tuberculosis. If untreated, around 5-10 % of these infected individuals 

will develop active tb during their lifetime. This problem is only exacerbated by the rapid 

emergence of multi-drug resistant and extensively drug resistant tb coupled to the high 

incidence of HIV-Mtb coinfection. As a result, there is a worldwide necessity to develop 

new antimicrobial agents with novel mechanisms of action and new molecular targets.30 

The purine salvage pathway is a promising pathway for drug development within 

mycobacteria. Recent evidence suggests that this pathway might play a crucial role in 

mycobacterial latency. Most of the enzymes involved in this pathway including inosine 

monophosphate dehydrogenase, adenylate kinase, adenylosuccinate synthase, guanylate 

kinase, hypoxanthine-guanine phosphoribosyltransferase, guanosine monophosphate 

synthase, adenylosuccinate lyase, and adenosine kinase have been shown to be essential 

for the survival of the bacilli in vivo and in vitro.182-183 Purine nucleotides can be 
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synthesized from simple anabolites via the de novo pathway or can be synthesized by the 

action of the purine salvage pathway enzymes by turning preformed nucleobases into their 

corresponding nucleotides.184 

Purine metabolism in Mtb is not completely understood. Nevertheless, it is known 

that Mtb possesses all the enzymes required for the de novo and salvage pathways. 

Although it is currently unknown what internal or external stimuli triggers Mtb to prefer 

one route over the other, it is possible that Mtb might prefer the salvage pathways during 

its latent phase of infection. By switching to the salvage pathway, Mtb can bypass up to 

eleven chemically demanding steps thus making the salvage pathway the most likely 

source of purine nucleotides within the hostile and nutrient deprived microenvironment 

encountered by tb during latency.220 

MtbAdoK belongs to the purine salvage pathway within mycobacteria. In Mtb, 

AdoK catalyzes the phosphorylation of adenosine to AMP in a Mg2+ and ATP dependent 

manner. The MtbAdoK structure has been solved at high-resolution with the substrate 

(adenosine) and without substrate (apo) at 1.5 Å and 1.9 Å resolutions respectively. The 

crystallographic data support what has been previously observed in other AdoKs, which 

is that upon substrate binding the lid-like domain undergoes a substantial conformational 

change to form the closed conformation of the enzyme.187 Human adenosine kinase only 

shares 16.0 % sequence identity with MtbAdoK. Despite this, their overall structural 

topology is similar; consisting of a large domain and a smaller lid-like domain.190 

However, as opposed to hAdoK, MtbAdoK is a functional dimer while the former is a 

monomer in solution. In vitro and in vivo data have shown that MtbAdoK is essential 
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when tb is grown under cholesterol as a carbon source and that the gene is required for 

Mtb survival in critically infected mouse models, respectively; making MtbAdoK an 

attractive target. To the best of our knowledge, all drug discovery efforts to date have 

focused on adenosine analogs as competitive inhibitors of MtbAdoK or adenosine analogs 

as substrate surrogates for the production of toxic metabolites.192, 208-209, 218, 221 

In this work, we report the discovery, biochemical, biological and structural 

characterization of a series of dihydro spiro derivatives as novel non-nucleoside inhibitors 

of MtbAdoK. We also report the crystal structures of MtbAdoK in complex with the novel 

inhibitors at resolutions of 2.75-2.80 Å. Moreover, kinetic experiments demonstrate that 

the inhibitors act as uncompetitive inhibitors of the enzyme and our in cellulo experiments 

showed that the compounds have nanomolar potency against Mtb. In addition, selectivity 

studies showed a higher degree of activity against MtbAdoK when compared to hAdok. 

Finally, crystallographic and mutagenesis studies were employed to characterize and 

validate the novel binding site. 

3.2 Material and methods 

3.2.1 Cloning, expression and purification of recombinant MtbAdoK, MtbAdoK 

mutants, and hAdoK 

 The WT MtbAdoK gene (Rv2202c) was amplified by polymerase chain reaction 

from total genomic DNA of Mycobacterium tuberculosis H37Rv. The following 

oligonucleotides were used: 5’-GGAATTCCATATGGTGACGATCGCGGTAACC-3’ 

and 5’-CTTAAGCTTCTAGGCCAGCAC-3’, respectively. The amplified DNA fragment 

was digested with NdeI and HindIII restriction enzymes (New England BioLabs) and sub-
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cloned into the corresponding restriction sites of the pET28b vector containing an N-

terminal TEV cleavable His-tag. MtbAdoK mutants were generated using Agilent 

technologies QuickChange site-directed mutagenesis kit and cloned similarly into pET28b 

vector containing an N-terminal TEV cleavable His-tag. The MtbAdoK mutants were 

constructed utilizing the following mutagenic oligonucleotides for the polymerase chain 

reaction: for R176L 5’-CAGCAGCTGGCGCTGCTGTCGGGTGAG-3’ and for R176A 

5’-CAGCAGCTGGCGCTGTCGGGTGAG-3’. Finally, for the active site mutant Q172P; 

5’- GCCGATCCGTCTCCGCAGCTGGCGAGG. Human adenosine kinase (hAdoK) 

gene was PCR amplified from clone HsCD00042641 (DNASU plasmid repository) 

utilizing the same procedure and oligonucleotides as explained in section 2.2.1. In all 

cases, gene fidelity was confirmed by DNA sequencing, and sequenced plasmids were 

used to transform E.coli BL21 (DE3) cells for protein expression. For protein expression, 

cell cultures were grown in LB medium at 37.0 °C. Cells were induced with 0.5 mM 

isopropyl β-D-1-thiogalactopyranoside (IPTG) when the cell density reached A600 ~ 0.6–

1.0 Finally, cell cultures were incubated for 18 h at 18.0 °C before harvesting. 

Harvested cells were lysed using a French press, and the lysate was centrifuged at 

17,000 rpm for 1 h. Recombinant MtbAdoK, hAdoK and MtbAdoK mutants were purified 

by using a HisTrap HP nickel column (GE Healthcare). Purification buffers A and B 

contained, 50.0 mM HEPES, pH 7.5, 500.0 mM NaCl, 500.0 mM imidazole (buffer B 

only), and 5.0 % glycerol. For crystallization studies, MtbAdoK was dialyzed in 20.0 mM 

HEPES, pH 7.5, 50.0 mM NaCl, 2.0 mM DTT and 5.0 % glycerol. For enzymatic assays, 

the proteins were dialyzed in 50.0 mM HEPES, 50.0 mM NaCl, 100.0 mM KCL, 4.0 mM 
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DTT and 20.0 % glycerol. Finally, the proteins were aliquoted and stored in -80.0 ˚C for 

subsequent crystallization and enzymatic assays. 

3.2.2 Dynamic scanning fluorimetry (DSF) high-throughput screening assay  

 A total of 2,534 compounds from our in-house collection of whole cell active 

compounds was screened in a 96-well format using the DSF assay described by Niesen et 

al.222 In short, the samples contained a final concentration of MtbAdoK of 3.0 µM, 100.0 

mM HEPES pH 7.5, 50.0 µM of compound dissolved in 100.0 % DMSO and a final 

concentration of 5X of SYPRO® ORANGE dye. Reaction volume across the 96-well PCR 

plate was 20.0 µL. Positive and negative control reactions were carried out similarly but 

using adenosine and DSMO, respectively. Following sample preparation, the 96-well plate 

was covered with an UltraClear film (Axygen Scientific). The assay was performed on 

Agilent Technologies Mx3005P qPCR system by using a temperature gradient of 25˚-99 

˚C at 0.5 ˚C per minute and monitoring the fluorescence emission of the SYPRO 

ORANGE® (excitation = 492.0 nm, emission = 610.0 nm). 

3.2.3 IC50, steady-state kinetics, and Ki determination  

IC50 and steady-state kinetics studies were performed by monitoring the conversion 

of NADH to NAD+ (εNADH = 6.22 × 103 M−1 cm−1) using the pyruvate kinase-lactate 

dehydrogenase coupled assay system in a Varioskan™ Lux multi-mode plate reader. The 

reaction was started by the addition of 60.0 nM of enzyme into a final volume of 200.0 

µL master mix containing 50.0 mM HEPES pH 7.5, 50.0 mM KCl, 6.0 mM MgCl2 (4.0 

mM MgCl2 for hAdoK), 3.0 mM ATP (2.0 mM ATP for hAdoK), 200.0 µM NADH, 1.0 

mM phosphoenolpyruvate, 1.0 mM DTT, 12.0 U/mL pyruvate kinase, 12.0 U/mL lactate 
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dehydrogenase and 15.0 µM adenosine. IC50 values for each compound were determined 

by varying the concentration of inhibitor at a fixed concentration of enzyme and by fitting 

the dose response data into the four-parameter logistic curve (Equation 3.1) model of 

GraphPad prism 7.02, as follows: 

                       𝑌 = 𝑌𝑚𝑖𝑛 +
(𝑌𝑚𝑎𝑥 −  𝑌𝑚𝑖𝑛 )

(1 + 10(𝑙𝑜𝑔𝐼𝐶50−𝐼)𝐻) 
⁄                             (3.1) 

Where I is the logarithm of inhibitor concentration, H is the Hill slope and Y, Ymax and 

Ymin are the specific activity, maximum specific activity and minimum specific activity, 

respectively. Kinetic assays for MtbAdoK were performed essentially as described above 

with the following exceptions: the master mix contained 60 nM MtbAdoK and the reaction 

was started by the addition of varying concentrations of adenosine in the presence of 

constant concentrations of dihydro spiro compound (0.0 µM, 12.0 µM, 24.0 µM). Kinetic 

data was obtained by fitting the initial velocity data into GraphPad Prism 7.02 nonlinear 

regression function of Michaelis-Menten model (Equation 3.2), as follows: 

                                                        𝑉𝑜 =
(𝑌𝑚𝑎𝑥)[𝑆] 

(𝐾𝑚 + [𝑆])⁄                                             (3.2) 

Where Vo is the initial velocity, Ymax is the maximum specific activity, S is the substrate 

concentration, and Km is the Michaelis-Menten constant. Specific activity values for 

kinetic and IC50 measurements were determined using (Equation 3.3): 

                                         𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
(

𝑎

𝜀𝑁𝐴𝐷𝐻∗𝑏
𝑑)

𝑐
⁄

                                    (3.3) 

Where a is the change in absorbance over time, εNADH is the millimolar extinction 

coefficient of NADH, b is the pathlength, d is the dilution factor of the enzyme in the assay 

and c is the concentration of enzyme stock used for the assay. 
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 Finally, the Ki was determined by using the Cheng-Prusoff relationship for uncompetitive 

inhibition (Equation 4).197-198  

                              𝐾𝑖 =  
𝐼𝐶50

(
𝐾𝑚

[𝑆]+1
)

⁄                                         (3.4) 

  In all cases, the compounds were serially diluted in 100.0 % DMSO and added to 

the enzymatic reaction to a final concentration of 2.5 % DMSO. Unless otherwise stated, 

all assays were performed in duplicates, and the error is reported as plus or minus standard 

deviation. 

3.2.4 Crystallization, crystal dehydration, data collection and crystal structure 

determination 

Purified MtbAdoK was concentrated to 18.0 mg/mL before crystallization trials. 

MtbAdoK-dihydro spiro cocrystals were obtained by means of the microbatch under oil 

crystallization technique. The screening was performed in a 96-well format using the 

MRC under oil 96-well microbatch plates (Swissci) and TTP Labtech’s Mosquito Crystal 

robot system to screen over 800 different crystallization conditions per crystallization 

attempt. Crystals were obtained at 4.0 °C by mixing 800.0 nL of concentrated protein 

solution, pre-incubated for 1 h at 25.0 °C with 1.0 mM of the compound, with 400.0 nL 

of 1.6 M sodium citrate tribasic dihydrate pH 6.5 under Al’s oil (Hampton research). 

Before data collection, crystals were cryoprotected with Paratone (Hampton research) and 

flash frozen in liquid nitrogen. In some cases, crystal dehydration was necessary to 

improve X-ray diffraction quality. Dehydration solution was composed of 25.0 µL of 

100.0 % glycerol and 75.0 µL of crystallization condition and was performed at 4.0 °C for 
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2-4 h prior to cryoprotection and data collection. X-ray diffraction data was collected at 

Argonne’s National Lab Advanced Photon Source beamlines 19ID and 19BM. Diffraction 

data was indexed, scaled and integrated into P62 space group using HKL2000.199 Initial 

phases were obtained by molecular replacement in MOLREP  using the high-resolution 

structure of apo MtbAdoK with PDB accession code 2PKF.200 Refinement was performed 

in PHENIX followed by iterative runs of inspection and manual modification using 

coot.201-202 Ligand model and restraint files were created in ELBOW form the PHENIX 

suite and fitted into the electron density using COOT. Images and figures were rendered 

using Molsoft ICM, Chimera and PyMOL.203-205 

3.2.5 Antitubercular assay 

Antitubercular testing and MIC50 determination was performed using the MABA 

assay in a 96-well format as previously described.206-207 Starter culture of Mtb mc27000 

was grown in 7H9 media supplemented with OADC (Middlebrook), 0.5 % dextrose, 0.085 

% NaCl, 0.05 % Tyloxapol (Sigma), 0.25 µg/mL malachite green (Sigma) and 25.0 µg/mL 

pantothenate. Once cells reached an optical density of OD600 ~1.0, cells were diluted to an 

OD600 of 0.01 in the same media composition without OADC. For acetate-supplemented 

media, once cells reached the aforementioned OD600, cells were diluted to an OD600 of 

0.01 in 0.5 % sodium acetate (Sigma), 2.0 mM MgSO4 (Sigma), 0.1 mM CaCl2 (Sigma), 

0.05 % Tyloxapol, 0.25 µg/mL malachite green and 25.0 µg/mL pantothenate. Compounds 

were serially diluted in 100.0 % DMSO and added to the cells to a final concentration of 

DMSO of 2.5 %. Plates were incubated for 10 days (30 days for acetate-supplemented 

media) prior to staining with resazurin (Sigma). After staining, plates were incubated for 
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2 additional days (7 additional days for acetate-supplemented media) for developing. 

Finally, developed plates were read using a POLARstar Omega spectrophotometer (BMG 

Labtech) and by monitoring the fluorescence emission of resazurin (excitation = 570.0 

nm, emission = 585.0 nm). In all cases, rifampicin was used as a negative control and the 

experiments were performed in duplicates were the reported error represents plus or minus 

standard deviation. 

3.2.6 Human dermal fibroblast cytotoxicity assay 

Human dermal fibroblasts (HDF) were purchased from ATCC (Manassas, VA). 

HDF cells were cultured in DMEM (Lonza) media supplemented with 10.0 % fetal bovine 

serum (Lonza) and penicillin/streptomycin (Lonza). For the cytotoxicity assay, compound 

stocks were serially diluted in phosphate-buffered saline (PBS) and 10.0 % DMSO. On 

the day of assay, HDF cells were trypsinized, counted and resuspended at a concentration 

of 64,000 cells/ml in media. Cells were plated, overlaid with the compound serial dilutions 

and incubated at 37.0 °C.  After 48 h, resazurin dye was added and the assay plates cultured 

for another 24 h. The next day the absorbance of the resazurin was measured on a 

microplate reader to assess cell death. Cytotoxicity was determined as a percent of dead 

cells versus living. All assays were performed in triplicates and the error reported 

represents plus or minus standard deviation. 

3.3 Results 

3.3.1 Discovery and enzymatic testing of dihydro spiro compounds 

Dynamic scanning fluorimetry (DSF) was used as the primary platform to screen 

in a 96-well format our in-house library of whole-cell active compounds at a single 
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concentration of 50.0 µM.222 Hits were identified as compounds that had a thermal shift 

equal or greater than the positive control (Table 3.1). 

 

 

Table 3.1: DSF data for lead compound 1. 

Average Tm of 

negative control 

(˚C) 

Average Tm of 

positive control 

(˚C) 

MtbAdoK-1 Tm 

(˚C) 

ΔTm 

(˚C) 

52.70 55.72 55.0 3.02 

 

 

Lead compound 1 was the only non-nucleoside-like hit identified. Several analogs 

(compounds 2-4) were purchased and tested enzymatically against MtbAdoK and hAdoK 

(Figure 3.1 and Table 3.2). The compounds exhibited inhibition constants between 5.1-

19.6 µM. Compounds 3 and 4, with electron withdrawing substituents at position 4 of the 

benzopyrrole-like ring, displayed a 2-fold and 3.8-fold increase in potency when 

compared to lead compound 1, respectively.  
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Figure 3.1: Structure of lead dihydro spiro compound 1 and analogs (2-4). 
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Table 3.2: Enzymatic assay parameters of dihydro spiro compounds. 

ID MtbAdoK Ki 

(µM) 

hAdoK Ki 

(µM) 

1 19.6 ± 1.8 n/a 

2 16.7 ± 1.9 n/a 

3 9.8 ± 1.0 n/a 

4 5.1 ± 0.9 n/a 
Error is reported as ± SD of 2 independent experiments. 

n/a; no activity detected 

 

 

As a representative of all the compounds, we evaluated the mechanism of 

inhibition of compound 2 against MtbAdoK. As observed in Table 3.3 and Figure 3.2, 

increasing the concentration of substrate in the presence of fixed inhibitor concentrations 

results in a decrease of the Km and specific activity values; consistent with uncompetitive 

inhibition. In addition, the Lineweaver-Burk plot shows a series of parallel lines; 

consistent with uncompetitive inhibition. Therefore, the compounds bind to and inhibit, 

the enzyme-substrate complex. The Km value for adenosine determined with our enzyme 

coupled assay was 1.66 µM with a specific activity of 4.23 µmol/min/mg. This is in good 

agreement with previously reported values of 0.8-3.4 µM for Km and 3.7-4.0 µmol/min/mg 

for specific activity.186 

 

 

Table 3.3: Kinetic parameters for compound 2. 

[2] (µM) Km (µM) Specific activity 

(µmol/min/mg) 

0.0 1.66 ± 0.19 4.23 ± 0.02 

12.0 0.49 ± 0.05 1.79 ± 0.03 

24.0 0.35 ± 0.07 1.28 ± 0.17 
Error is reported as ± SD of 3 independent experiments. 
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Figure 3.2: Lineweaver-Burk plot of compound 2 vs. adenosine. Initial velocity data was 

transformed to linear analysis to evaluate inhibitor type. The error bars represent ± SD of 

3 experiments. 

 

 

3.3.2 Antimycobacterial and cytotoxic evaluation of dihydro spiro compounds 

The antimycobacterial activity of the dihydro spiro compounds was evaluated 

against mc27000. This Mtb strain is a BL2-approved double deletion mutant (ΔpanCD and 

ΔRD1) that was created as a potential vaccine strain.223 Initial testing was carried out in 

0.2 % acetate-supplemented M9 media to mimic a lipid-driven metabolism and in 0.2 % 

dextrose-supplemented 7H9 media to simulate a carbohydrate-driven metabolism. All 

compounds were freshly dissolved from solid material before the assays. Preliminary 

testing with compound 2 indicated a 29.6-fold increase in potency when tested on a 

dextrose-supplemented media (Figures 3.3a-b). Based on the initial tests, we opted to 

perform the rest of antimycobacterial assays in a dextrose-supplemented 7H9 media. All 

compounds exhibited sub-micromolar activity against Mtb mc27000 with MIC50 ranges of 
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508.3-829.2 nM indicating high potency for lead compounds (Table 3.4). Since the 

adenosine kinase gene is mostly found in eukaryotic organisms, we tested the compounds 

against HDF cells. Only compound 2 displayed cytotoxic activity with a CC50 of 10.4 µM, 

whereas compounds 1, 3 and 4 had no effect against HDF cells (Table 3.4 and Figure 3.4a-

d). 

 

 

                   

Figure 3.3: Comparison of the potency of compound 2 when mc27000 is grown on a 

dextrose-supplemented 7H9 or acetate-supplement M9 media. (a) Dose response curve of 

compound 2 when tested in dextrose-supplemented (b) acetate-supplemented media to 

mimic a carbohydrate, and fatty acid derived catabolism, respectively. In all cases, 2 was 

tested from 0-100 µM. The data is normalized to the 0 µM (DMSO) control, and the error 

bars represent the SD of 3 independent experiments. 

 

 

Table 3.4: Antimycobacterial and cytotoxic profile of dihydro spiro compounds. 

ID MIC50-mc27000 

(nM) 

CC50-HDF cells 

(µM) 

1 829.2 ± 121.7 n/aa 

2 825.5 ± 98.6 10.4 ± 1.5 

3 517.5 ± 40.8 n/a 

4 508.3 ± 30.8 n/a 
Error is reported as ± SD of 3 independent experiments. 
a Not applicable; no cytotoxicity detected. 

a 
b 

MIC50 = 1.35 ± 0.13 

uM 

MIC50 = 40.0 ± 1.9 

uM 
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Figure 3.4: Cytotoxicity profiles of dihydro spiro compounds when tested against HDF 

cells. (a) 1, (b) 2, (c) 3, (d) 4. Only compound 2 displayed some cytotoxicity against HDF 

cells. In all cases, the compounds were tested from 0-100 µM.The data is normalized to 

the 0 µM (DMSO) control, and the error bars represent the ± SD of 3 independent 

experiments. 

 

 

3.3.3 Structural characterization of the MtbAdoK-dihydro spiro complex 

 To further explore the molecular details behind the novel uncompetitive inhibitors, 

we sought to determine the cocrystal structures of the MtbAdoK-dihydro spiro complex. 

a 

c 

b 

d 
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Thousands of crystallization trials utilizing conventional vapor diffusion methods were 

attempted to no avail. Cocrystals of the binary complex were only possible when using 

the microbatch under-oil crystallization technique, and only cocrystals for compounds 2,  

3 and 4 were obtained.224 Compound 2 cocrystals diffracted poorly (6-7 Å). In contrast, 

compounds 3 and 4 readily diffracted to 2.7-3.0 Å (Table 3.5). 

 

 

Table 3.5: Crystal data collection and refinement statistics. 

Statistic MtbAdoK-2 MtbAdoK-3 MtbAdoK-4 

Data collection 

Space Group P62 P62 P62 

Cell Dimensions 

a, b, c (Å) 149.70, 149.70, 

66.27 

150.39, 150.39, 

65.57 

150.41, 150.41, 

65.88 

α, β, γ (°) 90, 90, 120 90, 90, 120 90, 90, 120 

Resolution (Å) 36.2 - 2.8  

(2.9 - 2.8) 

37.6 - 2.75 

(2.8 - 2.75) 

37.6 - 2.78  

(2.88 - 2.78) 

Rmerge 0.080 0.078 0.071 

I/σI 21.66 29.78 14.49 

Completeness % 99.69 99.42 98.66 

Redundancy 7.5 7.3 5.0 

Refinement 

Resolution 2.80 2.75 2.78 

No. of reflections 21114 22218 21358 

Rwork/Rfree 019/0.24 0.18/0.23 0.19/0.24 

No. of atoms 

Protein 4956 4982 4957 

Ligand 35 46 42 

Water 0 27 9 

B factors 

Protein 101.1 84.6 100.19 

Ligand/ion 77.7 108.4 106.6 

Water n/a 57.5 66.75 

rmsd 

Bond lengths (Å) 0.009 0.01 0.008 

Bond angles (°) 1.26 1.29 1.16 
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To circumvent the lack of diffraction of compound 2, crystal dehydration 

experiments were employed.225-227 A 75.0 % mother liquor solution was mixed with 25.0 

% glycerol and was used to dehydrate the co-crystals for 2 h at 4.0 °C. Crystals were then 

cryoprotected, flash frozen and stored for remote data collection. Dehydration experiments 

were also attempted for compounds 3 and 4 to increase the diffraction power of the 

crystals. However, dehydration proved to be detrimental to the diffraction quality (data 

not shown). 

All the binary complexes showed a fully opened conformation of MtbAdoK 

(Figure 3.5) when compared to the apo structure (PDB ID 2PKF) of MtbAdoK (rmsd of 

cα’s 0.51, 0.41 and 0.43 Å for compounds 1, 2 and 3, respectively).187 In addition, only 

chain A of the MtbAdoK dimer had well-defined density of the compound. On the other 

hand, and most likely due to the low solubility of the compounds, chain B had significantly 

less density. Closer inspection of the binary complexes of all cocrystals, reveals that the 

compounds bind in a narrow cavity formed by residues from chain A and chain B of the 

MtbAdoK homodimer.  
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Figure 3.5: Superimposition of the MtbAdoK-adenosine, MtbAdoK-apo and MtbAdoK-

dihydro spiro structures. Apo (blue; PDB ID 2PKF), MtbAdoK-2 (green), MtbAdoK-3 

(orange), MtbAdoK-4 (purple) and MtbAdoK-adenosine (pink; PDB ID 2PKM). Only one 

chain of the MtbAdoK homodimer is shown for comparison. 

 

 

The crystal structure also indicates that this narrow cavity is adjacent to the active 

site of MtbAdoK and that is distinct from the cofactor binding site (Figure 3.6a-b). One 

side of this cavity is mostly comprised of hydrophobic residues Met121.A, Leu38.B, 

Phe116.A, Phe102.A, and polar residues Ser36.B and Ser8.A. On the other hand, the other 

side of the cavity is solely comprised of polar residues including Arg176.A, Gln172.A and 

Gln173.A (Figure 3.7). 



 

122 

 

 

Figure 3.6: Surface representation of the dihydro spiro binding pocket. (a) The dihydro 

spiro compound binds in a narrow cavity formed by residues from chain A and chain B. 

(b) The dihydro spiro compound occupies a distinct site adjacent to the active site 

(iodotubercidin-green), and that is not the cofactor binding site (iodotubercidin-purple). 

 

a 
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Figure 3.6: Continued 

 

 

 

Figure 3.7: Residues involved in close contacts with the dihydro spiro compound. 

b 
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Residues Leu38.B, Met121.A and Arg176.A are unique to the spiro binding 

pocket. In contrast, residues Phe102.A, Phe116.A, Ser36.B, Ser8.A, Gln172.A, Gln173.A 

are known to coordinate the substrate when it’s bound to the active site. Phe116 and 

Phe102 are involved in π-stacking interactions with the adenine and ribose rings, 

respectively. Ser8 hydrogen bonds with endocyclic N3 of the adenine ring, Gln172 is 

involved in hydrogen bonding with ribose O5’ and O4’ atoms, Gln173 hydrogen bonds 

with N1 and N6 of the adenine ring and Ser36.B completes the active site by hydrogen 

bonding with N7 of the adenine moiety. It should be noted that residues Asp12, catalytic 

base Asp257 and hinge region residues Gly47 and Gly48 do not form part of the spiro 

binding pocket but they are conserved across all members of the phosphofructokinase B 

family of carbohydrate kinases.188 

Arg176 and Phe116 form key interactions at the dihydro spiro binding pocket. The 

crystal structure shows that Arg176 orients itself towards the compound with an average 

distance of 3.5 Å between CZ of Arg176 and the benzopyrrole-like ring. We also observed 

that Phe116 is located at an average distance of 5.0 Å from the aforementioned ring 

(Figure 3.8). This suggests that Arg176 and Phe116 are involved in strong cation-π and π-

stacking interactions with the dihydro spiro compound, respectively. 
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Figure 3.8: Cation-π and π-stacking interactions of Arg176 and Phe116 with the 

benzopyrrole-like ring of compound 3. Residues are labeled with the 3-letter code and are 

colored by heteroatom. Orange dashed lines indicate the average distance between Arg176 

(3.5 Å) and Phe116 (5.0 Å) with respect to the benzopyrrole-like ring of compound 3. 

 

 

3.3.4 Mutagenesis studies of the dihydro spiro binding pocket 

We next performed mutagenesis studies to investigate the role of key residues in 

the dihydro spiro binding pocket. Superimposition of the adenosine bound structure with 

the cocrystal structure of compound 3, shows that Arg176 and Gln172 orient themselves 

towards the dihydro spiro binding pocket (Figure 3.9). Point mutations of these residues 
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(Arg176L, Arg176A and Gln172P) were constructed to assess the relevance of these 

residues within the novel binding site. The Arg176L and Arg176A point mutants were 

constructed to mimic the corresponding hydrophobic residue in hAdoK while the Gln172P 

mutant was designed in light of our recent findings that show that this mutation confers 

resistant to Mtb against iodotubercidin, a well-known inhibitor of hAdoK and MtbAdoK 

(data not shown; manuscript in progress). As observed in Figure 3.10a-d, all dihydro spiro 

derivatives displayed a significant decrease in efficacy when compared to WT. In all cases, 

the MtbAdoK mutants exhibited higher than 40.0 % activity at the highest concentration 

tested of 200.0 µM. 

 

 

 

Figure 3.9: Orientation of Arg176 and Gln172 in the spiro binding pocket when compared 

to the adenosine bound MtbAdoK structure (PDB ID 2PKM). MtbAdoK-3 residues are 

colored by heteroatom and MtbAdoK-adenosine residues are colored wheat. 2Fo-Fc maps 

contoured around Arg176, Gln172 and compound 3 are displayed at 1.5 σ. 
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Figure 3.10: Dose response curves for MtbAdoK mutants. (a-d) All compounds were 

tested from 0-200 µM. The data is normalized to the 0 µM (DMSO) control, and the error 

bars represent the ± SD of 2 independent experiments. 

 

 

3.4 Discussion 

Non-nucleoside uncompetitive inhibitors that modulate inhibition by exploiting 

the open conformation of MtbAdoK have never been reported. However, this type of 

inhibition has been observed for non-nucleoside inhibitors of hAdoK.213 By definition, 

uncompetitive inhibitors do not compete with the substrate’s binding pocket; they bind at 

a b 

d c 
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a distinct site.228 Crystallization attempts of the ternary enzyme-substrate-inhibitor 

complex have been unsuccessful. However, uncompetitive inhibitors that display no 

affinity against the free enzyme are very rare.229 Despite this, our mutagenesis and 

crystallographic experiments confirmed that the novel pocket where the compound is 

located is indeed the true binding site of the inhibitor. One of the advantages of 

uncompetitive inhibition is that high selectivity can be achieved against other enzymes 

that utilize adenosine as a substrate or share a similar reaction mechanism. When a 

biological process is inhibited, the first expected effect is an increase in the substrate(s) of 

the inhibited reaction. However, the downstream implications of this will largely vary 

depending on the mode of inhibition. If the inhibitor is competitive, increasing the 

concentration of substrate will eventually bypass inhibition. On the other hand, if the 

inhibitor is uncompetitive, increasing the concentration of substrate will only serve to 

potentiate the action of the inhibitor. Thus, increasing the accumulation of substrates, 

potentially leading to toxic and detrimental effects to the organism.230-231 

To our surprise, all inhibitors displayed sub-micromolar activity against Mtb 

mc27000 strain. In addition, a trend can be observed when comparing the IC50 and MIC50 

values of 1 with 2 and 3 with 4. The lower activity values correspond to the lead hit 

compound 1 and compound 2. In contrast, electron-withdrawing substituents at position 4 

of the dihydro spiro compound, exemplified by compounds 2 and 4; seem to potentiate 

the in vivo and in vitro activity. The in vitro potency can be rationalized by the extra 

interactions observed by the Br and NO2 groups with the residues surrounding the 

substituents mentioned above. The fact that compound 2 was more potent in a dextrose-
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supplemented media suggests that the most relevant molecular target within Mtb is an 

enzyme involved in carbohydrate metabolism. Purine and carbohydrate metabolism are 

linked via the pentose phosphate pathway by providing ribose-5-phosphate, one of the key 

substrates for nucleotide synthesis. Further biochemical and genetic studies will be needed 

to elucidate the type of mechanism that is utilized by Mtb to uptake this series of 

compounds and to identify the true molecular target(s) within Mtb. Along this line, Mtb 

mc27000 resistant mutant isolation and CRISPR knockdowns of the Rv2202c gene are 

currently underway to shed some light in the true biological target. 

Prior to microbatch crystallization, several thousand crystallization experiments 

were attempted under vapor diffusion methods. We were only able to obtain crystals 

utilizing the classical method of microbatch crystallization at 4.0 °C. It is very likely that 

the low temperature coupled with the slower diffusion rates observed under oil led to 

favorable conditions for nucleation and eventual crystal formation. Only one of the 

monomers in the asymmetric unit had clear density amenable for fitting the dihydro spiro 

compound. The occupancy issues can be attributed to the lack of solubility and the 

relatively low potency against the enzyme. Despite the lack of occupancy observed in 

chain B, the orientation of Arg176.B and Gln172.B are very similar to those of chain A. 

Both residues orient themselves towards the spiro binding pocket, suggesting that there is 

a dihydro spiro molecule, albeit at a lower occupancy. Our crystallization studies were 

performed utilizing a protein concentration of 18.0 mg/mL (~ 0.52 mM) and a compound 

concentration of 1.0 mM, corresponding to a 1.9X molar ratio. It has been suggested that 

to achieve full occupancy for compounds with low micromolar potency, a molar ratio of 
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5-10X should be used.232 However, during our preliminary crystallization experiments, 

we observed that all of the dihydro spiro compounds precipitated at concentrations ≥ 1.25 

mM in buffer; significantly hindering our crystallization efforts. 

Closer inspection of the interactions at the dihydro spiro binding pocket indicates 

a high potential for structure-guided drug design. For example, positions C2, C3, and C5 

can be modified to polar groups to make favorable hydrogen bonding interactions with 

Gln172, Gln173 and Arg176. Most notably is position 20 of the dihydro spiro compounds. 

This position overlaps with the NH2 at position 6 of adenosine, suggesting that linking the 

adenine moiety to the compound might lead to a more potent bisubstrate-like inhibitor. 

One fundamental difference between hAdoK and MtbAdoK is that the latter is a functional 

dimer whereas the former in a monomer in solution. The dihydro spiro binding pocket is 

formed by residues from chain B and chain A of the MtbAdoK dimer. These unique 

interactions can be exploited through structure-guided drug design to achieve a higher 

degree of specificity and potency.  

One of the most significant interactions is observed between Arg176 and the 

benzopyrrole-like ring of the compounds. This highly entropic and solvent-exposed 

residue was entirely oriented towards the dihydro spiro pocket. The orientation and 

proximity of Arg176 with respect to the benzopyrrole-like ring of the dihydro spiro 

compound suggest the possibility of strong cation-π interactions. It has been shown that 

cation-π interactions are prevalent in protein structures and that they play a vital role for 

several clinically relevant drugs such as varenicline (Chantix), ondansetron (Zofran) and 

granisetron (Kytril). Also, it has been observed that when an aromatic group is near a 
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cationic residue, the geometry is biased to the formation of favorable cation-π 

interactions.233-235 Our crystal structure suggests that the orientation and proximity of 

Phe116 with respect to the benzopyrrole-like ring might lead to the participation of π-

stacking interactions. In the same fashion that Phe116 participates with π-stacking 

interactions with the adenine ring when adenosine is bound, and the closed conformation 

of MtbAdoK is adopted. 

Our mutagenesis studies showed that Arg176 and Gln172 are key residues located 

in the dihydro spiro binding pocket. Unlike our MtbAdoK-dihydro spiro cocrystal 

structures, Arg176 is observed to be oriented towards the solvent in the MtbAdoK-

adenosine structure, and Gln172 is oriented towards the adenine ring. It should be noted 

that the MtbAdoK mutants and hAdoK displayed a similar activity when tested against 

the dihydro spiro compounds. In both cases, the enzymes remained more than 40.0 % 

active at the highest concentrations tested of 200.0 µM. This phenotype can be attributed 

to partial inhibition of the compounds against the MtbAdoK mutants and hAdoK. Possible 

experimental artifacts behind partial inhibition could be a lack of solubility of the 

compounds or lack of compound fidelity. However, if the lack of solubility would have 

been the source of the phenotype, then we would have expected to observe the same trend 

with the WT MtbAdoK. As far as compound fidelity goes, we have confirmed through 

LC-MS and NMR their integrity (data not shown). Taken together, the mutagenesis and 

selectivity studies validate the relevance of Arg176 and Gln172 within the novel binding 

site.  
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3.5 Conclusions and future work 

In summary, our mechanistic, structural and mutagenesis studies show the 

selective inhibition of MtbAdoK by a series of novel non-nucleoside uncompetitive 

inhibitors. This type of inhibition has proven to be successful for several other clinically 

relevant molecular targets including inosine 5’-monophosphate, dihydrofolate reductase, 

topoisomerase I, and steroid 5α-reductase.229 Uncompetitive inhibition offers a unique 

advantage over the more conventional competitive adenosine analogs and suggests that 

the discovery of highly specific, therapeutically relevant inhibitors of this enzyme might 

be achievable. Our crystallographic data provides the template for a structure-guided 

optimization of the compounds to achieve rationally designed bisubstrate-like inhibitors 

of MtbAdoK. Finally, further crystallization attempts are currently underway to determine 

the crystal structure of the enzyme-substrate-inhibitor ternary complex. 
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4. DISCOVERY, ENZYMATIC AND IN CELLULO CHARACTERIZATION OF 

NOVEL ALLOSTERIC INHIBITORS OF MYCOBACTERIUM TUBERCULOSIS 

BIOTIN PROTEIN LIGASE 

 

 

4.1 Background and significance 

 Biotin is a crucial cofactor for lipid biosynthesis and lipid degradation within Mtb. 

The rise of resistance against current anti-TB drugs accentuates the necessity of new drugs 

and drug targets. Presently, most antibiotics target actively growing Mtb by inhibiting a 

metabolic process required for primary and progressive infection.236 Conversely, latent or 

dormant Mtb is harder to treat given that it possesses a highly complex mechanism to 

evade both the host’s immune system and antibiotics.237 A potentially new strategy for tb 

treatment is to develop novel anti-mycobacterial drugs that are active against the primary 

and latent stages of Mtb infection. 

 Mtb possess the most complex and highly regulated lipid metabolism of any 

bacteria.180 Mycobacteria contains examples of all known lipids and polyketide 

biosynthetic machineries including those found in plants, mammals, and other bacterial 

systems. In fact, whole-genome sequencing of Mtb led to the identification of ~ 250 

distinct enzymes solely involved in lipid metabolism. This is in stark contrast with E. coli, 

which have ~ 50 enzymes.238 The first committed step in fatty acid biosynthesis is initiated 

through the carboxylation of acetyl-coenzyme A (CoA) to yield malonyl-CoA. This 

process is catalyzed by the multifunctional and multi-domain acyl CoA carboxylases 
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(ACCs).239 To be functionally active, the ACCs must be post-translationally biotinylated 

at the biotin-carboxylase carrier protein (BCCP) domain by a biotin protein ligase. Within 

Mtb, the sole enzyme responsible for the post-translational biotinylation of proteins is the 

biotin protein ligase (MtbBpL).240 Only when the ACC is biotinylated by MtbBpL, the 

biosynthesis of methyl-malonyl coenzyme A, malonyl-CoA, and the C22-C24 malonyl-

CoA derivatives can proceed. These building blocks are then subsequently utilized for the 

biosynthesis of the complex and diverse lipids that are the hallmark of Mtb, including the 

C60-C90 mycolic acids.240 In addition to lipid biosynthesis, lipid catabolism is thought to 

be a critical aspect of Mtb’s survival within the host. Several decades of evidence suggest 

that Mtb is lipolytic in vivo and derive most of its nutrients through the breakdown of host 

fatty acids.241-243 Moreover, MtbBpL is involved in the biotinylation of the BCCP domain 

of pyruvate carboxylase. Pyruvate carboxylase is an enzyme that plays a key anaplerotic 

role in carbon metabolism. This enzyme channels oxaloacetate to phosphoenolpyruvate 

carboxykinase, a gluconeogenic enzyme that is essential for Mtb growth when lipids are 

used as the primary carbon source.244 Taken together, it is possible that MtbBpL is one of 

the few enzymes that globally regulates lipid metabolism making it an attractive drug 

target. 

MtbBpL is monomeric enzyme encoded by the birA gene (Rv3279c) and forms 

part of the class I family of biotin protein ligases. Class I BpLs are characterized by the 

lack of a 60-residue long N-terminal helix-turn-helix DNA binding domain. Therefore, 

they can catalyze only post-translational biotin addition. Class II BpLs, like E.coli BpL, 

are bifunctional proteins. These enzymes are not only able to catalyze the post-
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translational biotinylation of its protein substrates but can also act as a transcriptional 

repressor by interacting with the biotin operon through its helix-turn-helix N-terminal 

segment. Here, transcription regulation is mediated by the levels of intracellular biotin and 

apo-acyl CoA carboxylase. Several studies have shown that overexpression on BpL in 

E.coli lead to repression of the biotin operon whereas overexpression of apo ACC leads 

to the derepression of the operon.245-246  

 All biotin protein ligases, catalyze the highly specific ATP-dependent ligation of 

biotin to the BBCP domain of their protein substrates in two sequential steps. In step one, 

biotin protein ligase promotes the nucleophilic attack from the biotin carboxylate moiety 

to the α-phosphate of ATP yielding the reaction intermediate biotinyl-5’-AMP and 

pyrophosphate. In the second step, the enzyme ligates biotin to a conserved lysine residue 

located between the ‘AMKM’ sequence within the BCCP domain of the ACC (Figure-

4.1).247 
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Figure 4.1: Enzymatic reaction catalyzed by MtbBpL. The first half-reaction (1) yields 

the biotinyl-AMP intermediate. The second half reaction (2) involves the transfer of the 

biotin moiety to a conserved lysine residue of the acceptor protein located in the BCCP 

domain. 

 

 

The structure of MtbBpL has been solved at high-resolution without substrate 

(Figure 4.2a) and with the reaction intermediate biotinyl-5’-AMP (Figure 4.2b) at 1.8 Å 

and 1.7 Å resolutions respectively.248-249 The protein consists of a large N-terminal domain 

(residues 1-217) and a smaller SH3-like C-terminal domain (residues 218-266). The core 

of the protein, located in the N-terminal domain, consists of seven β-strands that are 

flanked by five α-helices. The ligand-binding pocket is formed by loop residues Gln63, 

Thr39, Ser38, Arg67, Arg69, Arg72, Ala75 and core region residues Lys138, Asn130, 

Asn158, and Gln81. Catalytic base lysine 138 promotes the nucleophilic attack of the α-

phosphate of ATP from the carboxylate group of biotin moiety. Finally, loop residues 63-

77, 162-171 have been noted to transition from disordered to ordered upon substrate or 

inhibitor binding.196  
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Figure 4.2: MtbBpL structure. (a) Apo MtbBpL (PDB ID 2CGH). (b) MtbBpL complex 

to biotinyl-AMP (PDB ID 4OP0). In both cases, the structures are colored by secondary 

structure. 

a 

b 
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Several biochemical and genetic studies have shown the essentiality on BpLs in 

known bacterial pathogens such as Streptococcus pneumonia, Staphylococcus aureus, 

Escherichia coli and Mycobacterium tuberculosis.250 All of these studies have two aspects 

in common: the lack of an alternative pathway for protein biotinylation within these 

organisms and the importance of this post-translational modification for lipid metabolism. 

One of the most potent inhibitors of MtbBpL to date was described by Duckworth et al. 

2011.247 Several key observations can be made about this work: I) The biotinyl-AMP 

analog (Bio-AMS) has sub-nanomolar potency against the enzyme displaying a Ki ~ 530 

pM,  II) this inhibitor also displays sub-micromolar potency against several MDR and 

XDR strains of Mtb, III) that there is a dose-dependent decrease in global biotinylation 

levels in lysates of Mtb H37Rv when incubated with Bio-AMS, IV) the authors also 

showed that Mycobacterium smegmatis is unable to form colonies when the birA gene is 

deleted and V) that there is an increase in tolerance of Bio-AMS in Mtb strains that 

overexpressed BpL. It should be noted, however, that the in vitro activity of Bio-AMS 

was not assessed against human BpL (hBpL) and that some cytotoxicity was indeed 

observed in Vero cells; indicating a potential lack of selectivity for the compound. 

In this work, we describe the identification, enzymatic, in cellulo and kinetic 

characterization of a series of bromo-benzylidene-fluorobenzohydrazides. Our enzymatic 

and in cellulo studies showed that the compounds displayed low-micromolar potencies 

against the enzyme and mc27000 and no cytotoxicity against HDF cells. Finally, our 

kinetic studies revealed a novel noncompetitive mechanism of inhibition, suggesting the 

presence of a previously unknown allosteric site within MtbBpL. 
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4.2 Material and methods 

4.2.1 Cloning, expression and purification of MtbBpL 

 The MtbBpL gene (Rv3279c) was amplified by polymerase chain reaction from 

total genomic DNA of Mycobacterium tuberculosis H37Rv. The following 

oligonucleotides were used: 5’ - TACTTCCAATCCAATGCCGTGACCGACCGC - 3’ 

and 5’ - TTATCCACTTCCAATGTTATTAACGCAAATGCACCACGTCG - 3’. The 

amplified fragment was cloned into the ligation independent vector pmcsg-7 containing 

an N-terminal cleavable His-tag. Gene fidelity was confirmed by DNA sequencing. 

Following ligation, the plasmid was transformed into E.coli BL21 (DE3) for expression. 

A nickel affinity column was then utilized to purify recombinant MtbBpL. Purification 

buffers A and B contained, 50.0 mM HEPES, pH 7.5, containing 500.0 mM NaCl, 500.0 

mM imidazole (buffer B only) and 5.0 % glycerol. The His-tag was then removed by 

dialyzing the protein in 20.0 mM Tris-HCl, pH 8.0, 50.0 mM NaCl, 5.0 % glycerol, and 

4.0 mM DTT with tobacco etch virus (TEV) protease. The TEV and tag were then 

separated from MtbBpL by passing the dialyzed sample through another round of nickel 

affinity column. Finally, Mtb was dialyzed one more time in 20.0 mM HEPES, pH 7.5, 

50.0 mM NaCl, 2.0 mM DTT and 5.0 % glycerol. The protein was then aliquoted and 

stored in -80.0 ˚C for subsequent assays and crystallization trials. 

4.2.2 DSF high-throughput screening assay 

 The primary high-throughput screening assay of our in-house compound libraries 

was the thermal shift assay described by Niesen et al. 2007 and was performed in the same 

fashion as outlined in section 3.2.2 of this dissertation. In short, the samples contained a 
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final concentration of MtbBpL of 3.0 µM, 100.0 mM HEPES pH 7.5, 50.0 µM of 

screening compound dissolved in 100.0 % DMSO and a final concentration of 5X of 

SYPRO ORANGE® dye. Reaction volume across the 96-well PCR plate was 20.0 µL. 

Positive and negative control reactions were carried out similarly but using biotin and 

buffer respectively. After sample preparation, the 96-well plate was covered with an 

UltraClear film (Axygen Scientific). The assay was then performed on Agilent 

Technologies Mx3005P qPCR system by using a temperature gradient of 25.0˚- 99.0˚C at 

0.5 ˚C / min and monitoring the fluorescence emission of the SYPRO ORANGE® 

(excitation = 492.0 6nm, emission = 610.0 nm). 

4.2.3 IC50 and steady-state kinetics determination 

MtbBpL was assayed against the primary screen hits compounds using the 7-

methylthioguanosine (MESG)-hydroxamate coupled enzyme assay system as described in 

Duckworth et al. 2011 and Wilson et al.251 The compounds were preincubated for five 

minutes in a master mix containing 250.0 nM MtbBpL, 50.0 Tris-HCl pH 8.5, 5.0 mM 

MgCl2, 2.5 mM ATP, 200.0 µM MESG, 150.0 mM hydroxylamine 1.0 mM DTT, 1.0 

U/mL of purine nucleoside phosphorylase and 0.5 U/mL of pyrophosphatase. The reaction 

was started by the addition of biotin at a final concentration of 250.0 µM. The reactions 

were performed in 96-well UVStar plates (Greiner Bio-one), and the formation of MESG 

was monitored at 360 nm in a Varioskan™ Lux multi-mode plate reader. IC50 values for 

each compound were determined by varying the concentration of inhibitor at a fixed 

concentration of enzyme and by fitting the dose response data into the four-parameter 

logistic curve (Equation 4.1) model of GraphPad prism 7.02, as follows: 
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                       𝑌 = 𝑌𝑚𝑖𝑛 +
(𝑌𝑚𝑎𝑥 −  𝑌𝑚𝑖𝑛 )

(1 + 10(𝑙𝑜𝑔𝐼𝐶50−𝐼)𝐻) 
⁄                             (4.1) 

Where I is the logarithm of inhibitor concentration, H is the Hill slope and Y, Ymax and 

Ymin are the absorbance, maximum absorbance and minimum absorbance, respectively. 

Kinetic assays for MtbBpL were performed essentially as described above with the 

following exception: the reaction was started by the addition of varying concentrations of 

biotin in the presence of constant concentrations of test compound (0.0 µM, 5.0 µM and 

10.0 µM). Kinetic data was obtained by fitting the initial velocity data into GraphPad 

Prism 7.02 nonlinear regression function of Michaelis-Menten model (Equation 4.2), as 

follows: 

                                                        𝑉𝑜 =
(𝑌𝑚𝑎𝑥)[𝑆] 

(𝐾𝑚 + [𝑆])⁄                        (4.2) 

Where Vo is the initial velocity, Ymax is the maximum absorbance, S is the substrate 

concentration, and Km is the Michaelis-Menten constant.  

4.2.4 Antitubercular assay 

Antitubercular testing and MIC50 determination was performed using the MABA 

assay in a 96-well format as previously described.206-207 Starter culture of Mtb mc27000 

was grown in 7H9 media supplemented with OADC (Middlebrook), 0.5 % dextrose, 0.085 

% NaCl, 0.05 % Tyloxapol (Sigma), 0.25 µg/mL malachite green (Sigma) and 25.0 µg/mL 

pantothenate. Once cells reached an optical density of OD600 ~1.0, cells were diluted to an 

OD600 of 0.01 in the same media composition without OADC. For acetate-supplemented 

media, once cells reached the aforementioned OD600, cells were diluted to an OD600 of 

0.01 in 0.5 % sodium acetate (Sigma), 2.0 mM MgSO4 (Sigma), 0.1 mM CaCl2 (Sigma), 
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0.05 % Tyloxapol, 0.25 µg/mL malachite green and 25.0 µg/mL pantothenate. Compounds 

were serially diluted in 100.0 % DMSO and added to the cells to a final concentration of 

DMSO of 2.5 %. Plates were incubated for 10 days (30 days for acetate-supplemented 

media) prior to staining with resazurin (Sigma). After staining, plates were incubated for 

2 additional days (7 additional days for acetate-supplemented media) for developing. 

Finally, developed plates were read using a POLARstar Omega spectrophotometer (BMG 

Labtech) and by monitoring the fluorescence emission of resazurin (excitation = 570.0 

nm, emission = 585.0 nm). In all cases, rifampicin was used as a negative control and the 

experiments were performed in duplicates were the reported error represents plus or minus 

standard deviation. 

4.2.5 Human dermal fibroblast cytotoxicity assay 

Human dermal fibroblasts (HDF) were purchased from ATCC (Manassas, VA). 

HDF cells were cultured in DMEM (Lonza) media supplemented with 10 % fetal bovine 

serum (Lonza) and penicillin/streptomycin (Lonza). For the cytotoxicity assay, compound 

stocks were serially diluted in phosphate-buffered saline (PBS) and 10.0 % DMSO. On 

the day of assay, HDF cells were trypsinized, counted and resuspended at a concentration 

of 64,000 cells/ml in media. Cells were plated, overlaid with the compound serial dilutions 

and incubated at 37.0 °C.  After 48 h, resazurin dye was added and the assay plates cultured 

for another 24 h. The next day the absorbance of the resazurin was measured on a 

microplate reader to assess cell death. Cytotoxicity was determined as a percent of dead 

cells versus living.  

 



 

143 

 

4.3 Results and discussion 

As in the case of section 2, a total of 2,534 compounds from our in-house collection 

of whole cell active compounds was screened by DSF at a single concentration of 50.0 

µM. Hits were identified as compounds that had a thermal shift equal or greater than the 

positive control.  

 

 

Table 4.1: DSF data for lead compound 1. 

Average Tm of 

positive control 

(˚C) 

Average Tm of 

negative control 

(˚C) 

MtbBpL-1 Tm (˚C) Δ Tm 

(˚C) 

59.00 57.13 59.00 3.02 

 

 

Lead compound 1 was the only compound identified to have a thermal shift equal 

to that of the positive control (Figure 4.3 and Table 4.1). Based on the DSF results, we 

purchased several analogs (2, 3 and 4) to perform structural activity relationship studies 

(SAR) and tested enzymatically against MtbBpL. 
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Figure 4.3: Structure and numbering convention of lead compound (1) and analogs (2-4). 
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Figure 4.3: Continued 
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Table 4.2: Enzymatic characterization of compounds. 

ID MtbBpL IC50 

(µM) 

1 ≥ 75.0  

2 23.0 ± 3.0  

3 11.4 ± 2.3 

4 9.4 ± 1.6 
Error is reported as ± SD of 2 independent experiments. 

 

 

The compounds exhibited 50.0 % inhibitory concentrations between 75.0-9.4 µM 

(Table 4.2). The only difference between compounds 1 and 2 is the addition of a bromide 

group at position 3. Surprisingly, this extra substitution was enough to increase potency ~ 

3-fold. Thus, indicating that electron withdrawing groups at position 3 might be favorable. 

Compound 3 has several similarities and some key differences when compared to 

compound 2. Compound 3 retains the same 3,5-dibromo-2-hydroxybenzohydrazide 

moiety. However, the allyl group at position 17 is substituted for bromine, and the 

hydroxyl group at position 15 is moved to position 21. Also, compound 3 has another 

bromine group at position 22. Taken together, the chemistry based SAR suggests that 

increasing the polarity of the hydroxybenzylidene moiety is favorable as indicated by the 

increase in potency. At this point, it is difficult to rationally explain what substitution (or 

a combination of substitutions) conferred the increase in potency when comparing 

compound 2 with 3. The reason being that several substitutions were made concomitantly 

as opposed to a more systematic approach. Current medicinal chemistry efforts are 

underway to discern this issue. Finally, compound 4 possess the same 3,5-dibromo-2-

hydroxybenzylidene group as 3 with the addition of the “original” hydroxyl group at 
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position 15 as observed in compounds 1 and 2. The main difference is observed with the 

benzohydrazide. Here, the bromides and the hydroxyl group are absent with the 

concomitant addition of the more electronegative fluoride group at position 3. The relative 

increase in potency of 4 when compared to 3, suggests that the groups mentioned above 

might not be optimal. In summary, the preliminary chemistry-based SAR suggests that 

electronegative groups at position 3 might be optimal at this position as observed with 1, 

2 and 3. In addition, the initial SAR also suggests that a greater degree of polarity 

regarding substitutions on the benzylidene moiety are favorable as well. 

We next sought to determine the antimycobacterial and cytotoxic activity of the 

compounds against mc27000 and HDF cells, respectively. Initial testing against Mtb was 

carried out in 0.2 % acetate-supplemented M9 media to mimic fatty acid-driven 

metabolism and in 0.2 % dextrose-supplemented 7H9 media to mimic a carbohydrate-

driven metabolism. All compounds displayed inhibitory activity against our Mtb strain 

(Table 4.3). Surprisingly, lead compound 1 displayed nanomolar potency when glucose 

was utilized as the sole carbon source with a MIC50 of ~ 230 nM. In contrast, when acetate 

was utilized as the sole carbon source, the MIC50 was significantly higher (3.2 µM). 

Compound 2 was the second most potent compound with MIC50’s of 1.8 µM and 5.9 µM 

in dextrose and acetate, respectively. Next in potency was compound 4 with MIC50’s of 

10.1 µM and 8.9 µM in dextrose and acetate, respectively. Finally, the least potent was 

compound 3, displaying MIC50’s of 30.3 µM and 53.1µM in dextrose and acetate, 

respectively. 
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The only difference between compounds 1 and 2 is the extra bromide group at 

position 3 of the benzohydrazide moiety. This modification makes compound 2 more polar 

than compound 1. In addition to the overall lack of polar and halogenic substituents, 

another major difference when comparing compounds 1 and 2 with compounds 3 and 4 is 

the absence of the ally group. It is possible that the allyl group might facilitate uptake or 

diffusion through the highly hydrophobic mycobacterial cell wall while proving to be a 

barrier against the more polar compounds 3 and 4. The fact that all compounds displayed 

activity in both carbon sources suggest that the molecular targets (s) are active when tb 

catabolizes carbohydrates and lipids, which could prove to be pharmacologically relevant. 

Further biochemical and genetic studies will be needed to elucidate the type of mechanism 

that is utilized by Mtb to uptake this series of compounds and to identify the true molecular 

target(s). Along this line, Mtb mc27000 resistant mutant isolation and CRISPR 

knockdowns of the Rv3279c MtbBpL gene are currently underway to shed some light in 

the biological target. Finally, as observed in Table 4.3, the compounds displayed no 

cytotoxicity against HDF cells. 

 

 

Table 4.3: Antimycobacterial and cytotoxic profile of compounds 

ID MIC50-mc27000 in 

dextrose (µM) 

 

MIC50-mc27000 in 

acetate (µM) 

 

CC50-HDF cells 

(µM) 

1 0.23 ± 0.04 3.2 ± 0.1 n/a 

2 1.8 ± 0.3 5.9 ± 0.3 n/a 

3 30.3 ± 1.6 53.1 ± 3.3 n/a 

4 10.1 ± 0.4 8.9 ± 0.4 n/a 
Error is reported as ± SD of 2 independent experiments. 
a Not applicable; no cytotoxicity detected. 
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Given that the compounds are not structural analogs of MtbBpL’s cognate 

substrates (biotin and ATP), we decided to investigate the mechanism of inhibition of the 

compounds. As a representative of the group, we evaluated the mechanism of inhibition 

of compound 4 against MtbBpL. As observed in Table 4.4, increasing the concentration 

of substrate in the presence of fixed inhibitor concentrations; results in an increase of the 

Km with a concomitant decrease of the initial velocity values; consistent with 

noncompetitive inhibition. Moreover, the Lineweaver-Burk plot shows a series of lines 

that intersect each other at a point that is not the y-axis but is above the x-axis (Figure 4.4).  

 

 

Table 4.4: Steady-state kinetic parameters for compound 4. 

[4] µM Km (µM) Vmax (Δabs/time) 

0.0 1.17 ± 0.04 0.21 ± 0.001 

5.0 1.87 ± 0.34 0.01 ± 0.006 

10.0 5.99 ± 0.06 0.007 ± 0.06 
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Figure 4.4: Lineweaver-Burk plot of compound 4 vs. biotin. Initial velocity data was 

transformed to linear analysis to evaluate inhibitor type. The error bars represent ± SD of 

3 experiments. 

 

 

By definition, a noncompetitive inhibition refers to a type of inhibitor that displays 

affinity for the free enzyme and enzyme-substrate complex.229, 252 As mentioned above, 

the series of lines intercept each other at a point above the x-axis. This suggests that the 

inhibitor displays a higher degree of affinity for the free enzyme. In the case the inhibitor 

exhibits equal affinity towards the free enzyme and the enzyme-substrate complex, the 

lines would intercept at the X-axis. Finally, if the inhibitor shows a greater affinity for the 

enzyme-substrate complex, the series of lines would intercept below the X-axis.229, 252 To 

determine the binding affinity of the inhibitor towards the free enzyme and the enzyme-

substrate complex, isothermal titration calorimetry experiments are currently being 

performed. Just like uncompetitive inhibition, noncompetitive inhibition cannot be 

overcome by increasing the concentration of substrate. Thus, offering a physiologically 

relevant advantage. Also, it should be noted that all noncompetitive inhibitors are in fact 
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allosteric inhibitors. Allosteric inhibitors offer the possibility of a higher degree of 

selectivity when taking into account other enzymes that might utilize the same substrate 

or a similar reaction mechanism. This, in turn, might translate into a drug with a clinically 

advantageous lesser degree of toxicity given that the pocket where it binds is unique to the 

drug target.229, 252 

To further explore the chemical space surrounding the binding pocket of the novel 

noncompetitive inhibitors, we purchased several analogs of compound 4. All of the 

compounds were assessed for binding via DSF and were also tested against the enzyme 

(Table 4.5). 

 

 

Table 4.5: Binding and enzymatic characterization of analogs of compound 4. 

ID IC50 (µM) *Tm (°C) Structure 

 

 

5 

 

 

2.3 

 

 

57.0 

 
 

 

6 

 

 

2.8 

 

 

56.3 

 
*Tm biotin control = 56.0 °C; Tm lead compound 1 = 56.7 °C; Tm compound 4 = 57.2 °C; Tm DMSO control = 54.3 °C 
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Table 4.5: Continued 

ID IC50 (µM) *Tm (°C) Structure 

 

 

7 

 

 

4.1 

 

 

 

56.3 

 
 

 

8 

 

 

5.8 

 

 

56.0 

 
 

 

9 

 

 

9.1 

 

 

56.1 

 
 

 

10 

 

 

14.8 

 

 

55.9 

 
 

 

11 

 

 

≥ 75.0 

 

 

 

54.6 

 

 
 

 

12 

 

 

≥ 75.0 

 

 

 

55.9 

 

 
*Tm biotin control = 56.0 °C; Tm lead compound 1 = 56.7 °C; Tm compound 4 = 57.2 °C; Tm DMSO control = 54.3 °C 
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Table 4.5: Continued 

ID IC50 (µM) *Tm (°C) Structure 

 

 

13 

 

 

≥ 200.0 

 

 

 

54.9 

 
 

 

14 

 

 

≥ 200.0 

 

 

 

54.3 

 
 

 

15 

 

no 

inhibition 

 

 

54.4 

 
 

16 

 

no 

inhibition 

 

54.9 

 
*Tm biotin control = 56.0 °C; Tm lead compound 1 = 56.7 °C; Tm compound 4 = 57.2 °C; Tm DMSO control = 54.3 °C 

 

 

As observed in Table 4.5 there is almost a 1:1 relationship between binding, as 

measured by Tm shift when compared to controls, and potency. Compounds that displayed 

IC50 values of ≤ 10.0 µM exhibited the highest change in Tm. In fact, the most potent 

analog, compound 5, displayed a higher Tm (57.0 °C) than the biotin control itself (Tm = 

56.0 °C). In comparison, the apo MtbBpL presented the lowest Tm of ~ 54.0 °C. Although 

we observed a 1:1 relationship with these compounds, one must never assume that binding 
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equals potency. For example, lead compound 1 displayed a Tm of 56.7 °C with an IC50 ~ 

75.0 µM when tested against MtbBpL. 

As in the case of compounds 1-4, it is difficult to identify the true pharmacophoric 

properties of the compounds. At this point, we have not performed a systematic SAR 

through chemistry. Rather it has been through compound availability and similarity within 

commercially available compound libraries. Nevertheless, we can generally group the 

compounds in 3 categories, those that displayed potencies of ~ 2-5 µM (compounds 5-8), 

those that displayed potencies between ~ 10-15 µM (compounds 9-10) and those that 

displayed little to no potency (compounds 11-16). One can also observe that the moiety 

that is most different across all the compounds is the benzylidene side. This suggests that 

the benzylidene part and the positions of the substitutions within the benzyne ring dictate 

the observed potency. Although we cannot discard that the benzohydrazide moiety is 

involved in protein contacts. Another possibility is that under aqueous or acidic conditions, 

the compound dissociates into the corresponding benzohydrazide and benzaldehyde. Here, 

the small fragments can then behave as independent molecules thus interacting with the 

protein in unexpected ways and possibly binding in small and previously unidentified 

pockets. It should be noted, that preliminary crystallization trials with the enzyme-

inhibitor and the enzyme-inhibitor-substrate complexes have yielded a greater amount of 

crystals within a pH range of 5-6.5 which might trigger dissociation of the compounds. 

Unfortunately, the crystals are suboptimal for data collection. We are in the process of 

optimizing the hits for high-resolution x-ray diffraction data collection. 
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4.4 Conclusions and future work 

 In summary, HTS screening led to the identification series of benzylidene-

benzohydrazides that act as inhibitors of MtbBpL. The preliminary SAR studies suggest 

that electronegative groups at position 3 and polar substations on the benzylidene moiety 

are favorable for inhibition. The antimycobacterial assay showed that the compounds are 

active in different carbon sources which might prove to be pharmacologically relevant. 

Also, the studies with HDF cells demonstrated a lack of cytotoxicity, a desirable 

characteristic from a drug discovery point of view. To our surprise, steady-state kinetic 

experiments showed that the compounds are noncompetitive inhibitors of the enzyme. 

This suggests the possibility of a previously unknown allosteric site within the essential 

Mtb protein that can be exploited through rational drug design. Our preliminary structural 

activity studies with several analogs of compound 4 suggest that the pharmacophoric 

properties of the compounds lie on the benzylidene moiety. With this in mind, 

crystallographic efforts are currently underway to determine the binary or ternary 

complexes and the location the potential allosteric site. Finally we are also in the process 

of performing isothermal titration calorimetry studies to characterize the different binding 

affinities that the compound might display for the free enzyme and the enzyme-substrate 

complex. 
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5. CONCLUSIONS 

 

 

As conventional first and second-line anti-tubercular drugs become less effective 

due to the rapid emergence of MDR and XDR Mtb; there is a need for the development of 

more potent and specific drugs with new molecular targets and mode of actions. In this 

dissertation, we report the discovery and biochemical and biophysical characterization of 

novel inhibitors with different inhibition modalities against essential enzymes of Mtb.  

In section 2 we utilized a structure-guided approach for the rational design of very 

potent compounds as competitive inhibitors of MtbAdoK. Here we utilized several 

preliminary structures, to guide the synthesis of a series of 6-substituted adenosine 

analogs. Enzymatic characterization showed that the compounds were specific to 

MtbAdoK when compared to the human counterpart. In cellulo studies revealed that the 

majority of the compounds displayed some activity against the mc27000 Mtb strain with 

little to no activity against HDF cells. Also, further crystallization trials with the very 

potent compounds showed that the high potency and selectivity is predominantly 

attributed to the presence of unique chimney-like cavity within the MtbAdoK homodimer. 

This newly discovered compound-induced cavity can be utilized as a canvas for future 

structure-guided drug design efforts. 

Section 3 of this dissertation describes the discovery, enzymatic and structural 

characterization a new series of dihydro spiro compounds that act as uncompetitive 

inhibitors of MtbAdoK. As opposed to section 2, where we utilized a structure-guided 
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approach, here we used an HTS approach to the identification of the inhibitors. Once the 

lead compound was identified, several other analogs were purchased and characterized 

enzymatically and in cellulo. These studies revealed that the compounds had low 

micromolar activity against the enzyme and sub-micromolar activity against our Mtb 

strain. In addition, steady-state kinetic experiments demonstrated that the novel dihydro 

spiro compounds acted as uncompetitive inhibitors of MtbAdoK. Thus, revealing a 

previously unknown family of non-nucleoside inhibitors an and novel inhibition modality 

of MtbAdoK. Although we have not been able to crystallize the enzyme-substrate complex 

successfully, we were able to crystallize most of the compounds in complex to the free 

enzyme. Further characterization through directed mutagenesis of the new binding pocket 

revealed that the location where the compounds bind is indeed the true dihydro spiro 

binding pocket. Taken together, this novel inhibitor type opens up a new route of structure-

guided drug design. With this in mind, we are currently exploring the possibility of 

bridging the gap between the dihydro spiro binding pocket and the substrate binding site. 

Lastly, in section 4 we explored the possibility of MtbBpL as a drug target. 

MtbBpL is the sole enzyme responsible post-translational biotinylation of essential 

enzymes of Mtb; enzymes that are required in the de novo synthesis of lipids and for Mtb’s 

survival under a lipid-based carbon source. As in the case of section 3, we utilized an HTS 

approach for the discovery of a series of benzylidene-benzohydrazides. Once the lead 

compound was identified, several analogs were purchased. Preliminary chemistry based 

SAR showed that polar substituents at the benzylidene moiety are optimal for inhibition. 

Whereas, electron withdrawing groups at position 3 of the benzohydrazide displayed 
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favorable inhibitory activity against the enzyme. Our whole-cell activity characterization 

showed that the compounds had no cytotoxic activity against HDF cells. In contrast, the 

compounds displayed inhibitory activity in dextrose and in acetate when utilized as unique 

carbon sources. Finally, our kinetic experiments showed that these inhibitors act as 

noncompetitive inhibitors against of the enzyme. Thus, suggesting the presence of 

previously unknown allosteric site within MtbBpL. 

Taken together, the work presented in this dissertation focuses on the discovery 

and characterization of new drugs against two essential enzymes of Mycobacterium 

tuberculosis. Emerging evidence suggests that MtbAdoK might play a crucial role for tb 

during its latent phase of infection whereas MtbBpL might be one of the few enzymes that 

globally regulates lipid anabolism and catabolism. Here, we utilized a combination of 

biochemical and biophysical studies to identify unique inhibitors with novel mechanisms 

of action against the essential enzymes. The structural studies coupled to the novel 

inhibitors identified in this work pave the way for the design of more potent and specific 

inhibitors of the proteins. 
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APPENDIX A  

 

 

SUPPLEMENTARY MATERIAL FOR SECTION 2 

 

 

Close contacts of the MtbAdoK-2 complex ≤ 3.5 Å. 

Atom Residue Distance 

C2 Ser8.A CB 3.48 

C2 Ser8.A OG 3.18 

N3 Ser8.A OG 2.69 

N3 Ser8.A CB 3.38 

C4 Phe116.A CE1 3.49 

C8 Phe102.A CD1 3.41 

C3’ Asp12.A OD2 3.23 

O4’ Val49.A CG1 3.45 

C5’ Asp257.A OD2 3.34 

O5’ Asp257.A OD2 2.55 

O5’ Asp257.A CG 3.35 

O3’ Asp12.A OD2 2.45 

O3’ Gly48.A N 2.97 

O3’ Asp12.A CG 3.23 

O3’ Asn52.A ND2 3.10 

O3’ Asp12.A OD1 3.26 

O2’ Gly48.A N 2.83 

O2’ Asp12.A OD1 2.65 

O2’ Gly48.A CA 3.34 

O2’ Ala10.A CB 3.35 

N6 Gln173.A NE2 2.98 
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Crystal data collection and refinement statistics for MtbAdoK-2. 

Statistic MtbAdoK-2 

Data collection 

Space Group P41 

Cell Dimensions 

a, b, c (Å) 49.0, 49.0, 262.2 

α, β, γ (°) 90, 90, 90 

Resolution (Å) 32.24-1.95 (2.02-

1.95) 

Rmerge 0.071 

I/σI 22.2 

Completeness % 94.5(98.2) 

Redundancy 7.5 

Refinement 

Resolution (Å) 1.95 

No. of reflections 42508 

Rwork/Rfree 0.18/0.22 

No. of atoms 

Protein 4731 

Ligand 90 

Water 280 

B factors 

Protein 52.2 

Ligand/ion 58.7 

Water 53.6 

rmsd 

Bond lengths (Å) 0.007 

Bond angles (°) 0.93 
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Close contacts of the MtbAdoK-3 complex ≤ 3.5 Å. 

Atom Residue Distance 

C2 Ser8.A OG 3.27 

N3 Ser8.A OG 2.77 

N3 Ser8.A CB 3.48 

C4 Phe116.A CE1 3.44 

C3’ Asp12.A OD2 3.36 

O4’ Gln172.A NE2 3.10 

O4’ Val49.A CG1 3.39 

C5’ Asp257.A OD2 3.41 

O5’ Asp257.A OD2 2.69 

O5’ Gln172.A NE2 3.03 

O5’ Asp12.A CG 3.39 

O3’ Asp12.A OD2 2.42 

O3’ Asp12.A CG 3.20 

O3’ Gly48.A N 3.04 

O3’ Asn52.A ND2 3.17 

O3’ Asp12.A OD1 3.22 

O2’ Asp12.A OD1 2.75 

O2’ Gly48.A N 3.09 

O2’ Gly48.A CA 3.43 

O2’ Ala10.A CB 3.45 

N6 Gln.173A OE1 3.26 

N21 Ser36.B OG 2.82 

N21 Ser36.B CB 3.49 

N21 Phe102.A CE1 3.40 

O22 Phe116.A CB 3.49 
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Crystal data collection and refinement statistics for MtbAdoK-3. 

Statistic MtbAdoK-3 

Data collection 

Space Group P41 

Cell Dimensions 

a, b, c (Å) 48.9, 48.9, 262.0 

α, β, γ (°) 90, 90, 90 

Resolution (Å) 33.44-1.95(2.02-

1.95) 

Rmerge 0.071 

I/σI 20.50 

Completeness % 94.0(99.2) 

Redundancy 7.3 

Refinement 

Resolution (Å) 1.95 

No. of reflections 41971 

Rwork/Rfree 0.19/0.23 

No. of atoms 

Protein 4727 

Ligand 80 

Water 233 

B factors 

Protein 46.9 

Ligand/ion 55.2 

Water 47.3 

rmsd 

Bond lengths (Å) 0.016 

Bond angles (°) 1.4 
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Close contacts of the MtbAdoK-1 complex ≤ 3.5 Å. Analyzed from PDB ID 2PKM. 

Atom Residue Distance 

C2 Ser8.A OG 3.11 

N3 Ser8.A OG 2.62 

N3 Ser8.A CB 3.47 

N3 Phe116.A CE1 3.42 

C4 Phe116.A CE1 3.38 

C4 Phe116.A CD1 3.39 

C5 Gln172.A CB 3.46 

C5 Phe116.A CD1 3.39 

N1 Gln173.A NE2 2.99 

N7 Ser36.B OG 2.65 

C8 Phe102.A CE1 3.27 

C8 Phe102.A CD1 3.48 

C3’ Asp12.A OD2 3.35 

C4’ Gln172.A NE2 3.49 

O4’ Val49.A CG1 3.22 

O4’ Gln172.A NE2 3.26 

C5’ Asp257.A OD2 2.87 

C5’ Asn52.A ND2 3.31 

O5’ Gln172.A NE2 2.62 

O5’ Asp257.A OD2 2.69 

O5’ Asp257.A CG 3.32 

O3’ Asp12.A OD2 2.70 

O3’ Gly48.A N 2.99 

O3’ Asn52.A ND2 3.01 

O3’ Asp12.A CG 3.41 

O2’ Gly48.A N 2.82 

O2’ Asp12.A OD1 2.76 

O2’ Gly48.A CA 3.28 

N6 Gln173.A OE1 2.96 

N6 Gln172.A O 3.26 

N6 Ser36.B OG 3.43 
 

 

 

 

 



 

201 

 

Close contacts of the MtbAdoK-4 complex ≤ 3.5 Å. 

Atom Residue Distance 

C2 Ser8.A CB 3.49 

C2 Ser8.A OG 3.45 

N3 Ser8.A OG 2.88 

N3 Ser8.A CB 3.40 

C4 Phe116.A CE1 3.40 

C5 Phe116.A CD1 3.38 

N7 Phe116.A CD1 3.40 

C8 Phe102.A CD1 3.28 

C8 Phe102.A CE1 3.42 

C2’ Asp12.A OD1 3.35 

O4’ Val49.A CG1 3.27 

O4’ Gln172.A NE2 3.20 

C5’ Asp257.A OD2 3.30 

O5’ Asp257.A OD2 2.48 

O5’ Asp257.A CG 3.30 

O5’ Gln172.A NE2 3.30 

O3’ Asp12.A OD2 2.43 

O3’ Gly48.A N 2.90 

O3’ Asp12.A CG 3.16 

O3’ Asn52.A ND2 3.23 

O3’ Asp12.A OD1 3.17 

O2’ Gly48.A N 2.80 

O2’ Asp12.A OD1 2.59 

O2’ Gly48.A CA 3.29 

O2’ Asp12.A CG 3.45 

S6 Arg176.A NH1 3.45 

C20 Arg176.A NH1 3.41 
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Crystal data collection and refinement statistics for MtbAdoK-4. 

Statistic MtbAdoK-4 

Data collection 

Space Group P41 

Cell Dimensions 

a, b, c (Å) 49.4, 49.4, 264.0 

α, β, γ (°) 90, 90, 90 

Resolution (Å) 33.8-1.99 

(2.06-1.99) 

Rmerge 0.10 

I/σI 16.1 

Completeness % 98.5(97.0) 

Redundancy 7.0 

Refinement 

Resolution (Å) 1.99 

No. of reflections 42509 

Rwork/Rfree 0.18/0.21 

No. of atoms 

Protein 4714 

Ligand 72 

Water 303 

B factors 

Protein 48.2 

Ligand/ion 59.0 

Water 49.3 

rmsd 

Bond lengths (Å) 0.003 

Bond angles (°) 0.66 
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Compound 4 induces movement of Arg176 towards active site. Superimposition of 

MtbAdoK-1 structure (blue, PDB ID 2PKM) with MtbAdoK-4 complex (grey). Arg176 

and compound 4 are shown as sticks. 
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Close contacts of the MtbAdoK-5 complex ≤ 3.5 Å. 

Atom Residue Distance 

C2 Ser8.A OG 3.41 

N3 Ser8.A OG 2.78 

N3 Ser8.A CB 3.39 

C4 Phe116.A CD2 3.39 

C4 Phe116.A CE2 3.45 

C5 Phe116.A CD2 3.38 

N1 Gln173.A OE1 3.08 

N7 Ser36.B OG 2.75 

N7 Ser36.B CB 3.43 

N7 Gln172.A NE2 3.33 

C8 Gln172.A NE2 3.02 

C8 Phe102.A CE1 3.22 

C8 Phe102.A CD1 3.39 

C8 Gln172.A CD 3.45 

N9 Gln172.A NE2 3.33 

C3’ Asp12.A OD2 3.30 

O4’ Val49.A CG1 3.22 

O4’ Gln172.A NE2 3.04 

C5’ Asp257 OD2 3.30 

N5’ Asp257.A OD2 2.69 

N5’ Asp257.A CG 3.41 

O3’ Asp12.A OD2 2.52 

O3’ Gly48.A N 2.99 

O3’ Asp12.A CG 3.28 

O3’ Asn52.A ND2 3.11 

O2’ Gly48.A N 2.92 

O2’ Asp12.A OD1 2.75 

O2’ Gly48.A CA 3.32 

N6 Gln173.A NE2 3.41 
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Crystal data collection and refinement statistics for MtbAdoK-5. 

Statistic MtbAdoK-5 

Data collection 

Space Group P3121 

Cell Dimensions 

a, b, c (Å) 71.9, 71.9, 110.2 

α, β, γ (°) 90, 90, 120 

Resolution (Å) 41.28-1.75(1.81-

1.75) 

Rmerge 0.06 

I/σI 32.6 

Completeness % 99.9(100.0) 

Redundancy 10.6 

Refinement 

Resolution (Å) 1.75 

No. of reflections 33869 

Rwork/Rfree 0.19/0.22 

No. of atoms 

Protein 2459 

Ligand 31 

Water 244 

B factors 

Protein 35.4 

Ligand/ion 33.4 

Water 39.5 

rmsd 

Bond lengths (Å) 0.006 

Bond angles (°) 0.865 
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Close contacts of the MtbAdoK-6 complex ≤ 3.5 Å. 

Atom Residue Distance 

C2 Ser8.A OG 3.42 

N3 Ser8.A OG 2.85 

N4 Ser8.A CB 3.46 

C4 Phe116.A CE1 3.44 

C5 Phe116.A CD1 3.47 

C8 Phe102.A CD1 3.44 

C3’ Asp12.A OD2 3.37 

C4’ Asn52.A ND2 3.39 

O4’ Val49.A CG1 3.26 

C5’ Asp257.A OD2 3.20 

C5’ Asn52.A ND2 3.44 

O5’ Asp257.A OD2 2.67 

O3’ Asp257.A CG 3.49 

O3 Asp12.A OD2 2.47 

O3’ Gly48.A N 2.93 

O3’ Asp12.A CG 3.27 

O3’ Asn52.A ND2 3.17 

O2’ Asp12.A OD1 2.85 

O2’ Gly48.A N 3.12 

O2’ Gly48.A CA 3.47 

C20 Ser36.B OG 3.44 

C22 Arg176.A CD 3.50 
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Crystal data collection and refinement statistics for MtbAdoK-6. 

Statistic MtbAdoK-6 

Data collection 

Space Group P212121 

Cell Dimensions 

a, b, c (Å) 77.6, 82.0, 157.6 

α, β, γ (°) 90, 90, 90 

Resolution (Å) 45.88-2.36(2.44-

2.36) 

Rmerge 0.12 

I/σI 20.21 

Completeness % 99.5(99.4) 

Redundancy 9.0 

Refinement 

Resolution (Å) 2.36 

No. of reflections 42046 

Rwork/Rfree 0.18/0.21 

No. of atoms 

Protein 5059 

Ligand 80 

Water 126 

B factors 

Protein 57.8 

Ligand/ion 63.8 

Water 52.0 

rmsd 

Bond lengths (Å) 0.006 

Bond angles (°) 0.85 
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Superimposition of the crystal structure complexes of compounds 4 (blue) and 6 (gray). 

Residues Gln172 and Arg176 reorient themselves to accommodate the larger thiophene 

group. In both cases, residues are labeled by 3-letter code and chain identifier. 

 

 

 

 

 

Dose-response curve of compound 6 when tested against mc27000. Data is normalized to 

the 0 µM (DMSO) control and the error reported represents the ± SD of 3 experiments. 
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Dose-response curve of compound 6 when tested against HDF cells. Data is normalized 

to the 0 µM (DMSO) control. 

 

 

 

 

Steady-state kinetics for compound 7. The initial velocity of MtbAdoK was plotted against 

increasing concentrations of adenosine in the presence of 0.0 nM (DMSO-maroon), 20.0 

nM (green) and 40.0 nM (blue) of 7. The error bars represent ± SD of 2 experiments. 
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Initial velocity data was transformed to linear analysis to evaluate inhibitor type. The error 

bars represent ± SD of 2 experiments. 
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Close contacts of the MtbAdoK-7 complex ≤ 3.5 Å. 

Atom Residue Distance 

C2 Ser8.A OG 3.37 
N3 Ser8.A OG 2.85 
N3 Ser8.A CB 3.46 
N7 Phe116.A CD1 2.87 
C8 Phe102.A CD1 3.35 
C2’ Asp12.A OD1 3.43 
C3’ Asp12.A OD2 3.35 
O2’ Asp12.A OD1 2.66 
O2’ Gly48.A N 3.01 
O2’ Gly48.A CA 3.40 
O3’ Asp12.A OD2 2.50 
O3’ Gly48.A N 2.98 
O3’ Asp12.A CG 3.26 
O3’ Asn52.A ND2 3.15 
O4’ Gln172.A NE2 2.97 
O4’ Val49.A CG1 3.44 
O5’ Asp257.A OD2 2.56 
O5’ Asp257.A CG 3.32 
O5’ Gln172.A NE2 3.36 
C21 Gln173.A OE1 3.30 
C24 Ser36.B OG 3.49 
C26 Ser36.B OG 3.50 
C26 Ser36.B O 3.46 
C27 Ser36.B O 3.28 
C29 Gln172.A O 3.24 
C30 Gln172.A O 3.13 
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Crystal data collection and refinement statistics for MtbAdoK-7. 

Statistic MtbAdoK-7 

Data collection 

Space Group P41 

Cell Dimensions 

a, b, c (Å) 50.0, 50.0, 264.6 

α, β, γ (°) 90, 90, 90 

Resolution (Å) 50.08-1.65 (1.71-1.65) 

Rmerge 0.15 

I/σI 9.50 

Completeness % 99.8 (98.3) 

Redundancy 6.6 

Refinement 

Resolution (Å) 1.65 

No. of reflections 76910 

Rwork/Rfree 0.17/0.19 

No. of atoms 

Protein 4672 

Ligand 70 

Water 588 

B factors 

Protein 31.8 

Ligand/ion 36.3 

Water 42.1 

rmsd 

Bond lengths (Å) 0.006 

Bond angles (°) 0.86 
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Close contacts of the MtbAdoK-17 complex ≤ 3.5 Å. 

Atom Residue Distance 

C2 Ser8.A CB 3.47 

C2 Ala146.A CB 3.45 

C2 Ser8.A OG 3.25 

N3 Ser8.A OG 2.68 

N3 Ser8.A CB 3.33 

C4 Phe116.A CE1 3.44 

C5 Phe116.A CD1 3.48 

N1 Gln173.A NE2 3.11 

N7 Phe116.A CD1 3.39 

C8 Phe102.A CD1 3.35 

C2’ Asp12.A OD1 3.35 

C3’ Asp12.A OD2 3.28 

O4’ Val49.A CG1 3.28 

O4’ Gln172.A NE2 3.44 

O5’ Asp257.A OD2 2.48 

O5’ Asp257.A CG 3.40 

O3’ Asp12.A OD2 2.39 

O3’ Asp12.A CG 3.18 

O3’ Gly48.A N 2.97 

O3’ Asn52.A ND2 3.18 

O3’ Asp12.A OD1 3.25 

O2’ Gly48.A N 2.77 

O2’ Asp12.A OD1 2.61 

O2’ Gly48.A CA 3.19 

O2’ Ala10.A CB 3.47 

C19 Gln173.A NE2 3.47 

C23 Leu38.B CD2 3.14 

C23 Leu38.B CB 3.18 

C24 Leu38.B CB 2.89 

C25 Leu38.B CB 3.12 

C25 Leu38.B N 3.04 

C25 Leu38.B CA 3.50 

C27 Leu38.B CB 3.40 

C31 Phe17.B CE1 3.50 

C32 Leu38.B CB 3.04 

C32 Leu38.B N 3.32 

 

 



 

214 

 

Crystal data collection and refinement statistics for MtbAdoK-17. 

Statistic MtbAdoK-17 

Data collection 

Space Group P41 

Cell Dimensions 

a, b, c (Å) 49.9, 49.9, 264.3 

α, β, γ (°) 90, 90, 90 

Resolution (Å) 35.29-2.35 (2.43-

2.35) 

Rmerge 0.059 

I/σI 29.1 

Completeness % 98.8(100.0) 

Redundancy 6.9 

Refinement 

Resolution (Å) 2.35 

No. of reflections 26480 

Rwork/Rfree 0.18/0.22 

No. of atoms 

Protein 4720 

Ligand 74 

Water 230 

B factors 

Protein 48.3 

Ligand/ion 49.5 

Water 40.0 

rmsd 

Bond lengths (Å) 0.008 

Bond angles (°) 1.04 
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APPENDIX B 

 

 

SUPPLEMENTARY MATERIAL FOR SECTION 3 

 

 

 
Structure and numbering convention for compound 2 
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Close contacts of the MtbAdoK-2 complex ≤ 3.5 Å. 

Atom Residue Distance 

C1 Arg176.A NH2 3.38 

C2 Gln173.A OE1 3.19 

C4 Gln172.A OE1 3.08 

C5 Gln172.A OE1 3.12 

C5 Arg176.A NH2 3.40 

C6 Arg176.A CZ 3.30 

C6 Arg176.A NH2 3.19 

N7 Arg176.A CD 3.48 

C8 Arg176.A CD 3.43 

C8 Arg176.A NE 3.50 

C9 Arg176.A NE 3.30 

C9 Arg176.A CZ 3.31 

O10 Leu38.B CD1 3.36 

O11 Phe116.A CD2 2.89 

O11 Phe116.A CB 3.29 

O11 Phe116.A CG 3.03 

N12 Arg176.A NE 2.80 

N12 Arg176.A CD 3.32 

N12 Arg176.A CZ 3.34 

N13 Leu38.B CD1 3.49 

C15 Phe116.A CB 3.21 

C17 Ser36.B CB 3.50 

C19 Phe116.A CB 3.07 

O20 Gln172.A OE1 3.05 

O20 Gln172.A CD 3.45 

C21 Ser8.A OG 3.19 
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Structure and numbering convention for compound 3 
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Close contacts of the MtbAdoK-3 complex ≤ 3.5 Å. 

Atom Residue Distance 

C2 Gln173.A NE2 3.30 

C3 Gln173.A NE2 2.93 

C4 Arg176.A NH2 3.39 

C5 Arg176.A NH2 3.14 

C5 Phe116.A CE2 3.47 

C5 Arg176.A CZ 3.35 

C6 Arg176.A CZ 3.38 

C6 Arg176.A NE 3.45 

C6 Arg176.A NH2 3.50 

C8 Leu38.B CD1 3.48 

C9 Arg176.A NE 3.34 

O10 Leu38.B CD1 3.39 

O11 Phe116.A CD2 3.43 

O11 Arg176.A NH1 3.37 

C15 Phe116.A CB 3.42 

C17 Ser36.B CB 3.47 

C18 Phe102.A CE1 3.36 

N20 Gln172.A OE1 3.43 

O22 Gln172.A OE1 3.06 
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Structure and numbering convention for compound 4 
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Close contacts of the MtbAdoK-4 complex ≤ 3.5 Å. 

Atom Residue Distance 

C2 Gln173.A OE1 3.25 

C3 Gln173.A OE1 3.21 

C3 Gln173.A CD 3.41 

C6 Phe116.A CE2 3.47 

C9 Phe116.A CD2 3.37 

O10 Leu38.B CD1 3.19 

O11 Phe116.A CD2 3.46 

O11 Arg176.A NH2 3.34 

O11 Arg176.A CZ 3.32 

N12 Arg176.A CD 3.13 

N12 Arg176.A NH2 3.47 

C19 Phe116.A CB 3.36 

Br 20 Gln172.A OE1 3.45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


